

Unity UI Cookbook

Over 60 recipes to help you create professional and
exquisite UIs to make your games more immersive

Francesco Sapio

BIRMINGHAM - MUMBAI

Unity UI Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-582-2

www.packtpub.com

Cover image by Francesco Sapio and Lauren S. Ferro

www.packtpub.com

Credits

Author
Francesco Sapio

Reviewers
Jack Donovan

Lauren S. Ferro

Commissioning Editor
Neil Alexander

Acquisition Editor
Nadeem Bagban

Content Development Editor
Mayur Pawanikar

Technical Editor
Deepti Tuscano

Copy Editor
Vikrant Phadke

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Francesco Sapio obtained his computer science and control engineering degree from the
Sapienza University of Rome, Italy, with a couple of semesters in advance, scoring summa
cum laude. Now he is studying a master's of science and engineering in artificial intelligence
and robotics.

Besides this, he is a Unity3D expert and skilled game designer, as well as an experienced
user of the major graphics programs.

Recently, he has been a reviewer of the book Unity Game Development Scripting,
Packt Publishing.

Francesco is also a musician and composer, especially of soundtracks for short films and
video games. For several years, he worked as an actor and dancer. He was a guest of honor
at the theatre Brancaccio in Rome.

In addition, he is a very active person, having volunteered as a children's entertainer at the
Associazione Culturale Torraccia in Rome. Also, he gives private lessons in mathematics and
music to high-school and university students.

Finally, Francesco loves math, philosophy, logic, and puzzle solving, but most of all, creating
video games — thanks to his passion for game designing and programming.

You can find him at https://linkedin.com/pub/francesco-sapio/b8/5b/365.

I'm deeply thankful to my parents for their infinite patience, enthusiasm
and support for me throughout my life. Moreover, I'm thankful to the rest of
my family, in particular to my grandparents, since they always encouraged
me to do better in my life with the Latin expressions "Ad Maiora" and "Per
aspera ad astra".

Besides this, I would like to thank my old Acquisition Editor for introducing
me into this world and my current Content Developer for his kindness and
patience.

Finally, a huge thanks to all the special people are around me who I love,
in particular to my girlfriend; I'm grateful for all your help in everything.

https://linkedin.com/pub/francesco-sapio/b8/5b/365

About the Reviewers

Jack Donovan is a game developer and software engineer who has been working with the
Unity3D engine since its third major release. He studied at Champlain College in Burlington,
Vermont, USA, where he received a bachelor of science in game programming. Jack currently
works at IrisVR, a virtual reality start-up in New York City, where he is developing software that
allows architects to generate virtual reality experiences from their CAD models or blueprints.
Before IrisVR, he worked on a small independent game team with fellow students. At that
time, he also wrote the book OUYA Game Development By Example by Packt Publishing.

Lauren S. Ferro is a gamification consultant and designer with 10 years of experience
designing interactive game and game-like applications across a variety of contexts. She has
worked on, designed, and implemented strategies for a range of different purposes, from
professional development to recommendation systems and educational games. She is an
active researcher in the area of gamification, player profiling, and user-centred game design.
Lauren runs workshops for both the general public and companies that focus on designing
user-centered games and game-like applications. She is also the developer of the game
design resource Gamicards (which will soon be available for purchase).

You can contact her on Twitter at @R3nza. Her website is www.laurensferro.com and her
e-mail ID is contact@laurensferro.com.

www.laurensferro.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

i

Table of Contents
Preface	 v
Chapter 1: UI Essentials	 1

Introduction	 1
Setting up a 2D texture to be a bordered sprite	 2
Resizing the UI according to the screen size and resolution	 5
Adding and placing an image in the UI	 6
Adding a circular mask to an image	 10
Making an image scrollable	 12
Making text scrollable with a vertical slider	 14
Selecting buttons through the keyboard	 20
Using UI layout components	 23

Chapter 2: Implementing Counters and Health Bars	 27
Introduction	 27
Implementing a score counter	 28
Implementing a lives counter	 32
Creating a modular coin counter	 36
Creating a symbolic lives counter	 42
Implementing a linear health bar	 46
Implementing a radial health bar	 50
Creating a health bar with armor	 52
Using multiple bars to make a multibar	 56
Developing a kingdom hearts health bar style	 60

Chapter 3: Implementing Timers	 65
Introduction	 65
Implementing a numeric timer	 66
Creating a linear timer	 69
Implementing a radial timer	 72
Creating a mixed timer	 74

ii

Table of Contents

Creating a well-formatted timer	 78
Developing a well-formatted countdown that changes	 81

Chapter 4: Creating Panels for Menus	 87
Introduction	 87
Creating a toggle group	 87
Showing the slider value as a percentage	 90
Adding upper and lower bounds to the slider	 93
Making UI elements affected by different lights	 98
Making a draggable panel	 102
Making a resizable panel	 103
Creating a drag-and-drop element	 107
Developing an MP3 player	 110

Chapter 5: Decorating the UI	 117
Introduction	 117
Creating an extendable element with a final fade effect	 117
Creating an extendable and rotating element with a final fade effect	 121
Creating bars that go up and down	 126
Making a floating UI element	 131
Adding shadows to text	 134
Adding outlines to text	 137

Chapter 6: Animating the UI	 141
Introduction	 141
Appearing and disappearing menu	 141
Creating a menu with an entrance transition	 146
Creating a menu with an idle animation	 150
Animating a button when the cursor is over it	 151
Creating a pop-up menu	 154
Animating hearts of the symbolic lives counter	 157
Changing animation of the hearts of the symbolic lives counter
through the script	 159

Chapter 7: Applying Runtime Customizations	 163
Introduction	 163
Making a button that changes color	 164
Creating a slider that changes colors gradually	 166
Creating a slide shower using a discrete slider	 169
Creating a slider that changes a single color channel	 175
Making an input field with personal text validation at runtime	 182
Making an input field for a password with a lower bound limit
for characters	 190
Changing the cursor at runtime	 194

iii

Table of Contents

Chapter 8: Implementing Advance HUDs	 199
Introduction	 199
Creating a distance displayer	 199
Creating a directional radar	 209
Developing a subtitle shower	 216

Chapter 9: Diving into 3D UIs	 223
Introduction	 223
Creating a 3D menu	 223
Adding a smooth tilt effect	 227
Creating and placing a 3D UI	 231
Making an animated 3D UI warning	 233

Chapter 10: Creating Minimaps	 239
Introduction	 239
Creating a minimap	 240
Implementing advanced features for minimaps	 245

Index	 259

v

Preface
Unity is a very flexible and high-performance game engine. It allows you to build small – to
large-scale enterprise video games. It is designed to promote rapid development and clean,
pragmatic design and lets you build high-performing, elegant games quickly. The main aim of
this book is to teach you how to implement complete user interface systems that can interact
with all other parts of your game. The book is structured in recipes, so the expert user can
read them in any order that they like. But for those who are still learning, it can be read in
order, as it guides you from the basic topics to advanced features that can be developed
within the UI. Furthermore, the book often refers to the relation between the player and the
UI. In fact, this is a very important factor to take into consideration in order to design and
implement a UI that feels suitable and ultimately create a successful game.

What this book covers
Chapter 1, UI Essentials, gives us the basic tools needed to deal with the UI. These will be
used throughout this book. Once learned, these tools provide the foundations for creating
even more complex interfaces.

Chapter 2, Implementing Counters and Health Bars, provides different ways to implement the
most often used UI systems: counters and health bars. They serve many purposes, such as
keeping track of virtual currency and the number of lives that a player has.

Chapter 3, Implementing Timers, deals with the way time is used and represented in our
game. Timers are a good way for players to experience flow throughout the game, and
countdowns can indicate how much time is remaining to complete a task. Furthermore,
they can change over time. Both timers and countdowns are effective methods of altering
the dynamics of gameplay.

Chapter 4, Creating Panels for Menus, teaches you how to make different kinds of panel
to create interactive menus. These menus contain elements such as sliders and draggable
and resizable features.

Preface

vi

Chapter 5, Decorating the UI, explains how it is possible to implement dynamic elements
to decorate our UIs. In fact, these are a great way to give the player a feeling that the UI is
dynamic and alive.

Chapter 6, Animating the UI, extends the concept of giving life to a UI from the previous
chapter. In addition, this chapter provides methodologies that allow players to switch
between different menus.

Chapter 7, Applying Runtime Customizations, examines the different levels of customization
for the player that can be achieved during runtime, such as text filtering and slider lockers.

Chapter 8, Implementing Advance HUDs, helps you develop skills for taking information
from the 3D world and then implementing it within your HUD elements. Such elements
may include displaying the distance to an object, radar for detecting objects, as well as
a subtitle shower system.

Chapter 9, Diving into 3D UIs, focuses on teaching some advanced features for placing UI
elements within a 3D space by taking advantage of the z axis. Furthermore, it covers various
scripts that enable our UI to interact with the 3D world in order to exchange inputs/outputs.

Chapter 10, Creating Minimaps, explores the many purposes that minimaps can serve, such
as identifying locations of interest, objects, and even characters, such as locations of enemies
and other players, which can be shown as icons on the minimap.

What you need for this book
The only software you need is Unity 5.x, which can be downloaded from the official website:

http://unity3d.com/

However, it could be useful if you have some graphics programs for use throughout the recipes
in this book for — rapid mock-ups and custom graphics.

Furthermore, Unity 5.x Pro is required to follow the last chapter of this book, since we will use
render textures, which are available only with Unity Pro.

Who this book is for
If you are a game developer with some experience with Unity and C# and want to create
the best interactive experience fast and intuitively, then this book is for you. If you are an
intermediate game developer or an expert, these recipes will help you bring out the power
of the new UI Unity system.

Preface

vii

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Since we don't need to set the initial variables, we can erase the Start() function."

Preface

viii

A block of code is set as follows:

public void Update()
 if (Input.GetKeyDown (key))
 {
 EventSystem.current.SetSelectedGameObject(
this.gameObject);
 }}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

using UnityEngine.UI;
using UnityEngine.EventSystems;
using UnityEngine;
using System.Collections;

Any command-line input or output is written as follows:

C:\Program Files\Unity\Editor\Unity.exe

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking on the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book — what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

ix

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/UnityUICookbook_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books — maybe a mistake in the text or the code — we
would be grateful if you could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/UnityUICookbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/UnityUICookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

x

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

1
UI Essentials

In this chapter, we will cover the following recipes:

ff Setting up a 2D texture to be a bordered sprite
ff Resizing the UI according to screen size and resolution
ff Adding and placing an image in the UI
ff Adding a circular mask to an image
ff Making an image scrollable
ff Making text scrollable with a vertical slider
ff Selecting buttons through the keyboard
ff Using UI layout components

Introduction
This chapter explains how to use the essential tools for creating more complex interfaces.
These tools include placing and scaling UI elements, using masks to shape figures, and
making images and text scrollable along with sliders.

We start by creating a sprite with a border. It can be scaled up or down without distorting.
Then, we will proceed with explaining how to make our UI resizable according to the
resolution of our screen.

Later, we will introduce the most used UI component — the Image (Script). Then, you will learn
how to implement more complex transformations, such as masking it or making it scrollable.

We will also see how to select buttons using the input from the keyboard by introducing how
we can develop scripts that are able to interact with our UI.

Finally, we will look at the UI layout components that allow us to easily create and structure a
very wide UI.

UI Essentials

2

Getting ready
To get started with this chapter, we will need to have Unity 5 running, and we must create
a new project. The project can be set in 3D or 2D, depending on which one better suits the
game that we wish to make. However, if it is set in 2D, Unity will automatically import our
images as sprites. Lastly, ensure that you have some nice images of your choice for use
in the examples, such an ancient map.

Setting up a 2D texture to be a bordered
sprite

To properly scale a 2D texture to the screen size, we may need to make it bordered. This
allows us to force the resolution, but not scale all the parts of our image, in order to maintain
the original appearance of the image. Buttons are often bordered because their appearance
depends strongly on how corners are scaled, and we don't generally want them to scale.

How to do it...
1.	 To begin, we need to import our image. We can do this by right-clicking on the Project

panel and then selecting Import new asset....
2.	 Using the navigation menu on your computer, locate an image and import it. As a

result, the image will be in our project and it can be used everywhere within the
current project.

Another way to add images to the project is by dragging and dropping
them into the Project panel.

3.	 Next, we need to select our image in the Project panel. In fact, this allows us to
display all the import settings in the Inspector window, which we can then tweak.

4.	 In order to use images as part of the UI, Texture Type must to be set in Sprite (2D
and UI). This can be changed through the Inspector window after we have selected
them. However, if our project is set as a 2D project, the image in the project will have
already been imported with Texture Type set correctly.

5.	 Once we have done this, we click on the Sprite Editor button.
6.	 In each side of the figure, we can find four green points. By dragging them, it is

possible to divide the image into sections. By doing this, we create the borders of
our image. Therefore, let's drag them a bit inside the picture so that we can see the
borders. We have to pay attention when we have curved corners, which can be the
case if we are working on a button. In fact, we need to ensure that all the green lines
that belong to the border are beyond the curvatures of the corners. Otherwise, they
will not be scaled as they should.

Chapter 1

3

7.	 Finally, we can click on the Apply button in the top-right corner of the Sprite Editor
to save all our changes. After this, we can close the Sprite Editor, since we don't
need it anymore.

8.	 As a result, the image has borders, and therefore can be scaled as it should. How
to properly place this inside our UI, since it requires us to set the Image (Script)
component to Sliced.

How it works...
Sometimes, some components of our UI need to be scaled. However, not all of them can be
scaled freely. Otherwise, it could look different from what we thought it should be. Therefore,
bordered images are used to scale everything as it should be. Borders tell Unity how it has
to scale the picture. When we drag the green points in the Sprite Editor, we are dividing the
image into nine sections. Each of these sections is scaled differently. The central sections
are scaled in both x and y directions (vertically and horizontally). The side sections are scaled
in only one direction: vertically for the right/left sections and horizontally for the upper/lower
sections). Finally, the corners do not scale at all. You can see these nine sections and the
scales in the following image:

Let's consider an example to understand why a bordered sprite is important for the UI.
Imagine that we have a button like the one in the preceding image and we have placed it
on the screen. When the game runs on different devices, the resolutions will be different
and Unity will scale our UI accordingly (see the next recipe for more information). Ideally, we
want the button to look like the original one that we have designed as much as possible.
This means, for instance, that we want to preserve the original curvatures of the corners,
and therefore, we need to force them not to scale. This can be communicated to Unity using
borders. In this way, the rest of the button can scale along with the screen size in order to fit it,
but as a result, the button will look like the original one.

UI Essentials

4

There's more...
The next subtopic will show us how to slice the sprite without using all of the nine sections.

Slicing with less than nine sections
As you have learned so far, we can use the nine sections of the border to define the scaling
setting of an image properly. But we are not constrained to use all of them. In fact, it is
possible to segment the image into fewer sections. This is useful when we have some UI
elements that are attached to the border of the screen. In fact, in this case, the image will
scale differently according to only those sections that have been defined. To do this, we need
to drag only some of the green points from the corners, instead of what we did in steps 5 and
6, where we dragged all them. By tweaking these, we can achieve different ways of scaling our
UI, and the right one depends on how we want our game to look in different resolutions. For
instance, we can create something similar to this:

See also
ff Since having a bordered image is very important when the UI is scaled on different

resolutions and platforms, maybe it could be worthwhile taking a deeper look at
resolution scaling. The following recipe, Resizing the UI according to the screen size
and resolution, will explain how to resize the UI according to the screen resolution.

ff Moreover, it is possible to learn more about how to place an image in the UI in the
Adding and placing an image in the UI recipe.

Chapter 1

5

Resizing the UI according to the screen size
and resolution

One of the most difficult things to do in the older versions of Unity was scaling the UI (or GUI,
the old Unity user interface system). In fact, the system was hard to learn, and most of the
features had to be implemented by scripts, including scaling. However, in Unity 5, scaling the
UI is much easier with the Canvas Scaler (Script) component. This component will take care
of the scale of all UI elements that are contained in Canvas.

How to do it...
1.	 If we check the previous recipe, we can see in the Hierarchy panel that Canvas is

already present in our scene. This is because whenever we create a UI element and
Canvas is not present in the scene, Unity will create it for us. Of course, we can also
create it on our own, and this can be done by right-clicking on the Hierarchy panel
and then navigating to UI | Canvas.

2.	 Now that we have created Canvas, we can select it. In the Inspector, we can see all
its properties and parameters, including all the components attached to it. By default,
when a Canvas is created, the Canvas Scaler (Script) component is attached on it.
Since this component can be removed, it may happen that it is not present anymore.
In such cases, we can add it again by clicking inside the Inspector window on Add
Component and then going to Layout | Canvas Scaler.

3.	 Next, we have to change the Ui Scale Mode property to Scale With Screen Size and
ensure that Screen Match Mode is set to Match Width Or Height. Furthermore, we
can adjust the Match variable; for example, we can move the slider to the middle by
changing the value to 0.5. We should now see this:

4.	 As a result, every UI element inside Canvas will be scaled according to our project's
screen resolution, and they will all adapt to the device on which the game is running.

UI Essentials

6

How it works...
In the Unity UI system, Canvas is a special game object. This is because all the UI elements
must be contained inside it. In fact, elements that are not in it will not be rendered. By default,
Canvas comes with three components attached to it. One of these three is Canvas Scaler
(Script). This component controls how all the UI elements that are contained in that specific
Canvas will be scaled. By tweaking some of its properties, it is possible to achieve a scale
setting that best suits our needs. In particular, we have set the Match slider, which allows us
to proportionally crop the width and height of the view in order to adapt it to the resolution of
the platform on which the game is running.

See also
ff There are many other ways of scaling UI elements according to screen size to suit

our requirements. To explore these methods, you can refer to the book Unity 3D UI
Essentials by Simon Jackson, Packt Publishing, ISBN 139781783553617 (https://
www.packtpub.com/game-development/unity-3d-gui-essentials).

ff Furthermore, you can refer to the official documentation of Unity about this
component at http://docs.unity3d.com/Manual/script-CanvasScaler.
html.

Adding and placing an image in the UI
Since our UIs mostly consist of images, it's very important to learn how to handle them with
the Image (Script) components in Unity. In fact, we will use them a lot in all the recipes of this
book. In particular, here you can understand how to create a new image and properly place it
in your UI.

How to do it...
1.	 Let's start by importing the image into our project, as we did in the first recipe of this

chapter. We can do this by right-clicking on the Project panel and selecting Import
new asset. Of course, it is also possible to drag the asset into the same panel and
skip the next step.

2.	 We can navigate through our files to select the image that we want to import.

3.	 If we select our image in the Project panel, it is possible to see all its properties in
the Inspector.

4.	 In order to use our image as Source Image of our UI, we need to change Texture
Type to Sprite (2D and UI) in the Inspector. As you learned in the first recipe, if our
project is set in 2D, all the images will have already been imported as sprites.

https://www.packtpub.com/game-development/unity-3d-gui-essentials
https://www.packtpub.com/game-development/unity-3d-gui-essentials
http://docs.unity3d.com/Manual/script-CanvasScaler.html
http://docs.unity3d.com/Manual/script-CanvasScaler.html

Chapter 1

7

5.	 Now, in the Inspector, there are different import settings. There is no need to change
the settings for this recipe; it is important to understand these features so that we
can properly import all our images into the project. These features include the format,
along with the size and the compression method. If, for instance, we need to make
the image file size smaller for performance. You can find references to them in the
See also section of this recipe. Then, when we are satisfied with our choices, we can
click on the Apply button so that the import settings are applied. This could take
some minutes if you have changed the settings of many different images at once.

6.	 Next, we need to create the UI image that will be in the UI. In order to add it to the
scene, we have to right-click on the Hierarchy panel and then navigate to UI | Image.
We should also ensure that it is inside the Canvas object.

UI components that are outside Canvas will not be drawn
by Unity, so ensure that every UI component is always inside
Canvas!

If they are not, we can drag and drop them onto the Canvas
object so that they become children, and they appear again.

7.	 Inside the Image (Script) component, which we can find in the Inspector, we drag the
image that we have imported inside the Source Image variable.

If our image is sliced, as we saw in the first recipe of this
chapter, we also need to set Image Type to Sliced.

8.	 As a result, our image appears in the UI, but it has taken the dimensions and scaling
of the Image object that we have created. Therefore, if we need to keep its original
dimensions, we can click on Set Native Size in order to set them again.

9.	 So that it is easier to work with the UI, set your scene view to 2D, as shown in the
following screenshot, and zoom out and pan until you can clearly see your Canvas.
At this stage, it is very large, so don't worry if you zoom out too much. Otherwise, you
can use the hotkey F (or double-click on the image in the Hierarchy panel) to focus
the camera on it:

UI Essentials

8

In order to scale and place the image, we select the last Transform Tool, which we
can find in top-left corner of Unity, as shown in the next screenshot. It is called the
Rect Tool, and it can easily be selected by pressing the hotkey T. While we need
different tools to translate, rotate, and scale 3D objects, since they have many
degrees of freedom, we can perform all of these operations with just one tool
when we deal with a 2D object:

10.	 After we have selected the image from the scene view, four blue points appear on the
corners. These are the control points of the Rect Tool.

11.	 We can drag one of them to scale the image.

If you want to keep the images' original proportions, you can
hold down Shift while you are dragging the blue points.
Furthermore, if you hold down Alt instead of Shift, you
can simultaneously scale the object in two directions
symmetrically.
Finally, you can also resize the image by clicking on the edges
instead of the corners and dragging them.

12.	 In conclusion, we can place the image wherever we want to by clicking anywhere
inside the rectangle and dragging. Again, keep in mind that all the UI elements,
including the image, must be inside the Canvas in order to be drawn by Unity and
displayed to the player.

How it works...
The new UI system of Unity allows us to add images to the UI in a very simple way. The Image
(script) component takes a Source Image and draws it on the screen. However, this happens
only if the object to which this component is attached is inside Canvas. In fact, Unity calls
functions to draw the UI only if they are inside Canvas.

In the preceding examples, we used the Rect Tool to scale and place the image, because
every UI element is represented as a rectangle for the purpose of this layout.

Chapter 1

9

There's more...
Rotating an image it's crucial in designing good UIs. Moreover, all the rotations depends by
the pivot point. Thus, the aim of the following section is to give an overview of the concepts
to start to experiment and learn how to use properly this tools.

Rotating the image and changing the pivot point
We can also rotate the image by slightly moving the cursor away from the corners until it looks
like a rotation symbol. Then, we can click and drag it in either direction to rotate the image.
We can also change the pivot point. After selecting the image in the scene view, just click and
drag the blue circle at the center of the image. By doing this, we can rotate images in different
ways. You can better understand this concept by paying attention to the following image,
which shows the same rectangle rotated with two different pivot points:

The four black squares are our referring points to understand the
difference. Both the rectangles are rotated by the same angle. In
the upper rectangle, the pivot point (blue circle) is in the middle,
whereas in the lower rectangle, it is moved to the left side.

Furthermore, changing the pivot point could lead to an interesting variation in our UI when
this is animated or controlled by scripts. For instance, we should definitely try to experiment
with different locations of pivot points in the Creating an extendable element with a final fade
effect and Creating an extendable and rotating element with a final fade effect recipes in
Chapter 5, Decorating the UI.

UI Essentials

10

Adding a circular mask to an image
Often in games, UI elements are not designed to be rectangular. Thus, a quick way to change
their shape is through masking. One of the basic shapes is a circle. Therefore, in this recipe,
you will learn how to make an image circular. This could be useful, for example, to surround a
character icon circularly or to create special circular buttons. In order to achieve this, we will
use the Mask component.

How to do it...
1.	 First of all, we need to create a mask, which in this case should be circular. Since

the mask is just another image, let's open a graphic program that we have. Then, we
need to create a new image with the same pixels for the height and width so that the
drawing canvas is a square.

2.	 This step and the following step depend on the graphics program that you are using.
Now, we have to draw a white circle in the middle of the image.

3.	 Furthermore, we should also ensure that the background is transparent. From the
following screenshot, you can get an idea of what the final outcome will look like
(the program used for this is Photoshop):

Chapter 1

11

If you are using Photoshop, you can easy create this mask using the
ellipse tool. While holding down the Shift key, click on the top-left
corner and drag it to the bottom-right corner.

If you don't have a graphics program or you don't want to use a
graphics program, you can use the image provided along with the
code featured in this book.

4.	 The next step is to import this mask into the project. To do this, right-click on the
Project panel and select Import new asset.

5.	 Unity will ask us to select the mask that we have just created. Therefore, locate the
folder where you saved it and then import it.

6.	 In order to see the settings of the imported mask as an image in the Inspector, we
need to select it in the Project panel.

7.	 Thus, if our project is not set in 2D, we should change the Texture Type in Sprite
(2D and UI) in the Inspector and then click on Apply.

8.	 Now, we need to create a new panel. We can do this by right-clicking on the Hierarchy
panel and then going to UI | Panel. We should also ensure that we have it inside the
Canvas object.

9.	 Inside the Image (Script) component, we need to set our mask to the Source Image
variable.

10.	 In order to get the exact shape that we created in our graphics program, we need to
bring the image back to its original proportions. This can be done by clicking on Set
Native Size and then scaling uniformly (keeping Shift pressed) if needed.

11.	 The next thing to do is transform our panel into a mask. So, we need to add the Mask
(Script) component to our panel.

12.	 Then, we need an image to put the mask on. Therefore, let's create an image inside
the panel. To do this, we need to right-click on the Hierarchy panel and then go
to UI | Image.

13.	 Inside the Image (Script) component of the image, we need to select the picture that
we want to mask. This can be done by dragging it into the Source Image variable of
the component. As a result, it will be masked with a circle.

14.	 If needed, we can click on Set Native Size and scale it uniformly.

UI Essentials

12

15.	 In this case, by using an ancient map, we can see what the final outcome should look
like in the following picture:

How it works...
As we have seen, Unity uses another image to create the mask. This is the reason the Mask
(Script) component is attached to the object that has an Image (Script) component. As a
result, it is possible to create any shape that we want for the mask. In fact, the only thing
we need to keep in mind is that the white sections of the mask texture will be the parts
that are visible.

See also
ff If you are looking for more information about the Mask component, you can refer

to the Unity official documentation at http://docs.unity3d.com/Manual/
script-Mask.html.

Making an image scrollable
Many fantasy games have huge worlds, along with very large maps, so in order to show them
in the UI, they are usually scrollable. This allows the player to explore the map in sections
without showing it entirely at once.

This recipe explains how to achieve this using the Mask (Script) component, which we have
already used in the previous recipe, and the Scroll Rect (Script) component. The latter will
handle the logic that will allow the UI elements to be scrollable.

http://docs.unity3d.com/Manual/script-Mask.html
http://docs.unity3d.com/Manual/script-Mask.html

Chapter 1

13

How to do it...
1.	 So that we don't have to start over again, we can use the mask that we created in

the previous recipe. In fact, we can change what we have done there to achieve this
scrollable effect.

2.	 To begin, we need to add the Scroll Rect (Script) component to the panel.

3.	 Keeping the panel selected, drag the image that is parented to the panel into the
Content variable inside Scroll Rect (Script).

4.	 By default, the image is set to have an elastic effect, which, in most cases, is quite
nice. However, since we are using a circle instead of a rectangle, it is better that the
image doesn't go out of the circle. This is because the image may appear distorted
and affect the overall aesthetic experience, which may even prove to be uncomfortable
to the player. Therefore, to solve this, change Movement Type to Clamped.

5.	 Finally, it is possible to modify the effect to better suit our needs by changing
Deceleration Rate and Scroll Sensitivity. Thus, take time to test which values
are best for you.

6.	 Once you have finished altering the values, your Inspector should look similar to this:

UI Essentials

14

How it works...
First of all, we took the previous image, which is already masked. In fact, scrollable images are
often used along with masks. This is because masks allow us to focus on specific locations
within large images or text without overwhelming the player, as well as allow larger objects
to feature within the UI in more compact ways. Once we had taken the outcome from the
previous recipe, we then added a Scroll Rect (Script) component to the parent of our image.
This component does the work, and it can be controlled by several options or parameters.

For example, we can change the Movement Type variable. Clamped is where the content is
confined to the Scroll Rect bounds, Elastic means the content bounds when it reaches the
edge, and Unrestricted means that there are no limitations. In addition to this, we can tweak
Deceleration Rate, but only if Inertia is checked. This determines how much time it takes for
the content to come to a complete stop. At a rate of 0, the movement will stop immediately,
whereas at a rate of 1, it will never slow down. Among the most important parameters of
this component is Scroll Sensitivity. This is, as the name suggests, the sensitivity when the
content is scrolled.

See also
ff It's always good to refer to the official Unity documentation if you are looking for

more information. Besides the previous recipe, you can find more about masks
at http://docs.unity3d.com/Manual/script-Mask.html.

ff And you can follow the http://docs.unity3d.com/Manual/script-
ScrollRect.html link to learn about the Scroll Rect (Script) component:

Making text scrollable with a vertical slider
Sometimes, we might have a large amount of text, such as a story in a book within our game,
and we may want to show this to the player. One solution for improving the accessibility of
reading text could be to add a slider so that the player can drag it in order to quickly scroll
through text and immediately know which part of the text he is reading. Similar to what we
did in the previous recipe, we need to make this text scrollable, and we also need to add the
slider, which will be vertical in this example.

By the end of this recipe, we will be able to use the Scroll Rect (Script) and Scrollbar (Script)
components to control scrollable text by using the slider.

http://docs.unity3d.com/Manual/script-Mask.html
http://docs.unity3d.com/Manual/script-ScrollRect.html
http://docs.unity3d.com/Manual/script-ScrollRect.html

Chapter 1

15

How to do it...
1.	 In the first step, we create a new panel within our UI. Right-click on the Hierarchy

panel and then go to UI | Panel.

2.	 Next, we should resize the panel until we have a scene view that is similar to this:

3.	 It's always good practice to have all the files within our project ordered. Hence, we
can rename the panel to Text Scroller.

4.	 As we did in the last two recipes, let's add a Mask (Script) component. In order to
view the scene without visual constraints, for the moment, we can disable it.

5.	 Next, right-click on Text Scroller and then select Create Empty. By doing this, we
create an empty child game object inside Text Scroller. Also, we should rename it to
Text Content.

6.	 On this last one, we need to add a Scroll Rect (Script) component. Then we need
to create the text. This can be done by right-clicking on Text Content and going
to UI | Text.

7.	 Now we can write (or copy and paste long text) inside the Text variable of the
component.

UI Essentials

16

8.	 Using the Rect Tool, we should resize the text area in order to obtain a rectangle.
This rectangle must have a width narrower than Text Scroller and a larger height. We
need to continue to increase its height until all of the text is contained inside of the
rectangle. You can refer to the screenshot after step 10 to get a better idea of how it
should appear at this stage.

9.	 Now, right-click again on Text Scroller, and this time, go to UI | Scrollbar. Now our
Hierarchy panel should look similar to this one:

10.	 Next, we need to change the Direction variable of the Scrollbar (Script) component
to Bottom To Up. Then, resize and place the scroll bar in the remaining space of the
panel, as shown in this screenshot:

Chapter 1

17

11.	 We also need to link the scroll bar to the text. To do this, select Text Content and
drag the scrollbar inside the Vertical Scrollbar variable. We also have to uncheck
the Horizontal variable in order to force the text to scroll vertically.

12.	 Finally, we can enable the mask on Text Scroller (the one that we have disabled in
order to work better) and click on play to test what we have done. If you prefer, you
can disable the elastic effect, as was done in the previous recipe. To do this, just
change Movement Type to Clamped on the Scroll Rect (Script) component.

13.	 We are now able to scroll the text within Text Scroller. As a result, we should see
something like this:

How it works...
The entire process works in a way similar to the previous recipe. In fact, we created a mask for
text, instead of images as we had previously done. Then we temporarily hid the mask, which
made it easier to place the text. In order to make the text scrollable, we added a Scroll Rect
(Script). Ultimately, we had to resize the text to display it correctly on the screen. We also
added a scroll bar and linked it to Scroll Rect (Script). Since the Scroll Rect (Script) will do
the needful for us, we don't need to update the scroll bar. As in this example, the text will scroll
vertically, since we have disabled horizontal scrolling on Scrollbar (Script). Finally, we enabled
the mask again in order to show only a portion of text at once.

There's more...
The following two sections will introduce us to new ways for scrolling the text so that it can
better suit the design of our game.

UI Essentials

18

Scrolling multiple columns at once
What happens if we want different kinds of text, such as a heading or a second column? We
need to make a few changes.

First of all, we need to create a new empty game object and parent it with the Text Scroller.
Next, we add a Scroll Rect (Script) component to this object and set the Text Content object
that we created before in the Content variable by dragging it. Then we remove the Scroll
Rect (Script) component from Text Content. Lastly, we can add an arbitrary number of UI text
objects inside Text Content, and as a result, all of the text will be scrollable. If we add five of
them, the Hierarchy panel should look like what is shown here:

Remember that in order to properly place the text on the screen, we can temporarily disable
the mask attached to Text Scroller. By doing this, we are able to see all the objects inside
the mask without its constraints.

At the end, we should have something that looks like this:

Chapter 1

19

Resizing all the components could be needed in order to fit the text and
the panel properly. As a result, the scroll effect will appear natural and as
we have planned.

Scrolling horizontally
Even though using a horizontal slider is unusual, we can transform the slider that we already
have and change its orientation. This is often used to implement inventory systems of point-
and-click game genres.

To achieve this, we can begin by changing what we did in step 8. This time, we have to stretch
the text, making its height a little smaller than the height of Text Scroller and the width as long
as the text itself. Then, in step 10, instead to selecting Bottom To Up, change the Direction
variable to Left To Right. Finally, in step 11, we need to link the Horizontal Scrollbar variable
(instead of Vertical Scrollbar) with our scroll bar, so uncheck the Vertical variable.

Since horizontal scrolling becomes hard to read when the width of the Content is large, it
could be helpful to split the text into more than one column. We can easily achieve this by
creating different UI text elements inside the Content object and distributing them in order to
form as many columns as we like. We can see an example of this in the following screenshot:

Again, resizing all the components could be needed in order to fit the text
and the panel properly. As a result, the scroll effect will appear natural and
as we have planned.

UI Essentials

20

Selecting buttons through the keyboard
Often in games, there are menus that have shortcuts as well. For example, if the player has
to use a skill quickly, he needs an easier way to access it. In general, where there is the
possibility within the UI to choose more than one selectable element, such as buttons
and toggles, it is possible to select them using a keyboard shortcut.

This recipe will teach you how to detect when a key is pressed and select a specific UI element
by creating a script that is able to be generic enough to be placed on every UI element without
changing the code.

How to do it...
1.	 To begin, create a new panel. Right-click on Hierarchy panel and then go to UI |

Panel. We can also rename it to keep the project names ordered.

2.	 Next, we need to create a button inside the panel. We can do this by right-clicking on
the panel and then navigating to UI | Button.

3.	 In order to better see, which button is currently selected, let's change some
properties of the Button (Script) component. For instance, we could choose a
different color for Normal Color, Highlighted Color, and Pressed Color. In this
example, let's set Highlighted Color to red and Pressed Color to green, and leave
Normal Color as white. Finally, we also need to change Navigation to Vertical.

4.	 In order to have the ability to choose among different buttons, we need different
buttons in the scene. We can achieve this by duplicating the button. This can be done
by pressing Ctrl + D and then placing the duplicated buttons below the original one.
Rename the first of these to Button 1 and the second to Button 2. Repeat the same
with the Text variable inside the Text (Script) component on the child of the button.
As a result, we will be able to distinguish buttons on the screen as well. Finally, repeat
this step at least two more times to get three buttons. Once we are done, our scene
should look similar to the following:

Chapter 1

21

5.	 Now it's time to create our first script. To begin, in the Inspector, go to Add
Component | New Script and name it ButtonThroughKeySelection. Then click on
Create and Add. While doing this, ensure that the language selected is C Sharp.

6.	 Double-click on the script in order to open it in MonoDevelop.

7.	 Every time we work with some UI classes, we need to add a using clause on top of
our script. This will ensure that we don't have any compilation error when the script
is compiled by Unity. Furthermore, since we are also using events, we need to add
another using clause. Therefore, at the beginning of our script, we need to get
these:
using UnityEngine.UI;
using UnityEngine.EventSystems;
using UnityEngine;
using System.Collections;

8.	 Moreover, we need to add a variable for the key that has been chosen. By doing this,
we can set that variable in the Inspector:
public class ButtonThroughKeySelection: MonoBehaviour {

 public string key;

9.	 Since we don't need to set the initial variables, we can erase the Start() function.
In order to implement the detection of the pressed key and change the selected
button, we need to write the Update() function in the following way:
public void Update()
 if (Input.GetKeyDown (key))
 {
 EventSystem.current.SetSelectedGameObject(
 this.gameObject);
 }
}

10.	 Now we can save the script and add it to one of the three buttons.

11.	 Next, set the Key variable with a string that represents a key, for example, space for
the spacebar. Once we have done this, we should see something like this:

12.	 Finally, we can click on the play button and see whether everything works. After our
button is selected, by pressing the key bounded by the variable, we can move through
the others with the arrow keys. However, if we re-press our key, which in this example
is the spacebar, the selection returns to our button.

UI Essentials

22

How it works...
To get started, we have created three buttons in the scene, which are our test buttons. We
also had to change some of the buttons' properties in order to clearly see the effect that
our script had on the buttons. Since we had distributed our buttons vertically, we set the
Navigation variable to Vertical.

At the beginning of the script that we wrote, we added the using UnityEngine.UI;
and the using UnityEngine.EventSystems; statements. The former needs to use UI
elements inside our scripts, and it will be the most used through all the recipes of this book.
The latter needs to use the Event System directly in our script.

As part of the next step in this recipe, we added a public string variable. It is public so that
it can be set in the Inspector later. As a result, we can choose an arbitrary key to bind the
specific button where the script is collocated.

Now, in the Update() function, we checked through if (Input.GetKeyDown (key)) to
find out whether our key is pressed. In fact, the Input.GetKeyDown(string) function
returns true if the key specified as a string is pressed, and false if it is not. It's important
to remember that the Key variable is set in the Inspector, so it could change according to
the design of our game. Check out the See also section for more information about key
press detection.

Finally, if our key is pressed, we need to select a specific button. This can be done with the
EventSystem.current.SetSelectedGameObject(this.gameObject); line. The first
part, EventSystem.current, returns the current event system that is used. Then, we call
on the SetSelectedGameObject(gameObject) function, which selects the game object
passed as a parameter. In this case, we use this.gameobject, which is the game object
where this script is attached, as well as the button that we want to select.

By keeping everything parametric, such as having a Key variable that can be set to every
instance of the script, we are able to use this script on many buttons at one time and
customize it differently without touching the code again.

See also
ff During the development of this script, we have seen different functions. The most

important was the GetKeyDown() function. In fact, it allows you to detect whether a
particular key is detected. You can find more information about it at http://docs.
unity3d.com/ScriptReference/Input.GetKeyDown.html.

http://docs.unity3d.com/ScriptReference/Input.GetKeyDown.html
http://docs.unity3d.com/ScriptReference/Input.GetKeyDown.html

Chapter 1

23

ff However, this function needs a string as a parameter that specifies a key on our
keyboard. You can find the complete list of the strings at http://docs.unity3d.
com/ScriptReference/KeyCode.html.

ff Finally, we have also used the EventSystem. This is very wide and can be used in
different situations within Unity. Therefore, if you are looking for more information
about it, you can refer to http://docs.unity3d.com/ScriptReference/
EventSystems.EventSystem.html.

Using UI layout components
Often, we need to place a lot of objects in their correct and symmetric positions within our UI
or in a nested element. Luckily, Unity has an auto-layout system that provides ways to nest UI
elements into other UI elements. It is controlled by the UI layouts components that allow us
to structure our UI. Learning how to master them is crucial for quickly creating clean UIs and
achieving our design goals. In fact, this is the purpose of this recipe.

How to do it...
1.	 As the first step, we need a panel to apply the layout controllers to, and we have to

restructure its children objects. To create this panel, right-click on the Hierarchy
panel and then go to UI | Panel. We should also rename it to First Panel.

2.	 Then, we need to fill in our First Panel with some elements. In this recipe, we will use
buttons. So let's start creating one of them inside the panel by right-clicking on the
panel and then navigating to UI | Button.

3.	 Since just one button is not enough to see how layout controllers work, we need to
add more panels. Therefore, we duplicate the button by pressing Ctrl + D as many
times we want. Of course, we don't worry about the layout; the layout controls will
do this for us.

4.	 Considering the fact that we want to test different layout controllers, we also need
to duplicate the panel, using Ctrl + D. Finally, rename it to Second Panel.

5.	 We also need a third panel. Therefore, we can rename it to External Panel and put
inside it the other two panels. Now, we should have the following structure:

http://docs.unity3d.com/ScriptReference/KeyCode.html
http://docs.unity3d.com/ScriptReference/KeyCode.html
http://docs.unity3d.com/ScriptReference/EventSystems.EventSystem.html
http://docs.unity3d.com/ScriptReference/EventSystems.EventSystem.html

UI Essentials

24

6.	 Next, simply add Horizontal Layout Group (Script) to External Panel and then
Vertical Layout Group (Script) to First Panel. Finally, add Grid Layout Group (Script)
to Second Panel. Now, we can see the Auto-Layout system doing all the work for
us. In order to better understand how the system works, just add the buttons, or
duplicate them, and watch how the Auto-Layout system re-organizes the entire
layout for us. As the final result, we should see something similar to this:

How it works...
The Auto-Layout system is composed of two different kinds of elements: Layout Elements
and Layout Controllers. To understand the former, note that every game object that has a
Rect Transform, and eventually other components, is a layout element. These types have
certain knowledge about what size they should be of, but they do not control it directly. Layout
controllers, instead, are components that control sizes and also positions of one or more
layout elements. They can control their own Layout Element or child Layout Elements of the
game object to which they are attached.

In this example, we used Horizontal Layout Group (Script), Vertical Layout Group (Script)
and Grind Layout Group (Script). They work in similar ways. Furthermore, they take care of the
layout of the children inside the game object to which they are attached, and restructure the
positions of the UI elements.

Chapter 1

25

See also
If you want to learn more about layout controllers, you can go to the official Unity
documentation at the following links:

ff Horizontal layout group: http://docs.unity3d.com/Manual/script-
HorizontalLayoutGroup.html

ff Vertical layout group: http://docs.unity3d.com/Manual/script-
VerticalLayoutGroup.html

ff Grid layout group: http://docs.unity3d.com/Manual/script-
GridLayoutGroup.html

ff Content size fitter: http://docs.unity3d.com/Manual/script-
ContentSizeFitter.html

ff Aspect ratio fitter: http://docs.unity3d.com/Manual/script-
AspectRatioFitter.html

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://docs.unity3d.com/Manual/script-HorizontalLayoutGroup.html
http://docs.unity3d.com/Manual/script-HorizontalLayoutGroup.html
http://docs.unity3d.com/Manual/script-VerticalLayoutGroup.html
http://docs.unity3d.com/Manual/script-VerticalLayoutGroup.html
http://docs.unity3d.com/Manual/script-GridLayoutGroup.html
http://docs.unity3d.com/Manual/script-GridLayoutGroup.html
http://docs.unity3d.com/Manual/script-ContentSizeFitter.html
http://docs.unity3d.com/Manual/script-ContentSizeFitter.html
http://docs.unity3d.com/Manual/script-AspectRatioFitter.html
http://docs.unity3d.com/Manual/script-AspectRatioFitter.html
http://www.packtpub.com
http://www.packtpub.com/support

27

2
Implementing Counters

and Health Bars

In this chapter, we will cover the following topics:

ff Implementing a score counter

ff Implementing lives counter

ff Creating a modular coin counter

ff Creating a symbolic lives counter

ff Implementing a linear health bar

ff Implementing a radial health bar

ff Creating a health bar with armor

ff Using multiple bars to make a multibar

ff Developing a kingdom hearts health bar style

Introduction
This chapter explains how to implement counters for keeping track of variables such as score,
coins, and lives, and how to display them through texts or through more complex things such
as health bars.

We will start by creating a counter for our score and we will proceed with more
complex counters.

Later, we will introduce the concept of health bars and we will also learn how to change their
look, so that they are more linear or radial.

Implementing Counters and Health Bars

28

Finally, in the last three recipes, we are going to implement very special and complex health
bars, which are suitable for bosses, for example.

