Neural Networks
In Unity

C# Programming for Windows 10

Abhishek Nandy
VERINERNES

ApPress’
[ 1]


http://www.allitebooks.org

Neural Networks
in Unity

C# Programming for
Windows 10

Abhishek Nandy
Manisha Biswas

Apress’



http://www.allitebooks.org

Neural Networks in Unity

Abhishek Nandy Manisha Biswas
Kolkata, West Bengal, India North 24 Parganas, West Bengal, India
ISBN-13 (pbk): 978-1-4842-3672-7 ISBN-13 (electronic): 978-1-4842-3673-4

https://doi.org/10.1007/978-1-4842-3673-4
Library of Congress Control Number: 2018951222

Copyright © 2018 by Abhishek Nandy, Manisha Biswas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software, or
by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3672-7.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper



https://doi.org/10.1007/978-1-4842-3673-4
http://www.allitebooks.org

This book is dedicated to my parents.
—Abhishek Nandy
This book is dedicated to my parents and
the spirit of Women Techmakers.

—Manisha Biswas



http://www.allitebooks.org

Table of Contents

About the AUtROrS.........ccccmmmsemmmmsmsmmsnsmmsnssssss s ssnnnnns vii
About the Technical ReVIEWEr .......c.useesssessssmssssnsssasssssssssssssassssssssansssass ix
Introduction ........ccccnniemmmmsmnmnssnmsssnnmssnnsas s xi
Chapter 1: Neural Network BasiCS......ccuuuruummsssssssnsssnnssssssssssnssnsssssssssssns 1
Introducing Neural NEtWOIKS ........ccccvvvverieninsnne s sesse s e sse e ssessssssessessenns 2
Digging Deeper into Neural Networks.........ccccooevvinvnennsnsnscness s 3
PEICEPLION ...t e s 5
Activation Function and Its Different TYpes ......c.cccvivrinirinncnsnnnnesessenennn, 6
Biases and Weights ... s 13
Neural Network from SCratCh ..........coccvvenrnenresrrsesere s 17
Backpropagation...........cccrnnnnin e 26
SUMMAIY.c.veitiitriere et e s s b e e e e s R s a e e e e e e R s b e e e e naenaes 26
Chapter 2: Unity ML-Agents........ccusmmmmnsnnmmmmsssssnnmmssssssnmssssssssssssssnnns 27
UNITY IDE.......ootieeeeeeeseesessssss s se e ssssssssssenenes 27
Getting Started with Machine Learning Agents.........cccecvvevvrerversereressensensenns 27
Internal Operations for Machine Learning............cccovrnnnnennnensnsssscsenennns 44

E 1] 4= 7 67



http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 3: Machine Learning Agents and Neural

Network in Unity .....iicnnnnnssssssmmmnmnnmssssssssssssssssssssssnns 69

Extending the Unity ML-Agents with Further Examples..........ccevvrenerenerensenenns 70
Crawler PrOJECT.......o e 71
Testing the SIMUIALION..........cccoeerierer s 83
Neural Network with Unity C# ..........cccorennrenerenerssesesesesese s 85
Creating DataStrUCIUIES ........ccveerrrerrres e s 88
Experimenting with the Spider ASSet ... 107
SUMMANY....ceitierteerrsese e se e sr s e e nr e e 111
Chapter 4: Backpropagation in Unity CH..........ccccinnnssnnnnnnnsssnnnnnsssnnns 113
Going Further into Backpropagation .........c..cccevvvnierenensensenenssessessesesessenessens 113
Backpropogation in Unity GH.........cccvrvvrrmienennnensenesssessesessessssessessessssessessenes 117
Constructing Data STrUCIUIES .........ccccvevrriciccrr s 118

