

C# Game Programming
Cookbook for Unity 3D

https://taylorandfrancis.com

C# Game Programming
Cookbook for Unity 3D

Second Edition

Jeff W. Murray

Second Edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

First Edition published by CRC Press 2014
CRC Press is an imprint of Taylor & Francis Group, LLC

© 2021 Taylor & Francis Group, LLC

The right of Jeff W. Murray to be identified as author of this work has been asserted by
him/ in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act
1988.

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. The authors and publishers have attempted to trace the copy-
right holders of all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.
For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please
contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trade-
marks and are used only for identification and explanation without intent to infringe.

ISBN: 978-0-367-32170-3 (hbk)
ISBN: 978-0-367-32164-2 (pbk)
ISBN: 978-0-429-31713-2 (ebk)

Typeset in Minion
by SPi Global, India

http://www.copyright.com
http://www.copyright.com

This book is dedicated to my
amazing wife, Tori, and to

my boys, Ethan and William.
Boys, be nice to the cat and
the cat will be nice to you!

https://taylorandfrancis.com

vii

Contents

Acknowledgments xiii

Introduction xv

Prerequisites xvii

 1. Making Games in a Modular Way 1

1.1 Important Programming Concepts .1
1.1.1 Manager and Controller Scripts .1

1.1.1.1 Managers .1
1.1.1.2 Controllers .1
1.1.1.3 Communication between Classes2
1.1.1.4 Public Static .2
1.1.1.5 Private Static. .3

1.1.2 The Singleton .3
1.1.2.1 Using the Singleton in Unity3

1.1.3 Inheritance .3
1.1.4 Coroutines .5
1.1.5 Namespaces .6
1.1.6 Finite State Machines (FSM) .7

1.2 Naming Conventions .7
1.3 Where to Now? .8

Contentsviii

 2. Making a 2D Infinite Runner Game 9

2.1 Anatomy of a Unity Project .10
2.2 Open Unity, Then the Example Project for This Chapter10

2.2.1 A Few Notes on the Example Project12
2.2.2 Sprites .12
2.2.3 Animation. .13

2.3 Open the Main Game Scene .14
2.4 The Game Manager. .15
2.5 Making Platforms to Run On .18
2.6 Building the Player, RunMan .22

2.6.1 Adding the RunMan Sprite .22
2.6.2 Adding Physics and Collisions to RunMan23
2.6.3 Player Scripts .24
2.6.4 RunMan Sounds .26
2.6.5 Animating RunMan .27
2.6.6 Scoring .28

2.7 The Game Loop and the Game Manager. .28
2.7.1 Game States .28
2.7.2 The Main Loop of RunMan_GameManager.cs29
2.7.3 Setting Up the RunMan_Game Manager

Component in the Editor .35
2.8 The Demise of RunMan .36
2.9 Adding the User Interface .37

2.9.1 Main Menu Setup .47

 3. Building the Core Game Framework 49

3.1 Controllers and Managers .50
3.1.1 Managers. .50
3.1.2 Controllers .50

3.2 Core Framework Scripts .50
3.2.1 BaseGameManager .51
3.2.2 ExtendedCustomMonoBehaviour .56
3.2.3 BaseCameraController .58

 4. Player Structure 61

4.1 A Player Controller .62
4.2 Dealing with Input .63
4.3 User Data .65

4.3.1 The UserData Class .66
4.3.2 The BaseUserManager Class .66

4.4 The BasePlayerStatsController Class .70
4.5 Managing Players .73

 5. Recipes: Common Components 75

5.1 Introduction. .75
5.2 AI. .76

Contents ix

5.3 Camera .76
5.3.1 Third-Person Camera .77
5.3.2 Top-Down Camera .80

5.4 Game Control .80
5.4.1 GlobalRaceManager .80
5.4.2 RaceController. .80

5.5 Input .81
5.5.1 Mouse Input .81

5.6 Level Loading. .82
5.7 ScriptableObjects .83

5.7.1 ProfileScriptableObject .83
5.8 Spawning .83

5.8.1 A Spawner Component .84
5.8.2 Trigger Spawning. .88
5.8.3 Timed Spawning .89

5.9 User Interface. .91
5.9.1 CanvasManager .91
5.9.2 ScreenandAudioFader .91
5.9.3 MenuWithProfiles .91

5.10 Utility .91
5.10.1 AlignToGround .91
5.10.2 AutomaticDestroyObject .93
5.10.3 AutoSpinObject .93
5.10.4 FaceCamera .94
5.10.5 LookAtCamera. .94
5.10.6 PretendFriction .94
5.10.7 TimerClass .96

5.10.7.1 Modifying the Timer to Update
Automatically. .100

5.10.8 WaypointsController. .100
5.11 Weapons .100

 6. Player Movement Controllers 101

6.1 Humanoid Character .101
6.2 Wheeled Vehicle .108
6.3 Wheel Alignment .115
6.4 2D Platform Character Controller .118

 7. Weapon Systems 123

7.1 Building the Scripts. .123
7.1.1 The BaseWeaponController Class .124
7.1.2 BaseWeaponScript. .130
7.1.3 Switching between Weapons .133

 8. Waypoints Manager 137

8.1 Waypoint System. .137

Contentsx

 9. Recipe: Sound and Audio 145

9.1 Audio Mixers and Mixing Audio in Unity .145
9.1.1 Mixing Audio .145
9.1.2 Exposing Mixer Properties to Modify Them with Scripts. . .146
9.1.3 Audio Effects .147

9.2 The BaseSoundManager Class. .147
9.3 Adding Sound to Weapons .153

 10. AI Manager 155

10.1 AI States .156
10.2 The BaseAIController Class – Base AI Control156
10.3 Enemy Stats .170
10.4 The AIBotController Class – Making an Enemy Bot Controller . . .171
10.5 The AISteeringController Class – An AI Steering Controller177
10.6 Adding Weapon Control to the AI Controller181

10.6.1 Attack States .181
10.6.2 Base Enemy Weapon Controller .181

 11. Menus and User Interface 187

11.1 Canvas Manager Class/Canvas Management187
11.2 The Main Menu .193

11.2.1 Designing the Main Menu .194
11.2.2 The BaseMainMenuManager Script195
11.2.3 Combining BaseMainMenuManager to Use the

ProfileManager Script for Saving and Loading Audio
Settings .198

11.3 In-Game User Interface .200

 12. Saving and Loading Profiles 201

 12.1 The Save Profile ScriptableObject .201
 12.2 The BaseProfileManager Class .203

 13. Loading Level Scenes 211

13.1 A Script for Loading Levels: LevelLoader.cs .212
13.2 Multiple Level Loading. .215
13.3 Building a Multi-Scene Level Loader in Unity216

 14. Racing Game 219

14.1 Ingredients .221
14.2 Main Menu Scene Overview .223
14.3 Level Select Scene Overview .223
14.4 The Core Scene Overview .224

14.4.1 Game Manager – The RaceGameManager Class224
14.4.2 Race Control – The GlobalRaceManager Class.238
14.4.3 Race Control – The RaceController Class245
14.4.4 Race Control – RacePlayerController Class253

Contents xi

14.4.5 Audio. .259
14.4.5.1 Vehicle Audio. .259
14.4.5.2 Incidental Sounds .259

14.4.6 User Interface .260

 15. Blaster Game Example 263

15.1 Ingredients .264
15.2 Main Menu Scene Overview .265
15.3 The Core Scene Overview .265

15.3.1 The BlasterGameManager Class .265
15.3.2 The BlasterPlayer Class .274
15.3.3 Enemy Bots and the BlasterEnemyBot Class.277
15.3.4 Weapons and Projectiles. .278
15.3.5 User Interface .278

15.4 Level Scenes .280
15.4.1 Spawning Enemies .280

 Index 283

https://taylorandfrancis.com

xiii

Acknowledgments

Thanks to all of my family, friends and everyone who has helped me with my
books, games and projects over the years: Brian Robbins, Chris Hanney,
Technicat, Molegato, NoiseCrime, Quantum Sheep, Mickael Laszlo, Juanita
Leatham, CoolPowers, Dave Brake, Sigurdur Gunnarsson, Kevin Godoy R.,
Lister, Wim Wouters, Edy (VehiclePhysics), IdeaFella, Liam Twose, RafaEnd,
Lynxie, Alistair Murphy, McFunkypants, Dani Moss, Malcolm Evans, Vinh,
Scott Wilson, Jon Keon, Dunky, Huck Z, Paradise Decay, Kryten, Silverware
Games, Pete Patterson, Dr. Not Oculus VR, Say Mistage, Andy Hatch, Lydia, RT
Warner, GermanRifter VR, Sylvain Demers, Kenneth Seward Jr, Dancer (Space
Dad), Steve Fulton, Paul Bettner, Derek Scottishgeeks, Jonny Gorden, Edward
Atkin, Ottawa Pete, Sam W., Dylan Stout, Shane McCafferty, Will Goldstone,
Sanborn VR, Gary Riches, J. Dakota Powell, Mayonnaise Boy, Stephen Parkes,
Ram Kanda, Alex Bethke, Itzik Goldman, Joachim Ante, Robert Scoble, Tony
Walsh, Andreas ‘BOLL’ Aronsson, Cat, Darrel Plant, Mike Baker, Rimsy, Cassie,
Christopher Brown, Phil Nolan, Pixel Hat Studio, Marcus Valles, Trev, Karyl,
Tami Quiring, Nadeem Rasool, Dwayne Dibley, Liz and Pete Smyth, Isaac and
Aiden, David Helgason, VR Martin, James Gamble, Vasanth Mohan, Simona
Ioffe, Alexander Kondratskiy, Tim and Paul, The Oliver Twins, Jeevan Aurol,
Rick King, Aldis Sipolins, Ric Lumb, Craig Taylor, Rob Hewson, Dani Moss,
Jayenkai (JNK), Matthew Kirubakaran, Elliot Mitchell, Ethan and William,
Pablo Rojo, Paul Bettner, AdrellaDev, Gordon Little, Ryan Evans, Sasha Boersma,
Matt Browning at Perfect Prototype, Hermit, Dirty Rectangles and the whole
Ottawa game dev community.

Acknowledgmentsxiv

I would also like to sincerely thank Anya Hastwell, Thivya Vasudevan and
the team at SPI Global, the whole team at Routledge/CRC Press/AK Peters,
including Randi Cohen, Jessica Vega and Rick Adams, for making this book a
reality.

Thank you for buying this book and for wanting to do something as cool as
to make games. I wish I could tell you how awesome it feels to know that someone
else is reading this right now. I cannot wait to see your games and I sincerely hope
this book helps you in your game making adventures. Have fun making games!

xv

The overall goal of this book is to provide a library of C# code with which to
jumpstart your projects and to help you with the overall structure of your games.
Many development cookbooks focus on only providing snippets of code, but,
here, we take a different approach. What you are holding in your hands right now
(or on your screen) is a cookbook for game development that has a highly flexible
core framework designed to speed up development of just about any type of Unity
project.

You might think of the framework as a base soup and the scripting compo-
nents as ingredients. We can mix and match script components and we can share
the same core scripts in many of them. The framework takes care of the essentials
and we add a little extra code to pull it all together the way we want it to work.

The framework is optional, however – you can use a lot the components indi-
vidually. If you intend on using the components in this book for your own games,
the framework could either serve as a base to build your games on or simply as a
tutorial test bed for you to rip apart and see how it all works. Perhaps you can
develop a better framework or maybe you already have a solid framework in
place. If you do find a way to develop your own framework, I say do it. The key to
game development is to do what works for you and your game projects – what-
ever it takes to cross the finish line.

I hope it helps you to make your games and tell your stories. I also hope you
remember to try to have fun doing it!

Introduction

https://taylorandfrancis.com

xvii

Prerequisites

You can get up and running with the required software for the grand total of zero
dollars. Everything you need can be downloaded free of charge with no catches.
All you need is:

Unity Personal or Unity Pro version

C# programming knowledge.

This is not a book about learning how to program. You will need to know
some C# and there are several other books out there for that purpose, even if I
have tried to make the examples as simple as possible!

What this book doesn’t cover
This is not a book about learning to program from scratch. We assume that the
reader has some experience of the C# programming language. Know that I am a
self-taught programmer and I understand there may be better or alternative ways
to do things. Techniques and concepts offered in this book are meant to provide
foundation and ideation, not to be the final word on any subject.

https://taylorandfrancis.com

1

Making Games in a
Modular Way1

1.1 Important Programming Concepts
There are some things you will need to know to utilize this book fully. For a lot of
programmers, these concepts may be something you were taught in school. As a
self-taught coder who did not find out about a lot of these things until long after
I had been struggling on without them, I see this section as a compilation of
‘things I wish I’d known earlier’!

1.1.1 Manager and Controller Scripts
Sometimes, even I get confused about the difference between a manager and a
controller script. There is no established protocol for this, and it varies depending
on who you ask. Like some readers of the first edition of this book, I find it a little
confusing and I will try to clear that up.

1.1.1.1 Managers
Managers deal with overall management, in a similar way to how a Manager
would work in a workplace situation.

1.1.1.2 Controllers
Controllers deal with systems that the managers need to do their jobs. For exam-
ple, in the racing game example game for this book, we have race controller
scripts and a global race manager script. The race controller scripts are attached
to the players and track their positions on the track, waypoints, and other rele-
vant player-specific race information. The global race manager script talks to all

2 1. Making Games in a Modular Way

the race controller scripts attached to the players to determine who is winning
and when the race starts or finishes.

1.1.1.3 Communication between Classes
An important part of our modular structure is how scripts are going to commu-
nicate with each other. It is inevitable that we will need to access our scripts from
different areas of the game code, so you will need to know how to do that in Unity.

 1. Direct referencing scripts via variables set in the editor by the Inspector
window.

The easiest way to have script Components talk to each other (that is, scripts
attached to GameObjects in the Scene as Components) is to have direct refer-
ences, in the form of public variables within your code. They can then be popu-
lated in the Inspector window of the Unity editor with a direct link to another
Component on another GameObject.

 2. GameObject referencing using SendMessage.

SendMessage sends a message to a GameObject or Transform and calls a
function within any of its attached script Components. It only works one way, so
it is only useful when we do not need any kind of return result. For example:

someGameObject.SendMessage(“DoSomething”);

Above, this would call the function DoSomething() on any of the script
Components attached to the GameObject referenced by someGameObject.

 3. Static variables.

The static variable type makes a variable accessible to other scripts without a
direct reference to the GameObject it is attached to. This is particularly useful
behavior where several different scripts may want to manipulate a variable to do
things like adding points to a score or set the number of lives of a player, and so on.

An example declaration of a static variable might be:

public static GameManager aManager;

You can have private or public static variables:

1.1.1.4 Public Static
A public static variable exists everywhere and may be accessed by any other
script.

For example, imagine a player script which needs to tell the Game Manager
to increase the current score by one:

 1. In our GameManager.cs Game Manager script, we set up a variable,
public static typed:

 public static gameScore;

 2. In any other script, we can now access this static variable and alter the
score as needed:

 GameController.gameScore++;

31.1 Important Programming Concepts

1.1.1.5 Private Static
A private static variable is accessible only to any other instances of the same type
of class. Other types of class will not be able to access it.

As an example, imagine all players need to have a unique number when they
are first spawned into the game. The player class declares a variable named
uniqueNum like this:

Private static int uniqueNum;

When a player script is first created, it uses the value of uniqueNum for itself
and increases uniqueNum by one:

myUniqueNum = uniqueNum;
uniqueNum++;

The value of uniqueNum will be shared across all player scripts. The next
player to be spawned will run the same start up function, getting uniqueNum
again – only this time it has been increased by one, thanks to the player spawned
earlier. This player again gets its own unique number and increases the static
variable ready for the next one.

1.1.2 The Singleton
A singleton is a commonly used method for allowing access to an instance of a
class, accessible to all other scripts. This pattern is ideal for code that needs to
communicate with the entire game, such as a Game Manager.

1.1.2.1 Using the Singleton in Unity
The most straightforward way to achieve singleton-like behavior is to use a static
variable and, when Unity calls the Awake() function, set the instance variable to
become a reference to the script instance it represents. The keyword ‘this’ refers
to the instance of the script it is a part of.

For example:

public class MyScript : Monobehaviour
{
 private static MySingleton instance;
 void Awake()
 {
 if (instance != null)
 Destroy(this);

 instance = this;
 }
}

The singleton instance of our script can be accessed anywhere, by practically
any script, with the following syntax:

MySingleton.Instance.SomeFunctionInTheSingleton();

1.1.3 Inheritance
Inheritance is a complex concept, which calls for some explanation here because
of its key role within the scripts provided by this book. Have a read through this
section but don’t worry if you don’t pick up inheritance right away. Once we get
to the programming it will probably become clearer.

4 1. Making Games in a Modular Way

The bottom line is that inheritance is used in programming to describe a method
of providing template scripts that may be overridden, or added to, by other scripts. As
a metaphor, imagine a car. All cars have four wheels and an engine. The types of
wheels may vary from car to car, as will the engine, so when we say ‘this is a car’ and
try to describe how our car behaves; we may also describe the engine and wheels.

These relationships may be shown in a hierarchical order:

Car–

–Wheels

–Engine

Now try to picture this as a C# script:

Car class.

Wheels function

Engine function

If we were building a game with lots of cars in it, having to rewrite the car class for
each type of car would be silly. A far more efficient method might be to write a base
class and populate it with virtual functions. When we need to create a car, rather
than use this base class, we build a new class, which inherits the base class. Because
our new class is inherited, it is optional whether we choose to override wheels or
engine functions to make them behave in ways specific to our new class. That is, we
can build ‘default’ functions into the base class and if we only need to use a default
behavior for an engine, our new class doesn’t need to override the engine function.

A base class might look something like this:

public class BaseCar : MonoBehaviour {

 public virtual void Engine () {
 Debug.Log(“Vroom”);
 }

 public virtual void Wheels () {
 Debug.Log(“Four wheels”);
 }
}

There are two key things to notice in the above script. One is the class declara-
tion itself and the fact that this class derives from MonoBehaviour. MonoBehaviour
is itself a class – the Unity documentation describes it as “the base class every
script derives from” – this MonoBehaviour class contains many engine-specific
functions and methods such as Start(), Update(), FixedUpdate(), and more. If our
script didn’t derive from MonoBehaviour it would not inherit those functions and
the engine wouldn’t automatically call functions like Update() for us to be able to
work with. Another point to note is that MonoBehaviour is a class that is built into
the engine and not something we can access to edit or change.

The second point to note is that our functions are both declared as virtual
functions. Both are public, both are virtual. Making virtual functions means that
the behavior in our base class may be overridden by any scripts that derive from it.
The behavior we define in this base class could be thought of as its default behav-
ior. We will cover overriding in full a little further on in this section.

51.1 Important Programming Concepts

Let’s take a look at what this script actually does: if we were to call the
Engine() function of our BaseCar class, it would write to the console “Vroom.” If
we called Wheels, the console would read “Four wheels.”

Now that we have our BaseCar class, we can use this as a template and make
new versions of it like this:

public class OctoCar : BaseCar {
 public override void Wheels () {
 Debug.Log(“Eight wheels”);
 }
}

The first thing you may notice is that the OctoCar class derives from BaseCar
rather than MonoBehaviour. This means that OctoCar inherits functions and meth-
ods belonging to our BaseCar script. As the functions described by BaseCar were
virtual, they may be overridden. For OctoCar, we override Wheels with the line:

public override void Wheels () {

Let’s take a look at what this script actually does: In this case, if we were to
call the Engine() function on OctoCar, it would do the same as the BaseCar class;
it would write “Vroom” to the console. It would do this because we have inherited
the function but have not overridden it, which means we keep that default behav-
ior. In OctoCar, however, we have overridden the Wheels() function. The BaseCar
behavior of Wheels would print “Four wheels” to the console but if we call
Wheels() on OctoCar, the overridden behavior will write “Eight wheels,” instead.

Inheritance plays a huge part in how our core game framework is structured.
The idea is that we have basic object types and specific elaborated versions of
these objects inheriting the base methods, properties, and functions. By building
our games in this manner, the communication between the different game com-
ponents (such as game control scripts, weapon scripts, projectile controllers, etc.)
becomes universal without having to write out the same function declarations
over and over again for different variations of script. For the core framework, our
main goal is to make it as flexible and extensible as possible and this would be a
much more difficult if we were unable to use inheritance.

1.1.4 Coroutines
Unity lets you run a function known as a coroutine, outside of the regular built
in functions like Update, FixedUpdate, LateUpdate, and so on. A coroutine is
self-contained code that will just go off and do its own thing once you have told
it to run. As it is running on its own, you can do some cool stuff like pause it for
a set amount of time and then have it start again, and coroutines are ideally suited
to time-based actions like fade effects or animations.

Here is an example of a coroutine (this example code comes from the Unity
engine documentation):

IEnumerator Fade()
{
 for (float ft = 1f; ft >= 0; ft -= 0.1f)
 {
 Color c = renderer.material.color;
 c.a = ft;
 renderer.material.color = c;
 yield return null;
 }
}

6 1. Making Games in a Modular Way

This code loops the value of ft from 1 to 0 and sets the alpha value of a color
on a material to that value. This will fade out whatever renderer this script is
attached to, fading more as the alpha channel gets closer to 0. Notice the strange
line:

 yield return null;

Do not be alarmed by this odd code above! All it does is tell the engine that,
at this point, the coroutine is ready to end this update and go on to the next one.
You need this in your code, but don’t worry too much about why at this stage.
I will go into some more detail below, but for now let us continue by looking at
how you would start this coroutine running:

StartCoroutine("Fade");

StartCoroutine() takes the name of the coroutine as a string. Once called to
start, the coroutine will do its thing and you do not need to do anything else. It
will either run until we tell it to stop, or it will run until the object is destroyed.

A key thing to note here is that the function is declared as type IEnumerator.
At first, I found this confusing, but it turns out that Unity coroutines use C#’s
built in system for iterator blocks. IEnumerator (Iterator Enumerator) was
intended to be a method for iterating through collections of objects. Coroutines
instead use IEnumerator to iterate through your coroutine code, starting or stop-
ping it between updates.

Another key point is that statement:

 yield return null;

You can think of IEnumerator like a cursor making its way through your
code. When the cursor hits a yield statement, that tells the engine that this update
is done and to move the cursor on to the next block.

Another thing you can do with coroutines is to pause the code inline for a
certain amount of time, like this:

yield return new WaitForSeconds(1.0f);

Using WaitForSeconds(), you can quite literally pause the coroutine script
execution inline. For example:

 IEnumerator DebugStuff()
 {
 Debug.Log("Start.");
 yield return new WaitForSeconds(1.0f);
 Debug.Log("Now, it’s one second later!");

 }

Earlier in this section, I mentioned that the yield statement is used to tell
Unity the current update is done and to move on to the next. In the code above,
rather than just telling Unity to move on to the next bit of code, it tells Unity to
wait for the specified number of seconds first.

1.1.5 Namespaces
Namespaces compartmentalize chunks of code away from each other. You can
think of a namespace as a box to put your own scripts in, so that they can stay
separated from other code or code libraries. This helps to prevent possible

71.2 Naming Conventions

overlaps between code libraries (APIs and so on) and your own code, such as
duplicate function names or variables.

To use namespaces, you wrap the entire class in a namespace declaration
like this:

namespace MyNamespace
{
 public class MyClass() : Monobehaviour
 {
 }

}

When you want to refer to the code from another class, you need to be either
wrapped in the same namespace or to have the using keyword at the top of the
script, like:

using MyNamespace;

1.1.6 Finite State Machines (FSM)
A finite state machine is a commonly used system for tracking states. In video
games, they are used to track game states. Example states might be GameLoaded,
GameStarting, LevelStarting, and so on. The term finite state machine sounds a
lot more complicated than it usually is. The actual code often takes the form of a
long case statement that will execute code or call functions based on the current
game state. For example:

Switch(currentGameState)
{
 Case GameStates.GameLoaded:
 GameLoaded();
 Break;
 Case GameStates.GameStarting:
 GameStart();
 Break;

}

Having code in each case statement can get unruly. To counter this, I like to
split all of the code out into individual functions. This keeps the code tidy, easier
to manage, and easier to debug when things do not go to plan.

1.2 Naming Conventions
Naming conventions vary from programmer to programmer and even between
companies. Some games companies have strict guidelines on how code is con-
structed and how to name variables, where they can and cannot be used, and so
on, which is mostly in place to make it easier for other programmers to be able to
understand the code and pick it up when they might need to. You may not need
to take it that far, but I do feel that some organization of your naming helps. In
this book, I follow a very loose set of rules for naming variables – just enough to
make it easier for me to know quickly what type of variable I am looking at or
what its purpose might be. Those are:

Object references (Transforms, Components, GameObjects, and so forth)
are prefixed by an underscore (_) symbol. For example, a variable to hold a

8 1. Making Games in a Modular Way

reference to a Transform might be named _TR. A variable used to talk to a Game
Manager might be named _GameManager.

Most of the objects in this book (players, enemies, and more) derive from the
ExtendedMonoBehaviour class, which contains a few variables that are used
more commonly than others:

_RB Used to reference a Rigidbody attached to this object.

_RB2D For a 2D Rigidbody reference.

_TR The Transform of the object.

_GO The GameObject.

Where scripts need to be initialized before they can be used, in this book we
always use a Boolean variable named didInit which gets set to true after initial-
ization. You can use didInit to make sure initialization has completed.

Many programmers frown on the idea of declaring temporary variables, but
I like to have _tempVEC and _tempTR variables available for whenever I need to
refer to a quick Vector3 or another Transform inline. Having these variables
already declared is just a little quicker than having to declare a new Vector3 each
time, or to make a new Transform variable.

1.3 Where to Now?
Think about how your objects work together in the game world and how their
scripts need to communicate with each other. I find it helps to make flow dia-
grams or to use mind-mapping software to work things out beforehand. A little
planning early on can reduce a whole lot of code revisions later. That said, it is
perfectly O.K. for your structure to grow and evolve as you develop it further. The
framework shown in this book went through many iterations before reaching its
final form.

Try to break up your scripts into smaller components to help debugging and
flexibility. Also try to design for re-useability; hard-coding references to other
scripts reduces the portability of the script and increases the amount of work you
will need to do in the future when you want to carry it over into another
project.

9

2 Making a 2D Infinite
Runner Game

This chapter is different from the rest of the book and a dramatic diversion from
what you may have seen in its first edition. Elsewhere in the text, I focus mainly on
the code behind the games. This chapter offers up a step by step tutorial to using the
framework to make a 2D infinite runner game. The goal of this chapter is to dem-
onstrate two things: 1) How quickly you can turn around a game when you have a
framework in place that takes care of a lot of the repetitive tasks. 2) The basics of
how this books framework fits together to give you some background knowledge
before we get down into nitty gritty of the framework code in Chapter 3.

This infinite runner (Figure 2.1) has a character that can move left, right, and
jump. Platforms are spawned off-screen and moved to the left to create the illu-
sion of movement.

I have already set up animations and imported the required graphics into the
example project to get things going quickly. As the focus of this book is more
toward code, project structure, and programming, I want to avoid using up too
many pages on making graphics or on Unity editor-specifics. The Unity docu-
mentation features plenty of content on this.

Players jump and move to stay on the platforms if possible, with the score incre-
mented at timed intervals. If the player falls off the bottom of the screen, the game ends.

To accomplish this, we will need:

 1. The C# Game Programming Cookbook (GPC) framework, which
is included as part of this book as a download from Github at https://
github.com/psychicparrot/CSharpUnityCookbookExampleFiles

 2. A platformer character capable of running left, right, and jumping

 3. Platforms (auto moving to the left) and a method to spawn platforms off
screen

https://github.com
https://github.com

10 2. Making a 2D Infinite Runner Game

 4. A Game Manager script to keep track of game state and deal with scor-
ing and so forth

 5. Sounds for jumping and the game ending

 6. An animated character

With just the framework and assets, by the end of this chapter, we will have
a working game.

2.1 Anatomy of a Unity Project
Unity projects are made up of lots and lots of files. A game is made up of
Scenes full of GameObjects. GameObjects are all the objects that make up a
game. GameObjects may take the form of anything from an empty place-
holder to a fully animated 3d model. Every GameObject has something called
a Transform, which holds information on the rotation, position, and scale of
the GameObject.

Scenes are essentially just files that hold information about which objects to
load at runtime. They can contain GameObjects, or they can contain Prefabs.
Prefabs are essentially files containing information about one or more GameObjects
to load as though they are combined. By using Prefabs, you can reduce the time it
takes to build multiple Scenes by combining multiple GameObjects into one, sin-
gle, Prefab. Think of Prefabs as templates you make yourself by arranging
GameObjects in the Scene and then creating Prefabs from them as templates to
load and use elsewhere. When you drag a Prefab into a Unity Scene, it will appear
as one or more GameObjects – replicating the original structure you created when
you made the original Prefab. Since game projects are made up of many files, a lot
of your time in Unity will be spent manipulating files, turning them into
GameObjects, and Prefabs and then organizing and laying them out in Scenes. In
the next section, we look at how Unity helps you to do this and how the editor is
structured for exactly these kinds of tasks.

2.2 Open Unity, Then the Example Project
for This Chapter

Open Unity. At the splash screen, choose to open an existing project and browse
to the folder named Chapter2_UnComplete_ProjectFiles, which contains the
example project for this chapter. Open the project. If you have any trouble along
the way, or you just want to try out the completed game, you can find the

Figure 2.1 In the Infinite Runner example game, players jump and run to try to stay on the
platforms for as long as possible.

112.2 Open Unity, Then the Example Project for This Chapter

complete example as a part of the other example project found in the folder
named All_Completed_ProjectFiles.

To keep everything in line with the information in this section, you should
change the editor layout. In the top right of the editor, find the Layout dropdown
button. Click on it and choose 2 by 3. After a short delay, the editor should arrange
its panels into the default 2 by 3 layout.

Now that we have the editor laid out in similar ways, let’s look through each
panel to make sure we are using the same terminology. Check out Figure 2.2 –
outlined below are the different sections shown in the figure, what those sections
are and what they are for:

 A. Scene
 The Scene panel is your drag and drop visual window into a Unity Scene.

You can manipulate GameObjects directly inside the currently loaded
Scene.

 B. Game
 The Game panel shows a preview of the game. When you press Play, the

editor runs the game inside the Game panel as if it were running in a
standalone build. There are also a few extra features, such as Gizmos, that
the Game preview offers to help you build out and debug your games.

 C. Project
 The Project panel is very similar to a file browser, in that it lists out all

the files that go up to make your project. You can click and drag them,
right click, and access a menu, use shortcuts, and delete them – almost
all the regular functionality of a Windows Explorer window right inside
the editor.

 D. Hierarchy
 The Hierarchy works in a similar way to the Project panel, only instead

of being an interface to manipulate project files, it’s there to manipulate
GameObjects inside the current Scene.

Figure 2.2 The Unity editor as seen in a 2 by 3 layout.

12 2. Making a 2D Infinite Runner Game

 E. Inspector
 Whenever you have a GameObject selected in the Scene panel, or high-

lighted in the Hierarchy, the Inspector window shows you editable prop-
erties of the GameObject and any Components attached to it. Whatever
you can’t do with the Scene panel, you can probably do here instead.

Another point of interest in the main Unity editor are along the toolbar
across the top of the editor, below the menus.

In the top left, find the Transform toolbar (Figure 2.3). This toolbar is to
manipulate objects in the Scene panel. Tools, from left to right:

The Hand Tool Allows you to pan the view around the Scene.
Move Selection and movement of GameObjects.
Rotate Selection and rotation of GameObjects.
Scale Selection and scaling of GameObjects.
Rect Transform Modify a GameObjects boundaries as a Rect (combined scaling and movement).
Transform A method to manipulate scale, position, and rotation in a single, combined tool.
Custom Th is tool allows access to custom Editor tools and will not be covered in this

book.

At the center of the toolbar, find the Play, Pause and Step buttons (Figure 2.4)
which are used to preview your game and to control what happens in the Game
panel.

2.2.1 A Few Notes on the Example Project
Unity uses something called packages to extend the functionality of the editor in
an officially supported and controlled way. To facilitate editing and set up of the
2D (two dimensional) sprites in this project, a package named 2D Sprite Package
had to be imported. Accessing packages is done via the Package Manager – found
in the menu Window/Package Manager. Check in Package Manager regularly,
for updates to any libraries you download.

2.2.2 Sprites
2D sprites may be found in the projects Assets/Games/RunMan/Sprites folder.
The sprites were made with a sprite editing program called Aesprite and exported
as sprite sheets. Sprite sheets are groups of sprites which are split up into indi-
vidual sprites by the engine. We tend to use sprite sheets for animations, export-
ing multiple frames of animation in a single image to save memory and having

Figure 2.3 The Transform tools.

Figure 2.4 The playback tools.

132.2 Open Unity, Then the Example Project for This Chapter

the engine take care of cutting them up to display. The import settings for all of
the game images are set to their default values, the Sprite Mode is set to Multiple
to accommodate the sprite sheets (Multiple allows you to slice up those images)
and the Filter Mode has been set to Point (no filter) so that Unity does not try to
filter images to make them smooth. For this type of visual style, we want the
pixels to be defined and visible without filtering. The only other deviation from
the defaults is the Compression level, which is set to None just to be sure to avoid
any artifacts or anomalies that might stem from compressing small images.

2.2.3 Animation
Animation is a complicated subject and outside the scope of this book, but this
section acts as a quick guide on how the animations for this game works.

Look out for RunMan_Animator in the Sprites folder. You can open it to view
by double clicking on the RunMan_Animator file in the Project pane. An Animator
contains a state machine graph (Figure 2.5) which controls the flow of animation.
When an animated GameObject is initialized, the state machine graph begins in
its Entry state and will transition to the default state. In Figure 2.5, you can see that
RunMan_Animator has a default state of RunMan_Idle (that is, an arrow goes
from Entry to RunMan_Idle) – this will play an idle animation for whenever
RunMan is standing still. The animation is looped and there is no further flow (no
more arrows pointing to boxes!) out from RunMan_Idle in the Animator graph;
so, until told otherwise, the animation will stay in the idle state.

In the graph (Figure 2.5) look for the Any State state – this literally means any
state in that this state can be triggered from any animation. The Any State has two
arrows coming off it; one pointing to RunMan_Jump state and the other to a
RunMan_Run state. So, how do we get the animation to change to run or jump
when the Animator graph has no link from the endlessly looping RunMan_Idle
state? Parameters are the answer! Parameters are variables that can be set and
modified through code and used as Conditions by the Animator graph to control
flow. In the case of Any State, whenever a Jump parameter is triggered the Animator
will transition from Any State (that is, whatever state the graph is currently in) to
RunMan_Jump. Whenever a Run parameter is triggered, the Animator will transi-
tion from Any State to RunMan_Run. RunMan_Run is a looping animation that,
again, will play until the Animator graph is told to do otherwise.

In conclusion, the animation system for this game is set up to be as straight-
forward as possible. The Animator can be controlled by two parameters: Jump
and Run. In our code, to transition to a run animation we just set the Run param-
eter. To play a jump animation, we set the Jump parameter.

Figure 2.5 The Animator graph for the RunMan character.

14 2. Making a 2D Infinite Runner Game

2.3 Open the Main Game Scene
In the Project panel, there are a lot of folders. Most of them are sub-folders inside
the GPC_Framework folder. We do not need to get into these just yet, but you
should know that the files in GPC_Framework make up the framework and they
are separated from everything else to keep framework files and your games files
separated and neat.

Find the Games folder and click the little arrow next to it to expand out the folder
to show its contents. It is intended that, whenever you build a game with the frame-
work, you use the Games folder to put the assets that are specific to your game only.

The folder structure under Games looks like this:

Games

RunMan

Audio

Prefabs

Scenes

Scripts

Sprites

Stay as organized as possible as you move forward with game projects. This will
help a lot as your project grows (and, often, they grow much bigger than you
might expect!) to stay on course and to spend less time looking for lost assets.

In the Project panel, click on the Scene folder to show its contents. There is a
single Scene inside that folder, named runMan_core. This is the Scene that will
contain the main game. There will also be a main menu Scene, which we will add
later in this chapter.

Double click on the runMan_core Scene in the Project panel, to open it. The
Game panel will show the user interface already set up (Figure 2.6) but there’s no
other logic in the Scene yet, so pressing Play will do nothing. By using the frame-
work, at the end of this chapter you will have a fun infinite runner game to play
here instead. The books game framework takes care of most of the heavy lifting

Figure 2.6 To save time, the User Interface is already set up in the game Scene of the
 example project for this chapter.

152.4 The Game Manager

and the bulk of the work is going to be to connecting existing scripts together to
form the GameObject, logic, and physics for this game. You may be surprised to
learn that it only takes four custom scripts.

2.4 The Game Manager
At the core of this game is the Game Manager. This is where the state of our game is
tracked and the convergence point of all the game’s objects and logic. We will be
revisiting the Game Manager throughout this chapter, but what we need to do in this
section is to set up the basic structure and a few variables for our other objects to
access and use. For example, platforms will need to know how fast to move. We need
all platforms to move at the same speed, so it makes sense to store the speed value in
the Game Manager. Storing the platform speed also means that we can change the
speed of the game easily from right inside the script that deals with game logic.

With the RunMan_core Scene open in Unity, click the plus sign at the top of the
Hierarchy panel to show the Add menu. Choose Create Empty from the dropdown.

TIP: You can also access the Add GameObject menu by right clicking in an empty
space in the Hierarchy panel or via the menu GameObject at the top of the editor.

In the Inspector, with the new GameObject selected, change the name from
GameObject to GameManager.

Click Add Component. In the text box that appears after clicking that button,
type RunMan_GameManager. Once you have finished typing, press enter on the
keyboard. The Add Component window will automatically switch to show New
Script (Figure 2.7). Click Create and Add. This creates a new C# script Component
and adds it to the GameObject you just created. After a little time for the compiler
to update, the Component should appear in the Inspector as a Component named
(Script). The next step is to open the script and add some code to it.

Still in the Inspector, double click on the Script name inside the Component
to open your default script editor (normally Visual Studio, unless you chose
something different when you installed Unity). If you have any issues opening
the script, you can get to it via the Project panel. Unity will have automatically
placed the new script in the Assets folder. Click on the Assets folder in the Project
panel and you should be able to see RunMan_GameManager on the right side of
the split Project pane. Double click the script file to open it.

The default C# script Unity adds when you create new file looks like this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class RunMan_GameManager : MonoBehaviour

{
 // Start is called before the first frame update
 void Start()
 {

 }
 // Update is called once per frame
 void Update()
 {

 }

}

16 2. Making a 2D Infinite Runner Game

The framework in this book exists within a namespace called GPC, so the
first thing we need to do to be able to access everything inside the framework is
to add a using statement to the top of the script. Below using UnityEngine, add
the following line:

using GPC;

The framework includes a base version of a Game Manager script that we can
inherit (see Chapter 1 for a brief guide to inheritance) to give this script some of
the useful functionality we will need as the game grows. Let’s change our new
Game Manager script. The base script is called BaseGameManager. Change:

public class RunMan _ GameManager : MonoBehaviour

To:

public class RunMan _ GameManager : BaseGameManager

Press CTRL+S to save the script, or save the script via the menus File>Save.
Remember when we first created the GameManager through the Add

Component button in the Inspector and the new Component appeared as some-
thing called (Script)? Flip back to the editor and you will see we now have a whole
host of new things in the Inspector. The BaseGameManager script contains lots

Figure 2.7 Naming and creating a new Component in the Inspector’s Add Component
panel.

172.4 The Game Manager

of useful things to help manage your game. We will go into the script in full detail
in Chapter 3, Section 3.2.1.

In the Inspector now, there are three dropdown menu fields for Current
Game State, Target Game State, and Last Game State. Below those, a whole lot of
events that will be fired by our state machine entering states like loaded, game
started, and so forth. We will deal with game states in full, further in this chapter
in Section 2.7.1.

Before anything else, we do need to add a few variables. Place this code just
after the class declaration, above void Start():

 public float runSpeed = 1f;
 public float distanceToSpawnPlatform = 2f;
 public bool isRunning;

runSpeed will be used by platform movement code to determine how fast to
move the platforms across the screen to simulate running.

distanceToSpawnPlatform contains a float value representing the gap (in 3d
units) between platforms.

isRunning is a Boolean used by platforms to know whether they should be
moving or not. The main use for isRunning is at the start of the game, before the
player starts running as it sits in its idle animation state. We will use it again at
the end of the game, just to stop the platforms moving when we show the final
score game over messages.

Now that we have these variables set up in the Game Manager, we need to
make this class accessible from everywhere so that other scripts can access it. To
do that, we will take a basic Singleton approach. See Chapter 1, Section 1.4 for
more information on this.

Beneath the variables you just added, right after the line:

public bool isRunning;

Add the following code:

 public static RunMan_GameManager instance { get; private set; }

 // set instance in this script's constructor
 public RunMan_GameManager()
 {
 instance = this;
 }

What this does is to make a variable that is accessible from anywhere because
it’s public and static. As the constructor runs when a GameManager instance gets
created, our public static variable gets populated with a reference to ‘this’ instance.
Other scripts can now talk to this instance by referring to its static variable like this:

 RunMan _ GameManager.instance

Going in via this instance variable, any other script in your game can call
functions on RunMan_GameManager, access public variables, or set public vari-
ables. Just make sure that only one instance of RunMan_GameManager ever
exists at any time, otherwise you may find a script trying to access the wrong
object. If you do find yourself making more complicated scenarios that could lead
to multiple instances you may want to add check to see if the instance variable is
already populated before setting it. In the case of this game, we only ever need
this single instance to be attached to a single GameObject in a single Scene and
this is enough.

18 2. Making a 2D Infinite Runner Game

For now, that is as far as we need to take the Game Manager. There will be
more later in the chapter, but this is enough to get going with and enough to pro-
vide the game platforms with the information they need to move.

2.5 Making Platforms to Run On
At the core of this game are platforms to run on, so that is a great starting
point. As the platforms do not require any game specific code, we can go ahead,
and figure out a method to spawn them and move them before adding game
logic.

Right now, the user interface may get in the way of seeing everything clearly
as you set up game elements. To hide the interface, look in the Hierarchy panel and
find the UI_Canvases object. UI_Canvases is an empty GameObject with the
actual user interfaces below, parented to it. If you cannot see the three Canvas
GameObjects under UI_Canvases, click on the little arrow next to UI_Canvases to
expand it out. Now, click the first one – the GetReadyMessageCanvas GameObject –
to highlight it. Hold shift on the keyboard and click the GameUICanvas
GameObject. This should select all three canvases at the same time. Over in the
Inspector, find the Component named Canvas Group and set the value in the
Alpha field to 0. All the user interface should now be hidden.

In the Project panel, find the Games/RunMan/Sprites folder. In Sprites, find
the RunMan_Platform sprite. Left click and drag it into an empty part of the
Hierarchy panel. If all goes well, you should see the platform appear in the center
of the Game panel.

With RunMan_Platform GameObject selected in the Hierarchy, move the
mouse so that it is hovering over the Scene panel. Press F on the keyboard. This
will focus on the currently selected object, moving the Scene view to the center of
the object to make editing easier. You may want to use the mouse wheel to zoom
out a little at this point, too. Just enough so that there is space around the plat-
form to move it around without it going off the edge of the screen.

In the Scene view, click and hold to grab the red arrow of the Gizmo Unity
overlays on the platform. With the red arrow selected, you will only be able to
move the platform along its X axis – left or right in the Game panel. Drag the
platform to the left so that the left side of the platform is touching the left side of
the Game panel.

Next, grab the green arrow of the Gizmo to move the platform on its Y axis.
Hold down the mouse and move the platform so that the bottom of it touches the
bottom of the Game panel.

This platform is going to be a starting platform for the player to stand on
when the game first starts. To stop the player falling right through it, we need to
add a Collider.

With RunMan_Platform still selected, look to the Inspector, and click Add
Component. In the search box that appears after you click the button, type Edge
and choose Edge Collider 2D from the dropdown to add an Edge Collider 2D
Component to the GameObject.

With RunMan_Platform still selected in the Hierarchy, go back to hovering
over the Scene panel and press F on the keyboard to focus the platform in the
center of the view. Now that the Edge Collider 2D Component has been added to
this GameObject, you should see a thin green line running lengthwise across the
platform. This line will become the solid physics surface that the player will stand
on. It needs to align with the top of the platform rather than where it is now. On
the Edge Collider 2D Component, click the Edit Collider button (Figure 2.8).

192.5 Making Platforms to Run On

In the Scene panel, the green line can now be moved around. Hover the mouse
over the green line and a small Gizmo block appears. By clicking and dragging
the block, the green line will move. First, grab a point at the left side and move it
up. Then, grab a point on the right and do the same so that the green line aligns
perfectly with the top of the platform.

To complete the platform set up, just two more Components need to be
added to it. In the Inspector, click Add Component, and find and add an Auto
Destroy Object Component. In the field labeled Time Before Object Destroy,
type 10. We want this object to delete itself after 10 seconds. The RunMan_
Platform Components should now look like those in Figure 2.8.

The second Component we are going to build ourselves. Click Add Component
and type AutoTransformMove. Click New Script and then Create and Add to cre-
ate a new C# script and add it to the GameObject.

Once the new script is attached to the GameObject and visible in the
Inspector, double click on the name of the script to open it in your script editor.
In your script editor, add the following line just above the class declaration and
below the existing using statements:

 using GPC;

To move the platforms, this script requires three variables. Add these just
inside the class declaration:

 public float moveSpeed;
 public Vector3 moveVector;
 private Transform _ TR;

When the script first starts, we need to grab a reference to the GameObject’s
Transform. A Transform is a built-in Component we use for modifying position,
rotation, and scale.

Scripts that derive from Monobehaviour (on any level) can contain functions
that will be automatically called by the game engine. The Start() function will be
called when the game starts. Change the Start() function to look like this:

 void Start()
 {
 // cache the transform ref
 _TR = GetComponent<Transform>();
 }

The GetComponent will search for a Component, of whatever type is within
the angled brackets, on the current GameObject. GetComponent() is a useful
built in function, but it can be a little slow, so it is best to keep any calls to
GetComponent() out of the main loop and called as least as possible.

Another Monobehaviour specific built-in function that will be called auto-
matically by the engine is Update(). It will be called every frame (yes, 30 times
per second when the frames per second speed is 30, or 60 at 60 fps and so on).

Figure 2.8 In Unity, some Colliders such as the Edge Collider 2D have an Edit button.

20 2. Making a 2D Infinite Runner Game

It is the ideal place to put our movement code. Replace the placeholder Update
function already in your script with this:

 void Update()
 {
 // keep move speed updated from game manager
 moveSpeed = RunMan_GameManager.instance.runSpeed;

 // move the transform
 _TR.Translate((moveVector * moveSpeed) * Time.
deltaTime);

 }

In the code above, moveSpeed gets its value from the runSpeed variable you
made in RunMan_GameManager earlier in this chapter. It uses that Singleton
variable instance, to gain access to it.

Beneath that, we use the Translate function (part of Transform) to move
the platform. moveVector is a Vector3 typed variable which holds a direction
vector used to define the direction of movement of the object. This gets multi-
plied by the moveSpeed to give us a Vector suitable for Translate that will
change with the speed in RunMan_GameManager. It is then multiplied by
Time.deltaTime. Unity provides some a helper class named Time to help track
or manipulate how the engine deals with time. deltaTime is a variable holding
the amount of time that has passed since the last frame Update, so we can use
that deltaTime amount to make movement that adapts to time rather than being
locked to framerates. This is a better idea than just move x amount each frame,
because if the system does something in the background that causes the game
to stall or if your game is running slower than it should on another system, the
movement won’t work as intended. By having movement that adapts to time
elapsed, if things run slow or there are glitches it will move the same amount
even if it needs to jump a bit.

Finally, add this function below the Update() function above the final curly
bracket in the script:

 public void SetMoveSpeed(float aSpeed)
 {
 // provide method to adjust speed from other scripts
 moveSpeed = aSpeed;
 }

Above, we just add a simple method for another script to tell this script how
fast or slow to move. This will be used a little further in this chapter, called at the
start of the game to tell the starting platforms to move once the game begins.

Press CTRL+S to save your script and go back to Unity.
With RunMan_Platform selected in the Hierarchy, look to the Auto

Transform Move Component you made, leave Move Speed at 0 but change Move
Vector so that X is –1, leaving Y and Z at 0.

Finally, we need to set up the Layer of the platform so that it can be detected
as ground. In the top right of the Inspector, just below the name of the GameObject
to the right, there is a dropdown menu labeled Layer (Figure 2.9). Click the drop-
down and choose Ground from the list.

Press Play in the editor. The platform should zip off to the left of the screen.
If it did, nice job! That is how it is supposed to behave. Stop playback by clicking
the Stop button in the editor.

212.5 Making Platforms to Run On

Now that the platform has everything it needs for the game, we need to turn
it into a Prefab so that it can be spawned by another script whenever we need one.
To turn the platform into a Prefab, click and drag RunMan_Platform from the
Hierarchy into the Games/RunMan/Prefabs folder in the Project panel.

At the start of the game, RunMan should have three platforms to run
across before the jumping starts so that the player has a chance to acclimatize
to the environment. The last thing to do in this section is to duplicate the plat-
form to make another two that will go alongside the one you already have in
the Scene.

In the Hierarchy, right click on RunMan_Platform and choose Duplicate
from the menu. A new GameObject should appear in the Hierarchy named
RunMan_Platform (1) but you will not see any difference in the Scene or Game
panels because it is currently in the exact same place as the original platform.
Move it to the right by clicking on the red (X axis) arrow on the Gizmo shown in
the Scene panel. Drag this duplicate platform to a position where the top of it is
touching the original platform so there is no gap for the player to fall through
(as Figure 2.10).

Now duplicate another platform to go to the right of the one you just added.
In the Hierarchy, right click RunMan_Platform and choose Duplicate. Move it to

Figure 2.9 The Layer dropdown, in the Inspector, appears on all GameObjects in a Scene.

Figure 2.10 The three starting platforms are set up in the runMan_core Scene.

22 2. Making a 2D Infinite Runner Game

the right by clicking on the red (X axis) arrow on the Gizmo shown in the Scene
panel. Drag this new platform to the right of the last one, just touching.

2.6 Building the Player, RunMan
Now we have platforms, we need a player. Start by creating a new GameObject in
the Hierarchy (you can do this either by right clicking in an empty area and
choosing Create Empty or by clicking on the + icon at the top of the Hierarchy
panel).

Name the new GameObject RunMan, by changing its name in the Inspector.

2.6.1 Adding the RunMan Sprite
So that we can see where the player is, it would be a good idea to add a visual
representation – the RunMan sprite – to the Scene. To do this, find the Games/
RunMan/Sprites folder in the Project panel. Click the Sprites folder so that you
can see what is inside it. In Sprites, find the file named RunMan_Run-Sheet.
Click and drag RunMan_Run-Sheet out of the Project panel and into a blank
part of the Hierarchy. This should add the RunMan sprite to the Scene and make
it appear in the center of the Game panel.

At this point, the sprite and our RunMan GameObject are two separate
objects. What we need to do next is to make the sprite a child of the RunMan
GameObject. In the Hierarchy, click on the RunMan_Run-Sheet_0 GameObject
and drag it on top of the RunMan GameObject. This should parent RunMan_
Run-Sheet_0 to it, as per Figure 2.11.

The problem we have at this stage is that the sprite may be offset position-
wise from the RunMan GameObject because Unity often spawns objects away
from 0,0,0 world position. In Unity, all objects have world positions and local
positions. You could say that a world position would be your street address and
the local position might be where you are inside your house.

When you parent an object to another object it will inherit the parent’s world
position, but it will still hold whatever world position it had previously, now
stored as a local position. That is, even though it moves with the parent
GameObject it will be offset from it by whatever X, Y, and Z values are in its
Transform box in the Inspector.

The RunMan GameObject will have all of the operational Components
(movement code and collisions and so forth) attached to it which means that the
sprites local position needs to be set to 0,0,0. This way, it will both move with the

Figure 2.11 The RunMan sprite parented to a GameObject.

232.6 Building the Player, RunMan

parent and be positioned in the exact same place – if we don’t do that, collisions
won’t be happening where the sprite is and the game will make no sense.

Click on the RunMan_Run-Sheet_0 GameObject in the Hierarchy and set
all three X, Y and Z fields of its Position (in the Transform section at the top of
the Inspector) to zero, if they are not already. You may find that the sprite moves
away from the center of the Game panel, but that is okay – we will set the exact
player position after setting up physics.

2.6.2 Adding Physics and Collisions to RunMan
By the end of this section, RunMan will be able to fall and rest on a platform.

First, we need to add a Rigidbody to the RunMan GameObject to represent
the player in the physics simulation. Click on the RunMan GameObject to get
started. In the Inspector, click Add Component and find Rigidbody 2D (either
scroll through to find it, or start typing Rigidbody into the search bar).

The gravity value needs changing on the Rigidbody 2D Component, to help
give RunMan a jump style suitable for this game. In the Inspector, on the
Rigidbody 2D Component, change Gravity Scale to 0.6

Next, find the Constraints field and click the little arrow to the left of it, to
expand out the Constraints section. Next to Freeze Rotation, put a check into the
Z box by clicking on it.

RunMan now has physics, but he has no Collision Components and will fall
to infinity until we add a Collider. With the RunMan GameObject still selected
in the Hierarchy, click the Add Component button in the Inspector. Find and add
Capsule Collider 2D. Be careful not to add a regular Capsule Collider here,
though. The standard Capsule Collider will only work in a 3D simulation and
since Unity uses a separate physics engine for 2D physics than 3D, we need to be
sure to use only 2D Components.

The Capsule Collider is a good way to represent a human in a physics simula-
tion. You can elongate it from the head to the feet and it has a minimal contact
surface to keep the friction levels down as it moves along the ground. As it has
width, you can adjust a capsule to represent the body width too. In this section,
you can either edit the Collider manually and try to get it to look like the shape
in Figure 2.12, or you can enter the following numbers into the Inspector:

Offset:

X: 0
Y: 0.01

Size:

X: 0.04
Y: 0.15

Direction:

Vertical

Once you have entered in all the numbers via the Inspector, compare the
shape of your capsule to the one in Figure 2.12 – if it looks good, move on to the
next stage of adding player scripts.

24 2. Making a 2D Infinite Runner Game

2.6.3 Player Scripts
The structure of players within the framework will be explained in depth in the
next chapter. For this section, however, we will just focus on setting up a basic
player and getting things ready for this specific game.

Make sure the RunMan GameObject is selected in the Hierarchy or click on
it to highlight it. Click the Add Component button in the Inspector. Click New
Script and type RunMan_CharacterController as the script name, and click
Create and Add.

Double click on the RunMan_CharacterController name to open the script
in your script editor. Replace the default script with this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using GPC;

public class RunMan_CharacterController :
BasePlayer2DPlatformCharacter

Figure 2.12 The Capsule Collider is a good way to represent a simplified human form for
collision calculations.

252.6 Building the Player, RunMan

{
 public BaseSoundController _soundControl;
 public Animator _RunManAnimator;
 public bool isRunning;

 void Start()
 {
 Init();
 }

 public override void Init()
 {
 base.Init();

 isRunning = false;
 allow_jump = true;
 allow_right = true;
 allow_left = true;

 _soundControl = GetComponent<BaseSoundController>();
 }

 public void Update()
 {
 if (isOnGround && isRunning
&& !_RunManAnimator.GetCurrentAnimatorStateInfo(0).IsName("RunMan_Run"))
 {
 StartRunAnimation();
 }
 }

 void OnTriggerEnter2D(Collider2D collision)
 {
 _soundControl.PlaySoundByIndex(1);
 RunMan_GameManager.instance.PlayerFell();
 }

 public void StartRunAnimation()
 {
 isRunning = true;
 _RunManAnimator.SetTrigger("Run");
 }

 public override void Jump()
 {
 base.Jump();
 _soundControl.PlaySoundByIndex(0);
 _RunManAnimator.SetTrigger("Jump");
 }
}

As a side note: Above, this script derives (meaning it inherits functions and
variables from) another script named BasePlayer2DPlatformCharacter. This
script is explained in full in Chapter 6, Section 6.4. 2D Platform Character
Controller.

With this script Component in place, RunMan will be able to move left and
right and jump. It will even play sounds. Save the script with CTRL+S or File/
Save, then return to Unity.

Look over in the Inspector and you will see that not only did it add the Run
Man_Character Controller Component but it now has another Component

26 2. Making a 2D Infinite Runner Game

called BaseUserManager. The BaseUserManager Component will be used to hold
player-specific data such as scoring, but do not worry about this just yet – we will
look at this is detail in Chapter 4, Section 4.3.

In the script above, notice that the class inherits from BasePlayer2DPlat-
 formCharacter:

public class RunMan_CharacterController :
BasePlayer2DPlatformCharacter

The BasePlayer2DPlatformCharacter class provides the basics for control-
ling a platform character. It was originally intended for Mario-esque gaming but
fits the needs of this game type just as well.

We will not be going into detail over how the rest of this script functions just
yet. A more detailed description of BasePlayer2DPlatformCharacter will come
later in the book, in Chapter 6, Section 6.4.

The player is going to need some form of input from the player. The frame-
work has an input Controller that will watch for some regular key presses. We will
add the input Component a little differently here – rather than using the Add
Component button, go up to the Component menu at the top of the editor. There
are quite a lot of different Components in there, but they are categorized. Find the
CSharpBookCode category and choose CSharpBookCode>Base>Input Controller.
The Input Controller Component should now be added to the player GameObject.
Almost all of the classes in this book have a line of code to add them to these
menus. Usually formatted something like:

[AddComponentMenu("CSharpBookCode/Base/Input Controller")]

The AddComponentMenu command above can add a script Component to
any of Unity’s menus. Having them in the menus makes it easier to find the
Components you use regularly without having to type them into the search box
under Add Component or to search for the Component you want. Thanks to the
AddComponentMenu command, all the base classes from the framework can be
found under the CSharpBookCode/Base menus.

Time to set up a few things on the Run Man Character Controller, now:
Find the Ground Layer Mask field. Click on it and choose Ground from

the list. You may remember, when we set up the platforms in Section 2.5 of
this chapter, that platforms are on the Layer named Ground. We will use
this to identify a platform underneath the player so that we know when the
player is on a ground surface and we can allow it to jump. Once the player is
in the air, and no ground surface is detected, jumping will no longer be
allowed.

2.6.4 RunMan Sounds
RunMan needs to make a little sound when he jumps, and we will also play a
sound when he falls to his doom. The audio system, Audio Mixers, and how we
deal with audio in the framework will be discussed in detail in Chapter 9.

Select RunMan in the Hierarchy, if it is not already highlighted. In the Inspector,
hit Add Component, and add the Component named BaseSoundController. This
Component holds a list of sounds, which may then be played by calling into the
script and passing an index number of the sound we want to play. The code to do
that is already contained in the scripts you have already added, so at this point it is
a matter of adding sounds to this Component.

272.6 Building the Player, RunMan

In the Project panel, click on the Assets/Games/RunMan/Audio folder so
that its contents show up in the Project panel.

Click and drag the audio file named Jump into the field named Game Sounds.
The field should expand out to show the first item in the list. Next, click and drag
the audio file named Fallen into the same Game Sounds field. You should now
have something that looks like Figure 2.13 whereby the Game Sounds field has
expanded to show its size (which is 2) and the Jump and Fallen items as element
0 and 1.

Beneath Game Sounds is a field named The Audio Mixer Group. An Audio
Mixer is used to control volumes and effects in the Unity audio system. To the
right of the field is a small target button (a circle with a smaller circle inside). Press
that. A window should appear showing two groups of an Audio Mixer. Those are
Sound Effects and Music. These act as channels for the audio to be routed through,
so as this is a sound effect go ahead and select the Sound Effect group.

2.6.5 Animating RunMan
As I mentioned at the start of this chapter, all the animations and the Animator
have been already set up ready to go but you will need to add an Animator
Component to the sprite itself (not the RunMan GameObject, the actual sprite).

In the Hierarchy, click on RunMan_Run-Sheet_0 under the RunMan
GameObject. Over in the Inspector, you should see that this sprite GameObject
has a Sprite Renderer attached to it. Our Animator Component will take care of
changing the sprite to whatever animation we need at the time, but it will need
access to the Sprite Renderer which is why we add the Animator to this
GameObject rather than its parent.

Click Add Component and add an Animator.
In the Project panel, find the folder Assets/Games/Sprites and click on it to

show its contents. Click and drag RunMan_Animator out of the Project panel
and drop it into the Controller field of the Animator Component you just added.

The final part of the puzzle is to tell the player script about this new Animator
Component. Click on RunMan in the Hierarchy, then find the Run Man
Animator field of the Run Man_Character Controller Component.

In the Hierarchy, click and drag RunMan_Run-Sheet_0 GameObject into
that Run Man Animator field. Unity will automatically figure out that there is an
Animator Component attached to the GameObject you just dropped into the field,
and in turn will use the reference to the Animator rather than the GameObject.

Now, if you press Play to try out the game the player will fall down onto the
platform and for the brief time that he is on a platform, you should be able to
move left, right, and even jump by pressing the Space key. Next, we need to give
RunMan some more platforms to run and jump on.

Figure 2.13 The Base Sound Controller Component holds a list of sounds to play.

28 2. Making a 2D Infinite Runner Game

2.6.6 Scoring
The framework in this book includes something I call a User Data Manager.
Essentially, every player manages its own data. Having score, health, lives, and so
on belonging to the player rather than the game, we abstract out the player from
the rest of the game code. For example, the Game Manager does not need to keep
track of score for all the players since the players do that themselves. The Game
Manager can tell a player to increase its score, but it does not have to do anything
more than that. This approach makes it easier to implement things like multi-
player later, as the player structure is easier to switch out to different setups with-
out affecting other code.

In the Hierarchy, click the RunMan GameObject to highlight it. In the
Inspector, you should find that Unity has already added the BaseUserManager
Component. This happens due to there being code – in one of the scripts that our
RunMan_CharacterController script inherits from named BasePlayerStatsController
– that tells Unity we require this Component to be attached to our GameObject.

The BaseUserManager contains a whole lot of helper functions to add score,
reduce score, add health, or lives or levels. We will be looking at this system in
detail further in this book, in Chapter 4, Section 4.3. For now, all you need to
know is that everything we need to do with storing score for RunMan will be
contained in that BaseUserManager Component.

2.7 The Game Loop and the Game Manager
A game loop usually refers to the a recurring core of game code, where logic
exists that needs to be updated every frame or where game states are monitored
and changed to control a games overall flow. The RunMan_GameManager script
we have so far has no real game logic inside it, just a few variables and an instance
variable, and this section adds in the game loop and supporting functions around
it to do things like spawn platforms for the player to run on.

You might recall that when we made the RunMan_GameManager script
back in Section 2.4, we programmed it so that the RunMan_GameManager class
derives from BaseGameManager. BaseGameManager already has code in place
to help us to deal with the state of the game.

2.7.1 Game States
The BaseGameManager includes 17 different states for larger, more complicated
games, though for this project we only use 5 of them:

Game.State.loaded This state is called when the main game Scene first loads.
Game.State.gameStarting A fter initialization and set up of anything we need in the main game

Scene, gameStarting will be set and we use this to display a message
that will notify the player to ‘get ready’ to play.

Game.State.gamePlaying Once the game is running, the states stays in gamePlaying.
Game.State.gameEnding If the player falls off a platform and hits a hidden trigger, the game

ends. The gameEnding state takes care of stopping movement and
preventing any more score being earned. We also show the final
‘game over’ user interface as this state begins.

Game.State.gameEnded W hen the gameEnded state occurs, we leave the main game Scene and
load the main menu.

292.7 The Game Loop and the Game Manager

The BaseGameManager class deals with game states primarily through three
functions: SetTargetState(), UpdateTargetState(), and UpdateCurrentState().
When a call to SetTargetState() is made, a new state is passed in which becomes
the target state. BaseGameManager knows that the target state is different to the
current state, so it makes a call to the UpdateTargetState() function.
UpdateTargetState() will then check the target state and run any code that we
want to run whenever that state begins (for example, during the gameStarting
state we show a message to tell the player to get ready). At the end of
UpdateTargetState() the current state is then updated to the desired new state.

Meanwhile, every frame from the Update() function in BaseGameManager,
the function UpdateCurrentState() is called. Inside the UpdateCurrentState() we
make calls to run any code that needs to run every frame, such as updating the
user interface to show the current score and so on. These three functions are key
to dealing with game states.

2.7.2 The Main Loop of RunMan_GameManager.cs
Open your RunMan_GameManager script in the script editor (to do this, go
into Unity, find the GameManager GameObject in the Hierarchy, click to
highlight it in the Hierarchy and then find the RunMan_GameManager
Component in the Inspector. Double click on the script name to open it in the
script editor).

As you work your way through the code in this chapter, always remember to
stay above the final curly bracket at the very bottom of this script, otherwise the
compiler will generate an error.

The new code will need some new variables to work, so we start by adding
new variables to the top of the RunMan_GameManager script.

Just above the line:

public static RunMan _ GameManager instance { get; private set; }

Add the following variable declarations:

 public Transform _platformPrefab;

 public RunMan_CharacterController _RunManCharacter;

 private float distanceCounter;
 public RunMan_UIManager _uiManager;

 public float playAreaTopY = -0.4f;
 public float playAreaBottomY = 0.2f;
 public float platformStartX = 3f;

Next, replace the empty Start() function with this:

 public void Start()
 {
 SetTargetState(Game.State.loaded);
 }

30 2. Making a 2D Infinite Runner Game

When the game starts, the code above sets our current state to Game.State.
loaded so code can run that we need to run as soon as the Scene is done loading.

Below the new Start() function, add the code below:

 public override void UpdateTargetState()

 {
 Debug.Log("targetGameState=" + targetGameState);

 if (targetGameState == currentGameState)
 return;

 switch (targetGameState)

 {
 case Game.State.loaded:
 Loaded();
 break;

 case Game.State.gameStarting:
 GameStarting();
 StartGame();
 break;

 case Game.State.gameStarted:
 // fire the game started event
 GameStarted();
 SetTargetState(Game.State.gamePlaying);
 break;

 case Game.State.gamePlaying:
 break;

 case Game.State.gameEnding:
 GameEnding();
 EndGame();
 break;

 case Game.State.gameEnded:
 GameEnded();
 break;
 }

BaseGameManager already has the above function in it, but it was declared
as a virtual function. Having a virtual function like that means we can use the
override keyword to use a new version of the function – note that we override the
original function, not swap it out, or destroy the original. Any calls to
UpdateTargetState() will just be rerouted but, if we need to, we can always call the
original function too – it still exists – some times in this book, we will call the
original function as well as the overridden version, but not this time. Above, we
simply override the original function and use that.

Most of what we do in each state above is to call other functions to do the
actual work. For example, in the Game.State.loaded case statement, it just calls out
to Loaded(). I try as much as possible to keep code out of the state machine func-
tions to make debugging easier. Calling out to separate functions is a good way to
avoid your game state code from getting out of hand – having code in each state
can soon get unruly and harder to debug, so it really is best if you try to keep
blocks of code in their own functions, instead.

There are a couple of calls to functions that we do not have in this script, such
as GameStarting() and GameStarted(). These are inherited functions and their
code can be found in BaseGameManager.cs. The reason we call out to those is

312.7 The Game Loop and the Game Manager

that they contain calls to invoke UnityEvents that we will be using to hide and
show the user interface. We will get to setting up the UnityEvents further in the
user interface further in this chapter, Section 2.9.

Now that our RunMan_GameManager class has everything it needs to deal
with updates to the target state, we need to add in some of those new functions
called out in the code, like Loaded(), StartGame() and so on.

Beneath the code you just added (note: staying above the final curly bracket
in that script), add this function:

 public override void Loaded()

 {
 base.Loaded();

 // reset score
 _RunManCharacter.SetScore(0);

 SetTargetState(Game.State.gameStarting);
 }

Above, Loaded() starts with a call to base.Loaded(), which tells Unity to run
the original Loaded() function from the base class (BaseGameManager). Although
here we are overriding that function, the original function still exists and we can
still call it via base. This is useful when the base class has things in it that we don’t
want to replicate in an overridden function, but we still want to run. In this case,
the base class only contains a call to invoke the UnityEvent OnLoaded. Again, we
will get to the UnityEvents later in the chapter when dealing with user interface.

The next line resets our players score to zero at the start of the game:

 _ RunManCharacter.SetScore(0);

Finally, now that we have finished everything that needs doing when the
game first loads, there is a call to SetTargetState to move on to the new state
Game.State.gameStarting.

Next, we add the function that will be called when UpdateTargetState()
receives a call to change the state to gameStarting (from above, at the end of the
Loaded() function). Add this code below the Loaded() function:

 void StartGame()
 {
 runSpeed = 0;

 // add a little delay to the start of the game, for
people to prepare to run
 Invoke("StartRunning", 2f);
 }

Above, StartGame() sets the runSpeed to 0, so that RunMan does not start
running right away. Remember when we added code to the platforms that used
runSpeed from this Game Manager script? When the game starts, we hold every-
thing in place – with runSpeed at 0, the platforms will not move.

Next, the StartGame() function schedules a call to a function named
StartRunning() in 2 seconds, using Unity’s built in scheduling function Invoke:

 Invoke("StartRunning", 2f);

At this stage, after StartGame() has been called, the game sits in the Game.
State.gameStarting state as we wait for the call to StartRunning to be made (by

32 2. Making a 2D Infinite Runner Game

the above Invoke function call). There will eventually be a message on the screen
to tell the player to get ready. The 2-second pause is for the player to read the mes-
sage and to prepare to play the game (note that the message is currently hidden
and we will not be adding it back in until Section 2.9 later in this chapter).

Once the 2 seconds are up, StartRunning() is called. Add this function to
your script next, below the StartGame function you added previously:

 void StartRunning()
 {
 isRunning = true;

 runSpeed = 1f;
 distanceCounter = 1f;

 // start animation
 _RunManCharacter.StartRunAnimation();

 InvokeRepeating("AddScore", 0.5f, 0.5f);
 SetTargetState(Game.State.gameStarted);
 }

StartRunning kicks the game to life! The first line sets the Boolean isRunning
to true so that movement and animations can get started.

Below that, runSpeed is set to 1. The platform code we added earlier will use
this variable to know how quickly to move the platforms across the screen, so
now it is set to 1 the platforms will move.

The distanceCounter variable is used to keep a track of how far platforms
move, which in turn is used to decide when to spawn new platforms for the player
to jump on. As it is the start of the game, it is reset above to 1.

A call to StartRunAnimation() on the RunManCharacter object (an instance
of the RunMan_CharacterController script Component attached to the player)
gets the running animation started.

As well as the Invoke function, Unity provides another useful method for
scheduling function calls. InvokeRepeating will call the specified function at
regular intervals until either the Scene is unloaded or you use CancelInvoke() to
stop it. In the code above, the AddScore() function is called every 0.5 seconds
where the player will be awarded with score. The scoring system for this game is
very simple, but it works well enough! Survive longer, get a higher score.

The last line of StartRunning() advances the game state:
SetTargetState(Game.State.gameStarted);
The UpdateTargetState() function you added earlier will deal with this

change of state to Game.State.gameStarted, invoke the OnGameStarted()
UnityEvent and change the state to Game.State.gamePlaying. From here on, the
game just sits in Game.State.gamePlaying until the game ends.