Implementing a score counter
In this recipe, we are going to create a score counter that displays the score as a number on
the screen. To achieve this, we will use the Text (Script) component and create a script to
handle it. Different functions will be available from this script, that will be called from other
scripts to increase the score.

How to do it...
1.	 First of all, we need to create new UI text to display our score. Thus, right-click on the

Hierarchy panel and then UI | Text. Finally, rename it to ScoreCounter.

To rename an object, right-click on it and select Rename.
Otherwise, we can change its name in the Inspector window.

2.	 Next, we can change the Font and the Font Size in the Inspector as we wish, to
better suit our needs.

3.	 Furthermore, we should also adjust the Color. In this example, we will set it to white
in order to be easily visible within the scene.

4.	 Now, we need to drag the ScoreCounter with the Rect Tool (the hotkey for this tool is
T, and we have seen it in the previous chapter) to where we want to place it.

5.	 We can write in the Text variable the word Score. In fact, this helps us to visualize
what the counter will look like, even though this value will be replaced by the script,
which we are going to write in the next steps.

6.	 Ensure that the Rich Text variable is checked. This allows us to use different colors
inside the counter.

7.	 In this step, we need to create a script that manages the score: click on Add
Component | New Script in the Inspector and name it ScoreCounterScript, and then
press Create and Add. In doing this, ensure that the language selected is C Sharp.

8.	 Double-click on the script in order to edit it. Since we are going to use the Text
class, we need to add the using UnityEngine.UI; statement at the beginning
of the script.

9.	 Before we add the functions in our script, we need two private variables. Hence,
we can write:
 private Text uiText;
 private long score = 0;

Chapter 2

29

10.	 In the Start() function, we can store the ScoreCounter in the uiText variable so
that we can refer to it later in the script. In addition, we need also to update our
score, so let's call a function that we will write later. Thus, the Start() function
is as follows:
 void Start () {
 uiText = this.GetComponent<Text> ();
 updateScoreCounter ();
 }

11.	 Next, we need a function to add points to our score counter that can be called from
other scripts. We pass it an int parameter, which is the amount of points the player
earned. So we can write the following:
 public void addPoints(int points){
 score += points;
 updateScoreCounter ();
 }

12.	 Finally, since we have called the updateScoreCounter() function twice, it's time
to write it down:
 private void updateScoreCounter(){
 uiText.text = "<color=blue>Score</color>: " + score;
 }

13.	 We can save the script and the work is done. We should see something like the
following:

Implementing Counters and Health Bars

30

How it works...
In the script, there are two variables, uiText and score, which we've set to private
because other components do not need to access it. The former stores the reference to the
Text (Script) component in order to get it later in the script; the latter is the score of the player.
This last one is a long variable that allows us to store big numbers since in some games, score
points are very huge numbers.

The Start() function in Unity is special since it is called only once when the script is enabled
for the first time. In this function, we assign the Text (Script) component attached in the same
game object of this script to uiText variable by calling the this.GetComponent<Text>()
function. Then, we call the updateScoreCounter() function in order to update the UIs as
well during the first iteration.

Moreover, we added the addPoints(int points) function. It takes an int as a parameter
named points. Then, the function adds this value to the score variable through score +=
points;. Finally, we call updateScoreCounter() to update the interface. The += operator
will take the value that score currently is and increase it by whatever is in our points value.

Finally, the updateScoreCounter() function changes the text variable on the Text
(Script) component stored in the uiText variable. In fact, the new value assigned is a string.
In the first part of this function, there is <color=blue>Score</color>: that encloses the
word Score into styling tags to change its color to blue. Of course, we can also change blue to
another color, if we prefer. Finally, we added the score. Don't worry that the score variable is
long because in this case, Unity converts the number in to a string automatically.

There's more...
We have seen how to implement a score counter. However, according to the design of our
game, we may want to add new features, such as removing score points or get the score
variable to use it in some other script.

Adding a remove points function
In some games, it is possible to lose points, but we should be careful not to have a
negative score.

Thus, we can deal with this issue by adding a new function to our script:

 public void removePoints(int points){
 score -= points;
 if (score < 0)
 score = 0;
 updateScoreCounter ();
 }

Chapter 2

31

The first line score -= points; subtracts the amount of points, passed as parameter to
the function, to our score.

Then, with an if statement, we verify whether our score is negative: if so, we set it to zero
since we don't want negative score.

Finally, we update the score counter by calling the updateScoreCounter() function.

Using boldface in the rich text
The rich text of Unity allows us not only to change the color to a specific portion of text,
but also to change the style. In order to give more importance to the word Score, we can
replace this line of code inside the updateScoreCounter() function:

uiText.text = "<color=blue>Score</color>: " + score;

with this one:

uiText.text = "<color=blue>Score</color>: " + score;

The text inside the tag is now shown in boldface. Refer to the See also section for
more details.

Getting the score
It could also be helpful to retrieve the score. For example, this is useful when we not only
display it on the screen but also save the score in a scoreboard. Since we have set the
score variable as private, we cannot access it directly. It's good practice not to change
the variable into a public one but to add a new get function instead. The following is how
we can do that:

 public long getScore(){
 return score;
 }

We simply return the score value and the job is done.

See also
ff If we want to explore the concept of resolution scaling, we can refer to the following

recipe Resizing the UI according to the screen size and resolution.

ff Furthermore, if we want to replace the string Score on the counter with an icon, see
Creating a modular coin counter recipe that teaches us also how to add an icon for
coins in the counter.

ff Finally, if we are looking for more information about rich text, refer to the official
documentation available at http://docs.unity3d.com/Manual/StyledText.
html.

http://docs.unity3d.com/Manual/StyledText.html
http://docs.unity3d.com/Manual/StyledText.html

Implementing Counters and Health Bars

32

Implementing a lives counter
This recipe teaches us how to use a Text (Script) component, along with a script, to create a
counter. It is similar to the counter in the previous recipe; however, instead of keeping track of
the score, here we are managing the number of lives that the player has.

How to do it...
1.	 Like the first step in the previous recipe, we need to create a new UI text to display the

number of lives. Right-click on the Hierarchy panel and then go to UI | Text. Finally,
rename it to LivesCounter.

2.	 We can also adjust the appearance, as we have done before with the ScoreCounter,
so change the Font and the Font size. We can also set the Color of the text to white,
and, finally, we place it in the scene through the Rect Tool, and so on.

3.	 Ensure again that the Rich Text variable is checked in order to use styling tags.

4.	 Next, let's create the script that manages the number of lives: click on Add
Component | New Script in the Inspector, name it LivesCounterScript and
then press Create and Add.

5.	 Double-click on the script in order to edit it. As the previous recipe, we are going
to use the Text class; therefore, we need to add the using UnityEngine.UI;
statement at the beginning of the script.

6.	 Unlike the previous recipe, we need three variables, two private and one public,
so that we can set this last one in the Inspector. These three variables are as follows:
 private Text uiText;
 public intmaxLives;
 private int lives;

7.	 In the Start() function, we can set the uiText and lives variables and call our
update function that we will write later, so:
 void Start () {
 lives = maxLives;
 uiText = this.GetComponent<Text> ();
 updateLivesCounter();
 }

Chapter 2

33

8.	 Now we can write the addLife() function. Since we have set the maximum
number of lives in the maxLives variable, we need to pay attention to not exceed
that number. As a result, we need to add some more lines to perform this control.
Furthermore, when we call this function, we don't know if it takes effect; thus, we
need to return a value — in this case Boolean — to let us know if this operation
succeeded or not. The function is as follows:
 public booladdLife(){
 if (lives <maxLives) {
 lives++;
 updateLivesCounter();
 return true;
 }
 return false;
 }

9.	 Of course, there is also a function for removing lives; it is as follows:
 public boolloseLife(){
 lives--;
 if (lives > 0) {
 updateLivesCounter();
 return false;
 }
 lives = 0;
 updateLivesCounter();
 return true;
 }

10.	 Finally, our update function:
 private void updateLivesCounter(){
 uiText.text = "<color=red>Lives</color>: " + lives;
 }

Implementing Counters and Health Bars

34

11.	 Save the script, and our LivesCounter is ready. If we set to 5 the maxLives variable
and press play, we should see the following:

How it works...
As in the Implementing a score counter recipe, we have created a Text (Script) component
and adjusted it as we desire, and again we have ensured that we have Rich Text checked.

In our script, we have three variables. The uiText stores the reference to the Text (Script)
component. We store the maximum number of lives that the player can have in the maxLives
variable and set its value in the Inspector. Finally, the lives contains the number of lives
currently possessed by the player.

In the Start() function, we first set the number of lives with the maximum number
allowed with this line, lives = maxLives;. Then, we assign the Text (Script) component
attached in the same game object of this script to the uiText variable by calling the this.
GetComponent<Text>() function. Finally, we call the updateLivesCounter() function
in order to update the UI, also in the first iteration.

Furthermore, we have also written a addLife() function to add life to the player that returns
a Boolean value: true if the life is added, otherwise the number of lives is equal to the
maximum number of lives, which are allowed and the function returns false. In fact, at the
beginning, there is an if statement that checks whether lives are less than maxLives. If so,
we increase the lives by one, lives++;, then we call updateLivesCounter() function to
update the interface, and, finally, we return true. Otherwise, we just return false.

Chapter 2

35

Now, we have a function for loseLife(), and even this one returns back a Boolean value:
true if the player has no more lives or false if the player has lives remaining. First, we
decrease the number of lives by one, lives--;, and then we check whether lives are more
than zero. If so, we call the updateLivesCounter() function to update the interface and,
finally, we return false. Otherwise, we set lives = 0; since we don't want a negative
number of lives, and, after updateLivesCounter(), we return true.

Finally, in the updateLivesCounter() function, there is just one line of the code. We
assign to the text variable inside the Text (Script) component a string, with stylistic tags,
along with the lives variable.

There's more...
We can extend the functionalities of our lives counter by following the next section that will
explain how to change the maximum number of lives at runtime.

Changing the number of maxLives
Maybe there are some bonus pick-up items in our game that can temporarily increase the
maximum number of lives. In this case, we will need a some other functions in our script;
let's add them:

 public void increaseMaxLives(int value){
 maxLives += value;
 }

This function is very simple: the following line of code adds an amount equal to the value
passed as parameter to the maxLives variable:

 public void decreaseMaxLives(int value){
 maxLives -= value;
 if (maxLives< 1)
 maxLives = 1;
 if (lives >maxLives)
 lives = maxLives;
 }

The descreaseMaxLives() function is a little bit more complex since we have to make more
controls. First of all, we decrease the maxLives variable with the maxLives -= value; line.
Then, we have two if statements: the first checks whether the maxLives is less than 1, since
the player must have the possibility to have at least one life, and, if so, the maxLives variable
is set to 1. The second checks to see that lives doesn't exceed maxLives, since the player
can't have more lives that the maximum allowed, and, if so, set lives = maxLives.

Implementing Counters and Health Bars

36

Getting the number of lives
If we need to retrieve the value of the variable lives for any reason, such as to display this
value somewhere else or allow the player to engage in a battle only if he has a certain
number of lives, we need to add a get function, like the following one:

 public intgetLives(){
 return lives;
 }

See also
ff For more detail about the get function, please refer to Implementing a score counter

recipe in the There's more... section.

ff Furthermore, if we want to replace the string lives on the counter with an icon, see
the recipe Creating a modular coin counter, which teaches you how to add an icon for
coins in the counter.

ff Instead, if we are looking for more information about Rich Text, the official
documentation is the best place to get it: http://docs.unity3d.com/Manual/
StyledText.html.

Creating a modular coin counter
This recipe teaches us how to use a Text (Script) and Image (Script) components along
with a script to create a counter with an icon. It is similar to the counters in the two previous
recipes, but, instead, to keep track of the score or lives, here we manage the number of coins
possessed by the player. In contrast to the first counter that doesn't have an upper bound,
or like the second counter that has a maximum for lives, here, when the player has reached
a certain number of coins, something will happen. For example, a life will be added and the
counter starts from zero, creating modularity.

How to do it...
1.	 As for the first step of the previous recipe, we need to create a new UI text to show the

number of lives. Hence, right-click on the Hierarchy panel and then UI | Text. Finally,
rename it to Modular Coin Counter.

2.	 Let's adjust the settings to suit our needs, such as Font, Font Size, and Color,
and also write in the Text variable 0 (zero).

3.	 In order to add an icon to our counter, we need to create an image inside the
Modular Coin Counter, so right-click on it and select UI | Image, and then
rename it to Modular Coin Counter Icon.

http://docs.unity3d.com/Manual/StyledText.html
http://docs.unity3d.com/Manual/StyledText.html

Chapter 2

37

4.	 The next step is to create the icon, so let's open a graphic program and create
our icon:

If we are using Photoshop, you can easy create this by using the
ellipse tool: ensure that the main color is on yellow, and, then,
while keeping Shift pressed, click on the upper left corner and
drag to the lower right corner. Finally, select the Text tool and
type a $, press Ctr+T, then scale, and place it at the center of
the circle. Now we have a simple icon for coins.
If you don't have a graphic program or you don't want to open a
graphic program, you can use the image provided along with the
code of this book.

5.	 Right-click on the Project panel and select Import new asset; select the icon that we
have just created and import it.

6.	 If our project is set in 2D, we can skip this step. Otherwise, select the asset just
imported in the Project panel and, in the Inspector, change Texture Type into
Sprite (2D and UI). Finally, click on Apply.

Implementing Counters and Health Bars

38

7.	 We can now add the icon to the Modular Coin Counter Icon in the Source Image
variable and place it near the Modular Coin Counter. We should see something like
the following:

8.	 It's time to implement the logic in the script. To begin, let's add it to the
Modular Coin Counter, select Add Component | New Script, and then
name it ModularCoinCounterScript. Finally, press Apply.

9.	 Double-click on the script to edit it. We are going to use some UI classes, so we need
to add the using UnityEngine.UI; statement at the beginning of the script.

10.	 Before we can add functions, we need three variables, two private and one public,
so we can set this last one in the Inspector. Thus, we can write:
 private Text uiText;
 public intmaxCoins = 100;
 private int coins = 0;

11.	 In the Start() function, we set the uiText variable and then call our update
function. The following is the Start() function:
 void Start () {
 uiText = this.GetComponent<Text> ();
 updateCoinCounter ();
 }

Chapter 2

39

12.	 Now, we allow other scripts to add coins through this function:
 public void addCoins(int value){
 coins += value;
 while (coins >= maxCoins)
 ApplyModularity ();
 updateCoinCounter ();
 }

13.	 In the previous function, we called the ApplyModularity() function; let's write
it down:
 private void ApplyModularity(){
 coins -= maxCoins;
 GameObject.Find ("LivesCounter").GetComponent<LivesCounterScri
pt> ().addLife ();
 }

14.	 Finally, as usual, our update function:
 private void updateCoinCounter(){
 uiText.text = coins.ToString();
 }

15.	 As final step, save our work and the job is done.

Implementing Counters and Health Bars

40

How it works...
In the script, we have created three variables. The first one is uiText and, as usual, it stores
the reference to the Text (Script) component. The maxCoins variable is the number of coins
after which the modularity is applied, and we can set its value in the Inspector, but as default
in our script, it has 100 as value. Finally, the coins variable contains the number of coins
currently possessed by the player and its default value is 0 (zero).

In the Start() function, we assigned the Text (Script) component attached in the
same game object of this script to the uiText variable. We did this by calling the this.
GetComponent<Text>() function. Then, we called the updateCoinCounter ()
function in order to update the UI also during the first iteration.

Furthermore, we have written a function to addCoins(int value) to the player that
takes as an int parameter and it is the number of coins that will be added to the player. In
fact, at the beginning, we added value to the coins variable by coins += value;. Then, there
is a while loop: until the number of coins are more than the maximum allowed, we call the
ApplyModularity() function. Since we don't know how many coins have been added
with the value parameter, we have to apply the modularity as many times the number of
maxCoins are into the coins variable. At last, of course, we call our updateCoinCounter
() function in order to update the UI.

To better understand how the modularity works, let's consider the example of our
ApplyModularity() function. First of all, this function is private, so only other functions
within the same script can call it. Furthermore, it is called only when the number of coins are
more than maxCoins, at most equal. So we can subtract the value of maxCoins from the
coins variable, without obtaining a negative number of coins, and we do this in the first line
of code. Then we can choose the reward for the player since he has reached the maxCoins
number. In this example, if we have done this in Implementing a lives counter recipe, we
can add a life to the player. So, let's find the lives counter through GameObject.Find
("LivesCounter") and then the script with GetComponent<LivesCounterScript>
(). Finally, we can call the addLife () function.

At the end, we have updateCoinCounter(), in which we put the value of coins, converted
in string through the ToString() function, into the Text variable contained into Text (Script)
component in the Modular Coin Counter.

Chapter 2

41

There's more...
Some improvements of the modular coin counter can be found in the following sections.

Removing coins
If in our game there is the possibility of losing coins, we can easily implement this feature by
adding another function to our script:

 public void removeCoins(int value){
 coins -= value;
 if (coins < 0)
 coins = 0;
 updateCoinCounter ();
 }

The first line subtracted the value to the coins variable; then the if statement checks
whether we have a negative coin number and, if so, set the coins variable to zero. Finally,
we called our update function.

Adding score if the number of lives has reached the maximum
It may happen that the player has reached the maximum amount of lives that he is able to
have, and if he reaches 100 coins, it would be unkind not give him a reward. In this case,
we can reward him in another way. If we also did the score counter, we can give him some
score points so that he doesn't lose the coins gained. Therefore, we need to change the
ApplyModularity() function in the following way:

 private void ApplyModularity(){
 coins -= maxCoins;
 if (!GameObject.Find ("LivesCounter").GetComponent<LivesCounterScr
ipt> ().addLife ())
 GameObject.Find ("ScoreCounter").GetComponent<ScoreCounterScri
pt> ().addPoints (230);
 }

Since the addLife() function returns true if a life is added or false if it is not, we can put
it inside an if statement with a negation. Therefore, if the life is not added, the next line of
code is executed. In fact, this adds 230 score points to the player, in the same way we have
added a life, but instead of the LivesCounter, we search for ScoreCounter.

Implementing Counters and Health Bars

42

Getting the number of coins
If we need to retrieve the value of the coins variable for any reason, such as displaying them
in a virtual shop, we will need to add a get function like the following one:

 public intgetCoins(){
 return coins;
 }

See also
ff We can refer to the two previous recipes about how to implement a lives counter

or a score counter.

ff In addition, for more detail about the get function, please refer to the Implementing
a score counter recipe, in the There's more... section.

Creating a symbolic lives counter
This recipe teaches us how to use multiple Image (Script) components inside a script in order
to create a symbolic lives counter. The number of lives are not displayed as a number, but with
heart symbols on the screen. It is similar to the counter in the Implementing a lives counter
recipe, but the logic to manage different icons is different.

How to do it...
1.	 To begin, let's create a new empty game object. To do this, right-click on the Canvas

object, since we want it as parent, and then Create Empty. Finally, rename it as
SymbolicLivesCounter.

If there isn't the Canvas object in the scene, for example, in new
scenes, we can create it by right-clicking on Hierarchy panel and then
go to UI | Canvas.

2.	 Next, click on SymbolicLivesCounter and add a new image by selecting UI | Image,
and then rename the object just created as Heart1.

3.	 Take a heart icon image, or create on our own, and import it in to our project. If our
project is not set as 2D, remember to set the Texture Type of the icon into Sprite
(2D and UI) and then click on Apply.

Chapter 2

43

4.	 Let's duplicate Heart1 with Ctr+D as many times as the maximum amount of lives
that the player will have. Rename them consecutively, such as Heart1, Heart2,
Heart3, and so on. In this example, we have five hearts, and so in the Hierarchy
panel, we should have the following:

5.	 Distribute them in the Scene View, keeping their order. For example, Heart2 must be
after Heart1 and before Heart3. This order is important because the script that we
are going to write uses this order. The following is an image of the correct way to
order your hearts:

6.	 In the SymbolicLivesCounter, go to Add Component | New Script and name it
SymbolicLivesCounterScript, and then press Create and Add.

Implementing Counters and Health Bars

44

7.	 Double-click on the script to edit it. This time, the using UnityEngine.UI;
statement at the beginning of the script it is not needed since we will not use
any UI classes.

8.	 Before we add any functions, we need a two variables, one private and one
public, to set this last one in the Inspector so that we can write:
 public GameObject[] hearts;
 private int lives;

9.	 In the Start() function, we need to set up the lives value, so:
 void Start () {
 lives = hearts.Length;
 }

10.	 As in the Implementing a lives counter recipe, we need to write a function to
addLife(), and also here there is a return value to understand if the life is
added or not. The function is as follows:
 public booladdLife(){
 if (lives <hearts.Length) {
 lives++;
 updateSymbolicLivesCounter();
 return true;
 }
 return false;
 }

11.	 And now the loseLife() function, again with a return value to check whether the
player has finished his life:
 public boolloseLife(){
 lives--;
 if (lives > 0) {
 updateSymbolicLivesCounter();
 return false;
 }
 lives = 0;
 updateSymbolicLivesCounter();
 return true;
 }

12.	 Finally, we need to update our updateSymbolicLivesCounter() function. Here
the logic is different from the Implementing a lives counter recipe. According to the
number of lives, we have to either enable or disable the hearts. The following is the
function to achieve this:
 private void updateSymbolicLivesCounter () {
 for (int i=0; i<hearts.Length; i++) {

Chapter 2

45

 if(i<lives){
 hearts[i].SetActive(true);
 }else{
 hearts[i].SetActive(false);
 }
 }
 }

13.	 Let's save the script, but keep in mind that we haven't finish yet. We will have to set
up the hearts in the Inspector.

14.	 Now, inside the Inspector, set the size of the hearts variable to 5, then link each
Heart1, Heart2, and so on to fill the array. At the end, you should have something
that looks like the following:

15.	 Now the Symbolic Lives Counter is ready.

How it works...
We have created several hearts icons inside a GameObject named Symbolic Lives Counter.
Finally, we have attached our script to it.

In our script, we have two variables. The first one is an array of game object, called hearts,
and as the name suggests us, it will store all the hearts contained in the Symbolic Lives
Counter. The second one is the number of lives possessed by the player.

This time, we didn't have a variable that stores the maximum number of lives allowed. So, in
the Start() function, we set the lives variable to be equal to the length of the array. Since
we will set it in the Inspector and it contains all the hearts in the scene, its length represents
the maximum number of lives allowed.

Implementing Counters and Health Bars

46

Furthermore, we have also written a function called addLife() that adds lives to the player
that returns back a Boolean value: true if a life is added, otherwise false if the number
of lives is equal to the maximum number of lives allowed and the function. It is quite similar
to its homonymous function in implementing a lives counter. In fact, at the beginning, there
is an if statement that checks whether lives are less than the hearts.Length, which is
the maximum number of lives. If so, we increase the lives by one, lives++;, then we call
updateSymbolicLivesCounter() function to update the interface, and, finally,
we return true, otherwise we just return false.

Now, we also have a function for loseLife().This function returns back a Boolean value:
true if the player has no more lives, otherwise false. First, we decrease the number of
lives by one, lives--;, then we check to see whether lives are more than zero, and, if so,
we call the updateSymbolicLivesCounter() function to update the interface and finally,
we return false. Otherwise, we set lives = 0; since we don't want a negative number of
lives, and, after updateSymbolicLivesCounter(), we return true.

In the updateSymbolicLivesCounter() function, we have to set active or no each heart.
In order to do so, we have a for-cycle for every entries of the hearts array. Then, there is an
if statement that checks if the number of lives is more than the heart of that iteration. For
example, if the player has just three lives left, we only want to display the first three hearts on
screen and not the last two. Therefore, we enable only the first three hearts, and if there are
no hearts in the array, we disable them.

In the last step, we assigned each heart objects to the entries of our hearts array.

See also
ff See Animating hearts of the symbolic lives counter and Changing animation of the

hearts of the symbolic lives counter through script recipes in Chapter 6, Animating
the UI for animating the hearts on this counter.

Implementing a linear health bar
In this recipe, we are going to create a linear health bar. The health of the player will be
displayed as a bar that shortens when the player's health decreases, and extends with the
player's health increases. To achieve this, we will use the Image (Script) component in a
different way than what we have in previous recipes, and develop a script to manage the
length of the bar.

Chapter 2

47

How to do it...
1.	 First of all, we need to create our health bar, so let's open a graphic program and

create it. We can create something that should looks like the following:

2.	 Then, import it in to our project. If the project isn't set to 2D, remember to set the
Texture Type of the imported image to Sprite (2D and UI), and then click on Apply.

3.	 Next, create a new Image. Right-click on the Hierarchy panel and then UI | Image,
and rename it to Linear Healthbar.

4.	 Inside the Image (Script) component, we have to change Image Type into Filled. The
component should change a little bit in the Inspector.

5.	 Let's change Fill Method into Horizontal and Fill Origin into Left. Of course, we need
to add to Source Image the health bar that we have created. Finally, we can place the
Linear Healthbar everywhere we want, always using the Rect Tool.

6.	 In order to keep its original proportion, you can click on Set Native Size button on the
Inspector.

7.	 The following is how the component should appear:

8.	 Now, in the Linear Healthbar, go to Add Component | New Script and name it
HealthbarScript, and then press Create and Add.

9.	 Double-click on the script to edit it and add the using UnityEngine.UI;
statement at the beginning of the script, since we will use the Image class.

Implementing Counters and Health Bars

48

10.	 Before we add any functions, we need a three variables, two private and one
public, so we can set this last one in the Inspector. Hence, we can write the
following:
 private Image healthbarFilling;
 public intmaxHealth = 100;
 private int health;

11.	 In the Start() function, we have to set the health variable along with the
healthbarFilling one, thus:
 void Start () {
 healthbarFilling = this.GetComponent<Image> ();
 health = maxHealth;
 }

12.	 As usual, we need a function for add health, so let's write the following:
 public void addHealth(int value){
 health += value;
 if (health >maxHealth)
 health = maxHealth;
 updateHealth ();
 }

13.	 And also, we need to write a removeHealth(int value) function:
 public boolremoveHealth(int value){
 health -= value;
 if (health <= 0){
 health = 0;
 updateHealth ();
 return true;
 }
 updateHealth ();
 return false;
 }

14.	 Next, we need to add our updateHealth() function to update the health bar on
the screen:
 private void updateHealth(){
 healthbarFilling.fillAmount = health / maxHealth;
 }

15.	 Finally, just save the script and we are done.

Chapter 2

49

How it works...
First of all, we created our health bar in one of our graphic programs. After importing the
image and setting it to be a Sprite (2D and UI), we created a new image and set its Fill
Method to Horizontal so that the image can disappear or appear gradually, as the health
goes down or increases. Finally, we implemented a script for the logic.

Inside it, we have created three variables. The first one is healthbarFilling and, as usual,
it stores the reference to the Image (Script) component. The variable maxHealth = 100
is the max health that the player can have, and we can set its value in the Inspector, but as
default in our script, it has 100 as value. Finally, the health variable contains the health
currently possessed by the player.

In the Start() function, we first assigned the Image (Script) component attached in the
same game object of this script to the healthbarFilling variable by calling the this.
GetComponent<Image>() function. Finally, we set health equals to maxHealth.

Furthermore, we have written a function to addHealth(int value) to the player. It takes
an int as a parameter, and this int is the number of health points that will be added to the
player. In fact, at the beginning, we add value to the health variable by health += value.
Then, there is an if statement that checks if the health is more than maxHealth and, if so,
set the health equals to maxHealth. At the end, we called our updateHealth() function in
order to update the UI.

We also have a function to removeHealth(int value) from the player that returns back a
Boolean value: true if the player has no more health, otherwise it returns false. The first line
subtracts the value to the health variable, then the if statement checks to see whether we
have negative health and, if so, set the health variable to zero and, after updateHealth(),
we return true. Otherwise, we call our update function and return false.

At the end, we have the updateHealth() function, in which we put the ratio between
health and maxHealth into the Fill Amount variable contained into Image (Script)
component in the Linear Healthbar. In fact, the ratio is the percentage of how much health
has the player and also how much longer our health bar should be.

There's more...
We can also consider adding a new image in the scene that encloses the health bar in some
graphic elements, such as an artistic border, which also underlines the importance of this
UI element. This book does not cover how to do this; however, there are many resources
available online that can provide information on how to do this, as well as other UI elements.

Implementing Counters and Health Bars

50

See also
ff For more complex health bars, see Implementing a radial health bar, Creating a

health bar with armor, Using multiple bars to make a multibar, and Developing
a kingdom hearts health bar style recipes, all included in this chapter.

Implementing a radial health bar
In this recipe, we are going to create a radial health bar. The health of the player will be
displayed as a ring that reduces circularly when health decreases and fills with increasing
health. To achieve this, we will use the Image (Script) component and develop a script to
manage the length of the bar.

How to do it...
1.	 First of all, we need to create our ring, so let's open a graphic program and create it.

It should look like the following:

2.	 Then, import it in to our project and, if the project isn't set to 2D, set the Texture Type
of the image to Sprite (2D and UI), and then click on Apply.

3.	 Next, create a new image, so right-click on the Hierarchy panel and then UI | Image,
and, finally, rename it Radial Healthbar.

4.	 Selecting inside the Image (Script) component we need to change Image Type into
Filled. The component should change appearance a little bit in the Inspector.

5.	 Ensure that Fill Method is set on Radial 360 and Fill Origin on Bottom.

6.	 Since the logic is the same of the previous recipe, we have only to add the
HelathBarScript created before. To learn how to create it, please refer to
Implementing a linear health bar recipe. Now, our Radial Healthbar is ready
to use.

Chapter 2

51

How it works...
First of all, we created our ring in a graphic programs. After importing the image and setting
it to be a Sprite (2D and UI), if needed, we created a new image and this time set its Fill
Method to Radial, so the image can disappear or appear gradually, as the health goes
down or increases, in a 360° radius. Finally, we added the HealthBarScript created in
the Implementing a linear health bar recipe.

There's more...
The following section provide us another way to let designers to customize the bar in our game.

Having a health bar that isn't necessarily 360°
In order to change how many degrees are between the beginning and the end of the health
bar. To do this, let's add a variable to our script called startingFilling and set it as
float:

public float startingFilling = 1;

Now, take the following line in our function:

healthbarFilling.fillAmount = health / maxHealth;

Substitute the preceding line with the following:

healthbarFilling.fillAmount = (health /
maxHealth)*startingFilling;

We multiply the startingFilling variable to scale the health / maxHealth ratio
on the new shorten bar. By doing this, if we want the bar starting at 3/4, we can just set
startingFilling in the Inspector to 0.75. But remember to not insert a value bigger than
1 in the startingFilling variable.

Implementing Counters and Health Bars

52

See also
ff If we want learn how to create the HealthBarScript, we can refer to Implementing a

linear health bar recipe.

ff For more complex health bars, see Implementing a linear health bar, Creating a
health bar with armor, Using multiple bars to make a multibar, and Developing
a kingdom hearts health bar style recipes, all included in this chapter.

Creating a health bar with armor
In this recipe, we are going to create a health bar, similar to the one in Implementing a
linear health bar recipe, but there is an armor that protects the player. In fact, if the player
is attacked, he or she will first lose the armor, then the health. To achieve this, we will use
multiple Image (Script) components, both for the health bar and for the pieces of armor, and
develop a script to manage the entire logic.

How to do it...
1.	 To begin, let's create an image, so right-click on the Hierarchy panel and then UI |

Image, and rename it HealthBar with Armor.

2.	 Let's change Fill Method into Horizontal and Fill Origin into Left. Of course, we need
to add the Healthbar that we have just created to Source Image. Finally, we can
place the Healthbar with Armor everywhere we want, always using the Rect Tool.

3.	 In order to keep its original proportion, you can click on the Set Native Size button
in the Inspector.

4.	 Next, right-click on Healthbar with Armor and add a new image by selecting UI |
Image, and again rename the object just created as Armor1.

5.	 Take an icon image to represent the pieces of the armor, or create on our own, and
import it in our project. If our project is not set to 2D, remember to set the Texture
Type of the icon to Sprite (2D and UI), and then click on Apply.

6.	 Let's duplicate Armor1 with Ctrl+D as many times as lives the player will have.
Rename them consecutively, such as Armor1, Armor2, Armor3, and so on.

7.	 Distribute them in the Scene View while also keeping their order. For instance,
Armor2 must be after Armor1 and before Armor3. This order is important because
the script that we are going to write uses this order.

8.	 Now, in the Healthbar with Armor, click on Add Component | New Script and name
it HealthbarWithArmorScript, and then press Create and Add.

9.	 Double-click on the script to edit it. Since we are going to use the Image class, we
need to add the using UnityEngine.UI; statement at the beginning of the script.

Chapter 2

53

10.	 Before to add any functions, we need five variables, three private and two public,
so that we can set these last ones in the Inspector. Therefore, we can write:
 public GameObject[] armor;
 private intpiecesOfArmor;
 private Image healthbarFilling;
 public intmaxHealth = 100;
 private int health;

11.	 In the Start() function, we have to set up our variables, so let's write:
 void Start () {
 healthbarFilling = this.GetComponent<Image> ();
 health = maxHealth;
 piecesOfArmor = armor.Length;
 }

12.	 If the player loses his pieces of armor, there should be a way to regenerate them.
We can achieve this by creating the following function:
 public void addArmor(){
 if (piecesOfArmor<armor.Length) {
 piecesOfArmor++;
 updateArmor();
 }
 }

13.	 Next, we need to write the damage(int value) function that takes how many
health points are taken away from the damage that is applied to the player as a
parameter:
 public bool damage(int value){
 if (piecesOfArmor> 0) {
 piecesOfArmor--;
 updateArmor();
 return false;
 }else{
 return damageIgnoringArmor(value);
 }
 }

14.	 Furthermore, it could be helpful to have also a function to applied damage ignoring
the armor of the player. This is used in games, for instance, for some magic attacks,
which hit the player directly. Thus, we can have the following function:
 public booldamageIgnoringArmor(int value){
 health -= value;
 if (health <= 0){
 health = 0;

Implementing Counters and Health Bars

54

 updateHealthbar ();
 return true;
 }
 updateHealthbar ();
 return false;
 }

15.	 As we have functions to damage the player, we should also have functions to
regenerate life to the player. Therefore, we need to write an addHealth(int
value) function, which takes as parameter how many health points will be
restored to the player health. The following is the function:
 public void addHealth(int value){
 health += value;
 if (health >maxHealth)
 health = maxHealth;
 updateHealthbar ();
 }

16.	 Instead of the other recipes that we have seen so far, we need two update function,
one for the health and one for the armor. The following one is for the health:
 public void updateHealthbar(){
 healthbarFilling.fillAmount = health / maxHealth;
 }

17.	 And this other one is for the armor:
 public void updateArmor(){
 for (int i=0; i<armor.Length; i++) {
 if(i<piecesOfArmor){
 armor[i].SetActive(true);
 }else{
 armor[i].SetActive(false);
 }
 }
 }

18.	 To finish, save our work. We only need to assign the pieces of the armor into
the entries of the armor variable, as we did with Implementing a symbolic lives
counter recipe.

Chapter 2

55

How it works...
We have created a linear health bar and named Healthbar with Armor. Then, we created
different pieces of armor. Then, we attached our script to Healthbar with Armor.

In the script, we have created five variables. The first one is healthbarFilling and it
stores the reference to the Image (Script) component. maxHealth = 100 is the max health
that the player can have, and we can set its value in the Inspector, but as default in our
script, it has a value of 100. Furthermore, the health variable contains the health currently
possessed by the player. The armor variable is an array of game object and it will store all the
pieces of armor contained in the Healthbar with Armor. Finally, the piecesOfArmor variable
stores the number of pieces of armor currently possessed by the player.

In the Start() function, we set up some variables. In the healthbarFilling variable, we
store the Image (Script) component attached in the same game object of this script by calling
the this.GetComponent<Image>() function. Then, we set the health variable equal to
maxHealth. Finally, we haven't created a public variable that stores the maximum number
of pieces of armor directly, so we set the piecesOfArmor variable equal to the length of
the armor array, and since we will set this array in the Inspector, it contains all the pieces
of armor in the scene. Therefore, its length represents how many pieces of armor there are
on this health bar.

The addArmor() function increases the piecesOfArmor variable by one if it has not
reached the maximum amount allowed. Then, it calls the updateArmor() function.

Implementing Counters and Health Bars

56

The damage(int value) function includes the parameter of how many health points will
be taken away from the player after the damage is applied. In fact, it first checks whether the
player has some piecesOfArmor, and, if so, decreases it by one, independently from the
parameter value and, after calling the updateArmor() function, returns false; this means
that the player is still alive. Otherwise, it will call the damageIgnoringArmor(int value)
function passing value as a parameter.

The damageIgnoringArmor(int value) function includes the parameter of how many
health points will remain when the damage applied. Then, it decreases health by value and
checks to see whether the player is still alive. If the player is still alive, it will return false,
otherwise return true. After this, the updateHealthbar() function is called to update the
user interface.

There is also a function to addHealth(int value) to the player. It increases health by
value, if it exceeds maxHealth, then it set health equal to maxHealth, and, finally, calls
the updateHealthbar() function to update the user interface.

In the updateHealthbar() function, we set healthbarFilling equal to the ratio
between health and maxHealth.

Finally, in the updateArmor() function, we set active or no each pieces of armor according
to the piecesOfArmor variable, through a for-cycle, very similar to the one in Implementing
a linear health bar recipe.

As last step, we assigned each pieces of armor we have created to the entries of our
armor array.

See also
ff If the design of our game doesn't require a health bar with an armor, we should

have a look at Implementing a linear health bar and Implementing a radial health
bar recipes.

ff For other kind of health bars, see Using multiple bars to make a multibar and
Developing a kingdom hearts health bar style.

Using multiple bars to make a multibar
In this recipe, we are going to create a very special kind of health bar, since we are combining
multiple bars of Implementing a linear health bar type together. This may be the case when
the player has to face a boss in our game who has multiple health bars. Once the player
reduced one health bar to zero, there is another one behind .To achieve this, we will use
multiple Image (Script) components, one for each health bar, along with a script to manage
all these bars within only one health points system.

Chapter 2

57

How to do it...
1.	 To begin, let's create a new empty game object. Right-click on Canvas object, since

we want it as a parent, and then Create Empty. Finally, rename it to MultiBar.

If there isn't the Canvas object in the scene, for example, in new
scenes, we can create it by right-clicking on Hierarchy panel and
then go to UI | Canvas.

2.	 Now, right-click on Multibar and add a new image by selecting UI | Image, and again
rename the object just created as HealthBar1.

3.	 Take an image for a linear health bar; we can use the one created in Implementing
a linear health bar recipe.

4.	 Import it in to our project. If this one is not set in 2D, remember to set the Texture
Type of the image to Sprite (2D and UI), and then click on Apply.

5.	 Let's change Fill Method into Horizontal and Fill Origin into Left. Of course, we have
to add to Source Image the health bar that we have imported. Finally, we can place
the HealthBar1 everywhere we want, always using the Rect Tool.

6.	 Let's duplicate HealthBar1 with Ctrl+D as many times as health bars the player
will have. Rename them also in progression, such as HealthBar1, HealthBar2,
HealthBar3, and so on.

7.	 As next step, we need to differentiate them. The easiest way to do this is to
change their colors. Otherwise, we can even import different images and assign
them to all the health bars.

8.	 Place them in order to have one above the other in the Scene View, keeping
their order: HealthBar2 must be after HealthBar1 and before HealthBar3.
This order is important because the script we are going to write will use this order.

9.	 Now, in the Multibar, click on Add Component | New Script and name it
MultibarScript, and then press Create and Add.

10.	 Double click on the script to edit it and, as always, add the using UnityEngine.
UI; statement at the beginning of the script. By doing this, we can use UI classes
inside our script.

11.	 Before to add functions, we need a couple of variables, one private and
two public, so we can set these last ones in the Inspector. Thus, the following
are the variables:
 public Image[] bars;
 public intmaxHealth = 1000;
 private int health;

Implementing Counters and Health Bars

58

12.	 In the Start() function, we need to set up the health, therefore:
 void Start () {
 health = maxHealth;
 }

13.	 Our script should include an addHealth(int value) function that takes how
many health points will be added to the player health as a parameter. So we can
add the following:
 public void addHealth(int value){
 health += value;
 if (health >maxHealth)
 health = maxHealth;
 updateMultibar ();
 }

14.	 A removeHealth(int value) function should also be included so that the boss of
our game can be damaged:
 public boolremoveHealth(int value){
 health -= value;
 if (health <= 0){
 health = 0;
 updateMultibar ();
 return true;
 }
 updateMultibar ();
 return false;
 }

15.	 Now, the most difficult part of the script is to design our update function. In fact,
we need to pay attention to how we can fill every bar correctly given only one health
points system. But we can do it the following way:
 private void updateMultibar () {
 float absolute = health*1f/maxHealth;
 float perBars = 1f / bars.Length;
 for (int i=0; i<bars.Length; i++) {
 float minrange = i*perBars;
 float maxrange = (i+1)*perBars;
 if(absolute >minrange){
 if(absolute <maxrange){
 bars[i].fillAmount = (absolute-minrange)*bars.Length;
 }else{
 bars[i].fillAmount = 1;
 }

Chapter 2

59

 }else{
 bars[i].fillAmount = 0;
 }
 }
 }

16.	 Save our work. Then, we have to assign the health bars to the bars array variable
in the Inspector by dragging each health bar in the entry of the array. Remember
to maintain the order.

17.	 Finally, the work is done! During a gameplay session we could get the following
scenario, in which the health is slightly reduced and it is therefore possible to
see the other bar under the first one.

How it works...
We have created several health bars inside a game object named Multibar. Then, we
developed a script to handle all of this bars.

Inside this script, we have created three variables. The first one is an array of image called
bars, and it will store all the bars contained in the Multibar. The second is maxHealth =
100 and it is the max health that the player can have; we can set its value in the Inspector,
but as default in our script, it has 1000 as value. Furthermore, the third is health and it
contains the amount of health that is currently possessed by the player.

In the Start() function, we have made health equal to maxHealth. This will ensure that
at the beginning, whichever character has this health bar will start with all the health.

Implementing Counters and Health Bars

60

We have also created a function to addHealth(int value) to the player. It increases
health by value, if it exceeds, maxHealth set health equals to maxHealth. This is because
we cannot have more health the maximum. Finally, we have called the updateMultibar()
function to update the user interface.

Then, we developed a function to removeHealth(int value) that has a parameter, which
determines how many health points are removed from the character that has this Multibar.
This function decreases the health by value and checks whether the player is still alive. If he
or she is, it will return false, otherwise it will return true. But before we return a value, in
both branches, the function calls the updateMultibar() function in order to update the
users interface.

Finally, we have written the updateMultibar() function. Here, we had to set every single
bar to the right proportion. To begin, we created a couple of variables. The absolute stores the
ratio between health and maxHeath. The perBars stores how much, in percentage, every
bar represents the health. Then, we use a for-cycle to set every bar to the right proportion.
For every bar, we set up two variables. One is the minRange and the other is the maxRange,
displayed as a percentage of where that bar is collocated if every bar is concatenated to be
only one long bar. Now, if the absolute is more than this range, the fillAmount of that bar
is set to 1. If the absolute is less than that range, the fillAmount variable of that bar is set
to 0. Otherwise, the absolute is inside the range, and we set the fillAmount variable of that
bar to its relative percentage, that is, (absolute-minrange)*bars.Length.

Before running the game, we assigned each bar that we have created to the entries of our
bars array so that our script can have the right reference to them.

See also
ff If the design of our game doesn't fit with a Multibar, we can refer to Implementing

a linear health bar and Implementing a radial health bar.

ff For other kinds of health bars, see Creating a health bar with armor and Developing
a kingdom hearts health bar style recipes.

Developing a kingdom hearts health bar
style

In this recipe, we are going to create a very special kind of health bar, since we are combining
the linear bar of Implementing a linear health bar with the radial one of Implementing a radial
health bar in order to create a kingdom hearts health bar style. This style is like a typical
horizontal health bar that is rounded at the end. To have a better idea, let's have a quick
glance at the picture ahead of this recipe.

Chapter 2

61

How to do it...
1.	 To begin, let's create a new empty game object, so right-click on Canvas object, since

we want it as parent, and then Create Empty. Lastly, rename it as KHHealthbar.

If there isn't the Canvas object in the scene, for example, in new
scenes, we can create it by right-clicking on Hierarchy panel and
then UI | Canvas.

2.	 Next, right-click on KHHealthbar and add a new image by selecting UI | Image,
and again rename the object just created as Linear Part.