Feed Forwarding and Initializing Weights..........ccccvininininninincnseneniennens 123
Testing of Backpropagation Neural NetwWork .........cccoceverirvennenevcensennenienienns 133
SUMMANY....citiciiire e s e s sr e e R r e e e nne s 136
Chapter 5: Data Visualization in Unity .......ccccunmmmmmmmmmmnnnnnssssssssssnnnnns 137
Machine Learning Data Visualization in Unity..........cccccvrnrmnmnenernnesnsesensenenenns 137
DAt ParSing.......ccovresernsesensessnssesssssssesssssse s s e s sssssse e sssesnssssessanes 139
Working with Datasets ..........ccovrerrenrnnsnnsssse s 147
Another EXamPpIe ... s s ssenns 149
SUMMAIY.c.veitiiriere s e s e s s a e e e e s s b s e e e s s aesae e e e naenne s 154
INA@X..ueeiiisnnnsssnnnsssnnsssssnssssanssssanssssanssssansssssnnssssnnssssnnssssnnssssnnnsssnnnsnns 155



About the Authors

Abhishek Nandy is BTech in IT and he is
a constant learner. He is a Microsoft MVP
for Windows Platform, Intel Black Belt
Developer as well as Intel Software Innovator.
He has a keen interest in Al, IoT, and game
development.

He is currently serving as an Application

Architect in an IT firm as well as consulting on
AJ, TIoT and doing projects on Al, ML, and deep
learning. He also is an Al trainer, driving the technical part of the Intel Al
Student developer program. He was involved in the first Make in India
initiative, where he was among top 50 innovators and got trained in IIMA.

Manisha Biswas is B.Tech in Information
Technology and currently working as

Data Scientist at Prescriber360 in Kolkata,
India. She is involved with several areas of
technology including Web Development, 10T,
Soft Computing, and Artificial Intelligence.
She is an Intel Software Innovator and was
also awarded the SHRI DEWANG MEHTA

IT AWARDS 2016 by NASSCOM, a certificate
of excellence for top academic scores. She is
the founder of WOMEN IN TECHNOLOGY, Kolkata, a tech community to
empower women to learn and explore new technologies. She always likes

vii



ABOUT THE AUTHORS

to invent things, create something new, or to invent a new look for the old
things. When not in front of her terminal, she is an explorer, a traveller, a
foodie, a doodler, and a dreamer. She is always very passionate to share her
knowledge and ideas with others. She is following her passion and doing
the same currently by sharing her experiences with the community so that
others can learn and give shape to her ideas in a new way. This led her to
become Google Women Techmakers Kolkata Chapter Lead.

viii



About the Technical Reviewer

Ali Asad is an avid programmer with
experience in various areas, including
gameplay programming, custom add-in/
tool/plugin development, computation
programming, artificial intelligence,
consulting, and formulating strategies. His
career has covered the life cycle of application
across different domains, such as AEC industry

and Education.

He authored a book The C# Programmer’s Study Guide (MCSD). He’s
also a Microsoft Specialist: Programming in C#. You can learn more about
his various other activities at: www.linkedin.com/in/imaliasad/

ix


http://www.linkedin.com/in/imaliasad/

Introduction

This book is an attempt to cover Unity with an approach to touch machine
learning and neural networks.

We have given a brief introduction to useful neural network
terminologies to start with.

The attempt has been made to use the new Unity-ML-Agents version 0.3
and clearly construct the process.

What do you need? A basic understanding or fresh approach to cover
the Unity engine with respect to ML and Neural Networks. We have kept
things simple to adapt.



CHAPTER 1

Neural Network
Basics

The evolvement of artificial intelligence, machine learning, and deep
learning has made so many people start asking questions about what
exactly the process of machine learning actually is?

We found that data scientists, enthusiasts, and developers are
very curious to learn how a neural network works for helping artificial
intelligence to perform better.

In this chapter, we will look at the neural network as a whole and touch
on some common terminologies associated with it. The chapter starts
with an explanation of neural networks. Then, we move along to defining
what exactly a perceptron is, with a brief introduction to it. Further, we will
compare a single-layer neural network with a multilayer neural network,
emphasizing the structure of the neural network.