Next, we need to add a function to deal with the end of the game. Add this
code to your RunMan_GameManager class next:

 void EndGame()
 {
 // stop running
 isRunning = false;
 runSpeed = 0;

 // schedule return to main menu in 4 seconds
 Invoke("ReturnToMenu", 4f);

 // stop the repeating invoke that awards score
 CancelInvoke("AddScore");

332.7 The Game Loop and the Game Manager

 // update target state
 SetTargetState(Game.State.gameEnded);
 }

In the script above, we deal with what happens when the game is over. This
will be called after the player falls off-screen. The first part of the script stops run-
ning and sets runSpeed to 0 so that the platforms stop moving.

The game is ending, so the next line schedules a call to ReturnToMenu in
4 seconds. We will get to this function further on in this section, but it may not
come as a big surprise that ReturnToMenu() loads the main menu.

After setting up the call to return to the menu, the script above uses
CancelInvoke to stop the AddScore() function from being called. Remember we set
up the InvokeRepeating call for this in the StartRunning() function? This is how we
stop it.

Finally, for the EndGame() function, we set the target state to gameEnded
with this line:

SetTargetState(Game.State.gameEnded);
UpdateTargetState() has nothing specific for Game.State.gameEnded other

than a call to Invoke the OnGameEnded UnityEvent, which will be used for user
interface later in this chapter.

Add the following code to your RunMan_GameManager script next:

 void AddScore()
 {
 _RunManCharacter.AddScore(1);
 }

 void ReturnToMenu()
 {
 SceneManager.LoadScene("runMan_menu");
 }

 public void PlayerFell()
 {
 SetTargetState(Game.State.gameEnding);
 }

AddScore() tells the player to add one(1) to its score.
ReturnToMenu() uses Unity’s SceneManager to load the main menu Scene.

At this stage, we don’t actually have a main menu Scene but we will be sorting
that out in the user interface Section 2.9 of this chapter.

Lastly in the function above, the PlayerFell() function is where we set the
target state to Game.State.gameEnding. This function will be called by the player
whenever it hits trigger. A trigger is just a Unity Collider that does not try to
resolve a collision, it just reacts to it. We will be adding a check to the player script
further in this chapter, once the RunMan_GameManager class is complete.

The final part of RunMan_GameManager deals with spawning platforms for
RunMan to run jump across. Right now, we only have two platforms which dis-
appear off-screen soon after we hit Play. Let’s fix that to make some real gameplay
now. Add this near to the end of your RunMan_GameManager script, just above
the final curly bracket:

 void SpawnPlatform()
 {
 runSpeed += 0.02f;

34 2. Making a 2D Infinite Runner Game

 distanceCounter = 0;

 float randomY = Random.Range(-0.4f, 0.2f);
 Vector2 startPos = new Vector2(3f, randomY);

 Instantiate(_platformPrefab, startPos, Quaternion.
identity);
 distanceCounter = Random.Range(-0.5f, 0.25f);
 }

New platforms are generated by the SpawnPlatform() function. The first line
of SpawnPlatform() increases runSpeed by 0.02. This means that, over time, the
game will gradually get faster and faster. It is a very simple way of increasing the
difficulty over time so that the player should eventually concede.

When a new platform spawns, we reset the variable distanceCounter ready
to measure the distance to the next spawn. A quick look to the Update() function
you will tell you that we check distanceCounter against the variable distanceTo-
SpawnPlatform, to decide how far to allow between platforms – but that’s further
down. Let’s get back to SpawnPlatform().

The next line uses the built-in random number generator function Random.
Range to ask the engine to come up with a number between playAreaTopY and
playAreaBottomY:

float randomY = Random.Range(playAreaTopY, playAreaBottomY);

randomY can now be used as the height to spawn the next platform. We add
it into a Vector2 on the next line:

Vector2 startPos = new Vector2(platformStartX, randomY);

Now that we have a Vector2 containing a position to spawn the new platform
out (consisting of a nice random Y position and a start position held in platform-
StartX that will be off-screen to the right of the play area), we can go ahead and
spawn the platform on the next line:

Instantiate(_ platformPrefab, startPos, Quaternion.identity);

Above, Instantiate takes a reference to a Prefab (_platformPrefab) followed
by the starting position for the GameObject to be instantiated and finally a rota-
tion value in Quaternions. Quaternion.identity is a zero rotation value, a default,
meaning that the new platform will not be rotated.

The last line of SpawnPlatform() adjusts the distanceCounter variable by a
small random amount:

distanceCounter = Random.Range(-0.5f, 0.25f);

The effect of this is that the next platform will have a random amount of space
between it because we are changing where zero is in the distance counting system.

We finish this programming section with an Update() function. Update() is
called every frame. In RunMan_GameManager, it is where we keep an eye on the
distanceCounter to decide whether it is time to spawn a new platform.

Add this to your script above the final curly bracket:

 void Update()
 {
 if (isRunning)
 {
 distanceCounter += (runSpeed * Time.deltaTime);

352.7 The Game Loop and the Game Manager

 // check to see if we need to spawn another
platform (based on distance travelled)
 if ((distanceCounter >= distanceToSpawnPlatform))
 {
 SpawnPlatform();
 }
 }
 }

Above, Update() begins by checking that isRunning is true first. If the player
is not running, we will never need to spawn any new platforms, so it makes sense
not to run this code unless we are on the move.

distanceCounter is increased next by runSpeed multiplied by Time.deltaTime.
We talked about Time.deltaTime in the platform movement script back in Section
2.5. By multiplying the runSpeed by deltaTime, we make movement time-based
rather than frame based. This variable distanceCounter is essentially keeping
stock of how far the player has run so that we know when to spawn the next plat-
form. The check for that comes next in that Update() function:

 if ((distanceCounter >= distanceToSpawnPlatform))
 {
 SpawnPlatform();

 }

Whenever distanceCounter goes over our set distanceToSpawnPlatform, we
make a call to spawn a new platform – remember that SpawnPlatform() also resets
distanceCounter so that another platform will be spawned at the same distance again
(give or take the small randomization adjustment made at the end of SpawnPlatform()).

And that’s it for programming the game! We need to jump back to Unity and
set up some references on the Component via the Inspector, but when it comes to
programming, we have all the logic now to make the gameplay work. Save the
script and return to Unity to set up the Component.

2.7.3 Setting Up the RunMan_GameManager Component in the Editor
In the Hierarchy, click on the GameManager to highlight it and show its proper-
ties in the Inspector. In the Inspector, scroll down to the bottom of the
Components to show the groups of fields such as Run Speed, Distance to Spawn
Platforms and so on as shown in Figure 2.14.

Figure 2.14 The RunMan_GameManager fields reference other GameObjects in the main
Scene that the Game Manager needs to create instances of or communicate with.

36 2. Making a 2D Infinite Runner Game

In the Project panel, find the Games/RunMan/Prefabs folder. This folder is
where you should find the Prefab for the platform, we made back in Section 2.5.
Click and drag the RunMan_Platform Prefab out of the Project window and drop
it into the Platform Prefab field of the GameManager in the Inspector. This tells
the Game Manager which Prefab to spawn when we tell it to spawn a new
platform.

We now need to provide the Game Manager with a reference to the player. In
the Hierarchy, find the RunMan GameObject then click and drag it into the Run
Man Character field of the GameManager in the Inspector.

Make sure that the values in your Game Manager match up with those in
Figure 2.14.

2.8 The Demise of RunMan
Now that we have platforms moving and a character ready to jump over them, we
need to add a method to detect whenever the player misses a platform and falls
off screen. To accomplish this, we use a Collider set to be used as a trigger (so that
it does not resolve a collision, it only reports it) scaled across the entire width of
the screen and positioned just below the bottom of the play area. Whenever the
player hits the trigger, it will know that it has fallen outside of the play area and
end the game.

When adding a trigger, I prefer to be able to see the object so that I can scale
and place it easily. If this was a 3D game, I would just add a cube to the Scene and
arrange it as necessary before disabling the renderer to hide it. Sadly, Unity does
not have any 2D primitives (cubes, spheres and so on) but we can use a 3D primi-
tive and add a 2D Collider to it. Bit of an odd mix, I know, but there it is.

Find an empty space in the Hierarchy and right click. Choose the 3D Object
sub-menu and, from there, choose the Cube.

Next, click the Scale Transform button on the Toolbar (top left of the editor
window) or press R on the keyboard to shortcut to scale mode. In the Scene panel,
the Gizmo should now show some chunky squares instead of arrow heads. Click
the red square and drag it to the right, to scale the cube out along its X axis.
Stretch it so that it is about twice as wide as the Game panel area.

Now move the cube down, below the play area so that it is out of view of the
Game panel. To switch back into move mode, click on the Move Transform but-
ton in the Toolbar or press W on the keyboard to shortcut. Grab the green arrow
and move the cube down. It should look something like the one in Figure 2.15.

With the Cube GameObject selected in the Hierarchy, check out the
Inspector. The Cube already has a Collider attached to it, but it is the wrong type.
The Box Collider will only work with 3D physics, so we need to remove it and
replace it with the 2D equivalent.

Right click on the Box Collider Component in the Inspector. Click Remove
Component.

Click the Add Component button and start typing boxco to jump to the
available Box Colliders. Choose the Box Collider 2D Component from the list
(Figure 2.16). Once the new Component appears in the Inspector, check the box
IsTrigger by clicking on it.

If you hit Play now and make RunMan fall off the bottom of the screen, you
should now hear the sound effect that signals RunMan’s demise. In the next sec-
tion, we will be adding a game over screen that will go here as well as a main
menu to return to after the game is over. Oh, and scoring. Phew! Sounds like a
busy section.

372.9 Adding the User Interface

2.9 Adding the User Interface
The game is all there, but it needs the following user interfaces:

 1. A get ready message

 2. An in-game UI to tell players the current score and high score

 3. A game over message

 4. A main menu to return to, after the game is over

There is a little more cheating going on here with the user interface – remember
at the start of the chapter when we hid it all? Yeah, the user interface is already
there but it needs some additional code to be shown and hidden as needed.

In the Hierarchy, click the GameManager GameObject to highlight it. In the
Inspector, scroll down to the Add Component button and click it. Choose New
Script and type RunMan_UIManager in as the name of the script. Click Create
and Add to make the new template Component. Once the Component appears,
double click on the script name to open the script up in your script editor.

Replace the code with this:

using UnityEngine.UI;
using GPC;

public class RunMan_UIManager : CanvasManager
{
 // we derive from canvas manager to give us the
functionality to fade canvas nicely

 public Text _scoreText;
 public Text _highText;
 public Text _finalScoreText;
 public Text _newHighScoreText;

Figure 2.15 To detect falling players, we use a giant 3D cube hidden just off screen with a
2D Box Collider Component attached to it.

38 2. Making a 2D Infinite Runner Game

Figure 2.16 We replace the cube’s default Box Collider with a Box Collider 2D Component,
as the standard Box Collider will not work with 2D physics.

392.9 Adding the User Interface

 void Start()
 {
 _scoreText.text = "Score 0";
 _newHighScoreText.gameObject.SetActive(false);

 // hide all ui canvas
 HideAll();
 }

 public void ShowGetReadyUI()
 {
 ShowCanvas(0);
 }

 public void HideGetReadyUI()
 {
 HideCanvas(0);
 }

 public void ShowGameOverUI()
 {
 ShowCanvas(1);
 }

 public void ShowGameUI()
 {
 ShowCanvas(2);
 }

 public void HideGameUI()
 {
 HideCanvas(2);

 }

 public void SetScore(int scoreAmount)
 {
 _scoreText.text = "Score "+scoreAmount.
ToString("D5");

 }
 public void SetHighScore(int scoreAmount)
 {

 _highText.text = "High " + scoreAmount.
ToString("D5");
 }

 public void SetFinalScore(int scoreAmount)
 {
 _finalScoreText.text = "Final Score " + scoreAmount.
ToString("D5");
 }

 public void ShowGotHighScore()
 {
 _newHighScoreText.gameObject.SetActive(true);
 }
}

The first thing to notice about the code above is that it derives from a class
named CanvasManager. CanvasManager is part of the framework for this book,
and it provides methods for showing and hiding Canvases. To use CanvasManager,
each Canvas GameObject has a Component on it named Canvas Group. Canvas
Group is a Component provided by Unity that allows you to control the alpha
level of an entire UI Canvas and to enable or disable interactions with it. What

40 2. Making a 2D Infinite Runner Game

my CanvasManager does is to use Canvas Group and a co-routine to fade in or
out Canvases on demand. As you can see in the code above, showing, and hiding
canvases can be done with the ShowCanvas() and HideCanvas() functions. All
you pass in is an index number for the Canvas you want to show or hide and
CanvasManager does the rest of the work for you. CanvasManager will be
explained in detail further in this book, in Chapter 5, Section 5.9.1.

You may wonder where to get the index numbers referring to the Canvas you
want to show or hide. This relates directly to an array of Canvases that you will
find in the Inspector on this Component. Now that the script is set up, hit
CTRL+S on the keyboard or File/Save to save the script. Return to the Unity edi-
tor and we will get started setting up the Component in the Inspector.

Back in the editor now, in the Hierarchy find the UI_Canvases GameObject
and expand it with the little arrow if it is not already showing the three Canvases
parented to it.

Click the GameManager GameObject now in the Hierarchy and look over to the
Inspector. Scroll down to show the RunMan_UIManager Component. Right now,
the Component will look something like Figure 2.17 in that we are missing the four
text references it needs and it has an empty UI Canvas Groups array. UI Canvas
Groups is the array we need to get those Canvas index numbers from, so the next step
is to add references to the three UI Canvases you just looked at over in the Hierarchy.

Find the click on the little arrow to the left of UI Canvas Groups to expand
out the array so you can see the Size field.

Make sure GameManager is still highlighted in the Hierarchy for this next
step: Back in the Hierarchy, click and drag GetReadyMessageCanvas onto the UI
Canvas Groups name (just above the size field) so that Unity adds it to the array
automatically. As you hover over the name, to show you are in the right place the
cursor will change to show a little plus sign and you can release the mouse to have
Unity add the new item. Now, do the same for the GameOverMessageCanvas and
the GameUICanvas GameObjects.

Now you need to set up the text fields. To do that, find GameOverMessageCanvas
in the Hierarchy and click the little arrow next to it to expand it out and show child
objects under it. Now do the same for the GameUICanvas GameObject – click the
arrow to expand it out and show child objects under it. At this point, we have all
the text fields we need on display in the Hierarchy and we will be able to drag and
drop them into the corresponding fields of the RunMan_UIManager Component.

Figure 2.17 The RunMan_UIManager Component in the Inspector.

412.9 Adding the User Interface

Get to the RunMan_UIManager Component again by clicking on
GameManager in the Hierarchy and scrolling down in the Inspector to show it.

Under GameUICanvas in the Hierarchy, click and drag ScoreTextLabel out
of the Hierarchy and into the Inspector, into the field labeled Score Text under
the RunMan_UIManager Component.

Next, click and drag HighScoreTextLabel out of the Hierarchy and into the
Inspector, into the field High Text.

Under GameOverMessageCanvas in the Hierarchy, click and drag
FinalScoreTextLabel out of the Hierarchy into the Final Score Text field of the
RunMan_UIManager Component in the Inspector.

Finally, under GameOverMessageCanvas again, click and drag
NewHighScoreTextLabel out of the Hierarchy and into the New High Score Text
field in the Inspector.

With all the user interface references set up, we can now use some of the
UnityEvents on the GameManager to call functions on the script you just added
and show or hide user interface as needed. When a UnityEvent is invoked (called
by code) it can trigger a function call to a function within a script Component on
any other GameObject. We just need to tell it which GameObject the script is on,
and which function to call.

Click on GameManager in the Hierarchy, to show the GameManager’s prop-
erties and Components in the Inspector.

Under the Game Events label find the OnLoaded() event. Right now, it will say
List is Empty. Beneath that, to the right, find the little plus icon and click on it. The
List is Empty message should now disappear to show two accessible fields and a
grayed-out dropdown menu (Figure 2.18). The top left box reads Runtime Only – this
refers to when this UnityEvent should be active. As we do not want it to do anything
in any state other than when the game is running, we can leave it at its default state.
Beneath that is an object box that starts with the default state of None. What we need
to do here is to add a reference to a GameObject. In this case, however, we are going
to be calling functions in the RunMan_UI Manager Component attached to the
GameManager which means we need to reference the GameManager here.

To do that, keep the OnLoaded() UnityEvent visible in the Inspector, then from
the Hierarchy drag out the GameManager GameObject and drop it into the
None(Object) target field. The dropdown to the right of it should now be enabled. Click
the dropdown and choose RunMan_UIManager from the list, followed by
ShowGetReadyUI. When the game is started, the OnLoaded event will be invoked and
our call to ShowGetReadyUI triggered, showing the get ready message to the player.

Let’s set up the rest of the events.
Find the OnGameStarted() event in the Inspector. Click the plus sign (+)

twice, to add two new events. From the Inspector, drag the GameManager
GameObject and drop it into the target boxes for each event (currently populated
by None (Object)).

In the first dropdown, choose RunMan_UIManager followed by ShowGameUI.
In the second dropdown, choose RunMan_UIManager followed by

HideGetReadyUI.
This will show the main game user interface (showing score and high score)

when the game starts, as well as hiding the get ready message. Now we just need
to add the game over UI.

Find the On Game Ended () GameEvent (you may need to scroll the Inspector
down a little to find this). Again, click the plus (+) button twice to add to refer-
ences. drag the GameManager GameObject out of the Hierarchy and into the
target fields (currently None (Object)). With the dropdowns now available to

42 2. Making a 2D Infinite Runner Game

click on: for the top dropdown, choose RunMan_UIManager followed by
ShowGameOverUI. For the bottom dropdown, choose RunMan_UIManager
followed by HideGameUI.

OK, so we have set up all the Canvases now but there is a little code to add to
get the Game Manager to update the in game score display.

In the Project folder, find the Games/RunMan/Scripts folder and RunMan_
GameManager script. Double click the file to open it in the script editor.

At the top of the script, just below the class declaration:

public class RunMan_GameManager : BaseGameManager
{

Add the following variable declaration just after the opening curly bracket:

public RunMan _ UIManager _ uiManager;

Now scroll down to find the Loaded() function:

 public override void Loaded()
 {
 base.Loaded();

Figure 2.18 Game Events on the Game Manager Component in the Inspector.

432.9 Adding the User Interface

Add this just after the code above:

 // set high score

 _uiManager.SetHighScore(GetComponent<BaseProfileManager>().
GetHighScore());

Now find the EndGame() function and add this before the closing curly
bracket at the end of the function:

 if (GetComponent<BaseProfileManager>().
SetHighScore(_RunManCharacter.GetScore())== true)
 {
 _uiManager.ShowGotHighScore();
 }

 // update final score ui
 _uiManager.SetFinalScore(_RunManCharacter.GetScore());

The last piece of the puzzle adds score during the Update() loop. Find the
Update() function. Find this code:

 if ((distanceCounter >=
distanceToSpawnPlatform))
 {
 SpawnPlatform();
 }

And add the following right after that closing bracket for the If statement
(so that it has three curly brackets after it, at the end of the function):

_uiManager.SetScore(_RunManCharacter.GetScore());

The final completed script for RunMan_GameManager looks like this:

using UnityEngine;
using UnityEngine.SceneManagement;
using GPC;

[RequireComponent(typeof(BaseProfileManager))]

public class RunMan_GameManager : BaseGameManager
{
 public RunMan_UIManager _uiManager;
 public float runSpeed = 1f;
 public float distanceToSpawnPlatform = 20f;
 public bool isRunning;
 public Transform _platformPrefab;
 public RunMan_CharacterController _RunManCharacter;
 private float distanceCounter;
 public float playAreaTopY = -0.4f;
 public float playAreaBottomY = 0.2f;
 public float platformStartX = 3f;

 public static RunMan_GameManager instance { get; private
set; }

 // set instance in this script's constructor
 public RunMan_GameManager()
 {
 instance = this;
 }

44 2. Making a 2D Infinite Runner Game

 private void Awake()
 {
 // reset all of the user data we have stored in the
ScriptableObject
 gameObject.SendMessage("ResetAllPlayerStats");
 }
 public void Start()
 {
 SetTargetState(Game.State.loaded);
 }

 public override void UpdateTargetState()
 {
 switch (targetGameState)
 {
 case Game.State.loaded:
 Loaded();
 break;

 case Game.State.gameStarting:
 StartGame();
 break;

 case Game.State.gameStarted:
 // fire the game started event
 OnGameStarted.Invoke();
 SetTargetState(Game.State.
gamePlaying);
 break;

 case Game.State.gamePlaying:
 break;

 case Game.State.gameEnding:
 EndGame();
 break;

 case Game.State.gameEnded:
 OnGameEnded.Invoke();
 break;
 }
 }

 public override void Loaded()
 {
 base.Loaded();

 // set high score

 _uiManager.SetHighScore(GetComponent<BaseProfileMana
ger>().GetHighScore());

 // reset score
 _RunManCharacter.SetScore(0);

 SetTargetState(Game.State.gameStarting);
 }

 void StartGame()

 {
 runSpeed = 0;

 // add a little delay to the start of the game, for
people to prepare to run
 Invoke("StartRunning", 2f);
 }

452.9 Adding the User Interface

 void StartRunning()
 {
 isRunning = true;
 runSpeed = 1f;
 distanceCounter = 1f;

 SetTargetState(Game.State.gameStarted);

 // start animation
 _RunManCharacter.StartRunAnimation();

 InvokeRepeating("AddScore", 0.5f, 0.5f);
 }

 void EndGame()
 {
 // stop running
 isRunning = false;
 runSpeed = 0;

 // schedule return to main menu in 4 seconds
 Invoke("ReturnToMenu", 4f);

 // stop the repeating invoke that awards score
 CancelInvoke("AddScore");

 // let's try to store the high score (profile
manager takes care of checking if it's a high score or not, we just
submit a score)
 if (GetComponent<BaseProfileManager>().
SetHighScore(_RunManCharacter.GetScore())== true)
 _uiManager.ShowGotHighScore();

 // update final score ui
 _uiManager.SetFinalScore(_RunManCharacter.
GetScore());

 // update target state
 SetTargetState(Game.State.gameEnded);
 }

 void AddScore()
 {
 _RunManCharacter.AddScore(1);
 }

 void ReturnToMenu()
 {
 SceneManager.LoadScene("runMan_menu");
 }

 public void PlayerFell()
 {
 SetTargetState(Game.State.gameEnding);
 }

 void SpawnPlatform()
 {
 runSpeed += 0.02f;
 distanceCounter = 0;
 float randomY = Random.Range(playAreaTopY,
playAreaBottomY);
 Vector2 startPos = new Vector2(platformStartX,
randomY);
 Instantiate(_platformPrefab, startPos, Quaternion.
identity);

46 2. Making a 2D Infinite Runner Game

 distanceCounter = Random.Range(-0.5f, 0.25f);
 }
 void Update()

 {
 if (isRunning)
 {
 distanceCounter += (runSpeed * Time.
deltaTime);

 // check to see if we need to spawn another
platform (based on distance travelled)
 if ((distanceCounter >= distanceToSpawnPlatform))
 SpawnPlatform();

 _uiManager.SetScore(_RunManCharacter.
GetScore());
 }
 }
}

Play the game now. At the start, there should be a message to say get ready
and once the game is in play the score and high score will be shown. When
RunMan falls off the screen, you should also get a nice game over message with a
final score!

The only problem is that ending the game makes an error like “Scene
‘runMan_menu’ couldn’t be loaded because it has not been added to the build

Figure 2.19 Unity’s Build Settings panel.

472.9 Adding the User Interface

settings or the AssetBundle has not been loaded” – and this is down to Unity not
finding a main menu, so let’s fix that next.

2.9.1 Main Menu Setup
In the Project panel, find the Scenes folder. Double click the runMan_menu
Scene to open it. To save time, this Scene is already almost ready to go. It is based
on the MenuTemplate Scene found in the GPC_Framework/TemplateScenes
folder, which is provided as a basic template to help you build a menu Scene
quickly. To finish setting up the menu, we need to tell Unity where to find the
menu Scene, by adding it to Build Settings.

Click the File menu (top left of the editor) followed by Build Settings. With
Build Settings open, click and drag runMan_menu out of the Project panel and
drop it into the Scenes In Build area of Build Settings (Figure 2.19). Close the
Build Settings window once you have done that.

The menu template Scene that you just copied over has everything you need
for a main menu, but we do need to tell it where to find the game so that it can
load the game Scene when a player hits the start button.

Find and click on the MenuManager GameObject in the Hierarchy to high-
light it. In the Inspector, find the Menu With Profiles Component. In the Game
Scene Name field, type runMan_core (case sensitive!).

Hit CTRL+S to save the Scene (or File/Save menu) and hit Play in the toolbar
to play the game. The menu should appear.

Click the Start Game button to play the game. The main game should load,
play, and even return to the main menu after the game ends.

https://taylorandfrancis.com

49

3 Building the Core
Game Framework

This chapter will give context to the design decisions made in the core framework
as well as providing a good base for understanding how the individual code reci-
pes work together and why they may sometimes have dependencies on other
Components.

The framework for this book (as seen in Figure 3.1) features six main areas:

 1. Game Manager
 The Game Manager acts like a central communication script for all parts

of the game and oversees game state.

 2. Players
 Players may already be present in the game scene or instantiated by the

Game Manager. The players structure will be explored later in Chapter 4
of this book.

 3. AI and enemies
 As with players, AI controlled characters, or enemies may already be

present in the scene at load time or created at runtime. We look at AI in
full in Chapter 10.

 4. UI Manager
 The UI Manager draws all the main in game user interface elements,

such as score display, and lives. We look at UI in Chapter 11.

 5. Sound Manager
 The Sound Manager handles sound playback. Sound is in Chapter 9.

50 3. Building the Core Game Framework

To maximize flexibility, the base classes need to be able to accommodate dif-
ferent configurations. For example, a player controller should allow for input to
be passed in from another script so that control systems can easily be switched
out if we want to use, say, a controller vs. keyboard controls. The player script
does not need to know where the input is coming from, but it needs to provide a
common interface for an input script to communicate with. Just as a common
interface is used to communicate with the player controller, it should not matter
to the player controller as to where the input comes from.

3.1 Controllers and Managers
In this book, there are two terms I use to specify types of main classes; those are
Controllers and Managers.

3.1.1 Managers
Managers are used in this book as a term to represent a script that specifically
manages objects or data (dealing with players, audio or other game elements in a
similar way to how a manager might manage staff in a company). For example, it
could be a GlobalRaceManager class used to track and get information from a set
of RaceController script Components attached to racing vehicles. The manager
script uses information from the RaceController Components to calculate race
positions of players as well as informing players as to the game’s current running
state, managing overall race logic.

3.1.2 Controllers
Controllers specialize in specific tasks such as helping scripts communicate with
each other, holding game-specific player information or dealing with session
data. For example, the players in this book have a player controller script. Enemies
have an enemy controller. Controllers can be independent of other scripts or
managed by manager scripts, depending on what it is they need to do.

3.2 Core Framework Scripts
There are several scripts in the Scripts/BASE folder that are intended to act as
templates, or as classes to derive from, in your own games. In this section of the
book we will be looking at the scripts that go to make up the main framework.

Figure 3.1 Diagram of the game framework.

GAME MANAGER

PLAYER

BASE USER
MANAGER

SOUND MANAGER UI MANAGER

USER DATA

OTHER ENTITIES
(AI, ENVIRONMENT

ETC.)

UI CANVAS AND UI
ELEMENTS (TEXT

 ETC.)

513.2 Core Framework Scripts

Core framework classes in the BASE folder that will be covered in this chap-
ter are:

	▪ 3.2.1. BaseGameManager

	▪ 3.2.2. ExtendedCustomMonoBehaviour

	▪ 3.2.3. BaseCameraController

Other base scripts will be covered in specific parts of this book. For example,
the scripts found in GPC_Framework/BASE/PLAYER are covered in Chapter 4
when we look at the player structure.

3.2.1 BaseGameManager
The Game Manager is the core of gameplay, where overall game functions are
described and dealt with and where current game state is held.

Core functions of the Game Manager are:

 1. Tracking game state:

 a. Storage of the game state

 b. Providing functions for changing game state

 c. Changing the game state based on calls to functions such as
EndGame(), StartGame(), or PauseGame()

 2. Creating player(s)

 3. Camera set up and specifics such as telling the camera what to follow

 4. Communicating between session manager, user manager, and game
actions

 5. Any communications between scripts that we would like to keep as
standalone and not have to recode to talk directly to each other

Keeping track of game state is important, as some elements will need to change
their behavior. If the game is paused, for example, we may want to suspend all input,
freeze game time, and show a pop up. When the game ends, we will need to disable
player input and so on. Tracking game states is the job of the Game Manager script.

A typical game may have several different core states, such as:

 1. Game running

 2. Game paused

 3. Loading

 4. Game ended

There may also be several custom states, such as a state for showing a cutscene
or perhaps a state for playing a special audio clip. I recommend creating a new

52 3. Building the Core Game Framework

state for any game action that affects the behavior of one or more of your scripts.
That way, you can always have the scripts rely on the Game Manager to know how
to behave.

Many of the key functions in BaseGameManager are virtual; put there to
serve as an established protocol for dealing with different types of game activity.
They contain little or no code in their default state and the intention is that you
override them in your own derived versions of a Game Manager, later.

You can find BaseGameManager.cs script in the folder Assets/GPC_
Framework/Scripts/BASE/GAME. It looks like this:

using UnityEngine;
using UnityEngine.Events;

Above, the regular namespaces are imported, along with UnityEngine.
Events. In my Game Manager classes, I like to have a set of UnityEvents for all or
most game states. Next up in the code, we tell Unity that this code is part of a
Namespace named GPC:

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/GameManager")]

Using namespaces provides scope to the code inside them. It is used to orga-
nize code and it is helpful to prevent your code from conflicting with others (such
as duplicate class names and so forth). As we tend to use a lot of library C# code
with Unity, I recommend using namespaces for all your classes.

Unity's AddComponentMenu function is used to make a menu item in the
Unity editor. This is completely optional, but I like to have those menu items
available.

We now move into the BaseGameManager class itself:

 public class BaseGameManager : MonoBehaviour
 {

The BaseGameController class derives from MonoBehaviour so that it can
tap into automatically called system functions such as Awake(), Start(), Update(),
FixedUpdate() and so forth.

Now, on to the variable declarations. The first variables declared are:

 public Game.State currentGameState;
 public Game.State targetGameState;
 public Game.State lastGameState;

currentGameState, targetGameState, and lastGameState will be used to keep
tabs on the overall state of our games. Notice that they are typed as Game.State,
which is a custom class containing all the game states in an enum. It is intended
that, as your games expand, the Game class may be expanded on to include other
game states as required, though I have tried to include all the states needed for a
range of different games.

We will get to how the states are used in the code chunk below:

 private bool paused;

 public void SetTargetState(Game.State aState)
 {
 targetGameState = aState;

533.2 Core Framework Scripts

 if (targetGameState != currentGameState)
 UpdateTargetState();
 }

 public Game.State GetCurrentState()
 {
 return currentGameState;
 }

Above, a variable declaration of a Boolean to hold the paused state followed
by a couple of functions to deal with the game states. That will come up later in
the script, but for now focus on the game state functions. Whenever game state
should change, a call to SetTargetState is made. This might be from a function
within the Game Manager or it could come from one of your own scripts else-
where in the project.

Rather than jumping in and setting a new current state right away, we use a
target state first. After a call to SetTargetState(), the state that gets passed in goes
into the variable targetGameState. By going through this process of having a tar-
get state before setting the current state, we can run any code that needs to be run
at the start of a state change and then switch states after that code has run.

Here is an example of how having a target state before a current state is
 useful: Imagine the start of a game. When the game loads, we call out to
SetTargetState to change state to Game.State.loaded. We do all the initialization
needed to prepare for the game. After initialization, the current state becomes
loaded and we can call again to SetTargetState(), to change the state to
Game.State.Starting. With the target state of Game.State. gameStarting, a message
telling the player to get ready is displayed and a timer starts. The current state is
then set to Game.State.gameStarting and we stay in that state, until the timer fin-
ishes. Once the timer finishes, we call to SetTargetState() for a third time and this
time pass in Game.State.gamePlaying. When the target state is gamePlaying, all the
initialization to start the game begins (such as enabling player input or activating
AI). Once the game is all ready to go, the current state shifts over to gamePlaying
and we stay there, throughout gameplay, until game logic says otherwise.

The next block of code contains all the UnityEvents that will show up in the
Inspector, ready to be populated with objects and calls to Components attached to them:

 [Header("Game Events")]
 public UnityEvent OnLoaded;
 public UnityEvent OnGameStarting;
 public UnityEvent OnGameStarted;
 public UnityEvent OnLevelStarting;
 public UnityEvent OnLevelStarted;
 public UnityEvent OnLevelEnding;
 public UnityEvent OnLevelEnded;

 public UnityEvent OnGameEnding;
 public UnityEvent OnGameEnded;
 public UnityEvent OnGamePause;
 public UnityEvent OnGameUnPause;
 public UnityEvent OnShowLevelResults;
 public UnityEvent OnShowGameResults;
 public UnityEvent OnRestartLevel;
 public UnityEvent OnRestartGame;

The advantage of having UnityEvents is that I can set up events in the editor,
via the Inspector, to tell other scripts when state changes happen. As these are
UnityEvents, I can add as many references to other Components via the Inspector

54 3. Building the Core Game Framework

and I do not need to know anything at all about them in the Game Manager
script itself. An example of where this comes in useful is with user interface. In
the running game example from Chapter 2, when the game enters its Loaded
state, the OnLoaded() UnityEvent is fired. In the Inspector, I set up the event to
call out to RunMan_UIManager.ShowGetReadyUI(). This shows a message to
tell the player to get ready. By using events to call standalone Components, I take
away any dependency on the UI scripts from the Game Manager. They can work
completely independently, just so long as the UnityEvent has been set up cor-
rectly in the Inspector. The UnityEvents will be called by functions triggered
through the game states:

 public virtual void Loaded() { OnLoaded.Invoke(); }
 public virtual void GameStarting() { OnLoaded.Invoke(); }
 public virtual void GameStarted() { OnLoaded.Invoke(); }
 public virtual void LevelStarting() { OnLevelStarting.Invoke(); }
 public virtual void LevelStarted() { OnLevelStarted.Invoke(); }
 public virtual void LevelEnding() { OnLevelEnding.Invoke(); }
 public virtual void LevelEnded() { OnLevelEnded.Invoke(); }
 public virtual void GameEnding() { OnGameEnding.Invoke(); }
 public virtual void GameEnded() { OnGameEnded.Invoke(); }
 public virtual void GamePause() { OnGamePause.Invoke(); }
 public virtual void GameUnPause() { OnGameUnPause.Invoke(); }
 public virtual void ShowLevelResults() { OnShowLevelResults.
Invoke(); }
 public virtual void ShowGameResults() { OnShowGameResults.
Invoke(); }
 public virtual void RestartLevel() { OnRestartLevel.Invoke(); }
 public virtual void RestartGame() { OnRestartGame.Invoke(); }

The above functions are here as placeholders. The intention is that Game
Manager scripts for use in real game projects will derive from this class and over-
ride these virtual functions with real functionality. If you do override them,
remember that you will be overriding the calls to corresponding UnityEvents.
Just remember to either run Invoke() on those GameEvents or call the base class
with base.(functionname).

Next, the UpdateTargetState function, which is called whenever
SetTargetState() is called upon to change the game state:

public virtual void UpdateTargetState()
 {
 // we will never need to run target state
functions if we're already in this state, so we check for that and
drop out if needed
 if (targetGameState == currentGameState)
 return;

 switch (targetGameState)
 {
 case Game.State.idle:
 break;

 case Game.State.loading:
 break;

UpdateTargetState() begins by checking that we are not already in the state
being set. If the current state is the same as the target state, we drop out of the
function. This is a precautionary measure, just in case duplicate calls are ever
made to update the state.

A switch statement looks at targetGameState and below that we have code
that will run whenever the state is set. Above, there is no code to run in idle or

553.2 Core Framework Scripts

loading states and it is not until we reach the loaded state that other functions
are called:

 case Game.State.loaded:
 Loaded();
 break;

 case Game.State.gameStarting:
 GameStarting();
 break;

Remember that big list of virtual functions a couple of pages back? Inside
these case statements are where they are called. Above, Loaded() and
GameStarting() are called respectively.

Below, I skip ahead past the rest of the case statements to reach the end of the
UpdateTargetState() function:

 // now update the current state to reflect
the change
 currentGameState = targetGameState;
 }

The last line of UpdateTargetState() sets the current game state to the target
state, as the target state has now been processed by the case statements above it.

UpdateCurrentState() follows on next, which follows a similar pattern of
case statements:

 public virtual void UpdateCurrentState()
 {
 switch (currentGameState)
 {
 case Game.State.idle:
 break;
 case Game.State.loading:
 break;
 case Game.State.loaded:
 break;
 case Game.State.gameStarting:
 break;

The UpdateCurrentState() function is called every frame, making up the
‘main loop’ of this class. This is where any recurring game logic should be called.
It is expected that you will override this function and have your own version in
any variants of the BaseGameManager class.

Other functions in BaseGameManager are there to help turn games around
quickly. If there are things that you use in many different games, it may save time to
included them all in a script like this that you can derive all other Game Managers
from. It saves having to rewrite the same code repeatedly across multiple projects.

The final part of the BaseGameManager deals with the mechanics of pausing
and unpausing a game:

 public virtual void GamePaused()
 {
 OnGamePause.Invoke();
 Paused = true;
 }

 public virtual void GameUnPaused()

56 3. Building the Core Game Framework

 {
 OnGameUnPause.Invoke();
 Paused = false;
 }

GamePaused() and GameUnPaused() are the functions to call to change the
paused state of the game. The two functions call out to the OnPause and
OnUnPause UnityEvents (Invoking them) as well as changing the game state as
required.

A Boolean variable named paused holds the game pause state. The code uses
something called a Getter and a Setter here so that a little game logic will be trig-
gered whenever the value of the Paused variable is changed:

 public bool Paused
 {
 get
 {
 return paused;
 }
 set
 {
 paused = value;

 if (paused)
 {
 // pause time
 Time.timeScale = 0f;
 }
 else
 {
 // unpause
 Time.timeScale = 1f;
 }
 }
 }

The Get part simply returns the value of the Boolean variable paused.
The Set part sets the Boolean variable paused and goes on to set Time.

timeScale to either 0 (paused) or 1 (unpaused). Setting Time.timeScale affects
how time passes. For example, setting timescale to 0.5 would mean that time
passes 2× slower than real time. The Unity documentation states:

Except for realtimeSinceStartup, timeScale affects all the time and delta time mea-
suring variables of the Time class. If you lower timeScale it is recommended to also
lower Time.fixedDeltaTime by the same amount.

FixedUpdate functions will not be called when timeScale is set to zero.

3.2.2 ExtendedCustomMonoBehaviour
Extending MonoBehaviour is a useful way to avoid repeating common functions
or variable declarations. For example, most of the scripts in this book use a
variable named _TR to refer to a cached version of a Transform.
ExtendedCustomMonoBehaviour contains the declaration for it. Wherever a new
class would use MonoBehaviour, we just derive from ExtendedCustom
MonoBehaviour and, in the new class, we do not have to declare _TR or any of the
other commonly used variables or functions we choose to put in
ExtendedCustomMonoBehaviour.

573.2 Core Framework Scripts

For the scripts in this book, the ExtendedCustomMonoBehaviour.cs script
extends MonoBehaviour to include:

 1. _TR variable to hold a cached reference to a Transform

 2. _GO variable to hold a cached reference to a GameObject

 3. _RB variable for a cached reference to a rigidBody

 4. _RB2D variable for caching a reference to a rigidBody2D

 5. didInit is a Boolean to determine whether the script has been initialized

 6. An integer called id to hold an id number

 7. A Vector3 type variable to use for temporary vector actions, called
tempVEC

 8. _tempTR is a variable used for any temporary references to Transforms

 9. A function called SetID(integer) so that other classes can set the variable id

 10. A function named IsInLayerMask(Integer, LayerMask) to compare layers

You can find ExtendedCustomMonoBehaviour.cs in the folder Assets/GPC_
Framework/Scripts/BASE/UTILITY and it looks like this:

using UnityEngine;
public class ExtendedCustomMonoBehaviour : MonoBehaviour
{
 [Header("Transform and RB references")]
 public Transform _TR;
 public GameObject _GO;

 public Rigidbody _RB;
 public Rigidbody2D _RB2D;

 [Header("Initialization and ID")]
 public bool didInit;
 public bool canControl;
 public int id;

 [System.NonSerialized]
 public Vector3 tempVEC;

 [System.NonSerialized]
 public Transform _tempTR;

 public virtual void SetID(int anID)
 {
 id= anID;
 }

 public virtual void GetComponents()
 {
 if (_TR == null)
 _TR = transform;

 if (_GO == null)
 _GO = gameObject;
 }

58 3. Building the Core Game Framework

 public Transform Spawn(Transform spawnObject, Vector3
spawnPosition, Quaternion spawnRotation)
 {
 return Instantiate(spawnObject, spawnPosition,
spawnRotation);
 }

 public static bool IsInLayerMask(int layer, LayerMask
layermask)
 {
 return layermask == (layermask | (1 << layer));
 }
}

Above, there are four functions in ExtendedMonoBehaviour:

 SetID() – provides a method to set the id variable.

 GetComponents() – tries to find the Transform and GameObject this is
attached to.

 Spawn() – Provides a method for spawning new GameObjects into a Scene.

IsInLayerMask() – provides a method for checking whether a layer is within
a LayerMask. Publicly declared LayerMask variables provide a dropdown menu
in the Inspector where you can choose several layers. Unity does not provide
functionality to easily check whether a layer is within a LayerMask, so this func-
tion does that for us. It can be called with:

IsInLayerMask(<the layers index number to check>, <the LayerMask
object>);

IsInLayerMask() will return true, if the layer is found in that LayerMask. We
use this with collisions to find out what layer the colliding object is on and if we
should be paying any attention to it and reacting to our collision with it.
IsInLayerMask() is here as a helper function because I found that I used it a lot
across player and enemy scripts.

Feel free to add your own code to ExtendedMonoBehaviour to make it your
own – anything that you find yourself repeating across MonoBehaviour-derived
classes – just add code to here and inherit the ExtendedMonoBehaviour instead!

3.2.3 BaseCameraController
Each camera script in the example games for this book derive from a class named
BaseCameraController. BaseCameraController.cs can be found in the folder
Assets/GPC_Framework/Scripts/BASE/CAMERA

using UnityEngine;
namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/Camera Controller")]

 public class BaseCameraController : MonoBehaviour
 {
 public Transform _cameraTarget;
 public Transform _TR;

593.2 Core Framework Scripts

 private void Awake()
 {
 if (_TR == null)
 _TR = transform;
 }
 public virtual void SetTarget(Transform aTarget)
 {
 _cameraTarget = aTarget;
 }
 }
}

Above, the BaseCameraController contains a single function that all camera
scripts can use. The intention is that – as your cameras grow more complicated –
you can add any shared code into the BaseCameraController class. At the time of
writing, all it contains is an Awake() function to grab a reference to the camera’s
Transform and a SetTarget() function that will be used by other scripts to specify
which object a camera should follow. Camera classes that derive from
BaseCameraController can then use the variable cameraTarget to access the object
the camera needs to follow.

https://taylorandfrancis.com

61

4 Player Structure

A player can take on any form – humans, aliens, vehicles, and so forth.
Designing a structure that can deal with all of them is a challenge. The way
we need to store data, the types of data we need to store, the various types
of movement code and weapons and so on, can soon become complicated.

A basic player using the framework in this book would be made up of a
GameObject containing Unity-specific physics or collision Components, then
four additional script Components (as seen in Figure 4.1):

 1. The player controller
 A controller specific to game requirements – this may have functions

to deal with game-specific operations like opening doors or holding
the player in place before the game starts and so on

 2. A movement controller
 To move the player around (depending on the type of movement

required this could be anything, such as a vehicle, or a humanoid)

 3. An input controller
 To provide input to the player controller from the user

 4. A user data manager
 The data manager is an interface between user data and the player. It

takes care of the manipulation of player data and how it is stored and
retrieved. Score and health values would be stored here, and the data
manager would also hook up with a profile system to provide saving
and loading.

62 4. Player Structure

4.1 A Player Controller
Things can be a little complicated when we look at the character controller class
and its inherited scripts. As an example, a player might use a class name
BlasterPlayerController that inherits a string of other classes:

ExtendedMonoBehaviour<BasePlayerStats<BaseCharacterController
<ShootingPlayerCharacter<BlasterPlayerController

We are essentially layering classes on top of one another to provide the func-
tionality we need for the specific game we are building. For example, if we wanted
to change the character above to a player that could run around but did not need
to use weapons, all it would take would be to remove one of the classes in the
chain (changing the class declaration of BlasterPlayerController to derive from
BaseCharacterController rather than ShootingPlayerCharacter) so that it looks
like:

MonoBehaviour
<ExtendedMonoBehaviour<BasePlayerStats<BaseCharacterController

<BlasterPlayerController
Let’s say, this time, that we now want to replace the person with a vehicle.

The new chain might look like this:
MonoBehaviour
<ExtendedMonoBehaviour<BasePlayerStats<BaseVehicleController

<ShootingVehicleController<BlasterPlayerController
With a little caution in consideration of the order of inheritance, we can

essentially plug and play different parts of the framework as needed.
When I developed this structure for the player controllers, I wanted some-

thing that could fit together in as much of a modular way as possible. Movement

Figure 4.1 The Player GameObject has physics and collision Components attached to it, as
well as Components to deal with data, sound, movement, and input.

BASE USER
MANAGER

MOVEMENT
CONTROLLER

(VEHICLE,
HUMANOID, SHIP

ETC.)

INPUT
CONTROLLER

PHYSICS
(TRANSFORM /

RIGIDBODY/
COLLIDER ETC.)

AI CONTROLLER

PLAYER
CONTROLLER

USERDATA

634.2 Dealing with Input

code should be kept separate from weapon code or code specific to a game like
tracking waypoints in a racing game or something like that. You need to be a
little extra cautious about how it all fits together, but the opportunity to reuse
code is huge.

For examples of player controllers, look at the example racing game in
Chapter 14. For a breakdown of a player controller script, see Section 4.5. later in
this chapter.

4.2 Dealing with Input
Separate scripts provide input for the movement controllers to react to. They can
be switched out for whatever input is required without having to change any-
thing. The movement controller remains intact, regardless of what you ‘feed’ into
it, which means you could use the exact same movement control script for a main
player, AI players, and perhaps even remote players connected over a network –
just using different inputs.

This system uses Unity's input system. It is currently being overhauled by Unity,
with the big new update unfinished at the time of writing, so it may be that by the
time you read this a new input system will be available for you to use. The principles
shown in these scripts remain the same but if you want to use the new input system,
you may need to change the point at which they get input. I expect that the current/
old input system will be around for a while before it will be deprecated, so if you do
end up using these scripts they should still function without issue.

The BaseInputController class can found in the folder Assets/GPC_Framework/
Scripts/BASE/INPUT.

using UnityEngine;
namespace GPC

{
 [AddComponentMenu("CSharpBookCode/Base/Input Controller")]
 public class BaseInputController : MonoBehaviour
 {
 public enum InputTypes { player1, noInput };
 public InputTypes inputType;
 // directional buttons
 public bool Up;
 public bool Down;
 public bool Left;
 public bool Right;

 // fire / action buttons
 public bool Fire1;

Above, we provide two InputTypes by default, which can be used to enable or
disable input. The first type is named player1 and the second, noInput. The inten-
tion here is that you could add extra input types such as layouts for other local
players, devices, and so on.

 // weapon slots
 public bool Slot1;
 public bool Slot2;
 public bool Slot3;
 public bool Slot4;
 public bool Slot5;
 public bool Slot6;

64 4. Player Structure

 public bool Slot7;
 public bool Slot8;
 public bool Slot9;

 public float vert;
 public float horz;
 public bool shouldRespawn;

 public Vector3 TEMPVec3;
 private Vector3 zeroVector = new Vector3(0,0,0);

Above, the slot-based weapon system uses the keyboard buttons from 1 to 9
to directly select which weapon slot to use. For that reason, the input system has
nine Boolean variables to take input from the number keys – though not imple-
mented here, you can see how they are used in Chapter 7 when we look at a
weapon system.

 public virtual void CheckInput ()
 {
 // override with your own code to deal with input
 horz=Input.GetAxis ("Horizontal");
 vert=Input.GetAxis ("Vertical");
 }

 public virtual float GetHorizontal()
 {
 return horz;
 }

 public virtual float GetVertical()
 {
 return vert;
 }

Input provides an interface to Unity’s input systems. According to the
Unity documentation, Input.GetAxis returns the value of the virtual axis
identified by axisName. The axis names are set in Unity’s Input Manager
(Edit>Project Settings>Input), although Horizontal and Vertical – the two we
use above to set horz and vert – will be set up by default by Unity. After that,
above, we have two functions that can return the horizontal and vertical input
values.

 public virtual bool GetFire()
 {
 return Fire1;
 }

Although the script includes a function called GetFire(), returning the value
of the Boolean variable Fire1, the script does not include any code to do anything
with Fire1. It is just there for consistency and it is expected that the player con-
troller script handles firing as needed – for an example of this, please see Chapter
7 – Weapon Systems.

 public bool GetRespawn()
 {
 return shouldRespawn;
 }

654.3 User Data

Again, the script contains GetRespawn() purely for protocol, with no actual
functionality.

 public virtual Vector3 GetMovementDirectionVector()
 {
 // temp vector for movement dir gets set to
the value of an otherwise unused vector that always have the value
of 0,0,0
 TEMPVec3 = zeroVector;

 TEMPVec3.x = horz;
 TEMPVec3.y = vert;

 // return the movement vector
 return TEMPVec3;
 }

For convenience, BaseInputController includes a simple system for return-
ing a direction vector. The function will return a Vector3 with its x and y axis
representing the levels of input.

4.3 User Data
It is not uncommon to store player information in a game controller or similar
script removed from individual player objects. This approach may be well suited to
single player games but moving to games that have more than one player may prove
to be problematic. One solution may be for the game controller to have an array of
classes containing player stats, manipulating them when other functions tell it to,
but why not attach the player stats to each player and make it self-sufficient?

The framework for this book uses a data manager class for each player, con-
sisting of everything we need to store for a single player:

 1. Score

 2. High score

 3. Level

 4. Health

 5. Whether or not the player is finished (no longer active)

 6. Name of the player

Each player has the BaseUserManager.cs script attached to its GameObject,
giving each player its own set of stats. The game controller or other script elsewhere
in the game structure can easily search for and access a player’s information.

The BaseUserManager uses a static variable named global_userDatas to con-
tain information about all the players in the game. As it is static, it persists across
Scene loading and we keep player data wherever we are. The global_userDatas
variable is typed as a List<UserData>, so it’s a List containing UserData objects.
You can easily modify or add new variables to the UserData class if you need to
store more information about players.

66 4. Player Structure

The way BaseUserManager is intended to work is that you add players before
the game starts – probably in the main menu when the player hits the start button.
Just before the game begins, we add empty players to the global_userDatas List –
however many players are going to be in the game – and that data persists until we
go back and start the game again, at which point the players are wiped out and new
ones made ready for a new game. Structuring your player data this way means that
you keep player data away from Game Managers or player manager scripts –
 keeping code clean – and as an added bonus, it’s easier to keep a track of your
player data or multiple players data even if you are loading multiple Scenes along
the way. Separating out the player data into a single List also makes saving and
loading players states much easier, as you only need to save or load one List rather
than each variable independently. There are some limitations to what you can save
and load easily, due to serialization, but for most variable types – ints, strings,
floats, and so on – the process for saving out the data is relatively straightforward.

4.3.1 The UserData Class
You can find this class in the folder GPC_Framework/Scripts/DATA.

UserData is a small data class used to store everything we need to keep track
of, for players during a game. UserData is declared inside the script named
UserData.cs:

namespace GPC
{
 [System.Serializable]
 public class UserData
 {
 public int id;
 public string playerName = "Anonymous";

 public int score;
 public int level;
 public int health;
 public int lives;
 public bool isFinished;
 }
}

You can easily add (or remove) variables to the UserData class, if you need to
keep a track of other data. For ease of access, I use a class named Base
PlayerStatsController that contains all the functions needed to ‘talk’ to the
BaseUserManager. If you add new variables to the UserData class, you may also
want to add methods to access them via BasePlayerStatsController. See Section
4.5. of this chapter for a full breakdown of BasePlayerStatsController.

4.3.2 The BaseUserManager Class
You can find this class in the folder GPC_Framework/Scripts/DATA.

The BaseUserManager class:

using UnityEngine;
using System.Collections.Generic;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/Base User Manager")]

 public class BaseUserManager : MonoBehaviour
 {

674.3 User Data

After the using statements and declarations above, the first thing
BaseUserManager contains is a static variable named global_userDatas:

 public static List<UserData> global _ userDatas;

This global_userDatas List is used to hold a List of UserData objects – one
per player in the game – and it is public static so that it can be accessed anywhere
and retains its data regardless of Scene loading. We will look at the UserData class
in the next:

 public bool didInit;
 public void Init()
 {
 if (global_userDatas == null)
 global_userDatas =
new List<UserData>();

 didInit = true;
 }

The Init() function checks to see if the global_userDatas List has already
been initialized, if not we create a new List of type UserData.

 public void ResetUsers()
 {
 if (!didInit)
 Init();

 global_userDatas = new List<UserData>();
 }

The ResetUsers() function is provided to wipe out all user information. This
may be called at the start of the game, just before new players are added before the
main game loads or perhaps at the end of the game to tidy everything up.

 public List<UserData> GetPlayerList()
 {
 if (global_userDatas == null)
 Init();

 return global_userDatas;
 }

To process the List of players at the start of the game, you can grab it by using
the above function, GetPlayerList() which will return a List containing every-
thing in global_userDatas. In the games examples for this book, the Game
Manager gets this List when the core Scene is loaded, and we iterate through the
List to spawn one player into the Scene per entry in global_userDatas.

 public int AddNewPlayer()
 {
 if (!didInit)
 Init();
 UserData newUser = new UserData();
 newUser.id = global_userDatas.Count;
 newUser.playerName = "Anonymous";
 newUser.score = 0;
 newUser.level = 1;
 newUser.health = 3;

68 4. Player Structure

 newUser.lives = 3;
 newUser.highScore = 0;
 newUser.isFinished = false;
 global_userDatas.Add(newUser);
 return newUser.id;
 }

AddNewPlayer() above, adds a new player (a UserData instance) to the
global_userDatas List, populating the UserData object with default values for a
player. Note that all of these values are declared in the UserData class from
Section 4.3.1.

The rest of the class deals with getting and setting the player data:

 public string GetName(int id)
 {
 if (!didInit)
 Init();
 return global_userDatas[id].playerName;
 }
 public void SetName(int id, string aName)
 {
 if (!didInit)
 Init();
 global_userDatas[id].playerName = aName;
 }
 public int GetLevel(int id)
 {
 if (!didInit)
 Init();
 return global_userDatas[id].level;
 }
 public void SetLevel(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].level = num;
 }
 public int GetScore(int id)
 {
 if (!didInit)
 Init();
 return global_userDatas[id].score;
 }
 public virtual void AddScore(int id, int anAmount)
 {
 if (!didInit)
 Init();
 global_userDatas[id].score += anAmount;
 }
 public void ReduceScore(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].score -= num;
 }
 public void SetScore(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].score = num;
 }
 public int GetHealth(int id)
 {

694.3 User Data

 if (!didInit)
 Init();
 return global_userDatas[id].health;
 }
 public int GetLives(int id)
 {
 if (!didInit)
 Init();
 return global_userDatas[id].lives;
 }
 public void SetLives(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].lives = num;
 }
 public void AddLives(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].lives += num;
 }
 public void ReduceLives(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].lives -= num;
 }
 public void AddHealth(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].health += num;
 }
 public void ReduceHealth(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].health -= num;
 }
 public void SetHealth(int id, int num)
 {
 if (!didInit)
 Init();
 global_userDatas[id].health = num;
 }
 public bool GetIsFinished(int id)
 {
 if (!didInit)
 Init();
 return global_userDatas[id].isFinished;
 }
 public void SetType(int id, int theType)
 {
 if (!didInit)
 Init();
 global_userDatas[id].type = theType;
 }
 public int GetType(int id)
 {
 if (!didInit)
 Init();
 return global_userDatas[id].type;
 }
 public void SetIsFinished(int id, bool aVal)

70 4. Player Structure

 {
 if (!didInit)
 Init();
 global_userDatas[id].isFinished = aVal;
 }
 }
}

4.4 The BasePlayerStatsController Class
You can find this class in the folder GPC_Framework/Scripts/BASE/PLAYER.

My player controllers derive from several other classes, one of which is
BasePlayerStatsController, a class which gives the player controller access to
a host of functions dealing with the user data. Okay, that is not the only
function of BasePlayerStatsController. It is also there just to hold any vari-
ables that may be relevant to dealing with the players in the games, but
BasePlayerStatsController mostly acts as a friendly interface between my
player scripts and the user data. For example, I can call SetHealth(an amount)
from my player controller without having to worry about identifying my
player with the correct ID or anything like that. The functions I use to set
UserData in BasePlayerStatsController already takes care of the ID and how
the UserDataManager needs to be called.

The BasePlayerStatsController.cs script in full looks like this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

namespace GPC
{
 [RequireComponent(typeof(BaseUserManager))]

 public class BasePlayerStatsController :
ExtendedCustomMonoBehaviour
 {
 public BaseUserManager _myDataManager;
 public int myID;

 public BaseInputController _inputController;
 public bool disableAutoPlayerListAdd;

 public virtual void Init()
 {
 // cache the usual suspects
 _RB = GetComponent<Rigidbody>();
 _GO = GetComponent<GameObject>();
 _TR = GetComponent<Transform>();

 _inputController =
GetComponent<BaseInputController>();

 SetupDataManager();
 }

 public virtual void SetPlayerDetails(int anID)
 {
 // this function can be used by a game
manager to pass in details from the player list, such as
 // this players ID or perhaps you could
override this in the future to add avatar support, loadouts or

714.4 The BasePlayerStatsController Class

 // special abilities etc.?
 myID = anID;
 }

 public virtual void SetupDataManager()
 {
 // if a player manager is not set in the
editor, let's try to find one

 if (_myDataManager == null)
 _myDataManager =
GetComponent<BaseUserManager>();

 if (_myDataManager == null)
 _myDataManager =
gameObject.AddComponent<BaseUserManager>();

 if (_myDataManager == null)
 _myDataManager =
GetComponent<BaseUserManager>();

 if (!disableAutoPlayerListAdd)
 {
 // add the player (set up data) to
the ScriptableObject we use to store player info
 myID = _myDataManager.AddNewPlayer();
 _myDataManager.SetName(myID, "Player");
 _myDataManager.SetHealth(myID, 3);
 }
 }

 public virtual void AddScore(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.AddScore(myID, anAmount);
 }

 public virtual void AddHealth(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.AddHealth(myID, anAmount);
 }

 public virtual void ReduceScore(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.ReduceScore(myID, anAmount);
 }

 public virtual void ReduceHealth(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.ReduceHealth(myID, anAmount);
 }

 public virtual void SetLives(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.SetLives(myID, anAmount);
 }

72 4. Player Structure

 public virtual void AddLives(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.AddLives(myID, -anAmount);
 }

 public virtual void ReduceLives(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.ReduceLives(myID, anAmount);
 }

 public virtual void SetScore(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.SetScore(myID, anAmount);
 }

 public virtual void SetHealth(int anAmount)
 {
 if (!didInit)
 Init();
 _myDataManager.SetHealth(myID, anAmount);
 }

 public virtual void SetName(string aName)
 {
 if (!didInit)
 Init();
 _myDataManager.SetName(myID, aName);
 }

 public int GetLives()
 {
 if (!didInit)
 Init();
 return _myDataManager.GetLives(myID);
 }

 public int GetHealth()
 {
 if (!didInit)
 Init();
 return _myDataManager.GetHealth(myID);
 }

 public int GetScore()
 {
 if (!didInit)
 Init();
 return _myDataManager.GetScore(myID);
 }
 }
}

Right away, in the code above you may notice the similarities to the
BaseUserManager class. A large portion of the script above is taken up with calls
to the corresponding functions in BaseUserManager – by duplicating those func-
tions here to call out to them, we are adding all of the functionality of
BaseUserManager to the player script and simplifying how we need to call it. For

734.5 Managing Players

example, I do not have to check that everything is set up and available every time
I call to add score to the players score total. I also do not want to have to pass in
the ID every time, so functions in the code above like GetHealth() and AddScore()
simplify further interactions with BaseUserManager. If you added more vari-
ables to UserData, you would need to add ways to change them via both
BaseUserManager and BasePlayerStatsController.

4.5 Managing Players
To manage players, add a BaseUserManager Component to the menu (or wher-
ever you want to set up players initially) then set up a reference to it in your own
script and call ResetUsers() to wipe out existing users, then AddNewPlayer to
add a new player.

For a working example, look to the main menu section of the racing game
example in Chapter 14.

https://taylorandfrancis.com

75

5 Recipes
Common Components

5.1 Introduction
The utility scripts and commonly used systems in this chapter may come in
handy for a range of different types of game projects. In the Assets/GPC_
Framework/Scripts/COMMON folder you will find an eclectic bunch of reusable
scripts like timers and camera controllers. In this chapter, we focus on those
standalone scripts. You can easily take these and use them in any project, with or
without using the GPC framework from this book.

Within the COMMON folder, there are several sub-folders. Those are;

AI

This contains scripts related to player or automatic control, such as a script
to talk to the BaseAIController.cs script and act as a simple, functional bot
moving around in a game environment.

CAMERA

Scripts related to the camera should go in here, such as third-person or top-
down camera code.

GAME CONTROL

The scripts in this folder are about overall game state control. In the example
files, you will find:

BattleController and GlobalBattleManager – used for deathmatch-style
scoring and game state logic)

76 5. Recipes

RaceController and GlobalRaceManager – containing the base logic for rac-
ing games, such as lap counting and position tracking

INPUT

Different player and game types require different control systems or input
methods. Any common scripts dealing with input go in this folder.

LEVEL LOADING

Depending on the project, we may need to deal with loading differently.
Place loading scripts in here.

SCRIPTABLE OBJECTS

All ScriptableObjects require files to define them and this is where you can
find those files.

SPAWNING

Scripts related to spawning may be found here, which includes code to
spawn objects when triggers are fired or to spawn paths for dynamic way-
point following objects.

USER INTERFACE

Anything related to user interface goes in here.

UTILITY

The Utility folder is home to small helper scripts, such as the timer class or a
script to automatically spin a GameObject.

WEAPONS

Any weapons-related scripts outside of the base framework may be found here.

The scripts in this chapter are organized in order of how they appear in the
respective folders, for ease of reference.

5.2 AI
You can also find more information about these scripts in Chapter 10, dedicated
to AI.

5.3 Camera
The camera is the window into the game world, and it makes a huge difference to
how the gameplay feels. Be sure to prototype, iterate, and put some time into
finding the perfect camera set up! There are just two camera scripts for the exam-
ple games in this book. Both cameras should provide a good starting point for
camera systems in your own games.

The following scripts are found in example project, in the folder Assets/
GPC_Framework/Scripts/COMMON/CAMERA.

775.3 Camera

5.3.1 Third-Person Camera
A third-person camera sits behind the player. It is not quite the same as a follow
camera; a third-person camera usually orbits around the player rather than sim-
ply following it around. To visualize this, imagine that the camera is tied to a pole
attached to the target player. As the player moves around, the camera remains to
be the length of the pole away from it, but the camera is free to move around the
player in a circle. The position of the camera is usually somewhere behind the
player, with a little damping on its horizontal movement applied to it, to allow for
a good sense of movement when the player turns. In some third-person camera
setups, the camera may be allowed to move in or out from the target player.

using UnityEngine;
using System.Collections;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Common/Cameras/Third
Person Cam Controller")]

 public class CameraThirdPerson : BaseCameraController
 {
 public float distance = 20.0f;
 public float height = 5.0f;
 public float heightDamping = 2.0f;

 public float lookAtHeight = 0.0f;

 public float rotationSnapTime = 0.3F;

 public float distanceSnapTime;

 public Vector3 lookAtAdjustVector;

 private float usedDistance;

 float wantedRotationAngle;
 float wantedHeight;

 float currentRotationAngle;
 float currentHeight;

 Quaternion currentRotation;
 Vector3 wantedPosition;

 private float yVelocity = 0.0F;
 private float zVelocity = 0.0F;

 void Update()
 {

The main update to the camera happens in Update(), rather than
FixedUpdate(). The reason for this is that we prefer everything physics-wise to
have been updated before moving the camera – which should have happened by
Update() – and in doing so, there should be no discrepancies between the posi-
tions of our target objects between the end of the camera update and the drawing
of the next frame. Drawing at the wrong time can cause a jittering effect as the
objects we are following are updated after the camera positioning.

At the start of Update() is a null check to make sure that we have a target:

 if (_ cameraTarget == null)
 return;

78 5. Recipes

Code from this script will eventually interpolate heights and rotation values,
but it requires a little extra before we can do that:

 wantedHeight = _ cameraTarget.position.y + height;
 currentHeight = _TR.position.y;

 wantedRotationAngle =
_cameraTarget.eulerAngles.y;
 currentRotationAngle = _TR.eulerAngles.y;

Before interpolation, we need to calculate target height and target rotations
and we also need to find out what current height and rotation values are. The
public variable height – which is our value set in the Inspector to tell this script
how high to put the camera – gets added to wantedHeight along with the height
of the target object we are following. With this new float value in wantedHeight,
we now know exactly where the camera needs to be headed height-wise.

currentRotationAngle is a float representing the angle, in degrees, that we
need to turn the camera at to try and reach the target rotation in wantedRota-
tionAngle. It’s an interpolation carried out by Mathf.SmoothDampAngle in the
next line:

currentRotationAngle = Mathf.SmoothDampAngle(currentRotationAngle,
wantedRotationAngle, ref yVelocity, rotationSnapTime);

Mathf.SmoothDampAngle is an interpolation function designed specifically
for easing between two angles. It will automatically cap the return value between
0 and 360 as well as choosing the correct way around (if your value is at 181
degrees, it would interpolate up rather than down so that the rotation has a natu-
ral flow and doesn’t go back on itself).

The Unity documentation tells us that SmoothDampAngle takes the follow-
ing parameters (in order of how they should be passed in):

current The current position.
target A Vector3 position we are trying to reach.
currentVelocity Th e current velocity, this value is modified by the function every time you call it.
smoothTime A pproximately the time it will take to reach the target. A smaller value will reach

the target faster.
maxSpeed Optionally allows you to clamp the maximum speed.
deltaTime Time since the last call to this function. Default is Time.deltaTime.

In this part of the code, the yVelocity variable holds the current velocity of the
interpolated move, but it is not actually used anywhere else in the script. It’s a
required field for SmoothDampAngle, so we just provide it for the function to
work right and forget about it. Note that one possible use for getting the velocity
may be speed limiting the move, but SmoothDampAngle can take care of this with
no extra code by providing a maxSpeed parameter. This is useful for limiting inter-
polation speeds without having to do it yourself with velocity.

The currentRotationAngle is, in effect, a portion of the rotation we need to
make around the y-axis (hence using the name yVelocity to describe its speed).
The variable rotationSnapTime decides how much time it should take for the
rotation to happen, which is public and designed to be set in the Unity editor
Inspector window on whichever GameObject the script is attached to, so that the
rotation speed can be easily set in the editor.

Height is interpolated using Mathf.Lerp, which takes three parameters: the
start amount, the target amount, and a time value clamped between 0 and 1.

795.3 Camera

We use the float heightDamping, multiplied by Time.deltaTime, to make the
transition time based. Wondering why do we need to make the time parameter time
based? Good question! How the time parameter of Mathf.Lerp works has been a
very popular question on various forums and help pages. The time value represents
how much of a portion, of the difference between the two values, that should be
applied each time this line of code is executed. If the time value is zero, the return
value will be the start amount. If time is 1, the return value will be the target amount.

By calculating the portion with Time.deltaTime, the transition from start
value to target value is smoothed out over a repeatable, fixed amount of time
rather than it being frame-rate dependent and based on how many times the
Mathf.Lerp calculation line is called:

 currentHeight = Mathf.Lerp(currentHeight,
wantedHeight, heightDamping * Time.deltaTime);

Now that the script has calculated how much to rotate the camera and how
high it should be on the y-axis, the script goes on to deal with positioning:

wantedPosition is a Vector3 that will hold the target position. The target posi-
tion is made from the target Transform.position followed by setting its y position
to the height calculated earlier in this section in currentHeight variable:

 wantedPosition = target.position;
 wantedPosition.y = currentHeight;

The next part of the code calculates how far behind the player we need to
move the camera. For this, the script uses Mathf.SmoothDampAngle. zVelocity
represents the speed of movement of the camera along its z-axis:

 usedDistance = Mathf.SmoothDampAngle(usedDistance,
distance, ref zVelocity, distanceSnapTime);

To place the camera at the correct position around the target using only a rota-
tion angle, the solution lies within Quaternion.Euler. This rather frightening sound-
ing function converts Euler angle vector3-based rotations into a vector. That is; you
pass in Euler rotation values and you get back a direction vector instead. Multiply
this by how far back we want the camera from the player; add that to the player’s cur-
rent position and we have the correct rotation, position and offset for the camera:

 wantedPosition += Quaternion.Euler(0,
currentRotationAngle, 0) * new Vector3(0, 0, -usedDistance);

 _TR.position = wantedPosition;

The final part of the function causes the camera to look at the target (player).
It does this by using Unity’s built-in Transform.LookAt() function. We pass in
the position of the target object (as a Vector3) and add an extra offset to where the
camera is going to look, via the lookAtAdjustVector variable. Note that you can
also add an up vector to the LookAt() function, but in this case, we don’t need to:

 _ TR.LookAt(_ cameraTarget.position);
_TR.Rotate(lookAtAdjustVector);

Above, in the last line we also add a small rotation adjustment. I like to use
this so that the camera aims above the player as if it were looking forward, rather
than looking right at the players vehicle or body. This can make the camera view

80 5. Recipes

more parallel to the ground level and keep good visibility, making the game eas-
ier to play in some situations. Of course, as with anything in this book, it is up to
you to decide where the camera goes and how it moves to make your personal
vision of your game. Try adjusting parameters and testing out the feel of different
rotations or movement speeds.

5.3.2 Top-Down Camera
The TopDownCamera class is a very basic target following system from a top-
down perspective:

using UnityEngine;
namespace GPC
{

 [AddComponentMenu("CSharpBookCode/Common/Cameras/Top Down
Cam Controller")]
 public class TopDownCamera : BaseCameraController
 {
 public Vector3 targetOffset;
 public float moveSpeed = 2f;
 public float maxHeight;
 public float minHeight;

 void LateUpdate()
 {

After the variable declarations, the LateUpdate() function checks to make
sure that we have a target before it tries to position the camera:

 if (cameraTarget != null)
 _TR.position = Vector3.Lerp(_TR.position,
 cameraTarget.position + targetOffset, moveSpeed *
Time.deltaTime);
 }
 }
 }

The single line controlling this camera uses the Vector3.Lerp function to
interpolate the camera’s Transform’s position to that of the target stored in fol-
lowTarget. We add an offset to the position (so that we end up above the target
rather than inside it) and use the moveSpeed multiplied by Time.deltaTime to
Lerp based on time.

5.4 Game Control
Game management and game control is central to every game project and often we
need to break up these sections as much as possible to keep everything manage-
able and as easy to debug as possible. The Game Control folder contains a few
helper scripts.