3.	 Repeat the previous step and rename the new image to Radial Part.

4.	 Create one image for the linear part of the health bar and another for the radial part.

We can use also the image used in Implementing a linear health
bar and Implementing a radial health bar recipes.

5.	 Then, import them in to our project. If it is not set in 2D, remember to set the Texture
Type of the images to Sprite (2D and UI), and then click on Apply.

6.	 For Linear Part, let's change Fill Method into Horizontal and Fill Origin into Left. Of
course, we need to add to Source Image the health bar that we have imported.

7.	 For Radial Part, let's change Fill Method into Radial 360 and Fill Origin into Left.
Again, we need to add to Source Image the health bar that we have imported.
Finally, set Fill Amount to 0.75.

Implementing Counters and Health Bars

62

8.	 Place them in order, and now we should see something that looks like the following:

9.	 Now, in the KHHealthbar, click on Add Component | New Script and name it as
KHHealthbarScript, and then press Create and Add.

10.	 Double click on the script to edit it. Since we are going to use UI classes, we
need to add the using UnityEngine.UI; statement at the beginning of the script.

11.	 We need four variables, one private and three public, so we can set these last
ones in the Inspector. The following are the variables:
 public Image linearBar;
 public Image radialBar;
 public intmaxHealth = 1000;
 private int health;

12.	 In the Start() function, we need to set up the health so that at the beginning it is
equal to the maximum:
 void Start () {
 health = maxHealth;
 }

13.	 Then, we can add a function to addHealth(int value) to the player, which takes
how many health points will be added to the player's health as a parameter. Hence,
let's write it:
 public void addHealth(int value){
 health += value;
 if (health >maxHealth)
 health = maxHealth;
 updateKHHealthbar ();
 }

Chapter 2

63

14.	 Since there must be a way to apply a damage, we should add a removeHealth(int
value) function, as the following one:
 public boolremoveHealth(int value){
 health -= value;
 if (health <= 0){
 health = 0;
 updateKHHealthbar ();
 return true;
 }
 updateKHHealthbar ();
 return false;
 }

15.	 Now, the most difficult part of the script is to design our update function. In fact,
we have to be careful to make sure that we properly fill the two health bars. On the
contrary of the previous script, our main issue is that the radial part of the bar starts
it's filling from 0.75 and not from 1, and also it represents 3/5 of the health and not
1/2. But we can face this in the following way:
 private void updateKHHealthbar () {
 float ratio = health*1f / maxHealth;
 Debug.Log (ratio);
 if (ratio > 0.6) {
 linearBar.fillAmount = (ratio - 0.6f) * 2.5f;
 radialBar.fillAmount = 0.75f;
 } else {
 linearBar.fillAmount = 0;
 radialBar.fillAmount = 0.75f *ratio * 10f / 6f;
 }
 }

16.	 Save our work. Then, we need to assign the two health bars to the linearBar and
radialBar variables in the Inspector by dragging the Linear Part and the Radial
Part in their own variables.

17.	 Finally, the work is done!

How it works...
We started by creating two health bars: one linear and the other one radial. Then, we can
parent them to a GameObject called KHHealthbar. Furthermore, we have set them to look
like the kingdom hearts health bar style. Finally, we have implemented our logic within
the script.

Implementing Counters and Health Bars

64

Inside the script, we have created four variables. The first two are image, called linearBar
and radialBar, and they will store the Image (Script) component attached on LinearPart
and RadialPart, respectively. maxHealth = 1000 is the max health that the player can
have: we can set its value in the Inspector, but in our script, 1000 is set as the default value.
Furthermore, the health variable contains the health currently possessed by the player.

In the Start() function, we have set up health equal to maxHealth. This ensure us that
at the beginning, whoever (or whatever) will have this health bar will start with full health.

We have also created a function to addHealth(int value) to the player. It increases
health by value, and if it exceeds maxHealth, it sets health equals to maxHealth. Finally,
it calls the updateKHHealthbar() function to update the user interface.

Moreover, we also need to have a function to removeHealth(int value) from the player.
The function takes how many health points have to be removed as a parameter. Then, it
decreases health by value and checks whether the player is still alive. If he or she is, the
function will return false, otherwise it will return true. Before a value is returned, in both
branches, it calls the updateKHHealthbar() function to update the user interface.

Finally, we have written the updateKHHealthbar() function. All the numbers that we are
going to see in the script are set up in order to give to the Linear Part the 2/5 of the health
of the player, and to the Radial Part the 3/5 of the health. We created a ratio variable and
store in it the ratio between health and maxHealth. Then, check through an if statement
whether the ratio is more than 3/5 for performance in the script 0.6. If so, we set the
fillAmount of linearBar to the proportion of how long the bar should be, which in this
case is (ratio - 0.6f) * 2.5f, and the fillAmount of radialBar to its maximum
filling, that is, 0.75. Otherwise, we set the fillAmount of linearBar to zero and the
fillAmount of radialBar to the proportion of how long the bar should be. In this case,
ratio * 10f / 6f and then also multiply for 0.75f since its maximum filling is 0.75.

As a last step, we assign linearBar and radialBar in the Inspector with Linear Part and
Radial Part, respectively.

See also
ff If the design of our game doesn't fit with a kingdom hearts heatlhbar style, we

can refer to Implementing a linear heath bar and Implementing a radial heath
bar recipes.

ff For other kinds of health bars, see Creating a health bar with armor and Using
multiple bars to make a multibar recipes.

65

3
Implementing Timers

In this chapter, we will cover these recipes:

ff Implementing a numeric timer

ff Creating a linear timer

ff Implementing a radial timer

ff Creating a mixed timer

ff Creating a well-formatted timer

ff Developing a well-formatted countdown that changes

Introduction
In this chapter, we are going to implement different kinds of timers and countdowns. These
serve many different purposes in games, such as indicating to the player how much time he
has left to complete a level or after how long he will be able to use a certain ability again.
Timers are also a good way for players to experience flow throughout the game. On the other
hand, countdowns can indicate how much time is remaining to complete a task, depending
on the aspect of gameplay that we are trying to represent with a timer — for example, to let a
player know how much time is remaining to complete a task, or how much time has elapsed
since the task began. Both timers and countdowns are effective methods of altering the
dynamics of gameplay.

We will begin this chapter by seeing how to create a numeric timer. From this, you will learn
how to create graphic timers and, finally, how to implement a countdown that changes
over time.

Implementing Timers

66

Implementing a numeric timer
In this recipe, we are going to create a timer that displays the time (as a number) on the
screen. This may be a useful element when attempting to inform the player how much time
has passed during an objective. In some cases, if the player is aware of how much time he
is taking with a task, it may encourage him to be more efficient and considerate about his
choices throughout the gameplay. To create a timer, we will use the Text (Script) component
as well as develop a script to implement the logic of the timer.

How to do it...
1.	 First of all, we need to create a new UI text to show our timer. To do this, right-click on

the Hierarchy panel and then navigate to UI | Text. Next, rename it to Numeric Timer.

2.	 We can change the Font and the Font Size fields as we wish so that they suit
our needs.

3.	 We can also adjust Color. In this recipe, we will set the color to light gray, but feel free
to change it to a color that better suits your design.

4.	 Now, we can drag Numeric Timer with Rect Tool where we want to place it. In some
cases, it is important to make a timer properly to a player. In other instances, it is a
nice, subtle addition to the UI.

5.	 To display the timer better in the scene view, we can write in the Text variable the
word time, even if this value will be replaced by the script. This is so that we have a
better approximation of how it will look. This will help us to better gauge whether its
placement will be effective or will inhibit or distract the player during gameplay.

6.	 Next, we want to ensure that the Rich Text variable is checked. This is important in
order to display the color of the text and also for us to observe the appearance of the
timer within the game space.

7.	 Then, we have to create a script that manages the time. To do this, navigate to Add
Component | New Script, then name it NumericTimerScript, and finally click on
Create and Add.

8.	 Double-click on the script to edit it and, as always, add the using UnityEngine.
UI; statement at the beginning of the script. This allows us to handle the UI
elements within the script.

9.	 Before we add any functions to the timer, we need to add two variables and make
sure that we set them to private. So, we can write this:
private Text uiText;
private floattime;

Chapter 3

67

10.	 Next, we can set up the uiText variable in the Start() function. In fact, this is the
ideal function for assigning the initial value to our variables, since it is called when
the script runs for the first time in the game environment. Therefore, we can assign
the reference to the Text (Script) component to the variable just before the timer
starts, in the following way:
void Start () {
 uiText = this.GetComponent<Text> ();
}

11.	 Now, we need to update our timer for each frame. This can be done by writing the
following lines in the Update() function:
void Update () {
 time += Time.deltaTime;
 uiText.text = "<color=blue>Time</color>: " + time.
ToString("F2");
}

12.	 Finally, we can save the script and the work is done. When we run the script, we
should see something like this:

Implementing Timers

68

How it works...
First of all, we created a new UI text, and then adjusted it to suit our needs. We changed Font,
Font Size, and also Color. In addition, we ensured that Rich Text was checked. In this way,
it is possible to use different colors in the text of the timer. Then, we wrote a script to handle
the timer.

In the script, there are two private variables: uiText and time. The uiText variable stores
the reference to the Text (Script) component, so we can get access to it and modify its text.
The time variable stores the amount of time that has passed since the timer started.

In the Start() function, we assigned the reference to the Text (Script) component, which is
attached to the same game object of this script, to the uiText variable by calling the this.
GetComponent<Text>() function.

Keeping in mind that the Update() function is called at every frame, we added Time.
deltaTime, which is the time that has elapsed from the last frame to the time variable. We
did this to accumulate the time that has passed since this script/timer started. In the second
line, we updated the text variable on the Text (Script) component, which we can have
access to through the uiText variable, with the new time value. Since we don't want all
the decimal points, we have to change it to float by calling ToString("F2") on it.

There's more...
The next section will teach us how to retrieve the value of our variable.

Getting the time variable
For some reason, we may want to retrieve the value of the time variable, such as when we
want to trigger an event in our game environment, or pass its value to another script. We can
achieve this by implementing a get function, like this:

public float getTime(){
 return time;
}

See also
ff For more details about the get function, refer to the Implementing a score counter

recipe in Chapter 2, Implementing Counters and Health Bars, inside the There's
more... section

ff However, if you are looking for more information about rich text, the official
documentation is the best place to visit at http://docs.unity3d.com/Manual/
StyledText.html

http://docs.unity3d.com/Manual/StyledText.html
http://docs.unity3d.com/Manual/StyledText.html

Chapter 3

69

Creating a linear timer
In this recipe, we are going to create a linear timer. In this instance, the timer is shown as
a long bar that shortens over time. An example of this would be when we want a player to
make a decision within a short period of time, such as during a dialog choice to progress the
narrative. In this case, the timer may feature above or even below the choices to indicate
the amount of time that the player has left to decide. To achieve this, we will use the Image
(Script) component and develop a script to manage the length of the bar according to the
time remaining.

How to do it...
1.	 First of all, we need to create a bar for our timer. To do this, we can open a graphics

program to create it. Alternatively, we can just use the bar that we created in the
Implementing a linear heath bar recipe in the previous chapter.

2.	 Next, we need to import the bar into our project and set Texture Type to Sprite (2D
and UI) so that it can be set as Source Image in our UI components. Then click on
Apply. Of course, this is not needed if our project is set to work in 2D mode.

3.	 Now, we can create a new UI image inside Unity. To do this, right-click on the
Hierarchy panel and then navigate to UI | Image. Next, rename it to Linear Timer.

4.	 Inside the Image (Script) component, we have to change Image Type to Filled. As a
result, we can decide how much of the image is filled. Furthermore, the component
should change a little in the Inspector.

5.	 Let's change Fill Method to Horizontal and Fill Origin to Left. Of course, we have to
add the bar that we previously created to Source Image. Finally, we can place Linear
Timer wherever we want, using Rect Tool or the keyboard shortcut T.

6.	 If we want to maintain the original proportion of the bar, we can click on the Set
Native Size button in the Inspector.

7.	 Then, in Linear Timer, navigate to Add Component | New Script, name it
BarTimerScript, and then click on Create and Add.

8.	 Double-click on the script to edit it and, as always, add the using UnityEngine.
UI; statement at the beginning of the script. This ensures that we are able to
manipulate the UI elements within the script.

9.	 Before we add any functions, we need three variables: two private and one public.
We will set the last one in the Inspector. To do this, we can write the following code:
private Image barFilling;
public float timeAmount;
private float time;

Implementing Timers

70

10.	 In the Start() function, we have to set up the time variable along with the
barFilling one, by adding these lines:
void Start () {
 barFilling = this.GetComponent<Image> ();
 time = timeAmount;
}

11.	 Finally, in our Update() function, we have to decrease the time variable by the time
that has elapsed from the last frame, and update the filling of the bar so that it can
reflect the amount of time that has elapsed. Therefore, we can script the following:
void Update () {
 if (time > 0) {
 time -= Time.deltaTime;
 barFilling.fillAmount = time / timeAmount;
 }
}

12.	 Now, once we have finished the script, we can save our work. If we click on play, we
should have something that looks like this:

How it works...
After we have imported the image, we can set it to Sprite (2D and UI) (this is not needed if
the project is in 2D). Next, we can change its Fill Method field to Horizontal and set Fill Origin
to Left so that the image can disappear gradually as the time decreases, starting from the
right-hand side.

Chapter 3

71

Then, we have created three variables in our script. The first variable, barFilling, stores the
reference to the Image (Script) component, which is attached in the same game object of this
script. The second variable, timeAmount, is the starting value of time for the countdown, in
seconds. Finally, the third variable, which is time, contains the time that is remaining.

In the Start() function, we first assigned the barFilling variable by calling the this.
GetComponent<Image>() function. Then, we set the time to timeAmount so that the
countdown begins with a specific starting time.

Finally, in the Update() function, we set the ratio between time and timeAmount to the
fillAmount variable. This is contained in the Image (Script) component of Linear Timer.
In fact, the ratio is the percentage of time left and also how much longer our linear timer
should be.

There's more...
The first of the next two sections will explain to us how to improve our timer by running some
code after the timer expires. The second one, instead, will give us an idea about how to
quickly change the design of our timer.

Running code when the timer expires
In order for something to happen after the time has expired, such as loading the game on the
screen, or triggering the sound of a closing door because the player shouldn't be able to reach
it after the time limit, we have to add a new variable to our script:

private bool isOver;

Also, add an else branch inside the Update() function after the if statement, in the
following way:

else{
 if(!isOver){
 isOver = true;
 //DO SOMETHING
 }
}

We use the isOver variable to trigger the time elapsed event only once after the time expires.
In order to test it, we can write something in the debug console by calling this function:

Debug.log("Timer expired!");

Implementing Timers

72

Creating a double-sided timer
In some cases, we might want a timer that animates on both ends, adding intensity to the
game by providing the player with a heightened sense of urgency. To achieve this, we can
use two linear timers that are synchronized; just make one specular to the other.

See also
ff For different kinds of timers or countdowns, refer to the Implementing a numeric

timer, Implementing a radial timer, Creating a mixed timer, Creating a well-formatted
timer, and Developing a well-formatted countdown that changes recipes, which are
all contained in this chapter

Implementing a radial timer
In this recipe, we are going to create a radial timer. The time that is remaining will be
displayed as a ring that reduces circularly over time. To achieve this, we will use the Image
(Script) component, along with a script to manage the length of the circular bar. A timer like
this can be useful when it is relating to something in particular. For instance, if a character
has a special ability and we want the timer to represent the duration that the ability can be
used for, a radial timer can be implemented. In this way, we are able to add an icon that then
represents the ability. It can be centered in the middle of the radial timer, keeping the UI
concentrated and contained.

How to do it...
1.	 First of all, we need to create a circular bar for our timer. We can do this by opening a

graphics program to make it, or by implementing the one that we previously created
in the Implementing a radial heath bar recipe in the previous chapter.

2.	 Next, import the bar into your project, and remember to set its Texture Type field to
Sprite (2D and UI) (only if the project is not in 2D) in order to use it as part of the UI
elements. Lastly, click on Apply.

3.	 Now, we need to create a new UI image. Right-click on the Hierarchy panel and then
navigate to UI | Image. Rename it to Radial Timer.

4.	 Inside the Image (Script) component, we have to change Image Type to Filled. The
component should change a little in the Inspector.

5.	 Ensure that Fill Method is set to Radial 360 and Fill Origin to Bottom.

6.	 Since the logic is the same as that of the previous recipe, we only have to add
BarTimerScript that we created before. This is because it contains what we need. To
learn how to create it, you can refer to Creating a linear timer in the previous recipe.

Chapter 3

73

7.	 After completing all of these steps, our radial timer is ready to use.

How it works...
First of all, you have either imported the image from the Implementing a radial health bar recipe
or created a new one with a graphic program. If the project isn't in 2D, we have to set it to Sprite
(2D and UI). Then, we added a new UI image to the scene; this time, we set Fill Method to
Radial 360 and Fill Origin to Bottom. We did this so that the image can disappear or appear
gradually in 360 degrees in an anticlockwise direction, starting from the bottom, according to
the amount of time remaining. Finally, we attached BarTimerScript that we developed in the
Creating a linear timer recipe. It works fine, since it implements the same logic.

See also
ff If you want learn how to create BarTimerScript, you can refer to the Creating a linear

timer recipe

ff For different kinds of timers or countdowns, you can take a look at the Implementing
a numeric timer, Creating a linear timer, Creating a mixed timer, Creating a well-
formatted timer, and Developing a well-formatted countdown that changes recipes,
all contained in this chapter

Implementing Timers

74

Creating a mixed timer
In this recipe, we are going to mix the radial timer with the numeric one. Like in the previous
recipe, the time remaining will be displayed as a ring that reduces circularly over time.
Furthermore, inside the ring, we will display the time remaining as a number. A mixed timer
can serve many different purposes, especially when a number of timers have to be viewed
at once. For instance, imagine a strategy game where we have a number of resources that
we wish to use. Each of these resources takes time to regenerate after it has been used. At
a glance, the radial timer can indicate how much time, across a range of different resources,
any single resource has left. In addition, incorporating a numeric timer can specify exactly how
much time is remaining until that resource is available again. In this way, using both a radial
timer and a numeric timer in combination can provide the player with both an overview and a
specific indication of time remaining. To create a mixed timer, we will use the Image (Script)
and Text (Script) components and develop a script to manage the length of the circular bar,
synchronized with the time shown as a number inside the ring.

How to do it...
1.	 First of all, we need to create a circular bar for our timer, so we can open a graphic

program and create it, or just use the one we created in the Implementing a radial
health bar recipe from the previous chapter.

2.	 Then, we should import it into our project and set its Texture Type to Sprite (2D and
UI) (only if our project is not 2D) so that we can use it within the UI elements. Next,
click on Apply.

3.	 Now, let's create a new UI image. To do this, right-click on the Hierarchy panel and
then navigate to UI | Image. Rename it to Mixed Timer.

4.	 Inside the Image (Script) component, we have to change Image Type to Filled. The
component should change a little in the Inspector.

5.	 Ensure that Fill Method is set to Radial 360 and Fill Origin to Bottom. We have to
drag the bar that we previously imported into Source Image. Finally, we can place
Mixed Timer wherever we want, remembering to use Rect Tool as we do this or the
keyboard shortcut T.

6.	 We may want to keep its original proportions. In this case, we can click on the Set
Native Size button in the Inspector.

7.	 Furthermore, we need to create a new UI text to display the time as a number inside
the ring. Right-click on Mixed Timer in the Hierarchy panel, and then navigate to
UI | Text.

8.	 We can change the Font and the Font Size fields as we want so that they better suit
our needs.

Chapter 3

75

9.	 We can also adjust Color. For this example, we will set it to light gray, but feel free
to use a color that better suits your design.

10.	 Now we can drag Text with Rect Tool inside our timer, or again use the keyboard
shortcut T.

11.	 To see it better in the scene view, we can write something in the Text variable — for
instance, the word time, even if this value will be replaced by the script.

12.	 Make sure that the Rich Text variable is checked. We do this to ensure that different
parts of the text in our timer can have different colors.

13.	 Now, we have to create the script that manages the timer. After selecting Mixed
Timer, navigate to Add Component | New Script, name it MixedTimerScript, and
then click on Create and Add.

14.	 Double click on the script to edit it, and then add the using UnityEngine.UI;
statement at the beginning of the script so that we can use UI elements within
the script.

15.	 Next, we need to add five variables; three are private and two are public. These will
be set in the Inspector. We write the following:
private Text uiText;
private Image barFilling;
public float timeAmount = 18f;
private float time;

16.	 In the Start() function, we can set the time variable along with barFilling and
uiText as well:
void Start () {
 barFilling = this.GetComponent<Image> ();
 time = timeAmount;
 uiText = this.GetComponentInChildren<Text> ();
}

17.	 Finally, in our Update() function, we need to decrease the time by Time.deltaTime
and then update the fillAmount variable of the bar accordingly. We can do this
by writing the following:
void Update () {
 if (time > 0) {
 time -= Time.deltaTime;
 if(time < 0)
 time = 0;
 barFilling.fillAmount = time / timeAmount;
 uiText.text = "<color=blue>Time</color>: " + time.
ToString("F2");
 }
}

Implementing Timers

76

18.	 Save the script and test it by clicking on the play button. We should see the
following result:

How it works...
After importing the image, we set it to Sprite (2D and UI) (only for 2D projects) so that we
could use it in the UI. Then we created a new image and changed its Fill Method value to
Radial 360 and Fill Origin to Bottom. In this way, the image can disappear gradually in
an anticlockwise direction starting from the bottom, as the time decreases. Furthermore,
we created another game object nested in the Mixed Timer object, with a Text (Script)
component, in order to display the time as a number. Finally, we implemented a script
for the logic.

In the script, we have four variables. The first one is barFilling and stores the reference to
the Image (Script) component attached to the same game object of the script. The second
one is uiText, and it stores the reference to the Text (Script) component, which is attached
to the child game object of the mixed timer. The third variable is timeAmount, which is the
amount of time set at the start, and from which the countdown begins to decrease. Finally,
the fourth variable is time and contains the amount of time remaining.

In the Start() function, we began by assigning the Image (Script) component, which is
attached to the same game object of this script, to barFilling. We did this by calling the
this.GetComponent<Image>() function. We assigned the Text (Script) component, which
is attached to the child of the game object where this script is, to the uiText variable by
calling the this.GetComponentInChildren<Text>() function. We did this to get the
reference that we need in order to quickly access that component. Finally, we set the time
to timeAmount so that the countdown begins with that specific starting time.

Chapter 3

77

In Update(), we check at every frame whether time is more than zero. If so, we subtract
Time.deltaTime from time, since the coupon decreases. If time is less than zero, then we
set it to zero. Finally, we put the ratio between time and timeAmount into the Fill Amount
variable, which is contained in the Image (Script) component of the mixed timer. In fact, the
ratio is the percentage of the time remaining, which also indicates how much longer our linear
timer needs to be. In the last line, we also updated the text inside our timer so that it could be
displayed correctly inside the ring.

There's more...
The following section will teach us how to improve the aesthetic of our timer to better suit
our needs.

Changing the number of decimal points shown
We can easily change the script so that it displays a certain number of decimal points in the
timer. In order to do that, let's add a variable called decimalDigits into our script and set
its default value to 2:

public int decimalDigits = 2;

Then we have to look for this line inside the Update() function:

 uiText.text = "<color=blue>Time</color>: " +
time.ToString("F2");

And we can replace it with the following:

 uiText.text = "<color=blue>Time</color>: " +
time.ToString("F"+decimalDigits);

To decide how many decimal points will be shown, we need to set the decimalDigits
variable in the Inspector. In fact, by setting this variable in the Inspector, we are changing the
parameter of the ToString function. We do this in order to return a string that represents
the float as a string, with as many decimal points as we have decided in decimalDigits.

Using a linear timer instead of a radial timer
Instead of using a radial timer, we can also use a linear timer and put the text inside the bar.
In this example, it would be nice to add some borders to the bar. In fact, this helps to better
integrate the timer with the rest of the UI. To do this, you can refer to the Implementing a
linear health bar recipe contained in the previous chapter, inside the There's more... section.

Implementing Timers

78

To change the radial timer to a linear one, we have to change the Fill Method of the mixed
timer to Horizontal and change Fill Origin to Left. Of course, we also have to change the
Source Image with the linear bar. If needed, we can use the Set Native Size function and/
or change the size of the text of the timer to better fit the bar. Once we have done all of these
steps, we should have something that looks like this:

See also
ff For different kinds of timers or countdowns, check out the Implementing a numeric

timer, Creating a linear timer, Implementing a radial timer, Creating a well-formatted
timer, and Developing a well-formatted countdown that changes recipes, all
contained in this chapter

Creating a well-formatted timer
In this recipe, we are going to create a timer that displays time on the screen in minutes
and seconds. The benefit of using a more precise timer is the ability to provide the player
with a more precise indication of time. This is particularly helpful when there are moments
during the game that can take up a considerable amount of time. Having time displayed in a
familiar format also assists the player to easily recognize and respond to the amount of time
remaining. We will use Text (Script) and develop a script to achieve this goal.

Chapter 3

79

How to do it...
1.	 First of all, we need to create new UI text that will display our timer. Right-click on the

Hierarchy panel and then navigate to UI | Text. Rename it to Well Formatted Timer.

2.	 We can change the Font and the Font Size values as we wish so that they can better
suit our needs.

3.	 Next, we can adjust Color; for this example, we will set it to light gray, but feel free to
use another color that better suits your design.

4.	 Now we can drag Well Formatted Timer with Rect Tool to where we want to place it.

5.	 To have the timer better displayed in Scene View, we can write the word time in
the Text variable, even if this value will be replaced with the real amount of time
remaining after every frame by our script. We have to ensure that the Rich Text
variable is checked so that we can have the advantage of changing colors in
different parts of the text.

6.	 Then, we have to create the script that manages the timer. To do this, navigate to Add
Component | New Script and rename it to Well Formatted Timer Script. Then click
on Create and Add.

7.	 Double click on the script to edit it, and then add the using UnityEngine.UI;
statement at the beginning of the script. This allows us to use UI elements within
our script.

8.	 Before we can add any more functions, we need two private variables:
private Text uiText;
private float time;

9.	 Now, we have to set the uiText variable in order to use it. We can do this in the
Start() function:
void Start () {
 uiText = this.GetComponent<Text> ();
}

10.	 In order to update the timer, we need to write a couple of lines in the Update()
function. To do this, let's write the following:
void Update () {
 time += Time.deltaTime;
 string minutes = Mathf.Floor(time / 60).ToString(""00");
 string seconds = (time % 60).ToString(""00");
 uiText.text = "<color=blue>Time</color>: "" + minutes + ":" +
seconds;
}

Implementing Timers

80

11.	 Let's save the script, and our work is done. We should see something like this:

How it works...…
First of all, we created a new UI text and adjusted it to suit our needs by changing Font, Font
Size, and also Color. We also ensured that the Rich Text option was checked.

In the script, there are two private variables, uiText and time. The uiText variable stores
the reference to the Text (Script) component, and time stores the amount of time remaining.

In the Start() function, we assigned Text (Script), which is attached in the same game
object of this script component, to the uiText variable by calling the this.GetComponent
<Text>() function.

Finally, in the Update() function, we added Time.deltaTime to the time variable. This
indicates the amount of time that has elapsed from the last frame, when this function was
called the last time.

Next, we calculated the minutes by dividing time by 60, and then removed its decimal part
using the Mathf.Floor(float f) function. Finally, we transformed the result into a string
that is stored in the minutes variable. In order to get the seconds remaining, we did the
same and divided the time by 60. However, this time, we took the remainder of the division.
We transformed this value into a string and stored it inside the seconds variable.

In the last line of the script, we updated the text variable on the Text (Script) component,
which was stored in the uiText variable. We put onto it a formatted string in which minutes
are separated from seconds.

Chapter 3

81

There's more...
This section reminds us how to retrieve the time from our timer.

Getting the time variable
As we have previously done in the first recipe, it is possible to retrieve the value of the time
variable. We just have to add a get function, like this:

public float getTime(){
 return time;
}

See also
ff For more details about the get function, refer to the Implementing a score counter

recipe in the There's more... section

ff However, if you are looking for more information about rich text, the official
documentation is the best place to get it, at http://docs.unity3d.com/
Manual/StyledText.html

Developing a well-formatted countdown
that changes

In this recipe, we are going to create a countdown that displays the time on the screen as
minutes and seconds. However, to take this display a step further, as the time elapses, it will
change color. Just as the radial timer graphically represents the time that passes, a colored
numeric timer provides a similar function. For example, in moments during gameplay when
there is intense action, a player may not necessarily have the time to focus on the timer, or
he may actually lose track of the time that has elapsed. Whatever the case may be, another
good way to indicate to the player the time as it is decreasing is through color. Therefore, as
the player is engaged in gameplay, the color of the time can provide a quick indication of how
close he is to running out of time. We will use the Text (Script) component and develop a
script to achieve our goal.

How to do it...
1.	 First of all, we need to create a new UI text to display our timer. To do this, right-click

on the Hierarchy panel and then navigate to UI | Text. Rename it to Well Formatted
Countdown.

2.	 We can change Font and Font Size as we wish so that they suit our needs better.

http://docs.unity3d.com/Manual/StyledText.html
http://docs.unity3d.com/Manual/StyledText.html

Implementing Timers

82

3.	 Next, we can adjust Color. For this example, we will set it to to light gray, but feel free
to use another color that better suits your design.

4.	 Remember that the color will also be changed from our script.

5.	 Now, we drag Well Formatted Countdown with Rect Tool to where we want to place
it on the Canvas.

6.	 To see it better inside Scene View, we can add some text to the Text variable. Even
though this value will be replaced by the script, it will show us an approximation of
how the timer will be displayed during runtime.

7.	 Furthermore, ensure that the Rich Text variable is checked to be able to use different
colors in the text.

8.	 Then, we have to create a script that manages the timer. To do this, navigate to Add
Component | New Script, name it Changing Countdown Script, and then click on
Create and Add.

9.	 Double click on the script to edit it, and add the using UnityEngine.UI;
statement at the beginning of the script. As a result, we will be able to handle UI
elements within our script.

10.	 Before we start adding any more functions, we need two private variables. So, we can
write this:
private Text uiText;
private floattime;

11.	 Now, we need to set the uiText variable in order to use it. We can do this in the
Start() function:
void Start () {
 uiText = this.GetComponent<Text> ();
}

12.	 Next, we will need to write a few lines in the Update() function in order to update
the timer:
void Update () {
 time -= Time.deltaTime;
 if (Mathf.Floor (time / 60) >= 1) {
 string minutes = Mathf.Floor (time / 60).ToString ("00");
 string seconds = (time % 60).ToString ("00");
 uiText.text = "<color=blue>Time</color>: " + minutes + ":" +
seconds;
 } else {
 if(time>=10){
 uiText.text = "<color=blue>Time</color>: " + time.
ToString("FOR");
 }else{

Chapter 3

83

 uiText.text = "<color=blue>Time</color>: <color=red>" +
time.ToString("F0")+"</color>";
 }
 }
}

13.	 We can save the script, and now our work is done. When the countdown has more
than one minute remaining, it should look like this:

14.	 When the countdown has less than 1 minute but more than 10 seconds remaining,
it should look like the following:

Implementing Timers

84

15.	 When the countdown has fewer than 10 seconds remaining, it should look like this:

How it works...
First of all, we created a new UI text and adjusted it to suit our needs. We did this by changing
Font, Font Size, and also Color. We even ensured that Rich Text was checked. Finally, we
wrote a script to handle all of these changes depending on the amount of time remaining.

In the script, there are two private variables, uiText and time. The uiText variable stores
the reference to the Text (Script) component. The time variable stores the amount of time
that has elapsed since the countdown began.

In the Start() function, we assigned the Text (Script) component, which is attached
to the same object of the script, to the uiText variable by calling the this.
GetComponent<Text>() function.

In contrast to what we did with the timers, in this case we subtracted Time.deltaTime
from the time variable in the Update() function. This was because we were implementing
a countdown. Therefore, we had to decrease the amount of time remaining.

In the first if statement, we check the number of minutes that are calculated by Mathf.
Floor (time / 60). If it is more than 1, we format our countdown like the timer in the
previous recipe. Otherwise, we can use the formatting from the first recipe in this chapter. In
this last branch, we calculated the minutes by dividing time by 60, and removing its decimal
points with the Mathf.Floor(float f) function. Consequently, we transformed the
number of minutes into a string, which is stored in the minutes variable. In order to get
the seconds, we divided time again by 60.

Chapter 3

85

However, this time we took the remainder of the division. Again, we transformed this value
into a string and stored its value inside the seconds variable. Finally, we updated the text
variable of the Text (Script) component, which is stored in the uiText variable. We had to
set a formatted string where minutes are separated from seconds to text. In the else branch,
we check whether the countdown had less than 10 seconds remaining. If so, then the time
is displayed in the same format as in the first recipe of this chapter. However, in this case, we
changed the color of the text to red. Otherwise, if we do the same as the first recipe, it would
have retained its original color.

There's more...
The following sections will give us some new concepts that can be applied to our countdown.

Getting the time variable
As we have seen before, in some cases it's useful to retrieve the value of the time variable.
To do this, we need to add a get function, like this:

public float getTime(){
 return time;
}

Running code when the time expires
If we place a countdown in our game, it's probably because we want to trigger an event when
it expires, such as making the player lose the level. Despite the reason, we can achieve this
by changing our script slightly. First, we need to add a new variable:

private bool isOver;

Then, we should add this line in the Update() function:

 uiText.text = "<color=blue>Time</color>: <color=red>" + time.
ToString("F0")+"</color>";

Replace it with the following lines:

 if(time <= 0){
 uiText.text = "<color=blue>Time</color>: <color=red>0</
color>";
 if(!isOver){
 isOver = true;
 //DO SOMETHING
 }
 }else {
 uiText.text = "<color=blue>Time</color>: <color=red>" +
time.ToString("F0")+"</color>";
 }

Implementing Timers

86

As we can see from the code, the bool variable is needed to trigger the countdown expired
event only once. In fact, now we are able to implement or call a function when the time expires.

Furthermore, in order to test it, we can write something that indicates when the time has
expired. For instance, we can do this in the debug console by calling this function:

Debug.log("Timer expired!");

Increasing tension by adding decimal points when the time is
close to expiring
By combining what we did before with the Creating a mixed timer recipe, when the timer has
fewer than 10 seconds remaining, the timer could display the number with decimal points
to increase tension in the player. In this way, as each second draws closer to the time of
expiry, the player can see with more precision and at a faster rate how much time is left
(in milliseconds). Ultimately, this increases the tension between the current moment and
the moment when the timer expires.

See also
ff For more details about the get function, refer to the Implementing a score counter

recipe in the previous chapter, inside the There's more... section

ff However, if you are looking for more information about rich text, the official
documentation is the best place to get it, at http://docs.unity3d.com/
Manual/StyledText.html

http://docs.unity3d.com/Manual/StyledText.html
http://docs.unity3d.com/Manual/StyledText.html

87

4
Creating Panels

for Menus

In this chapter, we will cover the following recipes:

ff Creating a toggle group

ff Showing the slider value as a percentage

ff Adding upper and lower bounds to the slider

ff Making UI elements affected by different lights

ff Making a draggable panel

ff Making a resizable panel

ff Creating a drag-and-drop element

ff Developing an MP3 player

Introduction
In this chapter, we are going to learn how to make different kinds of panels to create interactive
menus. These menus will feature elements such as sliders and draggable and resizable
features. This chapter will conclude by showing you how to create a simple MP3 player.

Creating a toggle group
In this recipe, you will learn how to create a toggle group. Often in menus, there is an
opportunity to choose between different options, but the player can choose only one of them.
A toggle group allows users to select just one of its toggles. To achieve this, we will use the
Toggle (Script) component along with the Toggle Group (Script) component.

Creating Panels for Menus

88

How to do it...
1.	 First of all, we need to create a panel in which our toggle elements will be placed.

To do this, right-click on the Hierarchy panel and then on UI | Panel. Rename it to
Toggle Group. Of course, it is possible to resize and place the panel as we wish.

2.	 The next step is to add a Toggle Group (Script) component to our Toggle Group
panel. To do so, click on Add Component | UI | Toggle Group.

3.	 Now, we have to add our toggles. We can do this by right-clicking on the Toggle
Group panel in the Hierarchy panel and selecting UI | Toggle. We can rename it to
Toggle01 and duplicate it as many times as we want by pressing Ctrl + D. Each time
we duplicate it, Unity will update the name for us in Toggle02, Toggle03, and so on.

4.	 The toggles are all in the same place and with the same text. Therefore, we can
change the text of the toggles to Option A, Option B, and so on. Finally, we need
to displace the toggles in the panel — in order to separate them — until we have
obtained something that looks like this:

5.	 Next, we have to link all of these toggles together and make them act as a toggle
group. To do this, we need to select all of them so that we can then drag the Toggle
Group panel in the Group variable. This last variable can be found inside the Toggle
(Script) component in the Inspector. As a result, for each toggle, we should have
something that should appear like the following:

Chapter 4

89

6.	 As a final step, we need to leave just one toggle checked. To do this, we can
select all the toggles except the one we want to leave checked, and uncheck
their Is On variable from the Inspector. Now, we can press play and test whether
everything works.

How it works...
By default, each toggle element is separated from all others. For this reason, we need to
create a toggle group. This is a script that checks whether one of its elements changes state
and consequently modifies the state of the other elements accordingly. For example, if a
toggle becomes checked, and since we want exactly one toggle checked at a single point in
time, we need to uncheck the already checked toggle, if any. Luckily, we don't need to write
this script from scratch. Unity offers a component called Toggle Group (Script) that handles
this kind of interaction for us. Therefore, we only need to link each toggle to this component
to create a toggle group.

Creating Panels for Menus

90

There's more...
The following section will show us how we can remove the constraint to necessarily chose one
of the options.

Giving the player the privilege not to choose one of the options
Removing the possibility to select an option from a toggle group for the player is an important
design decision that needs to be made carefully, but it doesn't have any impact from a
programming perspective. In fact, Toggle Group (Script) also takes care of this possibility.
Thus, we need to select the Toggle Group panel from the Hierarchy panel, and inside the
Toggle Group (Script) component in the Inspector, we need to check the Allow Switch Off
variable. As result, if the player clicks on the currently checked toggle, it becomes unchecked
as well as all other toggles.

Furthermore, we can set the default option of our toggle group to no choose, which means
that at the beginning, no toggles are checked. We only need to uncheck the Is On variable
from the toggle that we left in step number 6.

See also
ff Since the Toggle (Script) and Toggle Group (Script) components are a part

of Unity, for more information about them, we can check out the official Unity
documentation here:

�� http://docs.unity3d.com/Manual/script-Toggle.html

�� http://docs.unity3d.com/Manual/script-ToggleGroup.html

Showing the slider value as a percentage
Sliders are used a lot in video games. As a result, we have to display some percentage of the
slider to give the player a better visual idea of what he is changing. For example, when the
player is tweaking an ability parameter, it could be useful if the amount remaining is displayed
as a percentage. The goal of this recipe is to create a script that shows the value of the slider
in percentage. As such, we will develop a script that will use both the Slider (Script) and Text
(Script) components.

How to do it...
1.	 First of all, we need to create a new UI text to display the value of our slider in

percentage. Therefore, we can right-click on the Hierarchy panel and then click on
UI | Text. Rename it to Slider Shower. Furthermore, to customize the look or suit
our needs, we can change Font and Font Size as well.

http://docs.unity3d.com/Manual/script-Toggle.html
http://docs.unity3d.com/Manual/script-ToggleGroup.html

Chapter 4

91

2.	 Now, we need a script that receives the value of the slider, as data, which we will
learn how to do later, and then show it as a number in percentage. So, let's click on
Add Component | New Script, name it ShowSliderValueScript, then click on Create
and Add.

3.	 To edit the script, double click on it. Add the using UnityEngine.UI; statement
at the beginning of the script. Before the class, we can also add the following line:
[RequireComponent(typeof(Text))] (without the semicolon at the end). In
this way, we are saying that, in order to use this script, it requires a Text (Script)
component attached to the same game object of this script.

4.	 We just need a private variable to keep track of the Text (Script) component, without
needing to find it every time we have to update its text. So, we can add private
Text uiText;.

5.	 Next, we can write a function that takes float as a parameter (the value of the
slider) and changes it to string that represents that number in a percentage. To do
this, we multiply the value by 100 and round it off using the Mathf.RoundToInt()
function. In addition, by doing this, we get to see all percentages with decimals.
Finally, add % at the end of the string. We put this string into the text variable
of the Text (Script) component. Therefore, we can write the function in the
following way:
public void updateValue(float value){
 uiText.text = Mathf.RoundToInt (value * 100) + "%";
}

6.	 Let's save the script and come back to Unity from MonoDevelop. The next step is to
add a slider to our scene. Hence, we can right-click on the Hierarchy panel and then
click on UI | Slider. If we want to organize things better in our project, we should
rename it as well.

7.	 As you can see from the following screenshot, at the bottom of the Slider (Script)
component, there is the On Value Change (Single) panel. Click on the + sign in the
bottom-right corner of the panel.

Creating Panels for Menus

92

8.	 As result, we have just added an element to the tab. As we can see in the next
screenshot, we need to drag Slider Shower into the object variable. Now, the
drop-down menu should be enabled. Therefore, we can click on it and select
ShowSliderValueScript | updateValue. In fact, there are two of them listed, and we
need to select the first one, under Dynamic float. By doing this, when the value of the
slider changes, the updateValue() function from our previous script is called and the
value of the slider is passed as a parameter.

9.	 Finally, we can press the play button and perform a test to see whether everything
works as we have planned, as shown in the following screenshot:

How it works...
The Slider (Script) component has a variable called value that stores the position of the
slider as float between 0 and 1. In order to show this number, we passed it through an
event — OnValueChange. This happens every time the player changes the value of the slider,
that is, every time the slider is dragged. When this event happens, a value is passed to our
script. This first transforms the number into an integer between 0 and 100, and then converts
it into a formatted string to show it as a percentage. Finally, this string is shown in the Text
(Script) component.

Chapter 4

93

Adding upper and lower bounds to the slider
Unity allows us to add lower and upper bounds to sliders in a very simple way. Inside the
Slider (Script) component, there are two variables named Min Value and Max Value. If we
take the slider from the previous recipe and change the values of these variables, we'll see
that we can drag the handle of the slider to the end and the value has an upper bound,
as we can see in the following screenshot:

In this recipe, we will write a script to block the handle of the slider as well in order to make
the player perceive a real upper or lower bound.

How to do it...
1.	 So that we don't recreate another slider, we can take the one from the previous

recipe; thus, we can also see the value as a percentage. Otherwise, simply right-click
on the Hierarchy panel and then click on UI | Slider.

2.	 For the next step, we need to create our script on the slider. So, click on Add
Component | New Script, name it UpperAndLowerBoundsForSlidersScript,
and then click on Create and Add.

Creating Panels for Menus

94

3.	 Now, double click on the script in order to edit it. As usual, we need to add the using
UnityEngine.UI; statement at the beginning of the script so that we can handle
UI elements within the script. We can also add the following line before the class:
[RequireComponent(typeof(Slider))] (without the semicolon at the end).
By doing this, the script requires a Slider (Script) component attached to the same
game object of it in order for it to work. In fact, if it is not present, Unity will add it
for us.

4.	 We need a private variable to keep track of the Slider (Script) component without
seeking it every time that we want to check its upper and lower bounds. We also need
two public variables. They can be set in the Inspector or via the script for the lower
and the upper bound, respectively. So, we can write these lines:
private Slider slider;
public float lowerBound;
public float upperBound;

5.	 In the Awake() function, we have to link the Slider to our variable and then carry
out our first check. To improve performance, future checks will be done only if the
value of Slider changes. We can perform our check by calling the checkBounds()
function, which we will write in the next step. Thus, we can write the Awake()
function as follows:
void Awake () {
 slider = GetComponent<Slider> ();
 checkBounds ();
}

6.	 In the check function, we have to ensure that the value of Slider is between the
lower bound and the upper bound. If not, we have to change its value to the closer
bound, like this:
public void checkBounds () {
 if(slider.value>= upperBound){
 slider.value = upperBound;
 } else {
 if(slider.value<= lowerBound){
 slider.value = lowerBound;
 }
 }
}

7.	 Save the script and come back to Unity from MonoDevelop. As in the previous recipe,
we can see this at the bottom of the Slider (Script) component, the On Value Change
(Single) panel. By clicking on the + sign in the bottom-right corner of the panel, we
add a new element (the second one if you took the slider from the previous recipe).

Chapter 4

95

8.	 Next, we have to drag the Slider itself into the object variable. Now the drop-down
menu should be enabled, so click on it and select UpperAndLowerBoundsForSliders
Script | checkBounds. In this way, when the value of the slider is changed, the
checkBounds() function from our script is called, and it will check whether the new
value of the slider is inside the bounds. If we have taken the slider from the previous
recipe, we should see this:

9.	 Finally, we can press the play button and perform a test to see whether everything
works as it should.

How it works...
Since Unity doesn't allow us to block the handle of the slider directly, we need a script that
controls it within the bounds. In fact, every time the OnValueChange event occurs, the
value of the slider is passed to our script. This checks whether the slider value is between
the bounds. If it isn't, the script changes the value of the slider to the closest bound limit. For
example, if the player tries to move the slider further than the bound, our script will make the
slider come back to that bound. Finally, our script stores the bound limits in a couple of public
variables so that we can change them during the gameplay with other scripts. This is useful
because the player will perceive this as a block of the slider. Therefore, we can change the
bounds to give more power to the player over time.

There's more...
The following sections will give us some interesting suggestions on how to improve our
Slider Shower.

Changing the color when a bound is reached
Sometimes in games, we not only want to block the slider by creating bounds, but also to
make the player feel the bounds. One way of doing this is by changing the color of the Slider
Shower. To achieve this, we need to modify the script slightly. First, we should add the
reference to the Slider Shower inside our script. Thus, we can add a new public variable into
our script:

public Text uiText;

Creating Panels for Menus

96

This will store the Text (Script) component attached to Slider Shower. Furthermore, we need
to change the checkBounds() function in the following way:

public void checkBounds () {
 if(slider.value>= upperBound){
 slider.value = upperBound;
 uiText.color = Color.red;
 } else {
 if(slider.value<= lowerBound){
 slider.value = lowerBound;
 uiText.color = Color.red;
 }
 }
 uiText.color = Color.white;
}

By doing this, if a bound is reached, we change the color of Slider Shower to red. Otherwise,
we can assign the color white to it. Finally, we need to drag and drop Slider Shower into the
uiText variable of our script in the Inspector.

Expressing bounds as a percentage
Sometimes, it's better to express the parameters in a different way, especially if designers
have to tweak them. In fact, another way might be more understandable and comfortable.
For example, instead of expressing a result in decimal points, we can display it more simply
as a percentage. Here, you are going to learn how to express bounds as a percentage within
the Inspector; this is easy to understand for designers. Therefore, let's start changing our
script a little.

First of all, we need to change our variables. Consider these lines:

public float lowerBound;
public float upperBound;

Replace them with the following lines:

[Range(0,100)]
public int lowerBound;
[Range(0,100)]
public int upperBound;

In this way, we have changed the type of our variable in int and added a Range attribute in
order to limit the possible values (between 0 and 100) that can be set in the Inspector.

Chapter 4

97

Now, since the slider value is a float between 0 and 1, we also need to convert the percentage
value into a decimal one in the checkBounds() function. In fact, if we divide the value
by 100f, we obtain the decimal value. Therefore, we can rewrite the entire function in the
following way:

public void checkBounds () {
 if(slider.value>= upperBound/100f){
 slider.value = upperBound/100f;
 } else {
 if(slider.value<= lowerBound/100f){
 slider.value = lowerBound/100f;
 }
 }
}

As in the original function, we need to check whether the slider is exceeding the bounds, and
if so, restore it to the closest bound.

Limiting the value that we can set in the Inspector
If we want to limit the possible values that can be set in the Inspector, we have to add a
Range attribute to our variables. This prevents designers or us from setting a wrong number.

If we have expressed the value as a percentage, we can add the [Range(0,100)] line
before our variable in this way:

[Range(0,100)]
public int lowerBound;
[Range(0,100)]
public int upperBound;

In fact, they are int, and the percentage can be a number between 0 and 100.

Otherwise, if we still express the bounds as floats in the Inspector, the Range attribute is
[Range(0,1)]. Therefore, we can write the following:

[Range(0,1)]
public float lowerBound;
[Range(0,1)]
public float upperBound;

In this case, the value of our variable can be a float number between 0 and 1.

Creating Panels for Menus

98

See also
ff Since we have better tested the bounds by displaying the value of the slider in

percentage, you can find more details about this in the previous recipe, Showing
the slider value as a percentage.

Making UI elements affected by different
lights

To give a professional touch to our user interface, we can add lights to it. This could be
effective if we want to create a specific type of atmosphere or emphasize an element. In fact,
Unity allows us to alter UI elements by light. In this recipe, you will learn how to create two UI
elements and, using layers, how to have them affected by different lights. In order to do this,
we will add two new layers, create a new UI material, and of course play with lights.

How to do it...
1.	 We need to create two panels that are slightly separated, as shown in the following

screenshot. From this, you can learn how to affect different UI elements with different
lights. To create the panels, right-click on the Hierarchy panel and then click on UI |
Panel. Furthermore, to be more ordered, we can rename them as Panel01 (the one
on the left) and Panel02 (the one on the right).

Chapter 4

99

2.	 Now, we have to change the render mode of our canvas. Hence, select it from the
Hierarchy panel, and inside the Canvas component in the Inspector, change the
Render Mode variable to World Space.

3.	 If we switch to the Game view, we will not be able to see our panels anymore. This is
because we have to move our camera to frame them. To do this, we can select it from
the Hierarchy panel and, in the Scene view, move it in front of our panels.

Switching to 3D mode will allow us to better observe where our camera is
placed. To do this, uncheck the 2D icon at the top of your Scene view, as
shown in this screenshot:

In the end, we should have something like this:

Creating Panels for Menus

100

4.	 Now select one of the two panels and click on Layer | Add Layer at the top of the
Inspector. The Inspector should change. If this is a new project, we can add two
different layers onto User Layer 8 and User Layer 9 by typing the names of the new
layers next to them. In this case, we can call them UI1 and UI2. So, we should see
something like the following:

Chapter 4

101

5.	 Select Panel01 and click on Layer | UI1. Then select Panel02 and click on Layer |
UI2. By doing this, we have put the panels on different layers.

6.	 The next step is to create a new UI material to allow our panel to be affected by
light. In order to do so, right-click somewhere in the Project panel, select Create
| Material, and rename it to UIMaterial. Select it, and in the Inspector, click on
Shader | UI | Lit | Detail.

7.	 Select Panel01 along with Panel02 and drag and drop UIMaterial inside the
material variable in the Inspector.

8.	 Now we can create a light; right-click on the Hierarchy panel and then on Light |
Point Light.

9.	 We can change the light as we want, but let's ensure that in Culling Mask, only one
layer is selected (UI1 or UI2), and that the range of the light is very long (maybe
around 2000). We do this so that we can see the effect on our panels. Lastly,
we can place the light wherever we want it.

10.	 We can create as many lights as we wish and then decide which panel to affect by
changing its Culling Mask.

How it works...
Unity allows us to cause UI elements to be affected by lights, but they must be in World Space
and must have the right material. This is because lights belong to the 3D world, and so the UI
also needs to stay there. Furthermore, it also needs a material that can respond to lights. In
fact, we have created a material so that our panels can be affected by lights. Additionally, we
have created different layers so that we can affect only some UI elements by a certain light.

See also
ff It could be great if we can make interactive lights. This will increase the realism of the

lights and thus also enhance how the player perceives the UI. Therefore, you should
definitely take a look at the Creating a slider that changes colors gradually and
Creating sliders that change single channels of a light recipes in Chapter 7, Applying
Runtime Customizations.

ff Furthermore, using light becomes very easy when all of the system is integrated in a
3D UI. In fact, when the UI moves into the third dimension, we can see the reflection,
the position, or other effects of the lights changing. Therefore, to increase the visual
impact in this recipe, you should integrate with the recipes contained in Chapter 9,
Diving into 3D UIs.

Creating Panels for Menus

102

Making a draggable panel
In same cases, UI elements require some kind of interaction with the player, and the next
three recipes will teach you how to create interactive panels. In this recipe, you will learn how
to make a panel draggable. For instance, the player will be able to move the panel all around
the screen by dragging it. This is useful when we want to allow the player to organize his UI
with his logic and order. In order to do this, we will use the Event Trigger (Script) component
and develop a script to handle the interaction.

How to do it...
1.	 To begin, we can create a panel by right-clicking on the Hierarchy panel and then

on UI | Panel. We should also resize it so that we can see the entire panel on the
screen.

2.	 Now we need to create our script on the panel, so we click on Add Component | New
Script, name it DraggablePanelScript, and then click on Create and Add.

3.	 Double-click on the script to edit it. This time, we don't need to add the using
UnityEngine.UI; statement at the beginning of the script.

4.	 In the next step, we need to create just one public function. This will be called from
the Event Trigger (Script) component that will be attached to the panel. In this
function, we change the position of the transform where the script is attached
to the mouse by calling Input.mousePosition. Therefore, we can write this:
public void OnDrag(){
 transform.position = Input.mousePosition;
}

5.	 Let's save the script and add an Event Trigger (Script) component to the panel. Click
on Add Component | Event | Event Trigger.

6.	 Then click on Add New Event Type | Drag. A new menu that is similar to the one in
the previous recipes should appear in the Inspector. By clicking on the + sign in the
bottom-right corner of the panel, we can add a new event.

7.	 Furthermore, we need to drag DraggablePanelScript itself into the object variable.
As result, the drop-down menu should now be enabled. Click on it and select
DraggablePanelScript | OnDrag. In this way, when the player drags the panel, the
OnDrag() function from our script is called, and therefore the position of the panel
will change.

8.	 Finally, we can press the play button and make sure that everything works as it
should.

Chapter 4

103

How it works...
Each time the player drags the panel, Event Trigger (Script) calls our script, and it will change
the position of the panel with the mouse. As a result, the panel will move according to the
player's dragging.

There's more...
In the following section, we can learn how to drag the panel only from a specific area.

Creating a draggable area for the panel
We may want to allow the player to drag the panel from just some specific parts or areas
of it — for instance, only at the top of the panel, where the name of the window is usually
placed. In this context, the panel can be considered a window. Therefore, we need to create
another game object, which will be our draggable area, and follow the steps in the How to
do it... section. After we have completed this, we also need to modify the script. Instead of
changing the position of the transform of the game object that is attached to the script, we
move an arbitrary transform that we want — in this case the entire panel.

See also
ff We may want to give the player more power to structure his UI. So, we can make the

panel not only draggable but also resizable. Therefore, we can include the technique
that we will cover in the next recipe, Making a resizable panel, by providing the player
with more options to customize his experience.

Making a resizable panel
Sometimes, UI elements require some kind of interaction with the player. This recipe, along
with the previous and the following ones, will teach you how to create interactive panels.
Furthermore, we will see how to make a panel resizable. For instance, the player will be able to
resize the panel by dragging one of its corners. This is useful when the UI is full of panels and
windows and we want to let the player choose their dimension to suit his needs. To do this, we
will use the Event Trigger (Script) component and develop a script to handle the interaction.

Creating Panels for Menus

104

How to do it...
1.	 First, we can create a panel by right-clicking on the Hierarchy panel and then clicking

on the UI | Panel. Rename it to ResizablePanel. We should also resize it so that we
can see the entire panel on the screen.

2.	 We need to create another panel inside the first one. To do this, right-click on
ResizablePanel in the Hierarchy panel and then choose UI | Panel. We should
rename it as ResizeArea in order to reduce confusion. Finally, place it in the
bottom-right corner of the first panel, in this way:

3.	 Now we have to change Anchor of ResizeArea. To do this, select Anchor. Then, in
the Inspector, click on the icon with two squares and four blue arrows inside. Now, a
drop-down menu should appear, with Anchor Presets. Let's select the bottom-right
one. After doing this, you should see what is shown in the following screenshot:

Chapter 4

105

4.	 Now, we need to create our script on ResizablePanel. Therefore, click on Add
Component | New Script and name it ResizablePanelScript. Then click on
Create and Add.

5.	 Double-click on the script in order to edit it. As usual, we need to add the using
UnityEngine.UI; statement at the beginning of the script.

6.	 Before we add functions, we need three private variables. Two of them are Vector2,
respectively, for keeping track of the original mouse position and the original
DeltaSize of RectTransform when the player begins resizing. The third one is a
RectTransform, so we can get access to the RectTranform of ResizablePanel.
Therefore, we can write the following lines:
Vector2 initialMousePos;
Vector2 initialDeltaSize;
RectTransform rectTransform;

7.	 In the Start() function, we assign the RectTransform component, attached
to the same game object of this script, to the rectTransform variable. We can
do this by writing these lines:
void Start () {
 rectTransform = (RectTransform)this.transform;
}

8.	 Then we have to write a function that will be called every time the player starts
resizing the panel. We will call this function onDragBegins() because in order
to resize, we will be dragging ResizeArea. Here, we just assign the initial start
position of the mouse to initialMousePos and the current deltaSize to
initialDeltaSize:
public void onDragBegins(){
 initialMousePos = Input.mousePosition;
 initialDeltaSize = rectTransform.sizeDelta;
}

9.	 The next step is to have a function that is called during the dragging of ResizeArea;
means resizing the panel according to how the player moves the mouse. Therefore,
we need to create a function called OnDrag, which will look like this:
public void OnDrag(){
 Vector2 temp = (Vector2)initialMousePos - (Vector2)Input.
mousePosition;
 temp = new Vector2 (-temp.x, temp.y);
 temp += initialDeltaSize;
 rectTransform.sizeDelta = temp;
}

Creating Panels for Menus

106

10.	 Save the script and select ResizeArea from the Hierarchy panel. Then, in the
Inspector, click on Add Component | Event | Event Trigger.

11.	 Now we have to add two event types. To add the first, click on Add New Event Type
| BeginDrag. Then, click on the + sign in the bottom-right corner of the panel to add
a new event. Next, we have to drag ResizablePanel itself into the object variable.
Subsequently, the drop-down menu should be enabled. Hence, click on it and select
ResizablePanelScript | onDragBegins. As a result, when the player starts to drag
ResizeArea, the OnDragBegins() function from our script is called.

12.	 To add the second event, click on Add New Event Type | Drag. Then click on the +
sign in the bottom-right corner of the panel to add a new event. Again, we have to
drag ResizablePanel itself into the object variable. From the drop-down menu, select
ResizablePanelScript | onDrag. As a result, when the player drags ResizeArea, the
OnDrag() function from our script is called.

13.	 Finally, we can check whether everything works as it should by clicking on the
play button.

Keep in mind that all the elements within the panel will be resized as
well. Thus, ensure that you have placed all the anchors correctly within
the elements inside your panel, if any.

How it works...
Each time the player drags Resize Area, Event Trigger (Script) calls our script. In particular,
two functions are called: the OnDragBegins() function, in which we initialize our variables,
and the OnDrag() function. In the latter, we first create a temporary variable that stores the
difference of initialMousePos and the current mouse position, Input.mousePosition.
This means the distance between where the player started to drag and the current mouse
position. Since in this case the difference between vectors is ambiguous, we need to make
an explicit cast. Then, we have to invert the x coordinate of the temporary vector if we want to
resize the panel coherently. Finally, after adding the initialDeltaSize to our new vector,
we assign it as the new sizeDelta of rectTransform.

See also
ff Keep in mind that rarely, and only in specific designs, can the player resize a panel

without moving it around. Therefore, if this is not our design, we should integrate the
resizable panel with what we have covered in a previous recipe, Making a draggable
panel, to create a more immersive, interactive menu.

Chapter 4

107

Creating a drag-and-drop element
Often, UI elements require some kind of interaction with the player. This recipe, along with
what we have done in the previous two recipes, will teach you how to create interactive panels.
In particular, you will learn how to create two panels: one from which we can drag an element
(such as a coin or an item) and one on which we can then place it. This is useful when we are
developing a system wherein we need to drag objects from one place to another. For instance,
it's common to find this system in a shop menu, where the player can decide what to buy and
drag what he wants into his inventory. In order to do this, we will use the Event Trigger (Script)
component and develop a script to handle the interactions.

How to do it...
1.	 To begin, we can create a panel by right-clicking on the Hierarchy panel. Then click

on UI | Panel and rename it to CoinPanel. We should also resize it in order to see
the entire panel on the screen.

2.	 Next, we need to create a script for CoinPanel. Therefore, click on Add Component |
New Script and name it DragAndDropScript. Then click on Create and Add.

3.	 Double-click on the script in order to edit it. As usual, we have to add the using
UnityEngine.UI; statement at the beginning of the script. This allows us to
handle UI elements within our script.

4.	 Before we add functions, we need two variables. The first one is a public variable
and it will store the original GameObject. We will use this to instantiate new game
objects every time the player drags from this panel. The second variable is a private
one and is required to keep track of our new GameObject during the dragging
process:
private GameObject temp;
public GameObject original;

5.	 Now, we can add the onDragBegins() function. This is where we initiate a
new GameObject from the original one and store it inside the temp variable.
Furthermore, in order to display a UI element, it must be a child of Canvas.
Therefore, we need to change its parent to Canvas:
public void onDragBegins(){
 temp = (GameObject) GameObject.Instantiate (original, this.
transform.position, Quaternion.identity);
 temp.transform.SetParent (GameObject.Find ("Canvas").transform);
}

Creating Panels for Menus

108

6.	 In the onDrag() function, we just change the position of temp with the one on
the mouse:
public void OnDrag(){
 temp.transform.position = Input.mousePosition;
}

7.	 In the onDragEnd() function, we can perform our checks and finally destroy temp:
public void onDragEnd(){
 //Check if temp is dropped as you want and perform what you want
 GameObject.Destroy (temp);
}

8.	 Let's save the script and add an Event Trigger (Script) component to the panel.
To do this, click on Add Component | Event | Event Trigger.

9.	 Moreover, we need to add two types of events. To add the first event, click on Add
New Event Type | Drag. As in the previous recipe, a new menu should appear in the
Inspector. By clicking on the + sign in the bottom-right corner of the panel, we can
add a new event. Then, we have to drag the DragAndDropScript itself into the object
variable. As result, the drop-down menu should be enabled. Click on it and select
DragAndDropScript | OnDrag. By doing this, we ensure that, when the player drags,
the OnDrag() function in our script is called.

10.	 To add the second event, click on Add New Event Type | Begin Drag and then click
on the + sign in the bottom-right corner of the panel. Again, we have to drag the
DragAndDropScript itself into the object variable. From the drop-down menu that
was just enabled, select DragAndDropScript | onDragBegins. By doing this, we
ensure that, when the player starts dragging, the OnDragBegins() function from
our script is called.

11.	 To add the last event, click on Add New Event Type | End Drag. Next, click on the + sign
in the bottom-right corner of the panel. Again, we have to drag the DragAndDropScript
itself into the object variable. As before, select DragAndDropScript | onDragEnd from
the drop-down menu. As a result, when the player finishes dragging, the OnDragEnd()
function from our script is called.

12.	 As a final step, we can draw a new image and use it as an Icon. Alternatively, we can
take the one created in the Creating a modular coin counter recipe from Chapter 2,
Implementing Counters and Health Bars. After we have created a new prefab, we
drag and drop this image into the prefab. Then, we drag and drop the prefab into the
original variable of our script.

Chapter 4

109

13.	 Finally, we can click on the play button and check whether everything works as it
should, as shown here:

How it works...
Every time the player starts dragging, drags, or finishes dragging, the Event Trigger (Script)
will call our script. It creates a new GameObject and moves it accordingly.

There's more...
It is possible to learn how to perform a check for the objects that have been dropped, in the
next section.

Checking for dropped objects
When the player drops the temp object, we may want to check whether it is inside another
panel. In order to do this, we need to add a new variable and some lines of code to our
onDragEnd() function.

Let's add a variable that stores the reference to the panel where we want to check whether
our temp is dropped. It has to be public so that designers can set it in the Inspector.
Therefore, we can write this line:

public RectTransform dropPanel;

Creating Panels for Menus

110

Now, we need to change the onDragEnd() function in the following way:

public void onDragEnd(){
 Vector3[] worldCorners = new Vector3[4];
 dropPanel.GetWorldCorners(worldCorners);

 if(Input.mousePosition.x>= worldCorners[0].x
&&Input.mousePosition.x<worldCorners[2].x
 &&Input.mousePosition.y>= worldCorners[0].y
&&Input.mousePosition.y<worldCorners[2].y) {
 Debug.Log ("Dropped");
 }
 GameObject.Destroy (temp);
}

We used the GetWorldCorners() function, which allows us to retrieve the corners of our
dropPanel. Furthermore, along with an if statement, we have to check whether temp is
inside the boundaries of the dropPanel when the player drops it. Since we set the temp
position to the same position of the mouse in the onDrag() function, we can use the mouse
position to perform the check. Therefore, if this check is true, it means the item has been
dropped inside the dropPanel, and we print a message through the Debug.Log() function.
Of course, feel free to perform whichever action is adequate for your game.

Developing an MP3 player
In this recipe, we will see how to create a simple MP3 player with the Play, Pause, Stop, Next,
and Previous buttons. Here, the focus will be on how to learn the interaction between UI and
the Audio Source (Script) component within a script. Furthermore, we will see how to use
the Event Trigger (Script) component to call all the functions in our script. These will actually
implement the logic behind the MP3 player.

How to do it...
1.	 First, we can create a panel by right-clicking on the Hierarchy panel and then clicking

on UI | Panel. Rename it to MP3Panel. We should also resize it so that we can see
the entire panel on the screen. This is the panel that will contain all the buttons of
our player.

2.	 Next, we need to create five buttons inside the panel. To do this, we can right-click
on MP3Panel in the Hierarchy panel and then click on UI | Button. We can easily
duplicate it four times by pressing Ctrl + D. Each time, place the button on the screen
as shown in the following screenshot. We should rename them to PlayButton,
PauseButton, StopButton, PrevButton, and NextButton, and also change the text
of these buttons respectively to Play, Pause, Stop, Prev, and Next. Finally, we should
have something that looks like this:

Chapter 4

111

3.	 We also need to add an Audio Source (Script) component to MP3Panel. To do this,
click on Add Component | Audio | Audio Source. As a result, our player can now act
as an audio source. This means that it is able to reproduce music.

4.	 Now, we need to create our script on MP3Panel. Therefore, click on Add Component
| New Script and name it MP3PlayerScript. Then click on Create and Add.

5.	 Double-click on the script in order to edit it. This time, we don't need to add the
using UnityEngine.UI; statement at the beginning of the script. But before the
class, we add this line: [RequireComponent(typeof(AudioSource))] (without
the semicolon at the end). In this way, we are saying that, to use this script, an
Audio Source (Script) component attached to the same game object of this script is
required. If it is not present, it will be added automatically.

6.	 Before we add any functions, we need four variables. The first is a private variable for
storing AudioSource, where all the sounds will be reproduced. The second one is
an array of AudioClip for storing our entire playlist, and it is public, so we can set
the music from the Inspector. The third one is private int, and it stores the index
of the current song. The last one is private bool, and it stores information on
whether the player has stopped the music or not. So, we can write these lines:
private AudioSource audioSource;
public AudioClip[] musicList;
private int index=0;
private bool isStopByPlayer;

Creating Panels for Menus

112

7.	 In the Start() function, we assign the Audio Source (Script) component that is
attached to the same game object of this script to the audioSource variable:
void Start () {
 audioSource = GetComponent<AudioSource> ();
}

8.	 Now, we have to write one public function for each button, which means five functions
in total. The first one is the Play() function, in which we call the Play() function
on audioSource and set the isStopByPlayer variable to false, since the player
has just pressed play and not one of the stop buttons. So, we can write the following:
public void Play(){
 audioSource.Play ();
 isStopByPlayer = false;
}

9.	 The second one is the Pause() function, in which we call the Pause() function on
audioSource. Also, since the player has just pressed one of the stop buttons, we
set the isStopByPlayer variable to true:
public void Pause(){
 audioSource.Pause ();
 isStopByPlayer = true;
}

10.	 The Stop() function is similar to the previous one. It calls the Stop() function on
audioSource and, since the player has just pressed one of the stop buttons, we set
the isStopByPlayer variable to true:
public void Stop(){
 audioSource.Stop ();
 isStopByPlayer = true;
}

11.	 In the Next() function, we need to take care with the index of the playlist and play
the next song that is on the list. If the current track is the last one, we play the first
one. Therefore, we start increasing index by 1. Then we check whether index has
reached the last track, and if so, we change index to 0 in order to make it point
to the first track. Finally, we assign the track pointed by index in the music list to
the clip variable of audioSource. After that, in the final line, we call the Play()
function, which we have written before:
public void next(){
 index++;
 if (index == musicList.Length)
 index = 0;
 audioSource.clip = musicList [index];
 Play ();
}

Chapter 4

113

12.	 As we did in the preceding function, in the previous() function, we have to worry
about the index of the playlist and reproduce the previous track of the list. Thus, if
the current track is the first one, we need to play the last one. Therefore, we start
decreasing index by 1. Then we check whether index has reached the first track,
and if so, we change index to make it point to the last track. Finally, we assign the
track pointed by index in the music list to the clip variable of audioSource. And
in the final line, we call the Play() function, which we have written before:
public void previous(){
 index--;
 if (index == -1)
 index = musicList.Length-1;
 audioSource.clip = musicList [index];
 Play ();
}

13.	 In the Update() function, we check whether the track is finished and is not stopped
by the player. If so, we call the next() function that we wrote before. It will play the
next track from the music list:
void Update () {
 if (!audioSource.isPlaying && !isStopByPlayer)
 next ();
}

14.	 Save the script and come back into Unity. Now, we need to set the events. We
select all the five buttons so that we can multi-edit them, and click on the + sign in
the bottom-right corner of the OnClick event panel in the Inspector. Then drag
MP3Panel into the object variable.

15.	 For the next step, we need to set the event differently for each button. So, for each
of them, select in the drop-down menu MP3PlayerScript and the corresponding
function: PlayButton with the Play() function, PauseButton with the Pause()
function, StopButton with the Stop() function, NextButton with the next()
function, and finally PrevButton with the previous() function.

16.	 Since we don't want the player to press PlayButton while a track is being played,
we have to enable and disable it dynamically. To do this, we select PlayButton,
StopButton, and PauseButton so that we can multi-edit them. In the OnClick event
panel, click again on the + sign in the bottom-right corner to add a new event. Drag
PlayButton in the object variable. Finally, in the drop-down menu, select Button |
Interactable.

17.	 By default, the boolean value should be false (not checked), and it is fine for
PlayButton but not for the other two. Therefore, select StopButton and PauseButton
and check the boolean to make it true.

Creating Panels for Menus

114

18.	 Since the MP3 player will start at the beginning of the scene, we have to disable
PlayButton even at the start. Hence, after we have selected it, we can uncheck
the Interactable variable from the Inspector.

19.	 The final step is to load some nice tracks into the MP3Panel inside the Inspector.
Click on the play button to test the scene and listen to some nice music.

How it works...
Each button has an attached Event Trigger (Script) that will call the respective function of our
script. In fact, our script contains a function for every component. This last one will control the
Audio Source (Script) component to create an MP3 player.

There's more...
The next section teaches us how to display the name of the song in our MP3 Player,
to the player.

Showing the name of the song
It would be a great improvement for the MP3 player if we displayed the name of the song that
is currently being played, providing the player with more information during his experience. We
can achieve this by using a Text (Script) component and modifying our script a little.

First, select MP3Panel in the Hierarchy panel. Then select UI | Text and rename it to
MP3Text.

Before we modify our script, we need to add the using UnityEngine.UI; statement at the
beginning of the script. In fact, here we are going to use the Text class.

Then, we add a new public variable to our script:

public Text uiText;

This will store the reference to the Text (Script) component of MP3Text so that we can keep
track of it.

After this, let's add these lines at the end of the Update() function:

uiText.text = audioSource.name;

Chapter 4

115

By doing this, we display the name of the song (the name of AudioClip) in the text variable of
the Text (Script) component on uiText.

Finally, we can click on play to verify that everything works as expected.

Since the name of the song could be longer than the text component,
ensure that MP3Text is long enough. We can stretch it with the
Rect tool.
Otherwise, we can implement other solutions. Let's explore three of
them. The first is the easiest, and it requires us to use the Content Size
Fitter to make the text dynamically fit within MP3Text. Another solution,
which is a bit more effective, is to write a script that truncates the name
of the song, if it is too long. For instance, we can add ... at the end of the
name. Finally, if it is important to show the entire name, we can make
the name scroll gradually, by programming this behavior within our script.

117

5
Decorating the UI

In this chapter, we will cover the following recipes:

ff Creating an extendable element with a final fade effect

ff Creating an extendable and rotating element with a final fade effect

ff Creating bars that randomly go up and down

ff Making a floating UI element

ff Adding shadows to text

ff Adding outlines to text

Introduction
In this chapter, we will see how to create dynamic elements to decorate our UI. We will start
with elements used to decorate the background, such as fading and rotating effects. This may
perhaps include some with a very low alpha value. Then, we will demonstrate how to create
elements for the foreground of our UI, such as sci-fi bars or a floating UI element. At the end
of this chapter, we will explore the UI Effect component, the Shadow (Script) component,
and the Outline (Script) component, and see how we can use them to decorate our UI.

Creating an extendable element with a final
fade effect

In this recipe, you will learn how to create an extendable UI element with a final fade effect.
These kinds of decorative elements are useful in the background with smaller graphics such
as nice images or simple shapes. Often, they are used in main or pause menus in order to
make the background dynamic and give more life to the menu. Additional techniques about
how to animate the menu itself can be found in Chapter 6, Animating the UI.

Decorating the UI

118

How to do it...
1.	 First of all, we need to create a UI element. In this example, we will use a square,

but you can also use a decorative star or another shape that you prefer. To do this,
right-click on the Hierarchy panel and then navigate to UI | Image. Rename it to
Extendable Element. Of course, it is possible to resize, change the source image,
and place an image that we have chosen.

2.	 Next, we need to create a script that extends our image on the screen and gradually
decreases the alpha channel of the color. By decreasing the alpha channel, it will
begin to fade away. So, let's go to Add Component | New Script and name it to
ExtendableElementScript. Then click on Create and Add.

3.	 Now, double-click on the script in order to edit it. Since we are going to use the
Image class, we have to add the using UnityEngine.UI; statement again at the
beginning of the script. Before the beginning of the class, we can add this line: [Req
uireComponent(typeof(Image))] (without the semicolon at the end). By doing
this, we are saying that in order to use this script, it requires an Image component
that is attached to the same game object of this script. In addition, this prevents
designers from using this script without an Image (Script) component.

4.	 We need two public variables to be shown in the Inspector so that designers can
tweak them, one for the speed and another for the amount of time the UI element
continues to expand before it is destroyed. Thus, we can add the following lines
to our script:
public float speed;
public float surviveTime;

5.	 Furthermore, we need three private variables, two of them to keep track of the
RectTransform component, and the third one to keep track of the original
SizeDelta without seeking it every time. In addition, a couple of other variables
are used to accumulate the time for every frame. So let's add the following:
private float x, y;
private RectTransform rectTransform;
private Vector2 originalSizeDelta;

6.	 As usual, in the Start() function, we will store the reference of the game elements
inside our variables. We assign RectTransform, attached to the same game object
in which this script is placed, by calling the GetComponent<RectTransform>()
function, to the rectTransform variable. Furthermore, we will set the
originalSizeDelta variable. Therefore, we can write this code:
rectTransform = GetComponent<RectTransform> ();
originalSizeDelta = rectTransform.sizeDelta;

Chapter 5

119

7.	 Inside the Start() function, we have to start the fade effect by calling
CrossFadeAlpha() and then passing some parameters. One is the final
alpha value, which is 0f in this case. Another is the time of the fading, which
in this case is the entire span of time before the object is destroyed:
GetComponent<Image>().CrossFadeAlpha(0f, surviveTime,
false);

8.	 In the last line of the Start() function, we call the GameObject.Destroy()
function to destroy the game object in which this script is attached after the time
that we have specified in the Inspector through the surviveTime variable:
GameObject.Destroy(gameObject, surviveTime);

9.	 Now, in the Update() function, we have to increase the x and y variables by the
time from the last frame multiplied by the speed. Finally, we set new sizeDelta
of rectTransform equal to a Vector2 with x and y as coordinates plus
originalSizeDelta:
x += speed * Time.deltaTime;
y += speed * Time.deltaTime;
rectTransform.sizeDelta = new Vector2(x, y) +
originalSizeDelta;

10.	 For the next step, we can save the script and come back to Unity. From the Inspector
window we can tweak speed and surviveTime. These values depend on what we
are trying to achieve, but let's set them to 20 and 10 respectively. We can test the
script and see whether everything works as it should. In this screenshot, we can see
a frame of the effect:

Decorating the UI

120

How it works...
In the Start() function, we launch two Unity coroutines. The first one is launched from the
GetComponent<Image>().CrossFadeAlpha(0f, surviveTime, false); line, and
the second one is launched from GameObject.Destroy(gameObject, surviveTime);.

The first coroutine gradually changes the Alpha value to create the fade effect. The
second destroys the game object when it is no longer required. As a result, it improves
the performance of our game, because the scene doesn't contain futile objects.

There's more...
By changing this effect, it is possible to achieve very interesting variations of it. This is what
we are going to learn in the following sections.

Changing the speed for each axis
We may want to let designers customize the effect more, for instance, by having different
speeds for each axis. In order to implement this, we need to modify our script. Instead of
a common speed variable, we need a speed variable for each axis. Therefore, we need
a couple of variables. So, let's consider this line:

public float speed;

We replace it with these two lines:

public float speedX;
public float speedY;

Now, in the Update() function, we have to change the way the x and y variables are
updated. Thus, we can rewrite the code in the following way:

x += speedX * Time.deltaTime;
y += speedY * Time.deltaTime;

When we do this, x and y change accordingly to different speeds. We can set the variables
again in the Inspector and check whether everything works.

Fade-in instead of Fade-out
We may want to reverse the process and have an element that appears instead of one that
fades away. This could be a useful way of decorating our UIs differently. It is possible for us to
mix the two ways in order to create a more decorative UI, where there are both elements that
enter and elements that fade away. In order to do this, we need to change a couple of lines of
code. Keep in mind that at the end, the object will be destroyed anyway.

First, we need to consider the CrossFadeAlpha() function:
GetComponent<Image>().CrossFadeAlpha(0f, surviveTime, false);

Chapter 5

121

Change it to these two lines:

GetComponent<Image>().CrossFadeAlpha(0f, 0f, false);
GetComponent<Image>().CrossFadeAlpha(1f, surviveTime, false);

In order to understand the previous lines, we need to remember that the
CrossFadeAlpha() function doesn't take care of the initial Alpha value of the Canvas
Renderer component. Therefore, the first function sets Alpha of the Canvas Renderer
component to 0 immediately so that the image is not visible at the beginning. The second
function increases the Alpha value until 1f over the time specified in the surviveTime
variable, creating the fade-in effect.

See also
ff We may want to increase the effectiveness of our effect by rotating the image while

it is expanding. For this case, we are going to extend this script in the Creating an
extendable and rotating element with a final fade effect recipe.

Creating an extendable and rotating
element with a final fade effect

In this recipe, you will learn how to create an extendable and rotating UI element with a
final fade effect. This recipe is an extension of the previous one. In fact, we will add some
controllers to the rotation. By extending the script that we made in the previous recipe,
we can create more complex decorating elements for our UIs.

How to do it...
1.	 To begin, we need to create a UI element. In this example, we will use a square, but

you can also use any other image, such as a decorative star or a circle. To do this,
create the UI element, right-click on the Hierarchy panel, and then navigate to UI
| Image. Finally, rename it Extendable and Rotating Element. Of course, it is also
possible to resize it, change its source image, and place it wherever we wish.

2.	 Now, we need to create a script that extends and rotates our image on the screen,
and gradually decreases the alpha channel of the color. By doing this, we ensure
that the image will gradually fade away. So, let's navigate to Add Component | New
Script, name it ExtendableElementWithRotationScript, and then click on Create
and Add.

3.	 Since this script is very similar to the one in the previous recipe, we can copy the
body of ExtendableElementScript into it.

Decorating the UI

122

4.	 We must remember to add the using UnityEngine.UI; statement at the
beginning of the script, since we are going to use the Image class, and it is not
included within the body of script that we just copied. As before, we can also add
[RequireComponent(typeof(Image))] to say that to use this script, it requires
an Image component attached to the same game object of this script.

5.	 Next, we need to add a new public variable so that we can set it in the Inspector. In
fact, this variable will store the speed of rotation. So, let's write the following line:
public float rotationSpeed;

6.	 Then, in the Update() function, we have to change not only SizeDelta, but also its
rotation. For this reason, we add this line at the bottom of the function:
rectTransform.Rotate (0,0 , Time.deltaTime *
rotationSpeed);

7.	 We can save the script and come back to Unity. From the Inspector, we can tweak
rotationSpeed as well as the speed and surviveTime, if we didn't do it before.
Just to test, we can set the speed to 20, rotationSpeed to 30, and surviveTime
to 10. Finally, we can check whether everything works as it should. In the following
screenshot, you can see a frame that shows this effect:

How it works...
This script works in the same way as the one in the previous recipe. However, here we can
also change the rotation. With the rectTransform.Rotate() function, we can modify the
orientation of the object within the space. This is done according to these variables: Time.
deltaTime, which is the time passed since the last frame, and rotationSpeed. If the
latter has a positive value, the UI element will rotate clockwise. But if it has a negative value,
the element will rotate anticlockwise. Therefore, designers can choose which is best for the
UI. This is because the sign of the variable changes the direction of the rotation made by the
rectTransform.Rotate() function.

Chapter 5

123

There's more...
We can definitely improve the effect with slight variations, which can be learnt in the
following sections.

Creating a shining effect
In order to create a shining effect, we can use an image of a shining star. We also need a
transparent background for this image. After we have placed the image in Extendable and
Rotating Element, let's rescale the image and place it in our UI, where we want to have the
shining effect. Set speed to 10, rotationSpeed to 30, and surviveTime to 1. Next, press
the play button to see the shining effect. If our image is unique, or if we are not completely
satisfied with the effect, we can tweak the variables until we reach a good effect that suits our
needs. Otherwise, we can refer to the following section.

Creating a better shining effect
In this section, we will see how to improve our shining effect by making it appear and then
disappear. To do this, we need to rewrite the code using a coroutine.

To begin, let's add a new public bool variable. Thus, we can set it in the Inspector. It will store
information on whether we want to reverse the rotation or not. Therefore, we can add this line:

public bool reverseRotation;

In the Start() function, let's consider this line:

GetComponent<Image>().CrossFadeAlpha(0f, surviveTime, false);

Substitute it with these two:

GetComponent<Image>().CrossFadeAlpha(0f, 0f, false);
GetComponent<Image>().CrossFadeAlpha(1f, surviveTime, false);

The explanation of this can be found in the previous recipe, in the Fade in instead of fade out
section.

Next, we have to double the time before the object is destroyed, so we rewrite the Destroy()
function in this way:

GameObject.Destroy(gameObject, surviveTime*2);

Finally, at the end of the Start() function, we have to call our coroutine, even if we haven't
created it yet, like this:

StartCoroutine ("fadeAway");

Decorating the UI

124

After we have done this, we need to write our coroutine. Hence, we can add this portion of
code at the end of our script:

IEnumeratorfadeAway(){
 yield return new WaitForSeconds(surviveTime);
 GetComponent<Image>().CrossFadeAlpha(0f, surviveTime, false);
 if(reverseRotation)
 rotationSpeed = -rotationSpeed;
}

The first instruction waits for the initial fade effect to finish. Then, in the second line of the
script, we launch another fade effect to make our extendable and rotating UI element fade
away. In the if statement, we check whether the variable that we have set in the Inspector
is true, and if it is, it will reverse the sign of the rotationSpeed variable in order to change
the direction of rotation.

Let's save the script and finally test whether everything works as expected.

Using more than one axis to create 3D effects
We are not limited to using only one axis of rotation. In fact, we can substitute the following
line with the next one:

rectTransform.Rotate (0, 0 , Time.deltaTime * rotationSpeed);

Here is the line that we can use instead of the preceding one:

rectTransform.Rotate (Time.deltaTime * rotationSpeed, 0 ,
Time.deltaTime * rotationSpeed);

In this case, we are rotating the object along the x axis as well. But feel free to test different
combinations as you wish, such as this one:

rectTransform.Rotate (Time.deltaTime * rotationSpeed,
Time.deltaTime * rotationSpeed , 0);

In the preceding case, we are rotating only on the x and y axes.

Having control over each axis
We may want to make the effect more customizable in order to get very nice variations.
To do this, we can add more variables to be set in the Inspector, and control each axis of
rotation. Along with the Changing the speed for each axis subsection in the There's more…
section of the previous recipe, this allows us to gain full control over the effect. If we use our
imagination, the number of beautiful effects that we can create is endless.

Chapter 5

125

Let's start! First of all, we have consider the following variable:

public float rotationSpeed;

Substitute it with these:

public float rotationSpeedX;
public float rotationSpeedY;
public float rotationSpeedZ;

By doing this, we can control each axis independently of the others, whereas this didn't
happen in the previous section.

Now, let's look at the following line in the Update() function:

rectTransform.Rotate (0, 0, Time.deltaTime * rotationSpeed);

Substitute it with this one, in which the speed variable is different for each axis:

rectTransform.Rotate (Time.deltaTime * rotationSpeedX,
Time.deltaTime * rotationSpeedY , Time.deltaTime *
rotationSpeedZ);

Save the script, and try different numbers along all the rotation speed variables. Of course,
don't forget to use a nice image. Refer to the next section to get an idea on how to use
this script.

Creating a butterfly
If we made the changes in the previous section, creating a butterfly should not be a problem.
In fact, simply use a symmetric image of a butterfly and set both rotationSpeedX and
rotationSpeedZ to 0. Now, just set a positive number for rotationSpeedY, maybe more
(around 300). Remember that the higher the value, the faster the butterfly's wings flap.

See also
ff Since this recipe is an extension of an effect that has already been implemented, you

may want to find the original script. You can find it in the previous recipe, Creating an
extendable element with a final fade effect.

ff Furthermore, we have seen how it is possible to create a butterfly. You can improve it
to make it fly around the UI using a script that you will learn in another recipe. Hence,
you can refer to the Making a floating UI element recipe, specifically the Create a
better butterfly section.

Decorating the UI

126

Creating bars that go up and down
In this recipe, you will learn how to create a bar that goes up and down. This decorative UI
element is often used in sci-fi HUDs. In fact, it gives a touch of life to our UI. Bars that go up
and down can be a nice addition when we are trying to provide the player with an atmosphere
in which many different things are dynamic and are being measured, such as a character
gaining or even losing an ability over time during a battle, as if monitoring various statistics
of a player to demonstrate a dynamic and quite living atmosphere.

How to do it...
1.	 First of all, we have to create a UI image that should be like a decorative bar for a

sci-fi HUD. In this recipe, we are going to use the bar that we used in Chapter 2,
Implementing Counters and Health Bars. To start, right-click on the Hierarchy panel,
then navigate to UI | Image, and finally rename it HUDBar. Of course, it is possible
to resize it and place the image as we wish. Lastly, we change Source Image with
the bar that we created in the second chapter, or design one.

2.	 After we have changed Source Image, we need to change Image Type to Filled.

If we have a vertical bar as the graphic, we have to set Fill Method to
Vertical and Fill Origin to Bottom. Otherwise, if we have a horizontal
bar, like the one that we are using for this example, we have to rotate it.
In the Rect Transform component, change the rotation along the z axis
to 90. Then, change Fill Method to Horizontal and Fill Origin to Left.

3.	 Then, we need a script that controls the movement of the image and changes
its fillAmount variable. Thus, let's navigate to Add Component | New Script,
name it HUDBarScript, and then click on Create and Add.

4.	 Now, double-click on the script in order to edit it. Since we are going to use the
Image class again, we need to add the using UnityEngine.UI; statement at the
beginning of the script. Before the beginning of the class, we can add this line: [Req
uireComponent(typeof(Image))] (without the semicolon at the end). By doing
this, we are saying that to use this script, it requires that an Image component be
attached to the same game object as that of this script.