5.4.1 GlobalRaceManager
GlobalRaceManager.cs will be explained in Chapter 14, Section 14.4.3.

5.4.2 RaceController
RaceController.cs will be explained in Chapter 14, Section 14.4.4.

815.5 Input

5.5 Input
Your games could take a variety of different inputs, or in some cases you may
want to implement a third-party input solution like Rewired (made by Guaveman
Enterprises) to provide extended detection of input hardware or force feedback
effects.

In Chapter 4, we saw that the main player structure contained a single input
script designed to take keyboard input. Adding input systems is case of building
custom input scripts that follow a similar format, so that the existing player code
need not be changed to accommodate different controls.

It may be required to take input from other methods than the keyboard, such
as mouse, or joystick. You can easily set up alternate controls in the Unity editor
via the Edit > Project Settings > Input menu.

Input scripts can be found in Assets/GPC_Framework/Scripts/COMMON/
INPUT.

5.5.1 Mouse Input
Mouse_Input.cs calculates movement of the mouse between each frame and uses
it for input. The script:

public class MouseInput : BaseInputController
{
 private Vector2 prevMousePos;
 private Vector2 mouseDelta;

 private float speedX = 0.05f;
 private float speedY = 0.1f;

 public void Start ()
 {
 prevMousePos= Input.mousePosition;
 }

The Start() function adds a default value to prevMousePos, which will be
used to calculate the movement between each update. If prevMousePos was left at
zero (its default) then the first time CheckInput() happens the script will incor-
rectly assume that the mouse has moved from 0,0 to the current mouse position.

Input provides an interface to Unity’s input systems. It is used for everything
from gyrometer input on mobile devices to keyboard presses. Input.mousePosi-
tion delivers the current position of the mouse in pixel coordinates as a two-
dimensional vector, with the bottom left of the screen at 0,0 and top right at
Screen.width, Screen.height.

The mouse input system uses mouse delta movement (the amount of move-
ment since the last update) instead of mouse position. The delta amount is con-
verted into a percentage value (a percentage of the screen width or height) and the
resulting percentage value used as input.

 public override void CheckInput ()
 {
 // get input data from vertical and horizontal axis
and store them internally in vert and horz so we don't
 // have to access them every time we need to relay
input data out

 // calculate a percentage amount to use per pixel
 float scalerX = 100f / Screen.width;
 float scalerY = 100f / Screen.height;

82 5. Recipes

CheckInput() starts by calculating a scale to work at. The floats scalerX and
scalerY hold the equivalent of one percent of the screen’s width and height
respectively.

 // calculate and use deltas
 float mouseDeltaY = Input.mousePosition.y -
prevMousePos.y;
 float mouseDeltaX = Input.mousePosition.x -
prevMousePos.x;

The delta amount of mouse movement is calculated in the code by taking the
current mouse position and subtracting it from the position that the mouse was
at the end of the last update.

 // scale based on screen size
 vert += (mouseDeltaY * speedY) * scalerY;
 horz += (mouseDeltaX * speedX) * scalerX;
 // store this mouse position for the next time we're
here
 prevMousePos= Input.mousePosition;

When the mouse position is multiplied by the scale variables (scalerX and
scalerY) we end up with a percentage amount. We say that the mouse is at a per-
centage amount across the screen and use that percentage amount as input.

 // set up some Boolean values for up, down, left and
right
 Up = (vert>0);
 Down = (vert<0);
 Left = (horz<0);
 Right = (horz>0);

The mouse-based input script also populates the Boolean variables above, for
directional movement, if required.

 // get fire / action buttons
 Fire1= Input.GetButton("Fire1");
 }

To make the fire button work properly, mouse button input must be set up
correctly in the input settings of the Unity editor, under the Fire1 entry.

 public void LateUpdate()
 {
 // check inputs each LateUpdate() ready for the next
tick
 CheckInput();
 }
}

The script calls its own update function from LateUpdate(), which is where
Unity recommends all input checking happen.

Note: To set up inputs correctly, open Unity’s Input menu Edit > Project
Settings > Input

5.6 Level Loading
There are two loading systems in this book. One uses Unity’s SceneManager to
just go ahead and load a Scene. Advanced level loading has its own chapter in this
book, and you can find it in Chapter 13.

835.8 Spawning

5.7 ScriptableObjects
ScriptableObjects are a great way to manage data that needs to persist across the
entire game. There is just one script in the framework, ProfileScriptableObject.

5.7.1 ProfileScriptableObject
Saving and loading is covered, in full, in Chapter 12. For save profiles, this frame-
work uses a ScriptableObject to store everything we want in the profile. This
script needs to be serialized, so be aware of using any variable types that may not
be easily serializable by the engine. It forms the basis of a save profile. You can
find this script in the folder Assets/GPC_Framework/Scripts/COMMON.

The ProfileScripableObject.cs script looks like this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;

namespace GPC
{
 [CreateAssetMenu(fileName = "ProfileData", menuName =
"CSharpFramework/ProfileScriptableObject")]

 [Serializable]
 public class ProfileScriptableObject : ScriptableObject
 {
 public Profiles theProfileData;
 }

 [Serializable]
 public class Profiles
 {
 public ProfileData[] profiles;
 }

 [Serializable]
 public class ProfileData
 {
 [SerializeField]
 public int myID;
 [SerializeField]
 public bool inUse;

 [SerializeField]
 public string profileName = "EMPTY";
 [SerializeField]
 public string playerName = "Anonymous";

 [SerializeField]
 public int highScore;
 [SerializeField]
 public float sfxVolume;
 [SerializeField]
 public float musicVolume;
 }
}

5.8 Spawning
In many cases using Unity’s built-in Instantiate function would be enough for
creating objects for a desktop computer-based game, but instancing GameObjects
in Unity can be an expensive process, particularly noticeable on mobile devices.

84 5. Recipes

One common method of getting around the processor hit is to use pooling.
Pooling is where you have a group of objects that you use and reuse without
destroying them. Building a pool management system is beyond the scope of this
book, although centralizing the spawning system will make it easy to switch out
spawning for a better solution in the future.

Find these scripts in Assets/GPC_Framework/Scripts/COMMON/SPAWNING.

5.8.1 A Spawner Component
This Spawner class can either instantiate a prefab after an amount of time after
the Scene starts, when the camera gets within a certain distance of the spawn
point, or when the script is called to spawn by another script. It is used in this
book for the example game Blaster, whereby each wave of enemies is stored in a
separate Scene. The enemy prefabs are spawned automatically after the Scene fin-
ishes loading, and the player can get to blasting them.

using UnityEngine;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Common/Spawn Prefabs (no
path following)")]

 public class Spawner : ExtendedCustomMonoBehaviour
 {

The class is added to the GPC namespace, then a menu item is added to the
Unity editor via the AddComponentMenu tag. The class derives from
ExtendedCustomMonoBehaviour so that we get access to its IsInLayerMask()
function, if needed in future. For example, the TriggerSpawner class in Section
5.8.2 of this chapter derives from Spawner and makes use of IsInLayerMask().

 // should we start spawning based on distance from
the camera?
 // if distanceBased is false, we will need to call
this class from elsewhere, to spawn
 public bool distanceBasedSpawnStart;

 // if we're using distance based spawning, at what
distance should we start?
 public float distanceFromCameraToSpawnAt = 35f;
 public bool shouldAutoStartSpawningOnLoad;
 public float timeBetweenSpawns = 1;
 public bool startDelay;
 public int totalAmountToSpawn = 10;
 public bool shouldRepeatWaves;
 public bool shouldRandomizeSpawnTime;
 public float minimumSpawnTimeGap = 0.5f;
 public GameObject[] _spawnObjectPrefabs;
 private int totalSpawnObjects;
 private int spawnCounter = 0;
 private int currentObjectNum;
 private Transform _cameraTransform;
 private bool spawning;
 public bool shouldSetSpeed;
 public float speedToSet;
 public bool shouldSetSmoothing;
 public float smoothingToSet;
 public bool shouldSetRotateSpeed;
 public float rotateToSet;

855.8 Spawning

The only variable declaration above of note is that the spawn objects are in an
array. This means you can add more than one type of prefab to spawn.

 void Start()
 {
 // cache ref to our Transform
 _TR = transform;

 if(_cameraTransform==null)
 _cameraTransform = Camera.main.
transform;

Above, we cache the Transform and, if one has not been set in the Inspector,
we try to find the Transform of the main Camera in the Scene with Unity’s built-
in Camera.main.

 if (shouldAutoStartSpawningOnLoad)
 StartSpawn();
}

We find out how many objects are in the spawn list array and store the result
in a variable named totalSpawnObjects. This just makes it easier:

 public void OnDrawGizmos()
 {
 if (distanceBasedSpawnStart)
 {
 Gizmos.color = new Color(0, 0, 1,
0.5f);
 Gizmos.DrawSphere(transform.position,
distanceFromCameraToSpawnAt);
 } else
 {
 Gizmos.color = new Color(0, 1, 1, 1f);
 Gizmos.DrawSphere(transform.position, 1f);
 } }

A Gizmo is a shape that can be used to provide a visual aid to your Component
or GameObject – a cube or a sphere – which gets displayed in the Scene view of
the editor. Thanks to the code, whenever this Component is attached to a
GameObject, Unity will draw a Gizmo around it to show you the distance at
which our Spawner will activate. Drawing takes place in the function above,
OnDrawGizmos(), which is called automatically by the game engine both when
the game is playing and when it is idle, too.

Above, we check the Boolean variable named distanceBasedSpawnStart to
see if we are using distance-based spawning. If it is true, we draw the sphere
based on the spawn distance. If distanceBasedSpawnStart is false, we just draw
the sphere with a fixed radius. This way, we always have a Gizmo to make it easier
to see where spawning will occur.

To set the color of the Gizmo about to be drawn, you call Gizmos.color()
with the parameters of red, green, and blue followed by an alpha value. All should
be between 0 and 1. Once you have made a call to Gizmos.color() in your func-
tion, anything you draw after that point will be drawn with that color until you
add another Gizmos.Color() call.

Drawing a sphere Gizmo is as simple as calling Gizmos.DrawSphere() and
you pass in the position to draw it followed by the radius of the sphere. Above,
we take our Transform’s position, and in the first instance, we pass

86 5. Recipes

distanceFromCameraToSpawnAt as the radius so that the Gizmo exactly repre-
sents our spawn distance. In the second instance, when distanceBasedSpawn-
Start is false, we pass an arbitrary value as the radius instead.

 public void Update()
 {
 float aDist = Vector3.Distance(_TR.position,
_cameraTransform.position);
 if (distanceBasedSpawnStart && !spawning &&
aDist < distanceFromCameraToSpawnAt)
 {
 StartSpawn();
 spawning = true;
 }
 }

The Update() function checks the distance between our Transform and the
camera, by using Vector3.Distance(). This is not the most optimized thing to call
every single frame, so be aware of this if you use it in a complicated project that
may be impacted by this. An alternative might be to only check distance every
few frames, instead, or perhaps on a timer.

Once we have the distance value in aDist we check that distanceBaseSpawn-
Start is true (indicating that we want to do distance-based spawning) and that we
are not already spawning – spawning is false – then compare aDist to the dis-
tanceFromCameraToSpawnAt value. If these conditions are met, we can call
StartSpawn() to spawn the prefab(s) and we set spawning to true to avoid any
duplicate calls to spawn now that the process is in motion.

 void StartSpawn()
 {
 StartWave(totalAmountToSpawn,
timeBetweenSpawns);
 }

To get the spawning process in motion, we call StartSpawn() above that will
then call another function StartWave(). You will see below what StartWave() does,
but note for now just that you pass in how many prefabs you want to spawn fol-
lowed by the amount of time the system should wait before spawning another one.

Spawning is a process in this function, rather than a single action. StartWave()
will continue to spawn as many objects as you tell it to, ultimately disabling its
own GameObject once all prefabs have been added to the Scene.

 public void StartWave(int HowMany, float
timeBetweenSpawns)
 {
 spawnCounter = 0;
 totalAmountToSpawn = HowMany;

 // reset
 currentObjectNum = 0;
 CancelInvoke("doSpawn");

As StartWave() is the beginning of our spawn wave, we need to do a little set
up first. spawnCounter is a variable we will use to keep tabs on how many prefabs
this Spawner has added to the Scene. The value of spawnCounter will be com-
pared to totalAmountToSpawn (set by the code above to the first parameter
passed into this function, howMany) to know when to stop spawning.

currentObjectNum is an index number we can use to refer to the array hold-
ing all the prefabs. When there are more than one prefabs in that array (set in the

875.8 Spawning

Inspector) then currentObjectNum will be increased every time a new prefab is
spawned so that we get the next item from the array next time.

If there are more prefabs to spawn, a function named doSpawn() will be called
repeatedly – until all prefabs are made. We use Unity’s Invoke() function to sched-
ule a call to doSpawn(), so whenever we run StartWave we make sure there are no
outstanding Invoke calls to doSpawn() by using the CancelInvoke() function. If
there any outstanding, CancelInvoke() will flush all of them out at once.

 // the option is there to spawn at random
times, or at fixed intervals...
 if (shouldRandomizeSpawnTime)
 {
 // do a randomly timed invoke call,
based on the times set up in the inspector
 Invoke("doSpawn", Random.Range
(minimumSpawnTimeGap, timeBetweenSpawns));
 }
 else
 {
 // do a regularly scheduled invoke
call based on times set in the inspector
 InvokeRepeating("doSpawn",
timeBetweenSpawns, timeBetweenSpawns);
 }
 }

Above, we look to see if shouldRandomizeSpawnTime is true. If it is, we use
a random amount of time between minimSpawnTimeGap and the value of
timeBetweenSpawns (which was passed into this function as a parameter).
Having a randomized spawn time can just make a game more interesting than
having enemies spawning at fixed times all the time.

If shouldRandomizeSpawnTime is false, instead of using standard Invoke()
to schedule the call to doSpawn(), the code here uses InvokeRepeating(). This will
repeat call doSpawn() indefinitely – it takes two parameters, the first is the time
before we do the first spawn, and the second parameter is the time between that
and every other call after. We just use the value in timeBetweenSpawns for tim-
ing, passing its value in to InvokeRepeating() as both parameters.

 void doSpawn()
 {
 if (spawnCounter >= totalAmountToSpawn)
 {
 if (shouldRepeatWaves)
 {
 spawnCounter = 0;
 }
 else
 {
 CancelInvoke("doSpawn");
 this.enabled = false;
 return;
 }
 }

As mentioned above earlier in the section, doSpawn() is called repeatedly
until all of the prefabs we want to spawn have been added to the Scene. To accom-
plish that, spawnCounter counts up, and we compare it to totalAmountToSpawn
to know how to proceed.

88 5. Recipes

Above, if spawnCounter is greater or equal to totalAmountToSpawn then we
need to end this wave of spawning and either start another wave by resetting
spawnCounter to 0, or to cancel further calls to doSpawn() entirely with
CancelInvoke(). If we are dropping out entirely and ending all spawning, the
this.enabled = false line will disable the GameObject so that it no longer receives
any calls to its functions from the engine (no more FixedUpdate(), Update(), or
LateUpdate() calls and so on). We also know that enough spawns have been
made, so we drop out of the function.

 // create an object
 Spawn(_spawnObjectPrefabs[currentObjectNum].transform,
_TR.position, Quaternion.identity);

Above, we call out to a function named Spawn() – a custom function from
the ExtendedCustomMonoBehaviour class – to instantiate the prefab into the
Scene. The parameters that Spawn() takes is a Transform for the prefab to spawn,
a position, and a rotation.

 spawnCounter++;
 currentObjectNum++;
// check to see if we've reached the end of the spawn objects array

 if (currentObjectNum > _spawnObjectPrefabs.Length - 1)
 currentObjectNum = 0;

 if (shouldRandomizeSpawnTime)
 {
 // cancel invoke for safety
 CancelInvoke("doSpawn");

 // schedule the next random spawn
 Invoke("doSpawn", Random.Range(minimumSpawnTimeGap,
timeBetweenSpawns));
 }
}

With the new prefab added to the Scene, our counters spawnCounter, and
currentObjectNum are incremented. After that, we check currentObjectNum to
see if it has been incremented too far – past the end of the _spawnObjectPrefabs
array. If we tried to use this as an index number to access the prefabs array with,
Unity would throw an error, so at this point if we find that currentObjectNum is
too high it gets reset to 0.

Earlier in the class, we used the shouldRandomizeSpawnTime flag to decide
whether to call this function with Invoke() or call it with InvokeRepeating().
Above, if we are using a randomize spawn time, we need to schedule the next call
to doSpawn at a different, randomized period of time. For this, first any out-
standing calls to doSpawn() are cancelled with CancelInvoke() – this is just a
safety measure, as in the current state there should never be any duplicate calls.
Again, we use Invoke() and Random.Range() to choose a random period of time.
Random.Range() takes the minimum value of minimumSpawnTimeGap and the
maximum value of timeBetweenSpawns.

5.8.2 Trigger Spawning
The TriggerSpawner class instantiates an object when another object enters the
trigger that this script Component is attached to.

The easiest way to use this Component is to add a cube primitive to a Scene and
set its Box Collider’s IsTrigger property to true. Add this TriggerSpawner Component

895.8 Spawning

to your cube and then whenever your player enters the area outlined by the cube, it
will trigger this script to spawn a prefab. Once you have the area worked out correctly,
disable the cube’s Mesh Renderer Component and you have a trigger spawn area.

One such use for this script would be to spawn an enemy when the player
reaches an area in a level.

using UnityEngine;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Utility/Trigger Spawner")]

 public class TriggerSpawner : Spawner
 {
 public GameObject ObjectToSpawnOnTrigger;
 public Vector3 offsetPosition;
 public bool onlySpawnOnce;
 public LayerMask triggerLayerMask;

We add this script as a menu item first, using Unity’s AddComponentMenu
tag. This class derives from the Spawner class from Section 5.8.1 of this
chapter, so we can use its Spawn() function, have it draw a Gizmo so we
can see where we will be spawning, and to get access to its base class,
ExtendedCustomMonoBehaviour.

 void OnTriggerEnter(Collider other)
 {
 if (IsInLayerMask(other.gameObject.layer,
triggerLayerMask))
 return;

 Spawn(ObjectToSpawnOnTrigger.transform,
_TR.position + offsetPosition, Quaternion.identity);

 if (onlySpawnOnce)
 Destroy(gameObject);
 }
 }
}

When an object with a Rigidbody and a Collider enter this GameObject’s
Collider (which MUST have its IsTrigger property checked in the Inspector), the
prefab in objectToSpawnOnTrigger will be spawned at this GameObject’s position.

5.8.3 Timed Spawning
This TimedSpawner Component will spawn a prefab in a set amount of time. In
an arena blaster game, this might be used to delay the spawning of an enemy
from the start of a level, using a random delay to make the start of the level more
dynamic.

using UnityEngine;

namespace GPC
{
 public class TimedSpawner : Spawner
 {
 public float initialSpawnDelay;
 public bool shouldRandomizeSpawnTime = true;
 public float randomDelayMax = 0.5f;

90 5. Recipes

 [Space]
 public bool waitForCall;
 private Vector3 myPos;
 private Quaternion myRot;

 [Space]
 public Transform _prefabToSpawn;

The class derives from Spawner, which provides a path to the Spawn() func-
tion in ExtendedCustomMonoBehaviour and the shouldRandomizeSpawnTime
variable. Unlike the Spawner class, this script uses a single prefab rather than an
array – the prefab reference should be placed into the 1_prefabToSpawn field via
the Inspector in Unity.

 public override void Start()
 {
 base.Start();
 if (waitForCall)
 return;

 StartSpawnTimer();
 }

The Start() function overrides the one found in our base class, Spawner. We
still want to do everything that the base class does, which is remedied with a call
to base.Start(). Above, Start() looks at waitForCall to see whether or not it should
just get stuck in and start spawning. Whenever waitForCall is set to true, it is
assumed that you will call StartSpawnTimer() from another script rather than
have it called automatically in the Start() function above.

 public void StartSpawnTimer()
 {
 float spawnTime = initialSpawnDelay;

 if (shouldRandomizeSpawnTime)
 spawnTime += Random.Range(0,
randomDelayMax);

 Invoke("SpawnAndDestroy", spawnTime);
 }

StartSpawnTimer() starts by calculating how much time we need to wait
before running our SpawnAndDestroy(). It does this by declaring a local variable
named spawnTime that starts out set to the value of initialSpawnDelay. We then
check to see if we need to add a random amount of time to this, looking to see if
shouldRandomizeSpawnTime is true. When it is, we use Unity’s random number
generator in Random.Range() to get a random number between 0 (the first param-
eter we pass it) and randomDelayMax (the second parameter). You can adjust the
maximum random number by adjusting the value in randomDelayMax via the
Inspector. The random number is added to our spawnTime variable, which will
now be whatever initialSpawnDelay is set to plus the random number.

With spawnTime calculated, all that is left for this function to do above is to
use Invoke() to schedule a call to SpawnAndDestroy() in spawnTime seconds.
 void SpawnAndDestroy ()
 {
 Spawn(_prefabToSpawn, _TR.position,
_TR.rotation);
 Destroy(gameObject);
 }
 }
}

915.10 Utility

Above, SpawnAndDestroy() wraps up the class. The Spawn() function from
ExtendedMonoBehaviour is used here to spawn a prefab from _prefabToSpawn
at the same position and rotation as the Transform of the GameObject this script
is attached to.

With the prefab spawned, this script (and this GameObject) has served their
purpose so we remove them from the Scene with a call to Unity’s Destroy() func-
tion. Destroy() takes a reference to the GameObject you want to destroy as a
parameter.

5.9 User Interface
5.9.1 CanvasManager
CanvasManager will be covered in Chapter 11, Section 11.1.

5.9.2 ScreenAndAudioFader
The ScreenAndAudioFader class mixes the functionality from two other classes –
BaseSoundManager and CanvasManager – to fade in or out both a Canvas and an
audio mixer at the same time. In the Blaster example game in this book, I used this
class to fade out the Scene at the end of each level. The audio and visual will fade
out, the next level Scene is loaded, then the audio and visuals fade back in again.

We will be looking at Audio Mixers in detail in Chapter 9, when we look at
the BaseSoundManager and how to deal with audio in your games. For that rea-
son, we will avoid listing out the code for ScreenAndAudioFader in this section
because all it does it call out to those other two classes to do all the work.

5.9.3 MenuWithProfiles
This script will be covered in detail in Chapter 12, when we look at save profiles.

5.10 Utility
The Utility folder in Assets/GPC_Framework/Scripts/COMMON/UTILITY holds
a host of files that do not fit into a category but could serve to be useful all the same.

5.10.1 AlignToGround
The AlignToGround class uses raycasting to find out what angle the ground under-
neath is and align a Transform to it. Raycasting is the process of drawing an imagi-
nary line and finding out which Colliders it hits. It uses Unity’s collision systems,
so if you want something to be detected by raycasting, the GameObject must have
a Collider Component attached to it. Unity’s raycasting system will return a whole
host of information along with a reference to the Collider(s) it finds along the ray-
cast, such as the exact point in 3d space the line intersects the object and more.

This script also uses Unity’s Quaternion.Lerp function to smooth out the
alignment. The alignment speed can be adjusted via the value in the variable
named smooth.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

namespace GPC
{
 public class AlignToGround : MonoBehaviour

92 5. Recipes

 {
 public LayerMask mask;
 private Transform _TR;
 RaycastHit hit;
 Quaternion targetRotation;

 private int smooth = 10;

 void Start()
 {
 _TR = GetComponent<Transform>();
 }

 void Update()
 {
 RaycastHit hit;
 if (Physics.Raycast(_TR.position, -Vector3.
up, out hit, 2.0f))
 {
 targetRotation = Quaternion.
FromToRotation(_TR.up, hit.normal) * _TR.rotation;
 _TR.rotation = Quaternion.Lerp
(_TR.rotation, targetRotation, Time.deltaTime * smooth);
 }
 }
 }
}

Above, the script starts by grabbing a reference to the Transform in the
Start() function and then we are into Update():

void Update()
 {
 RaycastHit hit;
 if (Physics.Raycast(_TR.position, -Vector3.up,
out hit, 2.0f))

The Physics.Raycast() function requires that you pass in a RaycastHit object
as a place to put all the information it gathers, so we declare the variable hit first
for this purpose.

There are a lot of different ways you can use Physics.Raycast() – 15 different
overloads to be exact – so we will not be going through all of them, just how this
line works. The Unity documentation is the place for that!

In this code, we pass in a position to say where to start the ray from, followed
by a Vector3 to state the direction that the ray should be drawn. We then pass in
that hit RaycastHit variable from above, followed by the length of raycast we want
Unity to make, and finally we pass in a LayerMask variable named mask.

LayerMasks are used by Unity as a filter to decide which Layers should be
included. When we pass in a LayerMask to Physics.Raycast(), the raycasting pro-
cess will filter out any GameObjects that are not on the Layers specified in the
LayerMask. In the editor, the LayerMask variable – when exposed as a public
variable – will appear as a dropdown menu in the Inspector. The dropdown con-
tains a list of all Layers set up via the Layers menu (at the top of the Inspector) and
it allows you to choose one or multiple Layers for the mask.

Note: Using Physics.Raycast() will only return a single Collider, but if you
need to detect more than one object along the ray you should look at RaycastAll().

After gathering information from Physics.Raycast(), we can align our Transform:

targetRotation = Quaternion.FromToRotation(_ TR.up, hit.normal) *
_ TR.rotation;

935.10 Utility

 _TR.rotation = Quaternion.Lerp
(_TR.rotation, targetRotation, Time.deltaTime * smooth);

Quaternion.FromToRotation takes two parameters, which are vectors, from-
Direction and toDirection. It takes these two vectors and creates a rotation that
would rotate the first vector to match the second. This will be our target
rotation.

In the next line above, we use Quaternion.Lerp to interpolate somewhere
between our Transform’s current rotation and toward the new rotation we just
calculated and put into the variable targetRotation. Time.deltaTime multiplied
by a float named smooth will provide us with the portion value to interpolate.

5.10.2 AutomaticDestroyObject
The main use for a script that automatically destroys its GameObject might be for
special effects. Particle effects such as explosions will be instantiated, their effect
will play out and then they need to be destroyed.

In the example games, a short and simple class called AutomaticDestroy
Object.cs is attached to a GameObject. After a set amount of time, set in the Unity
editor Inspector window, the GameObject is destroyed along with any associated
child objects attached to it.

The full script:

public class AutomaticDestroyObject : MonoBehaviour
{
 public float timeBeforeObjectDestroys;

 void Start () {
 // the function destroyGO() will be called in
timeBeforeObjectDestroys seconds
 Invoke("DestroyGO",timeBeforeObjectDestroys);
 }

 void DestroyGO () {
 // destroy this gameObject
 Destroy(gameObject);
 }
}

The class, which derives from MonoBehaviour, is very simple. It uses Invoke
to schedule a call to the DestroyGO() function at a time set by the public variable
timeBeforeObjectDestroys. It probably goes without saying that DestroyGO()
takes care of destroying itself, with Destroy(gameObject).

5.10.3 AutoSpinObject
One common action you may need to do is spin an object. This may be for several
reasons, the most obvious being to draw attention to pickups. By spinning the
pickups, they are more obvious to the player than static which could be easily
missed or ignored.

Making an object spin in Unity may be very simple but having a script to
take care of this is a useful little tool to keep in the toolkit.

using UnityEngine;
using System.Collections;

public class AutoSpinObject : MonoBehaviour
{

94 5. Recipes

AutoSpinObject.cs derives from MonoBehaviour, so that it can use Unity’s
automatic calls to the Start() and Update() functions:

public class AutoSpinObject : MonoBehaviour
{

The function is derived from MonoBehaviour, so that we can update the
object rotation in an Update() function.

 public Vector3 spinVector = new Vector3(1,0,0);
 private Transform myTransform;

The spinVector is a three-dimensional vector that we will use to spin the
object with. By using a vector, we can spin the object in any direction in the 3d
space simply by changing the values this script Component uses in the Inspector
window of the Unity editor. Select the GameObject that has this script attached
and change the value in the Inspector to change its behavior.

 void Start ()
 {
 myTransform=transform;
 }

As per every other script, we cache a reference to this object’s Transform in
the Start() function. Caching this reference will save a lot of valuable processor
time throughout the game.

The Update() function simply rotates the Transform, multiplying the spin-
Vector variable by Time.deltaTime to ensure that the rotation is framerate inde-
pendent and time based:

 void Update () {
 myTransform.Rotate (spinVector*Time.deltaTime);
 }
}

5.10.4 FaceCamera
The FaceCamera script Component uses Unity’s built-in LookAt function to
make a GameObject face toward the main Camera in the Scene. Note that this
uses Camera.main to find the camera, which means it relies on the camera
GameObject’s tag being set to MainCamera for it to work.

5.10.5 LookAtCamera
The LookAtTransform script uses Unity’s built-in LookAt function to make a
GameObject face toward another Transform (set as target on the Component via
the Inspector).

5.10.6 PretendFriction
The easiest way to move objects around in Unity is to simply apply forces to your
rigidbodies. By using Rigidbody.AddForce and perhaps a multiplier based on
Input.GetAxis or something similar, it is quite easy to get objects moving around
but the only way to have them come to a stop is either to have them make friction
against something else in the game world or to change drag values on the

955.10 Utility

Rigidbody. This may not always be an ideal solution and can present challenges
when trying to control the turning behavior of objects floating in space or perhaps
even character controllers. To help with controlling sideways slip, this simple
PretendFriction.cs script can help.

using UnityEngine;
namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Utility/Pretend
Friction")]

 public class PretendFriction : MonoBehaviour
 {
 private Rigidbody _RB;
 private Transform _TR;
 private float myMass;
 private float slideSpeed;
 private Vector3 velo;
 private Vector3 flatVelo;
 private Vector3 myRight;
 private Vector3 TEMPvec3;

 public float theGrip = 100f;

The script derives from MonoBehaviour, to tap into the Start() and
FixedUpdate() system calls. Above, note that you can change the value of the
variable theGrip to alter how much this script will control sliding.

 void Start ()
 {
 // cache some references to our RigidBody, mass and
transform
 _RB = GetComponent<Rigidbody>();
 myMass = _RB.mass;
 _TR = transform;
}

The Start() function caches the Rigidbody, amount of mass on the Rigidbody
and the Transform.

 void FixedUpdate ()
 {
 // grab the values we need to calculate grip
 myRight = _TR.right;

 // calculate flat velocity
 velo = _RB.velocity;
 flatVelo.x = velo.x;
 flatVelo.y = 0;
 flatVelo.z = velo.z;

 // calculate how much we are sliding
 slideSpeed = Vector3.Dot(myRight, flatVelo);

 // build a new vector to compensate for the sliding
 TEMPvec3 = myRight * (-slideSpeed * myMass * theGrip);

 // apply the correctional force to the RigidBody
 _RB.AddForce(TEMPvec3 * Time.deltaTime);
 }
 }
}

96 5. Recipes

The FixedUpdate() function will calculate how much an object is sliding – to
do this, it finds how much sideways movement the object is making (to the right
relative to the Transform’s rotation) – to find out how much slip is happening.

5.10.7 TimerClass
Our timer system is named TimerClass.cs:

using UnityEngine;
using System.Collections;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Common/Timer class")]

 public class TimerClass : ScriptableObject
 {
 public bool isTimerRunning = false;
 private float timeElapsed = 0.0f;
 private float currentTime = 0.0f;
 private float lastTime = 0.0f;
 private float timeScaleFactor = 1.0f; // <-- If you
need to scale time, change this!
 private string timeString;
 private string hour;
 private string minutes;
 private string seconds;
 private string mills;

 private int aHour;
 private int aMinute;
 private int aSecond;
 private int aMillis;
 private int tmp;
 private int aTime;

 private GameObject callback;

 public void UpdateTimer()
 {

In this script, we will only update time whenever the time is requested.
Although there may be cases where the timer would need to be updated con-
stantly, we only need to do this on demand for the games in this book. For the
example games, we do not derive the class from MonoBehaviour and we call
UpdateTimer() from another script; the Game Manager. If you want this script to
update automatically, we will outline a method to modify the script to work like
that at the end of this section.

The timer works by having a variable called currentTime that stores the
amount of time since the timer was started. currentTime starts at zero, then
UpdateTimer() calculates out how much time goes by between updates and adds
it to currentTime. The value of currentTime can then be parsed into minutes,
seconds, and milliseconds and returned as a nice, tidy formatted string in the
GetFormattedTime() function of the TimerClass class.

UpdateTimer() will be the only function that updates the time system:

 public void UpdateTimer()
 {
 // calculate the time elapsed since the last
Update()
 timeElapsed = Mathf.Abs(Time.
realtimeSinceStartup - lastTime);

975.10 Utility

 // if the timer is running, we add the time
elapsed to the current time (advancing the timer)
 if (isTimerRunning)
 {
 currentTime += timeElapsed *
timeScaleFactor;
 }

 // store the current time so that we can use
it on the next update
 lastTime = Time.realtimeSinceStartup;
 }

Above, the function works like this:

 1. We calculate timeElapsed by taking the current time (Time.realtime-
SinceStartup) and subtracting the value of lastTime from it – lastTime
is set to the value of Time.realtimeSinceStartup at the end of this func-
tion, which means lastTime will keep its value until the next time
UpdateTimer runs. As it keeps its value, it acts as a timestamp for the last
time Unity reached the end of the function. By subtracting this time-
stamp from the current time, we know exactly how much time has gone
since UpdateTimer() last ran.

 2. If the timer is running (i.e. The Boolean variable isTimerRunning is set to
true) then we add timeElapsed to our currentTime variable. currentTime is
the total amount of time that has passed since the timer started. When we
add timeElapsed to currentTime, we also multiply it by a timeScale Factor.
This allows you to scale the time system, which is useful for when your
game updates are set to run at a different time scale with Time.timeScale.

realtimeSinceStartup is used for good reason. By using realtimeSinceS-
tartup, the game can do whatever it likes to the Time.timeScale value (speeding
up or slowing down Unity physics updates) and realtimeSinceStartup will still
provide unscaled time values. If Time.time were used, it would be affected by the
 timeScale and would fail to provide real time values if the physics timing (Time.
timeScale) were set to anything other than 1.

Note: One commonly used method of pausing Unity games is to set Time.time
Scale to 0, which would stop a timer that didn’t use Time.realtimeSinceStartup. If
you use Time.timeScale to pause the game, you will also need to be used to start
and stop the timer as it will be unaffected by Time.timeScale.

Next, the StartTimer() function is used to start the timer:

public void StartTimer ()
 {
 // set up initial variables to start the timer
 isTimerRunning=true;
 lastTime=Time.realtimeSinceStartup;
 }

Above, the Boolean variable isTimerRunning is set to true when StartTimer()
is called. isTimerRunning is used to say whether or not to update currentTime
in the UpdateTimer() function earlier in the script. lastTime also needs to be

98 5. Recipes

reset when we start the timer, just in case the timer had previously been running.
If the timer had been running, we do this to make sure that any time ‘in-between’
the timer being stopped and the timer starting up again, is not be counted.

 public void StopTimer ()
 {
// stop the timer
 isTimerRunning = false;

 // carry out an update to the timer
 UpdateTimer();
 }

In StopTimer() above, isTimerRunning is set to false, which stops
UpdateTimer() from adding any extra time to the currentTime variable. To make
sure we count the last bit of time correctly, a quick call to UpdateTimer() is made
at the end of the function above.

If there is ever a need to reset the timer, we need to refresh the main variables
to default states. In the ResetTimer() function; timeElapsed, lastTime and cur-
rentTime are reset:

public void ResetTimer ()
 {
 // resetTimer will set the timer back to zero
 timeElapsed = 0.0f;
 currentTime = 0.0f;
lastTime = Time.realtimeSinceStartup;

// carry out an update to the timer
 UpdateTimer();

}

Above, we reset all the time variables to their starting states and call
UpdateTimer() to start the timer process again.

Whenever we need to display the time on the screen, there is a good chance
that we will need it to be formatted in a way like minutes: seconds: milliseconds.
The GetFormattedTime function takes this value and breaks it up into the units
we need, then puts together a nicely formatted string and returns it:

public string GetFormattedTime ()
 {
 // carry out an update to the timer so it is 'up to
date'
 UpdateTimer();

Above, GetFormattedTime() is called first. As mentioned earlier, the timer does
not update itself – it is a lazy updater in that it only updates when we ask it so before
providing the formatted time this ensures that the calculations are up-to-date.

From there on we are simply doing the math to get the minutes, seconds and
milliseconds values from currentTime:

 // grab hours
 aHour = (int)currentTime / 3600;
 aHour = aHour % 24;
 // grab minutes

 aMinute = (int)currentTime / 60;

995.10 Utility

 aMinute = aMinute % 60;
 // grab seconds
 aSecond = (int)currentTime % 60;

 // grab milliseconds
 aMillis = (int)(currentTime * 100) % 100;

After minutes, seconds, and milliseconds values have been calculated and
stored in the integer variables aMinute, aSecond, and aMillis, three new strings
called seconds, minutes and mills are built from them:

 // format strings for individual mm/ss/mills
 tmp = (int)aSecond;
 seconds = tmp.ToString("D2"); // ToString()
formats .. in this case, D followed by how many numbers

 tmp = (int)aMinute;
 minutes = tmp.ToString("D2");

 tmp = (int)aHour;
 hour = tmp.ToString("D2");

 tmp = (int)aMillis;
 mills = tmp.ToString("D2");

 // pull together a formatted string to return
 timeString = minutes + ":" + seconds + ":" +
mills;

In C#, you can convert numbers to strings with the ToString() function.
Something great about ToString() is that you can also pass in a format string. The
format string takes the form of a letter followed by an integer number. Above, we
use the format string D2 to tell ToString() to use two digits, which will convert
our times into a neat format ready to display. Note that you can set as many digits
as you like, simply by changing the number in the format string. For more infor-
mation on format strings, you can find a full breakdown and a full list of all of the
available formatting options online at Microsoft’s .NET Standard numeric for-
mat strings page: https://docs.microsoft.com/en-us/dotnet/standard/base-types/
standard-numeric-format-strings

Once the individual parts of the formatted time string are ready, we put them
all together into a final timeString and return it at the end of the function, like this:

 // pull together a formatted string to return
 timeString=minutes+":"+seconds+":"+mills;

 return timeString;

 }

At the very end of the script, a GetTime() function provides a way for other
scripts to process the value of currentTime:

public int GetTime ()
 {
 // remember to call UpdateTimer() before trying to
use this function, otherwise the time value will
 // not be up to date
 return (int)(currentTime);
 }
 }
}

https://docs.microsoft.com
https://docs.microsoft.com

100 5. Recipes

GetTime() just returns the value of the variable currentTime so that you can
take care of formatting or processing in another script.

5.10.7.1 Modifying the Timer to Update Automatically
If you want to use this and have the timer to update automatically, you could
change the class declaration:

public class TimerClass

So that the class inherits from MonoBehaviour:

public class TimerClass : MonoBehaviour

Then, change the name of the UpdateTimer() function to Update(), which
will be automatically called by the engine each frame.

5.10.8 WaypointsController
This script is so big and important that it gets its own chapter! Check out Chapter
8 to see how this script fits together and how it should be used in your own games.

5.11 Weapons
In the Weapons folder are four scripts: AutoShooter.cs, ProjectileController.cs,
StandardSlotWeaponController.cs and ThreeWayShooter.cs. These scripts and
how the weapons system can be used will be covered in full, in Chapter 7 of this
book.

101

6 Player Movement
Controllers

This chapter is all about movement. We build the scripts that will determine the
way that a player moves and behaves in the physics world. It is entirely focused on
movement.

In this chapter, we look at three different movement controllers:

 1. 3D humanoid character
 It is assumed that this control script will be able to do humanoid things,

such as run forwards, backwards and turn around.

 2. Wheeled vehicle
 The vehicle controller utilizes Unity’s Wheel Colliders to work toward a

realistic physics simulation. There will be no gearing, but the vehicle will
be able to accelerate, brake or steer left and right.

 3. 2D Platform Player
 This 2D platform character controller offers left/right and jump func-

tionality with basic ground detection.

You can find all of the scripts for this chapter in the folder
Assets/GPC_Framework/Scripts/BASE/PLAYER/MOVEMENT.

6.1 Humanoid Character
The human control script uses Unity’s character controller and is based on the
third person character controller provided by Unity as a part of the game engine.
This scripts original behavior was to move the player based on the direction of the
camera and, here, it has been adapted to work either directionally or based on its
own rotation by toggling the moveDirectionally Boolean variable to true or false.

102 6. Player Movement Controllers

The BasePlayerCharacterController class derives from
ExtendedCustomMonoBehaviour, as described in Chapter 4 of this book.

using UnityEngine;
namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/Character/Base Player
Character Controller")]

 public class BasePlayerCharacterController :
ExtendedCustomMonoBehaviour
 {
 [Header("Movement")]
 // The speed when walking
 public float walkSpeed = 7.0f;

 // after runAfterSeconds of walking we run with runSpeed
 public float runSpeed = 12.0f;
 public float speedSmoothing = 10.0f;
 public float rotateSpeed = 500.0f;
 public float runAfterSeconds = 3.0f;
 public bool moveDirectionally;

 // The current x-z move speed
 private float moveSpeed = 0.0f;

 // The current move direction in x-z
 private Vector3 moveDirection = Vector3.zero;

 // When did the user start walking (Used for going
into run after a while)
 private float walkTimeStart = 0.0f;

 // The last collision flags returned from
controller.Move
 private CollisionFlags collisionFlags;

 [Space]
 public float horz;
 public float vert;
 public bool isRespawning;
 public bool isFinished;
 public BaseInputController _inputController;

 private CharacterController _charController;
 private Vector3 targetDirection;
 private float curSmooth;
 private float targetSpeed;
 private float curSpeed;
 private Vector3 forward;
 private Vector3 right;

 public virtual void Start()
 {
 Init();
 }

Above, the Init() function is called from Start(). As with many of the scripts
in this book, Init() contains set up code.

 public virtual void Init()
 {
 moveDirection = transform.
TransformDirection(Vector3.forward);

1036.1 Humanoid Character

 _charController =
GetComponent<CharacterController>();
 GetComponents();

 _RB = GetComponent<Rigidbody>();
 _inputController =
GetComponent<BaseInputController>();
 }

Above, moveDirection is a Vector3 used later in the script to tell the charac-
ter controller which direction to move in. Here in the Init() function, it is given
the world forward vector as its default value.

Init() then calls GetComponents(), which is a function in
ExtendedCustomMonoBehaviour.cs (which this class derives from) that will
grab references to the Transform and GameObject this script is attached to. We
also grab the Rigidbody (as this script relies on physics to work) and stores the
reference in the variable _RB. _inputController is populated with a reference to a
BaseInputController Component (or a Component that derives from
BaseInputController) so we can process input from the user.

The BaseInputController class is used to provide input from the player to
move the character around and it should be attached as a Component to the same
GameObject as this script. BaseInputController.cs is provided as part of the
framework for this book. You can use this script for input, or you could replace
the input system with whatever you need just as long as you feed the variables
named horz and vert with horizontal and vertical input values as floats.

 public void SetUserInput(bool setInput)
 {
 canControl= setInput;
 }

Above, the SetUserInput() function is used to set the variable canControl,
which is used to check whether user input should be disabled or not. This is just
a nicer way of allowing other scripts to enable or disable user input.

Having input separated into a single GetInput() function should make it
easy to customize inputs if required. We deal with calling to update the input in
the GetInput() function, next:

 public virtual void GetInput()
 {
 if (isFinished || isRespawning || !canControl)
 {
 horz = 0;
 vert = 0;
 return;
 }

Above, the start of GetInput() checks that we are supposed to be controlling
the player. If not, the horizontal and vertical inputs for the character controller
are locked at zero and we drop out of this function. Otherwise, we need to get the
inputs from the BaseInputController Component:

 if (!canControl)
 return;

 horz = _inputController.GetHorizontal();
 vert = _inputController.GetVertical();
 }

104 6. Player Movement Controllers

Above, before getting input from the user we make sure that canControl is
true – meaning the user can control it – and drop out if this is not the case. Input
scripts in this book will return values in the correct range so all we need to do is
call the functions to return the input values into horz and vert.

 public virtual void LateUpdate()
 {
 if(canControl)
 GetInput();
 }

LateUpdate() is used to call for an update to the input Boolean variables via
the GetInput() script. Unity advises that LateUpdate as the best place to check for
keyboard entry, after the engine has carried out its own input updates.

 void UpdateSmoothedMovementDirection ()
 {
 if(moveDirectionally)
 UpdateDirectionalMovement();
 else
 UpdateRotationMovement();
 }

This script can function both to move directionally as well as rotationally, by
setting moveDirectionally to true or false. Whenever moveDirectionally is set to
false, pressing the left or right buttons will rotate the player left or right around its
y axis. Pressing the up button will walk forwards along the player’s z-axis and
pressing down will move it backwards.

In the UpdateSmoothedMovementDirection() script, the moveDirectionally
variable is checked to determine which type of movement function to call to
update player movement:

The types of movement are split into two separate functions, which are called
above depending on the state of moveDirectionally.

 void UpdateDirectionalMovement()
 {
 // find target direction
 targetDirection= horz * Vector3.right;
 targetDirection+= vert * Vector3.forward;

Directional movement uses the world x and z axis to decide which way to
move; that is, the player moves along the world x or z axis based on the button
pressed by the player. Above, the UpdateDirectionalMovement() function starts
by taking the horizontal and vertical user inputs (from the variables horz and vert)
and multiplying them by either a vector that points along the axis that we want
horz or vert to affect. The targetDirection variable is a Vector3 that encompasses
both vertical and horizontal movement into a single vector representing the direc-
tion our player will move in.

The targetDirection variable will be zero when there is no user input, so before
calculating any movement amounts, we check that movement is intended first:

 if (targetDirection != Vector3.zero)
 {
 moveDirection =
Vector3.RotateTowards(moveDirection, targetDirection, rotateSpeed
* Mathf.Deg2Rad * Time.deltaTime, 1000);
 moveDirection = moveDirection.normalized;
 }

1056.1 Humanoid Character

Above, moveDirection will be used to move the player around. Its value
comes from an interpolation between the current value of moveDirection and
the targetDirection calculated earlier from the user inputs. This vector is then
multiplied by rotateSpeed then converted into radians and again multiplied by
Time.deltaTime to make the rotation speed time based. Vector3.RotateTowards is
used to make the turn, which ensures that the rotation ends in the exact specified
position.

The moveDirection vector is then normalized, to remove any magnitude
from the equation.

The next part of the BasePlayerCharacterController class deals with speed:

 // Smooth the speed based on the current target
direction
 curSmooth= speedSmoothing * Time.deltaTime;

The variable curSmooth will be used further in the script, to decide how long
it takes for the movement speed of the player to go from zero to max speed.

 // Choose target speed
 //* We want to support analog input but make sure
you can’t walk faster diagonally than just forward or sideways
 targetSpeed= Mathf.Min(targetDirection.magnitude,
1.0f);

The variable targetSpeed is capped to a maximum of 1. To do this, Mathf.
Min is fed the magnitude of the targetDirection and 1. Whichever is least will go
into targetSpeed.

This script allows for two states of movement; running and walking. The
transition between running and walking is timed – the character will begin
walking and continue walking until vertical input is applied for more than (in
seconds) the value of runAfterSeconds.

 if (Time.time - runAfterSeconds > walkTimeStart)
 {

Time.time is used above to keep track of how long the player has been walk-
ing, which means that Time.timeScale will affect it (if the game is paused or time
is scaled, this timing will remain relative to the time scale).

 targetSpeed *= runSpeed;
 }
 else
 {

walkSpeed is a multiplier for the targetSpeed when the player is in its walk-
ing state:

 targetSpeed *= walkSpeed;
 }

 moveSpeed = Mathf.Lerp(moveSpeed, targetSpeed,
curSmooth);

 // Reset walk time start when we slow down
 if (moveSpeed < walkSpeed * 0.3f)
 walkTimeStart = Time.time;

106 6. Player Movement Controllers

moveSpeed was used earlier in the function, but it only gets calculated
here because it relies on targetSpeed and curSmooth to have been worked out.
moveSpeed is the result of an interpolation (using Mathf.Lerp) between its cur-
rent value and the variable targetSpeed over an amount set by curSmooth.

When moveSpeed drops below the threshold set by walkSpeed (i.e. when the
player releases the move input to slow movement down) walkTimeStart gets reset
to Time.time to allow the walk to start again the next time the player moves.

The final part of the UpdateDirectionalMovement() function deals with
move direction:

 // Calculate actual motion
 Vector3 movement= moveDirection * moveSpeed;
 movement *= Time.deltaTime;

 // Move the controller
 collisionFlags = _charController.Move(movement);

The variable movement takes moveDirection and multiplies it by move-
Speed, then on the next line the result is multiplied by Time.deltaTime to provide
a time-based movement vector with magnitude suitable for passing into the char-
acter controller. When the controller is told to Move (with the movement vector
passed in as a parameter) it will return a bitmask called CollisionFlags. When a
collision occurs with the character controller, the collisionFlags variable may be
used to tell where the collision happened; the collisionFlags mask represents
None, Sides, Above or Below. Although the collision data is not used in this ver-
sion of BaseTopDown.cs, it is implemented for future functionality.

 // Set rotation to the move direction
 _TR.rotation = Quaternion.LookRotation(moveDirection);
}

In the last line of the function above, Quaternion.LookRotation creates a
rotation towards moveDirection and sets _TR.rotation to it – making the player
face in the correct direction for the movement.

 void UpdateRotationMovement ()
 {
 _TR.Rotate(0, horz * rotateSpeed * Time.deltaTime, 0);

The second type of movement for this class is rotational.
UpdateRotationalMovement() uses a combination of Transform.Rotate and the
character controller’s SimpleMove function to provide a control system that
rotates the player on its y-axis and moves along its z-axis (in the case of the
humanoid, this is forward and backward walking or running).

For horizontal input, the variable horz is multiplied by the variable rotateSpeed
and multiplied by Time.deltaTime to be used as the rotation for the player’s rota-
tion around its y axis. Vertical input (stored in vert) is dealt with next, as vert
multiplied by moveSpeed makes up the speed to traverse the player’s z-axis at.

Note that moveSpeed is calculated further down in the function, so don’t
worry about that right away – just keep in mind that moveSpeed is the desired
speed of movement:

 curSpeed = moveSpeed * vert;

CharacterController.SimpleMove moves a character controller; considering
the velocity set by the vector passed into it. In this line, the vector provided to
SimpleMove is the player’s forward vector multiplied by curSpeed:

1076.1 Humanoid Character

 _ charController.SimpleMove(_ TR.forward * curSpeed);

targetDirection is a Vector3 type variable that determines how much, based
on the vert input variable, we would like to move; even though its vector is only
used in calculating for its magnitude later in the function:

 // Target direction (the max we want to move, used
for calculating target speed)
 targetDirection= vert * _TR.forward;

When the speed changes, rather than changing the animation instantly
from slow to fast the variable curSmooth is used to transition speed smoothly.
The variable speedSmoothing is intended to be set in the Unity inspector window
and it is then multiplied by Time.deltaTime to make the speed transition time
based:

 // Smooth the speed based on the current target direction
 float curSmooth= speedSmoothing * Time.deltaTime;

The next line of the script caps the targetSpeed at 1. Taking the target-
Direction vector from earlier, targetSpeed takes a maximum value of 1 or, if it is
less than 1, the value held by targetDirection.magnitude:

 // Choose target speed
 //* We want to support analog input but make sure
you can’t walk faster diagonally than just forward or sideways
 targetSpeed= Mathf.Min(targetDirection.magnitude, 1.0f);

The rest of the function transitions between walking and running in the
same way that UpdateDirectionalMovement() function did earlier in this
section:

 // adjust move speed
 if (Time.time - runAfterSeconds > walkTimeStart)
 {
 targetSpeed *= runSpeed;
 }
 else
 {
 targetSpeed *= walkSpeed;
 }

 moveSpeed = Mathf.Lerp(moveSpeed, targetSpeed,
curSmooth);

 // Reset walk time start when we slow down
 if (moveSpeed < walkSpeed * 0.3f)
 walkTimeStart = Time.time;
 }

Above, we again change the targetSpeed to either runSpeed or walkSpeed.
moveSpeed lerps between the current speed and targetSpeed, and there is a

check to see if the moveSpeed variable drops below a third of walkSpeed to tell us
when the player is moving so slowly that we can reset walkTimeStart.

Next up, the Update() function:

 public void Update()
 {
 ApplyGravity();

108 6. Player Movement Controllers

 if (!canControl)
 {
 // kill all inputs if not controllable.
 Input.ResetInputAxes();
 }
 UpdateSmoothedMovementDirection();
 }

Above, Update() begins with a call to stop input when canControl is set to
false. More than anything, this is designed to bring the player to a stop when
canControl is set at the end of the game. When the game ends, rather than inputs
continuing and the player being left to run around behind the game over mes-
sage, inputs are set to zero.

UpdateSmoothedMovementDirection() calls one of two movement update
scripts, based on the value of the Boolean variable moveDirectionally.

 void ApplyGravity()
 {
 // apply some gravity to the character
controller
 float gravity = -9.81f * Time.deltaTime;
 _charController.Move(new Vector3(0, gravity, 0));
 }

Above, we apply gravity to the character controller – by default, Unity does
not add gravity to this type of object. We do this just by calling Move() and pass-
ing in a Vector3 of the direction of gravity.

At the end of the class, GetSpeed(), GetDirection and IsMoving() are utility
functions provided for other scripts to have access to a few of the character’s
properties:

 public float GetSpeed ()
 {
 return moveSpeed;
 }
 public Vector3 GetDirection ()
 {
 return moveDirection;
 }
 public bool IsMoving ()
 {
 return (Mathf.Abs(vert) + Mathf.Abs(horz) > 0.5f);
 }
 }
}

GetSpeed() and GetDirection() return their associated variables. IsMoving()
takes the absolutes values of vert and horz to find out if the player is moving faster
than 0.5f.

6.2 Wheeled Vehicle
The BaseWheeledVehicle.cs script relies on one of Unity’s built-in WheelCollider
system. WheelCollider components are added to GameObjects positioned in
place of the wheels supporting the car body. The WheelCollider components
themselves do not have any visual form and meshes representing wheels are not
aligned automatically. WheelColliders are physics simulations; they take care of
the physics actions such as suspension and wheel friction.

1096.2 Wheeled Vehicle

The math behind the friction system is beyond the scope of this book, though
Unity documentation has coverage of the subject on the WheelCollider page of
the online help.

BaseWheeledVehicle uses four WheelColliders for drive, and orientation of
wheel meshes is dealt with by a script called BaseWheelAlignment.cs explained
later in the chapter.

The class derives from ExtendedCustomMonoBehaviour (as discussed in
Chapter 4 of this book) which adds a few commonly used variables.

BaseWheeledVehicle.cs starts like this:

using UnityEngine;
namespace GPC
 {
 [AddComponentMenu("CSharpBookCode/Base/Vehicles/Wheeled
Vehicle Controller")]
 [RequireComponent(typeof(Rigidbody))]

Above, we start the class with the usual reference to UnityEngine, and then
add a menu item for this Component. Having a Rigidbody Component on the
same GameObject this script is attached to is important. The next tag (those lines
wrapped in square brackets are what Unity refers to as tags) is a RequireComponent.
This will check to see if a Rigidbody is attached to our GameObject and will add
one, if needed. We then set the namespace that all the framework comes under,
our GPC namespace.

Now into the class:

 public class BaseWheeledVehicle : ExtendedCustomMonoBehaviour
 {
 public bool isLocked;

 [Header("Wheel Colliders")]

 public WheelCollider _frontWheelLeft;
 public WheelCollider _frontWheelRight;
 public WheelCollider _rearWheelLeft;
 public WheelCollider _rearWheelRight;

We use a Boolean variable named isLocked to hold a vehicle in place. In the
example game, this is used to stop the play driving off before the 3,2,1 count com-
pletes at the start of the game.

Each WheelCollider variable is named based on its intended position;
 frontWheelLeft, frontWheelRight, rearWheelLeft and rearWheelRight. For the script
to function correctly, WheelColliders need to be referenced (dragged and dropped)
into the correct variables in the Unity Inspector window on the vehicle script.

 public BaseInputController _ inputController;

The default input system is set to use the BaseInputController class from this
book’s framework. You can, of course, switch out input for whatever you like. We
use the _inputController variable to talk to BaseInputController and find out
what is going on with the inputs each update, which happens further down in
this class, in the GetInputs() function.

 [Header("Steer settings")]
 public float steerMax = 30f;
 public float accelMax = 5000f;
 public float brakeMax = 5000f;

110 6. Player Movement Controllers

 [System.NonSerialized]
 public float steer = 0f;
 [System.NonSerialized]
 public float motor = 0f;
 [System.NonSerialized]
 public float brake = 0f;

 [Space]
 public float wheelToGroundCheckHeight = 0.5f;

 [Space]
 public bool fakeBrake;
 public float fakeBrakeDivider = 0.95f;

 [Space]
 public bool turnHelp;
 public float turnHelpAmount = 10f;

 public bool isGrounded;

 [System.NonSerialized]
 public float mySpeed;

 [System.NonSerialized]
 public Vector3 velo;

 [Header("Audio Settings")]

 public AudioSource _engineSoundSource;
 public float audioPitchOffset = 0.5f;

Most of the other variables in here will be covered further on in the script, as
we break it down, so we skip to the Start() function. Start()is called by the engine
automatically. It calls the Init() function, which begins by caching references to
commonly used objects:

 public virtual void Start ()
 {
 Init ();
 }

 public virtual void Init ()
 {
 // cache the usual suspects
 _RB = GetComponent<Rigidbody>();
 _GO = gameObject;
 _TR = transform;

Next up, we grab a reference to the input controller Component attached to
this GameObject and then set the center of mass of our Rigidbody:

 _ inputController = GetComponent<BaseInputController>();
 _RB.centerOfMass= new Vector3(0,-1f,0);

The center of mass can be set on a rigidbody to change the way it behaves in
the physics simulation. The further the center of mass is from the center of the
rigidbody, the more it will affect the physics behavior. Setting the center of mass
down at –1 helps make the vehicle stable and stops the vehicle from toppling over
when going around corners.

 // see if we can find an engine sound source, if we need to
 if (_engineSoundSource == null)
 {

1116.2 Wheeled Vehicle

 _engineSoundSource = _GO.GetComponent<AudioSource>();
 }
 }

Above, if no engine sound source has been set up via the Inspector window
of the Unity editor, the script tries to find it with a call to GameObject.
GetComponent(). The sound source will be stored in engineSoundSource and
used solely for engine sound effects.

As with all the movement controllers, SetUserInput (next) sets a flag to
decide whether inputs should be used to drive the vehicle:

 public void SetUserInput(bool setInput)
 {
 canControl= setInput;
 }

Unlike other movement controllers from this book, this one introduces a
lock state:

 public void SetLock(bool lockState)
 {
 isLocked = lockState;
 }

The lock state is for holding the vehicle in place without affecting its y-axis.
This differs from just disabling user input as it adds physical constraints to the
physics object to hold it still (its purpose being to hold the vehicle during the
counting in at the start of a race or other similar scenario).

 public virtual void LateUpdate()
 {
 if(canControl)
 GetInput();
 UpdateEngineAudio();
 }

Above, LateUpdate() starts by checking for input via the GetInput() func-
tion, when canControl is set to true. Next, UpdateEngineAudio() is called to
update the pitch of the engine sound based on the engine speed.

 public virtual void FixedUpdate()
 {
 UpdatePhysics();
 DoFakeBrake();
 CheckGround();
 }

All of the physics code is called, above, from a call to UpdatePhysics() in
FixedUpdate(). We call out to a braking function DoFakeBrake() and
CheckGround() to check to see if the vehicle is on the ground.

 public virtual void UpdatePhysics()
 {
 CheckLock();

CheckLock() is called first, which holds the vehicle in place when the lock is
on (when isLocked is true) – ideal for holding vehicles in place at the start of a
race!

112 6. Player Movement Controllers

 // work out a flat velocity
 velo = _RB.velocity;
 velo =
transform.InverseTransformDirection(_RB.velocity);

 // work out our current forward speed
 mySpeed = velo.z;

Above, the variable velo is set to hold the velocity of our vehicle rigidbody.
The next line converts that velocity to local coordinate space, so that we get values
for how fast the vehicle is moving along each of its axis. Our vehicle’s forward
speed is along the z axis and sideways along the x. We take that z axis velocity and
put into the variable mySpeed so that we know how fast our vehicle is moving.

mySpeed is used the next section, where we simulate a reverse gear when the
vehicle is moving below an arbitrary speed:

 // if we're moving slow, we reverse motorTorque and remove
brakeTorque so that the car will reverse
 if(mySpeed<2)
 {
 // that is, if we're pressing down the brake key
(making brake>0)
 if(brake>0)
 {
 rearWheelLeft.motorTorque = -brakeMax * brake;
 rearWheelRight.motorTorque = -brakeMax * brake;

Above, bear in mind that this section of code is to simulate a reverse gear.
mySpeed is checked to see if its value is less than 2. When the speed is this slow
and the brake key is held down, brakeTorque is no longer applied to the wheels
and instead of brake torque, a reverse amount of the maximum amount of brake
torque (brakeMax) is applied to make the vehicle move backwards.

 rearWheelLeft.brakeTorque = 0;
 rearWheelRight.brakeTorque = 0;

In reverse mode, zero brakeTorque will be applied (by the code above) to the
WheelColliders so that the vehicle is free to move backward. Although braking is
dealt with above, we deal with the reverse motor further in the script.

 frontWheelLeft.steerAngle = steerMax * steer;
 frontWheelRight.steerAngle = steerMax * steer;

When the vehicle is reversing, steering is applied in reverse too, just like a
real car.

 // drop out of this function before applying the
'regular' non-reversed values to the wheels
 return;
 }
}

If reverse conditions have been applied to the WheelColliders, this function
drops out before the regular (forward) values are applied.

 if (turnHelp)
 _RB.AddTorque(Vector3.up * steer * turnHelpAmount *
_RB.mass);

1136.2 Wheeled Vehicle

Just using the wheels to steer the car is sometimes enough, but if you are
working on something more arcade you will probably need to apply some extra
turning force to get the car to feel less realistic and more fun. The turnHelp
Boolean variable can be set on or off in the Inspector and you can adjust the
turnHelpAmount to get a cool effect.

In the code above, Unity’s AddTorque function is used to multiply an up vec-
tor by steer, turnHelpAmount and the rigidbody’s mass. In the example racing
game for this book, a turnHelpAmount of 2 is a good value for arcade physics.

Next up, we apply regular (forward) values to the WheelColliders:

 // apply regular movement values to the wheels
 rearWheelLeft.motorTorque = accelMax * motor;
 rearWheelRight.motorTorque = accelMax * motor;

 rearWheelLeft.brakeTorque = brakeMax * brake;
 rearWheelRight.brakeTorque = brakeMax * brake;

 frontWheelLeft.steerAngle = steerMax * steer;
 frontWheelRight.steerAngle = steerMax * steer;
 }

Above, we tell the WheelColliders how to move. The motor, brake and steer
values will be set by the GetInput() function later in this script.

 public void DoFakeBrake()
 {
 if (isGrounded && brake > 0 && fakeBrake && mySpeed > 0)
 {
 tempVEC = _RB.velocity;
 tempVEC.x = tempVEC.x * fakeBrakeDivider;
 tempVEC.z = tempVEC.z * fakeBrakeDivider;
 _RB.velocity = tempVEC;
 }
 }

Braking with WheelColliders relies on friction and the wheels relationship
to the ground below them. The main issue with this is – without a lot of work –
traction is easily lost, and it can be hard to get the vehicle to stop. Even more so if
you are trying to make an arcade racer rather than a realistic simulation. To get
around that, this script includes the DoFakeBrake() function above, which
reduces the vehicles velocity values to slow down the vehicle faster. To adjust the
effect, you can change the value of fakeBrakeDivider in the Inspector on the
GameObject, or you can turn it on or off with the setting of the fakeBrake
Boolean.

This enhanced braking system will only be applied when the vehicle is on the
ground, so it relies on the isGrounded Boolean set by the CheckGround() func-
tion coming up next:

 public void CheckGround()
 {
 bool FLGrounded = false;
 bool FRGrounded = false;
 bool RLGrounded = false;
 bool RRGrounded = false;

 if (Physics.Raycast(_frontWheelLeft.
transform.position, Vector3.down, wheelToGroundCheckHeight))
 FLGrounded = true;

114 6. Player Movement Controllers

 if (Physics.Raycast(_frontWheelRight.
transform.position, Vector3.down, wheelToGroundCheckHeight))
 FRGrounded = true;

 if (Physics.Raycast(_rearWheelLeft.transform.
position, Vector3.down, wheelToGroundCheckHeight))
 RLGrounded = true;

 if (Physics.Raycast(_rearWheelRight.
transform.position, Vector3.down, wheelToGroundCheckHeight))
 RRGrounded = true;

 if (FLGrounded && FRGrounded && RLGrounded &&
RRGrounded)

 {
 isGrounded = true;
 }
 else
 {
 isGrounded = false;
 }
 }

When wheels are off the ground, our enhanced braking and turn helper code
needs to be disabled to avoid steering or braking in mid-air. To detect the ground,
the function above uses Unity’s Raycasting function to cast a ray straight down
from the center of each WheelCollider. A raycast distance value is used, held in
the float WheelToGroundCheckHeight. Individual Boolean flags are set for each
wheel’s grounded state. Those flags are checked at the end of the function to see
if all of them are true – if so, we know that all four wheels are on the ground so
isGrounded gets set to true. Otherwise, isGrounded is set to false.

 public void CheckLock()
 {
 if (isLocked)
 {
 // control is locked out and we should be stopped
 steer = 0;
 brake = 0;
 motor = 0;
 // hold our rigidbody in place (but allow the Y to move
so the car may drop to the ground if it is not exactly matched to
the terrain)
 Vector3 tempVEC = myBody.velocity;
 tempVEC.x = 0;
 tempVEC.z = 0;
 myBody.velocity = tempVEC;
 }
 }

The CheckLock() function, above, looks to see if the Boolean variable isLocked
is set to true, then when it is freezes all inputs to zero and zeroes x and z velocities of
the vehicle’s rigidbody. The y velocity is left as is, so that gravity will still apply to the
vehicle when it is being held in place. This is important at the start of a race when the
vehicle is being held until the 3,2,1 counting in finishes. If the velocity along
the y-axis were zeroed too, the car would float just above its resting place against the
ground until the race started when it would drop down some as gravity is applied.

steer, motor and brake are the main float variables used for applying to the
vehicle to move it around. The function below, GetInput() gets values from the
inputs set by the default input system:

1156.3 Wheel Alignment

 public virtual void GetInput()
 {
 // calculate steering amount
 steer = Mathf.Clamp(_inputController.GetHorizontal(),
-1, 1);
 // how much accelerator?
 motor = Mathf.Clamp(_inputController.GetVertical(), 0, 1);
 // how much brake?
 brake = -1 *
Mathf.Clamp(_inputController.GetVertical(), -1, 0);
 }

Above, we grab input values from the Component referenced in _inputCon-
troller (in this case, an instance of BaseInputController). Rather than relying on
them being in the range we need, Mathf.Clamp is used to restrict our values
between a start and end amount. For example, steer will only ever be between –1
and 1 thanks to the Mathf.Clamp statement above, where –1 is a turn to the left
and 1 is a turn to the right. The motor variable will always be between 0 and 1 and
brake between –1 and 0.

Braking works a little differently because it gets its input from the same axis used
for the motor. The joystick axis used goes from 1, which would be up, to –1 which is
down. Using the same axis but having two separate values for motor and brake means
that we use positive values from GetVertical() to apply to motor but we also need to
filter out any positive value coming back from GetVertical() to apply to the brakes.
We only want the negative values of GetVertical() when it comes to breaking, because
that is when the joystick is down rather than up. To do this, first of all the values are
clamped between –1 and 0 by Mathf.Clamp. This will return a negative number,
which is what we want but the WheelColliders will only take a positive number, so we
have to reverse it by subtracting it from –1. What we end up with is that, whenever
GetVertical() returns a negative value, the value of brake will be an inversed positive
value of it ready to apply to the wheels back in the above UpdatePhysics() function.

 public virtual void UpdateEngineAudio()
 {
 _engineSoundSource.pitch = audioPitchOffset +
(Mathf.Abs(_frontWheelLeft.rpm) * 0.005f);
 }
 }
}

Changing the pitch of the engine AudioSource object makes a convincing
motor sound. As it may be possible for the variable mySpeed to be negative,
Mathf.Abs is used and an arbitrary multiplier to bring the number down to
something that changes the pitch in a satisfactory manner. The number was
decided by trial and error, adjusting its value until the motor sounded right.

As well as setting up WheelColliders, you may need a method to align the
visual models to their physics counterpart like the BaseWheelAlignment class in
the following section.

6.3 Wheel Alignment
WheelColliders will do a great job of acting like wheels, but if we want to see
wheels there is still more work to be done; each wheel mesh needs to be posi-
tioned to match its WheelCollider counterpart. Quick shoutout to Edy (Vehicle
Physics) for his public domain UnityScript wheel alignment, which served as the
original basis for this class.

116 6. Player Movement Controllers

The BaseWheelAlignment class can be used to align the wheel meshes to the
WheelColliders, as well as to provide a little extra functionality in spawning tire
smoke as the wheel is slipping. The smoke is optional, of course, but it’s here
should you need it.

Each wheel should have a BaseWheelAlignment Component attached to it
(that is, a wheel mesh for display, not the actual WheelCollider) and then a refer-
ence to a WheelCollider component. The wheels should be independent of the
WheelColliders for them to move correctly; do not parent wheel meshes to the
Colliders.

using UnityEngine;
namespace GPC
{
 public class BaseWheelAlignment :
ExtendedCustomMonoBehaviour
 {

Above, we only need access to the UnityEngine namespaces for this script,
and then we are adding this class to the GPC namespace so that it acts as a part of
the framework for this book. The class derives from ExtendedCustomMonoBehaviour
to use its Spawn() function and also one of its variables, _TR.

 public WheelCollider _ correspondingCollider;
 public GameObject _slipPrefab;
 public float slipAmountForTireSmoke = 50f;
 private float suspensionDistance;
 private float RotationValue = 0.0f;
 private Transform _colliderTransform;

Skipping by the variable declarations (as they will become clearer as we work
through the script), we move down to the Start() function:

 void Start()
 {
 _TR = GetComponent<Transform>();
 _colliderTransform = _correspondingCollider.
transform;
 }

_TR grabs a reference to the wheel Transform. This will be used to position
the visual wheel. On the following line above, we grab _colliderTransform, which
is a reference to the corresponding WheelCollider GameObject and will be used
to find out where to position the visual wheel further down in the script.

 void Update()
 {
 RaycastHit hit;
 Vector3 ColliderCenterPoint = _colliderTransform.
TransformPoint(_correspondingCollider.center);

 if (Physics.Raycast(ColliderCenterPoint, -
_colliderTransform.up, out hit, _correspondingCollider.
suspensionDistance + _correspondingCollider.radius))
 {

Above, the Update() function works by casting a ray down from the center of
the WheelCollider with the intention of positioning the wheel mesh based on

1176.3 Wheel Alignment

where the ray finds a Collider hit. If nothing is picked up by the raycast, the wheel
mesh is positioned at a point projected down from the center of the WheelCollider
instead – representing a fully extended suspension distance.

The WheelCollider.center property returns a value from the WheelCollider’s
local coordinate space. Above, Transform.TransformPoint is used to convert it
into a world space coordinate that we can use this point as the starting point for
the ray cast. For a realistic representation of the structure of suspension, the ray
cast length is limited to the length of the suspension add the radius of the wheel.
Starting out from the center of the WheelCollider, the ray travels down the
Collider Transform’s negative up vector (i.e. down, as the WheelCollider’s
Transform describes it, is down from the bottom of our GameObject).

 _ TR.position = hit.point + (_ colliderTransform.up *
_ correspondingCollider.radius);
 } else {
 _TR.position = ColliderCenterPoint - (_colliderTransform.up
* _correspondingCollider.suspensionDistance);
 }

Above, we deal with the positioning of the wheel based on whether Physics.
Raycast finds a hit or not. If a hit is found, the position for the visual wheel is
made up of the hit point, plus the wheel Collider’s local up vector multiplied by
the wheel radius. This should sit the wheel just above the hit surface.

The second statement above calculates the wheel position at a fixed distance
from the WheelCollider’s center, that distance made up of the Collider’s local up
vector multiplied by the suspension distance. This is how we get to that fixed,
fully extended suspension distance mentioned earlier in this section.

 _ TR.rotation = _ colliderTransform.rotation * Quaternion.
Euler(RotationValue, _ correspondingCollider.steerAngle, 0);
 RotationValue += _correspondingCollider.rpm * 6 * Time.
deltaTime;
 RotationValue = RotationValue % 360;

In the code above, a rotation is calculated encompassing the steering angle
turning the wheel about its Y axis, and a RotationValue variable used to turn the
wheel on its X axis. The RotationValue variable is used to make our wheel look like
it is rolling. RotationValue is made up of the WheelCollider’s RPM (revolutions per
minute) value multiplied by 6 – the 6 is 360 (degrees) multiplied by 60 (seconds) to
convert RPM to radians – then again, multiplied by Time.deltaTime to make sure
that the rotation is consistent, based on time since the last time Update() was called.

We then take the RotationValue variable and force it to loop around between
0 and 360 so that it does not keep accumulating the rotation to become a giant
number. If a number gets too big, eventually it will cause floating point errors.
Even though this is unlikely given that the average race does not take that much
time, I prefer to fix it and anticipate the problem before it happens, so we just
make RotationValue the modulus of RotationValue vs. 360 (modulus finds the
remainder after dividing the first number by the second, giving a rotation
between 0 and 360.

Next, we are into the tire slip calculations:

 WheelHit correspondingGroundHit= new WheelHit();

To analyze detailed information from the WheelCollider and its contacts
and relationships with the 3d world, Unity provides a structure called WheelHit.

118 6. Player Movement Controllers

A WheelHit object contains contact information like the magnitude of force
being applied to the wheel, its forward vector and how much the wheel is slipping.
Above, we declare a new variable named correspondingGroundHit with the spe-
cific purpose of getting to the sidewaysSlip value of the WheelCollider. With this,
we can find out how much the wheel is slipping. If the sidewaysSlip value of cor-
respondingGroundHit falls outside a specified threshold, the wheels must be
sliding enough to merit some tire smoke to be instantiated.

 _ correspondingCollider.GetGroundHit(out
correspondingGroundHit);
 if (Mathf.Abs(correspondingGroundHit.sidewaysSlip
)> slipAmountForTireSmoke)
 {

The first task above is to fill our GroundHit typed variable corresponding-
GroundHit with information from our wheel’s WheelCollider. You do this by
calling GetGroundHit on the WheelCollider and passing in a WheelHit object
for it to populate on the way out.

Now correspondingGroundHit has data in it, in the next line we access that
sidewaysSlip value. To always ensure we get a positive number back from it, we use
Mathf.Abs and compare that value to the float variable slipAmountForTireSmoke.

 if (slipPrefab) {
 Spawn(slipPrefab, correspondingGroundHit.point,
Quaternion.identity);
 }
 }
}

If the condition above is met and sidewaysSlip is greater that slipAmount-
ForTireSmoke, the line above instantiates a slipPrefab object into the Scene. It is
assumed that slipPrefab contains a particle effect for tire smoke. The new prefab
will be spawned at the point where the wheel meets the ground surface.

Note that the slipPrefab will be instantiated every step (every update) that
the sidewaysSlip value is above the value of slipAmountForTireSmoke. If your
tire smoke particle effect is complex you may need to change this to a timed sys-
tem, instead.

6.4 2D Platform Character Controller
In Chapter 2 of this book, we looked at building a basic infinite runner game
where the player jumped between platforms. The runner games main character
class from Section 2.6.3 – RunMan_CharacterController – derived from
BasePlayer2DPlatformCharacter, which is used to control the player. It provides
basic platformer / runner game functionality of running left or right and jump-
ing. The script also detects platforms beneath the player, so that we know when it
is grounded and able to jump.

This BasePlayer2DPlatformCharacter script Component should be attached
to an avatar that already has a Rigidbody2D Component and 2D Collider like a
Sphere Collider attached to it. Let’s dig in:

using UnityEngine;
namespace GPC
{
 public class BasePlayer2DPlatformCharacter :
ExtendedCustomMonoBehaviour

1196.4 2D Platform Character Controller

 {
 public float jumpPower = 2.5f;
 public float runPower = 0.6f;

 public bool canAirSteer;

 [System.NonSerialized]
 public bool allow_left;

 [System.NonSerialized]
 public bool allow_right;

 [System.NonSerialized]
 public bool allow_jump;

 public LayerMask groundLayerMask;
 public bool isOnGround;

 public BaseInputController _inputController;

Above, there is nothing particularly unusual about the variables or class dec-
larations for this script until we reach the groundLayerMask declaration.

groundLayerMask is a LayerMask type variable that is used by this class
to decide which collision layers to look for when trying to find ground under-
neath the player. When you see this Component attached to a GameObject,
and the GameObject is selected, as the Component appears in the Inspector
this variable will appear as a dropdown menu. The dropdown contains all
the defined collision layers in your project, and you can choose one or mul-
tiple, if required. Layers in Unity are represented as bitmasks. A bitmask is
used to access specific bits in a byte of data – you can think of a bitmask as a
binary number that represents something else. Layers can be difficult to
work with, but when you use a LayerMask, you avoid having to mess around
with bit shifting. To help out, the class that this class derives from,
ExtendedCustomMonoBehaviour, has a function in it called IsInLayerMask()
that simplifies working with layers even more.

Above, _inputController is declared too. _inputController uses the
BaseInputController class to read input from the player (in this case, keypresses)
and we can access the values in _inputController to know what the user is asking
our player to do and react.

 private void Awake()
 {
 Init();
 }

 public virtual void Init()
 {
 _RB2D = GetComponent<Rigidbody2D>();
 _inputController =
GetComponent<BaseInputController>();
 didInit = true;
 }

Above, we grab the Rigidbody2D component for _RB2D and populate the
_inputController. Once we have those two variables set, didInit is set to true so
that we know set up has completed.

 public virtual void LateUpdate()
 {

120 6. Player Movement Controllers

 CheckGround();
 UpdateMovement();
 }

LateUpdate() calls functions to update movement and check for ground.

 public virtual void UpdateMovement()
 {
 if (!didInit)
 Init();

 _inputController.CheckInput();

Before doing anything in UpdateMovement(), there is a quick check that
didInit is true.

Next, BaseInputController does not update itself! We tell it when to update.
In this case, we call _inputController.CheckInput() from the UpdateMovement()
function above.

 Vector2 moveVel = _ RB2D.velocity;
 if (isOnGround || canAirSteer)
 {

You can decide whether to allow your player to steer in the air by enabling
the canAirSteer Boolean (either set it in code, or via the Inspector on the
Component). Above, we check to see that either the player is on the ground or air
steering is enabled before grabbing inputs from _inputController for left and
right movements.

 if (_ inputController.Left && allow _ left)
 {
 moveVel.x = -runPower;
 }
 else if (_inputController.Right &&
allow_right)
 {
 moveVel.x = runPower;
 }
 else
 {
 if (allow_right || allow_left)
 {
 // stop if no left/
right keys are being pressed
 moveVel.x = 0;
 }
 }

moveVel is a Vector2 variable used to hold the target movement amount each
step. Above, we set moveVel to either -runPower (running to the left), runPower
(right) or zero it altogether to stop the player in place. As this script is intended to
be used as a starting point for different types of games, it also contains the option
to turn on or off left or right movement with the allow_left and allow_right
Booleans. For the infinite runner example in this book, left and right movement
is enabled but not all infinite runners allow the player to move left and right;
some only require a jump button.

BaseInputController has both linear inputs in variables named vert and horz
(standing for vertical and horizontal) which will return values between –1 and 1,
as well as digital inputs in the variables Up, Down, Left and Right. Above, rather

1216.4 2D Platform Character Controller

than use the linear inputs we use Left and Right. Either our player is moving, or
it is standing still. There is no in-between!

 // jump key
 if (_inputController.Fire1 && allow_jump &&
isOnGround)
 {
 // stop if no left/right keys are
being pressed
 moveVel.y = jumpPower;

 Jump();
 }
 _RB2D.velocity = moveVel;
 }

The last part of UpdateMovement() above is where we deal with jumping. By
default, we use the input Fire1 as the jump key. The inputs can be modified and
set up in Unity’s Input Manager (Edit>Project Settings>Input Manager).

To make the player jump, we set its velocity along the y axis to the (float)
value in the variable jumpPower. As this is only applied when the player is on the
ground and the jump key has been pressed, it provides the right amount of thrust
to seem like a jump. Above, we also call to a function named Jump() to take care
of a few secondary tasks, which we will cover a little further on in the script.

 void CheckGround()
 {
 // assume we're NOT on the ground, first..
 isOnGround = false;

 // Cast a ray straight down.
 RaycastHit2D hit =
Physics2D.Raycast(transform.position, -Vector2.up, 0.3f,
groundLayerMask);

 // If it hits something...
 if (hit.collider != null)
 {
 isOnGround = true;
 }
 }

To detect the ground beneath the player, this script uses the Physics2D.
Raycast function. We pass in the start position, the direction (a down vector), the
distance we want the ray to stop at and a LayerMask – groundLayerMask from
the top of the script we discussed earlier in this section. A ray will be cast down
from the player Transforms position and if the ray intersects with anything (if a
Collider on the right layer is found), information about the Collider and the hit
will be put into the RaycastHit2D variable hit.

All we need to do then is to check hit.collider. If no Collider was found dur-
ing the raycast, Physics2D.Raycast returns null as the Collider. If we know a
Collider was found, we know that there is ground underneath the player and we
can set isOnGround to true.

 public virtual void Jump()
 {
 // use this function to trigger things that
happen when the player jumps

122 6. Player Movement Controllers

 }
 }
}

In this base class, there is only a virtual version of the Jump() function. This
should be overridden by your own derived scripts if you need to do anything else
when a jump happens. For example, the RunMan infinite runner game from
Chapter 2 of this book uses an overridden version of the Jump() function to tell
the player sprite to play its jumping animation.

123

7 Weapon Systems

To be as flexible as possible, in this chapter we build a weapon management sys-
tem that will control individual weapon controllers. Those weapon controllers, in
turn, will deal with spawning projectiles and finally projectiles will take care of
themselves independently. Our weapon management system should function
with a single weapon or we should be able to add many different weapons and
switch between them.

The weapon controller deals with weapons and passes on messages to them.
It contains an array containing all weapons and a method to activate and deacti-
vate them as required.

Each weapon is a prefab with a script attached that derives from
BaseWeaponScript.cs. The weapon should be self-contained other than when it
receives a call to Fire() it should do whatever it is supposed to do. BaseWeaponScript
contains the basics for a weapon (ammunition, reload time, and the ability to be
disabled or enabled).

7.1 Building the Scripts
For the weapon system, there are two main script Components and one for input:

 1. BaseWeaponController
 This is the framework for our weapon control system. It offers everything

the system requires and it is intended to be overridden for customization.

 2. BaseWeaponScript
 This takes care of individual weapon types. If you were to think of the

baseWeaponController as the arms of the player, the baseWeaponScript
would be the design of the weapon it is holding.

124 7. Weapon Systems

 3. StandardSlotWeaponController
 This class provides a method for taking input from the player and chang-

ing the currently selected weapon.

All weapon-related scripts can be found in the folder Assets\GPC_
Framework\Scripts\BASE\WEAPON.

7.1.1 The BaseWeaponController Class
The BaseWeaponController class derives from MonoBehaviour, to utilize the
usual built-in Unity calls:

using UnityEngine;
using System.Collections.Generic;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/Base Weapon
Controller")]

public class BaseWeaponController : MonoBehaviour
{
 public GameObject[] _weapons;
 public int selectedWeaponSlot;
 public int lastSelectedWeaponSlot;
 public Transform _weaponMountPoint;
 private List<GameObject> _weaponSlots;
 private List<BaseWeaponScript> _weaponScripts;
 private BaseWeaponScript _TEMPWeapon;
 private int ownerNum;
 public bool useForceVectorDirection;
 public Vector3 forceVector;
 private Vector3 theDir;

 public void Start()
 {
 // default to the first weapon slot
 selectedWeaponSlot = 0;
 lastSelectedWeaponSlot = -1;

Default values are set for the currently selected weapon slot and the last
selected weapon. When the lastSelectedWeaponSlot variable is set to –1, it just
lets the weapon system know that it needs to set the weapon (to avoid duplicate
calls later on, whenever the weapon slot is set it checks to make sure that the new
weapon it is trying to set is different to the one currently set up – hence the –1 to
make the values of selectedWeaponSlot vs. lastSelectedWeaponSlot different on
initialization).

 // initialize weapon list List
 _weaponSlots = new List<GameObject>();

 // initialize weapon scripts List
 _weaponScripts = new List<BaseWeaponScript>();

 _TR = transform;
 if (_weaponMountPoint == null)
 _weaponMountPoint = _TR;

This script uses a List named _weaponSlots to hold different weapon(s) to
spawn later in the function – this is a List of all of the available weapons even if

1257.1 Building the Scripts

ammo is not provide – above, we create a new empty List ready to populate. Along
with storing the GameObjects of our weapons, we will be storing the
BaseWeaponScript Components attached to each one. Our Transform is stored in
_TR and the variable _weaponMountPoint is populated with _TR if it has not been
set in the Unity editor Inspector window. The mount point should be an empty
GameObject or similar Transform used to position and set the rotation of the
weapons.

 for (int i = 0; i < _ weapons.Length; i++)
 {
 GameObject _tempGO =
(GameObject)Instantiate(_weapons[i],
_weaponMountPoint.position, _weaponMountPoint.rotation);
 _tempGO.transform.parent = _weaponMountPoint;
 _tempGO.layer =
_weaponMountPoint.gameObject.layer;
 _tempGO.transform.position =
_weaponMountPoint.position;
 _tempGO.transform.rotation =
_weaponMountPoint.rotation;

Above, we loop through the _weapons array and instantiate each one. When
the game starts and the above Start() function runs, the weapon prefab refer-
ences from the _weapons List will be instantiated one by one and positioned at
the weapon mount Transforms position. To make the weapon move around
with the player, we set our new weapons parent to the weapon mount (you can
only set the parent of a Transform, not a GameObject hence using .transform.
parent). We copy the layer used by the weapon mount and set the new weapon to
the same layer, before setting the position and rotation above.

 weaponSlots.Add(TEMPgameObject);

These new objects are going to be the ones that the script manages, enabling
and disabling them as required and calling on them to act as required. Each new
weapon is added to a new List called weaponSlots:

 // grab a reference to the weapon script
attached to the weapon and store the reference in a List
 _TEMPWeapon =
_tempGO.GetComponent<BaseWeaponScript>();
 weaponScripts.Add(TEMPWeapon);

The BaseWeaponScript instance attached to each weapon in those slots is
found (using GameObject.GetComponent()) and stored in another List named
weaponScripts:

 // disable the weapon
 _tempGO.SetActive(false);
 }

The weapons need to start out disabled, otherwise they will all appear on top
of each other and all active. They are disabled here using the GameObject.
SetActive() Unity function:

 // now we set the default selected weapon to visible
 SetWeaponSlot(0);
 }

126 7. Weapon Systems

Now that all the weapons are instantiated, set up, and hidden, the last thing
needed for initialization is to set the default weapon slot to the first weapon (index
of 0). To set the slot, use the SetWeaponSlot() function:

 public void SetOwner(int aNum)
 {
 // used to identify the object firing, if required
 ownerNum= aNum;
 }

When a projectile hits an enemy or a player, the object being hit needs to
know where the projectile came from to know how to react to it. Projectile iden-
tification can be done by layer. Set the layer on the gun mounting point object
(the object that will be the parent to the weapon) and this weapon script will use
the same layer for its projectiles.

Another method for checking where projectiles have come from is to assign
each player with a unique ID number and to use the SetOwner() function to tell
the projectiles who owns each one. The ID number is passed on to projectiles and
stored in the script each projectile has attached to it:

 public virtual void SetWeaponSlot (int slotNum)
 {
 // if the selected weapon is already this one, drop
out!
 if(slotNum==lastSelectedWeaponSlot)
 return;

The function SetWeaponSlot() takes an integer to use as an index number to
refer to the weapons stored in the List named weaponSlots. The weaponSlots List
will be in the same order as weapons added to the original weapons array in the
Unity editor Inspector window.

The SetWeaponSlot() function starts out making sure the weapon we
are trying to set (in slotNum) is not the weapon already active (the
lastSelectedWeaponSlot):

 // disable the current weapon
 DisableCurrentWeapon();

As a new weapon is about to be made active, the current weapon is disabled
by a call to the function DisableCurrentWeapon():

 // set our current weapon to the one passed in
 selectedWeaponSlot= slotNum;

selectedWeaponSlot is an index used to store the currently active weapon
slot. Here, it is set to the incoming parameter value of slotNum:

 // make sure sensible values are getting passed in
 if(selectedWeaponSlot<0)
 selectedWeaponSlot= weaponSlots.Count-1;

 // make sure that the weapon slot isn't higher than
the total number of weapons in our list
 if(selectedWeaponSlot>weaponSlots.Count-1)
 selectedWeaponSlot=weaponSlots.Count-1;

The new value of selectedWeaponSlot is then validated to make sure it is not less
than 0 or more than the total number of occupied slots –1 (since the weaponSlots

1277.1 Building the Scripts

array of weapons starts at zero, we deduct 1 to find the last entry). During validation,
if the value of slotNum is too high, it will be set to the nearest valid number – that way,
the function will not fail in setting the weapon because of a bad value in slotNum:

 // we store this selected slot to use to prevent
duplicate weapon slot setting
 lastSelectedWeaponSlot= selectedWeaponSlot;

Now that selectedWeaponSlot has been set, lastSelectedWeaponSlot needs
updating to the latest slot number:

 // enable the newly selected weapon
 EnableCurrentWeapon();
 }

A call to EnableCurrentWeapon() will take the value of selectedWeaponSlot
and activate the currently selected weapon:

 public virtual void NextWeaponSlot (bool shouldLoop)
 {

The NextWeaponSlot() takes a Boolean parameter to tell the function
whether or not to loop around from the last weapon to the first. If the shouldLoop
parameter is false and the current weapon is already set to the last available
weapon, it will return the same weapon instead of looping around to zero and
returning the weapon from the first slot:

 // disable the current weapon
 DisableCurrentWeapon();

First, the current weapon is disabled in anticipation of setting a new one:

 // next slot
 selectedWeaponSlot++;

 // make sure that the slot isn't higher than the
total number of weapons in our list
 if(selectedWeaponSlot==weaponScripts.Count)
 {
 if(shouldLoop)
 {
 selectedWeaponSlot= 0;
 } else {
 selectedWeaponSlot=
weaponScripts.Count-1;
 }
 }

selectedWeaponSlot index number is incremented and validated to make
sure that it now contains a valid index number (this is where the slot number will
be looped back to zero if it goes over the total number of available weapons):

 // we store this selected slot to use to prevent
duplicate weapon slot setting
 lastSelectedWeaponSlot=selectedWeaponSlot;

 // enable the newly selected weapon
 EnableCurrentWeapon();
 }

128 7. Weapon Systems

The lastSelectedWeaponSlot gets updated before the new current weapon is
enabled, completing the function:

 public virtual void PrevWeaponSlot (bool shouldLoop)
 {
 // disable the current weapon
 DisableCurrentWeapon();

 // prev slot
 selectedWeaponSlot--;

 // make sure that the slot is a sensible number
 if(selectedWeaponSlot<0)
 {
 if(shouldLoop)
 {
 selectedWeaponSlot=
weaponScripts.Count-1;
 } else {
 selectedWeaponSlot= 0;
 }
 }
 // we store this selected slot to use to prevent
duplicate weapon slot setting
 lastSelectedWeaponSlot=selectedWeaponSlot;

 // enable the newly selected weapon
 EnableCurrentWeapon();
 }

PrevWeaponSlot works in almost exactly the same way as NextWeaponSlot().
It has a Boolean parameter to state whether to loop around if the current weapon
slot drops below 0 and the most obvious difference is that the selected WeaponSlot
variable is decremented rather than incremented:

 public virtual void DisableCurrentWeapon ()
 {

Disabling the current weapon means that it will be both invisible and unable
to fire:

 if(weaponScripts.Count==0)
 return;

To disable the weapon, the script will need to talk to the BaseWeaponScript.
cs attached to it. Since weaponScripts and weaponSlots Lists were created in the
same order, the selectedWeaponSlot can be used as the index for either array.

To make sure that there are scripts in the weaponScripts array, its Count
property is checked before going any further:

 // grab reference to currently selected weapon script
 TEMPWeapon= (BaseWeaponScript)weaponScripts[select
edWeaponSlot];

A reference to the currently selected weapon slot’s weapon class
(BaseWeaponScript) is stored in the variable TEMPWeapon as it is retrieved
from the weaponScripts List:

 // now tell the script to disable itself
 TEMPWeapon.Disable();

1297.1 Building the Scripts

To tell the weapon to disable, it’s a call to its Disable() function:

 // grab reference to the weapon's gameObject and
disable that, too
 GameObject _tempGO = (GameObject)_weaponSlots[select
edWeaponSlot];
 _tempGO.SetActive(false);

As well as disabling the actual weapon script, it now needs to be hidden from
view. First, variable _tempGO receives a reference to the weapon’s GameObject
from the weaponSlots List. The _tempGO is then set to inactive by GameObject.
SetActive():

 public virtual void EnableCurrentWeapon ()
 {
 if(weaponScripts.Count==0)
 return;

 // grab reference to currently selected weapon
 TEMPWeapon=
(BaseWeaponScript)weaponScripts[selectedWeaponSlot];

 // now tell the script to enable itself
 TEMPWeapon.Enable();

 GameObject _tempGO =
(GameObject)weaponSlots[selectedWeaponSlot];
 _tempGO.SetActive(true);
 }

Enabling the currently selected weapon is done by the EnableCurrentWeapon()
function, which works almost exactly the same as DisableCurrentWeapon() except
that it calls the Enable() function of the BaseWeaponScript instead of Disable():

 public virtual void Fire ()
 {

By default, the Fire() function will launch projectiles along the Transform’s
forward axis, but there is support for firing along a fixed vector by setting the
useForceVectorDirection to true.

The function takes no parameters, making it easy to call from any other script:

 if(weaponScripts==null)
 return;
 if(weaponScripts.Count==0)
 return;

The weaponScripts List is checked to make sure that is has been properly
initialized and that it contains entries (a quick count check):

 // find the weapon in the currently selected slot
 TEMPWeapon=
(BaseWeaponScript)weaponScripts[selectedWeaponSlot];

TEMPWeapon gets a reference to the currently selected weapon’s script from
the weaponScripts array:

 theDir = _ TR.forward;

130 7. Weapon Systems

By default, the firing direction is along our Transform’s forward vector:

 if(useForceVectorDirection)
 theDir = forceVector;

When useForceVectorDirection is set to true, theDir is set to the vector from
the variable forceVector, which should be set in the Unity editor Inspector win-
dow on the GameObject:

 // fire the projectile
 TEMPWeapon.Fire(theDir, ownerNum);
 }
 }
}

The ownerNum was mentioned earlier in this section, where it is set by the
SetOwner() function. When the call to the currently selected weapon’s Fire()
function goes out, it takes a Vector3, and the owner ID.

7.1.2 BaseWeaponScript
The BaseWeaponScript class derives from ExtendedCustomMonoBehaviour:

using UnityEngine;
namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/Base Weapon Script")]

 public class BaseWeaponScript : ExtendedCustomMonoBehaviour
 {
 public bool canFire;
 public int ammo = 100;
 public int maxAmmo = 100;
 public bool isInfiniteAmmo;
 public GameObject _projectilePrefab;
 public Collider _parentCollider;
 public Transform _spawnPositionTR;
 public float fireDelay = 0.2f;
 public float projectileSpeed = 10f;
 public bool inheritVelocity;

 [System.NonSerialized]
 public Transform _theProjectile;

 private bool isLoaded;

 public virtual void Start()
 {
 Init();
 }

 public virtual void Init()
 {
 _TR = transform;
 Reloaded();
 }

Start() calls Init(). Init() begins by grabbing a reference to the Transform. A call
to Reloaded() ensures that the weapon will be loaded and ready to go from the start.

 public virtual void Enable()
 {
 canFire=true;

1317.1 Building the Scripts

 }
 public virtual void Disable()
 {
 canFire=false;
 }

The Enable() or Disable() functions set the Boolean variable canFire to true or
false, respectively. This will be checked elsewhere in the code before allowing any
projectile firing. Note that the visual representation of the weapon is not hidden here;
that task is left to the slot control script to deal with, rather than the weapon itself:

 public virtual void Reloaded()
 {
 // the 'isLoaded' var tells us if this weapon is
loaded and ready to fire
 isLoaded= true;
 }

When the weapon is fired, the assumption is made that it will not be loaded
for a certain period (otherwise you could in theory fire out thousands of projec-
tiles each second). To keep a track of when the weapon is in a loaded state, this
script uses the Boolean variable isLoaded. A timed call to the Reloaded() func-
tion, after firing, will reset the weapon state again:

 public virtual void SetCollider(Collider aCollider)
 {
 _parentCollider= aCollider;
 }

SetCollider() is used to set a collider to be ignored by a projectile. For exam-
ple, when the script is applied to a player it should ignore the player’s collider to
prevent the newly created projectile from exploding instantly. It should be set,
using the Unity editor Inpsector window, to a collider that would likely destroy
the projectile as it was spawned. If no parentCollider is set, the script will still
work, but the projectile will not ignore any collider:

 public virtual void Fire(Vector3 aDirection, int ownerID)
 {

The Fire() function takes two parameters, a Vector3 to represent the direc-
tion of fire and an integer providing an ID number for its owner (which gets used
primarily by collision code to know how to react):

 if(!canFire)
 return;

 // if the weapon is not loaded, drop out
 if(!isLoaded)
 return;

The Boolean variable canFire needs to be true (the weapon can fire) and
isLoaded needs to be true (the weapon is ready to fire) before the function can
progress to check the state of ammunition:

 // if we're out of ammo and we do not have infinite
ammo, drop out..
 if(ammo<=0 && !isInfiniteAmmo)
 return;

132 7. Weapon Systems

If the integer variable ammo is less than zero and the Boolean isInfiniteAmmo
has not been set in the Unity editor Inspector window, to true, then the function
will drop out here too.

 // decrease ammo
 ammo--;
 // generate the actual projectile
 FireProjectile(aDirection, ownerID);

Since all of the criterion has been met, the function goes ahead, and decre-
ments ammo in anticipation of the projectile about to be generated by the
FireProjectile() function. The direction held by aDirection and the owner ID in the
variable ownerID also get passed on to the FireProjectile() function as parameters:

 // we need to reload before we can fire again
 isLoaded= false;

This is where the Boolean variable isLoaded gets reset to false, to delay firing
for a reasonable amount of time (set by the value held in the variable
reloadTime):

 CancelInvoke("Reloaded");
 Invoke("Reloaded", fireDelay);
 }

CancelInvoke() is called to make sure that there is never more than one
Invoke call to Reloaded() waiting to activate:

 public virtual void FireProjectile(Vector3 fireDirection,
int ownerID)
 {

The FireProjectile() function is where the projectile gets instantiated. It was
called by that last function, Fire():

 // make our first projectile
 _theProjectile= MakeProjectile(ownerID);

The function MakeProjectile will do the work in getting a physical projectile into
the scene, but it returns a Transform that this function can then use to set up with:

 // direct the projectile toward the direction of fire
 _theProjectile.LookAt(theProjectile.position +
fireDirection);

Now theProjectile contains a Transform, the code uses the Transform.
LookAt() function to align it along the target trajectory passed in via the parame-
ter variable fireDirection. Since LookAt() requires a world position vector (as
opposed to a direction vector), it takes the projectile’s current position from
theProjectile.position and adds the fireDirection vector to it. This will adjust the
new projectile’s rotation so that its z-axis is facing in the required direction of travel:

 // add force to move our projectile
 _theProjectile.GetComponent<Rigidbody>().velocity =
fireDirection * projectileSpeed;
 }

1337.1 Building the Scripts

To move the projectile, the projectile’s Rigidbody has its velocity set to the
required firing direction multiplied by projectileSpeed.

 public virtual Transform MakeProjectile(int ownerID)
 {

MakeProjectile() handles creation of a physical projectile, taking a parame-
ter of the ownerID (to pass on to the projectile) and returning the instantiated
projectile Transform:

 // create a projectile
 _theProjectile = Spawn(_projectilePrefab.transform,
_spawnPositionTR.position, _spawnPositionTR.rotation);
 _theProjectile.SendMessage("SetOwnerType", ownerID,
SendMessageOptions.RequireReceiver);

The Spawn() function in the ExtendedCustomMonoBehaviour class this
script derives from is used to instantiate the projectile. Spawn() takes the exact
same parameters as Unity’s Instantiate function; the prefab reference to spawn, a
Vector3 position and a rotation for the spawned object. It will return the
Transform of the newly created object.

The projectile needs to know about the owner ID so that it can be identified
during a collision. Above, once we have spawned the projectile and have its
Transform, Transform.SendMessage() is used to pass the ownerID to the
projectile.

 if (_ parentCollider != null)
 {
 // disable collision between 'us' and our projectile
so as not to hit ourselves with it!

 Physics.IgnoreCollision(_theProjectile.
GetComponent<Collider>(), _parentCollider);
 }

Physics.IgnoreLayerCollision() takes layers referring to which layers should
ignore colliding with each other. This part of the code checks that parentCollider
is not null, then as long as it contains something Physics.IgnoreCollision() is
used to tell the engine to ignore collisions between the two colliders.

Whereas Physics.IgnoreLayerCollision() worked to disable all collisions
between objects on two layers, the Physics.IgnoreCollision() function stops colli-
sion events on specified colliders.

 return _ theProjectile;
 }
 }
}

Above, the newly created projectile needs to be returned to the function call-
ing (especially when this is called from the Fire() function shown earlier in this
section).

7.1.3 Switching between Weapons
Switching between different weapons is a case of either calling SetWeaponSlot()
on your BaseWeaponController class from another script (possibly an input
script) or derive a new class from BaseWeaponController that includes the switch

134 7. Weapon Systems

functionality. In this section, we look at building a script to derive from
BaseWeaponController and look for presses on the number keys 1 to 9 to choose
the currently selected weapon. You can see this script in action in the Blaster
game example from Chapter 15.

using UnityEngine;
namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Common/Weapons/Standard
Slot Controller")]

 public class StandardSlotWeaponController :
BaseWeaponController
 {
 public bool allowWeaponSwitchKeys = true;

Above, our new script derives from BaseWeaponController. We include a
Boolean variable, allowWeaponSwitchKeys, for toggling weapon switching on or off.

 public void Update()
 {
 if (!allowWeaponSwitchKeys)
 return;

 // do weapon selection / switching slots
 // ---------------------------------------
 if (Input.GetKey(KeyCode.Less))
 PrevWeaponSlot(true);
 else if (Input.GetKey(KeyCode.Greater))
 NextWeaponSlot(true);

Update() starts with a quick to check to see if weapon switching is allowed,
dropping out if it is not. Next, when the greater than or less than keys are pressed,
we call either PrevWeaponSlot() or NextWeaponSlot() to switch weapons.

 // keys 1–9
 string theKey = Input.inputString;
 if (theKey == "")
 return;

Input.inputString provides us with a string containing the most recent key
pressed on the keyboard. Above, we store the value of Input.inputString in theKey
and then check it to see whether it is empty. If the string is empty, no key has been
pressed so we drop out.

 var val = (Char.ConvertToUtf32(theKey, 0)-49);
 if(val>-1 && val< _weapons.Length)
 SetWeaponSlot(val);
 }
 }
}

Rather than checking input for every key from 1 to 9, we take the string
theKey and convert it into a number. Char.ConvertToUtf32 will convert a string
into a Unicode code. The numbers 1–9 are represented by the numbers 49 to 58.
If we take the code from Char.ConvertToUtf32 and subtract 49 from it, we get a
number between 0 and 9 – perfect numbers to pass into the SetWeaponSlot()
function for choosing which weapon slot to use. Char.ConvertToUtf32 takes two

1357.1 Building the Scripts

parameters; a String to convert followed by the index number of the character
you want to convert.

With a converted value in the local variable val, we check that it is greater
than –1 and less than _weapons.Length to be sure that the number coming in is
valid for weapon selection. If it is, we pass the value in to SetWeaponSlot() to
choose the weapon.

NOTE: This is not actually a great way of doing this. Unfortunately, although
it minimizes the amount of code it has the trade-off of inefficiency. Checking
strings is expensive, in terms of processing, so although it works in simple situa-
tions it would not be optimized for more complex games. The best way to do this
would be the simplest – to either just stick to using next/prev weapon buttons or
to check each number on the keyboard with a set of if statements such as:

 if (Input.GetKey("1"))
 {
 SetWeaponSlot(0);
 }
 if (Input.GetKey("2"))
 {
 SetWeaponSlot(1);
 }

https://taylorandfrancis.com

137

8 Waypoints Manager

8.1 Waypoint System
Waypoints can be used for more than just guiding AI objects or players around
the game world. We can use them to guide a camera for cut scenes or a guided
camera system, track who is winning a race, use them to make sure that the
player is going in the right direction along a path, to reposition players in a safe
location, for counting laps during a race and quite probably a whole other num-
ber of uses that don’t immediately spring to mind. Waypoints are really useful for
game developers.

For an example of this script in action, check out the racing game example in
Chapter 14.

Our waypoints manager needs to be flexible enough to provide the function-
ality for all of these uses and then some, without going against the componen-
tized methodology we are employing for this book. The functions it should
provide are:

 1. Produce a visual representation of the path we want our AI cars to take,
to make manipulation of our waypoints in the editor a little easier

 2. Provide an interface that can allow other scripts to search for the nearest
waypoint to a given point in 3d space

 3. Provide an interface that allows other scripts to get waypoint informa-
tion from an index number: as our cars go around the track, they have a
waypoint counter which could potentially be used with this function to
establish where the current, next, or previous waypoints are.

138 8. Waypoints Manager

 4. Provide an interface that allows for other scripts to find out the total
number of waypoints: as our cars hold their own waypoint counter num-
bers, they need some way to ensure that the counters stay within the
boundaries of how many waypoints there actually are.

In the racing game example in this book, we use waypoints for the AI and for
the main player;

 1. To check that the main player is heading in the right direction: the car
controller code will track the player’s position on the track (based on
which waypoint has been passed) and check its forward vector to make
sure that it is facing the next waypoint along the track. If the player’s for-
ward vector is not within a certain tolerance angle, the game will display a
wrong way message and eventually respawn the car facing the right way.

 2. The respawning system uses waypoints to find a ‘safe’ place along the
track to respawn the player as well as using its rotation to point the
respawned car in the right direction along the track.

 3. To find out how far the vehicle has traveled around the track, which is used
to compare to the other players progress amounts to calculate race positions

The waypoints controller script:

using UnityEngine;
using System.Collections.Generic;
namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Utility/Waypoints
Controller")]

 public class WaypointsController : MonoBehaviour
 {
 [ExecuteInEditMode]

 private List<Transform> _transforms;
 private Vector3 firstPoint; // store our first
waypoint so we can loop the path
 private float distance;
 private int totalTransforms;
 private Vector3 diff;
 private float curDistance;
 private Transform _closest;
 private Vector3 currentPos;
 private Vector3 lastPos;
 private Transform _pointT;

 public bool closed = true;
 public bool shouldReverse;

 void Start()
 {
 GetTransforms();
 }

After the variable and class declarations, above, the Start() function calls a
function called GetTransforms(). We will look at that in detail further down in
the function.

1398.1 Waypoint System

Next, the OnDrawGizmos() function. If you have never dealt with Gizmos
before, they are helper objects to make editing and/or visualization easier. Unity
relies quite heavily on Gizmos for the editor and how you interact with it as well
as providing a nice interface for you to build your own custom types.

All Gizmo drawing needs to be done in one of two functions (called auto-
matically by the engine):

OnDrawGizmos Called every frame. All Gizmos are pickable.
OnDrawGizmosSelected Called only when the object with the script attached is selected.

The OnDrawGizmos() function is a runtime class (called automatically by
the game engine) where we can draw our own Gizmos and do some editor-based
manipulation. In this case, the OnDrawGizmos function of WaypointsController
will render waypoint positions and draw lines between each one so that we have
a simple visual representation of the path.

 void OnDrawGizmos()
 { GetTransforms();
 if (totalTransforms < 2)
 return;

At the start of the function, we call GetTransforms() to make sure that the
information stored about all of the Transforms that make up our path are up to
date (in case they have been moved or new ones added).

When you first build a path, obviously it will start with a single waypoint.
With only one point, there is no end point for rendering a line to, so this function
checks that there are enough waypoints to draw a line and drops out if the
 totalTransforms count is less than 2.

 Transform _ tempTR = (Transform) _ transforms[0];
 lastPos = _tempTR.position;

Above, we grab the first waypoint transform from the _transforms List, at
index 0, and store it in _tempTR. We do this so that we have a starting point for
drawing the lines that represent the path in the editor.

lastPos will act as the starting point for the next line, so at this stage we just
need it to have a value:

 firstPoint = _ tempTR.position;
 lastPoint = firstPoint;
_pointT = (Transform)_transforms[0];

 for (int i = 1; i < totalTransforms; i++)
 {
 _tempTR = (Transform)_transforms[i];
 if (_tempTR == null)
 {
 GetTransforms();
 return;
 }

 // grab the current waypoint position
 currentPoint = _tempTR.position;

Having all the Gizmos, lines, and editor helper graphics the same colors
would make life harder. For that reason, Unity provides the Gizmos.color func-
tion to set their colors. It takes just one call to Gizmos.color (passing in a Color
object) and everything after that point will be rendered using it.

 Gizmos.color=Color.green;

140 8. Waypoints Manager

Gizmos.DrawSphere draws a sphere at a set position and radius like this:

 Gizmos.DrawSphere(currentPoint,2);

 // draw the line between the last waypoint
and this one
 Gizmos.color=Color.red;
 Gizmos.DrawLine(lastPoint, currentPoint);

Gizmos.DrawLine is another utility provided by Unity, to draw a simple line
between two 3d vectors. The Gizmo drawing system has a few more options
available to make editing easier.

According to the Unity documentation, the Gizmo interface provides;

DrawCube Draw a solid box with center and size.
DrawFrustum D raw a camera frustum using the currently set Gizmos.matrix for its loca-

tion and rotation.
DrawGUITexture Draw a texture in the scene.
DrawIcon Draw an icon at a position in the scene view.
DrawLine Draws a line starting at from toward to.
DrawRay Draws a ray starting at from to from + direction.
DrawSphere Draws a solid sphere with center and radius.
DrawWireCube Draw a wireframe box with center and size.
DrawWireSphere Draws a wireframe sphere with center and radius.

As stated earlier in this chapter, the waypoints are used at one stage as
respawn points for vehicles that may be stuck or off-track. Their rotations are also
used to ensure that the repositioned vehicle is facing in the correct direction; for
that reason, we need the waypoints to face ‘forward’. To make sure that the rota-
tions of our waypoints are correct, we go through and point each one forward
toward the next one:

 pointT.LookAt(currentPoint);

You can easily rotate a transform so that its forward points toward another
transform by using the transform.LookAt() function. It takes one or two param-
eters, the first being the transform you want to point toward and the second an
optional up vector.

Note that having this functionality happening all the time during
OnDrawGizmos() can make drag and drop editing difficult, as object pivots
rotate around automatically when you drag waypoints. Comment out the line
above if you find you are having trouble with automatically rotating points.

As the function continues, we continue to iterate through the waypoints and
then close the path, if the Boolean variable closed is set to true (you can set that
in the Inspector window of the editor when the gameObject that has this script
attached is selected):

 // update our 'last' waypoint to become this
one as we
 // move on to find the next...
 lastPos = currentPos;

 // update the pointing transform
 pointT=(Transform)transforms[i];
 }

 // close the path
 if(closed)

1418.1 Waypoint System

 {
 Gizmos.color=Color.red;
 Gizmos.DrawLine(currentPoint, firstPoint);
 }
 }

 public void GetTransforms()
 {
 _transforms = new List<Transform>();

To make the waypoints control script easy to use, we need to make sure that
our waypoints are set up in a way in the scene where we want to use them. This
format is an empty GameObject with the WaypointsController.cs component
attached to it, with all waypoints as child objects in the Hierarchy. All of the
Transforms found in the GetTransforms() function are added to a List named _
transforms like this:

 foreach(Transform t in transform)
 {
 // add this transform to our arraylist
 _transforms.Add(t);
 }

 totalTransforms=(int)_transforms.Count;
 }

At the end of GetTransforms(), we store the total number of transforms in an
integer for easy access later (so that we don’t have to count the List each time we
need to know how many Transforms it contains).

The rest of the class is made up of publicly accessible utility functions for
other scripts to access:

SetReverseMode S etReverseMode sets the value of a Boolean variable called shouldReverse,
which determines whether the path should be reversed.

FindNearestWaypoint F inds the nearest waypoint to a given position, within a given distance,
and returns its index number as an integer.

 Th ere are two implementations of the FindNearestWaypoint, one adds the
extra parameter of exceptThis. The function will find the closest waypoint
as normal, but when exceptThis is used it will ignore the specified
transform.

GetWaypoint R eturns the transform of the waypoint at the index number passed in (as
an integer).

GetTotal R eturns an integer value representing the total number of waypoints this
class has control over.

 public void SetReverseMode(bool rev)
 {
 shouldReverse=rev;
 }

 public int FindNearestWaypoint (Vector3 fromPos, float maxRange)
 {
 if(transforms==null)
 GetTransforms();

 distance = Mathf.Infinity;
int tempIndex = 0;

To find the nearest waypoint to the 3d vector fromPos, the variable distance
starts out at Mathf.Infinity (the computer equivalent of an infinite number!). We use

142 8. Waypoints Manager

this to compare distances during the iteration loop below. tempIndex is a local vari-
able for storing the index of the closest waypoint during the comparison code below.

 // Iterate through them and find the closest
one
 for(int i = 0; i < _transforms.Count; i++)
 {
 Transform _tempTR =
(Transform)_transforms[i];

 // calculate the distance between the
current transform and the passed in transform's position vector
 diff = (_tempTR.position - fromPos);
 curDistance = diff.sqrMagnitude;

 if (curDistance < distance)
 {

As Mathf.Infinity is, well, infinity, this condition will always be satisfied at
least once. There should always be something closer than infinity, meaning that
as long as there are Transforms to compare, we should always get at least some
kind of a return result no matter how far away they are in the 3d world.

 if(Mathf.Abs(_ tempTR.position.y - fromPos.y) < maxRange)
 {

In some cases, using Transforms that are too far away may not be so useful,
so maxRange is provided to provide a distance limit, if needed.

 // set our current 'winner' (closest transform) to
the transform we just found
 _closest = _tempTR;

 // store the index of this waypoint
 tempIndex =i;

 // set our 'winning' distance to the distance we
just found
 distance = curDistance;
 }

With the addition of the maxRange check, we can no longer be one hundred
percent sure of a return result, so a quick check makes sure that closest has some-
thing other than a zero in it before returning the result:

 if(_ closest)
 {
 // return the waypoint we found in this test
 return tempIndex;
 } else {
 // no waypoint was found, so return -1 (this
should be acccounted for at the other end!)
 return -1;
 }

It is possible to have two different implementations of the same function,
each with its own set of required parameters. Here, a second version of the
FindNearestWaypoint() function follows almost the same course as the first with
the exception of a new transform passed in via the exceptThis parameter dis-
cussed earlier in this section.

1438.1 Waypoint System

 public int FindNearestWaypoint(Vector3 fromPos,
Transform exceptThis, float maxRange)
 {
 if (_transforms == null)
 GetTransforms();

 // the distance variable is just used to hold
the 'current' distance when
 // we are comparing, so that we can find the
closest
 distance = Mathf.Infinity;
 int tempIndex = 0;

 // Iterate through them and find the closest
one
 for (int i = 0; i < totalTransforms; i++)
 {
 // grab a reference to a transform
 Transform _tempTR =
(Transform)_transforms[i];

 // calculate the distance between the
current transform and the passed in transform's position vector
 diff = (_tempTR.position - fromPos);
 curDistance = diff.sqrMagnitude;

 // now compare distances - making
sure that we are not
 if (curDistance < distance &&
_tempTR != exceptThis)
 {
 if (Mathf.Abs(_tempTR.
position.y - fromPos.y) < maxRange)
 {

 // set our current
'winner' (closest transform) to the transform we just found
 _closest = _tempTR;

 // store the index of
this waypoint
 tempIndex = i;

 // set our 'winning'
distance to the distance we just found
 distance = curDistance;
 }
 }
 }

 // now we make sure that we did actually find
something, then return it
 if (_closest)
 {
 // return the waypoint we found in
this test
 return tempIndex;
 }
 else
 {
 // no waypoint was found, so return
-1 (this should be acccounted for at the other end!)
 return -1;
 }
 }

144 8. Waypoints Manager

GetWaypoint() returns the transform of the waypoint at the index passed in
via the integer ‘index’.

 public Transform GetWaypoint(int index)
 {
 if(shouldReverse)
 {

This is the only place in the class where shouldReverse is used. GetWaypoint
will reverse the index numbers of the waypoints when shouldReverse is true (i.e.
Using GetWaypoint to get a waypoint with the index number of zero would
return the last waypoint in the path, instead of the first).

To reverse the index passed into this function, the variable index is modified
by subtracting it from the number of Transforms in totalTransforms.

 // send back the reverse index'd waypoint
 index = (totalTransforms - 1) - index;

 if(index<0)
 index=0;
 }

Obviously, before trying to access the waypoint Transforms to send out as a
return value, it is important to make sure that they have been set up; so, there is
a quick check to make sure that Transforms is not null. If Transforms is null, we
know that there will be no Transforms to work with so GetTransforms() is called
to get everything set up:

 // make sure that we have populated the transforms
list, if not, populate it
 if(_transforms==null)
 GetTransforms();

If the index being requested is too high, rather than return a wrong waypoint
it will return a null value. The code on the requesting side can then check for a
null return value and act accordingly:

 if(index>totalTransforms - 1)
 return null;

Now that everything has been set up correctly, the transforms List contains
waypoints and the index number is within range, all that is left to do is return the
transform from the array:

 return (Transform) _ transforms[index];
 }

The final piece in the waypoints controller script is GetTotal(), which is used
by other scripts to find out how many waypoints there are:

 public int GetTotal()
 {
 return totalTransforms;
 }
}

145

9 Recipe
Sound and Audio

In this chapter, we look at AudioMixers, build a script to act as a basic sound
manager (BaseSoundManager) and discuss adding audio to the weapons system
of the framework.

9.1 AudioMixers and Mixing Audio in Unity
Audio balancing is a huge part of making your game sound professional. It can be
difficult to get the volumes of your sounds nicely balanced, so that you can hear
everything important underneath the music or so that a laser doesn’t sound
louder than an explosion and so forth. Unity provides a great toolkit for balancing
audio along with some effects to help get the kind of audioscapes your work needs.

Unity's AudioMixers allow you to organize sounds into groups and then man-
age those groups rather than dealing with individual sounds. For example, you
might have a group for music, one for general sound effects and perhaps a third
group for ambient background audio. Unity gives you a basic mixing desk where
you can adjust the volumes of each group live, during gameplay, to balance them
correctly. Another advantage of using an Audio Mixer is that you can use effects.

When you make an AudioMixer for your project, you can use the Audio
Mixer window (Window>Audio>Audio Mixer) to see what is happening and
adjust sliders (Figure 9.1).

9.1.1 Mixing Audio
To access the Audio Mixer in Unity, use the menu Window/Audio/Audio Mixer.
The Mixer shows a list of mixers, snapshots, groups, and views down the left side.
The main part of the window will show sliders for groups within the currently
selected Mixer.

146 9. Recipe

9.1.2 Exposing Mixer Properties to Modify Them with Scripts
If you want to change properties of an AudioMixer, such as its audio levels, you
need to expose them for them to be accessible via scripts. To do this, open the
AudioMixer via the menu Window/Audio/Audio Mixer. Choose the Mixer you
want to edit on the left, followed by the group you want to expose properties of.
In the Inspector, right click on the name of the field you want to expose. For
example, in Figure 9.2. we chose the Volume property under Attenuation of the
Sound Effects group. A menu should appear, with the top option being to expose
the property to script. Choose this option from the menu. The property will now

Figure 9.1 The Audio Mixer window allows you to change the balance between different
audio groups.

Figure 9.2 The Inspector shows properties of the currently selected Audio Mixer. You can
click on a field to expose it to code.

1479.2 The BaseSoundManager Class

be exposed to script, but it will have a default name – MyExposedParam – which
is not the most descriptive. To rename the exposed property, look to the Audio
Mixer panel and find the Exposed Parameters button in the top right of it
(Figure 9.3) – click on Exposed Parameters and Unity should show you any
exposed parameters for the selected Mixer. To rename, right click the property
you wish to rename and choose Rename from the menu.

If you ever want to unexposed a parameter, click on Exposed Parameters,
and right click on the parameter you wish to unexposed. Choose Unexpose from
the menu.

9.1.3 Audio Effects
Unity offers a variety of audio effects; you can add to AudioMixers to make your
sounds more interesting or to help balance them dynamically. To add effects, first
open the AudioMixer via the menu Window/Audio/Audio Mixer. Choose the
Group you want to add effects to. In the Audio Mixer panel, there is an Add but-
ton at the bottom of each audio panel. Click Add to show the effects menu. At this
point, let me draw your attention to the Duck Volume effect. Duck Volume will
take input from another audio group and drop the volume of the group it is
attached to. You may have already heard this effect in action in commercial vid-
eogames and tv shows during dialog, as it is most often used to drop the volume
of music whenever dialog is played. To accomplish this, you would have your
music and dialog channeled through two audio groups. Your music group would
have the Duck Volume effect on it. Your dialog group would have the Send effect
attached. In the Inspector with the dialog group selected, the Send effect has a
field named Receive that lets you choose which group should receive audio levels.
Setting this to the music channel would mean that the Duck Volume effect could
get this groups levels and duck the volume of the music accordingly. Using audio
ducking with notification sounds can also make the process of highlighting
important sounds easier.

9.2 The BaseSoundManager Class
In this section, we build a basic sound management class named
BaseSoundManager. Its specifications are:

	▪ Must be able to manage multiple audio clips from a single class
	▪ Ability to play an audio clip from a set position in 3d space

Figure 9.3 The Exposed Parameters menu shows exposed parameters and allows you to
rename or unexpose them from scripts.

148 9. Recipe

 ▪ Provide a function to set volume

 ▪ Provide a method to fade an AudioMixer group in and out

 ▪ To be accessible from other scripts

There are two ways to play a sound with the BaseSoundManager class. The
sound manager can either play a sound at a set position, or you can tell it to play
a sound and it will either find the AudioListener in the Scene and play the sound
at the position of the Listener, or if it cannot find an AudioListener it will play the
sound at the position 0,0,0. Syntax looks like this:

BaseSoundManager.Instance.PlaySoundByIndex(the index number from
the array of sounds);

Or

BaseSoundManager.Instance.PlaySoundByIndex(the index number from
the array of sounds, a Vector3 position);

AudioClips should be dragged in to the GameSounds array via the Inspector
window in the Unity editor. Each AudioClip in the array will have its own AudioSource
and GameObject instantiated when the BaseSoundManager class first runs. Think of
each sound as having its own audio channel, to avoid overlaps, or too many different
sounds playing on a single AudioSource. Internally, a class called SoundObject is
used to store information about the audio sources and their GameObjects.

BaseSoundManager.cs starts like this:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using UnityEngine.Audio;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/Sound Controller")]

Above, we need System.Collections for the fading coroutine (see below, fur-
ther down in the script) and System.Collections.Generic to be able to use Lists for
storing SoundObject instances in. We also use UnityEngine.Audio for accessing
Unity's audio classes. We use AddComponentMenu to make a menu item for this
script in Unity and this script, like all the others in the framework, exists inside
the GPC namespace.

The SoundObject class is declared next – and just in case you are wondering?
Yes, it is okay to declare two functions in one script, in Unity:

 public class SoundObject
 {
 public AudioSource source;
 public GameObject sourceGO;
 public Transform sourceTR;

Unlike almost all of the other classes in this book, the SoundObject class
does not derive from anything, as it is mostly used as a data container and its only
function just calls out to play a sound via Unity's PlayOneShot() function.

1499.2 The BaseSoundManager Class

 public SoundObject(AudioClip aClip, string aName,
float aVolume, AudioMixerGroup theMixer, Transform myParent)
 {
 sourceGO = new GameObject("AudioSource_" + aName);
 sourceGO.transform.parent = myParent;

Above, the constructor of the SoundObject class (a function that runs auto-
matically when SoundObject is instanced) contains set up code to create a new
GameObject in the Scene for its AudioSource Component to be attached to.
When playing sounds, we do not call SoundObject directly – this is done further
down, by the BaseSoundManager class. Note that the constructor for SoundObject
has 5 parameters – when a SoundObject instance is created, each one will need
these parameters passed into it. You will see how this is done further down in the
BaseSoundManager class.

The constructor starts by creating a new GameObject with new GameObject(),
which takes a name as a parameter – naming the new GameObject based on this.
To make sure we know what this GameObject is, in the Scene's Hierarchy, it is
named AudioSource followed by a name passed into this constructor as a param-
eter. Next, we set the parent of the new GameObject here, too, or more specifi-
cally the parent of its Transform. This is all about keeping sound GameObjects
together in the Scene to keep it all neat and tidy and we get the parent Transform
from a passed in parameter named myParent.

 sourceTR = sourceGO.transform;
 source = sourceGO.AddComponent<AudioSource>();
 source.outputAudioMixerGroup = theMixer;
 source.playOnAwake = false;
 source.clip = aClip;
 source.volume = aVolume;
 source.maxDistance = 2000;
 }

Every time we want to set the position of a sound, we will need to access
the Transform of this GameObject and we store a reference to the Transform
in the variable sourceTR, so that we do not have to look up the Transform
repeatedly.

Next, we add an AudioSource to our new GameObject with GameObject.
AddComponent(). We keep a reference to the AudioSource in the variable source
for easy access later, and so that we can set the relevant properties on it, above.
The properties we set on the AudioSource are:

outputAudioMixerGroup – This is the Audio Mixer for the sound to play
through (passed in as a parameter).

playOnAwake – We set this to false, to prevent the AudioClip from playing
automatically.

Clip – This is the AudioClip (the sample) that will be played by this AudioSource.

Volume – Our volume levels will usually be controlled by the AudioMixers,
but having the volume available provides an extra method for individual audio
volume control, if needed.

maxDistance – This is the maximum distance at which our sound should be heard.

150 9. Recipe

After the constructor of our SoundObject, the function PlaySound():

 public void PlaySound(Vector3 atPosition)
 {
 sourceTR.position = atPosition;
 source.PlayOneShot(source.clip);
 }
 }

A position is passed in to PlaySound() as a parameter, as a Vector3. We use
this to set the position of our AudioSource and AudioSource.PlayOneShot() is
used to start the AudioClip playback. We use PlayOneShot() here, rather than
just playing the AudioSource with Play(), so that any currently playing sounds
will not be interrupted. If you just call AudioSource.Play() when you are playing
sounds in close succession it will cut off the previous sound and sound broken.
PlayOneShot() will play several sounds through the same AudioSource without
interruption. It takes the AudioClip as a parameter, which we just get from the
AudioSource already with source.clip – the AudioClip will never change for this
AudioSource, so we know this is the correct sound to play.

On to the main BaseSoundManager class, next. It derives from MonoBehaviour
so that it can use the Awake() and Start() functions called by the Unity engine:

 public class BaseSoundManager : MonoBehaviour
 {

 public static BaseSoundManager instance;
 public AudioClip[] GameSounds;
 public AudioMixerGroup theAudioMixerGroup;
 public Transform theListenerTransform;
 private List<SoundObject> soundObjectList;
 private SoundObject tempSoundObj;
 public float volume = 1;

There is nothing much to note about the variable declarations. Most of these
should become clear as we work through the script below.

 public void Awake()
 {
 instance = this;
 }

As this script does not check for multiple instances, care must be taken to
ensure that there is only one instance per Scene.

 void Start()
 {
 soundObjectList = new List<SoundObject>();
 foreach (AudioClip theSound in GameSounds)
 {

SoundObjects are stored in a generic List. Above, we initialize the List soun-
dObjectList ready to be populated by information about our sounds and their
AudioSources and GameObjects.

To create the instances of SoundObjects, we then iterate through each
AudioClip in the GameSounds array (which should be set up in the Inspector in
the editor).

1519.2 The BaseSoundManager Class

 soundObjectList.Add(new
SoundObject(theSound, theSound.name, volume,
theAudioMixerGroup,transform));
 }
 }

Above, soundObjectList is populated by new instances of the SoundObject
class. You may recall from earlier in this chapter that SoundObject takes 5 param-
eters. The first, the sound clip itself, comes from our GameSounds array we are
iterating through. We then pass in a name for the sounds GameObject by using the
name of the sounds from GameSounds. The volume is next, followed by the
AudioMixer we want to use and, finally, our Transform to act as the object our
sounds will be parented to. Note the Mixer needs to be set in the Inspector on this
Component. In the example games, the AudioMixer will be set to use the Sound
Effects Mixer.

 public void PlaySoundByIndex(int anIndexNumber,
Vector3 aPosition)
 {
 tempSoundObj =
(SoundObject)soundObjectList[anIndexNumber];
 tempSoundObj.PlaySound(aPosition);
 }

To play a sound, the function PlaySoundByIndex takes two parameters; an
integer and a Vector3 position. We take a SoundObject instance from the
 soundObjectList array, using the passed in parameter anIndexNumber, and hold
it in a variable named tempSoundObj. Next, calling PlaySound() on the
SoundObject plays the sound at the passed in position, as we pass that to
PlaySound() as a parameter. Passing in a position is optional here, however, and
the next function deals with what happens when we do not pass in a position:

 public void PlaySoundByIndex(int anIndexNumber)
 {
 if (theListenerTransform == null)
 {
 AudioListener theListener =
FindObjectOfType<AudioListener>();
 if(theListener!=null)
 theListenerTransform =
theListener.transform;
 }

When PlaySoundByIndex() is called without passing in a position, what we
try to do above is to find the AudioListener in the Scene for positioning, instead.
If we can find the Listener, the Transform gets stored in the variable
theListenerTransform.

 tempSoundObj =
(SoundObject)soundObjectList[anIndexNumber];
 if (theListenerTransform != null)

 tempSoundObj.PlaySound(theListenerTransform.position);
 else
 tempSoundObj.PlaySound(Vector3.zero);
 }

http://theSound.name

152 9. Recipe

Again, as with the other implementation of PlaySoundByIndex(), we take a
SoundObject instance from the soundObjectList array, using the passed in param-
eter anIndexNumber, and hold it in a variable named tempSoundObj. We then see
whether or not theListenerTransform variable actually has anything in it – if it has,
we use the position of theListenerTransform to position the sound by passing its
position into PlaySound(). If there is nothing in theListenerTransform, we found
no Listener in the Scene, and instead we pass Vector3.zero to PlaySound() to make
the sound play at world space 0,0,0.

The audio fade functions are all similar but do different things with the vol-
ume levels. There are three functions for you to use:

StartFadeIn(AudioMixer audioMixer, string exposedParam, float duration)

This will fade in the exposed parameter in exposedParam of the AudioMixer,
from –80 decibels to 0, in time duration x seconds.

Start FadeOut (AudioMixer, string exposedParam, float duration)

This will fade out the exposed parameter in exposedParam of the AudioMixer
from 0 decibels to –80, in time duration x seconds.

StartFade (AudioMixer, string exposedParam, float duration, float targetVolume)

This will transition the exposed parameter in exposedParam of the AudioMixer
from its current value to targetVolume, in time duration x seconds.

 public static IEnumerator StartFadeIn(AudioMixer
audioMixer, string exposedParam, float duration)
 {
 float targetVolume = 1;
 float currentTime = 0;
 float currentVol = -80f;
 currentVol = Mathf.Pow(10f, currentVol / 20f);
 float targetValue = Mathf.Clamp(targetVolume,
0.0001f, 1);
 while (currentTime < duration)
 {
 currentTime += Time.deltaTime;
 float newVol = Mathf.Lerp(currentVol,
targetValue, currentTime / duration);
 audioMixer.SetFloat(exposedParam,
Mathf.Log10(newVol) * 20f);
 yield return null;
 }
 yield break;
 }

 public static IEnumerator StartFadeOut(AudioMixer
audioMixer, string exposedParam, float duration)
 {
 float targetVolume = -80;
 float currentTime = 0;
 float currentVol;
 audioMixer.GetFloat(exposedParam, out
currentVol);
 currentVol = Mathf.Pow(10f, currentVol / 20f);
 float targetValue = Mathf.Clamp(targetVolume,
0.0001f, 1);
 while (currentTime < duration)

1539.3 Adding Sound to Weapons

 {
 currentTime += Time.deltaTime;
 float newVol = Mathf.Lerp(currentVol,
targetValue, currentTime / duration);
 audioMixer.SetFloat(exposedParam,
Mathf.Log10(newVol) * 20f);
 yield return null;
 }
 yield break;
 }
 public static IEnumerator StartFade(AudioMixer
audioMixer, string exposedParam, float duration, float
targetVolume)
 {
 float currentTime = 0;
 float currentVol;
 audioMixer.GetFloat(exposedParam, out
currentVol);
 currentVol = Mathf.Pow(10f, currentVol / 20f);
 float targetValue = Mathf.Clamp(targetVolume,
0.0001f, 1);
 while (currentTime < duration)
 {
 currentTime += Time.deltaTime;
 float newVol = Mathf.Lerp(currentVol,
targetValue, currentTime / duration);
 audioMixer.SetFloat(exposedParam,
Mathf.Log10(newVol) * 20f);
 yield return null;
 }
 yield break;
 }
 }
}

9.3 Adding Sound to Weapons
To add a sound to weapons, the easiest method is to add an AudioSource to the
projectile prefab and set its PlayOnAwake checkbox to true. Whenever a projec-
tile is spawned, the sound will be played. By attaching the sound to the projectiles,
you can easily have different sounds for different projectile types just by changing
the clip on the AudioSource.

https://taylorandfrancis.com

155

10 AI Manager

The AI controller in this book is a state machine. You may have heard of this
before, but do we mean when we say state machine? Our AI system stores the
current state of the AI and runs code according to whichever state it is. When the
state changes, it runs different code. For example, when our state is set to chase,
the AI should move toward an object. When the state is set to stopped, the AI
should stand still. This is state machine AI.

In this book, the AI is split into several different scripts that fit together to add
functionality. You can think of our main AI class, BaseAIController, as a class con-
taining a set of utility functions for AI rather than a single all- encompassing script.

 1. BaseAIController
 This contains base code for AI such as chase/follow behavior.

 2. WaypointsController
 The code for dealing with waypoints: this is optional, depending on

whether you want waypoint following.

 3. AIBotController
 Using BaseAIController, this class can move a bot around, chase, and attack

a target and stand on guard to look for a target to chase and attack. This is
used by the Blaster game example in this book to move the bots around.

 4. AISteeringController
 This uses the BaseAIController and WaypointsController to provide steer-

ing inputs that will follow a waypoint path (used in the example racing
game in this book to drive the AI cars around the track).

We will be looking at the above scripts and breaking them down in this
chapter, as well as a method for getting the weapon system firing with AI.

Note that this AI system is only intended for 3D games.

156 10. AI Manager

10.1 AI States
Before getting to the main BaseAIController.cs script, take a look at AIStates.cs
below. It contains all of the AIStates from the previous section stored in an enu-
merator list similar to the one used by the character controller from Chapter 5 of
this book. This list will be used by the AI to determine its current required behav-
ior. The list is in its own file (the AIStates.cs file) and in a namespace called
AIStates so that we can easily make it accessible from any script used by the game:

using UnityEngine;
namespace AIStates
{
 public enum AIState
 {
 moving_looking_for_target,
 chasing_target,
 backing_up_looking_for_target,
 stopped_turning_left,
 stopped_turning_right,
 paused_looking_for_target,
 translate_along_waypoint_path,
 paused_no_target,
 steer_to_waypoint,
 steer_to_target,
 }
}

10.2 The BaseAIController Class – Base AI
Control

BaseAIController starts with the UnityEngine namespace as well as adding
AIStates, as seen in the previous Section 10.1. By including AIStates as a namespace,
it can be accessed as though it were part of the same script. We wrap the class in
the GPC namespace, and it derives from ExtendedCustomMonoBehaviour:

using UnityEngine;
using AIStates;
namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/AI Controller")]

 public class BaseAIController : ExtendedCustomMonoBehaviour
 {
 public bool AIControlled;

 [Header("AI States")]
 public AIState currentAIState;
 public AIState targetAIState;

 [Header("Enemy input")]
 public float horz;
 public float vert;

 [Header("Enemy AI movement values")]
 public float obstacleAvoidDistance = 40f;
 public float modelRotateSpeed = 15f;
 public int _followTargetMaxTurnAngle = 120;
 public float minChaseDistance = 1f;
 public float maxChaseDistance = 10f;
 public float visionHeightOffset = 1f;

15710.2 The BaseAIController Class – Base AI Control

 [Header("Waypoints")]
 // waypoint following related variables
 public WaypointsController _waypointsController;

 public Transform _currentWaypointTransform;
 public Transform _followTarget;
 public Transform _rotateTransform;

 [System.NonSerialized]
 public bool reachedLastWaypoint;
 public float waypointDistance = 5f;
 public float pathSmoothing = 2f;
 public bool shouldReversePathFollowing;
 public bool loopPath;
 public bool destroyAtEndOfWaypoints;
 public bool startAtFirstWaypoint;

 [Header("Layer masks and raycasting")]
 public LayerMask obstacleAvoidLayers;
 public string potentialTargetTag = "Player";
 public LayerMask targetLayer;
 public int obstacleFinderResult;

 private int totalWaypoints;
 private int currentWaypointNum;
 private RaycastHit hit;
 private Vector3 tempDirVec;
 private Vector3 relativeTarget;
 private float targetAngle;
 private int obstacleHitType;
 public int lookAheadWaypoints = 0;

There are a lot of variables to declare, so don’t worry about those. We will see how
they are used later in the breakdown. Other than ExtendedCustomMonoBehaviour,
this script only uses one more script from the framework in this book – the
WaypointsController class for using waypoints. Everything else is standalone and
ready to be used in your projects regardless of whether you use the framework.

Once we get past the class declaration, we kick things off with a Start() function:

 public virtual void Start()
 {
 Init();
 }

The Init() function takes care of making cached references to the GameObject,
the Transform and its Rigidbody (this script assumes that there will always be a
Rigidbody attached to the same GameObject it is attached to as a Component):

 public virtual void Init ()
 {
 // cache ref to gameObject
 _GO = GetComponent<GameObject>();

 // cache ref to transform
 _TR = GetComponent<Transform>();

 // cache a ref to our rigidbody
 _RB = _TR.GetComponent<Rigidbody>();

Above, Init() grabs references to other objects we will be needing further in
the script.

 if(rotateTransform==null)
 _rotateTransform= _TR;

158 10. AI Manager

_rotateTransform is an optional parameter which may be set in the Unity
editor Inspector window to provide a Transform for rotation which is different to
the one that the script is attached to. This is used in cases where we do not wish
to rotate the main Transform.

 didInit= true;
 }

As with all of the other scripts in this book, didInit is a Boolean variable used
to determine whether or not the Init() function has successfully completed.

 public void SetAIControl(bool state)
 {
 AIControlled= state;
 }

Above, a Boolean variable named AIControlled is used to decide whether
this script should take control. The SetAIControl() function just provides an easy
way for other scripts to enable or disable AI control.

 // set up AI parameters --------------------
 public void SetobstacleAvoidDistance(float aNum)
 {
 obstacleAvoidDistance = aNum;
 }
 public void SetWaypointDistance(float aNum)
 {
 waypointDistance = aNum;
 }
 public void SetMinChaseDistance(float aNum)
 {
 minChaseDistance = aNum;
 }
 public void SetMaxChaseDistance(float aNum)
 {
 maxChaseDistance = aNum;
 }
 // ---

Above, functions to set several main parameters. Those are:

obstacleAvoidDistance(float) – In 3d units, how far the bot should look
ahead in its attempts to avoid running into obstacles when it is patrolling.

wayPointDistance(float) – In 3d units, how close the bot will be allowed to
get to a waypoint before it advances to the next waypoint.

minChaseDistance (float) – In 3d units, minChaseDistance determines how
close the bot should get to its target, when chasing a target, before it stops
moving toward it. This is to prevent the bot from getting too close and push-
ing the player around.

maxChaseDistance (float) – In 3d units, how far away from its target the bot
can acknowledge a target.

 public virtual void SetAIState(AIState newState)
 {
 // update AI state
 targetAIState = newState;
 UpdateTargetState();
 }

15910.2 The BaseAIController Class – Base AI Control

There will be times when we may need to force the state of the bot from
another script, such as telling it which state to start in when the game begins. Use
the function SetAIState() for that, passing in an AIState.

 public virtual void SetChaseTarget(Transform theTransform)
 {
 // set a target for this AI to chase, if required
 _followTarget= theTransform;
 }

At the end of the SetAIState() function, above, we call UpdateTargetState()
to do anything that needs to be done before we can fully switch mode to the new
state. For example, you could call out to your animation system to play an anima-
tion when the AI changes state between patrolling and chasing. In the base ver-
sion of this script, there is no extra logic in UpdateTargetState() and the function
is there to maintain protocol of having a target state and a current state with a
good place to trigger action when the target state is changed. If chasing is
required, the SetChaseTarget() function should be used to pass in a reference to
the Transform that needs chasing. When you pass a Transform into
SetChaseTarget() the Transform will be stored in a variable named followTarget.

 public virtual void Update ()
 {
 // make sure we have initialized before doing
anything
 if(!didInit)
 Init ();

The Update() function is called by Unity each frame update, but we need to be
sure that the script has properly initialized before doing anything significant with it
because it may be possible for Update() to be called before Init() has finished its run.

 if(!AIControlled)
 return;

 // do AI updates
 UpdateCurrentState();
 }

Above, remembering that we are still in the main Update() function, if
AIControlled is not set to true this function drops out before it has chance to do
anything. The Boolean variable AIControlled makes it possible to turn on or off
AI control. For an example of where this may come in handy, it is great for situa-
tions where we may want AI to take control of the player; such as at the end of a
racing game when the race is complete and we want the car to continue driving
but take the player out of the game. The AI script would be attached to all players,
but in the case of the user’s vehicle it is only activated after the race finishes. This
is what happens in the example racing game in this book, in Chapter 14.