Chapter 5

127

5.	 We don't need any public variable, but we need one private variable. This is
for storing the reference to the Image (Script) component. We can write the
following line:
public Image uiImage;

6.	 As usual, in the Start() function, we store the reference of the game elements
inside our variables, in this case only the uiImage variable. By calling the
GetComponent<Image> () function, we take the Image(Script) component
attached to the same game object in which this script is placed. Therefore, we
can code the following:
 uiImage = GetComponent<Image> ();

7.	 Next, in the Update() function, we have to change the fillAmount variable of our
Image(Script) component . Let's add this code:
 uiImage.fillAmount = ((Mathf.Sin (Time.time) + 1f) / 2f);

8.	 Save the script, and click on the play button to verify that everything works as it
should. Here, you can see a screenshot of the effect:

Decorating the UI

128

How it works...
The Mathf.Sin() function returns a value between -1 and +1, and this depends on upon
the parameter.

If we plot the function, we get the following graph:

As we can see from the graph, by increasing x, which is also a parameter of the Mathf.
Sin() function, the value of y goes up and down. Therefore, if we pass Time.time as the
parameter, the output will be a value that changes over time. Since the function has a value
between -1 and 1, we have to crop its returning value. To do so, we added 1f; thus, its value
was now between 0 and 2. Finally, we divided it by 2f, so its value was between 0 and 1, as
we wanted.

There's more...
This decoration is quite nice when used multiple times in the same screen. But to make the
effect pleasant for the player, we need to add a phase or some bounds.

Adding a phase to use more than one bar
In many sci-fi HUDs, there is often more than one bar. If we duplicate the one that we created
in this recipe, all of them will appear the same. For this reason, we need to introduce a
displacement phase in our script.

To do so, let's add a new public variable so that we can set it in the Inspector:

public floatphase;

Chapter 5

129

Now modify the code line in the Update() function in the following way:

uiImage.fillAmount = ((Mathf.Sin (phase + Time.time) + 1f) / 2f);

In fact, if we set different values for each bar in the Inspector, they will be displaced.

In the following screenshot, we can see the final effect:

Adding bounds to our bar
We may want to limit the bar movement, so that we can try different aesthetic variations
within our UI. We can do so by adding a couple of variables to our script:

public float startFilling;
public float maximumStretch;

In fact, as the name suggests, one stores the initial point and the other stores the amount by
which the bar is stretched. So, when we set these in the Inspector, we need to pay attention
to the fact that the sum of their values should be less than 1.

In the Update() function, we need to modify our code to include these two variables in the
Sin() function, like this:

uiImage.fillAmount = startFilling + ((Mathf.Sin (Time.time) + 1f)
/ 2f) * maximumStretch;

Now, the minimum value that can be assigned to uiImage.fillAmount is startFilling,
and the maximum is startFilling summed to maximumStretch.

Decorating the UI

130

In this screenshot, there is a visual explanation of the effect of our variables on the bar:

Adding bounds and a phase
To gain more control over our bars, we can combine the effects of the two previous sections.
This is particularly useful when we are designing a complex sci-fi HUD in order to customize
it to better suit our needs.

After we have added all the variables from both sections, we can write this line in the
Update() function:

uiImage.fillAmount = startFilling + ((Mathf.Sin (phase +
Time.time) + 1f) / 2f) * maximumStretch;

As a result, we are able to create different decorative bars for our UI.

See also
ff If you are looking for more information about the Mathf.Sin() function in Unity, you

should refer to the official Unity documentation at http://docs.unity3d.com/
ScriptReference/Mathf.Sin.html.

ff Other than this, if you want to understand the sin function from a mathematical point
of view, any book about trigonometry should be fine.

http://docs.unity3d.com/ScriptReference/Mathf.Sin.html
http://docs.unity3d.com/ScriptReference/Mathf.Sin.html

Chapter 5

131

Making a floating UI element
In this recipe, you will learn how to make a floating UI element. This is a nice effect to use
within every kind of user interface. If you are going to use a very slow movement with a small
amplitude, you can use this effect even on menus to give them more life and a professional
look. A floating element can add yet another type of dynamic element to the UI, ultimately
breaking the usually rigid nature that UI elements tend to have.

How to do it...
1.	 First of all, we need to create an UI element. In this example, we will create a panel

that can be the background of a menu. To do this, right-click on the Hierarchy panel
and then navigate to UI | Panel. Finally, rename it Floating Panel. Of course, it is
possible to resize and place the panel as we wish.

2.	 Next, we need a script that moves our panel on the screen in such a way that
it seems to float. Thus, navigate to Add Component | New Script and name it
FloatingUIScript. Then, click on Create and Add.

3.	 Now, double-click on the script in order to edit it. Since we are going to use only
the RectTransform class, we don't need to add the using UnityEngine.UI;
statement at the beginning of the script this time. Before the beginning of the class,
we can add this line: [RequireComponent(typeof(RectTransform))] (without
the semicolon at the end). By doing this, we are saying that to use this script, it
requires a Rect Transform component that is attached to the same game object
of this script.

4.	 We need only a private variable to keep track of the Rect Transform component,
without seeking it every time we have to update its position. Then we also need
four public variables. These will be set in the Inspector. There are two variables
for the speed, one for each axis, and two variables for the amplitude of the floating
movement, again, one for each axis. So, we can write this:
private RectTransform rectTransform;
public float xspeed,xAmplitude, yspeed, yAmplitude;

5.	 As usual, in the Start() function, we store the reference of the game elements
inside our variables; in this case, it is only rectTransform. By calling the
GetComponent<RectTransform>() function, we take the Rect Transform
attached to the same game object in which this script is placed:
void Start () {
 rectTransform = GetComponent<RectTransform> ();
}

Decorating the UI

132

6.	 In the Update() function, we need to implement our logic. We change the local
position of rectTransform to new Vector3 wherein the z component is zero. The
x and y components depend on Sin, the math function that creates the floating
movement for us. We can control this function through our four public variables.
Therefore, we can adjust the amplitude and speed for each axis:
void Update () {
 rectTransform.localPosition = new Vector3(xAmplitude*Mathf.
Sin(Time.time*xspeed), yAmplitude*Mathf.Sin(Time.time*yspeed), 0);
}

7.	 Save the script and come back to Unity from MonoDevelop. The next step is to tweak
the values of our variables in the Inspector. We can create different effects with
them, but for a nice floating effect, we can set them in the following way:

8.	 Finally, we can press the play button and see if everything works as expected.

How it works...
We use the Mathf.Sin() function to create a soft and natural movement over time. In fact,
it is a periodic function and is continuous. More information about it can be found in the
previous recipe, or in any general textbook about trigonometry. We use one of them on each
axis, and through our variables we can set the parameters of the movement. In particular,
we can change the amplitude of the movement and its speed.

There's more...
By setting the parameters of this script properly, it is possible to create many different
effects. So that we will have an idea of these effects, we will see some of them in the
following sections.

Creating a shaking effect
From this script, we can create a shaking effect. We only need to move the image faster than our
eyes can notice. In order to do this, let's set Xspeed to 500, XAmplitude to 300, Yspeed to 80,
and YAmplitude to 350. In the end, the component should look like the following settings:

Chapter 5

133

Creating a sparkle effect
We can also create a sparkle effect, and again the trick is to move the image faster than our
eyes can notice, although this time it should be along both axes and not just one. Therefore
let's set Xspeed to 20, X Amplitude to 10, Yspeed to 50, and Y Amplitude to 180. Finally,
the component should look like this:

Creating a better butterfly
After creating a butterfly in the Creating an extendable and rotating element with a final fade
effect recipe, we can improve it using the float script. By doing this, we can give the butterfly
the illusion that it is moving around our UI.

To do this, we need to modify ExtendableElementWithRotationScript. Of course,
we need to start from the version of the script created in the Having control over each axis
section. In fact, we need to remove the fade effect along with the destruction of the object.

If we don't want to override the script, we can duplicate it by selecting it
and pressing Ctrl + D. Once we have duplicated it, we can rename it to
ButterflyWingsScript. Don't forget to rename the class with the same
name inside the script.

Therefore, from the Start() function, remove these two functions:

GetComponent<Image>().CrossFadeAlpha(0f, surviveTime, false);
GameObject.Destroy(gameObject, surviveTime);

Decorating the UI

134

As a result, the object will not change its alpha, and also it will not be destroyed. Furthermore,
we can remove the surviveTime variable and the using UnityEngine.UI; statement,
since they are no longer required.

Now let's save the script and create new Image. Right-click on the Hierarchy panel and
then select UI | Image. Rename it Butterfly. Of course, it is possible to resize it and place
the butterfly as we wish. Finally, change the Source Image to an image of a butterfly, but
remember that it has to be symmetric.

The next step is to add this new script to our Butterfly. As in the Having control over each
axis section of the Creating extendable and rotating elements with a final fade effect recipe,
we need to set both rotationSpeedX and rotationSpeedZ to 0, and assign a positive
number to rotationSpeedY, maybe a high value (around 300). Keep in mind that the higher
the value, the faster the butterfly's wings will be.

Moreover, add the FloatingUIScript as well and set XAmplitude and YAmplitude both to 100,
Xspeed to 1, and Yspeed to 2.

The last step is simply to test the scene by clicking on play and to make sure that our butterfly
comes to life.

See also
ff If you are looking for more information about the Mathf.Sin() function, you should

check out the official documentation on Unity at http://docs.unity3d.com/
ScriptReference/Mathf.Sin.html.

ff If you are looking for more information about the sin function from a mathematical
point of view, any book about trigonometry should be fine. In addition, we have a brief
explanation of why this function is used with time. It is in the previous recipe, in the
How it works... section.

Adding shadows to text
In this recipe, you will learn how to add a shadow to a Text (Script) component. In order
to achieve this, you will learn how to use a UI Effect component of the new UI system of
Unity — the Shadow (Script) component. This kind of effect can add a dramatic touch to text
and, as a result, make it stand out among other elements that may be in the UI. In addition to
this, when there are many elements in the background, it is possible that a piece of text may
seem lost. As such, adding a shadow to the text can also improve its legibility.

http://docs.unity3d.com/ScriptReference/Mathf.Sin.html
http://docs.unity3d.com/ScriptReference/Mathf.Sin.html

Chapter 5

135

How to do it...
1.	 First of all, we need to create a new UI text. To do this, right-click on the Hierarchy

panel and then navigate to UI | Panel. Finally, rename it Text with Shadow.

2.	 Then, we can regulate all the parameters in the Inspector as we want. However, in
order to make sure that we notice the nice effect, we can enlarge Text with Shadow
with Rect tool (which can be used quickly with the T hotkey), increase the Font Size
variable to 100, and change its Color to cyan. Of course, we can change the Text
variable, such as in Text with Shadow.

3.	 The next step is to add the Shadow (Script) component. So, let's navigate to Add
Component | UI | Effects | Shadow.

4.	 Now, we can leave the Effect Color variable as default and change Effect Distance.
For the X axis we, can enter -7, and for the Y axis, -3. In the end, the Shadow (Script)
component should appear like this:

5.	 If we look at the scene view panel, we can see the final effect, as follows:

How it works...
The Shadow (Script) component replicates the text that it is attached to. It changes its color
to the one that is specified in the Effect Color variable, and moves it from the center with a
phase displacement specified in the Effect Distance vector. Therefore, if this displacement is
not too far, which means small values for the Effect Distance vector, the new text will form a
shadow of the original text.

Decorating the UI

136

There's more...
We can also use this component to quickly create 3D letters, which we will explain in the
following section.

Creating 3D letters
With this component, it is also easy to create an illusion of 3D letters. This method doesn't
work every time. It depends on the font we use, but most of the time we can achieve nice
3D letters without other graphical efforts.

To use this trick, we need to change the Effect Color variable to almost the same color that
we set for the original text, but this time just a little darker. Then, change the Alpha channel of
the color to a lower level of the one in the Text component. For instance, if the Alpha channel
of the text is at 255, it is probably a good compromise to set the Alpha of the shadow to 60.
The only reason for using this number is that it is empirical. In fact, it produces a nice effect,
but we need to tweak this value according to our needs.

Therefore, you can achieve this kind of effect:

See also
ff This is not the only UI Effect component that we can find in Unity. Therefore, to obtain

more information about other UI Effect components, you can refer to the next recipe,
Adding outlines to text.

ff The official documentation with all the UI effects can be found at http://docs.
unity3d.com/Manual/comp-UIEffects.html.

ff Furthermore, in order to create better 3D letters, you should check out the Creating
better 3D letters section in the next recipe.

http://docs.unity3d.com/Manual/comp-UIEffects.html
http://docs.unity3d.com/Manual/comp-UIEffects.html

Chapter 5

137

Adding outlines to text
In this recipe, you will learn how to add an outline to a Text (Script) component. In order to
achieve this, you will have to learn how to use a UI Effect component of the new UI system
of Unity, the Outline (Script) component. Similar to text shadows, text outlines can also add
an element of boldness to text that is displayed on the screen. This can be useful when there
are many elements on the screen, or even if you just want a certain text element to appear
more dominant than others. There are many uses for text outlines, and they can be useful to
experiment with in order to find out what suits your game the most.

How to do it...
1.	 First of all, we need to create a new UI text. In order to do this, right-click on

the Hierarchy panel and then navigate to UI | Panel. Finally, name it Text
with Outline.

2.	 After this, we can regulate all the parameters in the Inspector as we want. However,
in order to be sure that we notice the nice effect, we can enlarge Text with Outline
with Rect tool (which can be used quickly with the T hotkey), increase the Font Size
variable to 100, and change its Color in cyan. Of course, we can change the Text
variable to Text with Outline, for instance.

3.	 The next step is to add the Outline (Script) component. To do this, navigate to Add
Component | UI | Effects | Outline.

4.	 Now we can leave the Effect Color variable as default and change Effect Distance.
For the X axis, we can enter -2, and for the Y axis -2. Then, Outline (Script) should
appear like this:

5.	 If we look at the scene view panel, we can see the final effect, as displayed in this
screenshot:

Decorating the UI

138

How it works...
The Outline (Script) component replicates the text to which it is attached, in particular, four
times. It changes the color of each of these four copies to the one specified in the Effect
Color variable. Furthermore, it moves them symmetrically from the center with a phase
displacement specified in the Effect Distance vector. If this displacement is not too far, which
means small values in the Effect Distance vector, all the new text copies will form an outline
around the original text.

There's more...
Nice and soft outlines can be created by using this component. Furthermore, by combining this
also with the Shadow component, we can create better 3D letters than in the previous recipe.

Creating a nice, soft outline
Through this component, we can also improve the graphical appearance of text very easily
by adding a soft outline. In fact, this outline marks the text to make it more important without
being visually overwhelming. We can achieve this by setting the distance on one axis in
Effect Distance to zero. For instance, if we set the x axis to 0 and the y axis to -2, we obtain
this effect:

Creating better 3D letters
We can extend the creation of 3D letters that we saw in the last recipe using both the Outline
(Script) component and the Shadow (Script) component. In fact, if we add a soft outline to
our text (as in the previous section) and a shadow component (as the one described in the
Creating 3D letters section of the Adding shadows to text recipe), we can obtain a very nice
and cool effect. Of course, this is without any graphical efforts. You can see the final result
in the following screenshot:

Chapter 5

139

See also
ff This is not the only UI Effect component that you will find in Unity. Therefore, for more

information about these components, you should refer to the previous recipe, Adding
shadows to text.

ff Other than this, the official documentation with all the UI effects can be found at
http://docs.unity3d.com/Manual/comp-UIEffects.html.

http://docs.unity3d.com/Manual/comp-UIEffects.html

141

6
Animating the UI

In this chapter, we will cover the following recipes:

•	 Appearing and disappearing menu

•	 Creating a menu with an entrance transition

•	 Creating a menu with an idle animation

•	 Animating a button when the cursor is over it

•	 Creating a pop-up menu

•	 Animate the hearts of the symbolic lives counter

•	 Changing the animation of the hearts of the symbolic lives counter through
the script

Introduction
In this chapter, we will see how to animate our UI. We will start by making a menu appear
and disappear, using only the OnClick() event. Then, we will create new animations for the
UI through the Animation window. Next, we will deal with the Animator controller as well.
Finally, we will see how we can animate the lives counter that we made in the second
chapter, using all that we have covered about animations.

Appearing and disappearing menu
Since the UI does not need complex animations, you will learn that it is not necessary to use
the Animator controller and/or the Animation files. In fact, in this recipe, we are going to use
only the OnClick() event, which is already implemented inside the Button (Script) component,
to handle the menu appearing and disappearing.

Animating the UI

142

How to do it...
1.	 First of all, we need to create our menu. We are going to create a simple menu

to show how we can make it disappear and then reappear. However, feel free to
construct the entire menu for your game with all the elements that you need in it.
Thus, we can right-click on the Hierarchy panel and then go to UI | Panel. Next, we
can rename it Appearing Menu. Of course, it is possible to resize, change Source
Image, and place the panel wherever we wish.

2.	 The next step is to add at least one button to our menu. To do this, right-click on
Appearing Menu, go to UI | Button, and then rename it Resume Button. We can
also change the text variable of the Text (Script) component, attached to the child of
our button, to the Resume string. For instance, we can construct a menu like this:

Chapter 6

143

3.	 Now, we need to add outside of our menu another button that opens the pause
menu that we have just created. Thus, instead of right-clicking on Appearing Menu,
right-click on Canvas and then go to UI | Button. Again, we should rename it
PauseMenuButton and change the text inside it to Pause. After we have placed it
in a location in which we want to use it, such as the top-right corner, we should have
something that looks like this:

4.	 When the Pause button is clicked we want PauseMenuButton to disappear and the
Pause menu to appear instead. In order to do this, we need to use events. Select
PauseMenuButton and, in the Inspector, click on the small + sign in the OnClick tab
inside the Button (Script) component. A new event should appear in the Inspector.

5.	 Drag Appearing Menu into the Object variable, and then click on the drop-down
menu on which no function is written. Select GameObject | SetActive(bool).
Finally, check the bool variable. Once we have done all of this, when we click
the PauseMenuButton, the Pause menu will appear.

Animating the UI

144

6.	 Now, we have to do the same again. We need to add a new event, but instead of
dragging Appearing Menu into the Object variable, let's set it to PauseMenuButton.
At the end, remember to uncheck the bool variable. Therefore, when we click the
PauseMenuButton, it will disappear. After completing the last two steps, we
should have something that looks this:

7.	 We also need to repeat the same two steps with Resume Button, but invert the bool
variables. As a result, we have something that looks like this:

8.	 Since we probably don't want to have the Pause menu active at the start of
our game, let's select Appearing Menu and set it to inactive. We can do this
by clicking on the bool variable next to the name of GameObject.

9.	 Finally, we can click the play button and check whether our Pause menu works.

How it works...
We used events instead of Animator controllers to handle the menu. In fact, we have set four
events. Two of them are in PauseMenuButton, and both trigger our UI elements when the
button is clicked on. The former makes Appearing Menu appear by calling the setActive()
function and passing the true boolean value to it. The latter disables PauseButton by calling
the same function. By doing this, we ensure that the player cannot use PauseButton anymore
when the Pause menu appears. The other two events are symmetric, but they are on the
ResumeButton. These can be triggered only when the Resume button is clicked on, and
this can happen only if Appearing Menu is visible. That means that it can occur only after
the player has clicked the PauseButton. Again, the first one makes PauseButton appear by
calling the setActive() function, and the second one makes Appearing Menu disappear.

Chapter 6

145

There's more...
Since we have implemented a Pause menu, there are a few things to keep in mind beyond the
animations. Usually, we have pause menus for allowing the player to stop temporarily playing
or to tweak some settings. In order to do this, the whole game needs to be frozen so that it
can be resumed once the player is ready to play our game again. Thus, the next subtopic is
going to explain how to really pause the game.

Freezing time
Usually, when the Pause menu appears in a video game (unless it is an online game),
the game will freeze, even if this is not strictly part of the animation system of the menu.
We can make the menu freeze quite easily in Unity.

To do this, we need to create a script that changes the time scale of our game. We can
rename it FreezeTimeScript.

Just a public function is required — the following one, which we can add to the script:

public void setTimeScale(float timeScale){
 Time.timeScale = timeScale;
}

In this line of code, we change the time scale of the game by the one passed as a
parameter. Keep in mind that a time scale equal to 0 means that the game is frozen, and
a timescale equal to 1 means that the game has no time distortions. Now, we need to call
this function when PauseMenuButton or ResumeButton is clicked on. To do this, select
PauseMenuButton from the Project panel and then add a new event in the OnClick() tab.
Furthermore, add FreezeTimeScript to PauseMenuButton and drag it into the object variable
of the new event. From the drop-down menu, go to FreezeTimeScript | setTimeScale(float)
and set the float variable to 0.

Repeat this process with ResumeButton, but instead of setting the float variable to 0, set it
to 1.

Since timeScale is set to 0, when we click on the button, all of our game freezes. Alternatively,
when timeScale is set to 1 and we click on Resume, the game starts again. It's important to
keep in mind that animations may or may not be affected by timeScale, depending on how
they are implemented.

Animating the UI

146

Creating a menu with an entrance transition
We may want a more complex animation than simply an appearing/disappearing effect as
covered in the previous recipe. In this case, we need to use an Animator controller along
with the Animation window in order to create animations. In this recipe, you will learn how to
create an entrance transition. However, feel free to change the animation when performing
the following steps to fit the needs of your game. Furthermore, we will still be using the
OnClick() event to cause PauseMenuButton to disappear.

How to do it...
1.	 First of all, we need to create our menu. To do this, just follow the first three steps of

the previous recipe, Appearing and disappearing menu.

2.	 Next, we need to place Appearing Menu slightly outside Canvas, as shown in the
following screenshot:

Chapter 6

147

3.	 After we have selected Appearing Menu, we can click on Add Property in the
Animation window. Unity asks us to choose a folder and a name for our animation.
For now, let's name it MenuEntryTransition.

4.	 Next, we are going to create the animation. To do this, click on the Rec button and
then move the red bar to 1 second, that is, to the sixtieth key frame if the sample is
set to 60. Using the Rect tool, we can move the menu inside Canvas, where we want
it to be. For instance, we can place it to the right of the screen.

5.	 Then, click on the drop-down menu, find MenuEntryTransition, and select [Create
new Clip].

6.	 Again, Unity will ask us to save the animation. Hence, let's select the same folder as
that of the previous one and rename it MenuExitTransition.

7.	 This time, we need to make the same animation, but in reverse. After clicking on the
Rec button at 0 seconds, which means that the vertical red bar is at the zeroth key
frame, we have to place the menu where it was at the end of the previous animation.
Then, at 1 second (which is the sixtieth key frame for 60 samples), place the menu
where it was at the beginning of the previous animation.

8.	 The next step is to put the animations that we have just created together using a
controller. If we search in the same folder in which we saved the animations, we can
find a controller called Appearing Menu. Double-click on it to open the Animator
window with the controller already loaded.

9.	 One more step about the animation is to select them one at a time in Project Panel,
since multi-editing of animations is not supported by Unity. In addition, we will also
need to uncheck the Loop Time variable for both in the Inspector. By doing this, we
are setting the animation as a single shot and not as a loop.

Animating the UI

148

10.	 Since we will call the animation directly by its name, we don't need any graph
transition. Therefore, we need to be sure that we have both the animations inside
the graph, like this:

If they are not inside the graph, just drag and drop them from the
Project panel.

11.	 Now, we want PauseMenuButton to disappear when the pause button is clicked on,
and then we want the pause menu to appear with our transition. To do this, select
PauseMenuButton and, in the Inspector, click on the small + sign in the OnClick
tab inside the Button (Script) component.

12.	 A new event should appear in the Inspector. Now drag PauseMenuButton into the
object variable. Then, click on the drop-down menu in which you see no function,
and go to GameObject | SetActive(bool). Finally, uncheck the bool variable.

Chapter 6

149

13.	 Add a new event again, but this time, drag Appearing Menu into the object variable.
Navigate to Animator | Play(string) from the dropdown and put it inside the string
variable called MenuEntryTransition. Finally, the OnClick() tab should look like this:

14.	 Again, we have to add a couple of events to ResumeButton. However, we need to
change the string variable of the transition in MenuExitTransition, and check the
bool variable to make PauseMenuButton appear. So far, it should look as follows:

15.	 Finally, we can click on Play and see if our transitions work.

How it works...
First, we created our menu. We began by creating a couple of animations with the Animation
window, and then we placed them inside an Animator controller. Here, we used the controller
just as a set of animations, since they are triggered by the OnClick() events from our buttons.
When the trigger arrives, Animator plays the animation, which is specified by us.

There's more...
As we did in the previous recipe, it is possible to freeze the game, as a pause menu should do.

Freezing time
Usually, when the Pause menu appears in a video game, the game should freeze, unless
it is an online game. In order to do this, we can use the same script and the same steps
that we performed in the homonymous section of the previous recipe, Appearing and
disappearing menu.

Animating the UI

150

Creating a menu with an idle animation
The previous recipes taught you how to make a menu appear or create a transition that allows
the menu to enter the screen. We are now going to see how to make an idle animation, where
the object just cycles through a general animation, such as hovering or pulsing. To do this, we
need to create an animation that can be played as a loop. In this recipe, we will see how to
change the color background of the pause menu that we created in the first recipe, Appearing
and disappearing menu.

How to do it...
1.	 First of all, we need to create a menu. We can follow the first three steps of the

previous recipe, Appearing and disappearing menu.

2.	 Next, select Appearing Menu and then click on Add Property inside of the Animation
window. Once again, Unity asks us to save the animation, so we can simply select a
folder and save the animation by naming it IdleAnimation.

3.	 Now, in the Animation view, select the Rec button if it is not already selected in
Unity. Also select Appearing Menu. Go to Inspector | Image (Script) component
and change the color. For now, we will set it to green.

4.	 At the beginning of the Animation window, at 0 key frame, there is now the color
key frame. Just move the red bar to 1 second, which means 60th key frame for 60
samples, and change the color again in the Inspector. In this example, we will use blue.

5.	 Now, select the first key frame at the beginning and press Ctrl + C to copy it. Next,
move the red bar to 2 seconds, which means 120th key frame for 60 samples, and
press Ctrl + V to paste it. By doing this, we can be certain that the last key frame is
the same as the first one. Now, the animation is ready to be played as a loop.

6.	 Since IdleAnimation is set as a loop by default and the autogenerated animator has
to handle just one animation, we don't need to do anything other than clicking on the
Rec button again to deactivate the recording mode. Finally, we can click on play to
see that our menu changes its background color over time.

How it works...
Here, we created an animation that is ready to be played as a loop. This means that the last
key frame is equal to the first one. In fact, when Unity plays the animation and it reaches the
last frame, it is restarted from the beginning. So once it starts again, it's important to give an
illusion of continuity. Therefore, since standing animations are always played as a loop, this
is an important step. In fact, we also copied the key frame so that the first and the last key
frames are identical.

Chapter 6

151

Furthermore, for creating an idle animation, we are not limited to changing just the color
of the background. In fact, we can create anything that we wish; our only limitation is our
imagination. Just keep in mind that the animations need to be ready to be played as a loop.

The first key frame equals the last one.

Animating a button when the cursor is
over it

In this recipe, you will learn how to animate a button when the cursor is over it. You will also
learn how to use an Animator controller to handle generated animations from the Button
(Script) component and how to change these animations.

How to do it...
1.	 First of all, we have to create a UI button. Right-click on the Hierarchy panel, then go

to UI | Button, and rename it Animated Button. Of course, it is possible to resize,
change Source Image, the text, and place it as we wish.

2.	 Now, we need to change the Transition mode in order to use a controller to animate
it. In the Button (Script) component, click on Transition and select Animation. If you
don't want to create a controller from scratch, click on the Auto Generate Animation
button that has just appeared in the Inspector, as shown here:

3.	 Now, Unity will ask us where to save the new controller, and we have to give it a
name. Let's choose a folder in our Project, rename it AnimatedButton.controller
and then click on Save.

Animating the UI

152

4.	 We should notice that an Animator component has just been added and the
Controller variable is set with the controller that we just saved. In order to open it,
double-click on AnimatedButton inside the Controller variable.

5.	 Unity opens the Animator window, as shown in the following screenshot. If some
nodes are overlapping, we can just drag them around to make the graph clearer. The
four nodes emanating from the Any State node denote the different states that our
button can be in: Normal, Highlighted, Pressed, or Disabled. The others, including
the Any State node, are special nodes, and they need to handle some transition:

6.	 The next step is to select the Animation window. Click on Normal and a drop-down
menu will appear. Let's select Highlighted, since we are going to animate the button
when the mouse is over it. Finally, click on the Rec button in the top-left corner
(the one with a circle), as shown in the following screenshot:

Chapter 6

153

7.	 Now, navigate to Add Property | Rect Transform | Size Delta, and should appear
on the windows with a couple of key frames, one at the zeroth frame and another
one at the sixtieth frame.

8.	 We move the red line of the time to 60 frames, where we have the second key frame,
and in the Inspector, we increase the width of RectTranform of Animated Button
from 160 to 200.

9.	 If we click on play and move the mouse arrow onto the button, it becomes larger, and
then suddenly smaller, before it becomes larger again in a kind of pulsating motion.
This happens because the animation is set as a loop. In order to set it properly, go
through the Project panel to find the AnimatedButton.controller that you saved
before, and then click on the small arrow at the beginning of its name. Now the
four animations should appear. Let's click on Highlighted.

10.	 In the Inspector, just uncheck the Loop Time variable.

11.	 Click on the play button, and now everything should work as planned.

How it works...
Here, we used an Animator with a controller to handle the animation. In fact, when the
mouse is over it, the controller triggers the Highlighted animation. As a result, the button
is stretched. When the mouse moves away, it triggers the Normal animation, that is, just
the button in its original state without a proper animation. However, since Unity handles the
transition smoothly by default, the button is then stretched back to its original state.

Animating the UI

154

There's more...
The following section teaches us how to slightly tweak the animation that we have created. By
doing this, it helps to improve the quality of the animation.

Stretches back the button to the same speed of the Highlighted
animation
When the mouse arrow is moved away, the button is stretched back very fast — 10 times the
speed of the animation that we created. This is because Transition Duration is set to 0.1,
which means that the animation will be played 10 times faster. Let's see how to change this
parameter.

Open the Animator window, and select the arrow that goes from Any State (the blue node)
to the Normal node (the orange one). Now expand the Settings menu in the Inspector by
clicking on the small triangle at the beginning of its name. Finally, change the Transition
Duration variable to 1. However, you are free to change this to any other value. If we want the
animation faster, we just need to insert a number between 0 and 1. If we want it slower, we
insert a number larger than 1.

Creating a pop-up menu
In this recipe, we are going to see how we can use the techniques learned in the Creating a
menu with an entrance transition recipe to create a pop-up menu. Pop-up menus are useful
when you want to give instant feedback or even instructions to the player. They can be an
unobtrusive way of providing information to the user at specific points during the game.

How to do it...
1.	 In the first step, let's create a new menu — a panel called Pop-up Menu — and three

buttons as its children.

2.	 After we have selected it, we then click on Add Property in the Animation window.
Unity asks us to choose a folder and a name for our animation, and we can rename
it to MenuEntryPopUp.

3.	 The next step is to create the animation, so click on the Rec button and move the
vertical bar in the timeline to 1 second; this means the sixtieth key frame if the
sample is set to 60. Using Rect tool, reduce the dimensions of all the buttons to zero:

The vertical bar is not shown by default. In order to make it show up,
we can just click on the top section of the Animation window, where
the time is displayed.

Chapter 6

155

Animating the UI

156

4.	 Then, move the vertical bar to the 120th key frame, at 2 seconds, and reduce the
panel vertically as well, as shown in the following screenshot:

5.	 Click on the drop-down menu, find MenuEntryPopUp, and select [Create new Clip].

6.	 Again, Unity will ask us to save the animation, so let's select the same folder as the
previous one and rename it to MenuExitPopUp.

Chapter 6

157

7.	 Now, it's time to make the same animation, but in reverse. At the zeroth key frame,
we should have the same situation of the last frame as that of the other animation.
Move the vertical bar in the timeline to 1 second, and using Rect tool, expand
the panel to its original position. Lastly, move the bar to the 120th key frame,
at 2 seconds, and expand all the buttons as well.

8.	 The next step is to get the animations that we have just created and put them into
a controller. If we search in the same folder where we saved the animations, we
can find a controller called MenuEntryPopUp. Double-click on it to open it in the
Animator widow.

9.	 Since multi-editing of animations is not supported by Unity, we have to select the
animations one at a time in the Project panel. In addition, we will also need to
uncheck the Loop Time variable for both in the Inspector. By doing this, we are
setting the animation as a single shot and not as a loop.

10.	 Now, we just need to create another button, above MenuEntryPopUp. By following
the second recipe of this chapter, starting from step 11, we can trigger the animation
accordingly. Just remember to change the animation names with the names of this
recipe. After this, click on the play button to see your animated Pop-up menu.

How it works...
First, we created a couple of animations with the Animation window, and then we put
them inside an Animator controller. Here, we used the controller just as a set of animation,
since they are triggered by the OnClick() events from our buttons. When the trigger arrives,
Animator plays the animation specified by us.

Animating hearts of the symbolic lives
counter

In this recipe, we will discover how to animate the hearts of the symbolic lives counter made
in the second chapter. In fact, we will use an Animator controller to handle the animation and
use the Animation window to animate them. Also, we want to make all the hearts beat. As a
result, the UI will be more dynamic and immersive.

How to do it...
1.	 You might remember that when we attached the script created in the Creating a

symbolic lives counter recipe in Chapter 2, Implementing Counters and Health Bars,
we needed to assign different images (in this case, hearts) in the Inspector. Now
select one of them, for instance, Heart1, and then open the Animation window.

2.	 Click on Add Property, and Unity will ask you to choose a folder in which you want
to save your animation and a name. Just choose one and click on Save.

Animating the UI

158

3.	 Next, we should notice that Unity has added an Animator component to our image
and filled the controller variable with a controller named Heart1. We can rename it
to HeartAnimationController. If we open the controller by double-clicking on it, we
should see in the Animator window that we have a node with the name that we gave
to the animation.

4.	 Now, it should already be in record mode. Put the red bar at the zeroth key frame and
set the scale of the image to 1 for both the x axis and the y axis. In this way, Heart1
starts with the normal scale.

5.	 Next, move the red bar to half second, if the samples are 60, this means the thirtieth
key frame. Change the scale to 1.2, on both the x and y axes. Therefore, in this case,
we are going to enlarge the heart a little so that we can simulate a beat.

6.	 Finally, move the red bar to one second, again at 60 samples (which means at the
sixtieth key frame). Now we have to conclude the heartbeat animation, so we set
the scale back to 1, on both the x and y axes.

7.	 After this, we need to interrupt the recording. To do this, just click on the red Rec
button in the Animation window.

8.	 Finally, if we have already set up all the other images to interact with
SymbolicLivesCounterScript, we select all of them except the first one, which we
have already animated. In the Inspector, go to Add Component | Miscellaneous |
Animator.

If you haven't set the other images yet, please consider using the
Ctrl + D shortcut to duplicate Heart1. By doing this, you will also
duplicate the Animator component and its Controller, so you don't
have to set them. As a result, you can skip this and the next step.

9.	 Now, we find the controller that we created indirectly when Unity asked us to save
the animation file. It is in the same folder. Drag it into the Controller variable
in the Inspector.

10.	 Finally, you can click on the play button and see all the hearts animated.

How it works...
We used an Animator with a controller to handle all the animations. In fact, when the game
starts, the controller triggers the only animation available, and since it is set as a loop, Unity
reproduces it consequently. Each heart has the same controller, so all of them are animated
in the same way. When SymbolicLivesCounterScript handles the hearts in order to make
them appear and disappear respectively if the player gains a life or loses it, it doesn't change
the animation, and so our symbolic lives counter has an animation in our UI.

Chapter 6

159

Changing animation of the hearts of the
symbolic lives counter through the script

In this recipe, we will go even further than we went in the previous recipe. Here, we will see
how we can control the Animator controller through a script. In this specific case, you will
learn how to change the speed of the controller according to the number of lives that the
player has left. In fact, we want to make the hearts beat at a normal speed when the player
has all his lives intact and beat faster when the player has fewer lives.

Getting ready...
In order to get started, you should have completed the previous recipe, Animating hearts of
the symbolic lives counter, because you need to have all the hearts animated through an
Animator controller, called HeartAnimationController.

So first of all, we need to be sure that all the hearts have an Animator component attached
along with the Controller variable filled by HeartAnimationController.

Since we need to change the Animator component through the script, we can do this directly
inside SymbolicLivesCounterScript. We had written it in the second chapter in the Creating
a symbolic lives counter recipe. You might remember that it handles all of the logic for the
lives counter.

If we don't want to override the script and keep the original one
as well, we can rename it SymbolicLivesCounterAnimatedScript.
Also remember to rename the class inside the script with the
same name.

How to do it...
1.	 For the first step, double-click on SymbolicLivesCounterAnimatedScript to open it.

2.	 Next, go through it inside the updateSymbolicLivesCounter() function. Since
this function in called every time a heart is lost or gained, it is the perfect object for
making a general animation over all the hearts of the lives counter.

3.	 In particular, we need to go inside the for cycle, immediately after the hearts[i].
SetActive(true); instruction. Since we are dealing with all the active hearts
here, we need to change the animation to only these, and not to the other ones
that are not on the screen anymore.

Animating the UI

160

4.	 In this context, hearts[i] is an active heart, and we need to get its Animator
component through the GetComponent<Animator>() function. Then we set
the speed to hearts.Length - lives. So, let's add it to our code:
 hearts [i].GetComponent<Animator> ().speed = hearts.Length -
lives;

5.	 Finally, we just save our script, and click on play to test it.

How it works...
We start by getting the Animator of each active heart, and then we want to see them beating
according to the number of lives the player has left. Therefore, the speed of the animation
can be calculated as the difference between the maximum number of lives, which in this case
is the length of the array, and the remaining lives. In fact, this difference gives us a bigger
number with each life that is lost.

There's more...
In this recipe, we saw how to animate the lives counter differently through script, but maybe
we need more control over these animations.

Adding a speed controller to customize speed in the Inspector
and at runtime
Right now, our script uses just the difference to calculate the animation speed for each heart.
If we want to tweak this speed in some way with a parameter but keep it dependent on the
number of lives the player has left, we can add a new public variable to our script:

public float speedController = 1f;

As we can see, the default value is 1f. This means that there is no difference in speed
compared with before, since this variable will be multiplied.

Now, change the only line of code added in this recipe in this way:

hearts [i].GetComponent<Animator> ().speed = (hearts.Length -
lives)*speedController;

By multiplying the difference of our parameters, we are able to control it through the
Inspector, or even during runtime if we change this variable through another script, since it is
a public variable. If speedController stores a number between 0 and 1, the animation
speed is reduced. Otherwise, if it is greater than 1, the animation speed is increased.

Chapter 6

161

Customizing each animation
On the other hand, if we want to customize each animation, we should change the code
and write a long series of if statements. How to change the animation is entirely up
to you. For instance, if we want to change only the first heart, we can put it inside the
updateSymbolicLivesCounter() function outside the for cycle with these lines:

if (lives == 1) {
 hearts [0].GetComponent<Animator> ().speed = 2.5f;
} else {
 hearts [0].GetComponent<Animator> ().speed = 1.0f;
}

163

7
Applying Runtime

Customizations

In this chapter, we will cover the following recipes:

ff Creating a button that changes color

ff Creating a slider that changes color gradually

ff Creating a slide shower using a discrete slider

ff Creating a slider that changes a single color channel

ff Making an input field with personal text validation at runtime

ff Making an input field for a password with a lower bound limit for characters

ff Changing the cursor at runtime

Introduction
In this chapter, we will look at how to implement different levels of customization for the player,
such as adjusting colors of objects using a slider. We will also see how to implement validation
at runtime for input fields to ensure that the correct information is entered. Furthermore, we
will set lower bound limits for characters so that the data input meets a minimum number of
characters. Lastly, we will look at how we can change the cursor within a game.

Applying Runtime Customizations

164

Making a button that changes color
In this recipe, we will see the first basic customization that we can allow the player to do. This
customization will allow him to change the color of a button by clicking on it, and then switch
between two colors. In this way, you will learn how it is possible to use events to customize
buttons when the player interacts with them.

How to do it...
1.	 In the first step, we have to create our UI button. Right-click on the Hierarchy panel,

then go to UI | Button, and rename it to ChangeColorButton. Of course, it is possible
to resize the button, change Source Image, the text, and place it as we wish in
Canvas.

2.	 Now, it's already time to write our script to handle the whole process. Select
ChangeColorButton and, in the Inspector, navigate to Add Component | New
Script. Name it ChangeColorButtonScript, and then click on Create and Add.

3.	 Double-click on the script in order to edit it. Next, we have to add the using
UnityEngine.UI; statement at the beginning of the script, since we are going to
use the Image class. Before the beginning of the class, we can also add this line:
[RequireComponent(typeof(Image))] (without the semicolon at the end).
In this way, the script requires an Image (Script) component attached to the same
game object of it.

4.	 We need two variables to store the two colors. The first variable is public, so it can
be set in the Inspector with the new color, and the other one is private, in order to
keep the original color of the Image (Script) component stored. Then, we also need
a private variable to store the reference to the Image (Script) component that is
attached to this script, and a third private variable - a bool variable, is needed to
determine whether our script has to change the color or restore the original. So let's
write this code:
public Color color;
private Color originalColor;
private Image img;
private bool b;

5.	 The next step is to write the Start() function, where we will store the initial
values for our private variables. So, let's take the reference to the Image (Script)
component using the GetComponent<Image>() function and use it to obtain the
original color and store it in the other variable. Therefore, we can write the following:
void Start () {
 img = GetComponent<Image> ();
 originalColor = img.color;
}

Chapter 7

165

6.	 Now, we don't need an Update() function but a function that can be triggered by
some events instead, for instance, when our button is pressed. In order to do so, we
need to make it public as well. Let's call it onClick() and, set the new or the original
color, according to our bool variable, through an if statement to differentiate the two
cases. Finally, update the bool value by inverting it. So, our function will look like this:
public void onClick(){
 if (b)
 img.color = color;
 else
 img.color = originalColor;
 b = !b;
}

7.	 Our script is now ready. We can save it and come back to Unity. The next step is to
trigger our script through an event and - as we have done in a few other recipes from
other chapters - we do the following: select ChangeColorButton, look inside the
Button (Script) component, and click on the small + sign on the On Click () event tab
in the bottom-right corner.

8.	 Drag the script inside the object variable, and in the drop-down menu, navigate to
ChangeColorButtonScript | onClick(). The final result should be like this:

9.	 As the final step, we ensure that the color variable in our script is changed to display
another color. Finally, we can test whether what we have done works as we planned.

When Unity creates a new color as the default, it has all the parameters set
to zero, so it is black and the alpha channel is to zero. As a result, when we
choose another color, we must also ensure that we set an appropriate alpha
channel for what we want to get.

How it works...
Here, we created a function that switches between two colors. This system is created using
a bool variable to determine whether we are going to change to the new color or restore the
original one. In fact, every time we have an operation, we reverse the value of this variable.
Then, we assigned our function to the On Click () event on the Button (Script) component so
that it is called every time the player clicks on the button.

Applying Runtime Customizations

166

There's more...
Maybe we want the button to change another image instead of itself. The next section will
explain to us, how we can achieve this.

Changing another image instead of the one attached to the
button
If we want the button to affect another image instead of itself, we can slightly modify our script.
In fact, we have to make the img variable public so that it can be set in the Inspector:

private Image img;

Then, we can erase this line from the Start() function, since we set img on our own:

img = GetComponent<Image> ();

Finally, set the img variable from the Inspector, and we are done. Of course, if we want to test
it, we can create, for instance, a panel and drag and drop it into the img variable.

Furthermore, it would be good to remove the [RequireComponent(typeof(Image))]
statement so that we can place this script on other game objects as well.

See also
ff If you need a gradual change between colors, you can refer to the next recipe,

Creating a slider that changes colors gradually.

ff However, in the last recipe of this chapter, there is another way to call events without
touching the events in the Inspector. In fact, this could be achieved by using the
handlers inside the script. More information is available in the Changing the cursor
at runtime recipe.

Creating a slider that changes colors
gradually

Here, you are going to learn another type of customization that the player can perform at
runtime. With this, the player has more power on how he can customize his own UI to fit suit
his needs. In fact, the player will be able to switch between two colors, as in the previous
chapter, but gradually and through a slider. We will handle this with a script and, as usual,
using the events that are inside the Slider (Script) component.

Chapter 7

167

How to do it...
1.	 First of all, we need to create our slider. This can be done easily by right-

clicking on the Hierarchy panel, then going to UI | Slider, and renaming it to
GraduallyColorSlider. Of course, it is possible to resize the slider, change Source
Image, or change the text inside. Finally, place it as you wish, in Canvas.