UpdateCurrentState() is right at the core of the script – it is called by the
Update() function and deals with coordinating the bot to do what it should:

 public virtual void UpdateCurrentState ()
 {

In some cases, the AI script does not manipulate its GameObject’s physics
directly but instead acts as an input provider to another script which deals with

160 10. AI Manager

the actual physics. The reason it works this way is so that AI can use the same
movement controllers as the player without having to recode movement each
time. For example, in the example racing game in Chapter 14, the AI cars use the
exact same car physics as the user. When a car is set to use AI, the car physics
controller script uses input from the AI script rather than a user input controller.

 // reset our inputs
 horz=0;
 vert=0;

Above, the AI script uses horz and vert (both floats) to store horizontal and
vertical input, which are the standard variable names used in other scripts in this
book. Here in the UpdateCurrentState() function, they are reset to zero. This is
centering the inputs before other functions change them.

 switch (currentAIState)
 {
 case AIState.paused_no_target:
 // do nothing
 break;

 default
 // idle (do nothing)
 break;
 }

Above, if there is anything that needs to be done when the AI is in a particu-
lar state, this is the place. The switch statement above takes the variable curren-
tAIState and we run the corresponding code for whatever the current state is.

In BaseAIController, the UpdateCurrentState() function is a placeholder – it
is assumed that you will override this function in a derived version of this class to
put your own logic into it. You can find examples of this in the AIBotController
and AISteeringController scripts in GPC_Framework/Scripts/COMMON/AI.

Before the state is changed from targetAIState to currentAIState, we need to
go through the UpdateTargetState() function:

 public virtual void UpdateTargetState()
 {
 switch (targetAIState)
 {
 default:
 // idle (do nothing)
 break;
 }
 currentAIState = targetAIState;
 }

As we know that this will only happen when a new current state is about to
be set, we can call code that only needs to be called when the AI enters the new
state. Just as UpdateCurrentState(), UpdateTargetState() is a placeholder that
should be overridden by your own logic.

Next is a collection of functions to set inputs for turning left and right or
moving forwards and backward:

 public virtual void TurnLeft ()
 {
 horz= -1;
 }

16110.2 The BaseAIController Class – Base AI Control

 public virtual void TurnRight ()
 {
 horz= 1;
 }

 public virtual void MoveForward ()
 {
 vert= 1;
 }

 public virtual void MoveBack ()
 {
 vert= -1;
 }

public virtual void NoMove ()
 {
 vert= 0;
 }

Each function above is there to make it easier to interface with other types of
control systems. You can override them in a derived class or call them from
another.

Next up is the LookAroundFor() function. This will be called when we need a
bot to chase a target. For an example of using it, check out the AIBotController.cs
script.

 public virtual void LookAroundFor()
 {
 if (_followTarget != null)
 {
 float theDist = Vector3.Distance
(_TR.position, _followTarget.position);
 bool canSee = CanSee(_followTarget);
 if (theDist < maxChaseDistance)
 {
 if (canSee == true)
 SetAIState(AIState.
chasing_target);
 }
 }
 else
 {
 GameObject potential =
GameObject.FindGameObjectWithTag(potentialTargetTag);
 _followTarget = potential.transform;
 }
 }

The LookAroundFor() function, above, starts by making sure we have
something in the _followTarget variable. The target may be set by this script
or another outside script. If we have a target to follow already, we can go ahead
and do a distance check using Unity's built in function Vector3.Distance() –
the result of which we put into a local variable named theDist. We also do a
test to see if our target is visible to the AI by calling CanSee() and storing the
result in the local variable canSee. The CanSee() function is further down in
the script. It will return true if the AI has a clear line between it and the
target.

162 10. AI Manager

If the distance to the target falls within our maxChaseDistance, we make
sure that the result back from CanSee() was true (canSee==true). At this stage,
we now know several things about the target:

 1. We have a target.

 2. The target is within maxChaseDistance away.

 3. There is a clear view of the target from the AI.

If the above conditions are met, SetAIState() is called to change the target
state to AIState.chasing_target – making our AI turn and move toward it.

Without a Transform in _followTarget, we have nothing to follow and the
function drops through to the else statement. Here, we will instead try to find a
suitable target using GameObject.FindGameObjectWithTag(). The new target
object will be the first object (if any object is returned) from that search.

Coming up next is one of the core Components of the AI controller – the
IsObstacleAhead() function. In this part, Physics.Raycast is used to raycast out
ahead (and slightly to the left or right) to check for obstacles. It returns an integer,
expressing its findings with the following values:

 0 – No obstacles were found

 1 – An obstacle was detected front, left side only

 2 – An obstacle was detected front, right side only

 3 – Obstacle or obstacles detected on both sides

The IsObstacleAhead() function is used to detect other Colliders, though in
its current state it can be a little unpredictable and it could do with some more
iteration to make it work nicer. It works, but it could work better, and I have to
leave that up to you, dear reader!

 private int obstacleFinding;

 public virtual int IsObstacleAhead()
 {
 obstacleHitType=0;

 if (_TR == null)
 {
 return 0;
 }

The return result for the function is stored in a variable named obstacle-
HitType, which starts out getting set to a default value of 0 at the top of the
function.

The beginning of the function above checks to make sure that we have an
actual Transform in _TR. If not, we know that either this GameObject's Transform
has been destroyed, or something has gone wrong, so we return a result of 0.

 // draw this raycast so we can see what it is doing
 Debug.DrawRay(_TR.position, ((_TR.forward +
(_TR.right * 0.5f)) * obstacleAvoidDistance));

16310.2 The BaseAIController Class – Base AI Control

 Debug.DrawRay(_TR.position, ((_TR.forward +
(_TR.right * -0.5f)) * obstacleAvoidDistance));

To make it easier to visualize what is happening with the AI, this function
includes Debug.DrawRay calls which will make lines appear in the editor where
the rays are being cast. This will only happen in the editor when Gizmos are set
to true – use the Gizmos icon above the Scene or Game panels to set this.

Above, the position and direction data used to draw the debug rays match
with the ones we use to do the actual ray casting, below:

 RaycastHit hit;
 // cast a ray out forward from our AI and put the
'result' into the variable named hit
 if (Physics.Raycast(_TR.position, _TR.forward +
(_TR.TransformDirection(Vector3.right) * 0.5f), out hit,
obstacleAvoidDistance, obstacleAvoidLayers))

The raycasting uses the AI bot’s forward vector (_TR.forward) with an offset
to the side. _TR.right is also multiplied by half and added to the forward vector,
so that the angle goes diagonally out from the bot – with the ray starting at
_TR.position.

What we consider to be obstacles are defined as anything which is set to use
one of the collision layers defined in the obstacleAvoidLayers LayerMask. You
can set one or multiple collision layers as obstacle layers in the Unity editors
Inspector on this GameObject.

The variable obstacleAvoidDistance is used as the distance parameter for ray
casting, which can be set in the Unity editor Inspector window.

If a call to Physics.Raycast finds something, it returns true, and that is exactly
what the line above is looking for. If something is found we will react to that,
next:

 // obstacle
 // it's a left hit, so it's a type 1 right
now (thought it could change when we check on the other side)
 obstacleHitType=1;
 }

obstacleHitType will form the return value for the function. Above, when
the ray cast finds an obstacle, the variable obstacleHitType is set to 1. This repre-
sents an obstacle on the left side (remember the list of return results from earlier
in this section?). Now a ray is cast out from the other side of the bot:

 if (Physics.Raycast(_ TR.position, _ TR.forward + (_ TR.right
* -0.5f), out hit, obstacleAvoidDistance, obstacleAvoidLayers))
 {

Above, the only difference to this ray cast and the one previous is that we
now reverse that right vector by multiplying it by –0.5 instead of 0.5, casting a ray
out in the opposite direction.

 // obstacle
 if(obstacleHitType==0)
 {
 // if we haven't hit anything yet, this is
type 2
 obstacleHitType=2;

164 10. AI Manager

If obstacleHitType has was not set by the first ray cast, its value will still be at
its default of 0; this tells us that this ray is the first one to get a hit and that the
function has only found an obstacle on this side – obstacleHitType gets set to 2.

 } else {
 // if we have hits on both left and
right raycasts, it's a type 3
 obstacleHitType=3;
 }
 }

Next, we deal with the situation where obstacleHitType is not at its default 0.
If it is not 0, we know that both this ray cast and the previous one has found obsta-
cles. To represent obstacles found on both sides, obstacleHitType gets set to 3.

All that is left to do now is to return the findings of our ray casting:

 return obstacleHitType;
 }

The next part of BaseAIController.cs is TurnTowardTarget(). This function
will turn the bot (more specifically, the Transform set in the variable rotateTrans-
form) toward the Transform passed to it as a parameter:

 public void TurnTowardTarget(Transform aTarget)
 {
 if(aTarget==null)
 return;

If we are going to be doing anything with a target, the first step is making
sure we have a target to turn toward (above) in the variable aTarget.

 relativeTarget = _ rotateTransform.InverseTransformPoint
(aTarget.position);

Above, we calculate a Vector3 that will represent the target position relative
to the AI so that we can look at this vector's values and establish the direction
toward the target. e.g. a positive x value means the target is to the right of the car,
negative to the left, and a positive z means the target is in front of the car and
negative z behind.

 // Calculate the target angle
 targetAngle = Mathf.Atan2 (relativeTarget.x,
relativeTarget.z);
 // Atan returns the angle in radians, convert to
degrees
 targetAngle *= Mathf.Rad2Deg;

The newly calculated relativeTarget is then used above with Unity’s Mathf.
Atan2 function to find an angle of rotation from the vector. Atan returns the
angle in radians, whereas radians are preferable for this, so we use Mathf.
Rad2Deg to convert targetAngle from radians to degrees.

 targetAngle = Mathf.Clamp(targetAngle, - _
followTargetMaxTurnAngle - targetAngle, _ followTargetMaxTurnAngle);

Above, to enforce limits on the amount of rotation to apply in one step,
Mathf.Clamp is used to keep the angle between the positive and negative versions

16510.2 The BaseAIController Class – Base AI Control

of the value in the float followTargetMaxAngle. The maximum amount of turn
can, as a public variable of course, be changed in the Inspector on this Component.

 rotateTransform.Rotate(0, targetAngle *
modelRotateSpeed * Time.deltaTime, 0);
 }

The last line of TurnTowardTarget() above, uses Transform.Rotate to turn
the Transform. targetAngle is multiplied by modelRotateSpeed and multiplied
by Time.deltaTime to make the rotation amount time based.

Next up, CanSee() does a simple line of sight check to see if anything is
between the bot and its target. This is useful for cutting off chases when the target
goes behind a wall or somewhere unreachable by the AI:

 public bool CanSee(Transform aTarget)
 {
 // first, let's get a vector to use for
raycasting by subtracting the target position from our AI position
 tempDirVec = Vector3.Normalize(aTarget.
position - _TR.position);

It creates a normalized vector from the two positions, then uses the new vec-
tor to cast a ray out from the bot at the length by maxChaseDistance.

 // let’s have a debug line to check the distance
between the two manually, in case you run into trouble!
 Debug.DrawLine(_TR.position + (visionHeightOffset *
_TR.up), aTarget.position, Color.red);

Above, just before the actual ray cast, there is a debug line to represent what
is going on in this function so that it is easy to see what the AI is supposed to be
doing when you are in the Unity editor.

 if (Physics.Raycast(_ TR.position +
(visionHeightOffset * _ TR.up), tempDirVec, out hit, Mathf.Infinity))
 {
 if (IsInLayerMask(hit.transform.gameObject.
layer, playerLayer))
 {
 return true;
 }
 }
 // nothing found, so return false
 return false;

Above, the ray cast starts from our Transform (_TR) position along with a
height offset. Sometimes you may not want the ray to be cast from the point of
origin on the AI – one reason for this could be that the point of origin is at the
bottom of the GameObject and may just hit the ground, so you can adjust the
height offset in the Inspector on this Component to make this happen.

tempDirVec (that vector we calculated earlier between the AI and its target)
is passed into Physics.Raycast() too, as the direction vector. Mathf.Inifinity is the
limit of the ray cast, since we do not need to limit it. When a hit occurs in the ray
cast, the next line of code checks to see if the hit object's layer is in the LayerMask
playerLayer. If the target is on the correct layer, we know that there is nothing
blocking the way so we can return true, otherwise execution falls through to
return false at the end of the function.

166 10. AI Manager

The AI controller incorporates waypoint control into the mix, using the
WaypointsController class to manage them:

 public void SetWayController(WaypointsController aControl)
 {
 _waypointsController=aControl;
 aControl=null;

Since the AI bot does not know which waypoints to use, another script (such
as the game controller) will call SetWayController and pass in a
WaypointsController object.

 // grab total waypoints
 totalWaypoints = _waypointsController.GetTotal();

Above, totalWaypoints contains a cached value of the total number of way-
points from the waypoints controller, to save having to look it up every time it is
needed.

 if(shouldReversePathFollowing)
 {
 currentWaypointNum = totalWaypoints - 1;
 } else {
 currentWaypointNum = 0;
 }

If shouldReversePathFollowing is true, the starting waypoint will be the last
one found in the list of waypoints made by the Waypoint_Controller script.

 Init();

 // get the first waypoint from the waypoint controller
 _currentWaypointTransform=
myWayControl.GetWaypoint(currentWaypointNum);
 if(startAtFirstWaypoint)
 {
 _TR.position=
_currentWaypointTransform.position;

Among other things, the Init() function in this class caches a reference to the
AI bot’s Transform in the variable _TR. The SetWayController() function calls
Init() to make sure that the reference is set up and ready for it to use, as it reposi-
tions _TR at the first waypoint (when the Boolean variable startAtFirstWaypoint is
set to true).

The next two functions in the class are interface functions for other scripts to
change values, if needed:

 public void SetReversePath(bool shouldRev)
 {
 shouldReversePathFollowing= shouldRev;
 }
 public void SetRotateSpeed(float aRate)
 {
 modelRotateSpeed= aRate;
 }

UpdateWaypoints() takes care of keeping the current target waypoint up to date
and carries out self-destruction, if required, when the AI reaches the end of the path:

16710.2 The BaseAIController Class – Base AI Control

 void UpdateWaypoints()
 {
 // If we don't have a waypoint controller, we safely
drop out
 If(_waypointsController==null)
 return;

Above, UpdateWaypoints() starts with a check to make sure that _waypoints-
Controller (a reference to an instance of the WaypointsController class) is not null,
which should mean SetWayController() has been called and set up successfully.

The AI controller script has the option to automatically destroy itself when
the last waypoint is reached. When destroyAtEndOfWaypoints is set to true, the
GameObject is destroyed, and this code drops out of the UpdateWaypoints()
script immediately.

 if(reachedLastWaypoint && destroyAtEndOfWaypoints)
 {
 // destroy myself(!)
 Destroy(gameObject);
 return;
 } else if(reachedLastWaypoint)
 {
 currentWaypointNum= 0;
 reachedLastWaypoint= false;
 }

When destroyAtEndOfWaypoints is false, the assumption is that waypoint
following should go back to the beginning; currentWaypointNum is set to zero,
reachedLastWaypoint is reset, and the AI is free to start over again.

 if(totalWaypoints==0)
 {
 // grab total waypoints
 totalWaypoints= _waypointsController.
GetTotal();
 return;
 }

To keep this function safe (in case it is somehow called before the waypoints
have been correctly set up in the WaypointsController class) there is a check to
make sure that more than one waypoint was found. If totalWaypoints is zero,
another attempt is made to get the total from _waypointsController before it
drops out of the UpdateWaypoints() function.

 if(_ currentWaypointTransform==null)
 {
 // grab our transform reference from the
waypoint controller
 _currentWaypointTransform= _
waypointsController.GetWaypoint(currentWaypointNum);
 }

If no currentWaypointTransform object has been set up at this point,
_waypointsController is called upon to provide one with the index number held
in the variable _currentWaypointNum.

Calculating distance between two Transforms will consider x, y, and z coor-
dinates. In most cases, waypoint following need only work on a two dimensional
plane and the y axis may be done away with completely. Doing so can solve

168 10. AI Manager

problems where the height combined with the x and y axis differences ends up not
advancing the current waypoint at the right time. Particularly for steering or
character led AI there is little need for the y axis at all in waypoint distance
checking.

 // now we check to see if we are close enough to the
current waypoint
 // to advance on to the next one

 myPosition= _TR.position;
 myPosition.y= 0;

 // get waypoint position and 'flatten' it
 nodePosition= _currentWaypointTransform.position;
 nodePosition.y= 0;

Both myPosition, a cached Vector3 of the bot’s position, and nodePosition,
the cached waypoint position, are stripped of the y axis in the code above.

 currentWayDist= Vector3.Distance(
nodePosition,myPosition);

 if (currentWayDist < waypointDistance) {
 // we are close to the current node, so let's
move on to the next one!

The distance between the AI bot and next waypoint is calculated using the
two cached position variables, below. When the resulting currentWayDist value
is less than the value of waypointDistance, it means that the bot is close enough
to the current waypoint to advance to the next one.

 if(shouldReversePathFollowing)
 {
 currentWaypointNum--;

Before advancing to the next waypoint, shouldReversePathFollowing is
checked to see which direction along the path the AI needs to go. If the path is
reversed, the value of currentWaypointNum is decremented rather than
incremented.

 // now check to see if we have been all the way
around
 if(currentWaypointNum<0){
 // just in case it gets referenced before we
are destroyed, let's keep it to a safe index number
 currentWaypointNum= 0;
 // completed the route!
 reachedLastWaypoint= true;
 // if we are set to loop, reset the
currentWaypointNum to 0
 if(loopPath)
 {
 currentWaypointNum= totalWaypoints;
 reachedLastWaypoint= false;
 }
 return;
 }

In the code block above, if the path is reversed, when currentWaypointNum
drops below zero it needs to get reset to the waypoint at the other end of the path

16910.2 The BaseAIController Class – Base AI Control

(only when loopPath is set). To make this happen, currentWaypointNum will be
set to the value of the variable totalWaypoints.

Something else that happens in this chunk of code, when we know that the
end of the path has been reached, is that the value of reachedLastWaypoint is set
to true. This will be checked on the next UpdateWaypoints() call, to carry out any
actions that need to be done at the end of the path (such as destroying the
GameObject when destroyAtEndOfWaypoints is set to true.

 } else {
 currentWaypointNum++;
 // now check to see if we have been all the way
around
 if(currentWaypointNum>=totalWaypoints){
 // completed the route!
 reachedLastWaypoint= true;
 // if we are set to loop, reset the
currentWaypointNum to 0
 if(loopPath)
 {
 currentWaypointNum= 0;

 // the route keeps going in a loop,
so we don't want reachedLastWaypoint to ever become true
 reachedLastWaypoint= false;
 }
 // drop out of this function before we grab
another waypoint into currentWaypointTransform, as
 // we don't need one and the index may be
invalid
 return;
 }
 }

The shouldReversePathFollowing Boolean must have been set to false for the
following code to be executed, meaning that the currentWaypointNum has gone
past the final waypoint in the list held by the waypoints controller and that
 currentWaypointNum needs to be reset to zero, if the variable loopPath is set to true.

 // grab our transform reference from the
waypoint controller
 _currentWaypointTransform= _
currentWaypointTransform.GetWaypoint(currentWaypointNum);
 }
 }

With the manipulations to currentWaypointNum complete, we can use its
value as an index number to ask the waypoint controller myWayControl, to pro-
vide the Transform for the next waypoint. currentWaypointTransform is set to
the result of a call to the Waypoint_Controller.cs function GetWaypoint().

 public float GetHorizontal()
 {
 return horz;
 }
 public float GetVertical()
 {
 return vert;
 }
 }
}

170 10. AI Manager

Above, helper functions above provide access to the horizontal and vertical
input variables.

10.3 Enemy Stats
The BaseEnemyStatsController class can be used to add stats to an enemy in a
similar way to how we deal with players. The way we use it in this book, we have
it derive from BaseAIController so that it can be layered – the Blaster game
example from Chapter 15 has a blaster enemy class that derives from
BaseEnemyStatsController. This way, we get all of the AI and stats merged
together so we do not have to have any references to other script Components to
deal with things like enemy health and so on.

If you wanted to use this script as a standalone in your own game, you can
just change the class declaration to derive from MonoBehaviour rather than
BaseAIController. You also need to remove the base.Init() from the Init() func-
tion and remove override from the Init() function declaration. Do these things
and this class will work independently of the AI system and/or framework.

using UnityEngine;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Base/Enemy Controller")]

 public class BaseEnemyStatsController : BaseAIController
 {
 [Header("Enemy stats")]
 public int myID;
 private static int enemyUniqueID;

 public int defaultHealthAmount = 1;

 public int enemyHealth;
 public int enemyScore;
 public string enemyName;

 public override void Init()
 {
 base.Init();
 myID = enemyUniqueID;
 enemyUniqueID++;

 enemyScore = 0;
 enemyHealth = defaultHealthAmount;
 }

 public virtual void AddScore(int anAmount)
 {
 enemyScore += anAmount;
 }

 public virtual void AddHealth(int anAmount)
 {
 enemyHealth += anAmount;
 }

 public virtual void LoseScore(int anAmount)
 {
 enemyScore -= anAmount;
 }

17110.4 The AIBotController Class – Making an Enemy Bot Controller

 public virtual void ReduceHealth(int anAmount)
 {
 enemyHealth -= anAmount;
 }

 public virtual void SetScore(int anAmount)
 {
 enemyScore = anAmount;
 }

 public virtual void SetHealth(int anAmount)
 {
 enemyHealth = anAmount;
 }

 public int GetHealth()
 {
 return enemyHealth;
 }

 public int GetScore()
 {
 return enemyScore;
 }

 public void SetName(string aName)
 {
 enemyName = aName;
 }
 }
}

Above, the script is self-explanatory. The Init() function sets default values for
our enemy stats and each function provides a way to change or enemy stat set values.

10.4 The AIBotController Class – Making
an Enemy Bot Controller

Let’s talk a little about how this AI is supposed to work. Its behavior is rather
basic, but it should be a good start for your own bots. What happens is that the AI
bot will patrol around randomly, avoiding walls, until a player comes into range.
At that point, our bot will turn to face the player and then go into chase mode,
trying to head directly for the player whenever it is in sight. Our AI will also fire
its weapon at random intervals by using the weapon control outlined in Section
10.6 of this chapter.

The AIBotController class uses BaseAIController to move a bot around and
derives from BaseEnemyStatsController from the previous Section 10.3 to deal
with enemy health.

using UnityEngine;
using AIStates;

namespace GPC
{
 public class AIBotController : BaseEnemyStatsController
 {
 private Vector3 moveVec;
 private Vector3 targetMoveVec;
 private float distanceToChaseTarget;

172 10. AI Manager

 [Header("Movement")]
 public bool isStationary;
 public float moveSpeed = 30f;
 public bool faceWaypoints;

Skipping through the variables, the only thing to note above is the class dec-
laration deriving from BaseEnemyStatsController as mentioned at the start of
the section.

 public override void Update()
 {
 UpdateCurrentState();
 DoMovement();
 }

Update() is called by the engine automatically and it is where we call for
main AI updates to happen. We call out to UpdateCurrentState() and
DoMovement().

 public override void UpdateCurrentState()
 {
 // reset our inputs
 horz = 0;
 vert = 0;

 obstacleFinderResult = IsObstacleAhead();

UpdateCurrentState() is at the core of our state machine. The BaseAIController
had a placeholder function, but here we override it and put it to some real use. We
start by resetting the horz and vert inputs so that they start out at zero each pass. We
then call out to IsObstacleAhead() to check the path, with its return value going into
the variable obstacleFinderResult. This variable will be used by one or more of the
functions we call from the oncoming case statement that will react to the current
state, so we populate it here to avoid having to repeat calls to it each time further on.

 switch (currentAIState)
 {
 // -----------------------------
 case AIState.move_looking_for_target:
 LookForTarget();
 break;
 case AIState.chasing_target:
 ChasingTarget();
 break;
 // -----------------------------

This function is called every frame, which means the logic we place in this
case statement will be called each frame too. This is, essentially, the main loop for
our AI states.

The code above is relatively straightforward – in each case, we check to see if
currentAIState matches our case and, if it does, call a function to perform every-
thing we want to do every frame in that state. For example, we call LookForTarget()
when the currentAIState is AIState.move_looking_for_target. When the state is
AIState.chasing_target, we call ChasingTarget().

The code for each state has been split out into an individual function, which
makes it easier to debug later. Having big chunks of code inside a massive case state-
ment is a recipe for disaster, so it is better to split them out like this to save headaches!

17310.4 The AIBotController Class – Making an Enemy Bot Controller

 case AIState.
backing _ up _ looking _ for _ target:
 BackUpLookingForTarget();
 break;
 case AIState.stopped_turning_left:
 StoppedTurnLeft();
 break;
 case AIState.stopped_turning_right:
 StoppedTurnRight();
 break;

 case AIState.
paused_looking_for_target:
 Paused(true);
 break;
 case AIState.
move_along_waypoint_path:
 MoveAlongWaypointPath();
 break;

 case AIState.paused_no_target:
 break;

 default:
 // idle (do nothing)
 break;
 }
 }

Above, we go through all the AIStates we want the bot to react to and
call functions to deal with each one. We only use the states chasing_target,
move_looking_for_target, stopped_turning_right, stopped_turning_left and
backing_up_looking_for_target.

When we have a target, the state is chasing_target unless an obstacle is found –
if there is an obstacle, we change to either stopped_turning_left, stopped_turn-
ing_right or backing_up_looking_for_target to avoid it. Otherwise, chasing_
target aims for the target and moves forward constantly.

If we are in any of the turning or backing up states, we remain in those until
the obstacleFinderResult – populated by a call to IsObstacleAhead() – reports
that the path forward is clear. When there are no obstacles in the backing_up_
looking_for_target state, we choose a random direction to turn in, to reduce the
risk of getting stuck whenever the path directly in front is blocked.

Next, the functions themselves:

 public virtual void DoMovement()
 {
 // move forward
 _TR.Translate(0, 0, vert * moveSpeed *
Time.deltaTime);
 _TR.Rotate(0, horz * modelRotateSpeed *
Time.deltaTime, 0);
 }

Above, the DoMovement() function uses Transform.Translate to move the
bot around and Transform.Rotate to handle turning. We take the vert value and
multiply it by our moveSpeed and Time.deltaTime. Transform.Rotate() takes
three parameters for x, y, and z. We only need to rotate the y axis to turn our bot,
so our rotation goes in the second parameter. The actual rotation amount comes
from the variable horz, holding our horizontal input value, which is multiplied by

174 10. AI Manager

modelRotateSpeed and Time.deltaTime. Time.deltaTime is used here to make
sure that the rotations and movements will be the same regardless of frame rate
or frame glitches, basing the movement amounts on time rather than relying on
each frame happening at the exact same time.

 void LookForTarget()
 {
 // look for chase target
 LookAroundFor();

 // if there are obstacles, this is where
we'll switch to a state that can avoid hitting them
 switch(obstacleFinderResult)
 {
 case 1: // go right
 SetAIState(AIState.
stopped_turning_right);
 break;

 case 2: // go left
 SetAIState(AIState.
stopped_turning_left);
 break;

 case 3: // back up!
 SetAIState(AIState.backing_up_looking_for_target);
 break;

 default: // default is just keep
moving forward
 MoveForward();
 break;
 }
 }

The LookForTarget() function calls to LookAroundFor(), which will ensure
that we have a suitable target and change the AI state to chase it if we do.
LookAroundFor() is in the BaseAIController class, explained back in Section
10.2. of this book.

From there on, we take a look at what obstacleFinderResult is currently set to
(you may remember this was set near the start of the UpdateCurrentState() func-
tion by calling the IsObstacleAhead() function). Depending on what obstacle-
FinderResult returns, we react to potential obstacles by either turning left, right,
or backing up when obstacles are found on both left and right sides. If no obsta-
cles are found, our switch statement will drop through to the default case, which
calls MoveForward() to continuously move the bot forward until either it gets a
suitable target to chase or happens upon an obstacle.

 void ChasingTarget()
 {
 // chasing
 if (_followTarget == null)
 {
 SetAIState(AIState.move_looking_for_target);
 return;
 }

The ChasingTarget() function above is called by UpdateCurrentState()
when the AI state is AIState.chasing_target. The first thing to check is that
we have a valid target in _followTarget. If we do not, SetAIState() is called on

17510.4 The AIBotController Class – Making an Enemy Bot Controller

to change the state to move_looking_for_target, instead, then we drop out of
the function with a return.

 TurnTowardTarget(_ followTarget);
 distanceToChaseTarget =
Vector3.Distance(_TR.position, _followTarget.position);

 // check the range
 if (distanceToChaseTarget > minChaseDistance)
 MoveForward();

When the bot is chasing, the code above calls TurnTowardTarget() to turn
the bot toward _followTarget. TurnTowardTarget() is in BaseAIController.

The next step is to find the distance between our bot (_TR.position) and the
target (_followTarget.position) to go into the variable distanceToChaseTarget.
We then compare distanceToChaseTarget to our minChaseDistance to make sure
that we are not too close to the target. If the distance is higher than minChase-
Distance, we continue to call MoveForward() which will set the vert input vari-
able to continue to move the bot forward toward the target.

 bool canSeePlayer = CanSee(_ followTarget);
 if (distanceToChaseTarget > maxChaseDistance
|| !canSeePlayer)
 SetAIState(AIState.
move_looking_for_target)
}

Next, above, we declare a Boolean variable named canSeePlayer to store the
result of a call to the CanSee() function. CanSee() will use Physics.Raycast to cast
a ray between the bot and the player to tell if there is anything between them.
CanSee() relies on collision layers to identify the player, referring to layers in the
variable targetLayer (declared in BaseAIController) to ensure that the path to the
player is clear. CanSee() returns true if the line is clear, false when there is an
obstacle.

Above, we then check the distance to see if the target is too far away from
the bot – further than maxChaseDistance. If distanceToChaseTarget is greater
than maxChaseDistance, or CanSee() returned false, we call on SetAIState() to
change the state back to look for a new suitable target in AIState.
move_looking_for_target.

 void BackUpLookingForTarget()
 {
 LookAroundFor();
 MoveBack();

 if (obstacleFinderResult == 0)
 {
 if (Random.Range(0, 100) > 50)
 SetAIState(AIState.
stopped_turning_left);
 else
 SetAIState(AIState.
stopped_turning_right);
 }
 }

BackUpLookingForTarget() is called each frame from the UpdateCurrentState()
function. It moves the bot backward when obstacles are found on both left and

176 10. AI Manager

right sides, in front of it, blocking the path forward. We start the function by call-
ing LookAroundFor(), which tries to find a suitable target to chase. MoveBack()
sets the input variable vert to –1, to move backward. Then, we look at obstacle-
FinderResult to see if any obstacles were found in front of the bot. If none were
found, we now know that we have backed up enough to avoid whatever it was that
was blocking the path prior to the state going into AIState.backing_up_look-
ing_for_target. To help avoid the bot moving forward and moving right back into
the obstacle that got it here, we generate a random number to decide which way
to turn. If the number is above 50, the bot turns left. If less, it turns right. It will
only turn a small amount, but it should be enough to avoid getting stuck.

 void StoppedTurnLeft()
 {
 // look for chase target
 LookAroundFor();

 // stopped, turning left
 TurnLeft();

 if (obstacleFinderResult == 0)
 SetAIState(AIState.move_looking_for_target);
 }
 void StoppedTurnRight()
 {
 // look for chase target
 LookAroundFor();

 // stopped, turning right
 TurnRight();

 // check results from looking, to see if path
ahead is clear
 if (obstacleFinderResult == 0)
 SetAIState(AIState.move_looking_for_target);
 }

StoppedTurnRight() and StoppedTurnLeft() are identical except for a single
line which calls out to either TurnLeft() or TurnRight() respectively. Both func-
tions start with a call to LookAroundFor() to try to find a suitable target, and
both functions will change the AI state to AIState.move_looking_for_target
whenever no obstacles are found in front of the bot (via the obstacleFinderResult
variable we set back in UpdateCurrentState().

 void MoveAlongWaypointPath()
 {
 // make sure we have been initialized before
trying to access waypoints
 if (!didInit && !reachedLastWaypoint)
 return;

 UpdateWaypoints();

 if (!isStationary)
 {
 targetMoveVec =
Vector3.Normalize(_currentWaypointTransform.position - _TR.position);
 moveVec =
Vector3.Lerp(moveVec, targetMoveVec, Time.deltaTime * pathSmoothing);
 _TR.Translate(moveVec * moveSpeed *
Time.deltaTime);

17710.5 The AISteeringController Class – An AI Steering Controller

 if (faceWaypoints)

TurnTowardTarget(_currentWaypointTransform);
 }
 }

Although none of the examples in this book use it, the function
MoveAlongWaypointPath() is provided here should you need it. It uses the way-
points system from Chapter 8 to move the bot along a path set by waypoints. The
bool isStationary can be used to start or stop the bot along its path. You can also
set the bool faceWaypoints to decide whether or not to have the bot face the way-
point it is moving toward, or to just move, and keep its rotation.

 public void SetMoveSpeed(float aNum)
 {
 moveSpeed = aNum;
 }
 }
}

Finally, in this class, we have the SetMoveSpeed() function which can be
used by other scripts to change the movement speed of our bot.

10.5 The AISteeringController Class – An
AI Steering Controller

AISteeringController uses the waypoints system from Chapter 8 to provide
inputs suitable for feeding into a vehicle script such as the BaseWheeledVehicle
class from Chapter 6. This class will provide the variable horz (short for horizon-
tal) with values between –1 and 1 suitable for steering toward waypoints and it
will detect the angle to establish acceleration amounts. This script also ensures
that the vehicle remains below a maximum speed.

using UnityEngine;
using AIStates;
namespace GPC
{
 public class AISteeringController : BaseAIController
 {

This class is derived from BaseAIController to use its state machine system.

 public Vector3 relativeWaypointPosition;
 public float turnMultiplier = 3f;
 public float maxSpeed = 10f;
 public BaseInputController _ inputController;

Above, the few variables will become clearer as we go through the script. The
_inputController should reference a BaseInsputController or class deriving from
BaseInputController that this AI is using for its inputs to drive the vehicle.

 public override void Start()
 {
 base.Start();
 SetAIState(AIState.move_along_waypoint_path);
 }

178 10. AI Manager

Start() calls Start() on the class we derive from (BaseAIController) and starts
things off with our AI state set to AIState.move_along_waypoint_path, which will
serve as the main state for our steering behavior to work in when driving the vehicle.

 public override void UpdateCurrentState()
 {
 // reset our inputs
 horz = 0;
 vert = 0;

 // look for obstacles
 obstacleFinderResult = IsObstacleAhead();

 switch (currentAIState)
 {
 case AIState.
move_along_waypoint_path:
 SteerToWaypoint();
 break;

 case AIState.chasing_target:
 SteerToTarget();
 break;

 case AIState.paused_no_target:
 // do nothing
 break;

 default:
 // idle (do nothing)
 break;
 }
 }

Above, just like the placeholder version of UpdateCurrentState in the
BaseAIController class, we check each state, and call functions to run relevant
code for each one. For the steering system, we only use three states: move_along_
waypoint_path, chasing_target and paused_no_target.

 void SteerToWaypoint()
 {
 if (!didInit)
 return;
 UpdateWaypoints();
 if (_currentWaypointTransform == null)
 return;

Above, we check that the class has initialized (didInit is true) then make a
call to UpdateWaypoints() which is an inherited function from the
BaseAIController class. We then check that __currentWaypointTransform has
a Transform in it. The UpdateWaypoints() function takes care of updating
our current waypoint, checking the distances and so on, including setting
_currentWaypointTransform to provide us with a target to steer toward.

 relativeWaypointPosition = _
TR.InverseTransformPoint(_ currentWaypointTransform.position);
 // by dividing the horz position by the
magnitude, we get a decimal percentage of the turn angle that we
can use to drive the wheels
 horz = (relativeWaypointPosition.x /
relativeWaypointPosition.magnitude);

17910.5 The AISteeringController Class – An AI Steering Controller

The next step is to find out the relative position of the waypoint from the
(_TR) Transform. Transform.InverseTransformPoint converts a position from
world space into local space. In this case, we take the position of the waypoint
and convert it into the local space of our Transform, _TR.

The result of the Transform.InverseTransformPoint space conversion is stored
in a Vector3 type variable called relativeWaypointPosition. This vector now repre-
sents the direction that the AI would need to travel to reach the next waypoint.

By dividing the x value of relativeWaypointPosition by its magnitude, we end
up with a number that says how much we would need to turn left or right to be
facing the waypoint; the code places the calculated steer value into the variable
horz (the variable name used for horizontal input throughout this book).

 if (Mathf.Abs(horz) < 0.5f)
 vert = relativeWaypointPosition.z /
relativeWaypointPosition.magnitude - Mathf.Abs(horz);

Now that horz contains the amount required to turn toward the next way-
point, this value may be used to slow down the bot if it is moving too fast.

The absolute (never negative) value of horz is checked against 0.5 to decide
whether acceleration should be used. If the turn is more than 0.5, vert is unmodi-
fied at this stage, leaving it at its default value of 0. If the turn is less than 0.5, the
acceleration put into the variable vert is calculated by taking the relative-
WaypointPosition z value divided by its magnitude, with the horizontal turn
amount subtracted from it.

The idea is, the more the turn the less the acceleration. In many cases, this
should help the AI to get around corners without crashing.

 if (obstacleFinderResult == 1)
 TurnRight();
 if (obstacleFinderResult == 2)
 TurnLeft();

Above, we check the result of obstacleFinderResult and turn to avoid them, if
needed. I would recommend not using the obstacle avoidance system to avoid other
vehicles by not adding the vehicle layer to the Inspectors Obstacle Avoid Layers
field. If you are using this with a racing game, trying to avoid other vehicles as
obstacles this way tends to force the AI to drive off the track. Not ideal behavior!

 horz *= turnMultiplier;

 if (_RB.velocity.magnitude >= maxSpeed)
 vert = 0;
 }

Next, we multiply horz by a variable named turnMultiplier. Different vehi-
cles and different physics systems may require different values of input to make
them turn in a reliable manner that gets your vehicles around the world. To com-
pensate for this, you can adjust the turnMultiplier field via the Inspector on your
AI vehicle to scale the turn amount as needed.

The last part of this function checks the magnitude of our vehicle's Rigidbody
against a maxSpeed value. If we are going faster than the allowed maxSpeed, the
vertical input is set to 0 to avoid any further acceleration and slow the vehicle.

 void SteerToTarget()
 {

180 10. AI Manager

 if (!didInit)
 return;
 if (_followTarget == null)
 return;

SteerToTarget() is not used by any of the game examples in this book, but it
is provided for you to have the functionality of steering at a target rather than
waypoints. This may be useful in a game where you want vehicles to follow other
vehicles.

We start the function by checking for initialization (didInit is true) and then
we make sure that there is a target Transform to follow held in the _followTarget
variable.

 Vector3 relativeTargetPosition = transform.
InverseTransformPoint(_ followTarget.position);
 horz = (relativeTargetPosition.x /
relativeTargetPosition.magnitude);

AIState.steer_to_target works in the exact same way as the waypoint steer-
ing code from SteerToWaypoint() above, except that it uses _followTarget to aim
for instead of the waypoint in the _currentWaypointTransform variable. That is,
we calculate a relative vector to the target from the vehicle then use it to calculate
a steering amount.

 if (Vector3.Distance(_ followTarget.position,
_ TR.position) > minChaseDistance)
 MoveForward();
 else
 NoMove();

Above, a quick test to check our distance to the target and stop moving if we
are too close or keep going – calling MoveForward() – if we are further than
minChaseDistance.

 LookAroundFor();

 if (obstacleFinderResult == 1)
 TurnRight();
 if (obstacleFinderResult == 2)
 TurnLeft();
 if (obstacleFinderResult == 3)
 MoveBack();
 }

We call LookAroundFor() to keep an eye on the distance between this vehi-
cle and the target (looking for a new suitable target if this one is too far away) and
then we run some obstacle avoidance checking to force the vehicle to turn if
obstacles are found to the left or right, and to slow down, or potentially reverse
when obstacles are found on both sides.

 public override void Update()
 {
 base.Update();
 if (_inputController == null)
 _inputController = GetComponent<
BaseInputController>();

 // check that input is not enabled and drop
out if it is

18110.6 Adding Weapon Control to the AI Controller

 if (_inputController.inputType !=
RaceInputController.InputTypes.noInput)
 return;

The last function of the AISteeringController class is Update() – called by
Unity every frame. Here, we call out to run Update() on the code in our inherited
class BaseAIController, before checking that we have a reference to a
BaseInputController Component in the variable _inputController. If not, we use
GetComponent() to try to find it. We need this Component to be talk to, so that
we can pass on the steering and acceleration values we have calculated here.

We check the inputType of the _inputController instance, to make sure that
it is set to noInput and drop out if the input is set to anything else. We do this
because it is expected that all of the vehicles will have the exact same Components
attached to them (as they do in the racing game example in Chapter 14 of this
book) and we do not want the AI script to try to drive the players vehicle for them.

The last couple of lines set the vert and horz values of the BaseInputController
class:

 _ inputController.vert = vert;
 _inputController.horz = horz;
 }
 }
}

10.6 Adding Weapon Control to the AI
Controller

The BaseEnemyWeaponController.cs script is intended to be added to a player to
take control of the weapons system and deal with firing. It does not specifically
reference or require the AI controller and it works independently, relying only on
the Standard_SlotWeaponController.cs script to operate the weapon and a sepa-
rate class named AIAttackStates.

10.6.1 Attack States
The AIAttackStates.cs script stores an enumerated list of the possible states for
the armed enemy to take:

namespace AIAttackStates
{
 public enum AIAttackState
 {
 random_fire,
 look_and_destroy,
 no_attack,
 }
}

10.6.2 BaseEnemyWeaponController
BaseEnemyWeaponController will call a StandardSlotWeaponController Component
attached to the same GameObject. More specifically, it will call the Fire() func-
tion randomly so that the enemy fires at random times.

 using UnityEngine;
 using AIAttackStates;

182 10. AI Manager

In Section 10.3., we made a set of states for the AI to use when it comes to
dealing with weapons. We wrapped the states into a namespace named
AIAttackStates. Here, to tell Unity that we want to refer to the AIAttackStates
namespace, this script starts out with the using keyword and the namespace we
want to use.

 public class BaseEnemyWeaponController :
ExtendedCustomMonoBehaviour
 {
 public bool doFire;
 public bool onlyFireWhenOnscreen;
 public int pointsValue = 50;
 public int thisEnemyStrength = 1;
 public bool thisGameObjectShouldFire;
 public Renderer _rendererToTestAgainst;
 public StandardSlotWeaponController
_slotWeaponController;
 private bool canFire;
 public float fireDelayTime = 1f;

 // default action is to attack nothing
 public AIAttackState currentState = AIAttackState.
random_fire;
 public string tagOfTargetsToShootAt;

Above, the BaseEnemyWeaponController class is derived from
ExtendedCustomMonoBehaviour.

 public void Init()
 {
 // cache our transform
 _TR = transform;
 _GO = GameObject;

As with most of the Init() functions in this book, the code above kicks off the
function above, by caching references to the GameObject and Transform that
this script Component is applied to.

 if (_ slotWeaponController == null)
 {
 _slotWeaponController =
_GO.GetComponent<StandardSlotWeaponController>();
 }

The prime objective of this class is to manage the weapons system for the AI
players, which means it is going to need a reference to the weapon controller
script. If one has not been set in the Unity editor Inspector window on this scripts
GameObject, the code above finds out and try to find it with a call to GameObject.
GetComponent():

 if (_ rendererToTestAgainst == null)
 {
 _rendererToTestAgainst =
_GO.GetComponentInChildren<Renderer>();
 }

The option is provided with this class to only fire the weapon when a speci-
fied Renderer is on screen by setting the Boolean variable onlyFireWhen OnScreen
to true in the Inspector. The intention is that the main enemy mesh Renderer is

18310.6 Adding Weapon Control to the AI Controller

used for this, so that weapon firing only happens when the enemy is on screen. If
the variable (of type Renderer) renderToTestAgainst has not been set in the Unity
editor Inspector window, the code above uses GameObject.
GetComponentInChildren() to try and find a Renderer to use instead.

 canFire = true;
 didInit = true;
 }

Finally, in Init() above, we set didInit to true and canFire to true, too.
canFire is used to stop firing when we want to have the firing pause between
shots. canFire is used by this script to help control the delay between shots, but
if you ever need to stop the AI from firing you can set canControl to false at
any time.

 private RaycastHit rayHit;
 public void Update()
 {
 if (!didInit)
 Init();

 if (!canControl)
 return;

 Firing();
 }

Most of the core logic takes place in the Update() function, which is auto-
matically called by the Unity engine each frame. It is declared here as a virtual
function so that it can be overridden should you choose to inherit another class
from this one.

Above, if canControl is false, no weapon control is allowed so this function
drops out early before calling the Firing() function.

 void Firing()
 {
 if (!didInit)
 Init();
 if(thisGameObjectShouldFire)
 {

Above, the Firing() function first makes sure that thisGameObjectShould-
Fire is set to true.

 // we use doFire to determine whether or not
to fire right now
 doFire=false;

Depending on the AIAttackState this enemy is currently set to use, it may be
required to be able to have line of sight to a potential target before firing. doFire
is a Boolean variable used to tell whether or not the conditions to fire (such as
line of sight) have been satisfied and firing is allowed. Before fire condition check-
ing starts, the assumption is made that firing will not be allowed and doFire is set
to false.

 if(canFire)
 {

184 10. AI Manager

There will always be a pause in-between firing. As mentioned earlier in this
section, the Boolean variable canFire is used manage the state of whether the
script should be allowed to fire at this time. It will be set to false after a specified
amount of time has passed further in the script.

 if(currentState==AIAttackState.random _ fire)
 {
 // if the random number is over x, fire
 if(Random.Range(0,100)>98)
 {
 doFire=true;
 }
 }

AIAttackState.random_fire means just that – there is no checking other
than to generate a random number and see if it turns out to be over a set number
(98, in this case). When the randomly generated number is high enough, doFire
is set to true so that firing occurs.

 else if (currentState == AIAttackState.look _ and _
destroy)
 {
 if (Physics.Raycast(_TR.position, _
TR.forward, out rayHit))
 {
 // is it an opponent to be shot at
 if(rayHit.transform.CompareTag
(tagOfTargetsToShootAt))
 {

AIAttackState.look_and_destroy will use raycasting to look out forward
from this enemy’s Transform to see if a potential target is in front. tagOfTargets-
ToShootAt is set to hold a tag applied to enemies and Transform.CompareTag()
is used to make sure that an object hit by a raycast has the correct tag in place.

 doFire=true;
 }
 }
 } else {

When an object is found in front of this Transform with the correct tag
applied, doFire is set to true and firing can happen later in the function.

 // if we're not set to random fire or look
and destroy, just fire whenever we can
 doFire=true;
 }
 }

The else condition is provided as a catchall. If in doubt, fire it out! If
AIAttackState makes no sense, the function will just keep firing.

 if (doFire)
 {
 // we only want to fire if we are on-screen,
visible on the main camera

18510.6 Adding Weapon Control to the AI Controller

 if (onlyFireWhenOnscreen
&& !_rendererToTestAgainst.IsVisibleFrom(Camera.main))
 {
 doFire = false;
 return;
 }

Above, the state of doFire is a condition for executing the next chunk of
code. The Boolean variable onlyFireWhenOnScreen states whether this enemy
should be allowed to fire when not being drawn by the Camera. The Renderer
Component referenced by rendererToTestAgainst is checked, using the Renderer.
IsVisibleFrom() function provided by Unity. IsVisibleFrom() takes a Camera as a
parameter and will return true if the Renderer is visible from that Camera (and,
of course, false when it is not). Above, we use Camera.main to find the Camera
with. For Camera.main to work, a Camera in the Scene must have the MainCamera
tag applied to it in the Inspector. This is the easiest way to find the Camera in a
Scene, but if for whatever reason this does not work for you, add a new Camera
typed variable to the variable declarations and use that variable here, instead of
Camera.main.

The code sets doFire to false when onlyFireWhenOnScreen is true and the
Renderer is not visible on screen. If firing is cancelled in this way, it also drops out
with a return statement since there is no value left in executing the script further
on this pass.

 // tell weapon control to fire, if we have a
weapon controller
 if(_slotWeaponController!=null)
 {
 // tell weapon to fire
 _slotWeaponController.Fire();
 }

If _slotWeaponController is not null (suggesting that a WeaponController
instance exists and we have a usable reference to it), the script now goes ahead
and makes the call to _slotWeaponController.Fire().

 // set a flag to disable firing temporarily
(providing a delay between firing)
 canFire= false;
 CancelInvoke("ResetFire");
 Invoke ("ResetFire", fireDelayTime);
 }
 }

After the call to fire the weapon has been made, canFire is set to false to delay
firing until the function ResetFire() is called to set it back to true again. An
Invoke call sets up the call to ResetFire() at a time set by fireDelayTime and the
CancelInvoke just before that line ensures that any existing call to ResetFire() is
wiped out before we add this new one.

 public void ResetFire ()
 {
 canFire=true;
 }

186 10. AI Manager

Above, the variable canFire is reset in the function ResetFire(). This function
is called by the Invoke statement at the end of the Firing() function, which passed
the variable fireDelayTime as the delay before invoking the call. This means that
after the delay set by fireDelayTime, this enemy will be allowed to fire its weapon
again. This pause exists so that we do not end up with a steady stream of projec-
tiles coming out of the enemy blaster every frame it can fire. This way; we just get
pulses of fire instead.

187

11 Menus and User
Interface

In this chapter, first up is a full breakdown of the main menu used for all of the
example games. The main menu structure should provide a perfect starting place
for any main menu system.

The second part of this chapter will look at in-game UI.

11.1 CanvasManager Class/Canvas Management
CanvasManager is a class devoted to switching between user interface Canvases,
for example when you want to move from a main menu to a sub menu such as an
options menu. It relies on a Component called CanvasGroup, which is provided
by Unity as part of the engine. CanvasGroup lets us set an alpha transparency
level of an entire Canvas as well as providing methods to enable or disable inter-
activity or enable or disable blocking of raycasts by a Canvas.

CanvasManager holds an array of Canvas GameObjects in _UICanvasGroups
and you can then use the functions ShowCanvas(index), HideCanvas(index)
and HideAll() to switch them around as needed. The CanvasManager class can
also deal with fading in and out, if you provide a Canvas for it to use in its
FadeCanvasGroup variable. For example, you can stretch out a simple UI Panel
GameObject to fill a Canvas and then have the Canvas stretch to fill the screen.
This Canvas makes up your FadeCanvasGroup and you can use CanvasManager’s
FadeOn(), FadeOff(), FadeIn() and FadeOut() functions to have it cover the
game view.

188 11. Menus and User Interface

CanvasManager.cs:

using System.Collections;
using UnityEngine;
namespace GPC
{
 public class CanvasManager : MonoBehaviour
 {
 public CanvasGroup[] _UICanvasGroups;
 public float fadeDuration = 0.25f;
 public float waitBetweenFadeTime = 0.1f;

 [Space]
 public CanvasGroup _FadeCanvasGroup;

 private int currentGroup;
 private int lastGroup;

CanvasManager derives from MonoBehaviour to use Unity’s built-in functions.

 void Awake()
 {
 HideAll();
 }

The first thing we want CanvasManager to do is to hide all the Canvases
stored in the _UICanvasGroups list, so that we do not start the Scene with all the
user interfaces Canvases on top of one another.

Next up, the HideAll() function loops through to hide all Canvases:

 public void HideAll()
 {
 currentGroup = 0;
 lastGroup = 0;

 for (int i = 0; i < _UICanvasGroups.Length; i++)
 {
 _UICanvasGroups[i].alpha = 0;
 _UICanvasGroups[i].interactable =
false;
 _UICanvasGroups[i].blocksRaycasts =
false;
 }
 }

As you can see above, we also set the alpha of each Canvas to 0 as well as set-
ting the CanvasGroup’s interactable and blocksRaycasts properties to false. This
is so that the Canvases will not just be hidden, but they will also not interfere
with other UI in the Scene.

We can also hide an individual Canvas with the HideCanvas() function, next:

 public void HideCanvas(int indexNum)
 {

 StartCoroutine(FadeCanvasOut(_UICanvasGroups[indexNum],
fadeDuration));
 }

The fading of our Canvases relies heavily on coroutines. There are three
different coroutines in this class: FadeCanvasOut, FadeCanvasIn and

18911.1 CanvasManager Class/Canvas Management

StartFadeCanvasSwitch. Above, the code to hide a Canvas uses FadeCanvasOut
and passes in a reference to the CanvasGroup Component we want it to affect, fol-
lowed by the time we want it to take to fade in seconds.

This class also offers up an alternative way of using HideCanvas. You can
either just pass in the index number of the CanvasGroup you want to hide, or you
can pass in the index number followed by a Boolean true or false to say whether
the Canvas should be faded out with a fade or if it should just disappear instantly.
The alternative HideCanvas function is up next and it looks like this:

 public void HideCanvas(int indexNum, bool doFade)
 {
 if (doFade)
 {
 StartCoroutine(FadeCanvasOut(_UICanvasGroups[indexNum],
fadeDuration));
 }
 else
 {
 _UICanvasGroups[indexNum].alpha = 0;
 _UICanvasGroups[indexNum].
interactable = false;
 _UICanvasGroups[indexNum].
blocksRaycasts = false;
 }
 }

Above, if doFade is true we use the coroutine but if it is false then the alpha,
interactable and blocksRaycasts properties of the Canvas are set directly from the
reference held in the _UICanvasGroups array.

Now that we can hide Canvases, we get to showing them:

 public void ShowCanvas(int indexNum)
 {

 lastGroup = currentGroup;
 currentGroup = indexNum;

 StartCoroutine(FadeCanvasIn(_UICanvasGroups[indexNum],
fadeDuration));
 }

 public void ShowCanvas(int indexNum, bool doFade)
 {
 lastGroup = currentGroup;
 currentGroup = indexNum;

 if (doFade)
 {

 StartCoroutine(FadeCanvasIn(_UICanvasGroups[indexNum],
fadeDuration));
 }
 else
 {
 _UICanvasGroups[indexNum].alpha = 1;
 _UICanvasGroups[indexNum].
interactable = true;
 _UICanvasGroups[indexNum].
blocksRaycasts = true;
 }
 }

190 11. Menus and User Interface

Again, you can see above that there are two versions of the same function –
one that only takes the index of the Canvas and the other taking the index and an
additional Boolean to specify fade mode, in the same way that HideCanvas() did.

The only differences between HideCanvas() and ShowCanvas() are that,
above, we call the coroutine FadeCanvasIn() rather than FadeCanvasOut() from
the HideCanvas() function – and the alpha gets set to 1 instead of 0 when we are
dealing with the no fade code.

Next up, LastCanvas():

 public void LastCanvas()
 {
 TimedSwitchCanvas(currentGroup, lastGroup);
 }

Often you need to provide a method to get from a sub-menu back to the
main menu, or back to the previous screen. To speed up the process of developing
menus with this behavior, we have the LastCanvas() function, which changes the
Canvas currently being displayed to the last one. It uses the variable lastGroup to
keep tabs on what was previously open. As this is only a single level system, if you
need to get back from multiple levels of menu you will need to extend this further
or manually set which menu should display next.

In LastCanvas(), notice that it is not using a coroutine this time, but instead a
function named TimedSwitchCanvas() that will coordinate the timing to switch
Canvases. TimedSwitchCanvas() takes two array index values – the first, the
Canvas to hide and the second value is the Canvas to show. TimedSwitchCanvas()
will carry out a fade out, a pause (specified by WaitBetweenFadeTime variable,
accessible via the Inspector) and then fade in the new Canvas. This means to fade
out a UI Canvas and to fade in another one, we can use TimedSwitchCanvas()
without having to deal with the timing between fades.

The FadeIn() and FadeOut() functions are next:

 public void FadeOut(float timeVal)
 {
 StartCoroutine(FadeCanvasIn(FadeCanvasGroup,
timeVal));
 }

 public void FadeIn(float timeVal)
 {
 StartCoroutine(FadeCanvasOut
(FadeCanvasGroup, timeVal));
 }

FadeIn() and FadeOut() use the FadeCanvasIn and FadeCanvasOut
coroutines to fade in or out a specific Canvas – the reference to which is held
in the variable FadeCanvasGroup. As mentioned earlier in this section,
CanvasManager provides a method for easily fading a Scene in or out using
the above code.

When a Scene first loads, the fade Canvas needs to cover the screen for a fade
out effect to work, so we also need functions to snap the fade Canvas on or off as
needed:

 public void FaderOn()
 {
 FadeCanvasGroup.alpha = 1;
 }

19111.1 CanvasManager Class/Canvas Management

 public void FaderOff()
 {
 FadeCanvasGroup.alpha = 0;
 }

Above, the fade Canvas can be hidden or displayed instantly by setting its
alpha value to 0 or 1 depending on whether it’s on or off.

The last function of CanvasManager is the TimedSwitchCanvas() function
mentioned above:

 public void TimedSwitchCanvas(int indexFrom, int
indexTo)
 {
 lastGroup = indexFrom;
 currentGroup = indexTo;

 StartCoroutine(StartFadeCanvasSwitch(_UICanvasGroups[indexFrom],
_UICanvasGroups[indexTo], fadeDuration, waitBetweenFadeTime));
 }

TimedSwitchCanvas uses the StartFadeCanvasSwitch coroutine, which you
will find further on in the script below.

Below, we move on to the coroutines used for fading the Canvases:

 public static IEnumerator FadeCanvasIn(CanvasGroup
theGroup, float fadeDuration)
 {
 float currentTime = 0;
 float currentAlpha = theGroup.alpha;

The FadeCanvasIn coroutine starts by declaring a locally scoped current-
Time variable, which will be used to track timing during the fade.

Next, as we should never assume what alpha level the Canvas might be set at,
we get the start alpha value from the Canvas itself – theGroup.alpha – and store
it in another locally scoped variable named currentAlpha.

The function is fading in a Canvas, so we go ahead next and enable interac-
tions with it as soon as the fade starts. You could move this to the end, if you
wanted to lock the interaction until after the fade ends, but I like to give users
access to the Canvas as soon as possible to avoid any frustration from impatient
clickers!

 theGroup.interactable = true;
 theGroup.blocksRaycasts = true;

Now we have everything set, the next chunk of code deals with the fade:

 while (currentTime < fadeDuration)
 {
 currentTime += Time.deltaTime;

The great thing about coroutines, in my opinion, is how self-contained they
are and the linear way that the code runs. The coroutine does not stop until the
while condition is met, above, that is, when currentTime is not less than
fadeDuration.

Each time the while loop above runs, we add Time.deltaTime to the current-
Time variable – which is increasing currentTime by the amount of time since the
last engine update so we know exactly how long this coroutine has been running.

192 11. Menus and User Interface

currentTime can be compared with fadeDuration to end the coroutine once the
full fadeDuration has elapsed.

 float newAlpha = Mathf.Lerp(currentAlpha, 1,
currentTime / fadeDuration);
 theGroup.alpha = newAlpha;

Above, Unity’s Mathf.Lerp function takes the current alpha value as a start
value, 1 as a destination and we calculate how much of a portion of that to put
into newAlpha by using currentTime divided by fadeDuration – this calculation
gives us a time value between 0 and 1, which in turn means Math.Lerp will return
a value between currentAlpha and 1 at the percentage represented by that value.

The alpha property of the Canvas gets set next (to newAlpha) and the corou-
tine ends with:

 yield return null;
 }
 }

Essentially, yield return null says to Unity that we are done running code here,
for now, so wait for the next frame update and continue execution from this line
after that. The next line is the curly bracket wrapping our while loop, so when the
next frame starts, we go back to the top of the loop and go again until currentTime
is more than fadeDuration. Once the while loop is done, the coroutine finishes.

Next, the FadeCanvasOut coroutine works the same as the coroutine we just
discussed, except we set interactable and blocksRaycasts to false and the target
value for the Mathf.Lerp is 0 instead of 1:

 public static IEnumerator FadeCanvasOut(CanvasGroup
theGroup, float fadeDuration)
 {
 float currentTime = 0;
 float currentAlpha = theGroup.alpha;

 theGroup.interactable = false;
 theGroup.blocksRaycasts = false;

 while (currentTime < fadeDuration)
 {
 currentTime += Time.deltaTime;
 float newAlpha =
Mathf.Lerp(currentAlpha, 0, currentTime / fadeDuration);
 theGroup.alpha = newAlpha;
 yield return null;
 }
 }

For the StartFadeCanvasSwitch coroutine, we are essentially molding
together both the FadeCanvasOut followed by the FadeCanvasIn coroutines into
one, neat coroutine of its own:

 public static IEnumerator StartFadeCanvasSwitch(Canva
sGroup startGroup, CanvasGroup endGroup, float fadeDuration, float
waitTime)
 {
 // fade out old UI
 float currentTime = 0;
 float currentAlpha = startGroup.alpha;

19311.2 The Main Menu

 startGroup.interactable = false;
 startGroup.blocksRaycasts = false;

 while (currentTime < fadeDuration)
 {
 currentTime += Time.deltaTime;
 float newAlpha =
Mathf.Lerp(currentAlpha, 0, currentTime / fadeDuration);
 startGroup.alpha = newAlpha;
 yield return null;
 }

Above, that’s the fading out dealt with for the first Canvas. Between fades,
we now need a delay – the timing for which is passed in by the function calling
for this coroutine to start (in this script, this coroutine is called by
StartFadeCanvasSwitch and this delay time is set in the Wait Between Fade Time
field on the Component, in the Inspector):

 yield return new WaitForSeconds(waitTime);

As I mentioned earlier in this script breakdown, coroutines are linear
chunks of code. They operate outside of regular script execution and we can
do some cool things very easily, like pausing the script until a condition is
met. Above, WaitForSeconds() is used to pause the scripts execution until
the amount of time in waitTime has passed. When enough time has passed,
script execution will continue, and we can get to the fading in of the new
Canvas:

 // now fade in new UI
 currentTime = 0;
 currentAlpha = endGroup.alpha;

 endGroup.interactable = true;
 endGroup.blocksRaycasts = true;

 while (currentTime < fadeDuration)
 {
 currentTime += Time.deltaTime;
 float newAlpha =
Mathf.Lerp(currentAlpha, 1, currentTime / fadeDuration);
 endGroup.alpha = newAlpha;
 yield return null;
 }
 }
 }
}

CanvasManager is a useful script for lots of different situations. I use it to
fade in-game user interface elements like get ready messages, count ins or game
over messages, as well as to switch between menu Canvases. Just remember to
drop a CanvasGroup Component onto the Canvas you want to fade, add it to the
UI Canvas Groups array (via the Inspector in the editor).

11.2 The Main Menu
The menu system we will be building in this chapter will not be winning any
awards, or enticing players in to play, but it will serve as a structural begin-
ning and as a functional method for configuring the example games to get

194 11. Menus and User Interface

them started. The great thing about this menu is that it’s completely open to
interpretation. It could be built out to work for just about any kind of game
with the addition of some graphics and sounds. As you develop your games
and develop your style, having an operational menu will help during
testing.

The main menu system is used by all the example games in this book. It is
easy to port between games and have sub-menus for audio and graphics
options.

Unity GUI is a flexible system that caters to interfaces that can act as overlays
to a regular Camera as well as 3D interfaces presented as a part of a 3D environ-
ment. In this chapter, we will look at interfaces as an overlay to the main Camera
in the Scene.

11.2.1 Designing the Main Menu
The overall design is very basic – the title of the game and three buttons beneath
it. One to start the game, one to show the options menu and a button to exit.
When you click on exit, a confirmation message appears to ask if you want to
leave or not. The options menu contains music and sound volume sliders, and the
volume settings will be saved out and remembered for next time.

As well as an interface, this menu utilizes the CanvasManager class
(explained in detail back in Chapter 5, Section 5.9.1) to show and hide interfaces.
Another important note is that the volume sliders use Unity's AudioMixers to
control the volume levels. For more information on using AudioMixers, refer to
Chapter 9, Section 9.4.

Each button has a script attached to it by default, added by Unity when you
add a button to a Canvas. That script is used in this example to call functions
on another GameObject's Script Component – the BaseMainMenuManager
Component. BaseMainMenuManager handles all the logic for the menu, the
scripts on the UI elements simply call them.

In the Scene, an empty GameObject named UI contains one Canvas for each
menu. The hierarchy for that looks like this:

UI

Menu_Canvas – the main menu

Options_Canvas – the options menu

Loading_Canvas – a screen to overlay that tells users loading is happening

Exit_Confirm_Canvas – yes/no to exit

The main menu script in this example uses a script Component named
MenuWithProfiles, which uses another Component named Base Profile Manager
for the saving and loading of music volumes. An empty GameObject named
MenuManager holds the menu script along with CanvasManager and the
Component Base Profile Manager. The CanvasManager contains a list of all the
canvases so that we can easily call on it to show or hide them as we need to.

To kick off this chapter, we take a look at the code behind the
BaseMainMenuManager script and then how it is overridden to make a menu
with profiles.

19511.2 The Main Menu

11.2.2 The BaseMainMenuManager Script
BaseMainMenuManager provides basic functionality for dealing with a main
menu. The BaseMainMenuManager class requires a few extra namespaces than
usual. Those are:

using UnityEngine;
using UnityEngine.Audio;
using UnityEngine.SceneManagement;
using UnityEngine.UI;

The volume sliders will need to access an AudioMixer object, so we need
UnityEngine.Audio to be available to us. To load different Scenes in Unity, we use
UnityEngine.SceneManagement to be able to access the SceneManager class.
Finally, above, user interface Components are only accessible when we use the
UnityEngine.UI namespace.

The class itself derives from MonoBehaviour:

 namespace GPC
{
 public class BaseMainMenuManager : MonoBehaviour
 {

Variable declarations next:

 public CanvasManager _ canvasManager;
 public AudioMixer _theAudioMixer;

 public Slider _sfxSlider;

 public Slider _musicSlider;
 public string gameSceneName;

Above, we start with a reference to CanvasManager, to use to show and hide
canvases. The AudioMixer needs to be referenced in this script, too, so that we
can access and set its volume properties via the sliders. Those sliders are refer-
enced next. The sliders themselves use the Unity event On Value Changed() to
call functions on this class that will change volume levels on the AudioMixer. The
event and its corresponding reference to this scripts function must be set up in
the Inspector on the slider's Slider Component.

 void Start()
 {
 Init();
 }

 public virtual void Init()
 {
 if (_canvasManager == null)
 Debug.LogError("You need to add a
reference to a _canvasManager Component on your main menu Component!");

 // set the values of the UI (visible) sliders
to those of the audio mixers
 SetupSliders();

 Invoke("ShowMainMenu", 0.5f);
 }

196 11. Menus and User Interface

Above, Start() calls Init(). Init() checks that we have a reference in _canvas-
Manager, then calls SetupSliders() to set slider values from the current volume
levels. Finally, there is a call to show the main menu in an arbitrary amount of
time. We use a delayed call so that the menu is not transitioning as soon as the
Scene loads – it just looks a little more tidy when we are able to see what is hap-
pening before the transition starts.

 void SetupSliders()
 {
 // now set the UI sliders to match the values
in the mixer
 float value;
 _theAudioMixer.GetFloat("SoundVol", out
value);

SetUpSliders() is called by the Init() function above, and it starts by getting
the current volume level of the group named SoundVol from the AudioMixer
referenced in _theAudioMixer. By default, AudioMixers do not have any of their
properties exposed to scripts and it is something you need to set up in the editor.
For instructions on how to do this, see the earlier Chapter 9.

AudioMixers store levels in decibels, a range between a minimum of –80 up
to 20db maximum, whereas sliders use arbitrary values we can set in the Inspector.
In the example for this book, we use values between 0 and 1 representing a per-
centage amount. Our volume system, however, is complicated by the fact that not
only does the AudioMixer run from –80 to 20 but decibel amounts are not linear,
but instead logarithmic – essentially what this means is that we cannot rely on the
midpoint between minimum and maximum decibels actually being a midpoint
between silent and loud. If we were to use the sliders to set the decibel values, the
relationship between slider and actual volume would be off. Certainly, it would not
make a very intuitive interface. The user expects the slider to act as a linear scale
between 0 and 100% volume levels, so we need to do a little work to make that hap-
pen. The AudioMixer value needs to be converted to something we can use.

Above, we grabbed the volume from the AudioMixer and put it in to the
variable named value, so the next step is to convert value to a percentage:

 _ sfxSlider.value = DecibelToLinear(value);

The next part of the code handles music volume in a similar way, except of course
it uses a different slider and a different exposed property on the AudioMixer (MusicVol):

 _ theAudioMixer.GetFloat("MusicVol", out value);
 _musicSlider.value = DecibelToLinear(value);
 }

Next, two functions used to set the volume from values in our sliders:

 public virtual void SetSFXVolumeLevel(float aValue)
 {
 float dbVol = Mathf.Log10(aValue) * 20f;

Above, SetSFXVolumeLevel takes the percentage amount coming in via
aValue and converts it to decibels.

 _ theAudioMixer.SetFloat("SoundVol", dbVol);
 }

19711.2 The Main Menu

AudioMixer.SetFloat() is used to set the volume level of our AudioMixer to
the decibel value in dbVol. Next, we do the same for the music volume:

 public virtual void SetMusicVolumeLevel(float aValue)
 {
 float dbVol = Mathf.Log10(aValue) * 20f;
 _theAudioMixer.SetFloat("MusicVol", dbVol);
 }

Above, the music volume is set the same way we did the sounds volume above.

 private float DecibelToLinear(float dB)
 {
 float linear = Mathf.Pow(10.0f, dB / 20.0f);
 return linear;
 }

As mentioned earlier in this section, the user interface sliders work at a value
between 0 and 1 in this example. The utility function DecibelToLinear above will
take a value in decibels and return a number from 0 to 1 depending on how loud
or quiet the volume should be – between the range of –80 to 20db.

 void ShowMainMenu()
 {
 _canvasManager.TimedSwitchCanvas(2,0);
 }

 public virtual void StartGame()
 {
 _canvasManager.HideCanvas(0, false);
 _canvasManager.ShowCanvas(2, false);

 Invoke("LoadGameScene", 1f);
 }

ShowMainMenu() calls on the CanvasManager Component to switch the
active canvas from the loading screen (index of 2 in this example) to the main
menu which has an index of 0. The index numbers refer to the Canvases position
in the UI Canvas Groups list on the Canvas Manager Component on the
MenuManager GameObject.

StartGame() starts by hiding the main menu Canvas and then goes on to
show the loading screen. We use an Invoke() call to schedule the game to load
after 1 second, which gives the CanvasManager enough time to fade out the
menu and fade in the loading screen before we jump to the next Scene.

 public virtual void LoadGameScene()
 {
 // load your game here!
 SceneManager.LoadScene(gameSceneName);
 }

LoadGameScene() does just that, utilizing SceneManager.LoadScene() to do
it. The name of the Scene to load is stored in gameSceneName – this is a string
you can set in the Inspector, which makes it easier to use the menu for different
games without having to modify any code.

 public virtual void ShowOptions()
 {
 // switch to options menu

198 11. Menus and User Interface

 _canvasManager.TimedSwitchCanvas(0, 1);
 }

 public virtual void ShowExitConfirm()
 {
 _canvasManager.TimedSwitchCanvas(0, 3);
 }

 public virtual void CloseExitConfirm()
 {
 _canvasManager.TimedSwitchCanvas(3, 0);
 }

Above, the three functions ShowOptions(), ShowExitConfirm() and
CloseExitConfirm() all use CanvasManager.TimedSwitchCanvas() to switch
from one Canvas to another. ShowOptions() and ShowExitConfirm() switch
from the main menu to their respective Canvas whereas CloseExitConfirm()
switches from the exit confirm canvas (3) back to the main menu.

 public virtual void ExitGame()
 {
 // close the app down
 Application.Quit();
 }

ExitGame() uses Application.Quit() to close the game, which will only hap-
pen in a standalone build. It will do nothing in the editor.

 public virtual void OptionsBackToMainMenu()
 {
 // return to main menu from options
 _canvasManager.LastCanvas();
 }

 public virtual void BackToMainMenu()
 {
 // return to main menu from options
 _canvasManager.LastCanvas();
 }
 }
}

The last two functions above deal with going back to the main menu, using
the CanvasManager.LastCanvas() function which hides the current Canvas and
shows the previous one.

11.2.3 Combining BaseMainMenuManager to Use the
ProfileManager Script for Saving and Loading Audio Settings

The BaseMainMenuManager.cs script takes care of the menu functions, but it
has no built-in method for saving or loading audio settings. The framework in
this book includes a ProfileManager designed to deal with user profiles and the
saving and loading of game data. The class we build out in this section,
MenuWithProfiles, uses ProfileManager to save the volume amounts out as part
of the user data and derives from BaseMainMenuManager.

MenusWithProfiles begins with:

using UnityEngine;
using GPC;

[RequireComponent(typeof(BaseProfileManager))]

19911.2 The Main Menu

The only things of note in the code above is that we use the GPC framework
namespace and Unity's RequireComponent() is used to make sure that we have a
BaseProfileManager Component attached to the same GameObject.

public class MenuWithProfiles : BaseMainMenuManager
{
 public BaseProfileManager _profileManager;
 public override void Init()
 {
 _profileManager = GetComponent<BaseProfileManager>();

Above, as mentioned earlier the class derives from BaseMainMenuManager
to provide its menu functionality. Next up is a variable _profileManager to store
a reference to the BaseProfileManager Component, which is set up in the Init()
function using GetComponent() to find it.

 // init the profile manager to get preferences from
 _profileManager.Init();

ProfileManager needs to be initialized, since it stores and accesses profile
data and if we will not be able to access data before it has either been loaded or set
up for the first time.

 // need to grab profile volumes before base.Init sets
up the UI sliders
 LoadProfileVolumes();

In this function, we call the function LoadProfileVolumes() to grab volume
information from the ProfileManager and set volumes on the AudioMixer.

 // now we can run the base init - we've set up the
profile info
 base.Init();
 }

As this class derives from BaseMainMenuManager, once it has done its own
additional initialization in the Init() function we need to call Init() on the base
class so that the main menu runs through its initialization for the main menu too.

 void LoadProfileVolumes()
 {
 // get volume values from profile manager
 _theAudioMixer.SetFloat("SoundVol",
_profileManager.GetSFXVolume());

Above, the LoadProfileVolumes() function uses SetFloat on the AudioMixer
to set its SoundVol property. The volume level comes in from a call to the
GetSFXVolume() function of the ProfileManager, which will either be at a level
set on a previous run and saved to the save profile or its default value of 0. This
value is in decibels, so 0 is not silent but instead Unity's default audible volume for
an AudioMixer.

 _ theAudioMixer.SetFloat("MusicVol",
_ profileManager.GetMusicVolume());

Above, the process for setting the music volume is the same as we set the
sound effects only the volume comes in from GetMusicVolume() and we set the
MusicVol property on the AudioMixer this time to affect the music levels.

200 11. Menus and User Interface

 public override void SetSFXVolumeLevel(float aValue)
 {
 float dbVol = Mathf.Log10(aValue) * 20f;
 _theAudioMixer.SetFloat("SoundVol", dbVol);

 // write the volume change to the profile
 _profileManager.SetSFXVolume(dbVol);
 }
 public override void SetMusicVolumeLevel(float aValue)
 {
 float dbVol = Mathf.Log10(aValue) * 20f;
 _theAudioMixer.SetFloat("MusicVol", dbVol);

 // write the volume change to the profile
 _profileManager.SetMusicVolume(dbVol);
 }

The SetSFXVolumeLevel() and SetMusicVolumeLevel() functions are
declared in the BaseMainMenuManager class this derives from. Here, we over-
ride the base class version of them to add in calls to SetSFXVolume() and
SetMusicVolume() on the _profileManager object. This will save out the volume
levels along with the save profile whenever the save profile is saved.

 public override void OptionsBackToMainMenu()
 {
 // save updated settings
 _profileManager.SaveProfiles();

 // return to main menu from options
 _canvasManager.LastCanvas();}
}

Finally, for the MenuWithProfiles class, we override OptionsBackToMainMenu()
from the base class to add saving of the profiles whenever the user exits the
options menu to go back to the main. Calling SaveProfiles() will save out all of
the profiles ProfileManager is storing data for (default is 3 profiles).

11.3 In-Game User Interface
The way the example games in this book deal with user interfaces is to have a
dedicated script for UI actions (like updating the text of the score display and so
on) that the Game Manager calls to keep user interface away from other game
logic.

The main game interface is on its own Canvas and when we need to do things
like display a message (for example, a get ready message before gameplay starts)
the message is on its own Canvas so that we can fade out the main game Canvas
first. The CanvasManager is used to switch between them and it also provides a
nice bit of polish by fading in the main UI when the game first starts.

201

12 Saving and
Loading Profiles

Saving and loading user data can be handled in many ways. For example, you might
just store everything in a static class and dump it out to a .JSON file whenever you
need to. Perhaps you want to use .xml format files, or even a database? In this chap-
ter, we will look at a method for saving and loading user data that uses a
ScriptableObject combined with .JSON for its format. The ScriptableObject contains
an array of instances of a data class named ProfileData. The ProfileData class holds
everything we want to save and load to Profiles. By using an array of ProfileData in
the ScriptableObject, we can easily load, and save to more than one save profile.

The system in this chapter works with save slots, although there is no exam-
ple user interface to choose a different slot. The example games simply use the
first profile, but if you decide to take this further and build out an interface for
multiple slots, you can call ChooseProfile(<slot number>) to select whichever slot
ties up with your user interface.

 12.1 The Save Profile ScriptableObject
We use a ScriptableObject for two reasons. One is so that the data is easily acces-
sible from anywhere in our games – a reference to the ScriptableObject gives you
a reference to the data. You can modify data on the ScriptableObject instance and
wherever it is accessed from, the data will be up-to-date with the latest modifica-
tions. The second reason for a ScriptableObject is that we can instantly see
it update inside the Unity editor, making it easier to debug storage. The
ScriptableObject is an excellent way to store data and access it from anywhere.

You can find this ProfileScriptableObject.cs file in the folder Assets/GPC_
Framework/Scripts/COMMON/SCRIPTABLEOBJECTS.

202 12. Saving and Loading Profiles

The namespaces this script refers to are UnityEngine and System:

using UnityEngine;
using System;
namespace GPC
{

The class exists within the GPC namespace, which is used by this book for its
framework. You could just as easily change or remove the namespace the scripts
in this chapter reside in, but I find it helps to keep everything in a namespace like
this so that you a) know where the script came from originally and b) scripts
don’t overlap each other with variable names or function names and so forth.

 [CreateAssetMenu(fileName = "ProfileData", menuName =
"CSharpFramework/ProfileScriptableObject")]

Above, this is something those of you familiar with ScriptableObjects will
recognize, though it may not mean much to anyone new to using them. When we
declare a ScriptableObject, we do not actually use an instance of this class in the
same way we might normally. What happens is that we instead create an object in
the Unity editor that will become our ScriptableObject to use in the game(s). The
object made in Unity will hold and display the data we outlined in the script file.

In order to make the ScriptableObject accessible to Unity editor users like us,
we need to use CreateAssetMenu() to add a new menu option to Unity’s menus.
In the case above, we pass in two parameters to CreateAssetMenu(). Those are:

Filename – This will be used as the default name for a ScriptableObject when
you use the menu to add it to the project.

Menu name – This defines how the item should appear in Unity’s menus and
where it should be located. By default, the item will appear in the Assets/Create
menu. You can then specify sub-folders within that folder to categorize and
organize your menu assets. In the example code above, the asset will appear in
Assets/Create/CSharpFramework/ProfileScriptableObject.

 [Serializable]
 public class ProfileScriptableObject : ScriptableObject
 {
 public Profiles theProfileData;
 }

Above, the chunk of code starts out with [Serializable]. This is very impor-
tant, particularly as we are saving and loading data. Serialization, put simply, is
the act of taking a class like this and being able to read or write it as a sequence of
data suitable for transport such as saving and loading to or from disk. If we do not
tell Unity what we want to serialize, our profile save, and load code will not work.

The class declaration makes sure we derive from ScriptableObject, then
inside the class there is a single variable declaration for the ProfileData. The
ProfileScriptableObject ScriptableObject only needs this single variable named
theProfileData. Its type, Profiles, refers to a class named Profiles declared next, in
the same C# file:

 [Serializable]
 public class Profiles

203 12.2 The BaseProfileManager Class

 {
 public ProfileData[] profiles;
 }

The variable Profiles, above, can contain multiple instances of the ProfileData
class so that we can store more than one user profile in the same system/file. The
ProfileData class is next in the script and it contains everything we want to store
from the game:

 [Serializable]
 public class ProfileData
 {
 [SerializeField]
 public int myID;
 [SerializeField]
 public bool inUse;

 [SerializeField]
 public string profileName = "EMPTY";
 [SerializeField]
 public string playerName = "Anonymous";

 [SerializeField]
 public int highScore;
 [SerializeField]
 public float sfxVolume;
 [SerializeField]
 public float musicVolume;
 }
 }

Above, first note that [Serializable] is used on the class whereas [SerializeField]
is used on each variable. Having these tags for your user data variables is impor-
tant, again, for saving, and loading to work correctly.

ProfileData in its current state offers the most basic of settings and game
information a game might need. When you develop your own games, should you
use this system, you will need to add in more variables for whatever you need to
store. Keep in mind that certain types like Vector3 are not directly serializable and
you may have to do some work to store them in imaginative ways. For example,
whenever I store a Vector3 for saving and loading I store them as an instance of my
own ‘clone’ of the Vector3 type containing three separate variables for the x, y, and
z coordinates.

I do not know if there is an easy way to tell which types are serializable, or if
there is a list anywhere you can refer to, so Google search is going to be your best
option for this.

 12.2 The BaseProfileManager Class
For saving and loading profile data, the example in this book uses the .JSON data
format and utilizes Unity’s built-in JsonUtility for encoding and decoding the
.JSON strings. We then use the System.IO.File class to save and load the strings
formatted by JsonUtility. It is important to note that these files are not secure.
You may want to look at an encryption library if you need to secure the user
Profiles or you are concerned with cheaters changing the data, but we will not be
covering that here.

As well as providing the functionality for saving and loading the data,
BaseProfileManager.cs has functions for getting and setting the data out of the

204 12. Saving and Loading Profiles

Profiles, too. This is to make accessing the data easier, as the path to the data can
sometimes be a little long to be repeatedly typing out in other functions. We save
a bunch of repetition by providing the functions to return data right from inside
the BaseProfileManager class. As you grow and expand your own save Profiles,
you should bear that in mind and consider adding functions to this class to make
it easy to get or set save profile data from your other scripts.

using UnityEngine;
using System;
namespace GPC
{
 public class BaseProfileManager : MonoBehaviour
 {
 [System.NonSerialized]
 public bool didInit;
 public ProfileScriptableObject profileObject;
 public static ProfileData loadedProfile;
 public string profileSaveName = "Game_ProfileData";

 private int numberOfProfileSlots = 3; // you can
change this to whatever you want, but for this example we'll only
need 3 slots

BaseProfileManager derives from MonoBehaviour, so that we can easily
change and set values in the Inspector as needed.

We use the regular didInit, just as a safeguard we can look to whenever we
need to make sure that the script has run its Init() function.

Next above, we declare the variable profileObject – this is typed as a
ProfileScriptableObject (yes, the same one we made in Section 12.1 earlier!) and
it will hold a reference to the ScriptableObject we use for storing user Profiles in.
Below that, you can see the variable loadedProfile, a ProfileData typed variable
that will be used to store the currently loaded profile data whenever we need it.
Note that the actual profile data is still stored in the ScriptableObject but we use
this to hold the individual profile we are accessing (during the game or whenever
we need to get data from a profile).

Whenever we save and load data, it needs a filename. We hold a filename in pro-
fileSaveName and it is publicly declared so it can be edited in the Inspector. Just be
sure that the filename is the name if you use BaseProfileManager in multiple Scenes.

The last variable above is numberOfProfileSlots. In effect, this just defines
the length of the array used to store data in the ScriptableObject (then, in turn,
the save files). You can have as many Profiles as you like, but it will be up to you
to provide an easy way to display them to the user.

Note that this book does not include an interface for selecting a save profile.
We just save to the first profile – if you need to add additional save profile func-
tionality, that is left up to you.

The Init() function is up next:

 public void Init()
 {
 // grab the ScriptableObject from Resources/
ScriptableObjects folder
 if(profileObject==null)
 profileObject = Resources.Load
("ScriptableObjects/ProfileData") as ProfileScriptableObject;

The variable profileObject should contain a reference to the ScriptableObject
used for profile data storage. When profileObject is null, we know that it has

205 12.2 The BaseProfileManager Class

not been populated in the editor’s Inspector on this Component. If we know
profileObject has not yet been populated, Init() begins by trying to automatically
grab a reference to it by looking in Resources. If you are unfamiliar with
Resources, this is Unity’s system for including files that may not always need to
be loaded in memory and can be loaded at runtime. You do this by simply nam-
ing a folder Resources in your project. Anything in the folder will need to be
loaded through code or referenced in variables via the Inspector. By putting a
ScriptableObject in Resources, we can find it easily through code.

Resources.Load takes a file path and file name as a string, for a parameter,
which in the case above is ScriptableObjects/ProfileData. Note that the file path
and file name here points to the ScriptableObject – not the .JSON file. Also notice
that we do not need to include the Resources folder as a part of the file path –
Unity will always assume a Resources.Load() function refers to files inside a
Resources folder and we do not have to be explicit about it. As well as the file path
and file name, it is important to state the type of object you are loading from
Resources by using the as keyword at the end of the statement. Above, we are
loading a ProfileScriptableObject.

 string theFileName =
Application.persistentDataPath + "/" + profileSaveName + ".JSON";

Above, theFileName is a string that makes up the file path and file name of
our save profile .JSON file. Using Application.persistentDataPath gives you a safe
place to store profile data. Although it can still be deleted by the user, you can be
confident that your game will have access to this location and that it will not be
wiped out by updates to the main game files. Added to this is the string held in
profileSaveName and we add the file extension .JSON to the end. You could
change the file type to whatever you wanted, by the way. It will not make any dif-
ference to the loading or saving of the file – it is just there to tell other users what
type of file this is. If this was used in my game, I would probably save it as a .jef file!

 // if we already have saved profiles on disk,
load them.. otherwise, we create them!
 if (System.IO.File.Exists(theFileName))
 {
 LoadAllProfiles();
 }
 else
 {
 CreateEmptyProfiles();
 }

Before we can do anything with Profiles, we either load them, or create new
ones. The code above uses System.IO.File.Exists() to see if our file exists before
trying to access it (you should always do this!). If the file exists, we know we
can load it so the LoadAllProfiles() function is called. If not, we call
CreateEmptyProfiles() to make new ones.

 // by default, we'll choose the first profile
(we can load another after this, but for now this will be the place
to save settings etc.)
 ChooseProfile(0);

 didInit = true;
 }

206 12. Saving and Loading Profiles

At the end of the Init() function, ChooseProfile() sets the default profile to 0.
This is used simply as an index later in the script when we access the array con-
taining Profiles. As Init() is done, the didInit variable is set to true.

 public string GetProfileName(int whichSlot)
 {
 return
profileObject.theProfileData.profiles[whichSlot].profileName;
 }

GetProfileName() is used to get the name of the save profile. In many games,
this would be something like the name of the user followed by the data and time
that the profile was last accessed. Making the profile names easy to identify like
that will help your players to figure out which profile to load.

The profile name is stored as a variable in the profile data, but unfortunately
this means that the path to get to it is a little long-winded: profileObject (the
ScriptableObject) .theProfileData (the data) .profiles[whichSlot] (item whichslot
in the array of profile data) .profileName – finally, the profile name!

 public void ResetProfile(int whichSlot)
 {
 // here, we reset all of the variables in our
profile to their default values

 profileObject.theProfileData.profiles[whichSlot].inUse = false;

 profileObject.theProfileData.profiles[whichSlot].musicVolume =
0; // default music and sound to full volume (NOTE: In decibels!)

 profileObject.theProfileData.profiles[whichSlot].sfxVolume = 0;

 profileObject.theProfileData.profiles[whichSlot].profileName =
"EMPTY PROFILE";

 profileObject.theProfileData.profiles[whichSlot].highScore = 0;
 }

Most profile systems include a method for players to delete old Profiles or
overwrite them with new ones. Above, the ResetProfile() script takes the profile
index number as a parameter and will set up the default values for that particular
profile. If you extend the profile system to include additional data, you will need
to add additional default states to this function.

The first thing we set is the .inUse Boolean. This is used by the profile man-
ager to tell which Profiles are active and which are not. One example use for the
inUse flag might be, since we are using multiple Profiles in a single file, display
code checking inUse to know whether to show details of the save profile or
whether to show a ‘create new profile’ button instead.

The rest of the default values are: musicVolume, sfxVolume, profileName,
and highScore. Above, they are set to whatever values I think make good defaults.

 public void CreateEmptyProfiles()
 {
 // create an array in the profileObject
ScriptableObject, consisting of numberOfProfileSlots x ProfileData
objects
 profileObject.theProfileData.profiles = new
ProfileData[numberOfProfileSlots];

 // make empty profiles

207 12.2 The BaseProfileManager Class

 for (int i = 0; i < numberOfProfileSlots;
i++)
 {
 profileObject.theProfileData.
profiles[i] = new ProfileData();
 }

 // save the new empty profile file to disk
 SaveProfiles();
 }

Back in the Init() function, when a profile save file was not found by System.
IO.File.Exists(), we called the CreateEmptyProfiles() function above. At this
point, we can assume that the ScriptableObject used for holding profile data is
empty. This function will set up a new array to go into the ScriptableObject’s
array, and then new ProfileData instances to populate the array with.

After the array is populated, a call to SaveProfiles() goes out to save the file to
disk. Next time Init() runs, rather than calling this function it should find the
new file and load it, instead.

 public void ChooseProfile(int whichSlot)
 {
 // we need to see if this profile is in use
yet or not, if not we set it to used and name it

 if (profileObject.theProfileData.
profiles[whichSlot].inUse == false)
 {

Above, ChooseProfile is used to select a profile. If you build out an interface
to choose save Profiles, this is the function you would call when the user clicks on
a particular profile slot.

 profileObject.theProfileData.profiles[whichSlot].profileName =
DateTime.Now.ToString();

 profileObject.theProfileData.profiles[whichSlot].inUse = true;

The profileName is set above to a string containing the date and time, cour-
tesy of C Sharp’s DateTime class. This will make it easy to identify the latest saved
game when there are multiple Profiles in play.

Next, the inUse flag is set to true for this profile so that we can easily tell it is
active.

 profileObject.theProfileData.profiles[whichSlot].playerName =
"Anonymous";

 profileObject.theProfileData.profiles[whichSlot].musicVolume =
0; // default music and sound to full volume (NOTE: In decibels!)

 profileObject.theProfileData.profiles[whichSlot].sfxVolume = 0;

 profileObject.theProfileData.profiles[whichSlot].highScore = 0;
 }

The code above sets up default values for the player name, audio volumes,
and high score.

 // set the loaded profile and put it into a
var for easy access

208 12. Saving and Loading Profiles

 loadedProfile =
profileObject.theProfileData.profiles[whichSlot];

 Debug.Log("CHOSEN PROFILE " + whichSlot);
 }

The variable loadedProfile is set to the chosen profile above, with a quick
debug log message sent out so that we can easily see which profile is active from
inside the Unity editor.

 public void LoadAllProfiles()
 {
 Debug.Log("LOAD PROFILES!!!!");

 string theFileName =
Application.persistentDataPath + "/" + profileSaveName + ".JSON";

Remember that the save game profile system is essentially an array of objects.
As long as those objects are serializable, we can use save time by using built-in
functions for saving and loading. And this is exactly what we are doing in this
next section of code. Above, we set the file path and file name. This is made up of
Application.persistentDataPath followed by a forward slash (very important) and
them the profileSaveName variable and our file extension. If you change any of
the code in this class you will need to be absolutely sure that whenever file names
are used, they match exactly. For example, if you changed the file extension ear-
lier to .jef you would need to do so here, too.

 string jsonString =
System.IO.File.ReadAllText(theFileName);

The file already on disk should be formatted in JSON, since it was created by
our BaseProfileManager class. To load it back in, we use System.IO.File.
ReadAllText() to load the entire file into one big string. Now that we have our
JSON formatted data in a string, it can be parsed in using the JsonUtility class:

 Profiles tempProfiles =
JsonUtility.FromJson<Profiles>(jsonString);
 profileObject.theProfileData = tempProfiles;
 }

You may recall from Section 12.1 inside the ScriptableObject we declared
only one variable named theProfileData. It was typed Profiles, which is a small
class holding an array of profile data. Above, we use JsonUtility.FromJson to
translate the data inside the string we just loaded, back to a Profiles object like the
one it started out as, when the file was last saved. tempProfiles holds the loaded
data, so on the next line it is just a case of setting our profileObject’s variable
theProfileData to tempProfiles. In summary, what we did in those two lines above
was to parse the data out from the string into a local (temporary) variable, then
copy the data inside that local variable into our ScriptableObject profileObject.

 public void SaveProfiles()
 {
 // we never actually just save one profile,
we save them all!
 Debug.Log("SAVE PROFILES!!!!");

209 12.2 The BaseProfileManager Class

The first thing SaveProfiles() does is put out a quick message to the debug
log. Feel free to remove this, but I find it helpful to see certain messages like this
in the logs if anything ever goes wrong.

 string jsonString =
JsonUtility.ToJson(profileObject.theProfileData);

We use Unity’s JsonUtility class and its ToJson() function to convert our pro-
file data into a JSON formatted string. Wait, what? This requires a little more
explanation. Right now, all the profile data is held in the ScriptableObject prof-
ileObject. All we do to get this converted into JSON is to pass in the instance of
the class containing the data. Just as long as the data is serializable, JsonUtility.
ToJson() will iterate through the class and all of its variables and format it into a
string for us. Pretty neat, right?

 // now write out the file
 string theFileName =
Application.persistentDataPath + "/" + profileSaveName + ".json";
 System.IO.File.WriteAllText(theFileName,
jsonString);
 }

Above, we set up the file path and filename for saving the file to (again, mak-
ing sure that this exactly matches the file path and filenames used elsewhere in
the class).

The profile data is now JSON formatted in the local string variable named
jsonString, so we can just dump it all out as a text file using System.IO.File.
WriteAllText(), which takes two parameters – the file name and the string data.

The remaining functions in this class are used to get and set individual vari-
ables on the profile data, such as setting audio volumes or getting the high score:

 public void SetSFXVolume(float aVal)
 {
 loadedProfile.sfxVolume = aVal;
 }

 public void SetMusicVolume(float aVal)
 {
 loadedProfile.musicVolume = aVal;
 }

 public float GetSFXVolume()
 {
 return loadedProfile.sfxVolume;
 }

 public float GetMusicVolume()
 {
 return loadedProfile.musicVolume;
 }

 public bool SetHighScore(int score)
 {
 // if we have a high score, this function
returns true.

 // if the incoming score is higher, set the
high score

210 12. Saving and Loading Profiles

 if (loadedProfile.highScore < score)
 {
 loadedProfile.highScore = score;
 SaveProfiles();
 return true;
 }

 return false;
 }

 public int GetHighScore()
 {
 if (!didInit)
 Init();
 return loadedProfile.highScore;
 }
 }

}

211

13 Loading Level
Scenes

Loading and saving Scenes in Unity is done with the built in SceneManager class.
SceneManager offers a range of utilities for Scenes – everything from straight
loading to combining and manipulating multiple Scenes at the same time.

The RunMan game example from Chapter 2 used SceneManager to load the
game from the main menu using SceneManager.LoadScene(). It is a function
that will load a new Scene and unload the current one without you having to do
anything further. Later in this book, the Blaster and Racing Game examples
both use an alternative method that loads two Scenes, combines them together
into one and then manually unloads the current Scene. This is useful in cases
where the game logic remains the same throughout, but you want to load in dif-
ferent environments and/or enemies and so forth. Rather than copying the
game logic to every Scene, you can make a core Scene and separate individual
level Scenes which are combined at runtime into one. Traditionally, in Unity,
this has been achieved by using a single GameObject containing the game logic
and making it persist across Scenes with the DoNotDestroyOnLoad tag. Having
to maintain that object and make sure that all references are correctly disposed
of, states reset, and new objects created each time, can be messy, and difficult to
manage.

When you just use SceneManager’s LoadScene() function in Unity, loading
locks everything up until the new Scene has finished loading. This may be fine if
the delay is less than a few seconds, perhaps loading a simple Scene like the
RunMan game from Chapter 2. On the other hand, long delays or lockups nega-
tively impact the perceived polish level of your game and it can look as though
something has gone wrong as the user waits for the Scene to update. The
LevelLoader class from this chapter loads levels asynchronously, meaning we can

212 13. Loading Level Scenes

do cool things as the loading takes place such as showing a percentage complete
amount, a progress bar, or a spinning image. It is, after all, the small touches like
these that help your game appear more polished to its players.

In the Unity editor, you can work on multiple Scenes at the same time by
dragging Scenes from the Project browser directly into the Hierarchy panel.
Check out the example Blaster and Racing games in this book for more on setting
up and editing separated core and level Scenes like this.

All of the scripts for this chapter can be found in the folder Assets/GPC_
Framework/Scripts/COMMON/LEVEL LOADING.

13.1 A Script for Loading Levels: LevelLoader.cs
LevelLoader.cs starts with:

using System.Collections;
using UnityEngine;
using UnityEngine.SceneManagement;

namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Utility/Level Loader")]

 public class LevelLoader : MonoBehaviour
 {

Above, something to note is that we need to access the namespace System.
Collections. Without the using statement giving us access to those types, we
would not be able to use the IEnumerator type we need to be able to run co-
routines during loading.

We also need to use UnityEngine.SceneManagement to be able to access the
SceneManager class for loading.

LevelLoader derives from MonoBehaviour – at some point, if you are using
co-routines you will need to derive from MonoBehaviour (even if it is further
down in the Hierarchy of inheritance!) for them to work correctly.

 public bool loadOnSceneStart;
 public string coreSceneName;
 public string levelSceneToLoad;

Variable declarations are basic for this script. If you want to start the loading
process automatically when the Scene that this script runs in, check the loadOn-
SceneStart checkbox in the Inspector on this Component and set our first
declared variable, a Boolean, to true.

Next above, there are two strings. One for the coreSceneName and one for
the levelSceneToLoad. Remember when we said that we use two independent
Scenes? You need to populate these strings with the names of your core and level
Scenes if you want to start the loading process automatically. Of course, if your
players are going to be moving from level to level, the level name will need to be
changed and updated as they progress through the game.

 public virtual void Start()
 {
 if (loadOnSceneStart)
 LoadLevel();
 }

212

21313.1 A Script for Loading Levels: LevelLoader.cs

The Start() function is there to see if we are automatically starting the load-
ing process. When loadOnSceneStart is true, we call LoadLevel().

 public void LoadLevel()
 {
 LoadLevel(levelSceneToLoad);
 }

The LoadLevel() function comes in two flavors. The first, which takes no
parameters, will use the string in the variable levelSceneToLoad as the Scene to
load, and load it. This is provided mostly so that we can automatically initiate a
load in the Start() function, but you may find other uses for it. The first LoadLevel()
calls the second LoadLevel() function in our script below, requiring a Scene name
string as a parameter:

 void LoadLevel(string levelSceneName)
 {
 StartCoroutine(LoadAsyncLevels(levelSceneName));
 }

The second LoadLevel above calls StartCoroutine() to start the loading pro-
cess, starting the co-routine named LoadAsyncLevels.

 IEnumerator LoadAsyncLevels(string whichLevel)
 {
 Scene loaderScene = SceneManager.GetActiveScene();

Above, we get to the start of the LoadAsyncLevels() co-routine. Loading is
handled by a co-routine named LoadAsyncLevels and it takes the Scene name to
load as a parameter. The name we pass into LoadAsyncLevels will be used to load
the level, not the core Scene. We assume that the core Scene will remain the same
throughout the game and so we get its Scene name from the variable coreScene-
Name rather than passing it in each time.

The first thing we do inside the co-routine is to get a reference to the cur-
rently active Scene. We do this so that we know which Scene to unload once the
load process is done.

 AsyncOperation asyncLoad =
SceneManager.LoadSceneAsync(whichLevel, LoadSceneMode.Additive);

Step 1 of our loading process is to use LoadSceneAsync to grab the level
Scene. We do this with the LoadSceneMode set to additive, meaning the Scene
will be loaded without encroaching on the currently loaded Scene. Whenever you
call SceneManager to load a Scene asynchronously, it will return an
AsyncOperation – an object we can use to check on load progress and can access
to see if the loading sequence has finished.

 // Wait until the asynchronous scene fully loads
 while (!asyncLoad.isDone)
 {
 yield return null;
 }

The variable asyncLoad (typed as an AsyncOperation) is used to find out
when the load sequence has finished. We do this by polling its isDone property in

21313.1 A Script for Loading Levels: LevelLoader.cs

214 13. Loading Level Scenes

a while loop so that it will continue to execute the code between the curly brack-
ets right up until the Scene has finished loading. Inside the brackets, the line yield
return null. Whenever you do not use a yield, the co-routine will run the loop
until it is done. The yield tells our code to wait until the next frame before con-
tinuing to run. The code above checks isDone every frame so that the load pro-
cess can continue and asyncLoad can be updated. Without continuing Unity’s
regular operations, asyncLoad would never update, and the loading would never
complete.

 AsyncOperation asyncLoad2 =
SceneManager.LoadSceneAsync(coreSceneName, LoadSceneMode.Additive);

Now that the level Scene has finished loading, above we start the next load
with another call to SceneManager.LoadSceneAsync. This time, we pass in the
coreSceneName to tell it to load the core Scene. Again, the LoadSceneMode is
additive so that it will not interfere with the level already in memory.

 // Wait until the asynchronous scene fully loads
 while (!asyncLoad2.isDone)
 {
 yield return null;
 }

Above, the same procedure as for level loading in that we poll isDone and
yield each frame until the Scene is ready to go. Now that our two Scenes are
loaded, we can move on to getting them set up and running:

 // disable the camera before the scene starts to
avoid Unity getting stuck in some sort of complaining loop
 // about more than one camera in the scene :(
 Camera.main.gameObject.SetActive(false);

A little diversion above, as we need to deal with a little problem that occurs
when Unity detects more than one Camera in a Scene – it reports an error to the
debug log console. At the time of writing, a bug in the engine causes the error to
continue being reported even after any additional Cameras have been removed.
Although it may be possible there is a way to rearrange this sequence of events so
that Unity does not do this, the only solution I could find was to set the current
main Camera’s active state to false – effectively disabling the Camera before
Scene activation happens.

 SceneManager.MergeScenes(SceneManager.
GetSceneByName(whichLevel),
SceneManager.GetSceneByName(coreSceneName));
 SceneManager.SetActiveScene(SceneManager.
GetSceneByName(coreSceneName));

The next part of the co-routine uses SceneManager’s MergeScenes() func-
tion to take the two Scenes loaded earlier in the code and merge them into a sin-
gle, new Scene in memory. Note that the merged Scene does not exist on disk,
only in memory. To merge the two Scenes, SceneManager.MergeScenes takes two
Scene references as parameters – which we get by using SceneManager.
GetSceneByName(). Using GetSceneByName() means we can get references to
the correct Scenes by using the string passed into the co-routine (the level Scene
name string) and the string in the variable coreSceneName. When you use

21513.2 Multiple Level Loading

MergeScenes(), the order of the parameters also affects how the Scenes are
merged, in that the first Scene is a Scene to merge and the second is the Scene to
merge the first into. That is, the new merged Scene will be referred to in memory
as the second Scene you passed in as a parameter to SceneManager.MergeScenes().

SceneManager.SetActiveScene() tells Unity that we now want to use the core
Scene already loaded into memory with the level merged into it (above, we refer
to the coreSceneName in SetActiveScene() to get to our new, merged Scene).

 AsyncOperation asyncLoad3 =
SceneManager.UnloadSceneAsync(loaderScene);

With the current Scene set to our new, merged Scene, the SceneManager.
UnloadSceneAsync() function is used to unload the Scene we were in whenever
the loading started.

 // Wait until the asynchronous scene fully unloads
 while (!asyncLoad3.isDone)
 {
 yield return null;
 }

Before we reach the end of the co-routine, the code chunk above checks
isDone to monitor the unloading process. Once the previous Scene has been fully
unloaded, its AsyncOperation.isDone Boolean will be true and we can move on
to the end of the co-routine:

 yield return new WaitForSeconds(1);

 }
 }
}

The last piece of the puzzle is to wait for one second before the co-routine
shuts down.

13.2 Multiple Level Loading
When you have a game that has multiple levels, you need a method for using the
LevelLoader class to load levels but how can we set the filename if the Scene load-
ing Scene is a different one to the main game? The answer lies in a LevelVars class
that will hold a few static variables for the Scene loading code to pick up on and
use for loading our levels during gameplay.

To hold information about which Scenes to load, we have LevelVars.cs:

using UnityEngine;
namespace GPC
{
 [AddComponentMenu("CSharpBookCode/Utility/Level Vars")]

 public class LevelVars : MonoBehaviour
 {
 public static int currentLevel;
 public static string levelNamePrefix =
"game_level_";
 public static string coreSceneName = "game_core";
 }
}

216 13. Loading Level Scenes

Now, from anywhere in our game we can access LevelVars.currentLevel – an
index number used to form a part of the filename for levels – as well as set the
level name and core Scene name prefixes for our level loader Scene to use.

Rather than changing LevelLoader to include this functionality, it is better
to make a new script that derives from it so that the LevelLoader class’s function-
ality remains intact. Here, we build a LevelLoader derivative called MultiLevel
Loader.cs:

namespace GPC
{
 public class MultiLevelLoader : LevelLoader
 {

Above, our script starts with the usual namespaces and a class declaration
that states our new class derives from LevelLoader.

 public override void Start()
 {
 // construct a level name from the values held in
LevelVars static vars (hopefully set by the main menu at game
start)
 levelSceneToLoad = LevelVars.levelNamePrefix +
LevelVars.currentLevel.ToString();
 coreSceneName = LevelVars.coreSceneName;
 LoadLevel();
 }
 }
}

This is a relatively straightforward script. The Start() function overrides
Start() from the base class. We first construct a filename for the levelSceneToload
variable, using the levelNamePrefix and currentLevel strings out of the LevelVars
class we made earlier in this section. The assumption here is that your level Scenes
will be named with a prefix followed by a number (for example, racing_track_1
or blaster_level_2 and so on).

With the level string set up, we go on to copy over the coreSceneName string
from LevelVars and put it into the variable coreSceneName.

You may recall from the script breakdown of LevelLoader earlier in this
chapter in Section 13.1, that the LoadLevel() function will use these two string
variables to know which Scenes to load and that parameters for the LoadLevel()
function are optional. Above, we call LoadLevel() and it should then go ahead
and use the variables we just populated at the top of the script to load and merge
our game Scenes into one, before activating them ready to play.

13.3 Building a Multi-Scene Level Loader in Unity
Here, we start by creating a new Scene in Unity.

Click the plus sign at the top of the Project panel. Choose Scene, to create a
new Scene. Name the new Scene sceneLoader and double click to open it.

At the top of the Hierarchy, click the plus sign to add a new GameObject.
Choose Create Empty from the list and rename the new GameObject to
SceneLoader.

Click on your new SceneLoader GameObject in the Hierarchy to highlight it
and show its properties in the Inspector. In the Inspector, click Add Component,

21713.3 Building a Multi-Scene Level Loader in Unity

and start typing Multi Level Loader until you can see it in the list, then choose
Multi Level Loader from the menu to add it to the GameObject.

In the newly added Component, you can set the Core Scene Name and Level
Scene to Load, but for now leave them at their default values. We will have the
code update these fields, instead. Remember, in the last Section 13.2. we built out
the MultiLevelLoader.cs script to override the original LevelLoader. The fields we
see in the Inspector are from the base class and our derived class will not even use
Load On Scene Start, it will just go ahead and start loading from its Start()
function.

You may wish to build out some user interface in this Scene, too, such as a
loading message and perhaps a spinner (automatically spinning image) to keep
things moving as it loads.

Save the Scene.
To use the principles outlined in this chapter, your main menu should load

another Scene to deal with the loading of the game Scenes.
Load your menu Scene or the Scene that loads just before the game starts.

Wherever you would normally load a Scene to start the game, we need to load our
scene loader Scene instead. To do this:

 1. Make sure that you have using UnityEngine.SceneManagement at the
top of the script.

 2. Where you want to start the game, add the following code:

 // set up LevelVars static vars so that the sceneloader knows
what it's supposed to be loading

 LevelVars.coreSceneName = "core_game";
 LevelVars.currentLevel = 1;
 LevelVars.levelNamePrefix = "level_";

 // start the game
 SceneManager.LoadScene("SceneLoader");

 3. Make sure that the core Scene name above matches with whatever you
name your core Scene and the same with the levelNamePrefix variable –
make sure it matches exactly (including case) with how you name your
level Scenes.

 4. If you need to change the current level, set LevelVars.currentLevel so
that your scene loader Scene will form a filename with the correct level
number at the end of it.

https://taylorandfrancis.com

219

14 Racing Game

In this chapter, we will be building out a racing game (Figure 14.1) and it will
have almost everything a no-nonsense racer might need – AI opponents, a
respawning system, wrong way detection, and modern video game car physics
using Unity’s Wheel Colliders for suspension and car control.

The focus for this chapter is on the scripts, which means it will not be the
same step by step tutorial format used in Chapter 2 for the RunMan example.
There may be some work on the Unity side that will not be covered. You are
expected to open up the example project and use this chapter as a guide to find
out how it all works, but there will be full script breakdowns and enough infor-
mation for you to be able to make your own game – this is just a heads up that in
this chapter we focus on the programming a lot more than steps on how to use
Unity.

The overall structure of our racing game is shown in Figure 14.2. At its
core is a Game Manager to deal with overall game states, which will be talking
to a Global Race Controller script. The Global Race Controller acts to wrangle
all the player information into coherent racing info such as current lap, who
has finished the race and so on. The structure for vehicles (Figure 14.3) uses a
Race Player Controller Component to provide information to, and communi-
cate with, the Global Race Controller. The scripts used to calculate and monitor
race information (current lap, race position and so on) work independently,
meaning it does not matter what type of vehicle or avatar the player is – it could
be a vehicle, a humanoid running, a space ship, or a rolling ball – as long as
Race Player Controller is provided with what it needs, the racing specific logic
will work.

This game may be found in the example games project. The files for this
game can be found in the Assets/Games/Racing Game folder. If you want to play

220 14. Racing Game

the game, the controls are the arrows – up and down to accelerate or brake, with
left and right to turn left or right respectively.

The game works over six Scenes: a main menu, a level select, a Scene loader,
a core Scene containing the Game Manager and GameObjects shared across lev-
els and then two further track Scenes.

Figure 14.2 Racing game structure.

BASE USER
MANAGER

MOVEMENT
CONTROLLER

(VEHICLE,
HUMANOID, SHIP

ETC.)

INPUT
CONTROLLER

PHYSICS
(TRANSFORM /

RIGIDBODY/
COLLIDER ETC.)

AI CONTROLLER

PLAYER
CONTROLLER

USERDATA

RACE GAME
MANAGER

GLOBAL RACE
MANAGER

UI MANAGER

RACE
CONTROLLER
(IN THIS CASE,

PLAYER
CONTROLLER

DERIVES FROM
THIS CLASS)

BASE USER
MANAGER

INPUT
CONTROLLER

AI CONTROLLER

PLAYER
CONTROLLER

USERDATA

USER CONTROLLED PLAYER A.I. PLAYERS
(USES EXACTLY THE SAME COMPONENTS)

SOUND MANAGER

BASE USER
MANAGER

GAME MANAGER GAMEOBJECT

RACE
CONTROLLER
(IN THIS CASE,

PLAYER
CONTROLLER

DERIVES FROM
THIS CLASS)

MOVEMENT
CONTROLLER

(VEHICLE,
HUMANOID, SHIP

ETC.)

PHYSICS
(TRANSFORM /

RIGIDBODY/
COLLIDER ETC.)

Figure 14.1 The Racing Game example.

22114.1 Ingredients

14.1 Ingredients
The racing game example uses these ingredients:

 1. Main menu – The menu code is based on MenuWithProfiles.cs from
Chapter 11.

 2. Level select – The level select relies on a Scene loader using LevelVars.cs.

 3. Scene loader – MultiLevelLoader.cs, derived from LevelLoader.cs (cov-
ered in Chapter 13) is used for Scene loading.

 4. The Game Manager – RaceGameManager derives from BaseGameManager
(from Chapter 3).

 5. Race Management – Each player has a race controller script attached to
it, which holds information relevant to its race stats (position/waypoints
and so on). The race manager talks to all the player’s race controllers and
tracks global information on the state of the race, such as player race
positions and whether the race is still in progress.

Figure 14.3 The player structure for the racing game example.

BASE USER
MANAGER

MOVEMENT
CONTROLLER

(VEHICLE,
HUMANOID, SHIP

ETC.)

INPUT
CONTROLLER

PHYSICS
(TRANSFORM /

RIGIDBODY/
COLLIDER ETC.)

AI CONTROLLER

PLAYER
CONTROLLER

USERDATA

RACE
CONTROLLER
(IN THIS CASE,

PLAYER
CONTROLLER

DERIVES FROM
THIS CLASS)

222 14. Racing Game

 6. Vehicles – Both AI and user controlled vehicles use the exact same pre-
fabs. When the prefabs are first instantiated into the Scene, properties
are set on the prefab instances Components to make each behave dif-
ferently, such as enabling and disabling AI control. The Components we
need for the player prefabs are:

	 ▪ BaseUserManager from Chapter 3, Section 3.2.1

	 ▪ The WheeledVehicleController class from Chapter 6, Section 6.2

	 ▪ A Race Input Controller Component for input

	 ▪ Steering AI Glue to connect the AI system to the steering of a vehicle:
the SteeringAIGlue class derives from AISteeringController from
Chapter 10.

	 ▪ Camera Target to make sure the Camera looks at the right
GameObject

	 ▪ A Texture Setter Component, to set the texture of the user vehicle to
on different to that of the AI players so that players can easily tell who
they are

	 ▪ Race Player Controller – a Component used to communicate with the
Global Race Manager Component

	 ▪ Position Graphic Setter – which shows the players current position in
a small display above the vehicle

	 ▪ Car Audio – a Component for vehicle sounds and hits

	 ▪ Fake Friction – a helper script to increase friction and make the vehi-
cle easier to drive

 7. User Interface – The user interface for in game will use a basic script to
display the current lap and to show or hide other GameObjects and/or
Canvas as needed.

 8. Sound Controller – The BaseSoundController class from Chapter 9,
Section 9.2

 9. A RaceUIManager Component will be used to ‘pass’ information from
other scripts into the user interface.

 10. BaseUserManager is used by both the player and the RaceGameManager
class to access player information. RaceGameManager uses BaseUser-
Manager at the start of each level, to decide which types of players to
spawn into the game (AI controller or user).

 11. IsoCamController is a basic class for controlling a Camera suitable for
isometric rendering. This is attached to a parent GameObject, with the
Camera as a child object offset.

Scripts for this chapter can be found in the folder Assets/Games/Racing
Game/Scripts.

22314.3 Level Select Scene Overview

14.2 Main Menu Scene Overview
The main menu is made from the template main menu found in the GPC_
Framework/TemplateScenes folder.

A RaceMainMenu.cs script, derived from the framework’s MenuWithProfiles
class from Chapter 12, loads the level select Scene and adds players to the game,
when the start button is pressed. RaceMainMenu.cs:

using GPC;
public class RaceMainMenu : MenuWithProfiles
{
 public override void LoadGameScene()
 {
 AddPlayers();
 base.LoadGameScene();
 }

 void AddPlayers()
 {
 BaseUserManager _baseUserManager =
GetComponent<BaseUserManager>();
 _baseUserManager.ResetUsers();

 // there's no players set up so add default ones
here
 for (int i = 0; i < 4; i++)
 {
 int playerID = _baseUserManager.
AddNewPlayer();
 if (i == 0)
 _baseUserManager.SetType(playerID,
0);
 else
 _baseUserManager.SetType(playerID,
2);
 }
 }
}

14.3 Level Select Scene Overview
The level select screen has three buttons, one for each level, and a back button.
Events on the buttons point to a script Component named RaceLevelSelect,
which is attached to a GameObject named LevelMenu. RaceLevelSelect uses
LevelVars (see Chapter 13, Section 13.2. for more on this) to set the filenames and
current level number for our Scene loader to use. It can then either load the Scene
loader Scene or go back to the main menu in its BackToMenu() function.

RaceLevelSelect.cs looks like this:

using UnityEngine;
using UnityEngine.SceneManagement;
using GPC;

public class RaceLevelSelect : MonoBehaviour
{
 public void LoadLevel(int whichLevel)
 {
 LevelVars.currentLevel = whichLevel;
 LevelVars.levelNamePrefix = "race_level_";
 LevelVars.coreSceneName = "race_core";

224 14. Racing Game

 SceneManager.LoadScene("race_sceneLoader");
 }
 public void BackToMenu()
 {
 SceneManager.LoadScene("race_mainMenu");
 }
}

14.4 The Core Scene Overview
The main parts of the game are split into two Scenes. The first contains the level –
that is, an environment (track) with waypoints, starting points, and so forth –
and the second core Scene contains just game logic.

When the game starts, the Game Manager in the core Scene looks to
BaseUserManager (the same one from Chapter 4, Section 4.3) to find out which
types of racers to add to the game. It adds the racers to the Scene, instantiating
their prefabs, and then we have a countdown before the race starts.

14.4.1 Game Manager – The RaceGameManager Class
The Game Manager starts:

using UnityEngine;
using System.Collections.Generic;
using UnityEngine.SceneManagement;
using GPC;

public class RaceGameManager : BaseGameManager
{

Above, we add the System.Collections.Generic namespace so that Lists can
be used. In the previous edition of this book, storage was mostly done in
ArrayLists. Since then, ArrayLists have fallen out of favor due to problems with
memory management. The problems may have been resolved, but generic Lists
are now more commonly used and regarded to be less cumbersome.

UnityEngine.SceneManagement is there so that we can access SceneManager
to load the main menu once the game has finished, and finally, the GPC
namespace you may remember from previous chapters is the namespace for the
framework in this book.

The RaceGameManager class derives from BaseGameManager (the same
one from Chapter 3, Section 3.2.1.), which means we get access to all its game
states and events right from the get-go. This will save a considerable amount of
development time in dealing with state transitions and triggering events for them.

[Header("Game Specific")]
 public string mainMenuSceneName = "mainMenu";
 public int totalLaps = 3;
 public Transform _playerParent;
 public IsoCamera _cameraScript;
 public GameObject _playerGO1;
 public GameObject[] _playerPrefabList;
 public RaceUIManager _uiManager;
 public BaseSoundManager _soundController;
 public WaypointsController _WaypointController;
 public bool didInit;
 // user / player data
 public BaseUserManager _baseUserManager;
 public List<UserData> _playerInfo;

22514.4 The Core Scene Overview

 private List<Transform> _startPoints;
 private int focusPlayerID;
 private List<RacePlayerController> _playerList;
 private List<Transform> _playerTransforms;
 private bool oldIsWrongWay;
 private bool doneFinalMessage;
 // position checking
 private int theLap;
 private int numberOfRacers;

We will skip past the variable declarations, as they should become clear as we
make our way through the script. Instead, jump ahead to:

public static RaceGameManager instance { get; private set; }

 public RaceGameManager()
 {
 instance = this;
 }

Above, technically yes that is a variable declaration, so we did not skip them
all. The variable instance is used to create a simple Singleton pattern. It is a static
variable that will refer to this instance of the script. That is, the one instance in
our Scene. By making this variable static, it is accessible from anywhere. Since
it is a reference to an instance of this class, we can call functions on it like
RaceGameManager.instance.SomeFunction().

The RaceGameManager() function above is known as a Constructor. It will
be called when this class is instanced automatically, making it the ideal place to
populate our static instance variable with a reference to ‘this’ instance.

Next, a call to Init() is made:

 void Start ()
 {
 Init();
 }

Start() is called automatically by Unity whenever the Scene starts. As we need
to do a little set up when the Scene starts this is the place to call our Init() function.
That may seem obvious, but there will be things in Init() that need to be done after
the Scene has initialized but before the game starts, which is why we call Init()
from Start() rather than any other built in Unity functions such as Awake() or
OnEnabled().

The Init() function is up next:

 void Init()
 {
 // tell race manager to prepare for the race
 GlobalRaceManager.instance.InitNewRace(totalLaps);

This game uses a global race manager script. As discussed at the beginning of
this chapter, the race manager tracks state for the race overall. The game control-
ler needs to tell the race manager that the race is starting, and a new race should
be initialized. As GlobalRaceManager follows the Singleton pattern again, we can
call functions on it using GlobalRaceManager.instance. GlobalRaceManager will
also need to know the total laps for the race so that it can tell when players finish
the race, so we pass that into its InitNewRace() function.

226 14. Racing Game

 SetupPlayers();

 // do initial lap counter display
 UpdateLapCounter(1);

 // start the game in 3 seconds from now
 Invoke("StartRace", 4);

The code above first calls out to SetupPlayers() to get our player prefabs into
the Scene, then sets the lap counter to 1 through the UpdateLapCounter()
function.

The 3,2,1 count in is about to begin. It will take 4 seconds to go through it, so
the Game Manager uses Unity’s Invoke function to schedule a call to StartRace
in 4 seconds’ time.

 InvokeRepeating("UpdatePositions", 0.5f, 0.5f);

There is no need for the user interface to update every frame or every step. It
would be unnecessary load on the CPU to update positions like that, so instead
the Game Manager schedules a repeating call to the UI updating function
UpdatePositions() every half second. The InvokeRepeating function takes three
parameters; the name of the function to call, the time from the call to the first
function call and the last one is the time between each function call after that and
ongoing until either this script instance is destroyed or CancelInvoke is called to
stop the continuing calls.

 // hide our count in numbers
 HideCount();

All three of the 3,2,1 count in numbers should be hidden at the start of the
game (otherwise we’ll just have a big blob of all three numbers on the screen at
the same time!). A call to the game controller’s HideCount() function takes care
of that.

 // schedule count in messages
 Invoke("ShowCount3", 1);
 Invoke("ShowCount2", 2);
 Invoke("ShowCount1", 3);
 Invoke("HideCount", 4);

The code to make the 3,2,1 count in happen is made simple by Unity’s Invoke
function. The functions our Game Manager uses to display each number will
hide each previously displayed number, so all that needs to be done is some stag-
gered calling to each one followed by a final call to HideCount() to hide the final
number at the end of the count in sequence.

 // hide final position text
 _uiManager.HideFinalMessage();

When the race is over, a message tells the user what their final race position
was. At the start of the race, this should be hidden. We call HideFinalMessage()
on the _uiManager (an instance of RaceUIManager in the Scene) to hide it.

 // start by hiding our wrong way message
 wrongWaySign.SetActive(false);

22714.4 The Core Scene Overview

The final in game message that needs to be hidden is the wrong way message.
Its GameObject is referenced in the wrongWaySign variable and GameObject.
SetActive() is used to hide it.

 didInit=true;
 }

The Init() function is done, so didInit gets set to true so that we can easily
find out if the Game Manager has initialized.

Next in the class, the SetupPlayers() function:

 void SetupPlayers()
 {
 // if we can't find a ref to user manager, try to
find one instead..
 if (_baseUserManager == null)
 _baseUserManager =
GetComponent<BaseUserManager>();

The BaseUserManager class holds information about our players. Before the
game started, on the main menu, one or more players were added through
BaseUserManager. Not physical players with vehicles and so on – just representa-
tions of them in data. Placeholders, if you like. What happens in SetupPlayers() is
we go through the List of players in _baseUserManager and spawn vehicles for
each one. Right now, the infrastructure for more than one human player is not in
place – that would need two lap counter displays and a split screen camera system
along with some code to set those up when the game starts – but this system
would simplify the process of adding more players. The player List in
BaseUserManager is made up of instances of the UserData class. UserData con-
tains a type integer that could easily represent human players or AI players but
for the purposes of this example game we do not go so far and we only allow one
human player vs. AI.

In the code above, we grabbed a reference to BaseUserManager using Unity’s
built in function GetComponent(). _baseUserManager contains the reference we
need to talk to it further in this function.

 // get player list from user manager
 _playerInfo = _baseUserManager.GetPlayerList();

_playerInfo will be populated with a List of UserData instances. We will look
at them to decide which players to spawn.

 if (_ playerInfo.Count < 1)
 {
 Debug.Log("USING DEBUG PLAYERS..");

 // there's no players set up so add default
ones here
 for (int i = 0; i < 4; i++)
 {
 int playerID =
_baseUserManager.AddNewPlayer();
 if (i == 0)
 {
 // if this is the first
player, make it human
 _baseUserManager.
SetType(playerID, 0);

228 14. Racing Game

 }
 else
 {
 // all other players are AI
 _baseUserManager.
SetType(playerID, 2);
 }
 }

 // now we can grab that player list from user
manager
 _playerInfo = _baseUserManager.GetPlayerList();
 }

The code above is only there to make testing your racing game easier. It looks
at the length of the _playerInfo List to see if there is anything in it. As an example,
if you were running the game from the main menu our main menu code adds
players to BaseUserManager before the game starts and so those players that were
added there will appear in our _playerInfo List since we got it from a static List
inside BaseUserManager. If you are running the game inside Unity and you just
want to test out the game without going out to the menu and back in again, the
List of players will be empty. So, we check to see if the List is empty and populate
it with some default user data if we need to. This way, you can play the game from
the core Scene and it will spawn players that otherwise would only appear if you
had run the menu Scene first.

 // get number of racers to spawn from the player list
 numberOfRacers = _playerInfo.Count;

One way or another, we are now at a stage where there is data in our player
List. The game does not know how many players there will be in the game yet and
we get this number by looking at the count value of _playerInfo – giving us the
length of the List.

 GetStartPoints();
 GetWaypointsController();

The level Scenes need to contain at least enough start points for the num-
ber of players in a race. A start point is just an empty GameObject placed in a
safe position for one of the racers to spawn into when the race begins. In the
example game, these points are near to the start line like a regular racing
game.

GetWaypointsController() is called to find a reference to a waypoints con-
troller. We will need to pass the waypoints controller into each player for the AI
to be able to find their way around the track as well as for position calculation.
The way we calculate race position relies on being able to compare how far around
the track the different racers are, and for this we use the waypoints.

 _ playerTransforms = new List<Transform>();
 _playerList = new List<RacePlayerController>();

Next, above, we create two new Lists. One to store all of the player Transforms
in so that we can get direct access to their positions later on, and another List to
store references to our racer’s RacePlayerController Components. Having refer-
ences to the RacePlayerControllers gives us access to their race positions and lap
information.

22914.4 The Core Scene Overview

Now, we can start spawning our player prefabs:

 for (int i = 0; i < numberOfRacers; i++)
 {
 Transform _newPlayer =
Spawn(_playerPrefabList[0].transform, _startPoints[i].position,
_startPoints[i].rotation);

This part of the code is going to spawn all the vehicles for the race. Most of
what happens in this function takes place inside the loop above, which goes from
0 to however many players we need to spawn – representing by the variable
numberOfRacers.

A function named Spawn() is used to deal with the instantiation of our pre-
fabs, rather than calling out to Instantiate here. By splitting out spawning into its
own function, we can easily replace out the spawning system with something
more performance friendly should the game grow to a stage where it might need
it or if the target platform is limited by performance. If you need to improve per-
formance, I would recommend replacing the Instantiate call inside with Spawn()
function with some kind of pool management, whereby objects are recycled
rather than destroyed and replaced with new ones.

Our Spawn() function takes a prefab (Transform) followed by a Vector3
position and a Quaternion rotation value to apply immediately after spawn.

As we only ever use one prefab in this game, for both AI and users, the
_playerPrefabList array only needs to point to one prefab. This will be the first
item in the array (note that this array is set up via the Inspector on this Component
in the editor) and we get the prefab with _playerPrefabList[0] since Lists always
start at position 0. We pass in the prefab from _playerPrefabList followed by a
startpoint position and rotation from the _startPoints List that was populated by
a call to GetStartPoints() earlier in the code.

 RacePlayerController _ raceController =
_ newPlayer.GetComponent<RacePlayerController>();

Above, we grab a reference to the newly spawned object’s RacePlayerController
script and, for now, hold it in the locally scoped variable _raceController. This
will be used throughout the SetupPlayers() function further along.

 _ newPlayer.parent = _ playerParent;

The line above is important. We need to tell Unity to parent these new
GameObjects to something, otherwise they will be parented to nothing and dis-
appear into the Unity void! I can only assume this is a bug that occurs when you
load and merge Scenes together, so to work around it we just have to make sure
anything made at Start() has a parent set.

 // assign the user's ID based on the list from
baseUserManager
 _raceController.userID = _playerInfo[i].id;

In order to tie the players in the Scene to the players in our player List
together, we use an id system. Above, the RacePlayerController Component
attached to the player we just spawned will have its id value set to the same id
held by the player from BaseUserManager’s player List that we are creating the
vehicle for.

230 14. Racing Game

 // store the race controller in our list so we can talk to
it as needed later on
 _playerList.Add(_raceController);
 _playerTransforms.Add(_newPlayer);

As mentioned earlier in the script, _playerList is a List of our player’s
RacePlayerController Components. Above, _playerList.Add() puts our newest
RacePlayerController into the List. In a similar way, we add the new player’s
Transform to the _playerTransforms List above, too.

The BaseWheeledVehicle class is used to provide movement for our vehicle –
this is the same movement script from Chapter 6, Section 6.2, earlier in this
book.

 // SET UP AI
 BaseAIController _tempAI =
_newPlayer.GetComponent<BaseAIController>();

 // tell each player where to find the waypoints
 _tempAI.SetWayController(_WaypointController);

As mentioned earlier in this section, every player vehicle is an instance of
the same prefab – that is, both AI and user vehicles use the same prefab set up.
The AI script will be used by the user’s vehicle at the end of the race when the AI
controller takes over driving the car.

Above, we grab a reference to the newly spawned player’s BaseAIController.
Quick note that the AI script can derive from BaseAIController and
GetComponent() will still find it.

The AI script relies on the waypoints system, so we need to tell each player
which WaypointsController Component to use. Above, we use SetWayController()
to tell _tempAI (the BaseAIController) about the waypoint controller Component
we found earlier and stored in the variable _WaypointController.

 if (_ baseUserManager.GetType(_ playerInfo[i].id) == 0 &&
_ playerGO1==null)
 {

As this is a single player game, we need a player to observe during the game
(for the camera to follow) and to use to populate the user interface’s lap counter
with. In this function, we assume that the first user-controller player we find will
be the one to follow. Above, the If statement checks the type of our player to see
if it is user controlled (its type will be 0) and then sees that we do not already have
a player in the _playerGO1 variable – in effect, making sure we follow the first
player found.

 // focus on the first vehicle
 _playerGO1 = _newPlayer.gameObject;
 _playerGO1.AddComponent<AudioListener>();

The _playerGO1 variable has two uses here. One is to hold which GameObject
we will be following and the other is to add an AudioListener to. By default, Unity
automatically adds an AudioListener to the Main Camera GameObject in a Scene
but here we put the AudioListener on our vehicle instead.

Note: If you have more than one listener in a Scene, Unity will produce a
warning in the console repeatedly.

 focusPlayerID = i;
 }

23114.4 The Core Scene Overview

The focusPlayerID variable stores the ID of the player we need to be focused
on throughout the game. It will be used to update the lap counter further on in
the script.

With the players prefabs instantiated, we now need to set them up depending
on their player types from BaseUserManager:

 // SET INPUT TO PLAYER TYPE
 // ---

 if (_baseUserManager.GetType(_playerInfo[i].id) == 0) // <-
- get the type of this player from baseusermanager
 {
 _newPlayer.GetComponent<RaceInputController>().SetInputType
(RaceInputController.InputTypes.player1);

Above, _baseUserManager.GetType is passed in the id of this player to find
out what type of player it is we are spawning. If the type is 0, this is a user-
controller player, and we need to set it up as such. The next line uses
GetComponent() to find the RaceInputController Component attached to the
vehicle prefab and then calls on its SetInputType() function to set how the player
should be controlled. The input type is set to player1, which means it will use the
arrow keys for input.

 // tell race controller that this is an AI vehicle
 _raceController.AIControlled = false;

 // set the skin
 _raceController.GetComponent<MaterialSetter>().SetMaterial(0);

There are just two more properties to affect the player above, when it is user
controlled. The first is to set AIControlled on the RacePlayerController class to
false so that the AI does not try to drive for us. We want the player to have full
control at this point.

A Component named MaterialSetter is used to set the material of the car
body. The MaterialSetter Component is attached to the Vehicle_Player prefab
and it holds an array of materials that can be applied to the vehicle. Using
SetMaterial, we pass in the array index of the material to set and it will take care
of the rest. In this game, we have two materials – one for the user controlled
player and the other for AI so that it will be easy for the user to determine which
car they are controlling.

 }
 else if (_baseUserManager.GetType(_playerInfo[i].id) == 2)
 {

If the player type is not user controlled (0), in the line above we check to see
if it is AI (2).

 _ newPlayer.GetComponent<RaceInputController>().SetInputType
(RaceInputController.InputTypes.noInput);

 // tell race controller that this is an AI vehicle
 _raceController.AIControlled = true;

 // let the AI controller know to control this vehicle
 _tempAI.AIControlled = true;

232 14. Racing Game

 // set the skin
 _raceController.GetComponent<MaterialSetter>().
SetMaterial(1);
 }
 // ---

}

The code above is very similar to how we set up the user controlled player,
except instead of setting AIControlled to false we set it to true. Below that,
_tempAI (a reference to this player’s BaseAIController Component) gets its
AIControlled variable set to true, too. Finally, we set the material to a material
from the position 1 in MaterialSetter’s array.

At this stage, I understand that having to set AIControlled on two separate
Components is not ideal. The only alternative would be to have either one of the
BaseAIController or the RacePlayerController Components look at the other one
and copy its AIControlled value across. As the goal of this book is to make stand-
alone scripts wherever we can, making one script reference another goes against
this principle. You may not always decide to pair up the BaseAIController with
RacePlayerController, perhaps replacing BaseAIController entirely with different
AI code, so having to reference two scripts AIControlled variables here is a trad-
eoff that ultimately gives us more freedom later on.

 // look at the main camera and see if it has an audio
listener attached
 AudioListener tempListener =
Camera.main.GetComponent<AudioListener>();

 // if we found a listener, let's destroy it
 if (tempListener != null)
 Destroy(tempListener);

Outside of the player spawning loop, we look to see if an AudioListener
Component is attached to the Main Camera. We use Camera.main in the code
above. This will only work with a camera that has its Tag set to MainCamera in
the Inspector. If there is a reason not to set the Tag to MainCamera on your cam-
era, you will need to replace Camera.main with a variable referencing it instead.

If tempListener is not null, we know that GetComponent() found a listener
that needs to be destroyed, and the next line uses Unity’s Destroy() function to
do just that.

 // tell the camera script to target this new player
 _ cameraScript.SetTarget(_ playerGO1.
GetComponent<CameraTarget>().cameraTarget);

 // lock all the players until we're ready to go
 LockPlayers(true);
}

RaceGameManager requires a reference to a camera controller script. In this
game, the camera script Component is named Iso Cam Controller and you can
find it attached to the CameraParent GameObject in the core Scene. Here, we set
the target for the camera to follow. We do not set the target to the player directly,
however. The player prefab has a CameraTarget Component attached to it that
will reference the exact Transform we want the camera to follow and so a call to
GetComponent() above grabs that and passes its cameraTarget Transform to _
cameraScript.SetTarget() instead.

23314.4 The Core Scene Overview

The last line of this function calls LockPlayers() to hold all of the players in
place at the start of the game – they will stay locked until the countdown intro-
duction has finished, at which point code elsewhere in this class will call to
unlock them all again.

 void StartRace()
 {
 // play start race sound
 _soundController.PlaySoundByIndex(1);

 // the SetPlayerLocks function tells all players to
unlock
 LockPlayers(false);

 // tell the global race manager that we are now
racing
 GlobalRaceManager.instance.StartRace();
 }

StartRace() is called when the countdown finishes, and we are ready to actu-
ally get the race going.

Above, _soundController plays a nice sound effect to tell the player to go.
The variable _soundController points to a BaseSoundController script attached
to the GameManager in our core Scene, which is used to play incidental sounds.
When we call it with PlaySoundByIndex(), the BaseSoundController script will
play a sound at the world position 0,0,0 and with a very wide drop-off area so that
our Audio Listener will ‘hear’ it.

We unlock all of the players next, passing false as a parameter into the func-
tion LockPlayers(). After that, we need to tell the GlobalRaceManager class that we
are ready to race too – so that it will start tracking positions and so on – so there’s
a quick call to GlobalRaceManager’s instance (reminder: GlobalRaceManager is a
Singleton!) to StartRace().

Next up is the LockPlayers() function:

 void LockPlayers(bool aState)
 {
 // tell all the players to set their locks
 for (int i = 0; i < numberOfRacers; i++)
 {
 RacePlayerController aRaceCarController =
_playerList[i];
 aRaceCarController.SetLock(aState);
 }
 }

Called a few times by this class already, the LockPlayers() function tells
players whether or not they should be allowed to move. As discussed in Chapter 6
(Section 6.2), locking the vehicles will constrain them along their x and z axis but
not on the y axis. This is so that the vehicle will still be affected by gravity. If the
vehicle’s y axis were locked too, it would sit exactly at its start position in the game
world, possibly floating, and not in its natural rested suspension state.

The code to lock our vehicles in place is in the RacePlayerController class.
What we do here is to iterate through all the RacePlayerController instances held
in the List _playerList[] – which was populated back in the SetupPlayers()
 function – and we call SetLock() on each one. SetLock() takes a Boolean as its
parameter, stating whether or not to lock the vehicle.

234 14. Racing Game

 void UpdatePositions()
 {
 // here we need to talk to the race controller to
get what we need to display on screen
 theLap =
GlobalRaceManager.instance.GetLapsDone(focusPlayerID) + 1;

 // update the display
 UpdateLapCounter(theLap);
 }

Above, UpdatePositions() gets the lap currently being run by the player we are
focusing on, whose ID is in focusPlayerID. This was another variable set in the
SetupPlayers() function when we first added all of the vehicles to the Scene. The
GlobalRaceManager class takes care of tracking positions and laps, and to find out
how many laps the player has completed we can call GlobalRaceManager.instance.
GetLapsDone(). Passing the player ID as a parameter means that it will return the
current lap count of that player as an integer. We store that into the variable theLap,
which is used in the next line above to pass into the UpdateLapCounter() function
as a parameter. This will update the user interface lap display.

To update the user interface’s lap counter, we have the function
UpdateLapCounter():

 void UpdateLapCounter(int theLap)
 {
 // if we've finished all the laps we need to finish,
let's cap the number so that we can
 // have the AI cars continue going around the track
without any negative implications
 if (theLap > totalLaps)
 theLap = totalLaps;

 // now we set the text of our GUIText object lap
count display
 _uiManager.SetLaps(theLap, totalLaps);
 }

The current lap number is passed into UpdateLapCounter() as a parameter,
then it gets checked to make sure that the lap number is within the total laps for
the race. If it is too high, it will be capped at the value of totalLaps.

A class named RaceUIManager will deal with setting the Text object in the
Scene – this is added as a Component to the GameManager GameObject in our
core Scene.

We call out to _uiManager to SetLaps() above, passing in the current lap and
total number of laps as parameters. This will be displayed as ‘Lap x/x’.

When the race is over, RaceComplete() is called to start bringing everything
to a halt:

 public void RaceComplete()
 {
 // set all players to AI so that they continue driving
 for (int i = 0; i < _playerList.Count; i++)
 {
 // set to AI
 _playerList[i].AIControlled = true;
 // disable the keyboard input Component for
AI players..
 _playerList[i].GetComponent<RaceInputController>().SetInput
Type(RaceInputController.InputTypes.noInput);
 }

23514.4 The Core Scene Overview

We iterate through all the players in _playerList and do two things: The
first is to set AIControlled to true so, if this was our player vehicle, it will now
be taken over by the AI class. Next, we use GetComponent() to find the
RaceInputController Component on this vehicle. This is all on one line, so we
assume that all vehicles will have a RaceInputController and this line will
produce an error if that is not the case. Once we’ve used GetComponent to
find a RaceInputController, we call SetInputType() on it. SetInputType uses
the enumerator RaceInputController.InputTypes (a List of what types of input
the Component supports) and here we set the vehicles input type to
RaceInputController.InputTypes.noInput so that a user will no longer be able
to have any input into how the vehicle is driven.

 if (!doneFinalMessage)
 {
 doneFinalMessage = true;
 _soundController.PlaySoundByIndex(2);

 // show final text
 _uiManager.ShowFinalMessage();

 // drop out of the race scene completely in
10 seconds...
 Invoke("FinishRace", 10);
 }
 }

Above, doneFinalMessage is a Boolean we check to ensure that this code can
only ever run once in a race. A duplicate call should never happen, but just in case
it does our doneFinalMessage will make sure that the code does not get stuck in
a loop of calling and never completing.

We set doneFinalMessage to true inside the condition’s curly brackets, then play
a sound through _soundController to let the player know that the race is complete.

_uiManager.ShowFinalMessage() will display the ‘race finished’ message to
the user, and finally we schedule a complete shutdown of the Scene – using
Invoke() to make a call to FinishRace() in 10 seconds.

When called, FinishRace() will load the main menu, effectively ending the
game altogether:

 void FinishRace ()
 {
 SceneManager.LoadScene(mainMenuSceneName);
 }

The ShowCount1(), ShowCount2() and ShowCount3() functions switch the
active states of the user interface objects used to display the numbers during
the 3,2,1 count in, at the start of the race and a sound is played via the
BaseSoundController Component for each one:

 void ShowCount1()
 {
 _uiManager.ShowCount(1);
 _soundController.PlaySoundByIndex(0);
 }
 void ShowCount2()
 {
 _uiManager.ShowCount(2);
 _soundController.PlaySoundByIndex(0);
 }

236 14. Racing Game

 void ShowCount3()
 {
 _uiManager.ShowCount(3);
 _soundController.PlaySoundByIndex(0);
 }

HideCount() hides all of the 3,2,1 count images:

 void HideCount()
 {
 _uiManager.ShowCount(0);
 }

The next part of the Race Game Manager class is a function to find the player
starting points in the level Scene:

 void GetStartPoints()
 {
 _startPoints = new List<Transform>();

As you may recall, this game is split into two Scenes per level – the core Scene
containing the game logic and the level Scene containing level specifics like the
environment itself and start positions. As we load levels in at runtime, there is no
way of setting start positions via the Inspector in the editor (as they will change
from level to level) so an automated system is necessary.

Above, GetStartPoints() kicks off by making a new List in the variable _
startPoints. This is a variable used by the SetupPlayers() function as it creates the
players, adds them to the Scene and requires a start position for each one.