2.	 Next, we can write a script to handle the entire process. To do this, select
GraduallyColorSlider. In the Inspector, navigate to Add Component | New Script,
rename it GraduallyColorSliderScript, and then click on Create and Add.

3.	 Double-click on the script in order to edit it. As usual, when we deal with the UI,
we have to add the using UnityEngine.UI; statement at the beginning of the
script, since we are going to use the Image class.

4.	 We need three public variables. One is used to store the Image (Script) component
that we want to change, and the other two store the two colors that we want our
slider to lerp between. To do this, let's write the following code:
public Image img;
public Color firstColor;
public Color secondColor;

5.	 We don't need the Update() function or the Start() one. Instead, we need a
function that can be triggered by some events, for instance, when our slider is
changing. Therefore, it has to be public, and we can name it change(). It also
takes a float parameter that will be passed by the event. Moreover, it will contain
the value of the slider. Here is what we will write:
public void change(float value){
}

6.	 Then, we only need one line to change the color of the image. We can assign the new
color in this way:
img.color = Color.Lerp(firstColor, secondColor, value);

7.	 Now our script is done. We save it and come back to Unity. As in the previous recipe,
we have to trigger our script through an event, and so we select GraduallyColorSlider,
look inside the Slider (Script) component, and click on the small + sign on the On
Change () event tab in the bottom-right corner.

Applying Runtime Customizations

168

8.	 Drag the script inside the object variable, and from the drop-down menu, navigate to
GraduallyColorSliderScript | change. Also, be sure to select change in the first set
of functions, labeled Dynamic Float, as shown in the following screenshot:

9.	 At the end, the event tab should be like this:

10.	 Next, we need to set our Img variable. In this recipe, let's create a panel to assign to
it. To do this, right-click on the Hierarchy panel and navigate to UI | Panel. We can
rename this to GraduallyColorPanel. Keep in mind that this can be any object in the
scene, as long as it has an Image (Script) component attached to itself. Thus, we can
drag and drop it into the Img variable.

11.	 As a final step, we can ensure that both the color variables in our script have been
set. Finally, click on play and use the slider to see how the panel changes color
gradually.

As in the previous recipe, Unity creates new colors with their alpha channels
set to zero. Therefore, when we choose the colors for both our variables, we
must also ensure that we set an appropriate alpha channel to suit what we
want to achieve.

Chapter 7

169

How it works...
Unlike the previous recipe, where we had to switch between two colors, here we had to make
this transition occur gradually. So, as we have done previously, we used the On Change()
event of the slider in a dynamic way to give its value to our script. In it, we simply used the
Color.Lerp() function to interpolate the two colors set in the Inspector along value.

See also
ff If you don't require a gradual change, you can look at the previous recipe, Creating a

button that changes color.

ff In addition, more information about the Color.Lerp() function can be found in
the official documentation, which is located at http://docs.unity3d.com/
ScriptReference/Color.Lerp.html.

ff Finally, in the last recipe of this chapter, there is another way to call events without
touching the events in the Inspector. In fact, this can be achieved using the handlers
inside the script. More information is available in the Changing the cursor at
runtime recipe.

Creating a slide shower using a discrete
slider

Here, we can go further in providing additional customization for the player. In this case, we
are going to implement a slide shower. The player will be able to scroll between pictures using
a slider. To achieve this, we will see how to write a script to run this system. Again, we will use
the events from the Slider (Script) component.

How to do it...
1.	 To begin, we need to create our slider, which will be the controller of the player, so

let's right-click on the Hierarchy panel and then go to UI | Slider. Finally, rename
it to SlideShowerSlider.

2.	 Then, select the slider and, in the Inspector, navigate to Add Component | New
Script. Name it to SlideShowerScript and then click on Create and Add.

3.	 Now, double-click on the script in order to edit it. Like every other time when we
deal with the UI, we have to add the using UnityEngine.UI; statement at the
beginning of the script, since we are going to use some UI classes.

http://docs.unity3d.com/ScriptReference/Color.Lerp.html
http://docs.unity3d.com/ScriptReference/Color.Lerp.html

Applying Runtime Customizations

170

4.	 We need two public variables, one to store all the pictures that we want to show,
and another to store the Image (Script) component to show all the pictures, so let's
write this code:
public Sprite[] pictures;
public Image img;

5.	 The next step is to create a function that will be called by an event so that when the
slider changes its value, it takes its value as a parameter. Since the slider value is a
float variable, we need to make value a float variable. Here is the structure of
our function:
public void changePicture(float value){
 }

6.	 In the body of our function, the first thing that we have to do is transform value,
which is a float variable, into an int, since array indexes are int. We can achieve
this through a cast in this way:
int index = (int)value;

7.	 Next, we can simply assign the correct picture as the sprite of the Image (Script)
component stored in img using index, which is found in the previous line:
img.sprite = pictures [index];

8.	 Save the script and come back to Unity. Then select SlideShowerSlider. As usual,
we have to call our function using an event, so we click on the + sign in the On Value
Changed (Single) event tab. Finally, we drag our script into the object variable, and
our event tab should be like this:

9.	 Now, in the drop-down menu, select SlideShowerScript.changePicture. Also, be sure
that you have selected changePicture in the first set of functions, labeled Dynamic
Float, as demonstrated in the following screenshot:

Chapter 7

171

10.	 The next step requires us to assign a value to the img variable in the Inspector. So
let's create a new UI image by right-clicking on the Hierarchy panel and then going to
UI | Image. Lastly, rename it SlideShower. Again, it is possible to resize it and place
it wherever we want in the Canvas. Modifying Source Image is futile, since it will be
replaced by our script. Once we are done, we should have something similar to this:

11.	 We can drag SlideShower into the img variable on our SlideShowerScript.

Applying Runtime Customizations

172

12.	 We should add all the pictures that we want onto the pictures variable in the
Inspector. We can expand the variable by clicking on the little triangle to the left of
the name of the variable, and in Size, we enter the number of the pictures that we
want. It should appear as a row for each picture, and we can set them with whatever
pictures we want. Here is an example of this concept; it uses image elements from
previous chapters:

13.	 We cannot use our slide shower yet, since we have to finish setting up
SlideShowerSlider. In fact, in the Slider (Script) component, we have to tweak the Min
Value and Max Value variables according to the number of pictures we selected in the
previous step. So, let's set Min Value to 0 and Max Value to the number of pictures
minus one (for instance, if there are four pictures, the number we set will be 3).

14.	 Furthermore, we have to check the Whole numbers variable and set the value of
the variable to 0 (this can also be done by dragging the variable slider completely
to the left).

15.	 Finally, save the scene. Now, we are ready to click on the play button to see our slide
shower in action, like this:

Chapter 7

173

How it works...
In this recipe, we created a slide shower that is controlled by a slider. We also wrote a script
to handle this. Every time the slider changes its value, an event is triggered and it calls
the function inside our script. This function just changes the image inside the slide shower
accordingly.

There's more...
The following sections will give us some useful suggestions on how to improve our discrete
SlideShower.

Adding a text label to show the number of pictures
Sometimes, we might want to show the player how many pictures are contained within the
slider and which picture is currently being viewed. We can do this by adding a text label next
to SlideShower and controlling it through our script.

As the first step, right-click on the Hierarchy panel and go to UI | Text. Rename it
SlideShowerLabel. Of course, we can resize it and change the font or size of the
text as we wish. Finally, place it next to SlideShower.

Now we open our script again and add a new variable to keep track of SlideShowerLabel:
public Text label;

At the bottom of the body of the changePicture() function, we have to update the text of
our label in this way:

label.text = (index + 1) + "/" + pictures.Length;

In order to obtain the current number of pictures that are being displayed, we added 1 to
index. We did this because it is the current picture, but it starts from zero. Then we obtained
the length of the array in order to find out the total number of pictures.

Save the script and then drag SlideShowerLabel in the label variable in the Inspector inside
your script. And the trick is done!

Applying Runtime Customizations

174

Making the slider continuous
Right now, the slider moves in a discrete way, since we have constructed it to be like
that. But if, for some reason, it has to be continuous, we can achieve this very easily by
simply unchecking the Whole Numbers variable. In fact, we used in our script a float
as a parameter and converted it into int in the first line of the changePicture() function.
Therefore, we don't have to worry about float conversions.

Automating the slider setup
Each time we have to change the number of pictures of our SlideShower, we also need to
update the SlideShowerSlider settings in the Slider (Script) component. We can automatize
this process in the script. Therefore, we don't have to worry about this anymore.

To do this, let's add a new function called updateSliderSettings(). This is its body:

private void updateSliderSettings(){
}

First of all, we have to retrieve the Slider, like this:

 Slider slider = GetComponent<Slider> ();

Then we can start setting its values. The first values are the minValue and maxValue
variables. We have to set the former to zero, and the latter equals the number of pictures,
which we know through the length of the array:

 slider.minValue = 0;
 slider.maxValue = pictures.Length - 1;

The next values are the WholeNumbers Boolean, for making our slider discrete, and
value, for initializing slider at the beginning:

 slider.wholeNumbers = true;
 slider.value = 0;

If we want to make the slider continuous, as done in the Making
the slider continuous section, we will have to change the line in
slider.wholeNumbers = false;.

Next, we have to reset our SlideShower at the beginning as well, by calling the
changePicture() function. We do this by passing 0 as the parameter:

 changePicture (0);

Chapter 7

175

Finally, in the Start() function, we have to call the updateSliderSettings() function,
as follows:

 void Start () {
 updateSliderSettings ();
 }

Now, we don't have to take care of changing the slider settings in the steps starting from step
14 anymore because we have automatized the process inside our script.

Adding pictures at runtime
We may want to change the number of pictures at runtime. We can do this by creating another
public function. Therefore, it can be called by other scripts that create a new array. The
public variable copies all the values in the new one plus the new picture, and at the end, it
calls the updateSliderSettings() function again, so it is updated as well.

Keep in mind that by calling the updateSliderSettings()
function, we are going to reset SlideShower to zero, which means
it will begin from the first picture. If you don't want this, we can
create another function (or directly in this one) to preserve that
number when new pictures are added.

See also
ff In the last recipe of this chapter, there is another way to perform call events

without touching the events in the Inspector. In fact, this can be achieved by using
the handlers inside the script. More information is available in the Changing the
cursor at runtime recipe.

Creating a slider that changes a single color
channel

In this recipe, we are going to see how to provide the player with the ability to completely
customize the color of something. In this case, we will allow the player to customize an Image
(Script) component. It is important to keep in mind that we are not limited to customizing just
the Image (Script) component. In fact, we can change everything that has a color, including
lights. Changing lights is useful if you want to create ambience and immersive UIs. This is
associated with what you learned in Chapter 4, Creating Panels for Menus, in the Making UI
Elements affected by different lights recipe. Compared to the Creating a button that changes
color and Creating a slider that changes colors gradually recipes, here the player will be able
to change colors in a better way. He will be able to tweak every color channel.

Applying Runtime Customizations

176

In order to implement all of this, we need to create a slider that controls, through a script, the
single color channel, and modify the Image (Script) component accordingly.

How to do it...
1.	 To create the slider, right-click on the Hierarchy panel and then go to UI | Slider and

rename it RedChannelColorSlider. Of course, it is possible to resize it, change the
Source Image, change the text inside, and finally place it as we wish in Canvas.

2.	 Select the slider. Then, in the Inspector, navigate to Add Component | New Script,
name it ChangeColorChannelSliderScript, and click on Create and Add.

3.	 Double-click on the script in order to edit it. Since we are going to use the Image
class, we have to add the using UnityEngine.UI; statement at the beginning
of the script.

4.	 For this script, we only need one public variable. Here, we are going to store the
Image (Script) component whose color we want to modify through our slider by a
single channel. So, we can write this:
public Image img;

5.	 The next step is to write a function that changes one color channel of the Image
(Script) component, stored in the img variable. In this step, we are going to change
only the red channel, but in the There's more... section, you will see that it is possible
to change other channels as well. In order to get it, our function takes value, a
float, as a parameter and assigns a new Color to img. Here, all the parameters
of the color channels are the same, except the red one; it is assigned with value.
This is our function:
public void changeRed(float value){
 img.color = new Color (value, img.color.g, img.color.b, img.
color.a);
}

6.	 Now, we can save the script and come back to Unity. As usual, we have to call our
function using an event, and in this case, we can use the one in the Slider (Script)
component. Select RedChannelColorSlider and click on the + sign in the On Value
Changed (Single) event tab. Finally, we drag our script into the object variable, and
we should have the event tab looking as follows:

Chapter 7

177

7.	 Next, in the drop-down menu, select ChangeColorChannelSliderScript.changeRed.
Be sure to select changeRed in the first set of functions, labeled Dynamic float, as
displayed in the following screenshot:

8.	 The last thing that we have to do is assign a value to the img variable in the
Inspector. To do this, let's create a new panel and right-click on the Hierarchy panel.
Then go to UI | Panel and rename it ChangeColorPanel. Again, keep in mind that
it is possible to resize it, modify the Source Image, and finally place it wherever we
want in the Canvas.

9.	 We drag ChangeColorPanel in the img variable onto our
ChangeColorChannelSliderScript. If we want, we can also add a text label next to
the slider so that we can show to the player what color channel the slider changes.

Applying Runtime Customizations

178

10.	 Finally, save the scene and click on play to check whether everything works
as expected:

How it works...
We started by creating a script that takes a float as a parameter and uses it to change
the red color channel. In fact, it creates a new color that has all the channels, including
alpha, with the same value of the previous color. After all, we have acquired them from it.
We assigned the value that was received as a parameter in the red channel.

Lastly, in order to call our function, we set the On Value Change () event so that it
is triggered every time the value of the slider changes. Instead of selecting the Static
parameter, we chose the same function in the Dynamic float set. By doing this, we can
automatically pass the value of the slider itself as a parameter to the function. Finally,
this function assigns a new color after it has tweaked its color channels.

There's more...
We can definitely extend the concepts that have been learnt in this recipe to the other
channels, including the alpha channel, or applying this to lights.

Changing all other color channels
If we give a player the ability to change the color of something, which in this case was the
Image (Script) component, it would be ideal if we could also provide the player with the
ability to change the other two color channels.

Chapter 7

179

In order to do so, we need to add two other functions, one for each channel. We can call them
changeGreen() and changeBlue(). Similar to changeRed(), which we have written
before, they take value as a float parameter and change the color to the Image (Script)
component stored in img. They work exactly in the same way, but instead of assigning a value
to the red channel, they assign a value to their channel and keep the red one unaltered.

So here are our new functions:

public void changeGreen(float value){
 img.color = new Color (img.color.r, value, img.color.b, img.
color.a);
}

public void changeBlue(float value){
 img.color = new Color (img.color.r, img.color.g, value, img.
color.a);
}

Of course, the next step is to create two other sliders (if we want, we can also create text
labels), and rename them GreenChannelColorSlider and BlueChannelColorSlider
respectively. Then we have to follow the steps starting from step 6, and instead of selecting
the changeRed function, we select the function pertaining to what we want the player
to change:

Applying Runtime Customizations

180

Changing the alpha channel
If we want to provide the player with an additional level of customization, we can allow him to
adjust the alpha channel. Again, we can achieve this in the same way — by leaving all the color
channels untouched and changing only the alpha channel.

Let's create another function:

public void changeAlpha(float value){
 img.color = new Color (img.color.r, img.color.g, img.color.b,
value);
}

Like the previous section, we need to create a new slider. Once we have done this, we can call
it AlphaChannelColorSlider and again follow all the steps from step 6 onwards:

Sometimes, we don't want to allow the player to make the object completely
disappear while he is tweaking the alpha channel by setting it to 0, or make
the object completely appear on the screen by setting it to 1. So, to ensure
that this will not happen, we can select AlphaChannelColorSlider. Then, in
the Inspector, we set a bigger value for Min Value or a smaller one for Max
Value.
Of course, this can also be applied to the other sliders if we wish.
If we really want to provide the player with the idea that something is blocked
in the slider — something that he will be able to unlock later — we can do this
using what we covered in the Adding upper and lower bounds to the slider
recipe in Chapter 4, Creating Panels for Menus.

Chapter 7

181

Integrating with lights instead of image components
Since these sliders are very powerful tools, and they provide the player with options for real-
time customizations, they can also be used to change other components, such as lights. This
is especially true if these lights affect our UI, as we explored in the Making UI Elements affect
by variable lights recipe in Chapter 4, Creating Panels for menus.

Here, we are going to change the script, but if we want to keep the old
one, we just change the name of its class, along with the filename, which
has to be the same.

First of all, we cannot use the img variable anymore, since it cannot store a light. So, we can
erase it. Having done this, we can also delete the using UnityEngine.UI; statement at
the beginning of the script, since we won't use UI classes anymore. Therefore, let's replace the
old variable with the new one, that is, Light:

public Light light;

Now we have to replace every occurrence of img with light. So, the changeRed() function
will be as follows:

public void changeRed(float value){
 light.color = new Color (value, light.color.g, light.color.b, light.
color.a);
}

Here is what the changeGreen() function looks like:

public void changeGreen(float value){
 light.color = new Color (light.color.r, value, light.color.b, light.
color.a);
}

The changeBlue() function becomes like this:

public void changeBlue(float value){
 light.color = new Color (light.color.r, light.color.g, value, light.
color.a);
}

And finally, we have the changeAlpha() function:

public void changeAlpha(float value){
 light.color = new Color (light.color.r, light.color.g, light.
color.b, value);
}

Applying Runtime Customizations

182

For the final step, we need to set the light variable in the Inspector by dragging a light from
the Hierarchy panel. We might also use the one that we created in Chapter 4, Creating Menus
and Panels, and if needed, we can set the events on the sliders again.

See also
ff In order to integrate this recipe in amazing ways inside your game, you can refer

to the Making UI elements affected by variable lights and Adding upper and lower
bounds to the slider recipes in Chapter 4, Creating Panels for Menus.

ff Furthermore, we should also refer to the official documentation about lights at
http://docs.unity3d.com/Manual/class-Light.html.

Making an input field with personal text
validation at runtime

Here, we are going to create another kind of customization, different from the previous
recipes. In this case, we have an input field that we want to perform checks on, thus not
allowing the player (instead of allowing, as in the previous recipes) to do something. Unity
already has some of these controls in the Input Field (Script) component, but in this recipe,
you will learn how you can create your personal filters. In this example, we will develop a
simple filter in order for you to understand the concept of how filters work. For instance, we
want the player to insert an identifier, maybe for the score database, and we don't want his
name to start with a number — because in many programming languages, identifiers cannot
start with a number. We can perform this check at runtime by developing a script.

This filter is a basic filter, since it is static and it doesn't check the input in a dynamic way.
"Dynamic" in this context means having some parametric constrains in the middle that
depend on the sentence itself (for example, every number has to be followed by the letter "a").
In this case, we need to use loops and for cycles to perform the check, but how this interacts
with our UI is the same for the basic filter. Therefore, you can learn here how to implement
personal text validation at runtime inside your UI. However, in the There's more... section of
this recipe, you will see that it is possible to find a way to implement the preceding example
of dynamic filtering.

Furthermore, the same section describes how we can modify the script to give feedback to the
player. This is very important since we need to communicate what the constraints are to the
player, if we don't want to frustrate him.

http://docs.unity3d.com/Manual/class-Light.html

Chapter 7

183

How to do it...
1.	 First of all, we need to create our input field by right-clicking on the Hierarchy panel

and then going to UI | Input Field. Rename it to myInputField. Of course, we can
place it wherever we want.

2.	 Select the input field. Then in the Inspector, navigate to Add Component | New
Script, name it PersonalTextValidation, and then click on Create and Add.

3.	 Now, double-click on the script in order to edit it. Just like every other occasion when
we have dealt with the UI, we have to add the using UnityEngine.UI; statement
at the beginning of the script, since we are going to use the InputField class.
Before the beginning of the class, we can add this line: [RequireComponent(type
of(InputField))] (without the semicolon at the end). Thus, the script requires an
InputField component that is attached to the same game object of it.

4.	 We need two private variables: one to keep track of the Input Field (Script)
component attached to myInputField, and the other to store the old text of the input
field, since it could be needed to reverse the player's changes if he violates our
validation format. So let's write these lines:
private InputField inputField;
private string oldText;

5.	 As usual, in the Start() function, we are going to store the initial values
for our private variables. First is a reference in inputField, by calling
GetComponent<InputField> () function, which takes the Input Field (Script)
component attached to the same game object in which this script is placed. Then
comes oldText, with the starting text of our input field. So, we have this code:
 inputField = GetComponent<InputField> ();
 oldText = inputField.text;

6.	 The next step is to create a new function that will be called every time we want
a check in the text. This function only takes one parameter, which is the text that
needs to be checked. Therefore, we can add this:
public void Check (string newText) {
}

7.	 We have created the Check() function; now we have to fill in it. So, let's add the first
control through an if statement. We check whether newText is an empty string, and
if so, we just assign this new value to oldText and return, since there is nothing to
check:
 if(newText == ""){
 oldText = newText;
 return;
 }

Applying Runtime Customizations

184

8.	 The next if statement is the one that really performs our check: no numbers at the
beginning of our string. So, as a condition, we verify that the first character is not a
number using a chain of OR operators. We retrieve the first character of newText by
accessing it as an array, and we are sure that here it contains at least one character;
this is because in the previous check, we would have returned if the string was empty.
So, we can write the following:
 if(newText[0] == '1'||
 newText[0] == '2'||
 newText[0] == '3'||
 newText[0] == '4'||
 newText[0] == '5'||
 newText[0] == '6'||
 newText[0] == '7'||
 newText[0] == '8'||
 newText[0] == '9'||
 newText[0] == '0'){

9.	 Now, if the condition is verified, we have to restore oldText inside the text of
inputField, since this newText didn't pass our checks. Otherwise, if the condition
is not verified, it means that our string has passed the checks. We have to update
oldText with newText in an else statement, so let's continue the code of the
previous step with this:
 inputField.text = oldText;
 }else{
 oldText = newText;
 }

10.	 Save your script and come back to Unity. The next step is to pass the string that
the player is writing to our script, so we need an event that sends it every time the
text inside the input field is changed. If we select and then look inside the Input Field
(Script) component, we can notice that there are two events. Let's click on the small
+ sign on the On Value Change (String) event tab in the bottom-right corner.

11.	 Drag the script inside the object variable and in the drop-down menu, go to
PersonalTextValidation | Check. We also have to ensure that we have selected
Check in the first set of functions, called Dynamic string, as shown in the following
screenshot (and not Check (string) in the second set, called Static Parameters):

Chapter 7

185

12.	 The final result should look like this:

13.	 Now everything is ready, so we can click on the play button to check whether
everything works. Thus, when the player types something in our input field,
it cannot start with a number.

Applying Runtime Customizations

186

How it works...
We started by creating a script in which there is a function that takes the parameter as a
string and it checks whether the string starts with a number. If so, it restores the string that
was there before to insert the number at the beginning. Otherwise, it doesn't affect the input
field. Then, we had to create an event that, every time the string inside the input field changes,
it triggers our function by passing to it the string that the player is typing.

There's more...
The following sections help us to improve the text filtering and to understand how the dynamic
filtering works so that we can implement our own ones.

Checking the string when the player finished to type
Sometimes, the design of the game requires that the string checking should happen after the
player has finished typing it. In such cases, we don't have to perform the check every time that
the string changes, but only when the player completes edit that input field. The easiest way
to do this is by changing the event in order to trigger our function, only at the end. We need to
change what we did in step 11 Instead of adding an event to the On Value Change (String)
tab, we have to create a new one on the End Edit (String) event tab by clicking on the + sign
in the bottom-right corner. So finally, we should have something that looks like this:

Our function is called only when the player finishes editing the input field. However, keep in
mind that in this way, if the string typed is invalid, the last valid string will be restored — the
one that was present before, at the beginning of the last edit session. Giving feedback to the
player on why the string he is writing is not acceptable for this input field is important.

It may be confusing for the player when he cannot insert some characters at certain points,
for example, inserting numbers at the beginning. Thus, in some way, we should give feedback
to the player to make him understand why he cannot use some strings or to indicate what has
gone wrong.

Chapter 7

187

To do this, we have to use another Text (Script) component and handle it inside our script.
Thus, let's change our script.

First, we need three public variables. The first one is for storing the reference to the Text
(Script) component, and the other two are for customizing it. The second is for the error string
to place on it, and the third is for changing its color. We can write the following lines:

public Text feedbackText;
public string errorString;
public Color newColor;

However, we also need two private variables to store the original values of feedbackText,
like this:

private string originalFeedbackText;
private Color originalFeedbackColor;

These variables need to be assigned in the Start() function by adding the following two
lines at the bottom of the function:

 originalFeedbackText = feedbackText.text;
 originalFeedbackColor = feedbackText.color;

Now, we should go through the Check() function inside the then branch, which is inside
the if statement. Then we can assign the new parameters, the text and the color, to
feedbackText in this way:

 feedbackText.text = errorString;
 feedbackText.color = newColor;

Next, restore the originals in the else branch by adding these lines:

 feedbackText.text = originalFeedbackText;
 feedbackText.color = originalFeedbackColor;

After saving the script, we are able to assign a Text (Script) to the Feedback Text component,
along with the text (which can be The string cannot start with a number) and a color (which
can be red).

We can create another UI text to assign to Feedback Text. In this case, we
may create an interesting variation, since this checking is at the beginning
of our script. We can assign to it Placeholder, which is one of the children of
myInputField. It is the text that there is inside the input field when it is empty.

Applying Runtime Customizations

188

So, if the player tries to insert a number at the beginning, we should get something like this:

Using for cycles for dynamic filtering
In this section, we will present some basic notions on how a dynamic filter can be executed
using for cycles. We will see that the concept is the same as that which we've used so far.
In the introduction, we made the following example: every number has to be followed by
the letter "a." In this case, what we need is looping over the string, and every time we find
a number, it must be followed by the letter "a." Otherwise, the filter will restore the old string
that the player was writing.

The first part of the check() function is the same:

if(newText == ""){
 oldText = newText;
 return;
}

In fact, we always want to check whether the new string is empty. If it is, we return so that we
don't waste time in performing a check on an empty string.

In some cases, the input field may require at least a single character. In this
case, we can check whether the string is empty, and if so, we reverse the
modifications that are done to the string.

Now we will create a bool variable to determine whether we have a number, from one cycle
to the next. To do this, we need to write the following:

bool mustFollowA = false;

Chapter 7

189

Finally, the for cycle will go through all the characters of the string. If we find a number,
we set our mustFollowA variable to true. By doing this, we know that before the next cycle,
there was a number. Of course, if we find another number, we can still keep iterating, since
the new digit is part of the same number. For example, suppose we have a string bc12a.
When the cycle reaches the number 2, it knows that before 2 there was a number, 1 in this
case. However, the letter a must follow any number, and 12 is a number. Then, if we find an a,
in lowercase or uppercase, we don't need to be concerned with what was there before. So, we
can just deactivate the constraint by setting the mustFollowA variable to false. Otherwise,
if the character is neither a number nor a, we check whether the mustFollowA variable is
true. If so, it means that our test has failed. Hence, we restore the old string and return.
Then, if the for cycle terminates, the test doesn't fail. Thus, we can assign the new string
to our oldText variable:

 for(int i=0; i < newText.Length; i++){
 if(newText[i] == '1'||
 newText[i] == '2'||
 newText[i] == '3'||
 newText[i] == '4'||
 newText[i] == '5'||
 newText[i] == '6'||
 newText[i] == '7'||
 newText[i] == '8'||
 newText[i] == '9'||
 newText[i] == '0'){
 mustFollowA = true;
 continue;
 }else if(newText[i] == 'a'||
 newText[i] == 'A'){
 mustFollowA = false;
 continue;
 }
 if(mustFollowA = true){ //FAIL: There is a number followed by
another letter
 inputField.text = oldText;
 return;
 }
 }
 oldText = newText;

See also
ff If you want to put a lower bound limit for characters, it is worthwhile taking a look

at the next recipe, Making an input field for password with a lower bound limit for
characters.

Applying Runtime Customizations

190

Making an input field for a password with a
lower bound limit for characters

Sometimes, a password cannot be shorter than a lower bound character limit. This happens
for a lot of reasons, including security. In Unity, we can easily set an upper bound limit for
characters by specifying it in the Input Field (Script) component inside the Character Limit
variable. In this recipe, what we are going to achieve is the checking of lower bound limits for
characters in input fields. So, you will learn how to write a short script to handle this, and as a
consequence, the input field will also be reset. This means an empty string is assigned to the
text variable.

How to do it...
1.	 To begin, we need to create our input field, right-click on the Hierarchy panel, then go

to UI | Input Field, and rename it myInputField. Finally, place it wherever you want.

2.	 As we discussed in the introduction to this recipe, we are going to create a password
input field. We should also select Password in the drop-down menu of the Content
Type variable, as shown in this screenshot:

Chapter 7

191

3.	 In this way, only asterisks are shown on the screen, as shown in the following
screenshot:

4.	 Select it and, in the Inspector, navigate to Add Component | New Script. Name it
LowerBoundLimitForCharactersScript, and then click on Create and Add.

5.	 In order to edit the script, double-click on it. Again, because we are dealing with the
UI, we have to add the using UnityEngine.UI; statement at the beginning of the
script. This is also because we are going to use the InputField class. As we did in
the previous recipe, we can add this line before the beginning of the class: [Requir
eComponent(typeof(InputField))] (without the semicolon at the end). Thus,
the script requires an InputField component attached to the same game object of it.

6.	 We need just one private variable to store the reference to our Input Field (Script)
component. And we need a public variable so that we can decide in the Inspector
which is the lower bound limit. Therefore, let's write the following:
 private InputField inputField;
 public int characterLimit;

7.	 In the Start() function, we are going to assign the Input Field (Script)
component to our private variable. We can get the reference by calling the
GetComponent<InputField> () function. Thus, we can write the function
in this way:
 void Start () {
 inputField = GetComponent<InputField> ();
 }

Applying Runtime Customizations

192

8.	 Now, we need to create a function that performs the check at the end of editing.
So, it takes a string as a parameter and checks whether its length — the number
of its characters — is less than characterLimit. If so, it empties the input field.
Here is the function:
 public void Check (string newText) {
 if(newText.Length < characterLimit){
 inputField.text = "";
 }
 }

9.	 After saving the script, the next step is to give the string that the player
has written to our script. Thus, we need an event to achieve this. In particular, if we
look inside the Input Field (Script) component, we can see that there are two
event tabs. Let's click on the small + sign on the End Edit (String) event tab in
the bottom-right corner.

10.	 Drag the script inside the object variable, and in the drop-down menu, navigate to
LowerBoundLimitForCharactersScript | Check. Ensure that the Check in the first
set of functions is selected in Dynamic String, as shown in the following screenshot,
and not the Check (string) in the second set, called Static Parameters:

Chapter 7

193

11.	 Don't forget to set the Character Limit value in the Inspector. In this example, we will
set it to 3. As a result, we should get something that looks like what is shown below:

12.	 Now, everything is ready to be tested. Click on the play button to test. When the player
finishes typing something in our input field, it should reset if the number of characters
is less than characterLimit.

How it works...
Like in the previous recipe, we have written a function that takes a string as a parameter. In
fact, its role is to check whether the string length is less than characterLimit, a variable
that we can set in the Inspector. Then, in order to trigger this function, we created an event
in the Input Field (Script) component. So, every time the player finishes typing, the check is
performed, and if it fails, it means that the string is invalid. Then, the text of the input field
is restored to an empty string. In fact, the event passes the string typed in the Input Field
(Script) component to our function. It is possible to change the action that our function
takes after the check (by changing our script), and we can also adapt it to our needs.

There's more...
Giving feedback to the player is very important to let the player know what is happening and
also to provide a response to his interaction within the game, albeit good or bad.

Giving feedback to the player on why the string is not acceptable
for the input field
Even though there is a clear statement that reads this input field has a lower bound
limit for the amount of characters that can be entered, which is well indicated to the player,
it could still be confusing for the player if the text that he has just written disappears after he
presses Enter.

Applying Runtime Customizations

194

One of the options that we have is giving an error message to the player. Since this recipe is
similar to the previous one, you can refer to the There's more... section of the Making an input
field with personal text validation at runtime recipe.

See also
ff If you want to perform some other checking on the input field, you can refer to the

previous recipe, Making an input field with personal text validation at runtime.

Changing the cursor at runtime
The cursor is another important UI element that is not directly controlled by UI classes. This
is the case since they are new in Unity, while the cursor was already implemented earlier.
However, changing the cursor at runtime could be very useful for the player to distinguish
different actions, and it can also be graphically nicer. For instance, in a Real-Time Strategy
(RTS) game, the cursor can change when the player decides to move units or orders them to
attack enemies.

At this stage, you are also ready to learn other techniques to deal with UI events, directly
inside your scripts, instead of setting them through the Inspector, maybe also using the Event
Trigger component. In fact, here you will learn how to use event handlers to triggers events in
your script.

In this example, we will see how to change the cursor when it enters or overlaps another
UI element. This is the most common case of cursor changing, and you will come across
different games that have this mechanism.

How to do it...
1.	 To begin, we have to create a UI element that will allow us to change our cursor. In

this example, we can create a panel by right-clicking on the Hierarchy panel and
then navigating to UI | Panel. Finally, rename it to CursorChangingPanel. Of course,
as usual, it is possible to resize it, change the Source Image, change the text inside,
and finally place it as we wish on the Canvas.

2.	 Since our script will be ready to use and it contains handlers, we don't need to set
anything. In order to create it, select CursorChangingPanel and, in the Inspector,
navigate to Add Component | New Script. Name it ChangingCursorScript and
then click on Create and Add.

3.	 Double-click on the script to edit it. Now, we are going to use event handlers, and in
order to do this, we need a new using statement that we haven't used so far. This is
because the script needs to import all the functions relative to the event system. So,
let's write at the beginning of our script using UnityEngine.EventSystems;.

Chapter 7

195

4.	 The next step is to declare the handlers. In some way, our script depends on them
and extends itself with pre-designated functions. So, after MonoBehaviour add
these two interfaces: IPointerEnterHandler and IPointerExitHandler,
all of them separated by commas. Thus, the entire class line should be as follows:
public class ChangingCursorScript : MonoBehaviour,
IPointerEnterHandler, IPointerExitHandler {

5.	 We need three public variables to store all the parameters that we need for a new
cursor. The first one is, of course, its texture. The second one is a vector for storing
the hotspot (that is, the distance from the top-left corner of the texture) to place the
real pointer of the cursor (the place where we can actually click). Finally, we have the
mode of the cursor. Furthermore, we can initialize both the vector and the mode with
default values, but in general, they have to be set from the Inspector. So let's write
this code:
 public Texture2D cursorTexture;
 public CursorMode cursorMode = CursorMode.Auto;
 public Vector2 hotSpot = Vector2.zero;

6.	 Now, it's time to implement the pre-designated functions that we have quoted before.
Here, the first functions, that it is called when in the pointer enters the UI element,
where this script is attached. We change the cursor to the new one, but calling
SetCursor(), here it is:
 public void OnPointerEnter(PointerEventData eventData){
 Cursor.SetCursor(cursorTexture, hotSpot, cursorMode);
 }

7.	 The next one is the opposite to the previous one, and it resets the cursor when the
pointer exits from the UI element:
 public void OnPointerExit(PointerEventData eventData){
 Cursor.SetCursor(null, Vector2.zero, cursorMode);
 }

The preceding two functions cannot have a different signature — names
plus parameters. This is because they are all called, since we are using
handlers.

8.	 Save the script. Since the script is ready to work, we only have to set the texture
cursor in the script, and nothing else. The last thing to do is click on play and see
whether it works as it should.

Applying Runtime Customizations

196

How it works...
Here, we created a script that changes the cursor when it enters a UI element.

When we implement handlers, we have to write specific functions with a specific signature so
that they can be called when the event that they are "listening" for occurs. In this case, when
the pointer enters our panel, the OnPointerEnter() function is called, because this script
is attached to it. A similar thing happens to the OnPointerExit() function.

Of course, we can implement this mechanism for the previous recipe in its entirety, where it was
needed to trigger a specific function when it occurs. Furthermore, for this specific function, there
is also a parameter called eventData. This is a PointerEventData, and it contains useful
information that we may want to use in order to achieve the goal of the function.

There's more...
By changing the cursor at runtime, it is possible to create animated cursors.

Animating the cursor
Besides determining how the change of cursor is performed, in some games, we can also
have animated cursors. Unluckily, there isn't a way to do this natively. As a result, we need
coroutines to keep changing the cursor in order to animate it.

First, we need to change the cursorTexture variable to an array of textures so that we can
have a different texture, one for each frame. Therefore, we should have the following line:

 public Texture2D[] cursorTexture;

Then, we also need another variable to be set in the Inspector that represents how many
seconds should elapse before the change to the next frame, like this:

 public float secondsBetweenFrames;

Now, in OnPointerEnter(), we need to make the animateCursor() coroutine start. We
will write this later, so this is what the function becomes:

 public void OnPointerEnter(PointerEventData eventData){
 StartCoroutine (animateCursor());
 }

Chapter 7

197

Alternatively, in OnPointerExit(), we need to stop the coroutine and restore the cursor
to its original state. Therefore, we can write it in this way:

 public void OnPointerExit(PointerEventData eventData){
 StopCoroutine (animateCursor());
 Cursor.SetCursor(null, Vector2.zero, cursorMode);
 }

Now let's create the coroutine. We need to create an infinite loop using a while(true) cycle
so that our cursor keeps changing until we stop the coroutine. Then we need to scan the array
of textures. As a result, we can create a for cycle for it. Finally, we can assign the current
texture, the one that our code is scanning, and wait for the amount of time that is specified
in the secondsBetweenFrames variable using a yield statement. Here is the code:

 IEnumerator animateCursor(){
 while (true) {
 for(int i = 0; i<cursorTexture.Length; i++){
 Cursor.SetCursor(cursorTexture[i], hotSpot, cursorMode);
 yield return new WaitForSeconds(secondsBetweenFrames);
 }
 }
 }

See also
For more information, you can refer to all of the official documentation related to these topics:

ff Cursor: http://docs.unity3d.com/ScriptReference/Cursor.html

ff SetCursor(): http://docs.unity3d.com/ScriptReference/Cursor.
SetCursor.html

ff List of event handlers: http://docs.unity3d.com/Manual/
SupportedEvents.html

ff Coroutines: http://docs.unity3d.com/Manual/Coroutines.html

http://docs.unity3d.com/ScriptReference/Cursor.html
http://docs.unity3d.com/ScriptReference/Cursor.SetCursor.html
http://docs.unity3d.com/ScriptReference/Cursor.SetCursor.html
http://docs.unity3d.com/Manual/SupportedEvents.html
http://docs.unity3d.com/Manual/SupportedEvents.html
http://docs.unity3d.com/Manual/Coroutines.html

199

8
 Implementing
Advance HUDs

In this chapter, we will cover the following recipes:

ff Creating a distance displayer

ff Creating a directional radar

ff Developing a subtitle shower

Introduction
In this chapter, you will learn how to implement some advanced HUD elements. Such
elements may include displaying the distance of an object, creating a radar to detect objects,
as well as incorporating an inventory system and developing a subtitle shower. In this chapter,
we will develop the skills required to obtain information from the 3D world and implement it as
UI elements. Furthermore, through the development of a subtitle shower, you will learn how to
control it from other parts of the game. Finally, as the UI reacts from input that relates to other
parts of the game, we will be able to coordinate sounds related to the UI.

Creating a distance displayer
In this recipe, you will learn how to create a distance displayer, which can be a very useful
feature. For instance, when we want to display the proximity of an object or a character, a
visual displayer or even an auditory distance displayer can give us a better indication of how
far or close we are from a particular thing. This is done in order to assist us during gameplay,
for example, to avoid a particular enemy, or not enter a dangerous region of a game.

 Implementing Advance HUDs

200

How to do it...
1.	 To begin, we have to create a UI image that will be our distance displayer. Right-click

on the Hierarchy panel, then go to UI | Image, and rename it DistanceDisplayer. Of
course, it is possible to resize the image, change Source Image, and then place it as
we wish in Canvas.

We are going to change the color of the Image (Script) component.
However, in order to avoid color distortion on our HUD component,
we should make Source Image completely white, with the form of
the part we want to change color. In other images, we construct all
the decorations around the component. In this recipe, for the sake of
simplicity, we will keep the square image as default.

2.	 Now, we need to create the UI text that will display the distance as a number to the
player. Again, right-click on the Hierarchy panel, then go to UI | Text, and rename it
DistanceDisplayerText. Resize to fit the image, tweak all the parameters that deal
with the font as you like, change Color to white, and finally place it in the middle of
DistanceDisplayer. It doesn't matter if the text cannot be seen, since the background
has the same color. This is because it will change at runtime.

3.	 Select DistanceDisplayer. In the Inspector, navigate to Add Component | New
Script and name it DistanceDisplayerScript. Finally, click on Create and Add.

4.	 Double-click on the script in order to edit it. Every time that we deal with the
UI, because we are going to use the Image class, we have to add the using
UnityEngine.UI; statement at the beginning of the script. Before the beginning
of the class, we can also add this line: [RequireComponent(typeof(Image))]
(without the semicolon at the end). As a result, this script requires an Image (Script)
component that is attached to the same game object of the script.

5.	 The first variables that we need are used to store both DistanceDisplayer and
DistanceDisplayerScript. Since we can easily assign them through the script,
we can make them private:
 private Image img;
 private Text txt;

6.	 Then, we need a couple of variables to store the Transform component of the player
and the target of this distance displayer. They have to be public in order to be set
in the Inspector:
 public Transform player;
 public Transform target;

Chapter 8

201

7.	 Furthermore, we want to have the possibility of setting two colors. As such,
DistanceDisplayer lerps between them in the Inspector. So again, the variables
have to be public:
 public Color firstColor;
 public Color secondColor;

8.	 We need one more public variable. Hence, we can set it from the Inspector, which
is used to calculate the color lerp that will be implemented later on. Therefore, let's
add this line:
 public float farthestDistance;

9.	 The next step is to write the Start() function in which we will store the initial
values for our private variables. So let's take the reference to the Image (Script)
component using the GetComponent<Image>() function. Then, we will also use the
GetComponentInChildren<Text>() function to get the Text (Script) component
that is attached to DistanceDisplayerText in the child of DistanceDisplayer. Thus, we
can write the following:
 void Start () {
 img = GetComponent<Image> ();
 txt = GetComponentInChildren<Text>();
 }

10.	 Since DistanceDisplayer has to be updated often, we can do it in every frame by
implementing the logic inside the Update() function. Here is its structure:
 void Update () {
 }

11.	 The first operation that we need to do is calculate the distance between the player
and the target. This can be done easily using the default Distance() function
in the Vector3 class. Add this line in the Update() function:
 float distance = Vector3.Distance (player.position,
target.position);

12.	 Next, we can update the text of DistanceDisplayerText by assigning to it the distance
transformed into a string. We will also need to shorten the value of the float. To do
this, we will need to pass the F2 string as a parameter:
 txt.text = distance.ToString ("F2");

13.	 The last thing that we need to do in the Update() function is assign a color to img
using the Lerp:
 img.color = Color.Lerp (firstColor, secondColor, 1 -
(distance / farestDistance));

14.	 After we have completed all the previous steps, our script will be ready to run. Save it
and then come back to Unity.

 Implementing Advance HUDs

202

15.	 Then, we need to assign the public variables. Depending on how our game is
structured, the way in which we assign them will change. However, in the There's
more... section, you can find out how to test the script that we have just written.

16.	 Now we can run the game. Once the game is running, the Distance Displayer should
look like this:

How it works...
Here, we created a distance displayer that shows the distance from the player and the target,
and it also changes color according to the linear interpolation between the two colors.

Since the distance could be between zero and infinity, we need to set a scale to perform the
lerping of the color. In this case, the farthestDistance variable will specify the farthest
distance when the lerp is complete. Therefore, we divide the distance by farthestDistance
so that we can obtain the percentage of the distance normalized between zero and
farthestDistance. In fact, if the distance is greater than farthestDistance, the lerp is
considered to be completed. If so, since there is a -1 that makes the value of the lerp smaller
than zero, firstColor is shown. Otherwise, the resulting value controls the lerp.

There's more...
We can improve our distance displayer by integrating some new features. These will be
explained by the following sections.

Testing the script
Since this script is intended to work when it is integrated inside a game, we need to ensure
that it works the way it is supposed to, given this context. To do this, we need to construct
a test scene. A simple way of doing this is by creating an entire scene inside the canvas
using 2D UI elements. However, we must keep in mind that this script also works for a 3D
environment.

Chapter 8

203

Let's begin to create our test scene by creating a couple of images inside the canvas. To do
this, right-click on Canvas and then go to UI | Image. So that we don't get confused, we can
name them TargetObject and PlayerObject respectively. Once we have done this, the next
step is to allow the player to move inside the scene. We can easily do this by attaching the
drag script that we created in the Making a draggable panel recipe in Chapter 4, Creating
Panels for Menus, to the player. Remember that we also need to attach the Event Trigger
(Script) component as specified in that recipe to make it work. Once we have completed
these steps, we should have something like this:

An interesting alternative is to modify the script by adding handlers. We did this in the
Changing the cursor at runtime recipe in the previous chapter. By adding handlers to the
script, we can achieve the same result in a more user-friendly way, since it avoids the need
to add the Event Trigger (Script) component. After we have done this, we are able to move
the PlayerObject by dragging it on the screen.

Now it's time to set the parameters of DistanceDisplayerScript in the Inspector. Drag
PlayerObject inside the Player variable and TargetObject inside the Target variable. Next,
we need to set the colors so that we can identify the proximity of an object. For instance, if it
is not ideal for the player to be close to an object, we should assign a positive color, such as
green, to firstColor when the player is significantly distant from the object. In contrast,
if the player is too close to the object, we can assign a more negative color, such as red,
to secondColor. Otherwise, we can reverse them, or adapt them for our game.

When Unity creates a new color as the default, it has all the parameters set
to zero, so it is black. But the alpha channel is also set to zero, so when you
choose another color, ensure that you also set an appropriate alpha channel
for what you want to achieve.

 Implementing Advance HUDs

204

The last parameter that we want to set is Farthest Distance. This depends on the spatial
scale of our game. However, the meaning of this parameter is as follows: it is the farthest
distance at which the player must be from the target object for the color of the displayer to not
change anymore. To set it properly, we should experiment with different values in our game in
order to achieve the desired results. In this example scene, just try setting it to 400.

In the end, we should see something like this in the Inspector, which reflects the parameters
and colors that we identified within our script:

Next, we can click on play and drag PlayerObject around to see how the distance displayer
changes its color based on the location of PlayerObject with respect to the target. We can
also get an idea of the distance by seeing it expressed as a number in DistanceDisplayerText.
Furthermore, if it is required, we can tweak the farthestDistance variable using this
information.

Here is a screenshot of the scene:

Chapter 8

205

Optimizing the code by using a delayed update through
coroutines
It could be computationally expensive to update DistanceDisplayer for every frame. As a
result, we can use coroutines to optimize our code.

To do this, let's create a new public variable to set the amount of time that we want to wait
for before the UI element is updated. As the default, we can choose 0.8f as its value. Hence,
we use this line:

public float updateTime = 0.8f;

Moreover, we need to create a new function that returns an IEnumerator type, and we can
call it updateDistanceDisplayer(), as follows:

 IEnumerator updateDistanceDisplayer(){
 }

Since this is a coroutine and it has a behavior similar that of to the Update() function, we
need to place an infinite cycle in it by adding the following code:

 while (true) {
 }

Before you erase the Update() function, cut its body by pressing Ctrl + X, and paste the code
in the while statement by pressing Ctrl + V.

Finally, we have to wait until a certain amount of time has elapsed before the cycle repeats.
It should be noted that in general, this amount is greater than the time that Unity takes to
render a frame. As a result, this is a more efficient solution than the previous one. It works
because we don't need to constantly change Distance Displayer. Furthermore, it can simulate
more realistic Distance Detector that has a delay. Also, the coroutine structure allows us to
implement other types of functionality, such as sound. Therefore, we need a yield statement
along with calling the WaitForSeconds() function to wait as many seconds we want. After
incorporating this into the script, we should have the following:

 float distance = Vector3.Distance (player.position, target.
position);
 txt.text = distance.ToString ("F2");
 img.color = Color.Lerp (firstColor, secondColor, 1 - (distance /
farthestDistance));
 yield return new WaitForSeconds(updateTime);

Even if we cannot notice any difference, the code is more optimized and is ready
to incorporate new functionality (for example, multitarget detecting or sound), as
described in the following sections.

 Implementing Advance HUDs

206

Multi target detecting
In some games, it could be useful if our Distance Displayer could detect more than one
target. For example, consider a shooter game in which we want to show the location of the
closest enemy, or a platform game in which we want to show where the closest treasure is
located. In these examples, we have to change our Distance Displayer to detect multiple
targets. In order to do this, we have to convert the target variable into an array so that we
can override its definition with this one:

public Transform[] targets;

It is worth noting that we have also changed the name of the variable from target to targets.
This has been done to maintain consistency and indicate that we are now detecting more than
one target. If you have followed the previous section, you will notice that we cannot calculate
the distance within our coroutine with just one line of code anymore. In fact, we have to iterate
over all the targets that we have set in the Inspector and then pick the closest one. So let's fix
this issue by replacing the distance calculation with these lines:

float distance = float.MaxValue; //Or Vector3.Distance (player.
position, targets[0].position);
foreach(Transform t in targets){
 if (distance > Vector3.Distance (player.position, t.position)){
 distance = Vector3.Distance (player.position, t.position);
 }
}

In the first line, we set the distance to the maximum float. This is because every time the
foreach cycle selects a target in our array, it checks whether the distance with this one is
less than the lowest distance it has found so far. We can also change this value, the initial
distance, to the distance between the player and the first target of the array.

Since the targets variable is public, we have to be sure that the array
contains at least one element. So, if we are not sure of this, we should
add a control to check whether the array contains at least one element.
Furthermore, this control should go in the coroutine and not in the
Start() function. This is because its value could change over time.

Then, we actually use the foreach statement to cycle over the array. Next, using an if
statement, we can check whether the new element picked from the array is closer to the
player or not.

Chapter 8

207

We can take advantage of the fact that the targets array is public. What
this means is that we can add and remove elements dynamically. For
instance, we can remove dead enemies or add new ones when they are
spawned. Lastly, we should also convert the array into List<T> to handle
the dynamic nature of a set of objects more easily.
Something to keep in mind regarding performance is that until we make
the element count in the array relatively small, this script should not
have any problem running from a computational standpoint. However,
if the array becomes very large, it could take a while to render a frame,
especially if our game is already full of heavy scripts. In this case, we have
the option of handling the dimension of the array dynamically to remove
futile objects (such as enemies that we already know are too far, maybe
because they are in another room of the level). It could solve the problem
and add them back in a second moment.

Beep sound
If we want to add a beep sound to Distance Displayer to make the player aware when it
has been updated (using a sound), we can achieve this by adding another public variable.
We do this so that we can set the sound from the Inspector:

public AudioClip beep;

Finally, to reproduce the sound through each cycle of our coroutine, let's add this line before
the yield statement:

AudioSource.PlayClipAtPoint (beep, Input.mousePosition);

Since the sound comes from the user interface, we have chosen to play it to Input.
mousePosition. As a result, we do not need to instantiate an AudioSource.

Increasing the ratio of the beep sound according to the distance
There are many ways by which we can indicate distances of objects or characters during
gameplay. In this recipe, we used color as a way to indicate the proximity of the player to an
object. However, what can also be a nice way to indicate distance to a player is through the
use of audio. For example, a player may be trying to avoid being seen by an enemy, which
encourages the player to use a great degree of stealth as he navigates throughout the level.
So, in order to indicate to the player that he is coming in the view of an enemy, we may use a
beep sound. It can be heard once the player begins to get closer to the enemy. This may start
with quite a large amount of time between each beep, and as the player gets closer, the time
between two beeps is reduced. This can create a more dramatic atmosphere, which a change
in color may not be able to achieve. So, let's see how to do it.

 Implementing Advance HUDs

208

Every time the updateTime changes, we don't need this variable anymore. So, we can
remove it and change the argument of the WaitForSeconds() function to this:

Mathf.Clamp01(distance/farthestDistance)

By doing this, we calculate the ratio between the distance from the target and
farthestDistance, and clamp its value between 0 and 1. In this way, we can obtain a
percentage of how far the target is, where 0% means the same point as that of the player
(distance is zero) and 100% means that the target is farther than farthestDistance.
Then we use this percentage, converted into a decimal, for the time to wait until the next
update of Distance Displayer.

We can also decide to keep the updateTime variable in order to still control how much time
to wait, by multiplying it with our new argument in this way:

Mathf.Clamp01(distance/farthestDistance)*updateTime

If we do, the percentage will be on updateTime. For example, if the distance is half of
farthestDistance, the next update will be in half of updateTime.

See also
ff If you want to get a better understanding of how to change colors gradually, you can

refer to the previous chapter in the Creating a slider that changes colors gradually
recipe, or consult the official documentation about the Lerp function at http://
docs.unity3d.com/ScriptReference/Color.Lerp.html.

ff Furthermore, in order to test the script as described in the There's more... section,
we can refer to the Making a draggable panel and Changing the cursor at runtime
recipes contained in chapters 4, 5, and 7 respectively. In Chapter 4, Creating Panels
for Menus, we have taken the drag script; whereas, in Chapter 7, Applying Runtime
Customizations, you can refer to use handlers and therefore also have another point
of view to solving problems.

ff Finally, if you want to better understand how you can shorten the float number with
the ToString() function, you can refer to the Implementing a numeric timer recipe
from Chapter 3, Implementing Timers.

ff In addition, if we want more control over the number of digits, we can implement the
structure that is explained in the Change the number of decimal digits shown section
contained in the same chapter, inside the There's more... section of the Creating a
mixed timer recipe.

http://docs.unity3d.com/ScriptReference/Color.Lerp.html
http://docs.unity3d.com/ScriptReference/Color.Lerp.html

Chapter 8

209

Creating a directional radar
Sometimes when we play games, we want to know the direction of objects that may be out of
view or not visible. A radar is a UI element that makes it possible for this to happen. There are
many ways in which a radar can appear, but in this recipe, we will make a directional radar
that will take the form of an arrow and show the player the direction of the target.

How to do it...
1.	 Let's start by creating a new UI image that will be our arrow. Right-click on the

Hierarchy panel, navigate to UI | Image, and rename it RadarArrow. Of course, we
can place it wherever we want on the screen and then change the Source Image
to an arrow like this one:

If you are using Photoshop, you can easily create this by using the custom shape
tool. You can select it by pressing U in the toolbox and Shift + U to cycle through the
different shapes. Once the custom shape tool is selected, right-click to bring forth
the shape selection panel. Select the arrow that you like. In this example, we selected
the second arrow that was listed. Next, drag the arrow out onto the canvas while
holding down the Shift key in order to constrain the proportions. Now we have a
basic arrow icon.

Of course, it is possible to construct all the graphic components
of the radar around this arrow, but remember that the arrow
should still be visible on the top.

 Implementing Advance HUDs

210

2.	 Our script will control the rotation of the arrow according to the position of the target.
Therefore, select RadarArrow. In the Inspector, go to Add Component | New Script,
name it SubtitleShowerScript, and then click on Create and Add.

3.	 Double-click on the script in order to edit it. Since we are going to use the Image
class every time we deal with the UI, we have to add the using UnityEngine.UI;
statement at the beginning of the script.

4.	 Similar to what has been done in previous recipes, we need to store our UI element in
a variable. In this case, we will need to store the Image (Script) component. We can
make this private, since we can set it in the Start() function:
 private Image arrow;

5.	 Next, we need to create a couple of variables so that we can store the transforms of
player and target. Let's make these variables public, since we should set them
in the Inspector. So, let's add the following lines of code:
 public Transform player;
 public Transform target;

6.	 In the Start() function, we have to get the value of our arrow variable, like this:
 void Start () {
 arrow = GetComponent<Image>();
 }

7.	 Going further, in the Update() function we have to first calculate the projection of
the position of the player on the floor, which is the xz plane. In fact, most 3D games
use this plan as the floor, and we want our radar to detect as if it is looking at the
scene from the top view. We can do this very easily just by changing the y component
of the vector to zero (refer to the There's more... section to see how to project it on
different planes). Therefore, we use this code:
 Vector3 playerProjection = new Vector3 (player.position.x, 0,
player.position.z);

8.	 The same has to be done for the target position. Since considerations similar to the
previous step are valid, we can write the following:
 Vector3 targetProjection = new Vector3 (target.position.x, 0,
target.position.z);

Chapter 8

211

9.	 We also need to calculate the direction that the player is facing, because it will
change the orientation of the radar, and again we have to project this on the floor.
This time, we also have to normalize since it is a direction:
 Vector3 playerDir = (new Vector3 (player.forward.x, 0,
player.forward.z).normalized);

10.	 With the two positions projected, we can also calculate the direction of the target
relative to the player. So, we have to subtract the two position vectors and again
normalize, because this is also a direction:
 Vector3 targetDir = (targetProjection -
playerProjection).normalized;

11.	 Now, the problem becomes a two-dimensional problem, but we still work with 3D
vectors so that we do not lose generality just in case we change the projection plan
(check out the There's more... section).

12.	 The next thing to calculate is the angle between the two directions, and this can be
achieved by calculating the arccosine of the dot product between the two direction
vectors. Finally, we multiply everything with a constant to convert the angle from
radians to degrees:
 float angle = Mathf.Acos(Vector3.Dot (playerDir,
targetDir))*Mathf.Rad2Deg

13.	 Since the calculated angle returns a value between 0 and 180 degrees, we still don't
have enough information to know whether our radar has to turn clockwise or not. So,
we have to distinguish two cases: whether the target is to the left or to the right of the
player. If we perform the cross product between the two direction vectors and take
the y coordinate to check whether it is negative, we can distinguish the two cases.
Finally, we assign a rotation along the z axis to our arrow accordingly:
 if (Vector3.Cross (playerDir, targetDir).y < 0){
 arrow.rectTransform.rotation = Quaternion.Euler (new
Vector3 (0, 0, angle));
 } else {
 arrow.rectTransform.rotation = Quaternion.Euler (new
Vector3 (0, 0, -angle));
 }

 Implementing Advance HUDs

212

14.	 We save the script and our work is done. We are yet to assign the target and player
public variables. However, this will depend on how the game is structured. You can
refer to the There's more... section, in which a way of testing the radar is described.
If you follow that example, the radar should appear like this:

How it works...
If you do not understand the concept of 3D geometry with vectors, this recipe may be a bit
difficult to follow. However, the concepts covered in this section are not too difficult to work
through, especially if we pay attention to the pictures.

We started by projecting both the player's position and the target's position, on the floor,
like this:

player.position

playerProjection

targetProjection

x-axis

z-axis

y-axistarget.position

Chapter 8

213

Next, we projected the direction that the player is facing. We then called this projection vector
playerDir. Calculating the direction of the target respective to the player is simple, since
we can just take the difference between the two vectors and normalize. We called this vector
targetDir.

Thus, we reduced the problem to just two dimensions. As a result, we only had to calculate
the acute angle, theta, between playerDir and targetDir. It can be calculated as the
arccosine of the dot product between the two vectors. Here is a diagram that shows the
geometry of the player and the target:

playerDir

playerProjection

targetDir

targetProjection

�

Finally, we rotated the arrow of the radar accordingly, using theta.

There's more...
As for the distance displayer, the following sections will teach us how to extend the directional
radar to suit different situations that may happen in the design of the game, such as changing
the projection plane.

Testing the script
Even after we have followed all the steps in this recipe, we are still not able to make it run,
since this script works when it is integrated into a game. Hence, in order to test it, we need
to construct a test scene. The one that is used in this example can be found in the resource
bundle of this book. Otherwise, this can be done by placing a plane and then increasing
the scale so that we can see it as the floor within the scene. Next, we can add a cube that
represents our player and another cube that represents the target. Set the public variables
by dragging both the cubes that you have created, and then click on play. If we move the two
cubes in the scene in the Scene view, we can see the radar reacting in the Game view.

We have projected all the vectors onto the xz plane. So, if the target or the
player changes position along the y component, the radar isn't affected.

 Implementing Advance HUDs

214

If we want to see the angles projected on the plane more clearly, just for debugging or learning
purposes, we can use the Gizmos function to better observe this process. We can do this by
moving the plane down a little and then adding this function to our script:

void OnDrawGizmos() {
 Gizmos.color = Color.red;
 Gizmos.DrawLine(new Vector3 (player.position.x, 0,
player.position.z), new Vector3 (target.position.x, 0,
target.position.z));
 Gizmos.color = Color.green;
 Gizmos.DrawRay (new Ray(new Vector3 (player.position.x, 0,
player.position.z),(new Vector3 (player.forward.x, 0,
player.forward.z).normalized)));
}

It draws the two directions playerDir and targetDir in the Scene view.

Changing the projection plane
Our game may have another floor that isn't the classical one that is found on the xz plane. For
example, if it is a 2D game, the entire game is on another plane, or if the gravity of the game
changes at runtime, we should be able to change the projection plane accordingly.

If we only need to project onto the other two orthogonal planes, we just have to set the
missing component to 0 (for example, in the xz plane, the missing component is y; in the xy
plane, it is z). So, the two position projections along with the facing direction in the xy plane
are as follows:

Vector3 playerProjection = new Vector3 (player.position.x,
player.position.y, 0);
Vector3 targetProjection = new Vector3 (target.position.x,
target.position.y, 0);
Vector3 playerDir = (new Vector3 (player.forward.x,
player.forward.y, 0).normalized);

And these are for the yz plane:

Vector3 playerProjection = new Vector3 (0, player.position.y,
player.position.z);
Vector3 targetProjection = new Vector3 (0, target.position.y,
target.position.z);
Vector3 playerDir = (new Vector3 (0, player.forward.y,
player.forward.z).normalized);

Chapter 8

215

In general, as long as we have the normal of the plane where we want to project, we can use
the following static function to project:

Vector3.ProjectOnPlane(vectorToProject, planeNormal)

Of course, in all of these cases, we also have to change the check inside the if statement so
that the arrow can rotate in the right direction.

Closest target detection
Since the part of the script that detects the closest target in a set is very similar to the script
used in the previous recipe, inside the There's More... section, we can just refer to it. This
time, however, we don't have to store the distance but the target itself, so we use the
following code:

float distance = float.MaxValue;
Transform target;
foreach(Transform t in targets){
 if (distance > Vector3.Distance (player.position, t.position)){
 distance = Vector3.Distance (player.position, t.position);
 target = t;
 }
}

Adding a delay in the radar through a coroutine
Again, the modification for adding a delay in the radar is very similar to one in the previous
chapter, so just revisit that section to learn how to implement the coroutine.

More ideas on how to use the radar
The directional radar can be used in a number of different ways, such as detecting enemies
in shooter games or assisting the player in locating treasure in platform games, especially if
we integrate it with a Distance Displayer. Since this radar shows only the direction and not
the distance, we can provide the player with an option to choose a Distance Displayer or a
Directional Radar. Furthermore, we can incorporate both of them together in order to provide
the player with more powerful equipment.

Lastly, we can consider implementing a 3D directional radar. In it, the arrow can rotate in all
directions to point towards the target. In this case, we don't need to project the vectors, but
we should be careful while calculating all the angles in order to rotate the arrow properly.

 Implementing Advance HUDs

216

Developing a subtitle shower
There are many ways of narrating different parts of a game. We may use audio and sometimes
visuals, such as text, in order to explain what characters are trying to communicate to us.
However, one of the easiest ways to explain to a player what a character is saying is through
subtitles. Subtitles not only allow players to read what is sometimes also narrated by voice,
but can also improve the accessibility of a game for people who may not be able to hear or
may have difficulties hearing. Subtitles are always a useful addition to any game when there
are things that need to be communicated to the player properly.

How to do it...
1.	 As we have done previously, the first thing to do is create an UI element. In this

example, we will create a panel. To do this, right-click on the Hierarchy panel, then go
to UI | Panel, and rename it SubtitleShowerPanel. We should resize it and place it in
the bottom part of the screen. It is also possible to change the Source Image in order
to personalize the UI.

2.	 The next step is to create the real UI text element that will allow us to show subtitles
to the player. To do this, we right-click on SubtitleShowerPanel so that we can nest
it in our panel. Then we go to UI | Text and rename it SubtitleShowerText. Again,
we can tweak all its properties to fit our needs, such as Font, Font Size, Alignment,
or Color.

While setting Font Size, keep in mind how much text will be on
the subtitle shower. At the same time, this depends on what kind
of game we are developing.

3.	 Now it's time to start writing our script. Select SubtitleShowerPanel, and in the
Inspector, navigate to Add Component | New Script. Name it SubtitleShowerScript,
and then click on Create and Add.

4.	 Double-click on SubtitleShowerScript in order to edit the script. Again, since we are
dealing with the UI and we will be using the Text class, we have to add the using
UnityEngine.UI; statement at the beginning of the script.

5.	 We need a variable to store SubtitleShowerText. It's also possible to assign its
value in SubtitleShowerScript itself. So, we set it to private and also static:
 private static Text uiText;

Chapter 8

217

6.	 In fact, we can set it in the Start() function. By doing this, we can automatize the
setting of the variable by searching in the children of SubtitleShowerPanel. We also
have make sure that we have just one text between all the children:
 void Start () {
 uiText = GetComponentInChildren<Text> ();
 }

7.	 Before we can continue, we also require a constant. Feel free to change its value
according to the kind of game that you are intending to develop. If you don't want to
specify it when the coroutine is called, it will store the default duration, that is, the
duration of that specific line of the subtitle:
 const float defaultDuration = 5f;

8.	 Next, we have to create our coroutine, and it has to be public. This is because we
want to call it from other scripts. We will also make it static so that we can get access
to it without the reference to SubtitleShowerPanel. Furthermore, it should take three
parameters. The first is the text that our subtitle shower has to show, the second one
is how long the duration of the subtitle should be, and finally the third is AudioClip,
in order to play a sound. The subtitle parameter is not an optional parameter,
whereas duration and clip have default values. The defaultDuration constant
we have declared before null. So, the structure of the function is as follows:
 public static IEnumerator show (string subtitle, float
duration = defaultDuration, AudioClip clip = null){
 }

9.	 As the first step inside the function, we will set the text to uiText so that it is
immediately displayed to the player:
 uiText.text = subtitle;

10.	 The next step is to check whether clip is null or not. If it isn't, we have to play the
clip and wait until the audio stops. This means that we wait for a specified amount of
time, which is equal to the length of clip. Otherwise, we just wait for the duration
amount of time:
 if (clip) {
 AudioSource.PlayClipAtPoint (clip,
Input.mousePosition);
 yield return new WaitForSeconds (clip.length);
 } else {
 yield return new WaitForSeconds (duration);
 }

 Implementing Advance HUDs

218

11.	 Finally, after we have waited for the specified time, we want the subtitle to disappear.
To do this, set uiText.text to an empty string:
 uiText.text = "";

12.	 Save the code, and now everything is ready to be used.

How it works...
In this recipe, we created a static coroutine so that it can be called from anywhere in the
game with the following function:

StartCoroutine(SubtitleShowerScript.show(subtitle,duration, clip);

But in order to keep it static, we had to set the variable as static. This is fine, as long as
there is only one Subtitle Shower in the scene that it is supposed to be in. As a result, when
the coroutine begins, it will handle everything. This includes setting the text and removing it
after the right amount of time.

We need to pay attention when we call this coroutine. For instance, we shouldn't create
more than one instance at a time, or else the two instances will overlap in controlling the
components, especially because all the variables are static. Refer to the first part of the
There's more... section of this recipe; it demonstrates that every time the coroutine is called,
we need to wait until it is finished before it is called again.

Chapter 8

219

This waiting can be done by yielding on the show() coroutine with the following instruction:

yield return StartCoroutine(SubtitleShowerScript.
show(subtitle,duration, clip);

There's more...
The subtitle shower created in this recipe does the job, but it could be improved by displaying
more information to the player, such as the name of character who is talking along with
the avatar picture. Hence, the following sections will guide us through implementing
these features.

Testing the script
In order to test the script, we need another function that calls our subtitle shower. So, let's
create another script and add these variables:

public string line1, line2, line3;
public AudioClip clip;
public duration;

Then this line in the Start() function:

StartCoroutine (test ());

So, we call the following coroutine:

IEnumerator test () {
 yield return StartCoroutine(SubtitleShowerScript.show(line1));
 yield return StartCoroutine(SubtitleShowerScript.
show(line2,duration));
 yield return StartCoroutine(SubtitleShowerScript.show(line3, 0f,
clip));
}

Here, we have triggered our subtitle shower three times. However, before we trigger the next
one, we have to wait until the previous one has finished. Furthermore, we used the public
variables just to show something on the screen. Finally, we attached the script somewhere
in the scene and filled the public variables. By doing this, it is possible to see our subtitle
shower in action.

If we look at the last line of the script, we can see that we are passing the
audio clip as a parameter. Therefore, the value of the duration doesn't matter.
So every value that we pass doesn't affect Subtitle Shower.

 Implementing Advance HUDs

220

Adding a picture of the character who is talking
When we play games, we have what is known as an avatar. It represents our character within
a game. There are many different ways in which our character can be represented during
a game, such as the actual itself that we control, or as an image within the HUD. During
moments in the game when two characters are interacting or even conversing, having a
picture of our avatar and the characters that we are engaging with can often make it easier to
understand what is happening. This is especially true in moments when there is a lot of text,
such as in a conversation. In such moments, a picture of our avatar next to the text that we
are saying helps to distinguish between who is saying what.

If we want to implement this in our subtitle shower, we can do so by adding an Image (Script)
component to SubtitleShowerPanel. Let's rename it SubtitleShowerCharacterIcon.

It is also important to place SubtitleShowerCharacterIcon inside SubtitleShowerPanel such
that it is coherent with the game we are developing.

Now, we have to add a new variable to store it in our script:

private static Image uiImage;

Then we set the reference in the Start() function:

uiImage = GetComponentInChildren<Image> ();

Furthermore, the coroutine has to be changed to take a new parameter in this way:

public static IEnumerator show(string subtitle, float duration =
defaultDuration, AudioClip clip = null, Sprite icon = null)

Finally, we have to set the picture at the beginning of the coroutine:

uiImage.sprite = icon;

As the last instruction, take it off:

uiImage.sprite = null;

Chapter 8

221

Adding the name of the character who is talking
Much like our avatars, which visually represent who we are in a game, names also add
another layer of personalization to our experience. Furthermore, in some games, the quality
of the graphics may not be very detailed because of either their resolution or their size, as is
the case with a number of mobile games. As a result, it may be hard to distinguish between
different avatars, especially when they are able to be customized. Including the names of
our character as well as other characters within the game can make it easier to distinguish
between different characters, as opposed to visual representations alone.

We can add this feature into our Subtitle Shower. First, we need to create another Text (Script)
component inside SubtitleShowerPanel and rename it SubtitleShowerCharactername.

Again, it is important to place it inside SubtitleShowerPanel so that it suits the game that we
are developing.

Next, we have to add a new variable to store it in our script:

private static Image uiName;

 Implementing Advance HUDs

222

Set the reference in the Start() function. This time, however, we need to change the way in
which we refer to the two Text variables, uiName and uiText, since they both are children
of SubtitleShowerPanel. We need to call the Find() function to find the game object to
which they are attached before we get the actual components:

uiName = GameObject.Find("SubtitleShowerCharactername").
GetComponent<Text>
();
uiText = GameObject.Find("SubtitleShowerText").GetComponent<Text>
();

Furthermore, the coroutine has to be changed to take a new parameter:

public static IEnumerator show(string subtitle, float duration =
defaultDuration, AudioClip clip = null, Sprite icon = null, string
name = "")

Finally, we have to show the name at the beginning of the coroutine:

uiName.text = name;

At the end, as the last instruction, take it off:

uiName.text = "";

223

9
Diving into 3D UIs

In this chapter, we will cover these recipes:

ff Creating a 3D menu

ff Adding a smooth tilt effect

ff Creating and placing a 3D UI

ff Creating an animated 3D UI warning

Introduction
In this chapter, you will learn how to implement some 3D effects as part of the UI. Often in
modern games, menus are in 3D. This is done for many reasons, sometimes to make them
more visually pleasant and interesting. In some cases, UI elements are placed in the 3D world
along with other game objects. For example, when a player goes to collect a pickup, some
information may be displayed to him about that object. This chapter will teach you how to do
this effectively in Unity. Some of the skills that will be covered in this chapter will be advanced
features for placing UI elements within a 3D space and taking advantage of the z axis. In order
to do this, we will also cover various scripts that enable our UI to interact with the 3D world to
exchange input/output with the UI.

Creating a 3D menu
In this recipe, you will learn how to create a 3D menu in Unity. 3D menus can provide an
array of options that traditional menus cannot. For instance, 3D menus offer opportunities
for UI elements to enter the game space in ways that 2D menus are unable to support. These
techniques go beyond the classical UI and allow more levels of customization and player
immersion within a game. In fact, a 3D UI has the potential to become very effective when
animated, since we can see elements from different perspectives.

Diving into 3D UIs

224

How to do it...
1.	 Let's start by creating an UI panel that will be the root of our menu. As we are

developing our menu, it is important to keep in mind that all additional elements
that we create will become children of the root element. Right-click on the Hierarchy
panel, then go to UI | Panel and rename it to MenuRoot. Of course, it is possible
to resize the image and change its other settings, such as color. In the Inspector, we
can make it fit the design of our game, and we can even place it wherever we want
on Canvas.

2.	 Now, we need to add some more contents to our menu. But first, we need to have
a clear idea about what our design will be. In this recipe, we are going to create a
menu by following this design:

3.	 Therefore, we need to create some other panels, as we did before, and rename them
to TitlePanel, ButtonPanel1, ButtonPanel2, and ButtonPanel3.

Here, we are using panels instead of the Button component, since
we are interested in understanding how to project our menu in the 3D
world rather than implementing a functional menu.

4.	 Right-click on each panel and navigate to UI | Text to create a Text (Script)
component. To keep our components' names consistent, we should rename them to
TextTitle, TextButton1, TextButton2, and TextButton3. Finally, the structure of our
menu should look something like this:

Chapter 9

225

5.	 Now, it's time to take advantage of the third dimension using the z axis. In order to
see this better, we can switch to 3D view (by clicking on the 2D button in the upper
part of the scene view). Otherwise, we can just keep the 2D image and tweak the z
axis through the Inspector. Let's slide the z axis of TitlePanel to -45. Then, we can
set TextTitle to -40 on the z axis. Next, we can set the buttons a little closer to the
observer. Let's set them to -80 and their text to -45. If you have already switched
to 3D view, you can now see something like this:

Diving into 3D UIs

226

6.	 Thus, our menu is ready. But if we click on the play button, we don't notice any
difference. This because it is still rendering as a static menu that is projected onto
Canvas. This recipe is just an introduction, and it provides us with a foundation for
the proceeding sections.

How it works...
Usually, we are bound by the x axis and the y axis. However, with the use of 3D, it is possible
to have various UI elements projected in the third dimension, by providing values for their
respective z axes. We have chosen negative values because we want to project them towards
the user, and by doing this, it brings them closer to the user. If we were to choose positive
values, the UI elements would appear farther away from the user within the Unity scene. In
fact, this will be useful in the next recipe, where the tilt effect will emphasize this effect.

There's more...
Adding shadows to our menu is a great aesthetic improvement. Thus, the following section will
remind us about a component that we used in Chapter 5, Decorating the UI, to quickly add
shadows to improve the appearance of our menu.

Quick shadows
We will see in the following recipes how it is possible to move UI elements and consequently
the entire menu within the scene space. Furthermore, we will look at how shadows can be
incorporated as a nice addition to the aesthetics of our menu, as well as emphasize the
depths of certain elements. While we can draw shadows directly on our graphics (before we
export them from our graphics program), we can also add shadows quickly in Unity. To do this,
we will simply use the Shadow component that we covered in Chapter 5, Decorating the UI, in
the Adding shadows to text recipe.

See also
ff If you want to bring this menu to life, you will have to go on with the Adding a smooth

tilt effect recipe or the Creating and placing a 3D UI recipe.

ff For further information about the Shadow UI Effect component, you can refer to the
Adding shadows to text recipe in Chapter 5, Decorating the UI.

Chapter 9

227

Adding a smooth tilt effect
There are many effects that can be applied to both 2D and 3D menus. Some of them can be
small and subtle, such as a glow effect when the player moves the mouse cursor on a menu
item. But while these effects are typically a nice touch for creating more dynamic interactions,
they are usually complementary to 2D menus. 3D menus provide us with the ability to add
another layer of movement along another dimension. As such, we can have the entire menu
perform a range of different movements, such as rotation and tilting, both on its own and via
user interaction. Since we are able to utilize the z axis, we are able to have elements projected
in a different way. For instance, we are able to have the elements placed at various locations
along the z axis. When we rotate items that are farther away, they rotate at a slower rate than
those that are closer (to the camera). This is known as the parallax effect. This recipe will touch
on some basic movements, such as moving and rotating the 3D UI element. These movements
could be for the entire menu, by making it rotate according to the mouse's position.

How to do it...
1.	 If we apply this effect to a menu that doesn't use the third dimension (all the

elements have the z axis set to zero), it will just deform the menu and ultimately
ruin the user experience. Therefore, it's important to use an adequate menu to apply
this effect to - one that takes the z axis into consideration. Let's take the menu that
we created in the previous recipe, or if you prefer, you can create another menu by
keeping in mind to use the third dimension.

2.	 Select the root of your menu. This is the element that has all the others as children.
In the Inspector, go to Add Component | New Script and name it TiltEffectScript.
Finally, click on Create and Add.

If your menu does not have a root, it is good practice to always have
one. This is for keeping the contents of your menu in an ordered
structure and applying modifications to all the elements in an easier
way within your scripts. In order to create it on an existing menu,
right-click on the Hierarchy Panel and then select Create Empty.
Finally, rename it to MenuRoot. Use Rect Tool to modify the size
of MenuRoot until it includes all the UI elements that belong to the
menu. Now, select all the elements and drag them onto MenuRoot.
We do this because it allows us to parent them to our root.

3.	 Double-click on the script in order to edit it. Since we are not going to directly use
the UI components, but just their transforms, in order to manipulate their rotation,
we don't have to add the using UnityEngine.UI; statement at the beginning
of the script.

Diving into 3D UIs

228

4.	 We need a public variable to set in the Inspector that stores the range of degrees
to which the UI element can turn on the x axis and the y axis. Therefore, we can use
Vector2 and set some arbitrary starting values:
public Vector2 range = new Vector2(10f, 6f);

5.	 Since we also want to give the possibility to decide the velocity of rotation, we need
to create a public variable for it. Again, set its starting value arbitrarily:
public float speed = 5f;

6.	 Next, we need a vector variable to set at the beginning to zero. This variable will store
the value by which the UI element has been rotated from the starting position in the
previous frame. Again, since we need one value for each axis of rotation, we can use
Vector2:
private Vector2 tiltRotation = Vector2.zero;

7.	 Since the rotation of the UI elements has to be calculated and updated for every
frame, the implementation of the tilt effect will be in the Update() function. Since
the mouse can move all over the screen, we have to, in some way, clamp its value
between -1 and 1 so that we can also distinguish which side of the screen it is
on. This is done in order to represent a percentage of how far the mouse is from
the center of the screen. Let's start by calculating the two coordinate halves of the
screen:
float halfWidth = Screen.width / 2f;
float halfHeight = Screen.height / 2f;

8.	 After we have identified the position of the mouse in terms of how far it is from the
center of the screen, we have to clamp its value along both the axes in order to get
a kind of percentage of this distance from the center:
float x = Mathf.Clamp((Input.mousePosition.x - halfWidth) /
halfWidth, -1f, 1f);
float y = Mathf.Clamp((Input.mousePosition.y - halfHeight)
/ halfHeight, -1f, 1f);

9.	 At this point, we could calculate the value of the tilt rotation and assign it to our
UI element. However, if we do this, it wouldn't be smooth. Therefore, we have to
introduce a delay in the movement. By giving the x and y that we have calculated in
the previous step, we have to start from the rotation that the UI element had in the
last frame and make it rotate a little towards the rotation that it should have at the
end. Therefore, to achieve this, we need to linearly interpolate. While doing this, we
can pass the time from the last frame as the control parameter. In fact, if we assign
this value to tiltRotation, we can start from this frame and move on to the next
one. Furthermore, if we multiply deltaTime with our speed stored in speed, we can
control how smooth the rotation will be:
tiltRotation = Vector2.Lerp(tiltRotation, new Vector2(x,
y), Time.deltaTime * speed);

Chapter 9

229

10.	 Finally, we have to assign the new rotation to the UI element, so by converting the
Euler angles in Quaternion, we can make the assignment:
transform.localRotation = originalRotation *
Quaternion.Euler(-tiltRotation.y * range.y, tiltRotation.x
* range.x, 0f);

11.	 Save the script and your work is done. The result at runtime is better when it is
moving because it provides more dynamic visuals, as opposed to a static image.
However, as shown in the following screenshot, we are still able to gain some
information about what we will see in the final outcome:

There's more...
It is possible to slightly change the script to make it more customizable by designers. This is
the aim of the following sections that will teach us how to do this.

Starting from the original rotation
Some menus can have an initial rotation that determines where they start with the tilt effect.
In order to do this, we need to store the initial rotation in a private variable, like this:

private Quaternion originalRotation;

Then, we have to initialize it in the Start() function with this line:

originalRotation = transform.localRotation;

Diving into 3D UIs

230

Finally, in the last line of our Update() function, we just multiply the new rotation with the
original one:

transform.localRotation = originalRotation * Quaternion.Euler(-
tiltRotation.y * range.y, tiltRotation.x * range.x, 0f);

Now, every time the tilt effect is applied, it will start from the initial rotation of the UI element
that we have set.

Converting the speed in the smoothness factor
In some instances, we might want to provide an easier way for designers to tweak the
smoothness of the rotation instead of the velocity. In this case, we can replace the
speed variable with this one:

public float smoothnessFactor = 0.2f;

Then, we use smoothnessFactor in the code in this way:

tiltRotation = Vector2.Lerp(tiltRotation, new Vector2(x, y),
Time.deltaTime * (1f/ smoothnessFactor);

Inverting the axis
In some games, both the axes are inverted, and in others, only one axis is. Since we have
scripted our tilt effect to include a range vector that can have negative values, we can achieve
inversion by changing the sign to the components of the range vector. Of course, it is possible
to have only one negative value to invert a specific axis. Furthermore, to simplify designers'
lives, we can keep the values for the vector positive. Thus, we just need to change the signs
of the vector components when they are utilized in the script. This means negative to positive
and vice versa. In particular, we have to change the following line in this way:

transform.localRotation = originalRotation * Quaternion.Euler(-
tiltRotation.y * -range.y, tiltRotation.x * -range.x, 0f);

Asymmetric range for the rotation
If we want to rotate our UI element using an asymmetric tilt effect, it could be a bit tricky,
because it is a little more complicated than other concepts that we have previously covered.
An asymmetric tilt effect means that when the mouse goes from one side of the screen to
another, the range of rotation changes. Therefore, we need another range vector for the
symmetric part:

public Vector2 symmetricRange = new Vector2(7f, 4f);

Chapter 9

231

Now, when the script is running, we have to use one vector or the other depending on where
the mouse is. Hence, we have to use an if statement by checking this and applying one
range vector or the other when we rotate the UI element:

if(tiltRotation.y > 0 && tiltRotation.x > 0)
 transform.localRotation = originalRotation * Quaternion.Euler(-
tiltRotation.y * range.y, tiltRotation.x * range.x, 0f);
if(tiltRotation.y < 0 && tiltRotation.x > 0)
 transform.localRotation = originalRotation * Quaternion.Euler(-
tiltRotation.y * symmetricRange.y, tiltRotation.x * range.x, 0f);
if(tiltRotation.y > 0 && tiltRotation.x < 0)
 transform.localRotation = originalRotation * Quaternion.Euler(-
tiltRotation.y * range.y, tiltRotation.x * symmetricRange.x, 0f);
if(tiltRotation.y < 0 && tiltRotation.x < 0)
 transform.localRotation = originalRotation * Quaternion.Euler(-
tiltRotation.y * symmetricRange.y, tiltRotation.x * symmetricRange.x,
0f);

Changing the reference of the mouse from the screen to an
arbitrary rect
In some cases, we don't want the area in which the tilt effect takes place to be extended along
all of the screen size. In such cases, we should replace it with an arbitrary Rect. In this case,
when we calculate the x and y values, we have to use the size of Rect, as follows:

float x = Mathf.Clamp((Input.mousePosition.x - halfRectWidth) /
halfRectWidth, -1f, 1f);
float y = Mathf.Clamp((Input.mousePosition.y - halfRectHeight) /
halfRectHeight, -1f, 1f);

If Rect is not centered in the middle of the screen, remember to add the offset of the position
of Rect.

We can also notice that if some part of the Rect is outside the screen, the
clamp will never be 1 or -1. Therefore, the rotation will not be complete.
While we may want to do this, it is better practice to tweak the range vector
in order to achieve the same effect.

Creating and placing a 3D UI
Traditionally, UIs are static and are bound to the x and y axes. However, 3D UIs are more
dynamic. As such, it is necessary to consider the placement of 3D UIs. In this recipe, you
will learn how to place a 3D UI.

Diving into 3D UIs

232

How to do it...
1.	 To begin, we need to create Canvas. We can do this by adding any UI element to the

scene, as we have done many times during this book so far, or we can add it directly
by right-clicking on the Hierarchy panel and then going to UI | Canvas.

2.	 Next, select Canvas in the Hierarchy panel, and in the Inspector, change Render
Mode to World Space. Setting the Canvas to the World Space mode means that it is
positioned in the space and it can be viewed from all the cameras within the world,
provided they are pointed towards it.

3.	 Now that we are working in 3D, we need to keep the scale of our project in mind.
As such, we need to make sure that we change the project settings from 2D to 3D.
We do this in order to have adequate reference points (keeping in mind the added
dimension). To change from 2D to the 3D mode, we have to click on the 2D button
in the upper part of the Scene panel in order to uncheck it, as shown here:

4.	 As with any game, when creating UIs, we need to consider the resolution and size
of our canvas within the world. This is because the resolution will differ from one
project to the next, depending on the intended device that our game is likely to be
experienced on.

5.	 After we have chosen a resolution for our UI, we are ready to scale our canvas down
using Scale tool.

Chapter 9

233

6.	 At this point, we need to consider the scale of the current UI elements. Depending
on the locations of their anchor points, they may or may not be displayed on the
Canvas (for example, located off-screen). Therefore, it is important to take this into
consideration as we place each UI element on the canvas. Thus, especially for an
already implemented interface, it's important to have all the anchor points correctly
placed for all the UI elements.

7.	 Next, we can rotate and place the UI where we like it on the scene. As in the
previous recipes, we can do this by clicking on the rotation icon or using the
keyboard shortcut E.

There's more...
The next section will give us a better idea about how to take advantage of the 3D world for
our UIs.

Using the 3D world
As we have seen in all the recipes so far in this book, it is possible to use scripts to manipulate
various UI elements. For instance, it is possible to hide and unhide certain elements or even
change them. Considering what you have learned in this recipe about 3D UIs, it could be
useful to create scripts that instantiate new elements. For example, some 3D elements can
be better represented as part of a 3D UI than a 2D UI. In addition, a 3D message can appear
when the player gets close to dangerous areas, valuable items, or a health bar attached above
the player or a timer on a door.

They can be instantiated using the Instantiate() function, as with all other game objects
in Unity. However, this function requires the original object to clone, which for UIs is often
a prefab.

There are many other possibilities for creating and modifying UI elements from the script,
such as those covered within this chapter (and even in previous chapters). These include
having individual buttons behave differently depending on the types of interactions with the
player (for example, clicking, hovering, and so on), and also depending on how a UI element
is intended to respond to an input from the player. For instance, a UI element changes shape,
color, or even text if a player interacts with it in a particular way. These kinds of dynamic
customizations occur by getting various components and changing their properties. This is the
essence of user interfaces, and it plays a fundamental role in 3D UIs, whereby they also need
to react to the world around them.

Making an animated 3D UI warning
Warnings in games can be provided in many ways, for doing both the right and wrong things.
However, having the option of 3D capabilities allows us to create more interesting and
dynamic warning messages.

Diving into 3D UIs

234

How to do it...
1.	 To begin, let's create our warning in the UI. We can start by adding a panel.