 GameObject _ startParent =
GameObject.Find("StartPoints");

The starting points for our players are parented to an object named
StartPoints. It does not matter so much what the start point GameObjects them-
selves are called, just as long as they are parented to a GameObject named
StartPoints. The reason being that we use GameObject.Find() to look for a
GameObject named StartPoints in the Scene. Once we have that, we iterate
through all of its child objects like this:

 foreach (Transform sp in _ startParent.transform)
 {
 _startPoints.Add(sp);
 }
 }

The foreach loop above will go through all Transforms found under our
StartPoints GameObject – but it is important to note that this method is not
recursive and if any of the StartPoints are at a level below this (i.e. children of
children of StartPoints) they will be left out.

As the loop goes through each child object, we use _startPoints.Add() to add
them to our List of start points. At the end of this function, _startPoints should
be a List populated with all the starting points from any open Scene.

 void GetWaypointsController()
 {
 _WaypointController =
FindObjectOfType<WaypointsController>();
 }

23714.4 The Core Scene Overview

Above, we use Unity’s built in function FindObjectOfType() to look for a
GameObject that has a WaypointsController Component attached to it.
FindObjectOfType() will return the first one it finds – thankfully, there should
only ever be a single WaypointsController in any of the levels for this game. The
first WaypointsController it finds will be the one we use.

To hide or show a message to the user that the main player is driving the
wrong way on the track; the UpdateWrongWay() function:

 public void UpdateWrongWay (bool isWrongWay)
 {
 if(isWrongWay==oldIsWrongWay)
 return;

To keep a track of changes, we have two variables: oldIsWrongWay and
isWrongWay. We set oldIsWrongWay at the end of this function. This function
is called repeatedly as the game progresses, so if isWrongWay is not equal to
oldIsWrongWay we know that something has changed between the last time this
was called and this time. When isWrongWay and oldIsWrongWay are the same,
we know that the state of whether or not the player is going the wrong way has not
changed since the last time we update the display. Above we can just drop out of
this function when isWrongWay==oldIsWrongWay.

If isWrongWay is not equal to oldIsWrongWay, we know that isWrongWay
has changed its state and we need to update the user interface display to reflect
that.

If the script execution reaches this point, the value of wrong way must have
changed so the script can go ahead and tell _uiManager what to display:

 if (isWrongWay)
 {
 _uiManager.ShowWrongWay();
 }
 else
 {
 _uiManager.HideWrongWay();
 }

 oldIsWrongWay = isWrongWay;
 }

Above, after dealing with the display state we set oldIsWrongWay to isWrong-
Way so we can keep track of state changes. At the bottom of the RaceGameManager
class, the Spawn() function:

 Transform Spawn(Transform spawnObject, Vector3 spawnPosition,
Quaternion spawnRotation)
 {
 return Instantiate(spawnObject, spawnPosition,
spawnRotation);
 }
}

We talked a bit earlier about having our Spawn() function separated like this
so that it would be easy to switch out the call to Instantiate() with something
more performance-friendly such as an object pool manager. All that happens in
this function is that we add a GameObject to the Scene based on the parameters
passed into it and then return a reference to the new GameObject.

238 14. Racing Game

14.4.2 Race Control – The GlobalRaceManager Class
You can find GlobalRaceManager.cs in the folder GPC_Framework/Scripts/
COMMON/GAME MANAGEMENT.

The GlobalRaceManager relies on RacePlayerController Components being
attached to each player. RacePlayerController Components register themselves
with GlobalRaceManager as they initialize. Our GlobalRaceManager class then
takes care of managing the bigger picture, dealing with comparing players posi-
tions to calculate race positions, to calculate the number of completed laps and to
provide race state.

GlobalRaceManager exists within the GPC namespace and derives from
MonoBehaviour so it can be attached to GameObjects and access some of Unity’s
built-in functions:

namespace GPC
{
 public class GlobalRaceManager : MonoBehaviour
 {
 public int totalLaps;
 public bool raceAllDone;
 public int racersFinished;
 private int currentID;
 private Hashtable raceControllers;
 private Hashtable racePositions;
 private Hashtable raceLaps;
 private Hashtable raceFinished;
 private int numberOfRacers;
 private int myPos;
 private bool isAhead;
 private RaceController _tempRC;

 public static GlobalRaceManager instance;

This class can be accessed via its static variable instance.

 public void Awake()
 {
 if (instance != null)
 Destroy(instance);

Its Awake() function ensures that only one instance of the script exists at any
time, by checking to see if its static variable named instance is null. If instance is
null, we know that an instance of this script has not yet been made. If instance is
not null and already has a reference to an existing Component, we destroy it here.

 instance = this;

 // we set this to -1 so that the first returned id
will be 0 (since it gets incremented on request)
 currentID = -1;
 }

Above, we set instance to reference this instance of GlobalRaceManager.
Next, the variable currentID is set to –1.

currentID is an integer that will be used to generate unique IDs for each
player in the game. Whenever an ID number is requested by the
RacePlayerController, currentID is incremented so that players have ascending
ID numbers in the order they are spawned in. As the numbers are incremented

23914.4 The Core Scene Overview

at the start of each call to GetUniqueID() further in the class, we start currentID
at –1 so that the first ID issued to a player will be 0.

 public void InitNewRace(int howManyLaps)
 {

When a race is started, the Game Manager (RaceGameManager) calls this
InitNewRace() function to get GlobalRaceManager ready for the race. The param-
eter for this function is an integer for how many laps the race should go on for.

 // initialise our hashtables
 racePositions= new Hashtable();
 raceLaps= new Hashtable();
 raceFinished= new Hashtable();
 raceControllers= new Hashtable();

Above, several hashtables are used to store and access the data this script
needs to use. Hashtables have a key and a value, which makes them ideal for stor-
ing player related info or objects. Instead of using an index number, as you do
with an array, you can provide a key and get access to its associated value. In this
case, each player’s unique ID is used to store data about the state of each player,
and we can use a player ID to quickly get data back out again.

In this class, we use hashtables for:

Race positions – Each player’s race position is stored as an integer.

Race laps – Each player’s current lap number is stored as an integer.

Race finished – When a player crosses the finish line after completing the set
number of laps (held in the variable totalLaps), an entry into the raceFinished
Hashtable will be set to true. Otherwise, it will be false.

Race controllers – Here, we store references to a RaceController Component
attached to each player.

All the above hashtables use the player ID as a key.

 raceAllDone = false;
 totalLaps= howManyLaps;
 }

The end of the InitNewRace() function sets a Boolean variable raceAllDone to
false – which may come as no surprise tells the class when the race has finished –
and sets our totalLaps integer variable to the amount of laps passed in as a param-
eter to this function via howManyLaps.

 public int GetUniqueID(RaceController theRaceController)
 {

GetUniqueID() does more than provide a unique ID for each player of the
game. When the RaceController script (RaceController.cs – discussed earlier in
this chapter) calls in, it passes in a reference to itself (its instance) as a parameter.
This function then adds a reference to the new player’s RaceController script
Component to the raceControllers Hashtable, using the player’s unique ID as a key.

 currentID++;

240 14. Racing Game

Making each ID number unique is a case of incrementing an ID counter
called currentID whenever an ID is called for.

 // this player will be on its first lap
 raceLaps.Add(currentID, 1);

At the start of the race, when the RaceController is first registered with
GlobalRaceManager, the raceLaps Hashtable adds an entry for this player start-
ing at 1 to indicate that this is the first lap.

 // this player will be in last position
 racePositions.Add(currentID, racePositions.Count + 1);

racePositions is a hashtable for storing the current race position of each
player. There will need to be some ordering to find out who is winning the race,
so at this stage we add an entry to the hashtable in a default position, which is
calculated with by taking the current number of entries in the hashtable and add-
ing one (racePositions.Count +1) to it. This will be updated later in the class when
the race positions are calculated.

 // store a reference to the race controller, to talk
to later
 raceControllers.Add (currentID, theRaceController);

Above, the RaceController script Component attached to the player request-
ing an ID gets added to the raceControllers Hashtable.

 // default finished state
 raceFinished[currentID]=false;

As the race is just beginning, not ending, the raceFinished state of this player
is defaulted to false above.

 // increment our racer counter so that we don't have
to do any counting or lookup whenever we need it
 numberOfRacers++;

May as well keep a count of how many players there are here, since all new
players will have to be fed through this function. It will save having to count
anything later to find out how many players there are, as the integer num-
berOfRacers will hold the count for us.

 // pass this id back out for the race controller to
use
 return currentID;
 }

The currentID is finally returned to the RaceController calling this function
at the end of the function above.

 public int GetRacePosition(int anID)
 {
 // just returns the entry for this ID in the
racePositions hashtable
 return (int)racePositions[anID];
 }

24114.4 The Core Scene Overview

GetRacePosition() takes an ID as a parameter and returns the race position
of that player, as stored in the racePositions Hashtable. Accessing data from
the hashtable is a straightforward exercise of providing the key inside square
brackets.

 public int GetLapsDone(int anID)
 {
 // just returns the entry for this ID in the
raceLaps hashtable
 return (int)raceLaps[anID];
 }

Just as GetRacePosition(), the GetLapsDone() function takes an ID as a
parameter and returns the current lap count of that player, as stored in the
raceLaps Hashtable.

 public void CompletedLap(int anID)
 {

CompletedLap() is called by a RaceController when the player passes all of
the waypoints and crosses the start/finish line. The parameter it takes is an inte-
ger; the player’s unique ID.

 // if should already have an entry in race laps,
let's just increment it
 raceLaps[anID]= (int)raceLaps[anID] + 1;

The entry for anID in the raceLaps Hashtable is incremented by adding one
to its current value. Note that we do not shortcut with something like
raceLaps[anID]++ because this refers to a hashtable, at this stage, not a number
to increment. Instead, the first part of the statement says we want to set the entry
in the hashtable, and the second part of the statement gets a value out of the
hashtable and increases it.

 if ((int)raceLaps[anID] == totalLaps &&
(bool)raceFinished[anID]!=true)
 {
 raceFinished[anID]= true;
racersFinished++;

Above, we check to see if this player has completed enough laps (by check-
ing its entry in raceLaps against the variable totalLaps) and not yet finished the
race (its entry in raceFinished should be false right now) then, if these condi-
tions are met, this player’s entry in the raceFinished Hashtable is updated
to true.

 // tell the race controller for this ID that
it is finished racing
 _tempRC = (RaceController)raceControllers
[anID];
 _tempRC.RaceFinished();
 }

Above, we retrieve this player’s race controller from the raceControllers
Hashtable, so that it can call on its RaceFinished() function to let the
RaceController Component know that this player’s race is over.

242 14. Racing Game

 // check to see if the race is all done and everyone
has finished (all players)
 if (racersFinished == raceFinished.Count)
 raceAllDone = true;
 }

Closing up the CompletedLap() function now, we see how many racers have
done their laps by comparing racersFinished to raceFinished.Count. If all the
racers have finished, we set raceAllDone to true. This will be used by our player
controllers as a way for them to know when the entire race is finished.

 public void ResetLapCount(int anID)
 {
 // if there's ever a need to restart the race and
reset laps for this player, we reset its entry
 // in the raceLaps hashtable here
 raceLaps[anID]=0;
 }

If there is ever a need to restart the race for a specific player, ResetLapCount()
takes a player ID number and resets its entry in the raceLaps Hashtable to zero.

Next, the GetPosition() function:

 public int GetPosition(RaceController focusPlayerScript)
 {

We calculate race positions on demand. Our player’s race position is only
updated when a position is requested. GetPosition() takes a reference to the
RaceController instance calling the function. We can then use it to get informa-
tion we need out of the RaceController to calculate the current race position.

 // start with the assumption that the player is in
last place and work up
 myPos = numberOfRacers;

myPos is an integer which starts out set to the maximum value – last place in
the race – then it will be decremented whenever we find out that the current
player is in front of another.

 // now we step through each racer and check their positions
to determine whether or not
 // our focused player is in front of them or not
 for (int b = 0; b <= numberOfRacers; b++)
 {
 // assume that we are behind this player
 isAhead = false;

A loop (b) goes from 0 to the value of numberOfRacers. The value of b will be
used to retrieve RaceController references from the raceController Hashtable. As
we step through the loop, we grab one other player and compare properties to the
player passed in as a parameter (such as current waypoint, current lap and so on)
to see which one is in front. At the start of the position calculation, we assume that
the player passed in will be behind the player being checked – isAhead is false. If
we find otherwise, isAhead will be set to true and we will decrement this player’s
race position at the end of the loop – bringing one closer to 1st place.

 // grab a temporary reference to the 'other' player we
want to check against
 _tempRC = (RaceController) raceControllers [b];

24314.4 The Core Scene Overview

Above, _tempRC is populated with a reference to a RaceController script
from another player. We use the loop’s variable (b) as the index number to access
our raceControllers Hashtable.

 // if car 2 happens to be null (deleted for
example) here's a little safety to skip this iteration in the loop
 if(_tempRC==null)
 continue;

To keep the function safe, _tempRC is null checked just in case one of the
players has somehow been removed from the game. If it is null, the continue
command will move the loop on to the next pass without continuing to execute
the code in subsequent lines.

 if (focusPlayerScript.GetID() != _ tempRC)
 { // <-- make sure we're not trying to compare same objects!

focusPlayerScript is the main player we are interested in (passed in as a param-
eter). The race controller instance held by _tempRC is taken from the hashtable
based on the value of b from the loop, which means eventually _tempRC will hit
upon the same RaceController instance as the one held by focusPlayerScript.
Before position or waypoint checking happens, we compare focusPlayerScript and
_tempRC to make sure they are not the same.

 // is the focussed player a lap ahead?
 if (focusPlayerScript.GetCurrentLap() >
_tempRC.GetCurrentLap())
 isAhead = true;

There are several conditions we test against to find out whether the player
within focusPlayerScript is ahead of the one that the loop is currently looking at.
Above, the first condition is whether the current lap of the focused player is
higher than the lap of the race controller in _tempRC – if it is, we know right
away that focusPlayerScript is ahead of _tempRC and we can set isAhead to true.

 // is the focussed player on the same lap, but at a higher
waypoint number?
 if (focusPlayerScript.GetCurrentLap() ==
_tempRC.GetCurrentLap()
&& focusPlayerScript.GetCurrentWaypointNum() > _tempRC.
GetCurrentWaypointNum() && !_tempRC.IsLapDone())
 isAhead = true;

The above condition checks to see whether the current lap of the focused
player is the same as the lap of the race controller in _tempRC. If they are both on
the same lap, we look to the waypoints to see if the focusPlayerScript waypoint
index number is greater than that of _tempRC. If it is, we know that focusPlayer-
Script is ahead of _tempRC because its waypoint is further along the track: in
which case, isAhead gets set to true. There is also a check to make sure that the
player in _tempRC has not yet finished its current lap.

 // is the focussed player on the same lap, same waypoint, but
closer to it?
 if (focusPlayerScript.GetCurrentLap() ==
_tempRC.GetCurrentLap() && focusPlayerScript.
GetCurrentWaypointNum() > _tempRC.GetCurrentWaypointNum()
&& focusPlayerScript.IsLapDone() && _tempRC.IsLapDone())
 isAhead = true;

244 14. Racing Game

The third condition, above, checks that focusPlayerScript and _tempRC are
on the same lap as well as both aiming at the same waypoint. From there, it
checks to see if the distance between focusPlayerScript and its target waypoint is
less than _tempRC’s distance to its waypoint. If focusPlayerScript is closer to its
waypoint (which is the same waypoint as _tempRC) and _tempRC has not fin-
ished its lap, then we know that focusPlayerScript must be ahead and the script
can go ahead and set isAhead to true.

Note that we check IsLapDone() on the _tempRC object to make sure that
this player has not yet crossed the finish line.

 // has the player completed a lap and is getting ready to move
onto the next one?
 if (focusPlayerScript.GetCurrentLap() ==
_tempRC.GetCurrentLap() && focusPlayerScript.
GetCurrentWaypointNum() == _tempRC.GetCurrentWaypointNum() &&
focusPlayerScript.GetCurrentWaypointDist() <
_tempRC.GetCurrentWaypointDist())
 isAhead = true;

The fourth condition checks that both players are on the same lap and the
same waypoint, but this time looks to see whether the focus player has registered
a lap done before _tempRC has. If focusPlayerScript.IsLapDone() is true and _
tempRC.IsLapDone() is false, we know the passed in player has completed its lap
before the one we are checking against, and isAhead is set to true.

 if (focusPlayerScript.GetCurrentLap() ==
_ tempRC.GetCurrentLap() && focusPlayerScript.GetCurrentWaypointNum() ==
_ tempRC.GetCurrentWaypointNum() && (focusPlayerScript.IsLapDone()
== true && _ tempRC.IsLapDone() == false))
 isAhead = true;

Above, a fifth condition does a similar check to the last one, only this time
omitting any waypoint distance checking. Here, the code focuses on whether the
two players are on the same lap and, when they are on the same lap, whether the
focusPlayerScript has finished its lap or not. When focusPlayerScript.IsLapDone()
is true and tempRT.IsLapDone() is false, we know that the focused player is ahead
and can go ahead and set isAhead to true.

 if (focusPlayerScript.GetCurrentLap() ==
_ tempRC.GetCurrentLap() && (focusPlayerScript.IsLapDone() ==
true && ! _ tempRC.IsLapDone()))
 isAhead = true;

The final condition (phew!) checks to see if both players are on the same lap
and that our passed in player has finished a lap before the one in _tempRC.

 if (isAhead)
 {
 myPos--;
 }
 }
}

At this point, isAhead tells us whether the player represented by focusPlayer-
Script is ahead of the current player represented by _tempRC. If isAhead is true,
the code above reduces the value of myPos to move the player’s race position up
by one.

24514.4 The Core Scene Overview

 return myPos;
 }
 }
}

By the time this loop has iterated all the way through the players, myPos
shows exactly which race position the focused player is in. The function ends by
using myPos as a return value.

14.4.3 Race Control – The RaceController Class
RacePlayerController is a class that works hand in hand with GlobalRaceManager.
You can find RacePlayerController.cs in the games folder GPC_Framework/
COMMON/GAME CONTROL folder.

A RacePlayerController Component is attached to each player, which derives
from this class. Some of its functions will be overridden in RacePlayerController.cs
but we will cover that in Section 14.4.4 when we breakdown the RacePlayerController
class in full.

RacePlayerController is going to be keeping track of everything we need for
a race game (other than players). It derives from ExtendedMonoBehaviour:

using UnityEngine;
namespace GPC
{
 public class RaceController : ExtendedCustomMonoBehaviour
 {
 private bool isFinished;
 private bool isLapDone;
 public float currentWaypointDist;
 public int currentWaypointNum;
 public int lastWaypointNum;
 public float waypointDistance = 20f;
 public WaypointsController _waypointsController;
 public int lapsComplete;
 public bool goingWrongWay;
 public bool oldWrongWay;
 public float timeWrongWayStarted;
 // another script tries to GetID
 public int raceID = -1;
 private Transform _currentWaypointTransform;
 private Vector3 nodePosition;
 private float targetAngle;
 private Vector3 myPosition;
 private Vector3 diff;
 private int totalWaypoints;
 private bool doneInit;

We skip through down past the variable declarations to bring us to the first
function, Awake():

 public void Awake()
 {
 raceID =
GlobalRaceManager.instance.GetUniqueID(this);
 }

Above, we start this class in the Awake() function, where the first task is to
get a unique ID for this player from the GlobalRaceManager. The ID number will
be returned as an integer that we store in the variable raceID.

246 14. Racing Game

 public virtual void Init()
 {
 _TR = transform;
 doneInit= true;
 }

Init() grabs a cached reference to the Transform on this GameObject (to
store in _TR) and sets its doneInit Boolean to true.

 public int GetID ()
 {
 return myID;
 }

There may be occasions where other scripts need to get this player’s unique
ID number, which is why the GetID() function, above, returns the value of myID.

 public bool IsLapDone ()
 {
 return isLapDone;
 }

When the player has passed by all the waypoints around the track, the vari-
able isLapDone is set to true. This value can then be used when the player hits the
trigger on the start/finish line to see whether the lap should be increased.
Increasing laps in this way (rather than just incrementing the current lap counter
at the start/finish line) ensures that the player has driven all the way around the
track and crosses the finish line.

 public void RaceFinished ()
 {
 isFinished=true;
 PlayerFinishedRace();
 }

 public virtual void PlayerFinishedRace() {}

RaceFinished() will be called by the GlobalRaceManager class to tell this
player when the race has ended. Above, we set isFinished to true so that we have
something to check against if we need to elsewhere in the script, and then a call to
PlayerFinishedRace() is made. Below that, we can see that PlayerFinishedRace()
does not contain anything. The intention here is that you override
PlayerFinishedRace() with whatever you want the player to do at the end of the race –
perhaps that is bring the vehicle to a halt or perhaps to have it play an animation or
something like that. The default behavior is that the players will just continue driv-
ing but in the RacePlayerController.cs overridden version for this game example,
we tell the user’s vehicle to be taken over by the AI so that it will drive itself when
the race is done. We will cover that in Section 12.5.4 later in this chapter.

 public void RaceStart ()
 {
 isFinished=false;
 }

At RaceStart(), our Boolean variable isFinished needs to be set to false, as the
race has only just begun!

24714.4 The Core Scene Overview

 public bool IsFinished ()
 {
 return isFinished;
 }

Above, other scripts may need to know if this player has finished racing. When
it is called, the IsFinished() function will return our isFinished state Boolean.

 public int GetCurrentLap ()
 {
 return GlobalRaceManager.Instance.GetLapsDone(myID) +1;
 }

When other scripts need to find out what the player’s current lap is, the
GetCurrentLap() function gets the latest information to be calculated by the
GlobalRaceManager instance. It passes in this player’s ID as a parameter (so that
the global race manager knows who is asking for their lap count) and adds one
to the return value because the return value from GlobalRaceManager.Instance.
GetLapsDone() will be how many laps have been completed rather than the value
we want to return, which is the current lap number.

 public void ResetLapCounter()
 {
 GlobalRaceManager.Instance.ResetLapCount(myID);
 }

The game could be reset by another script, calling for the lap counter for this
player to be reset too. Remember that lap counting is handled entirely by the
GlobalRaceManager class, so we need to ask GlobalRaceManager to reset our lap
counter as we do not store the current lap here. GlobalRaceManager provides a
ResetLapCount() function for this, with its parameter being the player’s unique
ID we kept in the variable myID.

 public int GetCurrentWaypointNum ()
 {
 return currentWaypointNum;
 }

This class keeps a track of the where the player is on the track by monitoring
its progress along a set of waypoints. In the example game here, those waypoints
are the same ones used to drive the AI players around. The GlobalRaceManager
class will need to know which is this player’s current waypoint index number
to compare it to other players and calculate race positions. Above,
GetCurrentWaypointNum() returns the player’s currentWaypointNum integer.

 public float GetCurrentWaypointDist ()
 {
 return currentWaypointDist;
 }

currentWaypointDist is a floating point variable containing the current dis-
tance from the player to its current waypoint, in 3d units. GetCurrentWaypointDist()
returns its value as a float. It is called by the GlobalRaceManager class when com-
paring two vehicles that are both focused on the same waypoint and we need to
find out which one is closer to that waypoint to determine the closest to it.

248 14. Racing Game

 public bool GetIsFinished ()
 {
 return isFinished;
 }

 public bool GetIsLapDone ()
 {
 return isLapDone;
 }

Above, GetIsFinished() and GetIsLapDone() both return Boolean values.

 public void SetWayController (Waypoints _ Controller
aControl)
 {
 _waypointsController= aControl;
 }

As this script uses a waypoint controller to track the player’s progress around
the track, its _waypointsController variable (of type WaypointsController) needs
to be set by another script. In the case of this game, it is set by the RaceGameManager
when players are first spawned into the game Scene.

 public Transform GetWaypointTransform()
 {
 if (_currentWaypointTransform == null)
 {
 currentWaypointNum = 0;
 _currentWaypointTransform =
_waypointsController.GetWaypoint(currentWaypointNum);
 }
 return _currentWaypointTransform;
 }

Above, the current waypoint can be retrieved as a Transform with a call to
GetWaypointTransform(). We hold a reference to the current waypoint Transform
in the variable _currentWaypointTransform. If this variable is null, this function
will detect that and retrieve the Transform from the _waypointsController
instance instead.

 public Transform GetRespawnWaypointTransform()
 {
 _currentWaypointTransform =
_waypointsController.GetWaypoint(currentWaypointNum);
 return _currentWaypointTransform;
 }

GetRespawnWaypointTransform() is used to get to the Transform that our
waypoint system is currently aiming for. One example of where this is used is the
respawn function. Respawn() gets the current waypoint Transform and sets our
players rotation and position to match those of the waypoint, so that the player is
in a safe place on the track and facing in the correct direction.

 public void UpdateWaypoints()
 {

RaceController.cs keeps track of waypoints in UpdateWaypoints(). This
function is not called from this class but will be called by the player control script.

24914.4 The Core Scene Overview

 if(!doneInit)
 Init();

 if (_waypointsController == null)
 return;

Above, before any waypoint checking can happen, the class must have run
its initialization Init() function and set doneInit to true. If doneInit is false, we
call Init() above. Next, the variable _waypointsController is null checked, just in
case this function is called before a reference to the WaypointsController instance
has not yet been set.

 if(totalWaypoints==0)
 {
 // grab total waypoints
 totalWaypoints =
_waypointsController.GetTotal();
 return;
 }

It may be possible for this function to be called before the WaypointController
class has finished setting up, but after it has been instanced. This means our null
check will go through before the class has set up its waypoints. To catch that and
stop trying to do anything with the waypoints too early, we check to see if total-
Waypoints is at 0. If it is, we need to make a quick call out to WaypointsController.
GetTotal() to get a new total and drop out of the function. This action will be
repeated every time the UpdateWaypoints() function is called, until we know
that WaypointController has its waypoints ready for us to access.

 // here, we deal with making sure that we always have
a waypoint set up
 if (_currentWaypointTransform == null)
 {
 currentWaypointNum = 0;
 _currentWaypointTransform = _
waypointsController.GetWaypoint(currentWaypointNum);
 }

Above, if there is no Transform referenced in the _currentWaypointTransform,
this code assumes that we must be on the first run and sets currentWaypointNum
to zero. It then makes a call to the waypointManager.GetWaypoint() function to
return a usable Transform for _currentWaypointTransform.

 // now we need to check to see if we are close
enough to the current waypoint
 // to advance on to the next one
 myPosition = _TR.position;
 myPosition.y=0;

 // get waypoint position and 'flatten' it
 nodePosition = _currentWaypointTransform.position;
 nodePosition.y=0;

Waypoint checking works by looking at the distance between the player and
the waypoint and moving on to the next waypoint when that distance gets too
low. For this type of waypoint following, the y axis may be discounted. It will
serve only to make the distance checking more complicated since it would be on

250 14. Racing Game

three axis instead of two. So, the first part of this code takes the positions of
player and waypoint and copies them into variables. The copies have the y posi-
tions set to zero, removing the y axis from the equation.

 // check distance from this car to the waypoint

 currentWaypointDist = Vector3.Distance(nodePosition,
myPosition);

 if (currentWaypointDist < waypointDistance) {
 // we are close to the current node, so let's
move on to the next one!
 currentWaypointNum++;

Above, the built in Unity function Vector3.Distance() takes two Vector3 positions
and returns the distance between them. We put our distance into currentWaypointDist.
When the distance in currentWaypointDist drops below waypointDistance, it incre-
ments currentWaypointNum; in effect, advancing to the next waypoint.

 // now check to see if we have been all the
way around the track and need to start again
 if (currentWaypointNum >= totalWaypoints)
 {
 // reset our current waypoint to the
first
 currentWaypointNum = 0;
 isLapDone = true;
 }

When currentWaypointNum is greater or equal to the number in
totalWaypoints, we know that the player has been all the way around the
track. This is not the place to increase the lap counter, however, as the player
needs to cross the start/finish line before the lap counts. Instead, when the
 currentWaypointNum goes beyond the total number of waypoints, the variable
isLapDone is set to true and the value of currentWaypointNum is set back to zero
ready to aim for the next waypoint (which is now the first waypoint).

 // grab our transform reference from the
waypoint controller
_ currentWaypointTransform=waypointManager.GetWaypoint(currentWaypointNum);
 }

The code above deals with the updating of the _currentWaypointTransform
variable to reflect any changes to currentWaypointNum. We call on
_waypointsController.GetWaypoint() and store the return value in the
_currentWaypointTransform variable.

 // we finish by recalculating currentWaypointDist
 nodePosition = _currentWaypointTransform.position;
 nodePosition.y = 0;

 // check distance from this car to the waypoint
 currentWaypointDist = Vector3.Distance(nodePosition,

myPosition);
 }
 }

Above, at the end of the UpdateWaypoints() function, we remove the y axis
from nodePosition (which could now hold the position of a different waypoint

25114.4 The Core Scene Overview

than the one we were aiming for at the start of the function) and then recalculate
currentWaypointDist. The reason for this is that currentWaypointDist is used to
calculate the race positions and if it is not up to date and the GlobalRaceManager
class uses it between now and the next time this function is called, the race posi-
tions could be wrong. Since GlobalRaceManager only calculates race positions
intermittently (not every frame), if currentWaypointDist is wrong the position
display on screen could jitter between the right and wrong values.

 public void CheckWrongWay()
 {
 if(_currentWaypointTransform==null)
 return;

 Vector3 relativeTarget =
myTransform.InverseTransformPoint
(_currentWaypointTransform.position);

To ensure the player is heading in the right direction around the track, the
CheckWrongWay() function uses the waypoints system to look ahead to the next
waypoint and check the angle of the vehicle vs. the ideal angle to reach the way-
point. When the angle goes over a certain threshold (here, it is set to 90 degrees)
then the wrong way message is displayed, and a timer will count. When the timer
reaches a certain amount, we automatically respawn the player back on to the
track.

First, the function checks that _currentWaypointTransform has something
in it. If this reference was at null, it would break the code, so we drop out here, if
we need to.

The script uses the waypoint from _currentWaypointTransform to check
that the vehicle is traveling in the right direction. The first step in doing that is to
calculate a vector, relative to the vehicle, with Transform.InverseTransformPoint().
Essentially, what happens here is that the world vector provided by
_currentWaypointTransform.position is converted to the local space belonging
to _TR (the vehicle), providing relativeTarget with a vector.

 targetAngle = Mathf.Atan2 (relativeTarget.x,
relativeTarget.z);
 targetAngle *= Mathf.Rad2Deg;

Mathf.Atan2 is used to convert the x and z values of the vector relativeTarget
into an angle. The result of Mathf.Atan2 will be in radians, so a quick call to
Mathf.Rad2Deg is required to convert it to degrees. As relativeTarget is a vector
relative to the vehicle, when we convert that to an angle we know that 0 degrees
will be forward along the vehicle’s forward axis and that 90 degrees will be to the
right and –90 degrees to the left. In effect, targetAngle now holds the result of
how many degrees the vehicle (along its forward vector) is out from facing the
waypoint.

 if(targetAngle<-90 || targetAngle>90){
 goingWrongWay=true;
 } else {
 goingWrongWay=false;

Above, we see if targetAngle is –90 or 90 degrees out (outside of our wrong
way threshold angle) and will set the goingWrongWay Boolean variable
accordingly.

252 14. Racing Game

 timeWrongWayStarted=-1;
 }

If a vehicle is going the wrong way for a set amount of time, it will be auto-
matically respawned by the game code. The variable timeWrongWayStarted is, in
effect, a timestamp, which is used to hold the time at which the wrong direction
was first detected. When the code no longer detects the vehicle going in the
wrong direction, timeWrongWayStarted is set to –1 which has the effect of can-
celling a respawn and restarting the timer.

Next, we set timeWrongWayStarted when the wrong way first happens:

 if(oldWrongWay!=goingWrongWay)
 {
 // store the current time
 timeWrongWayStarted= Time.time;
 }

Above, we check to see if goingWrongWay has changed by comparing it
to oldWrongWay. When the detection of a wrong way first happens,
oldWrongWay will not be equal to goingWrongWay so it is safe to start the
timestamp. timeWrongWayStarted is set to Time.time and it will be com-
pared to the current value of Time.time to see how long has passed since the
wrong way began.

 oldWrongWay=goingWrongWay;
 }

It’s the end of the CheckWrongWay() function and oldWrongWay may now
be set to the current value of goingWrongWay so that we can track it for changes
the next time this function runs.

As discussed earlier in this section, the current lap will not be increased as
soon as the player reaches the end of its waypoints. The player also needs to cross
the start/finish line before the lap counter will be updated and a simple trigger
Collider is used on an invisible box crossing the track. When the player hits the
trigger, the OnTriggerEnter function is automatically called by the Unity engine:

 public virtual void OnTriggerEnter(Collider other)
 {
 if (other.gameObject.layer == 12 && isLapDone ==
true)
 {

When OnTriggerEnter is called, the call contains information about the
Collider that the Transform has hit. The variable other is of type Collider, which
means it has all the properties of a Collider and may be accessed as one. The func-
tion starts out by looking at the layer of the Collider to see if it was the correct
layer for the start/finish line trigger. If isLapDone is true and the start/finish line
trigger was hit, the code continues by incrementing the lap counter in the vari-
able lapsComplete:

 // increase lap counter
 lapsComplete++;

 // reset our lapDone flag ready for when we
finish the next lap
 isLapDone = false;

25314.4 The Core Scene Overview

 // tell race controller we just finished a
lap and which lap we are now on
 GlobalRaceManager.instance.
CompletedLap(raceID);
 }
 }
 }
}

As the lap is incremented, the end of this lap has been reached so we need to
use the isLapDone variable to track the next lap. It is reset to false above, then we
call GlobalRaceManager to let it know that a lap completed. We make a call out
to the GlobalRaceManager’s CompletedLap() function, passing in this vehicle’s
unique ID to identify itself.

14.4.4 Race Control – RacePlayerController Class
RacePlayerController is a class that is attached to the vehicle prefabs in our example
racing game. It derives from the script from the previous section, the RaceController
class, so that we get to build on top of the functionality of RaceController rather
than building a completely new script for our racing game. This is how most of the
framework is intended to work – you take a base class, inherit it, and override some
of its functions to extend it for your game’s specification.

RacePlayerController starts with the usual namespaces and a class declara-
tion that tells Unity it derives from RaceController:

using UnityEngine;
using GPC;

public class RacePlayerController : RaceController
{ // this userID ID number ties up with the player data in
UserDataManager
 public int userID;

 public int myRacePosition;
 public float stuckResetTime = 3f;
 public float stuckTimer;
 public bool blockRespawn;
 [Space]
 public BaseWheeledVehicle _myController;
 public BaseAIController _AIController;
 public bool AIControlled;
 private float timedif;
 public LayerMask respawnerLayerMask;

We skip ahead, past the variable declarations, to the first function:

 void Start()
 {
 Init();
 }

 // Update is called once per frame
 public override void Init()
 {
 base.Init();

 ResetLapCounter();
 _myController = GetComponent<BaseWheeledVehicle>();

 didInit = true;
 }

254 14. Racing Game

Start() calls Init(). Init() calls to the base class (RaceController) to run its
Init() first, and then we are into this script. A call to ResetLapCounter() is first up,
to make sure that everything is reset and ready to start counting laps. We grab a
reference to BaseWheeledVehicle next and store it in the variable _myController.
This script is intended to work with BaseWheeledVehicle, so you will have to
make some changes if you are copying this to use in your own racing game that
uses a different vehicle type.

With Init() done, we set didInit to true at the end of the function.

 void LateUpdate()
 {
 // tell race control to see if we're going the wrong
way
 CheckWrongWay();

Above, LateUpdate() calls CheckWrongWay(). CheckWrongWay() was cov-
ered back when we looked at the RaceController class in Section 12.5.3.

 if (goingWrongWay)
 {
 if (!AIControlled)
 RaceGameManager.instance.
UpdateWrongWay(true);

 // if going the wrong way, compare time since wrong
way started to see if we need to respawn
 if (timeWrongWayStarted != -1)
 timedif = Time.time - timeWrongWayStarted;

If our vehicle is going in the wrong direction, we do want to show a wrong
way message but only if the player is not AI controlled. As long as this is not an
AI player, we make a call out to the RaceGameManager instance to
UpdateWrongWay(). RaceGameManager will take care of showing the message
to the user.

Something we also want to do if we are going the wrong way is to time how
long the player has been going the wrong way ready to respawn them in case they
are stuck. Above, as long as timeWrongWayStarting is not –1 (–1 is the default
value we give this variable when we want to reset the spawn time) then we can go
ahead and calculate how long the player has had its goingWrongWay variable set
to true. We do that simply by taking Time.time and subtracting the value stored
in timeWrongWayStarted. Remember that timeWrongWayStarted is a time-
stamp that is set when goingWrongWay first becomes true, so by subtracting it
from the current time we know how long it has been since the start.

 if (timedif > stuckResetTime)
 {
 // it's been x resetTime seconds in
the wrong way, let's respawn this thing!
 Respawn();
 }

When timedif (how long the player has been facing the wrong way) is greater
that stuckResetTime, above, we call the Respawn() function.

 }
 else if (!AIControlled)
 {

25514.4 The Core Scene Overview

 RaceGameManager.instance.
UpdateWrongWay(false);
 }

Above, we deal with what happens when goingWrongWay is not set to true.
If this is not an AI controlled vehicle, RaceGameManager gets another call to its
UpdateWrongWay() function to tell it that we are no longer going the wrong way.

 // stuck timer
 if(_myController.mySpeed<0.1f &&
_myController.canControl)
 {
 stuckTimer += Time.deltaTime;

Above, we check our vehicle controller _myController has a speed of less
than 0.1f (an arbitrary low value I came up with through trial and error) and that
it is actually being controlled. If the conditions are met, we can increase the value
of stuckTimer with the amount of time since the last frame update.

 if (stuckTimer > stuckResetTime)
 {
 // it's been x resetTime seconds in
the wrong way, let's respawn this thing!
 Respawn();
 stuckTimer = 0;
 }

When stuckTimer goes over the value of stuckResetTime, we know that the
vehicle has been extremely slow or stopped for that amount of time and now it is
time to call Respawn() in the hopes of getting the player moving again. Above, we
call Respawn() and reset the stuckTimer to zero.

 } else
 {
 stuckTimer = 0;
 }

On the other hand, if the vehicle speed is above our minimum 0.1f amount,
we just set stuckTimer to 0 so that the code above does not respawn the vehicle.

 UpdateWaypoints();

As mentioned in Section 12.5.3, the RaceController class contains the func-
tion UpdateWaypoints() that has to be called manually each frame – hence why
it is here in the LateUpdate() function.

 // check to see if this is the last player and the
race is now complete (and tell game manager if it is!)
 if (GlobalRaceManager.instance.raceAllDone)
 {
 RaceGameManager.instance.RaceComplete();

If the race finishes, above we tell the RaceGameManager about it. I chose to
put this call here (rather than in the GlobalRaceManager class) because
GlobalRaceManager is intended to be a generic script that can be used anywhere
without ties to any other non-Unity class than RaceController. This means that
RaceComplete() will likely be called more than once, but the way

256 14. Racing Game

RaceGameManager updates its game states means this will have no effect other
than ending the game.

 } else
 {
 // we only update the position during the
game. once the race is done, we stop calculating it
 UpdateRacePosition();
 }
 }

Above, since we now know that the race is not finished (this is the else that
comes after checking if GlobalRaceManager.raceAllDone is true) we can do
whatever needs to be done during the race. Above, this means we call out to
UpdateRacePosition() to keep the race position indicator up to date. Which leads
us to the UpdateRacePosition() function, next:

 public void UpdateRacePosition()
 {
 // grab our race position from the global race manager
 myRacePosition =
GlobalRaceManager.instance.GetPosition(this);
 }

From the point of view of the RacePlayerController class, there is not much
to do to update the race position. We just get the return value from an instance
of GlobalRaceManager.GetPosition() and store it in myRacePosition. The
RaceGameManager class deals with updating the user interface to show on screen.

 void Respawn()
 {
 if (blockRespawn)
 return;
 // reset our velocities so that we don't reposition
a spinning vehicle
 _myController._RB.velocity = Vector3.zero;
 _myController._RB.angularVelocity = Vector3.zero;

The Respawn() function first checks that respawning is not currently
blocked. We set blockRespawn to true just after a respawn, then it gets reset after
a set amount of time. This is to prevent multiple respawns within a short amount
of time – usually one respawn within a few seconds should be enough.

As long as we are good to respawn, the code above then goes on to zero out
the velocity and angular velocities of the RigidBody on our player. This stops the
vehicle moving and rotating after the respawn.

 // get the waypoint to respawn at from the race controller
 Transform _tempTR = GetRespawnWaypointTransform();
 Vector3 tempVEC = _tempTR.position;

The function GetRespawnWaypointTransform(), found in the RaceController
class, deals with finding the waypoint that we are going to be respawning at and
returns its Transform so that we can use it to get position and rotation informa-
tion from. We put the waypoint Transform into a locally scoped variable named
_tempTR then on the next line, take the position of the Transform and put it into
a locally scored tempVEC variable.

25714.4 The Core Scene Overview

 // cast a ray down from the waypoint to try to find
the ground
 RaycastHit hit;
 if (Physics.Raycast(tempVEC + (Vector3.up * 10), -
Vector3.up, out hit))
 {
 tempVEC.y = hit.point.y + 2.5f;
 }

As it is quite common for the waypoints to be either off the ground or too
close to the ground for our respawn to work correctly, the code above deals with
ray casting down to find the ground Collider. We project a ray from tempVEC (the
waypoint’s position) add 10 units upward. The ray goes straight down at -Vector3.
up and we put raycast hit information into the locally scoped variable, hit.

If the raycast was successful, it will return true, and we run the code between
the graphics. What happens there is that tempVEC has its y position set to the
ground position we just found through the raycast (hit.point) add 2.5 units. This
number (2.5f) may be adjusted to respawn the vehicle closer or further from the
ground as required. By the way, tempVEC will be used as the final position for the
vehicle during repositioning:

 _ myController. _ TR.rotation = _ tempTR.rotation;
 _myController._TR.position = tempVEC;

 blockRespawn = true;
 Invoke("ResetRespawnBlock", 5f);
 }

Above, Respawn() ends by setting our vehicles rotation to that of the way-
point Transform in _tempTR. Then on the next line, its position is set to the
Vector3 in tempVEC. We then set blockRespawn to true and in the last line of
the function, a call to ResetRespawnBlock() is scheduled for 5 seconds’ time.
This means that the respawn function will be disabled for 5 seconds after a
respawn.

 void ResetRespawnBlock()
 {
 blockRespawn = false;
 }

ResetRespawnBlock sets blockRespawn to false, allowing respawns again
after a delay.

 public override void PlayerFinishedRace()
 {

When a player has completed all of the laps in the race, GlobalRaceManager
calls the PlayerFinishedRace() function in the RaceController class. Above, we
override RaceController’s version of PlayerFinishedRace() to do something spe-
cific to this game. When our player has finished all of their race laps, we have the
AI take control of the vehicle and drive it around until the entire race finishes
when all players have completed their laps, too.

 if (!AIControlled)
 {
 // make sure we give control over to AI if
it's not already
 AIControlled = true;

258 14. Racing Game

 GetComponent<RaceInputController>().SetInputType(RaceInputCo
ntroller.InputTypes.noInput);
 GetComponent<AISteeringController>().
AIControlled = true;
 _AIController.canControl = true;
 }
 }

We begin by making sure that the player is not already being controlled by
AI with a check on the AIControlled Boolean variable. If we are not yet AI, the
code inside the curly brackets for this condition will change that.

AIControlled gets set to true, so that we now know our player is AI con-
trolled. Next, it is a rather long line that uses Unity’s GetComponent() function
to find our RaceInputController Component, then it calls SetInputType on it
and sets the input type for the player to be RaceInputController.InputTypes.
noInput, to disable user input. Next, GetComponent goes off to find an
AISteeringController Component (or, remember this could be a class that
derives from AISteeringController and it would still find it) and then tells the
steering controller that we are now AI controlled by setting its AIControlled
variable to true.

To complete the AI takeover, we tell _AIController that it can control this
player by setting its canControl variable to true.

At the end of the race, if you ever wanted to do something different like have
the cars keep going, the PlayerFinishedRace() function would be the place to
start.

 public void SetLock(bool state)
 {
 if (!didInit)
 Init();
 _myController.canControl = !state;
 }

Above, SetLock is used to tell our vehicle that it cannot be controlled. First,
we make sure that Init() has completed (as this will be called when the player first
spawns to hold them in place and it may be that this script has not yet initialized)
but if has not, we call to Init() from here so that _myController will be populated
and we can access it in the next line.

_myController.canControl is a Boolean we can set to decide whether the
vehicle will be allowed to receive input and act on it. Above, this is not an ideal
situation. We actually set canControl to the opposite of the state being passed in
because of the fact that the function is named SetLock (i.e. set whether a lock
should be in place) whereas canControl is whether the vehicle can be controlled.
They are opposites. SetLock() is named so for the sake of continuity elsewhere in
the framework, but it is always better to avoid any naming contradiction like this,
if you can.

 public override void OnTriggerEnter(Collider other)
 {
 base.OnTriggerEnter(other);
 if (IsInLayerMask(other.gameObject.layer,
respawnerLayerMask))
 {
 Respawn();
 }
 }
}

25914.4 The Core Scene Overview

The last part of the RacePlayerController class overrides what happens when
the vehicle hits a trigger, to add the extra functionality of respawn zones. A
respawn zone is a trigger that will force an instant respawn of the player. For this
to work, there needs to be a specific collision layer set up in Unity and respawner-
LayerMask should be set to it in the Inspector on this Component (on the prefab).

OnTriggerEnter() is a built-in Unity function, called by the engine for us and
passing in the Collider this object hit as a parameter. Here, we named the Collider
other.

To run the code from the original RaceController class that this one derives
from, we then call base.OnTriggerEnter() and pass other as a parameter – effectively
taking what got passed into this function and passing it on to the base class version.

The ExtendedCustomMonoBehaviour class provides a function named
IsInLayerMask(), which can be used to find out if a layer falls within a LayerMask.
To use it, you pass in the layer you want to check as the first parameter and the
LayerMask as the second. Above, we pass in the Collider’s GameObject’s layer to
look for and the respawnerLayerMask LayerMask as the LayerMask to look at.

When we know that the layer is the right one for a respawner, the code within
the conditions curly brackets calls Respawn() to take care of respawning the
vehicle.

14.4.5 Audio
For the vehicle audio in this game, we use a set of GameObjects with AudioSource
Components attached to them. These GameObjects are child objects of the vehicle,
moving around with the vehicle wherever it goes and activated to play by other
scripts. For incidental sounds, a BaseSoundController Component holds an array of
sounds such as bleeps during the countdown that can be played from other scripts.

14.4.5.1 Vehicle Audio
Vehicle audio is controlled by the following classes:

WheeledVehicleController – The engine audio has its pitch controlled by this
class. The engine audio is made up of a single sound loop which is played by an
AudioSource Component attached to a GameObject named Engine, a child of
the Vehicle_Player prefab.

CrashSound – This Component takes an AudioSource (attached to a CrashSound
GameObject on the player prefab in this game) and plays it at different volumes
depending on the severity of impact, whenever the impact magnitude is greater
than a value set in the Inspector. The magnitudeToPlay variable decides the
minimum magnitude for an impact sound. The pitch is also randomized
slightly to make the impact sounds more varied.

How the WheeledVehicleController deals with sound was outlined in
 Chapter 6, Section 6.2, during the breakdown of this script.

14.4.5.2 Incidental Sounds
Incidental sounds are controlled by a single BaseSoundController Component
attached to the GameManager GameObject in the core Scene. You can find a full
breakdown of the BaseSoundController in Chapter 9, Section 9.2.

260 14. Racing Game

14.4.6 User Interface
In the Hierarchy of the core Scene, the user interface is all under the GameObject
named UI_Canvas. There are two Canvases:

In-Game UI – The user interface contains a Text object to show the current lap
number, a Text object to show the wrong way message and a third Text object
to show when the race is over.

Intro_UI – The intro Canvas contains three Text objects for the three numbers
we show during the countdown at the start of the race.

All the game’s user interface is managed from a single class named
RaceUIManager. It is added as a script Component to the GameManager
GameObject in the Scene.

The RaceUIManager class derives from MonoBehaviour so that it can be
added to a GameObject as a Component:

using UnityEngine;
using UnityEngine.UI;

public class RaceUIManager : MonoBehaviour
{
 public Text _lapText;

 public GameObject _count3;
 public GameObject _count2;
 public GameObject _count1;

 public GameObject _finalText;
 public GameObject _wrongWaySign;

Above, the variable declarations reference the individual GameObjects that
make up the user interface. These need to be set up in the Unity editor, via the
Inspector.

 public void SetLaps(int aLap, int totalLaps)
 {
 _lapText.text = "Lap " + aLap.ToString("D2") + " of "
+ totalLaps.ToString("D2");
 }

Above, the SetLaps() function takes the current lap, followed by the total race
laps as its parameters. The Text Component references in _lapText has its text set
to the word Lap and then we do something very cool with the lap number. Instead
of simply converting it into a string with the ToString() function, we add "D2"
inside the brackets. What this does is tell ToString() how to format the number
when it converts it. D2 will format the lap string to have two numbers. For exam-
ple; if the current lap is less than 10, it will be displayed with a zero in front of it.

We add the word "of" to the string next, then at the end of the line we take
totalLaps and convert it to a string in the same way we did the current lap. That is,
we use D2 to format the conversion. Note that there is no technical reason to do
this – I think it just looks nicer to have the extra number in the user interface.

 public void HideFinalMessage()
 {
 _finalText.SetActive(false);
 }

26114.4 The Core Scene Overview

To hide the final message (it will need to be hidden at the start of the game)
we call the above HideFinalMessage() function. All it does it to call SetActive() on
the GameObject referenced in the _finalText variable. Passing in false as a param-
eter will cause the SetActive() function to render our GameObject inactive in the
Scene.

 public void ShowFinalMessage()
 {
 _finalText.SetActive(true);
 }

In ShowFinalMessage() we do pass true into SetActive() on the _finalText
GameObject, to make it active in the Scene.

 public void HideWrongWay()
 {
 _wrongWaySign.SetActive(false);
 }

 public void ShowWrongWay()
 {
 _wrongWaySign.SetActive(true);
 }

Both HideWrongWay() and ShowWrongWay() use SetActive() to hide or
show their GameObjects respectively.

public void ShowCount(int whichOne)
 {
 switch(whichOne)
 {
 case 0:
 _count1.SetActive(false);
 _count2.SetActive(false);
 _count3.SetActive(false);
 break;
 case 1:
 _count1.SetActive(true);
 _count2.SetActive(false);
 _count3.SetActive(false);
 break;
 case 2:
 _count1.SetActive(false);
 _count2.SetActive(true);
 _count3.SetActive(false);
 break;
 case 3:
 _count1.SetActive(false);
 _count2.SetActive(false);
 _count3.SetActive(true);
 break;
 }
 }
}

ShowCount() takes an integer as a parameter, who represents which part of
the countdown should be shown. We could just as easily write a function using a
loop that would have avoided duplicating the SetActive statements in each case,
but sometimes it can be just as easy (and quick) to write them out. Feel free to
improve this function, if you so wish!

https://taylorandfrancis.com

263

15 Blaster Game
Example

In the late 1970s came a turn-based game called Robots for the Berkeley Software
Distribution (BSD). In Robots, the player must escape from a swarm of enemies
that move in closer toward the player each turn. In the original version of the
game, the player moves around the arena to avoid contact between enemies and
player, which would end the game.

Robots is often referred to as the beginning of the arena shooter – a term used
to describe a top-down shoot ‘em up game with the action locked into a limited
area like an arena. The Blaster game example from this chapter is a basic template
for an arena shooter, which borrows heavily from its predecessors; the action has
a single player moving around an arena fighting off hordes of killer robots.

In this chapter, we look at the scripts used to build an arena shooter
(Figure 15.1) where bots will spawn and the goal is to destroy them all to be able
to progress to the next level. This chapter is less of a tutorial and more of a com-
panion guide to the example project. It is expected that you will open the exam-
ple project and dig around to see how it works, using this chapter as a guide to
what everything does in the game and how it all fits together. This chapter is
mostly focused on the C# scripts, what they do, and how they work.

Additions to the core framework are minimal and you can see the structure
of the game in Figure 15.2.

You can find the Blaster game in the example project folder Assets/Games/
Blaster. Scenes are in the Assets/Games/Blaster/Scenes folder.

264 15. Blaster Game Example

15.1 Ingredients
The Blaster game uses the following ingredients:

 1. Main menu – The menu code is based on MenuWithProfiles.cs from
Chapter 11, Section 11.1.2. We are using the same template menu as we
did in Chapter 2 for the RunMan game menu.

 2. Scene loader – MultiLevelLoader.cs, derived from LevelLoader.cs (cov-
ered in Chapter 13, Section 13.2) is used for Scene loading. The LevelVars
class is used to hold information about which level to load.

Figure 15.2 The game structure for the Blaster game.

BASE USER
MANAGER

MOVEMENT
CONTROLLER
(HUMANOID)

INPUT
CONTROLLER

PHYSICS
(TRANSFORM /

RIGIDBODY/
COLLIDER ETC.)

PLAYER
CONTROLLER

USERDATA

GAME MANAGER

UI MANAGER SOUND MANAGER

BASE USER
MANAGER

GAME MANAGER GAMEOBJECT

STANDARD SLOT
WEAPON

CONTROLLER

WEAPONS

ENEMY BOT
CONTROLLER

AI BOT
CONTROLLER (IN

THIS CASE, ENEMY
BOT BELOW

DERIVES FROM
THIS CLASS)

STANDARD SLOT
WEAPON

CONTROLLER

WEAPON

AI WEAPON
CONTROLLER

PHYSICS
(TRANSFORM /

RIGIDBODY/
COLLIDER ETC.)

(BOT TELLS GAMEMANAGER
WHEN IT IS DESTROYED)

LEVEL SCENE
ENEMY SPAWNERS

BOTS ARE SPAWNED BY
SPAWNER GAMEOBJECTS IN THE

LEVEL SCENES

Figure 15.1 The Blaster Game Example.

26515.3 The Core Scene Overview

 3. BlasterGameManager derives from BaseGameManager and uses
BaseUserManager to decide what player to spawn when the game
starts (and how many lives the player has etc.). It will also use the
ScreenAndAudioFader class from GPC_Framework/COMMON/USER
INTERFACE to fade the Scene in or out.

 4. Sound Controller – The BaseSoundController class from Chapter 9,
Section 9.1, is used to play game over and level complete sounds, with indi-
vidual prefabs making their own sounds like firing noises or explosions.

 5. User Interface – The user interface for in game will derive from the
CanvasManager script from Chapter 11, Section 11.1, to fade UI ele-
ments in or out.

 6. The BlasterPlayer class (the main class for the player) derives from
BasePlayerStatsController, which also uses BaseUserManager to provide
stats for the player for lives and score values.

 7. CameraThirdPerson uses BaseCameraController.

Note that those Components already described in detail elsewhere in this
book will not be repeated in this chapter, it is expected that you will find them in
their respective chapters instead.

15.2 Main Menu Scene Overview
The main menu is made from the template main menu found in the GPC_
Framework/TemplateScenes folder.

The main menu loads another Scene that acts as a game loader. The game
loading Scene loads two addition Scenes – a core Scene, and an additional level
Scene. The Scene loader merges the core and level Scenes together and starts the
game.

15.3 The Core Scene Overview
The main parts of the game are split between two Scenes. One contains the level –
that is, walls and enemy spawn positions (this could be expanded out to a full 3d
environment if you wanted to) – and the second is a core Scene containing game
logic and anything which is shared in every Scene during the game like the main
outside walls of the arena and the Camera.

In most cases, you would put the full 3d level into the level Scenes, but in the
case of this game we have the Arena and Lights in the core Scene. We do this just
because the arena (the outside walls of the play area and a ground plane) are
shared across all levels. If you use this as a template for your own games, you will
most likely remove Arena and Lights from the core Scene and keep all level
objects in the level Scenes.

15.3.1 The BlasterGameManager Class
The BlasterGameManager is a central communications hub for the game. It
derives from BaseGameManager and overrides some of its base functions as well
as adding some of its own.

266 15. Blaster Game Example

BlasterGameManager derives from BaseGameController, which in turn
derives from MonoBehaviour so that it can tap into some of Unity’s built in calls
to functions like Update(), Awake() and Start() etc.:

using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement;
using GPC;

public class BlasterGameManager : BaseGameManager
{ public Transform _playerPrefab;
 public Transform _playerSpawnpoint;
 public BaseCameraController _cameraManager;
 public Transform _thePlayer;
 public BlasterPlayer _thePlayerScript;
 public List<BlasterPlayer> _playerScripts;
 public BlasterUIManager _uiManager;
 public ScreenAndAudioFader _fader;
 public int enemyCounter;
 public BaseUserManager _baseUserManager;
 public BaseSoundManager _soundComponent;

Above, we require System.Collections.Generic for using Lists. UnityEngine.
SceneManagement for returning to the main menu at the end of the game and
GPC for the framework.

The class declaration above shows we derive from BaseGameManager. Next,
we skip past all but one of the variable declarations and get to the constructor:

 public static BlasterGameManager instance { get; private
set; }

 public Awake()
 {
 instance = this;
 }

As with any other Singleton style classes we produce in this book, above we
declare a variable named instance that gets set to this instance in its Awake()
function.

 private void Start()
 {
 // start with audio muted and fade covering the
screen
 _fader.SetFadedOut();

 // schedule a fade in after a little time
 Invoke("StartFadeIn", 1f);

 SetTargetState(Game.State.loaded);
 }

When the Start() function runs, automatically called by Unity, the first thing
we need to do is to make sure that the screen starts blacked out so that we can
have a nice fade in. To pull this off, we call out to the ScreenAndAudioFader class
reference in _fader and run its SetFadedOut() function. This will set the state of
the fader to black right away.

The next line is an Invoke statement that will call the StartFadeIn() function
in one second. We delay this to make it work nicely – it appears better to a user if

26715.3 The Core Scene Overview

the Scene loads and then we give the user a brief time to see the black screen
before the fade starts than it does if the fade is already starting as soon as the
Scene loads.

We then go on to call SetTargetState(), changing the game state, to Game.
State.Loaded.

 void StartFadeIn()
 {
 _fader.FadeIn();
 }

Above, the StartFadeIn() function called from Start() calls on _fader.
FadeIn() to give a nice fade from black when the level starts.

 void Init()
 {
 // if we're running this in the editor, LevelVars.
currentLevel will not have been set to 1 (as it should be at the
start)
 // so we just do a little check here so that the
game will run OK from anywhere..
 if (LevelVars.currentLevel == 0)
 {
 LevelVars.coreSceneName = "blaster_core";
 LevelVars.levelNamePrefix = "blaster_level_";
 LevelVars.currentLevel = 1;
 }

There is a little set up required before the game can begin. Above, the first
thing we do is make it easier to test the game in the editor by setting up some
default values in LevelVars, if none have already been set up. To find out if
LevelVars have already been set, we look to see if LevelVars.currentLevel is 0. We
want the level numbering to start from 1, so if it sits at 0, we know that the default
value of 1 has not yet been set up.

Normally, these variables would have been filled in by the main menu but if
you are running in the editor it will need to know what values to use when you
get to the end of the level and the game tries to load in the next one.

 CreatePlayers();
 _cameraManager.SetTarget(_thePlayer);

 // now we've done init, we can start the level..
 SetTargetState(Game.State.levelStarting);
 }

The next task in Init() is to call CreatePlayers() to add the main player to the
Scene. The current game is only single player, but creating players in this manner
would make it easier to add multiple players in the future.

By the time we reach the next line of code, the players have been created so we
can go ahead and tell the Camera script which player to follow around. A direct
reference to the Camera script can be found in _cameraManager – this was set via
the Inspector on the Component. The CreatePlayers() function set a variable
named _thePlayer to the first player it created, and we can pass this over to the
SetTarget() function of the Camera script for it to follow our user-controlled
player.

At the end of Init(), the time has come again to update the game state. This
time, we set it to Game.State.levelStarting.

268 15. Blaster Game Example

 void CreatePlayers()
 {
 // refresh our player script list
 _playerScripts = new List<BlasterPlayer>();

 List<UserData> _playerInfo =
_baseUserManager.GetPlayerList();

 // for editor testing..
 if (_playerInfo.Count == 0)
 _baseUserManager.AddNewPlayer();

Above, we start CreatePlayers() by making a new List to store references to
the players in. To figure out what players need to be created and to get their stats,
we use the BaseUserManager class (as seen in Chapter 4, Section 4.3. of this
book). BaseUserManager should contain a List of players for the game to create
which we can get to via the BaseUserManager.GetPlayerList() function.
GetPlayerList() will return a List of UserData objects (user stats – see Chapter 4,
Section 4.4. for more information on this).

If we are testing the game in the editor and have not gone through the main
menu, the player List in BaseUserManager will be empty. This will cause problems
here, so rather than making it impossible to test I have added code above that
looks to see if _playerInfo.Count is 0 (our player List is empty) and, when it is, to
add a new player with BaseUserManager.AddNewPlayer().

 // iterate through the player list and add the
players to the scene ..
 for (int i = 0; i <_playerInfo.Count; i++)
 {
 // remember to name your spawnpoints
correctly! PlayerSpawnPoint_1, PlayerSpawnPoint_2 etc. depending on
how many players!
 string spawnPointString = "PlayerSpawnPoint_"
+ (i + 1).ToString();

 _playerSpawnpoint =
GameObject.Find(spawnPointString).transform;

The next step is to iterate through the player List we grabbed out of
BaseUserManager and spawn a player for each one. Before we can spawn a player,
though, we need to figure out where to place it. For that, the level Scene should
contain at least one spawn point named PlayerSpawnPoint_ with a number after
it. In the example Scene, the spawn point is named PlayerSpawnPoint_1.

Above, we construct a string named spawnPointString to find the spawn
position with. Once we have the string, GameObject.Find is used to populate
_playerSpawnpoint (a Transform type variable) with the Transform of the
GameObject it finds.

 _thePlayer = Instantiate(_playerPrefab, _
playerSpawnpoint.position, _playerSpawnpoint.rotation, transform);

Above, the player is instantiated, using the playerPrefab prefab (set in the
Inspector) and the position and rotation of the _playerSpawnpoint Transform.
Notice that we also set the parent of the object to be instantiated here. If you do
not parent a newly instantiated object like this, due to how Unity deals with
initializing our merged core and level Scenes the new GameObject will be

26915.3 The Core Scene Overview

instantly destroyed by the engine as soon as the game starts (is this a bug? I have
no idea, but this was the only way to stop Unity eating my players!).

 // grab a reference to the player script through the
new transform we just instantiated
 BlasterPlayer _aPlayerScript =
_thePlayer.GetComponent<BlasterPlayer>();

 // assign ID to this player from the player list
 _aPlayerScript.SetPlayerDetails(_playerInfo[i].id);

 _playerScripts.Add(_aPlayerScript);
 if(i==0)
 _thePlayerScript = _aPlayerScript;
 }

Next, we set the ID number of our player on its BlasterPlayer Component to
match up with the ID from the BaseUserManager player List. To do this, we start
out by getting a reference to BlasterPlayer with GetComponent(), above, to hold
in the locally scoped _playerScript variable. It is locally scoped because we only
need it temporarily, during the set up.

With _playerScript in place, SetPlayerDetails() is called and we pass in the
ID number from the _playerInfo List. _playerScript is then added to the
_playerScripts List so that we always keep a List of players in the game – making
access to their BlasterPlayer Components convenient.

To finish this function, if this is the first player we assume that is the player we
will follow with the Camera and track the score and lives values of, so we check if
the loop variable i is equal to zero and, if it is, grab a reference to this player’s
BlasterPlayer Component (in _aPlayerScript) and store it in _thePlayerScript.

The curly bracket at the end of the code above signifies the end of the loop
(looping through the List of UserData objects in _playerInfo).

 // set the score display
 _uiManager.UpdateScoreUI(_thePlayerScript.
GetScore());
 _uiManager.UpdateLivesUI(_thePlayerScript.
GetLives());

 BaseCameraController theCam =
FindObjectOfType<BaseCameraController>();
 _theCam.SetTarget(_thePlayerScript.transform);

 // clear out the object..
 _playerInfo = null;
 }

Above, we update the score, and live user interface displays by calling their
respective functions in the BlasterUIManager class (see Section 12.2.6 for a
breakdown of that script). To get the values we use GetScore() and GetLives()
functions on the _thePlayerScript (BlastPlayer class) object.

We need to tell the Camera script what to follow here, too, and we get to it by
setting up a locally scoped variable theCam of type BaseCameraController and
then use FindObjectsOfType() to get Unity to go off and search for it. With a
reference set up in theCam, we can call BaseCameraController.SetTarget() and
pass in the target of our player’s Transform.

270 15. Blaster Game Example

The last line of CreatePlayers() sets the temporary List we made, _playerInfo,
to null. Just to make sure that we do not incur any garbage collection from it at
the start of the game.

 public void RegisterEnemy()
 {
 enemyCounter++;
 }

When an enemy is added to the game, the BlasterEnemyBot script will call
the above RegisterEnemy() function. We keep a count of how many enemies
there are, in the variable enemyCounter, so we can tell when they have all been
destroyed and it is time to move on to the next level.

 public void EnemyDestroyed()
 {
 // before reacting to a player destroyed, we should
check that we're still in game playing mode
 if (currentGameState != Game.State.gamePlaying)
 return;

 enemyCounter--;
 _thePlayerScript.AddScore(150);
 UpdateUIScore(_thePlayerScript.GetScore());

 if (enemyCounter <= 0)
 SetTargetState(Game.State.levelEnding);
 }

Enemies hit by projectiles will call the above EnemyDestroyed() function.
We kick it off by making sure that the game is still in the Game.State.gamePlay-
ing state and, if we find it is in any other state than that, we drop out. This
prevents any collisions being registered either before or after the game has
started.

As mentioned above, we keep a count of how many enemies there are in the
variable enemyCounter. When one gets destroyed, we decrement enemyCounter
by one.

The next job is call a function named EnemyHit in the BlasterPlayer class.
EnemyHit() will award the player with score. With the score updated, we then
call on the function UpdateUIScore, passing in _thePlayerScript.GetScore() as a
parameter. UpdateUIScore will take that parameter and display it on screen as a
score value. BlasterPlayer.GetScore() will return an integer containing that
player’s current score.

Next, we check to see if the level has finished by seeing if enemyCounter is
less than or equal to zero. If it is, we know that all of the bots have been destroyed
and it must be time to move to the next level so SetTargetState() gets called to set
the new target state to Game.State.levelEnding.

 public void UpdateUIScore(int theScore)
 {
 _uiManager.UpdateScoreUI(theScore);
 }

We will look at the BlasterUIManager class in detail in Section 12.2.6 of this
chapter. Above, we call BlasterUIManager.UpdateScoreUI() and pass it the score
that was passed into this function as its parameter. BlasterUIManager will update
the on-screen score display.

27115.3 The Core Scene Overview

 public void PlayerDestroyed()
 {
 // before reacting to a player destroyed, we should
check that we're still in game playing mode
 if (currentGameState != Game.State.gamePlaying)
 return;

Above, PlayerDestroyed() will be called by the BlasterPlayer class. If the
game is in a different state to Game.State.gamePlaying then we drop out right
away, since we only want to register player death while the game is running.

 if (_ thePlayerScript.GetLives() <= 0)
 SetTargetState(Game.State.gameEnding);
 else
 SetTargetState(Game.State.restartingLevel);}
 }

When the player has been destroyed, there are two ways it can go. If they
have any lives left, the level will be restarted. If they have no lives left, the game
needs to end.

Above, we use the GetLives() function to see if there are lives left, then
SetTargetState() sets the target game states to either Game.State.gameEnding or
Game.State.restartingLevel.

 public void NextLevel()
 {
 // increase the current level counter in the
LevelVars static variable, so that the levelloader can use it later
 LevelVars.currentLevel++;

 // check to see which level we're on
 if (LevelVars.currentLevel == 4)
 {
 // they finished the game!
 Invoke("LoadGameCompleteScene", 1f);
 }
 else
 {
 Debug.Log("LOADING NEXT LEVEL..");
 // game isn't completed yet, so..
 // load the sceneLoader scene (which will
load the next level)..
 SceneManager.
LoadScene("blaster_sceneLoader");
 }
 }

When all of the enemies have been destroyed, the LevelEnding() function
calls the function above, NextLevel() to progress the player and initiate loading
the next level.

The first thing it does is to increase the currentLevel value held in our LevelVars
class. This will be used to form the filename of the next level, so we need to be sure
that the value of currentLevel never goes above the number of levels we have made
in Scenes otherwise it will produce an error. We can currentLevel at 4, for this
game. If you use this project as a template for your own games you will need to
adjust this number accordingly, otherwise your game will always end after level 3!

If the currentLevel is 4, the code above makes an Invoke() call to
LoadGameCompleteScene one second from now. In the example game,
LoadGameCompleteScene simply loads the main menu and ends the game but if

272 15. Blaster Game Example

you use this project, you can make it load a nice congratulations message or a big
finale – anything you like, really!

If the currentLevel is not 4 (less than 4, since we will never get any higher due
to this if statement) then we need to load the next level. As LevelVars is already
set up and we have already increased its currentLevel value, all we need to do is
use SceneManager.LoadScene() to load the loader Scene – blaster_sceneLoader –
to load and start the next level.

 void CallFadeOut()
 {
 _fader.FadeOut();
 }

The CallFadeOut() function is used to call out to the ScreenAndAudioFader
Component to fade out the Scene to black. It will be called when the game has
ended, or when the level has finished, and we are about to load the next one.

 // --
——————————————————————————
 // GAME STATE FUNCTIONS (CALLED BY THE UPDATETARGETSTATE /
UPDATECURRENTSTATE FUNCTIONS)

The functions below all override virtual functions from the base
BaseGameManager class. They are called by the BaseGameManager class at the
beginning of game states. We looked at the BaseGameManager class in Chapter 3,
Section 3.2.1., so look at that if you need more information on where these are
called exactly.

 public override void Loaded()
 {
 Init();
 OnLoaded.Invoke();
 }

Above, when the core Scene has loaded, we call the Init() function and invoke
a UnityEvent named OnLoaded. The UnityEvents are there so that you can easily
hook in other scripts to react to game state changes without dependencies. In the
example game, any UnityEvents we do use are used to tell the user interface to
hide or show Canvases such as the get ready message or game over.

 public override void LevelStarting()
 {
 OnLevelStarting.Invoke();
 Invoke("LevelStarted", 5f);
 }

LevelStarting() calls our OnLevelStarting UnityEvent then schedules a call
to the LevelStarted() function. At this point, our player has been told to get ready
and we give them this 5 second delay to ready themselves.

 public override void LevelStarted()
 {
 OnLevelStarted.Invoke();

 // now we find all the enemy spawners
 GameObject[] _spawners =
GameObject.FindGameObjectsWithTag("EnemySpawner");

27315.3 The Core Scene Overview

Above, LevelStarted() is responsible for getting the game going. The first step
to accomplish this is to find all of the enemy spawners in the Scene with
FindGameObjectsWithTag() passing in the string EnemySpawner. The enemy
spawner prefab used in all the levels has its tag set to EnemySpawner so that this
function can easily find them. FindGameObjectsWithTag() returns an array of
GameObjects we can now iterate through:

 // next, iterate through the list of enemy spawners
and send a message to start their spawn timers
 for (int i = 0; i < _spawners.Length; i++)
 {
 _spawners[i].SendMessage("StartSpawnTimer");
 }

One by one, each spawner has a message sent to it in the loop above, which
runs the StartSpawnTimer() function in the Spawner class.