Right-click on the Hierarchy panel, then go to UI | Panel and rename it as
3DWarning. We can continue to add other UI elements, so we want a title inside
another panel to evidence it and maybe add some text. As best practice, every time
you add a component, tweak its anchor points as well so that everything can scale
properly. At the end, we should have something that looks like this:

2.	 Now, we should take advantage of the third dimension and adjust the value of the z
axis for the components in the foreground. We can adjust it incrementally, similar
to what we did in the first recipe of this chapter - Creating a 3D menu. At the end,
we should see something like what is shown here:

Chapter 9

235

3.	 The next step is to animate it. We can animate it as we have previously done in the
Creating a pop-up menu recipe in Chapter 6, Animating the UI. However, instead
of having buttons, we have a title along with the warning text. This text needs to be
reduced first and then the panel (or vice versa if it has to pop up), keeping in mind
how they will be animated. After we have followed these steps, we should attach our
Animator component to 3DWarning.

4.	 If we have set all the anchor points properly, we shouldn't have any problems in
scaling the UI. Therefore, we are ready to change the Render Mode of Canvas to
World Space. Then, we can just follow the previous recipe in order to place it in
the space.

5.	 Now, we have to create a script that triggers the 3DWarning and when it disappears.
Furthermore, the 3DWarning could be nicer if it always faces the player when it
comes up. Therefore, select 3DWarning. In the Inspector, go to Add Component |
New Script and name it WarningScript. Finally, click on Create and Add.

6.	 Double-click on the script in order to edit it. Since we want to control the animation,
we need to create a private variable that will store the Animator component.
To do this, let's write the following line:
 private Animator animator;

7.	 Now, in order to get the player's position, we need a variable to store it in. Also,
we need another variable to indicate the distance at which the warning should be
triggered. These are both public variables, since they are supposed to be set
in the Inspector:
public Transform player;
public float activationDistance;

8.	 Furthermore, we need two more public variables to set the name of the animation
that we created before:
public string appearingAnimation;
public string disappearingAnimation;

9.	 Finally, we also need a bool variable; it is used to trigger the animation. However,
this is done only once and is used to distinguish between whether the warning is
enabled or not:
private bool isEnable;

10.	 In the Start() function, we need to assign the value to the animator variable.
We can do this by getting the component:
void Start () {
animator = GetComponent<Animator> ();
}

Diving into 3D UIs

236

11.	 Next, in the Update() function, we have to check whether the distance between the
warning and the player is less than activationDistance. If so, it means that the
player is close enough to trigger the warning. Then, we need to see the value of the
isEnable variable to check whether the warning is already activated. In fact, if it is
not, then we set the isEnable variable to true and trigger appearingAnimation.
Otherwise, we do the opposite of this process. Thus, if the player is far enough, the
warning is deactivated. In fact, we can set the isEnable variable to false and
trigger disappearingAnimation. Therefore, we can write this code:
 void Update () {
 if (Vector3.Distance (player.position, transform.position) <
activationDistance) {
 if(!isEnable){
 isEnable = true;
 animator.Play(appearingAnimation);
 }
 } else {
 if(isEnable){
 isEnable = false;
 animator.Play(disappearingAnimation);
 }
 }
 }

12.	 Now the script is ready and we can save it.

13.	 We create a test scene, as we have done in the previous chapter. Alternatively, we can
directly use our game. Assign all the public variables and check whether everything
works as it should.

How it works...
After we have created our 3D warning along with its two animations and placed it in the
environment, we have to create a script that makes it pop up when the player gets close to it.
We need to trigger the animation once, using the bool variable isEnable.

There's more...
The focus of the next sections is to show us how it is possible to improve our 3D
warning message.

Chapter 9

237

Transforming the update function into a coroutine
If we want to improve computational performance, we can consider transforming the
Update() function into a coroutine. We have discussed coroutines in greater detail in the
previous chapter, so you can revisit it again, especially in the There's more... section of the
first recipe.

Always orienting the warning towards the player
Imagine that we are using the 3D warning to trigger a pop-up message for a pickup item
on the floor. Since the player can reach it from different directions, it's not nice that when it
comes up, it has a different orientation. So, until the warning for instance on the wall, the
player can see it from only one direction and it doesn't need to face the player. But in other
cases, this is necessary. In order to do so, we have to change our script a little.

Let's add the following line at the end of the Update() function of our script:

transform.LookAt (player.position);

In this way, we force the warning to always face the player.

Adding a floating effect
This UI element is supposed to be in the environment. An example of its use may be to
indicate to a player an item to pick up. In this example, it is possible to have the UI element
floating rather than static in the air. So, we can follow the steps in the Making a floating UI
element recipe in Chapter 5, Decorating the UI. Contrary to what we did in the Adding a
smooth tilt effect section, where the floating logic could still be set in just two dimensions,
here we might want to extend the floating effect to the third dimension. This should be used
with the Rotating along its axis section rather than the Always orienting the warning towards
the player section.

Therefore, if we decide to implement this extension, we have to change FloatingUIScript
a bit by adding two variables:

public float zspeed, zAmplitude;

Also, change the Update() function like this:

void Update () {
 rectTransform.localPosition = new Vector3(xAmplitude*Mathf.
Sin(Time.time*xspeed), yAmplitude*Mathf.Sin(Time.time*yspeed),
zAmplitude*Mathf.Sin(Time.time*zspeed));
 }

In this way, we can change the position and value of the z axis as well. As a result, we are
utilizing the third dimension.

Diving into 3D UIs

238

See also
ff Throughout this chapter, we discussed how to animate UIs and how various elements

such as the warning message can be helpful to a player during the game. In
particular, we can see that an ideal way to animate a 3D warning message is as a
popup during gameplay. In fact, this kind of animation is very similar to the one that
is described in the Creating a pop-up menu recipe in Chapter 6, Animating the UI.

ff Additionally, we deal with not only the animation of various UI elements, but also
how to trigger them. This was covered in the Creating a menu with an entrance
transition recipe, also in Chapter 6, Animating the UI. That recipe demonstrated how
we can use the OnClick() event to trigger the animation. This is done by calling
the Play() function on the Animator component. In contrast, we called the function
directly inside our script, but the way it works is the same. So, refer to these two
recipes to handle the animation of the 3D warning.

ff As we saw in the There's more... section, we are able to implement the 3D warning
message with a coroutine. This example refers to the Optimizing the code using a
delayed update through coroutines section contained in the Creating a distance
displayer recipe in Chapter 8, Implementing Advanced HUDs.

ff Finally, the last subsection in There's more… explained how we can extend
FloatingUIScript. A good place to refresh our memories about how to do this
is the Making a floating UI element recipe in Chapter 5, Decorating the UI.

239

10
Creating Minimaps

In this chapter, we will cover the following recipes:

ff Creating a minimap

ff Implementing advanced features for minimaps

Introduction
In previous chapters, we looked at various HUD and UI elements. In this final chapter, you
will learn how to implement one more HUD/UI element — minimaps. Minimaps can serve a
number of purposes, such as identifying locations of interest, objects, and even characters
(such as the locations of enemies and other players, which can be shown as icons on the
minimap). Please keep in mind that you will need to have Unity Pro installed in order to create
both the minimaps in this chapter, as Unity Pro provides certain features we will be using in
this chapter, such as render textures, that are not available in the free version.

Getting ready
There are two ways that we can activate an installation of Unity Pro: through online and
manual activation.

Once you have downloaded, installed, and run the Unity editor, you will be asked to choose
which version of Unity you want. Select Unity Professional (as this is required for this chapter).

Online activation requires that you have an existing serial number, which you have previously
purchased, the Unity editor, downloaded and installed, and an Internet connection. During the
process, you will be asked to input these details along with some other demographic data,
such as your reasons for using Unity. Once you have worked your way through these, you will
be able to start using Unity, ready to create your minimaps!

Creating Minimaps

240

If, for some reason, you cannot activate your Unity license online, you will need to do it
manually. Furthermore, manual activation is the fallback when online activation fails. To
manually activate Unity, you will need to ensure that you have the Unity editor installed. Manual
activation is a slightly more complicated process than online activation, so more details
regarding the steps involved can be found at https://unity3d.com/unity/activation.

Creating a minimap
In this recipe, we will create a minimap. An ordinary minimap features the basic points
of navigation, typically in the shape of a circle or a square. In some instances, a minimap
features a scaled-down real-time version of a map. In others, it may be a simplified version of
the terrain. Whatever the case may be, minimaps prove to be a useful feature when traversing
large landscapes, and they are also a way of indicating to the player the locations of various
items. In this recipe, you will start learning how to use render textures and raw images. You
will also learn how to set the position of the camera according to the player's position.

How to do it...
1.	 First of all, we need to create the scene in which we can test the minimap.

2.	 To quickly generate a 3D environment, we can use the Terrain object, which we can
create by right-clicking on the Hierarchy panel and then going to 3D Object | Terrain.

3.	 Now, in the Inspector, we can choose different tools to model it. Feel free to consult
the official Unity documentation on how to use them. We can find the link in the See
also section of this recipe. However, what we want to achieve is something like this:

https://unity3d.com/unity/activation

Chapter 10

241

4.	 Therefore, we need to create some mountains, and maybe mold a valley. Also, to give
the terrain some colors, we can use the Brush tool to paint the world with some nice
textures. Even though this part doesn't directly relate to how we create a minimap,
it is worthwhile to spend some time on creating a nice 3D environment if we don't
have any. In this way, we will have a better scene to test the minimap and ultimately
understand how it works. In fact, as we will see in the There's more… section of the
next recipe, a lot of improvements make sense in real game environments only. For
instance, we cannot improve shadows if our terrain is completely flat, because we
don't have any shadows. Furthermore, we should also add a player object to the
scene and attach a script to it to make it move. Now that we have an environment,
we can implement the minimap system.

5.	 To display the minimap, we will use another camera, which is different from
MainCamera. This camera will display the scene from a top-down view and will be
the background that our minimap is based on. Right-click on the Hierarchy panel
and select Camera. Finally, rename it to MinimapCamera.

6.	 By default, a Camera comes with Audio Listener attached to it. Since we should keep
only one Audio Listener in the scene at any single point in time, we have to remove
this component from MinimapCamera. To do this, right-click on Audio Listener and
select Remove Component.

7.	 Next, we need to create a Render Texture. Keep in mind that this feature is available
in Unity Pro only. It is a very powerful component because it updates its texture at
runtime. This could be useful to create reflections, monitors, and even mirrors in our
games. However, here we will use them to render the minimap. In order to create a
Render Texture, right-click on the Project panel and select Create | Render Texture.
Let's rename it MinimapRenderTexture.

8.	 Then, we need to link the RenderTexture to MinimapCamera. By doing this, we
ensure that everything that is in view of the Camera will be shown on Render
Texture. Select the camera and drag the MiniMapRenderTexture into Target
Texture. Once we have done this, we should have something that looks like this:

Creating Minimaps

242

9.	 Now, we are ready to create our UI. We are going to use a UI component that we
haven't used previously. This component is called Raw Image. The main reason for
using a raw image, and not the ones that we have used in all other chapters of this
book, is that this one can handle every kind of texture type in Unity, and not only
sprite textures. Since Render Texture isn't a Sprite, we have to use Raw Image. The
way of creating it is similar to other UI elements. First, right-click on the Hierarchy
panel, and then go to UI | Raw Image.

Finally, rename it Minimap.

10.	 Place it in the Canvas in the top-right corner, or whichever position best suits
your game.

11.	 Now, we have linked MinimapRenderTexture to the camera so that we can receive
data from it. However, we also have to link Render Texture to the Raw Image that
we created in the previous step. In this way, Minimap can show the frame rendered
by the camera on-screen. Let's do it by dragging MinimapRenderTexture into the
Texture of Minimap. After we have done this, we should see the following:

12.	 The next step is to make MinimapCamera follow the player from a top-down view.
This means that MinimapCamera should move only along the x and z axes, because
we don't want it to get closer or further away from the map. To do this, let's create a
script on the MinimapCamera.

13.	 Select MinimapCamera in the Inspector.

14.	 Navigate to Add Component | New Script and name it MinimapScript.

15.	 Next, click on Create and Add.

16.	 Now, double click on the script in order to edit it. To keep the script as general as
possible, let's create a new public variable that stores the player's Transform,
since we will access to the position of this component every frame. In fact, in some
games, the player can switch between characters, and this value can change at
runtime without us having to modify this script. Keeping this in mind, we will need
to add the following to our script:
public Transform playerTransform;

Chapter 10

243

If the player object doesn't change over time, we can
automatically set this variable in the Start() function, by
calling the GameObject.Find("Player").transform
function. Of course, if it is necessary, replace "Player" with
the name of the player object in your scene.

17.	 Now, in the Update() function, we have to assign a new position to our camera.
Therefore, we will need to assign a new vector to it, where the x and z components,
are the same as those of the player, while y is constant, for the reason explained
in step 9. By doing this, we ensure that it will not only follow the player but also be
centered on him:
void Update () {
 transform.position = new Vector3
(playerTransform.position.x, transform.position.y,
playerTransform.position.z);
}

18.	 Save the script and come back to Unity. Finally, we drag the Player into the public
variable of our script, and now everything is ready. Let's click on play and test what
we have done so far.

How it works...
In this recipe, we saw how to use render textures and raw images to create a minimap.

In fact, we linked the render texture to the camera by setting its target texture variable. By
doing this, the camera has lost its ability to render on-screen. Thus the output of the camera
is then stored in Render Texture. When we assign this render texture to Image Raw, it takes
the data from the render texture. Finally, it is rendered as a UI element on the screen, which
displays what is seen through the camera.

Creating Minimaps

244

The process is shown in the following diagram:

There's more...
Now that we have seen how to create a minimap, the following section will teach us how
to improve it by setting the camera to work orthographically.

Setting an orthographic camera
Often, the design of a game requires that the minimap is flat. As far as we have a perspective
camera, it will never be as perfectly flat as we would like it to be. Therefore, in this case, we
have to change MinimapCamera in such a way that it renders in an orthographic mode rather
than a perspective one.

To do this, we need to select MinimapCamera and then change Projection to Orthographic in
the Inspector. Now, since Field of View is a parameter that is only for perspective cameras, it
disappears. As a result, Size takes its place.

At this moment, the rendering of the camera may appear very close to the terrain. We can
try to solve this issue by changing the position value of the y axis. Since it is a top-down view
(rotation along the x axis equals 90 degrees, and it is zero otherwise), this doesn't affect the
view. This is because all the view rays that are projected are parallel between them. So, we
have to change the Size value in order to see more inside our minimap.

Chapter 10

245

Now, we render orthographically and the camera component should look like this:

See also
ff We have used some not-so-common features of Unity. As such, it could be helpful to

check out the following resources from the official documentation:

�� http://docs.unity3d.com/Manual/script-RawImage.html

�� http://docs.unity3d.com/Manual/class-RenderTexture.html

ff If you want to refresh your understanding of how to use the terrain tool in Unity, you
can refer to the official manual by visiting http://docs.unity3d.com/Manual/
script-Terrain.html

Implementing advanced features for
minimaps

In comparison to the simple minimap that we created in the last recipe, a more complex
minimap features more detailed attributes, such as the shape of a minimap. In this recipe,
we will make the minimap circular using masks. Also, you will learn how to add layers to hide
various objects so that they don't feature inside of the minimap. This may be particularly useful
if you want to hide specific objects and characters and even some locations throughout your
game. Finally, we will look at how to add icons to the minimap, also through the use of layers.

Furthermore, in the There's more… section of this recipe, you can find other advanced
features to implement in your minimap.

http://docs.unity3d.com/Manual/script-RawImage.html
http://docs.unity3d.com/Manual/class-RenderTexture.html
http://docs.unity3d.com/Manual/script-Terrain.html
http://docs.unity3d.com/Manual/script-Terrain.html

Creating Minimaps

246

How to do it...
1.	 Since this recipe will teach you how to implement some advanced features in a

minimap, it is assumed that the previous recipe for creating a minimap has been
completed. However, you don't have to follow the entire recipe. You can also take
ideas on how to improve your minimap with these advanced features. So, let's
start by shaping it.

2.	 In order to transform the minimap's shape into a circle, we have to use masks. You
learned about them in Chapter 1, UI Essentials in the Adding a circular mask to an
image recipe. We can take the mask that we created in that recipe and use it again
here. Thus, we can create a new image, rename it MinimapMask, and set the white
circle to its Source Image.

It is possible to use any other shape that we want. Just keep in mind
that if you create any shape, the white sections of the mask texture
will be the parts that are visible.

3.	 We place MinimapMask over our Minimap and parent the latter with the first one.

4.	 The next step is to add the Mask component to MinimapMask. To do this, go to Add
Component | UI | Mask. Since we don't want to see the original graphic of our mask,
we need to make sure that we uncheck Show Mask Graphic.

5.	 Now, our minimap should have a circular shape, as shown in the following screenshot:

Chapter 10

247

6.	 Another interesting feature that we can add to the interface of the minimap is a
compass. To do this, create another image element and rename it Compass. Finally,
attach a sprite to it, like this:

7.	 Now, we have only to place it behind the minimap, and ensure that the part of the
interface we want is visible. We should end up with something similar to the following:

In the There's more… section of this recipe, you can find out more
about the compass.

Creating Minimaps

248

8.	 Furthermore, minimaps often use icons or symbols within themselves as a way
of indicating to the player various objects and even characters. For instance, the
player could be represented as a little white arrow and the enemies as red dots. To
implement this feature on the minimap, we have to use layers. To edit layers, go
to the top-right corner of Unity, click on Layer, and then click on Edit Layers..., as
shown here:

9.	 As we can see, a menu now appears in the Inspector, showing all the layers. Some
of the layers, from 0 to 7, are built-in layers and cannot be modified. In contrast,
all other layers are user layers, which we are going to modify. If you have followed
the Making UI elements affected by different lights recipe contained in Chapter 4,
Creating Panels for Menus you should see that some of the user layers have already
been set. If they are, we can just use the other ones:

Chapter 10

249

10.	 Now, let's add another couple of layers and call them HideMinimap and
ShowMinimap. We do this so that all the objects that belong to the first layer are not
displayed on the map but in the main camera. Thus, all the objects that belong to the
second layer are shown in the minimap but not in the main camera. Ultimately, all the
objects that belong to another layer, including nothing/default, are shown in both the
cameras (such as the terrain).

According to the design of our game, different objects in the world
could already have a layer assigned to them. This may have been done
in order to implement other functions of the game. Therefore, we have
to extend the concepts that we are covering in this recipe to multiply
layers, since we cannot change the layer of an object that is used by
other scripts in the game.

Therefore, instead of creating these two layers, we have to imagine
them as a set of other layers that are already implemented — the ones
we want to show on the minimap and the ones we don't want to. So in
the next steps, every time we perform an operation with one of the two
layers, we have to perform that action on all the layers that belong to
the set of layers that we want to show in the minimap.

11.	 Next, we have to assign these layers to our objects in the scene. Let's start assigning
the HideMinimap layer to the Player and to all other objects that we don't want to
show in the minimap. This can be because they may be replaced by an icon, or simply
because we don't want them to be displayed at all in the minimap (for example, other
characters in a scene, treasure to find, and coins to collect). To assign a layer, select the
object and change the layer from Default to HideMinimap. This option can be found
just under the name of the object in the Inspector, as shown in this screenshot:

Creating Minimaps

250

12.	 We have to hide this entire set of objects from MinimapCamera. We can do this by
selecting it and, then in the Inspector, changing Culling Mask in order to uncheck the
HideMinimap layer. In fact, the camera will not render these objects anymore, and as
a result, they will not appear on the Render Texture that is attached to our Minimap:

13.	 Now, we have to create the icons that will be displayed in the minimap. In this recipe,
for the sake of simplicity, we will use only spheres, which will be rendered as dots
from the top-down view of the camera. But feel free to attach your own icon as a
texture on a quad. However, keep in mind that you should rotate it along the y axis
only, because it is supposed to rotate like an icon. This means that it can only rotate
left or right and not in all directions like a 3D object.

By using monochromatic spheres, we don't have to consider rotation,
since it will always be rendered as a circle of their color, independent
of the rotation they have.

14.	 So, let's create a new sphere and a new material for it. We can change the Albedo
value of Texture to a color that we want to give to the dot in the minimap that will be
our player (for example, cyan). Rename the sphere PlayerMinimapIcon. Put it under
the MinimapCamera. If needed, depending on the Size you have set previously,
increase or decrease the scale of the sphere so that it appears bigger
or smaller in the minimap. Next, place the sphere at the same position of the player
and then attach it to the player object.

Chapter 10

251

15.	 The main camera is still able to render PlayerMinimapIcon. However, we don't
want this. In order to stop the camera from rendering this, we change the
PlayerMinimapIcon layer to ShowMinimap, as we did in step 12. Next, cut this layer
from the rendering of the main camera by unchecking the Showminimap layer from
its Culling Mask.

16.	 Repeat these three last steps for all the objects that you want to represent as icons.
Also, we don't have to change the cameras this time, since their Culling Masks are
already set properly.

17.	 Finally, we have created a nice minimap that is ready to be used. Especially if we
have already built our 3D world, it will be a pleasure to navigate through it with the
minimap. Furthermore, take a look at the There's more… section to implement some
even more advanced features.

How it works...
In this recipe, we added new features to the minimap that we had developed in the first recipe
of this chapter.

First, we gave our minimap a shape using the mask component. In fact, as you learned in
Chapter 1, UI Essentials, we can use another picture to shape our UI elements.

Then we added a new Image element to our minimap so that we can use a compass in
the interface. This works as both a decorative element and also a way to indicate north
to the player.

Creating Minimaps

252

Finally, we used layers. By using them, it is possible for us to tell elements that are rendered
by our cameras from elements that are not. This is useful for both hiding elements on the
minimap and showing something only in the minimap, such as icons.

There's more...
If we have implemented all the features so far, we already came up with a very good minimap.
However, if you want to push your skills and learn more about how to improve your minimap,
the following sections will give you the right tools to achieve this.

Limiting the boundaries of the minimap camera
It is good practice to design well-structured boundaries for our level, ideally so that when
the player gets closer to the boundaries, the minimap shouldn't display areas of the game
environment that the player cannot access. However, in spite of our best efforts, a player may
still go close to the boundaries, and since the minimap is centered on the player, it could
display these areas, which are outside the bounds. Therefore, we want to make the minimap
stop being centered on the player when he is close to the boundaries, and return to tracking
the player when he goes back inside the area where the minimap could follow him without
showing inaccessible parts of the world.

In general, the shape of the map could be anything, and in this case, we have to set the script
to properly distinguish between whether or not the player is close to the edge of this area.
Here, for the sake of simplicity, we will implement rectangular edges.

Let's set two variables for our edge. The first variable is a Vector2, where the first value is for
the min and max movement along the x axis that the minimap can reach. The second one is
also a Vector2, but this time for min and max along the z axis:

public Vector2 xBoundaries;
public Vector2 zBoundaries;

In the Update() function, we want to find out whether the player is inside this area or not.
If so, we can just set the position as we usually do. Otherwise, we have to set the minimap
to the closest position that it can reach to best track the player when he is outside the area.
If the player still manages to view past the boundaries of the map, it is likely that there
are issues with the way in which the map is designed, or that there is a bad setting of the
boundaries' vectors. Thus, during the design of the map, designers need to ensure that its
boundaries are kept adequately constrained to the dimensions of the minimap. Therefore,
we can replace the line of code that updates the position with these lines:

float newXPosition = playerTransform.position.x;
float newZPosition = playerTransform.position.z;

if (newXPosition < xBoundaries.x)
 newXPosition = xBoundaries.x;

Chapter 10

253

if (newXPosition > xBoundaries.y)
 newXPosition = xBoundaries.y;

if (newZPosition < zBoundaries.x)
 newZPosition = zBoundaries.x;
if (newZPosition > zBoundaries.y)
 newZPosition = zBoundaries.y;

transform.position = new Vector3 (newXPosition, transform.position.y,
newZPosition);

Now let's set the vectors in the Inspector and test it.

Rotating the minimap according to where the player is facing
In the same game, the minimap doesn't always face the same direction, but changes
according to where the player is facing. This is so that everything that is displayed is done in
a way that is relative to the player's perspective. This is often used in first-person games. In
order to implement it, we have to change the rotation of the minimap time after time.

So, at the end of the Update() function, we not only have to move the camera but also
have to rotate the minimap according to the player's direction. Therefore, we want to rotate
the y axis of MinimapCamera so that it matches the rotation along the y axis of the player.
The other two axes are not touched, so set them equal as before. To do this, we can add the
following to our script:

transform.rotation = Quaternion.Euler(new
Vector3(transform.rotation.eulerAngles.x,playerTransform.rotation.
eulerAngles.y,transform.rotation.eulerAngles.z));

As the camera rotates, the view is reflected inside the minimap, which also assumes the same
rotation as the player.

Smoothly rotating the minimap compass to point towards the
relative north of the game environment
A compass in the minimap is a nice element that complements it, not only as an additional
aesthetical element, but also for actually indicating the location of north within our game to
the player. Especially if our minimap rotates according to the direction that the player is facing,
we cannot use a static compass, and thus we have to move it. However, just as in reality, the
compass should not be instantaneous. Therefore, we need to add a slight delay in rotating the
compass so that it feels realistic.

We have to store the transform value of the compass. To do this, we need to create a variable
for it:

public Transform compass;

Creating Minimaps

254

Since it is a public variable, we can assign it in the Inspector. It is also worth keeping in
mind that we should provide designers with the ability to tweak the velocity of rotation of the
compass according to the design of the game. To do this, we again need to add a variable:

public float compassRotationSpeed = 1f;

Because the north of our game could be located anywhere, we need to provide designers
with the option of changing the direction of the compass through an offset from the standard
north, which can often be the immediate direction that the player is facing when the scene is
loaded. Therefore, we should create a variable for this as well:

public float compassOrientationOffset = 0f;

At the end of the Update() function, we have to set the rotation of the compass. This
is so that it can accurately point toward north relative to the game environment. Now, in
order to make this rotation smooth, we have to perform a Lerp from the current rotation
of the compass to the desired one, which assumes the same direction that the player is
facing. Furthermore, at this rotation, we can add compassOrientationOffset in order
to reposition the location of north so that it reflects the in-game bearing of north. As a
final parameter to control the lerp, we take the time from the last frame and multiply it by
compassRotationSpeed:

compass.rotation = Quaternion.Lerp (compass.rotation,
Quaternion.Euler (0, 0,
playerTransform.rotation.eulerAngles.y+compassOrientationOffset),
Time.deltaTime * compassRotationSpeed);

We have used the Quaternion.Lerp() function because it works very well with rotations.
In fact, when the player changes rotation from +160 degrees to -160 degrees, we would want
the compass to traverse the shortest path of rotation possible to reach the final orientation. As
a result, in this example, we would want the rotation path to be only 40 degrees, and not 320
degrees, as it would have happened if we had used the normal lerp between angles. By using
Quaternions, we can avoid this problem and thus find the shortest path to rotate our compass.

Improving the lighting within the minimap
Sometimes, within the game world, lighting can add to the game experience. However, the
minimap does not require the same amount of detailed lighting. In fact, it should be clear and
easy for the player to follow while he is traversing the game's environment. As such, we need
to take into consideration the fact that the lighting that we have for the minimap allows it to
be viewed easily.

If we try to modify the lighting by setting a layer to some lights and then excluding that layer
from the Culling Mask of the minimap camera, we won't see any change. This is because the
light, along with the shadows that it casts, is independent from the layer and from the Culling
Mask of the camera. Therefore, we have to use some advanced features of Unity.

Chapter 10

255

Similar to Start() and Update(), there are other special functions that Unity itself calls
at certain moments during all the processes to render the final frame on the screen. In
particular, we will implement the OnPreCull() function, which is called before a frame is
rendered with a specific camera, and also the OnPostRender() function, which is called
when the frame for that specific camera is already rendered.

Keep in mind that these two functions are called by Unity only if they are
implemented in a script attached to an active camera.

These two functions allow us to change the world's state before the camera renders a frame,
and then put the world back to its original state after the frame has been rendered. We will
see how to use these functions at the end of this section.

In order to avoid having shadows, we can turn the shadow casting of the lights off in our
world and then turn it on again after the rendering. Keep in mind that even if we turn off the
shadows, there might be some parts of the game that are not illuminated and thus appear
like soft shadows. This is because it also depends on which shader the object has, and this
affects how it is seen in the 3D world.

Since we have used the Terrain object in Unity to build this test scene, we can change its
shader. We can achieve this by going to its settings (select it in the Hierarchy panel and then
click on the cog in the Inspector). Then we go to Material and change to Built in Legacy
Diffuse. Using a directional light with Shadow Type set to No Shadow and a rotation of 90
degrees on the x axis and zero on the other two axes, it is possible to render a Terrain that
appears to have no shadows of any kind.

Shadows are not the only issue that we have to face. For instance, some lights may feel right
within the 3D world but not in the minimap. An example of this would be if we have a fire in
the game. While a fire may look appealing and contribute to the atmosphere, it is probably not
ideal to have it in a minimap. So, we may want to remove it. Furthermore, including something
such as a fire inside the minimap as well could be computationally expensive. This is because
it needs to be rendered twice, once with the main camera and also for MinimapCamera.
However, even if we remove the fire from the minimap through layers, the light of the fire will
still be present when the minimap is rendered. Therefore, we have to remove this light as well
when we render the minimap.

Additionally, imagine that our game implements a day-night cycle. Ideally, we would like
our minimap to always appear the same and not reflect the changes throughout the cycle.
Therefore, we have to maintain the same lighting for our minimap. This means that we have
to render different settings for the lighting on each of the two cameras.

Creating Minimaps

256

We can deal with all of this by using the two aforementioned functions. In order to do this,
let's create some variables. The first is an array for all the lights that we want to disable when
the minimap is rendered. By setting it as public, we can just drag all the lights that we don't
want on the minimap in this variable, within the Inspector. So, let's add this to our script:

public Light[] minimapLightsVisible;

If we have a lot of lights that are useful for the game but not for the
minimap, we should put all of them here. Furthermore, by doing
this, we can also improve performance.

Now, we need another array for all the lights whose shadows we don't want to cast in our
minimap. Even this time, we make it public so that we can set it in the Inspector:

public Light[] minimapLightsNoShadows;

Finally, an array with all the lights we want to render only in the minimap. We can keep these
public for the same reason:

public Light[] minimapLightsNotVisible;

Now we can write the special functions that we mentioned earlier. Let's start with
OnPreCull(). Here, we have to disable all the lights in minimapLightsNotVisible,
make all the lights in minimapLightsNoShadows stop casting shadows, and turn all the
lights in minimapLightsVisible on. Therefore, we use these lines:

void OnPreCull (){
 foreach(Light l in minimapLightsNotVisible)
 l.enabled = false;

 foreach(Light l in minimapLightsNoShadows)
 l.shadows = LightShadows.None;

 foreach(Light l in minimapLightsVisible)
 l.enabled = true;
}

Finally, we have to do the opposite process in the OnPostRender() function, as follows:

void OnPostRender(){
 foreach(Light l in minimapLightsNotVisible)
 l.enabled = true;

 foreach(Light l in minimapLightsNoShadows)
 l.shadows = LightShadows.Soft;

 foreach(Light l in minimapLightsVisible)
 l.enabled = false;
}

Chapter 10

257

However, there is still more about lighting for us to know. In this example, every time we put
a light in one of the three arrays, it will be enabled and disabled — every time in the same
way. For instance, suppose that we have a light that is turned on or off during runtime in
the game environment. If we don't want to render it on the minimap, we include it in the
minimapLightsNotVisible array. However, when OnPostRender() is called, it is turned
on irrespective of what its state was before the rendering of the minimap. Therefore, a more
sophisticated implementation of this technique would include to store the original lighting of the
scene in the PreCull() function, and then to restore it back into the PostRender() function.

Ideas for implementing the minimap in closed environments
In a closed environment, this minimap might not work. For instance, there is a multi-storeyed
building, and ideally we wish to render on the minimap the floor where the player currently is.
Otherwise, our icon could also be hidden by other elements. Therefore, we have to use layers
to hide different parts of the building and change the Culling Mask of MinimapCamera at
runtime. Another solution is to use different cameras and then switch between them every
time the player goes to a new floor. In this case, it's preferable to keep all the other cameras
that are not in use disabled, for performance reasons.

Other techniques for minimaps
Of course, the techniques that are explained here are not the only ways to implement a
minimap. This section is aimed at giving you an idea about other ways to implement minimaps.

If our graphics team has drawn the levels' schematics, we can use them to implement a
minimap. Here, instead of using another camera, we can use these level schematics along
with a mask, as we did before in this recipe by shaping the map as a circle. The main issue
here is to move and rotate the picture according to where the player is. However, the limitation
here is that this is hard when the map keeps changing over time. For instance, if we want to
display moving platforms, we have to link them with other pictures or icons in the minimap
and move them with respect to the main map schematics. The advantage in this case is
performance, since we don't have to render what appears in the minimap frame by frame.
Furthermore, the aesthetic aspect of the level schematics as a minimap could have a nicer
result than the realistic look of a map with a top view. In addition, if we implement this system
in Unity, we don't need Render Textures, and therefore we don't necessarily require Unity Pro.

Another technique is a mix of the following two: one technique that you learned in this chapter,
using another camera for a minimap; and the previous one, using level schematics. The
basic idea here is to render the top view of the map only once, in order to keep the top view
of the map and make gains in performance. So, we can take pictures of the map from the
top view by setting all the layers, merge them into a unique picture, and use that one as level
schematics with the previous technique.

Creating Minimaps

258

In both of these implementations, we have to consider how to properly include icons on the
minimap. This is because their positions depend on the locations of objects or characters in
the real world that they are representing. Again, if we use UI elements as icons, we have to
properly position and rotate them on the minimap.

This helps us understand that there isn't a single technique that is best; all of them have their
own advantages and disadvantages, which have to been taken into consideration when we
design our game. Thus, at this stage, we need to carefully choose the technique that better
suits our needs.

259

Index
Symbols
2D texture

image, slicing with nine sections 4
setting up, for bordered sprite 2, 3

3D menu
creating 223-226
quick shadows 226

3D UI
creating 231-233
interacting, with 3D world 233
placing 231-233

A
advanced features

implementing, for minimaps 245-251
animated 3D UI warning

creating 233-236
floating effect, adding 237
player warning 237
update function, transforming into

coroutine 237
armor

used, for creating health bar 52-56

B
bar

bounds, adding 129, 130
creating 126-128
displacement phase, adding 128
phase, adding 130

bordered sprite 3

button
animating, on cursor touch 151-153
customizing, for color change 164, 165
images, modifying 166
selecting, with keyboard 20-22

C
Canvas Scaler

URL 6
character lower bound limits, input field

checking 190-193
player feedback, giving 193

circular mask
adding, to image 10-12

Color.Lerp() function
URL 169

coroutines
URL 197

cursor
animating 196, 197
changing, at runtime 194-196
URL 197

customizations
buttons, creating for color change 164
slider, creating for color change 166

D
directional radar

closest target detection 215
creating 209-213
delay, adding through coroutine 215
projection plane, modifying 214, 215

260

script, testing 213, 214
using 215

discrete slider
used, for creating slide shower 169-173

distance displayer
beep sound, adding 207
beep sound ratio, increasing with

distance 207, 208
code optimization, using delayed update

through coroutines 205
creating 199-202
multi targets detecting 206, 207
script, testing 202-204

double sided timer
creating 72

drag-and-drop element
creating 107-109
dropped objects, checking 109, 110

draggable panel
creating 102, 103

E
entrance transition

used, for creating menu 146-149
event handlers

list, URL 197
EventSystem

URL 23
extendable and rotating UI element

axis, controlling 124
butterfly, creating 125
creating, with final fading effect 117-121
multiple axis, used for creating

3D effects 124
shining effect, creating 123
shining effect, improving 123, 124

F
final fading effect

fading-in 120
speed for each axis, changing 120

used, for creating extendable and rotating UI
element 117-122

floating UI element
butterfly, creating 133, 134
creating 131, 132
shaking effect, creating 132
sparkle effect, creating 133

G
GetKeyDown() function

URL 22

H
health bar

creating, with armor 52-56
hearts, symbolic lives counter

animating 157, 158
animation, changing through script 159
speed controller, adding 160

I
idle animation

used, for creating menu 150
image

adding, in UI 6-8
circular mask, adding to image 10-12
pivot point, changing 9
placing, in UI 6-8
rotating 9

input field, with personal text validation
creating, at runtime 182-185
for cycles, using for dynamic

filtering 188, 189
string, checking 186-188

Instantiate() function 233

K
keyboard

used, for selecting buttons 20-22

261

KeyCode
URL 23

kingdom hearts health bar style
developing 60-64

L
Lerp function

URL 208
lights

URL 182
linear health bar

implementing 46-49
linear timer

about 69
code, running on time expiry 71
creating 69-71
double sided timer, creating 72
using 77, 78

lives counter
implementing 32-34
maxLives count, changing 35
variable lives value, retrieving 36

lower bound
adding, to slider 93-95

M
Mask component

URL 12, 14
Mathf.Sin() function

URL 130, 134
menu

appearing 141-144
creating, with entrance transition 146-149
disappearing 141-144
freezing time 145
idle animation, creating 150, 151

minimap
about 239
advanced features, implementing 245-251
camera boundaries, limiting 252, 253
compass, smoothly rotating 253, 254
creating 240-243
creating, with raw images 243

creating, with render textures 243
implementing, in closed environments 257
lighting, improving 254-257
orthographic camera, setting 244, 245
references, URLs 245
rotating, according to player direction 253
techniques 257, 258

mixed timer
about 74
creating 74-76
decimal point count, modifying 77

modular coin counter
coin count, obtaining 42
coins, removing 41
creating 36-40
player with maximum lives, rewarding 41

MP3 player
developing 110-113
song name, displaying 114

multiple bars
used, for creating multibar 56-60

N
numeric timer

implementing 66- 68
time variable, obtaining 68

O
outlines

adding, to text 137, 138
soft outline, adding 138

P
panel

draggable area, creating 103
pop-up menu

creating 154-157

R
radial health bar

degree, changing 51, 52
implementing 50, 51

262

radial timer
about 72
creating 72, 73

raw images
used, for creating minimap 243

Real-Time Strategy (RTS) game 194
rectTransform.Rotate() function 122
render textures

used, for creating minimap 243
resizable panel

creating 103-106
rich text

boldface, using 31
URL 31, 36

S
score counter

about 28
boldface, using in rich text 31
implementing 28-30
remove points function, adding 30
score, obtaining 31

scrollable images
creating 12-14

scrollable text
creating, with vertical slider 14-18

SetCursor()
URL 197

shadows
adding, to text 134, 135

slider
alpha channel, changing 180
bounds, expressing in percent 96, 97
color channels, changing 178
customizing, for color change 166-168
customizing, for single color channel

change 175-178
interacting, with lights 181, 182
lower bound, adding 93-95
possible values, limiting in Inspector 97
Slider Shower color, changing 95, 96
upper bound, adding 93-95
value, displaying in percentage 90-92

slide shower
creating, with discrete slider 169-173
pictures, adding at runtime 175

setup, automating 174, 175
text label, adding for displaying

picture count 173
Whole Numbers variable, unchecking 174

smooth tilt effect
adding 227-229
axis, inverting 230
mouse reference, changing from screen to

arbitrary rect 231
original rotation, starting from 229
speed, converting in smoothness factor 230
UI element, rotating with asymmetric

range 230
subtitles shower

developing 216-219
interactive avatar image, adding 220
interactive avatar name, adding 221, 222
script, testing 219

symbolic lives counter
animation, customizing 161
creating 42-45
heart animation, changing through

scripts 159
hearts, animating 157, 158
speed controller, adding 160

T
text

3D letters, creating 136-139
outlines, adding 137
scrolling horizontally 19
shadows, adding 134, 135

timer
about 65
linear timer, creating 69
mixed timer, creating 74
numeric timer, implementing 66
radial timer, implementing 72
well-formatted timer, creating 78

toggle group
creating 87-89
option selection possibility, removing 90
URL 90

263

U
UI

image, adding 6-8
image, placing 6-8
layouts components, using 23, 24
resizing, according to resolution 5, 6
resizing, according to screen size 5

UI elements, affected by different lights
creating 98-101

Unity Pro
installation, activating 239
manual activation 240
online activation 239

upper bound
adding, to slider 93-95

W
well-formatted countdown

code, running on time expiry 85, 86
decimal points, adding to expiry

time alert 86
developing 81-85
time variable, obtaining 85

well-formatted timer
about 78
creating 79, 80
time variable, obtaining 81

Thank you for buying

Unity UI Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity3D UI Essentials
ISBN: 978-1-78355-361-7 Paperback: 280 pages

Leverage the power of the new and improved UI system
for Unity to enhance your games and apps

1.	 Discover how to build efficient UI layouts coping
with multiple resolutions and screen sizes.

2.	 In-depth overview of all the new UI features that
give you creative freedom to drive your game
development to new heights.

3.	 Walk through many different examples of UI
layout from simple 2D overlays to in-game 3D
implementations.

Unity Game Development
Blueprints
ISBN: 978-1-78355-365-5 Paperback: 318 pages

Explore the various enticing features of Unity and learn
how to develop awesome games

1.	 Create a wide variety of projects with Unity in
multiple genres and formats.

2.	 Complete art assets with clear step-by-step
examples and instructions to complete all tasks
using Unity, C#, and MonoDevelop.

3.	 Develop advanced internal and external
environments for games in 2D and 3D.

Please check www.PacktPub.com for information on our titles

Unity Animation Essentials
ISBN: 978-1-78217-481-3 Paperback: 200 pages

Bring your characters to life with the latest features of
Unity and Mecanim

1.	 Learn the latest features of Unity 5 to develop the
most amazing animations for all types of games.

2.	 Refine your character animations by applying
more advanced workflows and techniques
with Mecanim.

3.	 A comprehensive book that explores core
animation concepts and demonstrates their
practical application in games.

Getting Started with Unity 5
ISBN: 978-1-78439-831-6 Paperback: 184 pages

Leverage the power of Unity 5 to create amazing
3D games

1.	 Learn to create interactive games with the Unity 5
game engine.

2.	 Explore advanced features of Unity 5 to help make
your games more appealing and successful.

3.	 A step-by-step guide giving you the perfect start
to developing games with Unity 5.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: UI Essentials
	Introduction
	Setting up a 2D texture to be a bordered sprite
	Resizing the UI according to the screen size and resolution
	Adding and placing an image in the UI
	Adding a circular mask to an image
	Making an image scrollable
	Making text scrollable with a vertical slider
	Selecting buttons through the keyboard
	Using UI layout components

	Chapter 2: Implementing Counters and Health Bars
	Introduction
	Implementing a score counter
	Implementing a lives counter
	Creating a modular coin counter
	Creating a symbolic lives counter
	Implementing a linear health bar
	Implementing a radial health bar
	Creating a health bar with armor
	Using multiple bars to make a multibar
	Developing a kingdom hearts health bar style

	Chapter 3: Implementing Timers
	Introduction
	Implementing a numeric timer
	Creating a linear timer
	Implementing a radial timer
	Creating a mixed timer
	Creating a well-formatted timer
	Developing a well-formatted countdown
that changes

	Chapter 4: Creating Panels
for Menus
	Introduction
	Creating a toggle group
	Showing the slider value as a percentage
	Adding upper and lower bounds to the slider
	Making UI elements affected by different lights
	Making a draggable panel
	Making a resizable panel
	Creating a drag-and-drop element
	Developing an MP3 player

	Chapter 5: Decorating the UI
	Introduction
	Creating an extendable element with a final fade effect
	Creating an extendable and rotating
element with a final fade effect
	Creating bars that go up and down
	Making a floating UI element
	Adding shadows to text
	Adding outlines to text

	Chapter 6: Animating the UI
	Introduction
	Appearing and disappearing menu
	Creating a menu with an entrance transition
	Creating a menu with an idle animation
	Animating a button when the cursor is
over it
	Creating a pop-up menu
	Animating hearts of the symbolic lives counter
	Changing animation of the hearts of the symbolic lives counter through the script

	Chapter 7: Applying Runtime Customizations
	Introduction
	Making a button that changes color
	Creating a slider that changes colors gradually
	Creating a slide shower using a discrete slider
	Creating a slider that changes a single color channel
	Making an input field with personal text validation at runtime
	Making an input field for a password with a lower bound limit for characters
	Changing the cursor at runtime

	Chapter 8: Applying Runtime Customizations
	Introduction
	Creating a distance displayer
	Creating a directional radar
	Developing a subtitle shower

	Chapter 9: Diving into 3D UIs
	Introduction
	Creating a 3D menu
	Adding a smooth tilt effect
	Creating and placing a 3D UI
	Making an animated 3D UI warning

	Chapter 10: Creating Minimaps
	Introduction
	Creating a minimap
	Implementing advanced features for minimaps

	Index