 // level is started now, so we can move on to
'playing' state
 SetTargetState(Game.State.gamePlaying);
 }

The last line of LevelStarted() sets the target game state to Game.State.game-
Playing – signifying that the game is afoot.

 public override void LevelEnding()
 {
 OnLevelEnding.Invoke();

 // play level complete sound
 _soundComponent.PlaySoundByIndex(1);

 Invoke("CallFadeOut", 4f);
 Invoke("NextLevel", 6f);
 }

Earlier above, the in EnemyDestroyed() function, we set the target state to
Game.State.levelEnding when the enemyCounter reached zero to indicate that all
of the enemies had been destroyed for this level. The LevelEnding() function
above is called as we enter that state and need to begin to move on to the next level.

LevelEnding() starts by invoking the OnLevelEnding UnityEvent. It then plays
a sound using the BaseSoundController – the sound in the array on our sound con-
troller, at index 1, is a simple sound effect to signify that the level has been complete.

To finish up, we schedule a call to the CallFadeOut() function (fading out
the entire screen to black before loading) in 4 seconds, followed by a call to
NextLevel() – the function that will do the actual level progression and loading –
in 6 seconds, to give the fader time to do its thing before starting the load.

 public override void GameEnding()
 {
 OnGameEnding.Invoke();

 // play level complete sound
 _soundComponent.PlaySoundByIndex(0);

 Invoke("CallFadeOut", 2f);
 Invoke("GameEnded", 3f);
 }

274 15. Blaster Game Example

You may be used to the pattern now – each of these functions calls it corre-
sponding UnityEvent. Above, it is the OnGameEnding event.

We play a little sound at the end of the game to let the player know that things
did not go so well, and the game is over. _soundComponent.PlaySoundByIndex()
passes in 0 to the BaseSoundController Component as the sound to play.

CallFadeOut() gets a scheduled call next, in 2 seconds time, to fade out the
Scene. Then, we get a scheduled call to GameEnded() to load the main menu and
quit the game in 3 seconds.

 public override void GameEnded()
 {
 OnGameEnded.Invoke();
 LoadMainMenu();
 }

GameEnded() calls its UnityEvent, then on to LoadMainMenu(). The
LoadMainMenu() function will show up below, toward the end of this C# script.

 public override void RestartLevel()
 {
 Invoke("CallFadeOut", 2f);
 Invoke("LoadSceneLoaderToRestart", 4f);
 }

RestartLevel() does just that by calling CallFadeOut() to darken the Scene in 3
seconds, then it schedules a call to LoadSceneLoaderToRestart() for 4 seconds’ time.

 void LoadSceneLoaderToRestart()
 {
 SceneManager.LoadScene("blaster_sceneLoader");
 }

Since the LevelVars class still has the values set up for loading the same level
we are already on, all we do to have it restart is to reload the Scene loader.
LoadeSceneLoaderToRestart(), above, uses SceneManager.LoadScene() to tell
Unity to load blaster_sceneLoader.

 void LoadMainMenu()
 {
 SceneManager.LoadScene("blaster_menu");
 }
 void LoadGameCompleteScene()
 {
 SceneManager.LoadScene("blaster_menu");
 }
}

The final two functions of the BlasterGameManager class use SceneManager
to load the blaster_menu Scene. LoadGameCompleteScene() is provided for you
to customize should you use this project as a template. This is where you should
put your celebration for completing the entire game or loading of another Scene
to congratulate your player or something like that.

15.3.2 The BlasterPlayer Class
The BlasterPlayer class is a sort of glue between the Components and game logic.
All of the movement of the player is taken care of by a separate Component, the

27515.3 The Core Scene Overview

BasePlayerCharacterController (which we will cover in the next section of this
book, in 12.2.4). It is also the place where we look to get player input for the fire
button and tell the weapon system in StandardSlotWeaponController to fire.

It begins.

using UnityEngine;
using GPC;
public class BlasterPlayer : BasePlayerStatsController
{ public LayerMask projectileLayerMask;
 public Transform explosionPrefab;
 [Header("Respawn")]
 public GameObject playerAvatarParent;
 public float respawnTime = 2f;
 public BasePlayerCharacterController _controller;
 [Header("Weapon")]
 public StandardSlotWeaponController _weaponControl;
 public bool allowedToFire = true;

BlasterPlayer derives from BasePlayerStatsController, which provides a
bridge between BaseUserManager and the player by accessing and storing data
about the player such as lives and score values.

 public override void Init()
 {
 base.Init();
 SetHealth(1);

 _TR = transform;
 _controller =
GetComponent<BasePlayerCharacterController>();
 }

We call base.Init() to run the Init() function of BasePlayerStatsController,
the class this one derives from, so that the player data is set up and ready to go
before – on the next line – setting the player’s health level to 1. When a player’s
health reaches zero, they lose a life. We set the health level to 1 because this game
uses a lives system rather than health, and we want them to lose a life as soon as
they are hit not after reducing a health level first.

Above, we grab a quick reference the Transform for this player and then use
GetComponent() to find the BasePlayerCharacterController Component (the
script that will be handling movement of the player) and store that into a variable
named _controller so we can access it further down.

 void Update()
 {
 if (_controller._inputController.Fire1)
 _weaponControl.Fire();
 }

The BasePlayerCharacterController class has a variable in it named _input-
Controller that links to a BaseInputController Component attached to the player.
BaseInputController provides the input from the user to the movement system,
but we can also tap into it for other input such as (above) the fire button. Here,
we access BaseInputController via _controller.inputController and check to see
if its Fire1 Boolean variable is true. If it is, we can pass the message on to the
weapon system. We use the ref held in _weaponControl here to call
StandardSlotWeaponController.Fire().

276 15. Blaster Game Example

 public void OnCollisionEnter(Collision collider)
 {
 if (IsInLayerMask(collider.gameObject.layer,
projectileLayerMask) && !_controller.isRespawning)
 {

Unity’s collision system will automatically call the OnCollisionEnter() func-
tion above, where we can identify what it was that collided with the player and
react to it. To do this, we start out by comparing the layer of the Collider that hit
the player to the projectileLayerMask. This will tell us if the player has been hit by
a projectile from an enemy.

BasePlayerStatsController, the class this class derives from, in turn derives
from ExtendedCustomMonoBehaviour. ExtendedCustomMonoBehaviour pro-
vides a function named IsInLayerMask(), which can be used to find out if a spec-
ified layer fall within a LayerMask (which is a collection of layers). To use
IsInLayerMask, we pass in the layer you want to check as the first parameter and
the LayerMask as the second. Above, we pass in the Collider’s GameObject’s
layer to look for and the projectileLayerMask LayerMask as the LayerMask to
look at.

When the player dies, before respawning the player object is hidden but it
still exists in the game world and can still receive collision events. It is for this
reason that we make sure the player is not respawning by checking against
_controller.isRespawning.

 ReduceHealth(1);

 if (GetHealth() <= 0)
 {
 Instantiate(explosionPrefab, _TR.position,
_TR.rotation);

 // need to respawn, or reload the current
level here.. life lost!
 PlayerDestroyed();
 }
 }
}

If we know the Collider that hit the player is a projectile and we are not
respawning, we go ahead and reduce the player’s health stat by 1. Below that, we
take a look at GetHealth() to see if it is less or equal to 0. Since the player only has
one health in this game, one hit has the effect of killing the player instantly. If you
want to make the player have more than one chance before getting destroyed by
a projectile, you could change the SetHealth() statement in the Init() function
near the top of the class.

If GetHealth() says the health level is less or equal to 0, Instantiate creates an
explosion effect in the Scene, courtesy of the explosionPrefab prefab and
positioned at the player’s Transform position and rotation. We then call on the
PlayerDestroyed() function to deal with the next steps:

 void PlayerDestroyed()
 {
 _controller.isRespawning = true;

 // hide the avatar / visual representation of a
player!

27715.3 The Core Scene Overview

 playerAvatarParent.SetActive(false);

 // reduce this player's lives by 1
 ReduceLives(1);

 // tell game manager that the player was destroyed
 BlasterGameManager.instance.PlayerDestroyed();
 }

}

Above, when PlayerDestroyed() is called we first set a flag _controller.isRe-
spawning to avoid registering any more projectile hits/health losses and/or dupli-
cate respawn calls. playerAvatarParent is a variable containing the GameObject
above our players avatar in the Hierarchy, and here we call SetActive() on it to
make it inactive in the Scene. This will hide the parent GameObject and any child
objects, too, so the entire player should become invisible the player. As the player
has been destroyed, we call ReduceLives() (all stats functions like this are in
that BasePlayerStatsController class, by the way!) and finally call out to the
BlasterGameManager instance to register the player destruction with it.
BlasterGameManager will then take care of reloading the Scene to reset the game
state and restart the level.

15.3.3 Enemy Bots and the BlasterEnemyBot Class
When it comes to inheritance, there is a three class chain leading up to
BlasterEnemyBot:

BlasterEnemyBot>BaseEnemyStatsControl ler>BaseAIControl ler>
ExtendedCustomMonoBehaviour.

BaseAIController is a class full of utility functions for dealing with AI, such as
waypoint management, and movement. On its own, it does not do anything until
we tell it what to do. BaseEnemyStatsController is the equivalent of Bae
PlayerStatsController only for enemies. It holds information about the enemy’s
health, score, and name and can be expanded to hold any information you like.
BlasterEnemyBot.cs brings BaseEnemyStatsController and BaseAIController
together, to form the AI for our enemy bot.

The inherited classes means that BlasterEnemyBot is a relatively small script
which derives from AIBotController, as described in Chapter 10, Section 10.4, of
this book:

using UnityEngine;
using GPC;

public class BlasterEnemyBot : AIBotController
{
 [Header("Game specific")]
 public bool isRespawning;
 public bool isBoss;

 [Header("Weapons and hits")]
 public BaseEnemyWeaponController _weaponController;
 public LayerMask projectileLayerMask;
 public Transform _explosionPrefab;

 public override void Start()
 {
 Init();
 }

278 15. Blaster Game Example

 public override void Init()
 {
 base.Init();
 // now get on and chase it!
 SetAIState(AIStates.AIState.chasing_target);
 }

Above, we override BaseAIController’s Start() function with this one. It calls the
Init() function to get set up. Init() calls its base class equivalent then sets the AI’s state
to AI.States.AIState.chasing_target so that our bots will start moving right away.

 public override void Update()
 {
 base.Update();
 }

We only need the base class to update, so that’s all we do here.

 public void OnCollisionEnter(Collision collider)
 {
 if (IsInLayerMask(collider.gameObject.layer,
projectileLayerMask))
 {
 ReduceHealth(1);
 if (GetHealth() <= 0)
 {
 Instantiate(_explosionPrefab,
_TR.position, _TR.rotation);
 BlasterGameManager.instance.EnemyDestroyed();
 Destroy(gameObject);
 }
 }
 }
}

Above, when OnCollisionEnter() gets called by the engine, we check to see if
it is a projectile hitting the bot. If it is, health is reduced by 1 and there’s a check
to see if our enemy health is depleted. If the health is at (or below) 0, explosion-
Prefab is instantiated at our position. BlasterGameManager’s instance gets
informed of the enemy demise via EnemyDestroyed() and then we use Unity’s
Destroy() function to remove the enemy GameObject from the Scene.

15.3.4 Weapons and Projectiles
Our EnemyBot prefab uses two Components for its weapons system. Those are;
AI Weapon Controller and a Standard Slot Controller. The Standard Slot
Controller is the system provided as part of the framework for dealing with
weapons – we use the exact same Component on the player. It is the AI Weapon
Controller that accesses StandardSlotController to tell it when to fire.

The main weapon (a prefab named Blaster_1) has a cylinder that looks like a
weapon with a single Component attached to it – BaseWeaponScript – and it
contains a reference to a projectile named Blast that will be instantiated when-
ever it fires. For more on the weapon system, see Chapter 7.

15.3.5 User Interface
The UI script derives from BaseUIDataManager, the standard UI script shown in
Chapter 10. The BaseUIDataManager declares several common variables and
provides some basic functions to deal with them:

27915.3 The Core Scene Overview

using UnityEngine.UI;
using GPC;
public class BlasterUIManager : CanvasManager
{
 public Text scoreText;
 public Text highText;
 public Text livesText;

 void Start()
 {
 // hide all ui canvas
 HideAll();
 }

 public void ShowGetReadyUI()
 {
 // here we delay showing the get ready message just
so it flows nicer
 Invoke("ShowGetReady", 1f);
 }

 void ShowGetReady()
 {
 ShowCanvas(0);
 }
 public void HideGetReadyUI()
 {
 HideCanvas(0);
 }
 public void ShowGameOverUI()
 {
 ShowCanvas(1);
 }
 public void ShowGameUI()
 {
 ShowCanvas(2);
 }
 public void HideGameUI()
 {
 HideCanvas(2);
 }
 public void ShowLevelComplete()
 {
 ShowCanvas(3);
 }
 public void HideLevelComplete()
 {
 HideCanvas(3);
 }
 public void UpdateScoreUI(int anAmount)
 {
 scoreText.text = "SCORE " + anAmount.ToString("D6");
 }
 public void UpdateHighScoreUI(int anAmount)
 {
 highText.text = "HIGHSCORE " + anAmount.ToString("D6");
 }
 public void UpdateLivesUI(int anAmount)
 {
 livesText.text = "LIVES " + anAmount.ToString();
 }
}

280 15. Blaster Game Example

15.4 Level Scenes
Level Scenes contain spawners for the enemies and any environment for that
level.

15.4.1 Spawning Enemies
The Spawner class derives from BaseTimedSpawner, which is a class used for
automatically spawning another prefab and deleting itself once the prefab has
been added to the Scene. The idea is that you add Spawner (or a derivative of it) as
a Component to a cube primitive object in your Scene. The cube acts as a visual
guide, just so you can easily gauge where your prefab will be spawning. At run-
time, the cubes Renderer is disabled by the script, making it invisible, before the
prefab is spawned and the original spawner GameObject destroyed.

Spawner also allows you to set a randomized delay time so that spawning
may be staggered to avoid everything spawning in at the exact same time.
Spawner.cs was covered in Chapter 5, Section 5.8.1, in this book but in this chap-
ter, we will look at the derived version of it used specifically for this game. That is,
the Spawner class.

BlasterTimedSpawner gets its behavior from BaseTimedSpawner. Essentially,
the function of this script to register an enemy whenever one is spawned by the
regular BaseTimedSpawner code.

using GPC;
public class BlasterTimedSpawner : BaseTimedSpawner
{
 public override void Start()
 {
 // do everything the base script does
 base.Start();
 // tell gamemanager about this enemy
 RegisterEnemy();
 }

 void RegisterEnemy()
 {
 // make sure we have a game manager before doing
anything here
 if (BlasterGameManager.instance == null)
 {
 Invoke("RegisterEnemy", 0.1f);
 return;
 }

 // at the start of the game, we need to register
this spawner as an enemy before it has spawned
 // so that we have an initial enemy count right away
 BlasterGameManager.instance.RegisterEnemy();
 }
}

Above, we override the Start() function of BaseTimedSpawner so that we can
call RegisterEnemy() at the start of the game. We still need BaseTimedSpawner
to do its set up, so base.Start() is called too.

The RegisterEnemy() function starts by checking that the BlasterGame
Manager instance has been created – this is to prevent our script from trying to
access the Game Manager before it has been added to the Scene and initialized
properly. Since the level Scene and core Scene is loaded separately and merged,

28115.4 Level Scenes

it may sometimes be necessary to do things like this when trying to avoid errors
due to the odd way that Scenes are initialized by the engine.

If we do not find BlasterGameManager, Invoke() is used to try this function
again in 0.1 seconds, then we drop out. This function will repeat call itself until
BlasterGameManager is ready.

Finally, BlasterGameManager’s instance gets a call to its RegisterEnemy()
script, which you may remember from earlier in this chapter just keeps count of
how many enemies there are in the Scene so it can count how many are destroyed
and know when all of the bots are destroyed and the level has been completed.

https://taylorandfrancis.com

Note: Page numbers in italic indicate figures.

Index

A

aTarget (variable), 164
Add Component, 15, 16, 16, 23, 24, 26, 27,

36, 38, 149, 216
Add GameObject menu, 15
AddComponentMenu, 26, 52, 58, 63, 66,

77, 80, 84, 89, 95, 96, 102, 109,
124, 130, 134, 138, 148, 156, 170,
212, 215

AddHealth, 69, 71, 170
AddLives, 69, 72
AddNewPlayer, 67–68, 71, 268
AddScore, 32, 33, 45, 68, 71, 73, 170, 270
Aesprite (sprite editing program), 12
AI, 53, 222, 229, 231, 232

and enemies, 49, 50
AI class, 235
AI controller, 62, 166, 222
AI Manager, 155–186

adding weapon control, 181–186
AIBotController class, 171–177
AISteeringController class,

177–181
BaseAIController class, 156–170
enemy stats, 170–171
making enemy bot controller, 171–177

AI objects, 137

AI players, 63, 187, 227, 254
AI scripts, 76, 230
AI sub-folder, 75
AI Weapon Controller, 278
AI.States.AIState.chasing_target, 278
AIAttackState, 183
AIAttackState.look_and_

destroy, 184
AIAttackState.random_fire, 184
AIAttackStates namespace,

181–182
AIBotController, 155, 171–177, 277
AIBotController script, 160
AIBotController.cs script, 161
AIControlled, 158, 159, 231–232, 235,

257–258
AIState.chasing_target, 162, 172,

174, 178
AIState.move_along_waypoint_

path, 177–178
AIState.move_looking_for_

target, 172, 175, 176
AIState.paused_no_target, 178
AIStates, 156, 171, 173, 177
AISteeringController, 155,

177–181, 222, 258
AISteeringController script, 160
AlignToGround class, 91–93

284 Index

allowWeaponSwitchKeys, 134
ammunition, 131–132
animation, 5, 9, 10, 13, 32, 45

infinite runner game, 27
Animator Component, 27
Animator graph, 13, 13
Any State, 13, 13
Application.

persistentDataPath, 205,
208

Application.Quit, 198
ApplyGravity, 107–108
ArrayLists, 224
Assets folder, 15
asyncLoad, 213, 214
AsyncOperation, 213
attack states (weapon control), 181
audio, 147, 259

adding sound to weapons, 153
BaseSoundManager class, 147–153

audio fade functions, 152–153
audio mixer properties

exposed parameters menu, 147
modification with scripts, 146, 146–147

Audio Mixers, 26, 27, 194
window, 146

audio settings, saving and loading,
198–200

audio volumes, 209
AudioClips, 51, 148

playback, 150
AudioListener, 148, 151, 230, 232, 233
AudioMixer, 145–147, 148, 151,

195–197, 199
Duck Volume effect, 147

AudioSource, 148–149, 150, 153
Auto Destroy Object Component, 19
AutoTransformMove, 19
AutoSpinObject, 93–94
AutomaticDestroyObject, 93
avatar, 70, 118, 219, 275, 276–277
Awake function, 3, 59, 150, 225, 238, 245,

266
axis names, 64

B

BackUpLookingForTarget, 175–176
base classes, 4–5, 50
BaseAIController, 155–178, 181,

230, 231, 277
Start function, 278

BaseAIController.cs, 75, 164
BaseCameraController, 51, 58–59,

265, 269
folder, 58

BaseCameraController.
SetTarget, 269

BaseCar class, 5
BaseCharacterController, 62
BaseEnemyStatsController, 170,

171–172, 277

BaseEnemyWeaponController,
181–186

BaseGameController, 52, 266
BaseGameManager, 28–31, 51–56,

221, 224, 265, 272
folder, 52
functions, 51

BaseGameManager.Change, 16–17
BaseInputController, 65, 81, 103,

109, 110, 115, 119–120, 177,
180–181, 275

folder, 63
BaseMainMenuManager, 194–198

audio settings, 198–200
BaseMainMenuManager.cs script,

198
BasePlayer2DPlatform

Character, 25–26, 118
BasePlayerCharacter

Controller, 102, 105, 275
BasePlayerStatsController, 66,

70–73, 265, 275–277
folder, 70

BaseProfileManager, 194, 199,
203–210

BaseProfileManager.cs, 203–204
BaseSoundController, 26, 27, 222,

233, 235, 259, 265, 273–274
BaseSoundManager, 91, 147–153

specifications, 147–148
BaseSoundManager.cs, 148
BaseTimedSpawner, 280
BaseTopDown.cs, 106
BaseUIDataManager, 278
BaseUserManager, 26, 50, 65–73,

222–224, 227–231, 265, 268,
269, 275

folder, 66
BaseWeaponController, 123,

124–130, 133–134
BaseWeaponScript, 123, 125,

128–130–133, 278
BaseWheelAlignment, 109, 115, 116
BaseWheeledVehicle, 108–109, 177,

230, 253–254
BattleController, 75
Berkeley Software Distribution (BSD),

263
bitmasks, 106, 119
blaster game, 84, 91, 155, 170, 211, 212,

263–281
arena shooter, 263
folders, 263, 264
ingredients, 264–265
level scenes, 280–281
main menu scene overview, 265
spawning enemies, 280–281
structure, 264

blaster game (core scene overview), 265–279
BlasterEnemyBot class, 277–278
BlasterGameManager class,

265–274

285Index

BlasterPlayer class, 274–277
enemy bots, 277–278
user interface, 278–279
weapons and projectiles, 278

BlasterEnemyBot, 270, 277–278
BlasterGameManager, 265–274, 277,

278, 280–281
BlasterPlayer, 265, 269–271,

274–277
BlasterPlayer.GetScore, 270
BlasterPlayerController, 62
BlasterUIManager, 269, 279
BlasterUIManager.

UpdateScoreUI, 270
blocksRaycasts properties, 187–193
Boolean parameter, 127, 128, 233
Boolean variables, 8, 53, 56, 57, 64, 82, 85,

97, 104, 108, 109, 113, 120,
131–132, 134, 140, 141, 158, 159,
166, 169, 175, 182–185, 189–190,
206, 212, 215, 235, 239, 246–248,
251, 258, 275

bots, 155, 159, 171, 263, 264, 270, 277–278,
281

Box Collider, 36, 37–38, 88
brake (float variable), 114
brakeMax, 112
brakeTorque, 112
braking, 115
Build Settings panel, 46, 47

C

C#, 99, 202
built-in system for iterator blocks, 6

C# GPC framework, 9
C# script, 4, 15, 19, 263, 274
CSharpBookCode>Base>Input

Controller, 26
CallFadeOut, 272–274
camera, 84–85, 137, 185, 194, 214, 222, 269

folders, 75, 76
camera scripts, 76–80, 267

third-person camera, 77–80
top-down camera, 80

camera system, 227
Camera.main, 185, 232
CameraParent GameObject, 232
cameraScript.SetTarget, 232
CameraTarget, 58–59, 222, 232
CameraThirdPerson, 265
canAirSteer, 120
canControl, 103–104, 108, 111, 183,

258
canFire, 130–131, 183–186
canSee, 161–162, 165, 175
canSeePlayer, 175
CancelInvoke, 32, 33, 87, 88, 132, 185,

226
Canvas buttons, 194
Canvas GameObjects, 187
Canvas index numbers, 40

CanvasGroup, 18, 39–40, 187, 189, 193
CanvasManager, 39–40, 91, 187–197, 200,

265
CanvasManager.LastCanvas, 198
CanvasManager.

TimedSwitchCanvas, 198
Canvases, 42, 222, 272
Capsule Collider, 23, 24
car (as C# script), 4
Car Audio, 222
car controller code, 138
Char.ConvertToUtf32, 134–135
CharacterController.SimpleMove, 106
ChasingTarget, 172–173, 174
cheaters, 203
CheckGround, 111, 113
CheckInput, 81–82
CheckLock, 111, 114
CheckWrongWay, 251, 252, 254
ChooseProfile, 201, 206–207
class declaration, 4
class names, 62
CloseExitConfirm, 198
coroutines, 5–6, 148, 188–193, 212–214,

215
code libraries, 6
codes, 5–6
Collider, 36, 62, 89, 91, 92, 162, 252, 257,

259, 276
collision Components, Unity-specific,

61, 62
collision layers, 119
collisionFlags bitmask, 106
collisions, 23, 24
communication between classes, 2
CompletedLap, 241–242
Component, 37, 39, 40
Component Base Profile Manager, 194
Component menu, 26
componentized methodology, 137
Compression level, 13
Constraints field, 23
Constructor, 225
controllers, 1–2

main class, 50
core Scene, 220, 228, 232–234, 236, 260
coreSceneName, 212–214–215, 216
correspondingGroundHit, 117,

 118
CPU, 226
CrashSound, 259
Create Empty, 22
CreateAssetMenu, 202
CreateEmptyProfiles, 205, 207
CreatePlayers, 267–268, 270
Cube, 36, 37–38
cube primitive, 88–89
curSmooth, 105–106, 107
curSpeed, 102, 106–107
currentAIState, 150, 160, 172
currentAlpha, 191–193
currentGameState, 17, 52–53

286 Index

currentID, 238–240
currentLevel, 271, 272
currentObjectNum, 86–87, 88
currentRotationAngle, 78
currentTime, 96–97–99, 191–193
currentWayDist value, 168
currentWaypointDist, 247, 250, 251
currentWaypointNum, 168–169, 247,

249–250
currentWaypointTransform, 167,

169, 178, 180
custom states, 51
cutscene, 51

D

data format (.json), 201, 203, 205, 208
data storage, 61
DateTime class, 207
deathmatch-style scoring, 75
debug log console, 214
Debug.DrawRay calls, 163
debugging, 4–8, 11, 30, 80, 162–163, 165,

172, 195, 201, 208, 209, 227, 271
DecibelToLinear, 196–197
default functions, 4, 5
Destroy, 91, 232, 278
destroyAtEndOfWaypoints, 167,

169
DestroyGO [Game Object], 93
didInit, 8, 57, 67–71, 119–120, 159, 178,

180, 183, 204, 210, 227, 253–254,
258

direct referencing scripts, 2
Disable, 129, 131
DisableCurrentWeapon, 126–129
distance checking, 249
distanceBasedSpawnStart, 85, 86
distanceCounter, 32, 34, 35, 46
distanceFromCameraToSpawnAt,

86
distanceToChaseTarget, 175
distanceToSpawnPlatform, 17, 34,

35, 35, 46
doFade, 189
DoFakeBrake, 111, 113
doFire, 183–185
DoMovement, 172, 173
doneFinalMessage, 235
DoNotDestroyOnLoad tag, 211
DoSomething, 2
doSpawn, 87, 88

E

Edge Collider 2D Component, 18–19, 19
Enable, 131
EnableCurrentWeapon, 127–129
encryption, 203
EndGame, 33, 43, 45
enemy bot controller, 171–177
enemy bots, 277–278

enemy controller, 50
enemy stats, 170–171
EnemyBot prefab, 278
enemyCounter, 270, 273
EnemyDestroyed, 273
EnemyHit, 270
engine AudioSource object, 115
engine function, 4, 5
engineSoundSource, 110–111
Euler rotation values, 79
exceptThis (parameter), 141, 143
Exit_Confirm_Canvas, 194
ExitGame, 198
explosionPrefab, 276
ExtendedCustomMonoBehaviour,

51, 56–58, 70, 84, 88–90, 102,
103, 109, 116, 118, 130, 133, 156,
157, 182, 259, 276, 277

folder, 57
ExtendedMonoBehaviour class, 8, 91,

245

F

FaceCamera, 94
faceWaypoints, 177
fade effects, 5
FadeCanvasGroup, 187, 190
fadeDuration, 191–193
fading in and out, 187–193, 265, 266–267,

272
Fake Friction, 222
fakeBrakeDivider, 113
file path, 205, 208, 209
filename, 202, 204, 205, 208, 209, 215–217,

223, 271
Filename parameter, 202
filtering, 13
final score, 45, 46
FinalScoreTextLabel, 41
FindGameObjectsWithTag, 273
FindNearestWaypoint, 141–143
FindObjectOfType, 237, 269
FinishRace, 235
finite state machines (FSM), 7
Fire, 82, 129–133, 181, 275
Fire1 (as jump key), 121
fireDelayTime, 185–186
fireDirection, 132
FireProjectile, 132
Firing, 183, 186
FixedUpdate, 4, 5, 52, 56, 77, 88, 95, 111
flow diagrams, 8
focusPlayerID, 231, 234
focusPlayerScript, 243–244
follow camera, 77
followTarget, 159, 161, 162, 174–175,

180
followTargetMaxAngle, 165
format strings, 98–99
forward vector, 138, 163
framework scripts, 50–59

287Index

BaseCameraController, 51, 58–59
BaseGameManager, 51–56
ExtendedCustomMonoBehaviour,

51, 56–58
Freeze Rotation, 23
fromPos, 141

G

game code, 2
game control, 80

scripts, 5, 65
sub-folder, 75–76, 80

Game Events label, 41
game framework, 49–59

controllers, 50
diagram, 50
managers, 50
scripts, 50–59

game loading, 51
game logic, 15, 18, 28, 53, 55, 56, 75, 200,

211, 236, 274
game loop, 28–36
Game Manager, 3, 8, 28–36, 41, 49, 50, 53,

66, 96, 200, 219–221
GameObject, 37, 40, 234
infinite runner game, 15–18

Game Manager script, 2, 10, 51, 52, 54
game over message, 46, 108
Game panel, 11, 21, 23
game state, 28–29, 49, 51, 53, 75, 267
Game.State, 28, 30, 44, 52–55
Game.State.gameEnding, 271
Game.State.gamePlaying, 53, 270,

271, 273
Game.State.levelEnding, 270, 273
Game.State.levelStarting, 267
Game.State.loaded, 53–55
Game.State.restartingLevel, 271
Game.State.Starting, 53–55
GameEnded, 28, 30, 33, 44, 51, 274
GameEnding, 28, 30, 33, 44, 45
GameLoaded state, 7, 44
GameObject, 8, 57, 58, 163
GameObject referencing using

SendMessage, 2
GameObject.Find, 236, 268
GameObject.

FindGameObjectWithTag,
161, 162

GameObject.GetComponent, 182
GameObject.GetComponentInChildren,

182–183
GameObject.SetActive, 129
GameObjects, 10–12, 15, 17–19, 21–22,

27, 34–36, 41, 61, 65, 70, 76,
83–94 passim, 103, 109–111, 113,
116, 117, 119, 125, 129, 130, 140,
141, 148–151, 159, 165, 181, 211,
216–230 passim, 236–238, 246,
259, 273

cached, 57, 157, 182

in Scene as Components, 2
Script Component, 194
user interface, 260–261

GameOverMessageCanvas, 40, 41
GamePaused, 51, 53, 55–56
GamePlaying, 28, 30
GameSceneName, 47, 197
Game Sounds, 27, 27
GameSounds, 148, 150, 151
GameStarted, 30, 42, 44, 45
GameStarting, 7, 28–31, 44
GameUICanvas, 40, 41
GameUnPaused, 56
GetComponent, 58, 103, 110, 111,

180–181, 199, 227, 230–232,
235, 258, 269

GetCurrentLap, 247
GetCurrentWaypointDist, 247
GetCurrentWaypointNum, 247
GetDirection, 108
GetFire, 64
GetFormattedTime, 96, 98
GetGroundHit, 118
GetHealth, 68, 72, 73, 171, 276, 278
GetID, 246
GetInput, 103–104, 109, 111, 113–115
GetIsFinished, 248
GetLapsDone, 241, 247, 248
GetLives, 69, 72, 269, 271
GetMusicVolume, 199
GetPlayerList, 67, 268
GetPosition, 242
GetProfileName, 206
GetRacePosition, 241
GetReadyMessageCanvas, 40
GetRespawn, 64–65
GetRespawnWaypointTrans

form, 248, 256
GetSceneByName, 214
GetScore, 269
GetSFXVolume, 199
GetSpeed, 108
GetStartPoints, 229, 236
GetTime, 99–100
GetTotal, 141, 249
GetTransforms, 138, 141, 143, 144
GetUniqueID, 239
GetVertical values, 115
GetWaypoint, 141, 144, 166, 167,

169
GetWaypointsController, 228
GetWaypointTransform, 248
Github, 9
Gizmos, 11, 89, 163

definition, 85
Gizmos.color, 85, 139–141
Gizmos.DrawLine, 140
Gizmos.DrawSphere, 85, 140
Global Race Controller script, 219
global race manager script, 1–2, 225
‘global_userDatas’, 65–70
GlobalBattleManager, 75

288 Index

GlobalRaceManager, 50, 76, 222,
225, 233, 234, 238–246, 255

GlobalRaceManager.
GetPosition, 256

GlobalRaceManager.
raceAllDone, 255–256

goingWrongWay, 251–252, 254
GPC (Game Programming Cookbook), 19,

37
GPC namespace, 16, 24, 43, 52, 58, 63, 77,

80, 83, 84, 89, 91, 95, 96, 102,
109, 116, 118, 124, 130, 134, 138,
148, 156, 170, 171, 177, 188, 195,
198–199, 202, 204, 212, 215, 216,
223, 224, 238, 245, 253, 266, 275,
277, 279, 280

GPC_Framework folders, 14, 47, 66, 70
graphics, 9, 139, 194, 222, 257
Gravity Scale, 23
green arrow, 18
GroundLayerMask, 26, 119, 121

H

Hand Tool, 12, 12
hashtables, 239–243
health, 65–69, 71
HideAll, 187, 188
HideCanvas, 39, 40
HideCanvas(index), 187–190, 197
HideCount, 226, 236
HideFinalMessage, 226, 260–261
HideGameUI, 42
HideGetReadyUI, 41
HideWrongWay, 261
Hierarchy, 21–24, 26, 27, 29, 35–37,

40–41, 47, 141, 149, 212, 216,
260, 277

Hierarchy panel, 11, 12, 15, 18
high score, 37, 39, 43–46, 65, 68, 83, 203,

206, 207, 209–210, 279
HighScoreTextLabel, 41
howManyLaps, 239
humanoids, 61, 62, 101–108, 219, 220–221,

264

I

IEnumerator, 5, 6, 212, 213
In-Game UI (GameObject), 260
in-game user interface, 193, 200
inUse, 206, 207
incidental sounds, 250
index numbers, 26, 40, 137, 141, 144, 148,

151–152, 239, 242
infinite runner game, 9–47, 118, 122, 211,

219, 264
Add Component panel, 16
All_Completed_ProjectFiles, 11
anatomy of Unity project, 10
animation, 13

Chapter2_UnComplete_ProjectFiles,
10

demise of RunMan, 36, 37–38
example project, 10–13 (notes 12)
game loop, 28–36
Game Manager, 15–18, 28–36
inspector, 12
open main game scene, 14–15
platforms, 15
platforms to run on, 18–22
Player, RunMan, 22–28
scene, game, project, hierarchy, 11
sprites, 12–13
Unity editor as seen in 2 by 3 layout, 11,

11
user Interface, 14, 37–47

inheritance, 3–5, 16, 22, 62, 178, 181, 212,
253

Init, 67, 102–103, 110, 130, 157–159,
166, 170–171, 181, 183, 195–196,
199, 204–207, 210, 225, 227, 246,
249, 253–254, 258, 267, 272,
275–276, 278

InitNewRace, 225, 239
input, 63–65

horizontal and vertical, 64–65, 102–108,
120, 160, 169–170, 172–174,
177–179, 181

recipe component, 81–82
sub-folder, 76, 81

input Controller, 26, 61, 62
Input Manager, 121
input scripts, 81, 104
InputTypes, 63, 181
Input.GetAxis, 64, 94
Input.inputString, 134
Inspector, 15–19, 21, 22–26, 35, 36, 38, 40,

41, 47, 53–54, 58, 78, 85, 87, 89,
90, 92–94, 109, 112–113, 119,
146, 150, 151, 179, 185, 190, 196,
197, 204–205, 212, 216, 217, 232,
259, 267

Inspector window, 2, 12, 78, 93, 94, 107,
109, 111, 125, 126, 130–132, 140,
148, 158, 163, 182–183

instance is null, 238
instance variable, 17
Instantiate, 34, 45, 58, 83, 125, 133, 229,

237
integers, 57, 99, 126, 131–132, 141, 144,

151, 162, 227, 234, 238, 239–242,
245, 247, 261, 270

interpolation function, 78
Intro_UI (GameObject), 260
Invoke, 32, 54, 87, 88, 90, 93, 132, 186, 197,

226, 271
InvokeRepeating, 32, 33, 87, 88, 226
isAhead, 242–244
isDone, 213–215
isFinished, 246–248
isGround, 113–114
isInfiniteAmmo, 131–132

289Index

IsInLayerMask, 57, 58, 84, 89, 119,
165, 258–259, 276

isLapDone, 243–244, 246, 248, 252–253
isLoaded, 131–132
isLocked, 109, 111, 114
IsMoving, 108
IsObstacleAhead, 162, 172–174
isOnGround, 121
isRunning, 17, 32, 34–35, 46
isStationary, 176–177
isTimerRunning, 97–98
IsTrigger, 36, 38, 88, 89
isWrongWay, 237
IsoCamController, 222, 232

J

joystick axis, 115
JSON formatted string, 209
JsonUtility class, 208
JsonUtility.FromJson, 208
JsonUtility.ToJson, 209
Jump parameter, 13, 13
jumping, 9, 118, 121–122

L

laps, 225, 239
lapsComplete, 252
lasers, 145
LastCanvas, 190
lastGameState, 17, 52
lastGroup, 190
lastPos, 139, 140
lastSelectedWeaponSlot, 124,

126–128
lastTime, 97–98
LateUpdate, 5, 80, 82, 88, 104, 111, 254,

255
Layer dropdown menu, 20, 21
LayerMask, 92, 119, 121, 259, 276
LayerMask playerLayer, 165
level loading sub-folder, 76
level scenes, 211–217

spawning enemies, 280–281
level select, 220, 221
level select screen, 223
LevelEnding, 271, 273
LevelLoader, 211–212, 215–217
LevelLoader.cs, 212, 264
levelNamePrefix, 217
levelSceneToLoad, 212–213, 216
LevelStarted, 272–273
LevelStarting, 7, 272
LevelVars, 223, 264, 267, 271–272,

274
LevelVars.cs, 215–216, 221
LevelVars.currentLevel, 216, 217
library C# code, 52
List of UserData instances, 227
List of UserData objects, 269
List<UserData>, 65

LoadAllProfiles, 205
LoadAsyncLevels, 213
LoadGameCompleteScene, 271
LoadGameScene, 197
LoadLevel, 212–213, 216
LoadMainMenu, 274
loadOnSceneStart, 212–213
LoadProfileVolumes, 199
LoadScene, 211
LoadSceneAsync, 213
LoadSceneLoaderToRestart,

274
LoadSceneMode, 213, 214
Loaded, 31, 42
loadedProfile, 204, 208
loading level scenes, 211–217

building multi-scene level loader,
216–217

folder, 212
multiple level loading, 215–216
script, 212–215

Loading_Canvas, 194
lock state, 111
LockPlayers, 233
LookAroundFor, 161, 172, 174, 176,

180
LookAt, 79, 132, 140
LookAtCamera, 94
LookForTarget, 172, 174
loopPath, 157, 168–169

M

magnitudeToPlay, 259
Main Camera, 232
Main Camera GameObject, 230
main game scene, 14–15
main menu, 45, 193–200, 220, 221

BaseMainMenuManager script,
195–200

blaster game, 264
blaster game, 265
design, 194
ProfileManager script for

audio settings, 198–200
main menu Scene, 14, 33
main menu setup, infinite runner

game, 37, 47
MakeProjectile, 132–133
manager and controller scripts, 1–3

communication between classes, 2
controllers, 1–2
managers, 1
private static, 3
public static, 2

managers, 1
main class, 50

managing players, 73
MaterialSetter, 231
Mathf.Abs, 115, 118, 142, 143, 179
Mathf.Atan2, 164, 251
Mathf.Clamp, 115, 153, 164

290 Index

Mathf.Infinity, 141–143, 165
Mathf.Lerp, 78–79, 105–107, 153,

192–193
Mathf.Min, 105, 107
Mathf.Pow, 153
Mathf.Rad2Deg, 164, 251
maxChaseDistance, 158, 162, 165,

175
maxRange (distance limit), 142
maxSpeed value, 179
MenuManager, 194
MenuManager GameObject, 47, 197
MenuTemplate Scene, 47
MenuWithProfiles, 47, 194, 198
MenuWithProfiles class, 200, 223
MenuWithProfiles.cs, 221, 264
menus, 187–200

CanvasManager class, 187–193
in-game user interface, 200
main menu, 193–200
name parameter, 202

Mesh Renderer Component, 89
Microsoft, format strings page, 99
minChaseDistance, 158, 175, 180
mind-mapping software, 8
minimumSpawnTimeGap, 87
mixing audio, 145–147
modelRotateSpeed, 165, 173–174
modular game-making, 1–8

naming conventions, 7–8
next steps, 8
programming concepts, 1–7

MonoBehaviour, 4, 19, 52, 56–57, 62,
63, 66, 93–96, 100, 124, 150, 170,
188, 195, 204, 212, 215, 238, 260,
266

motor (float variable), 114
motorTorque, 112
mouse input, 81–82
MoveAlongWaypointPath, 176–177
MoveBack, 161, 175–176
moveDirection, 102–106, 108
moveDirectionally, 101, 104, 108
MoveForward, 161, 174, 175, 180
moveSpeed, 105–108, 173
moveVel, 120
movement codes, 61
movement controller, 61–63
multi-scene level loader, 216–217
MultiLevelLoader.cs, 216, 217, 264
Multiple, 13
multiple level loading, 215–216
music, 145, 146, 147
music volume, 194, 196–197, 199, 206, 207,

209
myDataManager, 70–72
myParent, 149
myPos, 242, 244–245
myPosition, 168
myRacePosition, 253, 256
mySpeed, 112, 115
myWayControl, 166, 169

N

namespaces, 6–7, 16, 52
naming conventions, 7–8
new GameObject, 149
New Script, 24
newAlpha, 192–193
NewHighScoreTextLabel, 41
NextLevel, 271, 273
NextWeaponSlot, 127, 128, 134
nodePosition, 168, 250–251
null check, 77, 243, 249
number keys, 64, 134
numberOfProfileSlots, 204
numberOfRacers, 229, 240, 242

O

object references (naming conventions),
7–8

objectToSpawnOnTrigger, 89
obstacleAvoidDistance, 158, 163
obstacleAvoidLayers, 163, 179
obstacleFinderResult, 172–176,

178, 179
obstacleHitType, 162, 163–164
OctoCar, 5
oldIsWrongWay, 237
oldWrongWay, 252
OnCollisionEnter, 276, 278
OnDrawGizmos, 85, 139, 140
OnDrawGizmosSelected, 139
OnEnabled, 225
OnGameEnded, 41
OnGameEnding event, 273–274
OnGameStarted event, 41
OnLevelEnding UnityEvent, 273
OnLevelStarting UnityEvent, 272
OnLoaded, 41, 272
OnPause and OnUnPause UnityEvents, 56
OnTriggerEnter, 252, 258–259
1_prefabToSpawn field, 90
onlyFireWhenOnScreen, 182, 185
options menu, 187, 194
OptionsBackToMainMenu, 200
override, 4, 5, 25, 30, 31, 44, 54, 64, 70, 90,

122, 160, 172, 183, 194, 200, 217,
253, 277–278, 280

owner ID, 130, 131, 133
ownerNum, 124, 126, 130

P

Package Manager, 12
parameters, 13
Pause button, 12, 12
pause code inline, 6
pausing Unity games, 97
physics, 23, 24, 61, 62, 103, 159–160

Unity updates, 97
physics simulations, 108, 110
physics systems, 179

291Index

Physics.IgnoreLayerCollision, 133
Physics.Raycast, 92, 116, 117,

162–163, 165, 175, 184, 257
Physics2D.Raycast, 121
pickups, 93
placeholders, 160, 172, 227
platforms, 9, 10, 26, 27, 32, 46, 118
platforms to run on, 18–22
Play button, 11, 12, 27, 33, 36, 47, 150
playAreaTopY and playAreaBottomY, 34, 35
PlayOnAwake, 153
PlayOneShot, 148, 150
PlaySound, 150–152
PlaySoundByIndex, 151–152, 233, 274
playback tools, 12
Player (RunMan), 22–28

adding physics and collisions, 23, 24
adding sprite, 22, 22–23
animation, 27
player scripts, 24–26
scoring, 28
sounds, 26–27, 27

player controller, 50, 53, 61–63, 62
player data, 61

getting and setting, 68–70
player health level, 275
player ID, 70, 239–241, 246, 247
player information, 50
player List, 227, 229–230, 233, 235
player lives, 2, 69
player manager, 66, 71
player movement controllers, 101–122

folders, 101
humanoid character, 101–108
two-dimensional platform character

controller, 101, 118–122
wheel alignment, 115–118
wheeled vehicle, 101, 108–115

player name, 65, 67
player prefabs, 222, 226, 229, 231, 232, 268
player scripts, 3, 269

infinite runner game, 24–26
player stats, 65
player structure, 61–73

BasePlayerStatsController
class, 70–73

dealing with input, 63–65
managing players, 73
player controller, 61–63, 62
user data, 65–70

playerAvatarParent, 277
PlayerDestroyed, 271, 276–277
PlayerFell, 33
PlayerFinishedRace, 246, 257, 258
playerGO1, 230
PlayerSpawnPoint, 268
Players, 49, 50
point scoring, 2
pooling, 84
Position Graphic Setter, 222
Prefabs, 10, 21, 34, 35, 36, 84–91, 123, 222,

224, 229, 230, 259

PretendFriction, 94–96
PrevWeaponSlot, 128, 134
private static, 3
ProfileData class, 201–203, 207
ProfileManager, 199–200
ProfileManager script, audio settings,

198–200
profileName, 206, 207
profileObject, 204–205
profileSaveName, 204, 205, 208
ProfileScriptableObject, 202,

204, 205
ProfileScriptableObject.cs, 83, 201
profiles

BaseProfileManager class,
203–210

folder, 201
saving and loading, 201–210
ScriptableObject, 201–203

programming concepts, 1–7
coroutines, 5–6
finite state machines, 7
inheritance, 3–5
manager and controller scripts, 1–3
namespaces, 6–7
singleton, 3

Project browser, 212
Project folder, 42
Project panel, 11, 14, 15, 21, 22, 27, 36, 47
projectileLayerMask, 276
projectileSpeed, 132–133
projectiles, 5, 123, 126, 278
public class, 4, 5
public static, 2, 17

Q

Quaternion rotation value, 229
Quaternion spawnRotation, 58
Quaternion.Euler, 79
Quaternion.FromToRotation,

92–93
Quaternion.Lerp, 91, 93
Quaternion.LookRotation, 106
Quaternions, 34, 45

R

race control, 238–259
Race Management, 221
raceAllDone, 239, 242
RaceComplete, 234, 255–256
RaceController, 1–2, 50, 76, 240,

245–253
hashtable, 241–243

RaceController.cs, 239, 248
RaceFinished, 239–241, 246
raceFinished.Count, 242
RaceGameManager, 221, 222, 224–237,

239, 254–256
raceID, 245

292 Index

RaceInputController, 222, 231, 235,
258

RaceInputController.
InputTypes, 258

raceLaps (hashtable), 240, 241
RaceLevelSelect.cs, 223
RaceMainMenu.cs, 223
RacePlayerController, 219, 222,

228–233, 238, 253–259
RacePlayerController.cs, 245, 246
racePositions (hashtable),

240
RaceStart, 246
RaceUIManager, 222, 226, 234, 260
racing game, 1–2, 73, 137–138, 155, 159,

160, 172, 181, 211, 212, 219–261
controls, 220
folders, 219, 222–223, 238, 245
ingredients, 221–222
level select scene overview, 223–224
main menu scene overview, 223
overall structure, 219, 220
player structure, 221
scenes, 220

racing game (core scene overview),
224–261

audio, 259
Game Manager, 224–237
GlobalRaceManager class,

238–245
race control, 238–253
RaceController class, 245–253
RaceGameManager Class, 224–237
RacePlayerController class,

253–259
user interface, 260–261

Random function, 34
Random.Range, 88, 90
randomDelayMax, 90
raycasting, 116–117, 121, 163–165, 175,

183, 184, 187–193, 257
definition, 91

re-usability design, 8
reachedLastWaypoint, 167–169
realtimeSinceStartup, 97
recipe, audio, 145–153
recipe components, 75–100

AI scripts, 76
camera, 76–80
folder and sub-folders, 75–76
game control, 80
input, 81–82
scriptable objects, 83
spawning, 83–91
user interface, 91
utility, 91–100

Rect Transform, 12
red arrow, 18, 21–22
ReduceHealth, 69, 71, 171, 276, 278
ReduceLives, 277
ReduceScore, 71
RegisterEnemy, 270, 280–281

relativeWaypointPosition,
178–179

reloadTime, 132
Reloaded, 130–132
Renderer, 182–183, 280
Renderer.IsVisibleFrom, 185
rendererToTestAgainst, 182–183,

185
RequireComponent, 109
ResetFire, 185–186
ResetLapCount, 242, 247
ResetLapCounter, 234, 247, 253–254
ResetProfile script, 206
ResetRespawnBlock, 257
ResetTimer, 98
ResetUsers, 67
Resources.Load, 205
respawn points, 140
respawnerLayerMask, 258–259
respawning, 138, 248, 251–252, 254–259,

276–277
RestartLevel, 274
ReturnToMenu, 33
revolutions per minute (RPM), 117
Rewired (Guaveman Enterprises), 81
Rigidbody, 23, 62, 70, 89, 109, 110,

112–114, 118, 133, 179, 256
cached, 57, 157
_RB. _inputController, 103
2D ~ references, 8, 57

Rigidbody.AddForce, 94–95
Robots (turn-based game), 263
Rotate tool, 12
rotateSpeed, 102, 104–106
rotateTransform parameter, 158, 164
RotationValue, 117
Run parameter, 13, 13
runAfterSeconds, 105
RunMan: demise, 36, 37–38
RunMan GameObject, 23, 24, 36
RunMan sprite, 22, 22–23
RunMan_Animator, 13, 13
RunMan_CharacterController,

24–25, 32, 118
RunMan_core Scene, 14, 15, 21
RunMan_GameManager, 15, 17, 20,

31–33
completed script, 43–46

RunMan_GameManager Component,
35–36

RunMan_GameManager script, 28, 42
main loop, 29–35

runMan_menu Scene, 46, 47
RunMan_Platform, 21
RunMan_Platform GameObject, 18
RunMan_Platform Prefab, 36
RunMan_Platform sprite, 18
RunMan_Run-Sheet, 22–23, 27
RunMan_UIManager, 37, 40, 40–42
RunMan_UIManager.ShowGetReadyUI,

54
RunManCharacter object, 32

293Index

runPower, 120
runSpeed, 17, 20, 31, 33, 34, 35, 45, 46,

105, 107
Runtime Only box, 41

S

save slots, 201
SaveProfiles, 200, 208–209
Scale Transform button, 36
Scene, 21, 21, 22, 32, 35, 36, 58, 84, 88, 91,

118, 148, 149, 151, 194, 196, 197,
225, 226, 230, 234, 235, 276

Scene folder, 14
Scene loader, 220, 221

blaster game, 264
Scene loading, 65–67, 264
Scene panel, 11, 12, 19
Scene view, 18–19
SceneManager, 33, 195, 211–213, 224
SceneManager.LoadScene, 197, 211,

272, 274
SceneManager.LoadSceneAsync,

214
SceneManager.MergeScenes,

214–215
SceneManager.SetActiveScene,

215
Scenes, 10
score display, 49, 200, 270
ScoreTextLabel, 41
scores, 65, 66, 68
scoring, infinite runner game, 28
ScreenAndAudioFader class, 91, 265,

272
script components, 2
script editor, 19
ScriptableObjects, 83, 204–205,

208–209
folders folder, 76, 204
user data, 201–203

ScriptableObjects:
ProfileData parameter, 205

Scripts, BASE folder, 50
selectedWeaponSlot, 124, 126–129
SendMessage, 2
Serializable class, 203
serialization, 66
SerializeField, 203
session data, 50
SetActive, 227, 260–261, 277
SetActiveScene, 215
SetAIControl, 158–159
SetAIState, 158–159, 162, 174–175
SetChaseTarget, 159
SetCollider, 131
SetFloat, 199
SetHealth, 69–72, 171, 275, 276
SetID, 57, 58
SetInputType, 231, 235, 258
SetLaps, 234, 260
SetLives, 69, 71

SetLock, 233, 258
SetMaterial, 231
SetMoveSpeed, 177
SetMusicVolume, 200
SetOwner, 126, 130
SetPlayerDetails, 269
SetReverseMode, 141–142
SetScore, 31, 39, 43, 44, 46, 68, 72, 171
SetSFXVolumeLevel, 196, 200
SetTarget, 59, 267
SetTargetState, 29, 33, 44, 45, 52–54,

267, 270, 271
SetUserInput, 103, 104, 111
SetWayController, 166–167
SetWeaponSlot, 125–126, 133–135
SetupPlayers, 226, 227, 229, 233–234,

236
SetupSliders, 195–196
sfxVolume, 206, 207, 209
ShootingPlayerCharacter, 62
shouldRandomizeSpawnTime, 87–90
shouldReverse, 141, 144
shouldReversePathFollowing,

166, 168–169
ShowCanvas, 39, 40
ShowCanvas(index), 187, 190, 197
ShowCount, 235–236, 261
ShowExitConfirm, 198
ShowGameOverUI, 42
ShowGameUI, 41
ShowGetReadyUI, 41
ShowMainMenu, 195, 197
ShowOptions, 197–198
ShowWrongWay, 261
sidewaysSlip value, 118
SimpleMove, 106
Singleton, 3, 17, 20, 225, 233, 266
Size field, 40
Slider Component, 195
slipAmountForTireSmoke, 118
slipPrefab object, 118
slotNum, 126–127
SmoothDampAngle, 78, 79
sound, 194
Sound Controller, 222

blaster game, 265
sound effects, 27, 36, 145, 146
Sound Effects Mixer, 151
Sound Manger, 49, 50
sound playback, 49
SoundObject class, 148–151

five parameters, 149, 151
soundObjectList, 150–151
sounds, 10, 26–27, 27
sourceTR, 149, 150
Space key, 27
Spawn, 91, 116, 133, 229, 237
SpawnAndDestroy, 90–91
spawnCounter, 86–88
spawnObject, 58
SpawnPlatform, 34–35, 43, 45–46
spawnPointString, 268

294 Index

spawnPosition, 58
spawnRotation, 58
spawnTime, 90
Spawner base class, 84–86, 89, 90
Spawner class, 273
Spawner Component, 84–88
Spawner.cs, 280
spawning, 83–91, 265

folder, 76, 84
spawning platforms, 33–34
speedSmoothing, 107
Sphere Collider, 118
Sprite Mode, 13
Sprite Renderer, 27
sprite sheets, 12–13
sprites, 12–13, 122

folder, 12, 13, 18, 22
Standard_SlotWeaponController.cs script,

181
StandardSlotController, 278
StandardSlotWeaponController,

124, 181, 275
StandardSlotWeaponController.

Fire, 275
Start, 4, 29–30, 81, 90, 92, 94, 95, 102, 110,

116, 125, 130, 138, 150, 157,
177–178, 195–196, 213, 216, 217,
225, 229, 253–254, 266, 280

start button, 66
start-finish line, 241, 246, 250, 252
startAtFirstWaypoint, 166
StartCoroutine, 6, 213
StartFadeCanvasSwitch

coroutine, 191
StartGame, 31–32, 47
StartPoints, 236
StartRace, 226, 233
StartRunAnimation, 32
StartRunning, 31–33
StartSpawn, 86
StartSpawnTimer, 90, 273
StartTimer, 97
StartWave, 86, 87
starting points, 224
state machine AI, 155
static variables, 2, 225, 238
steer (float variable), 114
SteerToTarget, 179–180
SteerToWaypoint, 180
Steering AI Glue, 222
Step button, 12, 12
StopTimer, 98
StoppedTurnLeft, 176
StoppedTurnRight, 176
string data, 209
stuckResetTime, 254–255
stuckTimer, 255
sub-folders, 202
sub-menus, 190, 194
switching between weapons, 124,

133–135
system functions, 52

System.Collections, 91, 93, 96, 124,
188, 212

System.Collections.Generic,
138, 148, 224, 266

System.IO.File class, 203
System.IO.File.Exists code, 205
System.IO.File.ReadAllText,

208
System.IO.File.WriteAllText,

209

T

tagOfTargetsToShootAt, 184
targetAIState, 160
targetAngle, 251
targetDirection, 104, 105, 107
targetGameState, 17, 52, 53
targetLayer, 175
targetSpeed, 105–107
tempDirVec, 157, 165
tempIndex, 141–143
tempListener, 232
tempProfiles, 208
tempRC, 242–244
tempSoundObj, 151
tempTR, 8, 57
tempVEC, 8, 256–257
TEMPVec3, 63, 65
TEMPWeapon, 128, 129
template scripts, 4
temporary variables, 8
temporary vector actions (tempVEC), 57
Text Component references, 260
text fields, 40
Texture Setter Component, 222
The RunMan_Platform Components, 19
theDist, 161
theFileName, 205
theLap, 234
theListenerTransform, 151–152
theProfileData, 208
third-person camera, 77–80
this (keyword), 3, 17
thisGameObjectShouldFire, 183
three-dimensional

games, 155
primitives, 36, 37
units, 158

Time (Unity helper class), 20
Time Before Object Destroy, 19
time-based actions, 5
Time.deltaTime, 20, 34–35, 46,

78–80, 93, 94, 105, 106, 117,
153, 165, 173–174, 191

Time.fixedDeltaTime, 56
Time.realtimeSinceStartup,

 96–98
Time.time, 105–107, 252, 254
Time.timeScale, 105
timeBeforeObjectDestroys, 93
timeBetweenSpawns, 87, 88

295Index

timedif, 254
timeElapsed, 96–98
timeScale, 56
timeScaleFactor, 96, 97
timeString, 99
timeWrongWayStarted, 252, 254
TimedSpawner Component, 89–91
TimedSwitchCanvas, 190–191
TimerClass, 76, 96–100

automatic updating, 100
timestamp, 97
tire slip calculations, 117–118
ToString, 99, 260
top-down camera, 80
totalAmountToSpawn, 86–88
totalLaps, 239, 241
totalSpawnObjects, 85
totalTransforms, 144
totalWaypoints, 166, 168–169, 250
track, 224, 228
tracking states systems, 7
Transform, 2, 8, 10, 19, 20, 62, 70, 91–93,

96, 103, 116, 125, 130, 132, 133,
149, 151, 159, 162, 229, 232, 236,
268, 275

cached version, 56–59, 85, 157, 182, 246
temporary references (_tempTR), 57

Transform box, 22, 23
Transform tools, 12
Transform.CompareTag, 184
Transform.

InverseTransformPoint,
179, 251

Transform.Rotate, 165, 173
Transform.targetAngle, 165
Transform.TransformPoint, 117
Transform.Translate, 173
Transforms, 142, 144
Translate, 20
Trigger Spawning, 88–89
triggers, 36
turnHelp, 112
turnHelpAmount, 112–113
TurnLeft, 160
turnMultiplier, 179
TurnRight, 161
TurnTowardTarget, 164, 165, 175
two-dimensional

Collider, 118
player movement controller, 101,

118–122
primitives, 36, 38
Sprite Package, 12

U

UI (user interface), 18, 194, 195–196, 222,
256

blaster game, 265, 272, 278–279
Game Events on Game Manager

Component in Inspector, 42
game over message, 37, 39

get ready message, 37
in-game, 200
in-game (to tell players current score),

37
infinite runner game, 37–47
main menu setup, 37, 47
racing game, 260–261
recipe component, 91
sub-folder, 76
updating, 226

UI Canvas, 39, 50, 187
UI Canvas Groups, 40, 40, 189, 193, 197
UI Manager, 49, 50
UI Panel GameObject, 187
UI_Canvases GameObject, 40, 260
UI_Canvases object, 18
Unicode, 134
uniqueNum, 3
Unity, 2, 10, 13, 22, 27, 29, 32, 35, 36, 39,

47, 58, 83, 159, 181, 182, 185,
192, 211, 225

AddTorque function, 112–113
Build Settings panel, 46, 47
building multi-scene level loader in,

216–217
character controller, 101
collision systems, 91
default audible volume, 199
gizmos, 139–140
input system, 63, 64
JsonUtility, 203
mixing audio, 145–147
raycasting function, 113–114
RequireComponent, 199
Resources system, 205
use of singleton, 3
Wheel Colliders, 108, 219

Unity Collider, 33
Unity documentation, 4, 5–6, 9, 56, 64, 78,

92, 109, 140
Unity editor, 9, 11, 40, 52, 81, 82, 84, 165,

201, 202, 208, 212, 260
RunMan_GameManager

Component, 35–36; see also
Inspector window

Unity GUI, 194
Unity packages, 12
Unity Project anatomy, 10
UnityEngine, 16, 57, 58, 63, 66, 70, 77,

80, 84, 89, 91, 93, 95, 96, 102,
109, 116, 118, 124, 130, 134, 138,
150, 156, 170, 171, 177, 181, 183,
188, 198, 202, 204, 215, 245, 252,
253, 275, 277

CanvasGroup, 187
UnityEngine.Audio, 148, 195
UnityEngine.SceneManagement,

195, 212, 217, 223, 224, 266
UnityEngine.UI, 195, 260, 279
UnityEvent OnLoaded, 31
UnityEvents, 31, 41, 52–54, 272,

 274

296 Index

UnloadSceneAsync, 215
Update, 4, 5, 19–20, 34–35, 43, 46, 77, 86,

88, 92, 94, 100, 107, 117, 134,
159, 172, 181, 183, 266, 278

UpdateCurrentState, 29, 55, 159,
160, 172, 174–176, 178

UpdateDirectionalMovement,
104, 106, 107

UpdateEngineAudio, 111
UpdateLapCounter, 226, 234
UpdateMovement, 120–121
UpdatePhysics, 111, 115
UpdatePositions, 226, 234
UpdateRacePosition, 256
UpdateRotationalMovement, 106
UpdateSmoothedMovement

Direction, 104, 108
UpdateTargetState, 29–31, 33, 45,

54, 55, 158–160
UpdateTimer, 96–100
UpdateUIScore, 270
UpdateWaypoints, 166–167, 178,

248–250, 255
UpdateWrongWay, 237, 254, 255
useForceVectorDirection, 130
user controlled vehicles, 222
user data, 50, 65–70, 73

saving and loading, 201–210
user data manager, 61, 62
UserData class, 67, 227

folder, 66
utility (recipe component), 91–100

AlignToGround, 91–93
AutomaticDestroyObject,

93
AutoSpinObject, 93–94
FaceCamera, 94
LookAtCamera, 94
PretendFriction, 94–96
TimerClass, 96–100

utility folder, 76, 91

V

Vector2, 34, 45
Vector3, 8, 20, 57, 58, 63, 79, 92, 94, 103,

108, 130, 131, 150, 164, 229
‘not directly serializable’, 203

Vector3.Distance, 161, 250
Vector3.Lerp, 80
Vector3.RotateTowards, 104,

105
vehicle ID, 253
vehicle prefabs, 231, 253
vehicles, 61, 62, 112, 219, 222, 259
virtual functions, 4, 30, 52, 54, 55
visual representation, 137
Visual Studio, 15
volume levels, 195–197
volume sliders, 194
Vroom, 4, 5

W

WaitBetweenFadeTime, 190, 193
waitForCall, 90
WaitForSeconds, 6, 193, 215
waitTime, 193
walkSpeed, 105–107
walkTimeStart, 105–107
waypoint distance checking, 244
waypoint management, 277
Waypoint_Controller.cs, 169
waypointDistance, 158, 168
waypointManager.

GetWaypoint, 249
waypoints, 224, 241–244, 247–249,

251–252, 255, 257
usefulness, 137

waypoints controller script, 138
waypoints system, 137–144

FindNearest
Waypoint, 141–143

functions, 137–138
GetTotal, 141
GetWaypoint, 141, 144
SetReverseMode, 141–142
utility functions (publicly-accessible),

141–144
WaypointsController, 139, 141, 155,

157, 166–167, 230, 236–237, 248,
249

weapon control, 181–186
attack states, 181
BaseEnemyWeaponController,

181–186
WeaponController, 123, 185
weapons, 61–64, 278

disabled, 125–129
sound, 153
sub-folder, 76

weapons list, 124–125
weapons system scripts, 123–135

BaseWeaponController class,
123–130

BaseWeaponScript, 123, 130–133
folder, 124
switching between weapons, 124,

133–135
weaponScripts, 125, 128, 129
weaponSlots, 125–129
wheel alignment, 115–118
WheelCollider.center property, 117
WheelColliders, 108–109, 112–118
WheelHit object, 118
WheelHit structure, 117–118
WheelToGroundCheckHeight, 114
wheeled vehicle, 108–115
WheeledVehicleController, 222,

259
wheels function, 4, 5
whichSlot, 206
Windows Explorer, 11
wrongWaySign, 226–227

297Index

X

x axis, 18, 21–22, 36, 65, 112, 117, 167–168,
173, 203, 233

Y

y axis, 18, 65, 78, 79, 104, 106, 111, 114,
117, 121, 167–168, 173, 203, 233,
249–250

yield return null, 5, 6, 92, 152–153,
192–193, 213–215

yield statements, 6

Z

z axis, 79, 104, 106, 112, 114, 132, 167, 173,
203, 233

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Acknowledgments
	Introduction
	Prerequisites
	Chapter 1: Making Games in a Modular Way
	1.1 Important Programming Concepts
	1.1.1 Manager and Controller Scripts
	1.1.1.1 Managers
	1.1.1.2 Controllers
	1.1.1.3 Communication between Classes
	1.1.1.4 Public Static
	1.1.1.5 Private Static

	1.1.2 The Singleton
	1.1.2.1 Using the Singleton in Unity

	1.1.3 Inheritance
	1.1.4 Coroutines
	1.1.5 Namespaces
	1.1.6 Finite State Machines (FSM)

	1.2 Naming Conventions
	1.3 Where to Now?

	Chapter 2: Making a 2D Infinite Runner Game
	2.1 Anatomy of a Unity Project
	2.2 Open Unity, Then the Example Project for This Chapter
	2.2.1 A Few Notes on the Example Project
	2.2.2 Sprites
	2.2.3 Animation

	2 .3 Open the Main Game Scene
	2. 4 The Game Manager
	2. 5 Making Platforms to Run On
	2.6 Building the Player, RunMan
	2.6.1 Adding the RunMan Sprite
	2.6.2 Adding Physics and Collisions to RunMan
	2.6.3 Player Scripts
	2.6.4 RunMan Sounds
	2.6.5 Animating RunMan
	2.6.6 Scoring

	2.7 The Game Loop and the Game Manager
	2.7.1 Game States
	2.7.2 The Main Loop of RunMan_GameManager.cs
	2.7.3 Setting Up the RunMan_GameManager Component in the Editor

	2.8 The Demise of RunMan
	2.9 Adding the User Interface
	2.9.1 Main Menu Setup

	Chapter 3: Building the Core Game Framework
	3. 1 Controllers and Managers
	3.1.1 Managers
	3.1.2 Controllers

	3.2 Core Framework Scripts
	3.2.1 BaseGameManager
	3.2.2 ExtendedCustomMonoBehaviour
	3.2.3 BaseCameraController

	Chapter 4: Player Structure
	4. 1 A Player Controller
	4 .2 Dealing with Input
	4.3 User Data
	4.3.1 The UserData Class
	4.3.2 The BaseUserManager Class

	4.4 The BasePlayerStatsController Class
	4.5 Managing Players

	Chapter 5: Recipes Common Components
	5.1 Introduction
	5.2 AI
	5.3 Camera
	5.3.1 Third-Person Camera
	5.3.2 Top-Down Camera

	5.4 Game Control
	5.4.1 GlobalRaceManager
	5.4.2 RaceController

	5.5 Input
	5.5.1 Mouse Input

	5.6 Level Loading
	5.7 ScriptableObjects
	5.7.1 ProfileScriptableObject

	5.8 Spawning
	5.8.1 A Spawner Component
	5.8.2 Trigger Spawning
	5.8.3 Timed Spawning

	5.9 User Interface
	5.9.1 CanvasManager
	5.9.2 ScreenAndAudioFader
	5.9.3 MenuWithProfiles

	5.10 Utility
	5.10.1 AlignToGround
	5.10.2 AutomaticDestroyObject
	5.10.3 AutoSpinObject
	5.10.4 FaceCamera
	5.10.5 LookAtCamera
	5.10.6 PretendFriction
	5.10.7 TimerClass
	5.10.7.1 Modifying the Timer to Update Automatically

	5.10.8 WaypointsController

	5.11 Weapons

	Chapter 6: Player Movement Controllers
	6.1 Humanoid Character
	6.2 Wheeled Vehicle
	6.3 Wheel Alignment
	6.4 2D Platform Character Controller

	Chapter 7: Weapon Systems
	7.1 Building the Scripts
	7.1.1 The BaseWeaponController Class
	7.1.2 BaseWeaponScript
	7.1.3 Switching between Weapons

	Chapter 8: Waypoints Manager
	8.1 Waypoint System

	Chapter 9: Recipe Sound and Audio
	9.1 AudioMixers and Mixing Audio in Unity
	9.1.1 Mixing Audio
	9.1.2 Exposing Mixer Properties to Modify Them with Scripts
	9.1.3 Audio Effects

	9.2 The BaseSoundManager Class
	9.3 Ad ding Sound to Weapons

	Chapter 10: AI Manager
	10.1 AI States
	10.2 The BaseAIController Class – Base AI Control
	10.3 Enemy Stats
	10.4 The AIBotController Class – Making an Enemy Bot Controller
	10.5 The AISteeringController Class – An AI Steering Controller
	10.6 Adding Weapon Control to the AI Controller
	10.6.1 Attack States
	10.6.2 BaseEnemyWeaponController

	Chapter 11: Menus and User Interface
	11.1 CanvasManager Class/Canvas Management
	11.2 The Main Menu
	11.2.1 Designing the Main Menu
	11.2.2 The BaseMainMenuManager Script
	11.2.3 Combining BaseMainMenuManager to Use the ProfileManager Script for Saving and Loading Audio Settings

	11.3 In-game User Interface

	Chapter 12: Saving and Loading Profiles
	12.1 The Save Profile ScriptableObject
	12.2 The BaseProfileManager Class

	Chapter 13: Loading Level Scenes
	13.1 A Script for Loading Levels: LevelLoader.cs
	13.2 Multiple Level Loading
	13.3 Building a Multi-Scene Level Loader in Unity

	Chapter 14: Racing Game
	14. 1 Ingredients
	14 .2 Main Menu Scene Overview
	14.3 Level Select Scene Overview
	14.4 The Core Scene Overview
	14.4.1 Game Manager – The RaceGameManager Class
	14.4.2 Race Control – The GlobalRaceManager Class
	14.4.3 Race Control – The RaceController Class
	14.4.4 Race Control – RacePlayerController Class
	14.4.5 Audio
	14.4.5.1 Vehicle Audio
	14.4.5.2 Incidental Sounds

	14.4.6 User Interface

	Chapter 15: Blaster Game Example
	15 .1 Ingredients
	15.2 Main Menu Scene Overview
	15.3 The Core Scene Overview
	15.3.1 The BlasterGameManager Class
	15.3.2 The BlasterPlayer Class
	15.3.3 Enemy Bots and the BlasterEnemyBot Class
	15.3.4 Weapons and Projectiles
	15.3.5 User Interface

	15. 4 Level Scenes
	15.4.1 Spawning Enemies

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