In the subsequent section, we will look at the various activation
functions available. Next, we will define bias and weight and describe
why they are useful. In the next section, we will touch on a neural network
example.

In the last section, we will look at how to traverse a neural network.
We will cover backpropagation and touch on forward propagation and
feedforward neural networks.

© Abhishek Nandy, Manisha Biswas 2018 1
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_1



CHAPTER 1 NEURAL NETWORK BASICS

Introducing Neural Networks

An artificial neural network is similar to a biological neural network in a
brain. A biological neural network works as follows: information flows in, is
processed by the neurons, and the results flow out.
The basis of the neuron is to react to previously learned patterns.
When we are creating the same kind of replication in terms of
technology and computer science, we call it an artificial neural network.
Just like the biological neuron, information flows in, is processed by an
artificial neural network, and results flow out (Figure 1-1).

—0
Input * Weight

Qutput

Figure 1-1. A neural network



CHAPTER 1  NEURAL NETWORK BASICS

The single process becomes a mathematical formula that is the
combination of summation + threshold.

In terms of mathematics, it will be similar to a polynomial:
(In1 * weight1) + (In2 * Weight2) + (In3 * Weight3) = Summation.

Digging Deeper into Neural Networks

Let us discuss more about neural networks.
Neural networks consist of:

e Input

e Output

» Weights and biases
e Activation function

Artificial neural networks are generally a chain of nodes associated
with each other via the link from which they start interacting accordingly.

Neurons perform operations and carry that result.

Let us consider a scenario. Suppose that a new movie has been
released at a movie theater. Now there are nearby options to watch this
movie in a particular movie theater. Our brain makes a split second
decision where we are going to watch the movie.

The split second decision is pretty obvious for the brain to trigger from
the neurons we have, but for same kinds of replication in a computer it is
tough. For that, we have devised a mathematical approach. Let's take an
example.



CHAPTER 1 NEURAL NETWORK BASICS

We have a single neuron whose threshold value is 7. We need to find
out if the neuron will trigger or not (Figure 1-2).

>  Output

4

Figure 1-2. Formulating the mathematical formula

Now let us see how an artificial neuron does the mathematical
calculation.

The criterion is that when the threshold 7 is reached, the neuron will
trigger.

The summation rule says, as shown in Figure 1-2, if one input point has
value 2 and weight 1 and the other has input value 4 and weight 3, then

Y Summation=(2*1)+(4*3)=2+12=14.

As 14 is greater then 7, the neuron will trigger. This is the way a neuron
works.



CHAPTER 1  NEURAL NETWORK BASICS

Perceptron

In neural network implementation, a perceptron is very significant. When
a neural network consists of a single layer, we call it a perceptron. It is
used mostly in supervised learning to classify the data.

A perceptron is composed of four different things:

e Input values or one input layer
e Weights and bias

e Summation

e Activation function

When we look at a perceptron, it looks as shown in Figure 1-3.

11

12 w2 Output

Figure 1-3. Activation function

It is generally used as a binary classifier. When we are looking to
classify data into two parts, we rely on a perceptron.



CHAPTER 1 NEURAL NETWORK BASICS

Activation Function and Its Different Types

In this section, we will touch upon one of the most important topics in
terms of neural network, known as activation function.
The activation looks like Figure 1-4.

Output

Input x

w1

»
Lt

W

An activation function allows nonlinear properties to be constructed.

—@

Figure 1-4. One input activation function

The activation function is used to predict the output of a neural network,
that is, yes or no. It maps the resulting values in the range of Oto 1 or-1to 1,
etc. (depending upon the function). It plays a mjor role in an artificial
neural network because it generates an output that becomes an input for
the next layer in the stack.

The general purpose of an activation function is to convert the input
into an artificial neural network and then into an output.

Activation functions are of various types, and we will discuss them
here. There are many activation functions used in machine learning, of
which the most commonly used are listed below.

o Identity function
o Binary step
o Logistic or sigmoid

e Tanh



CHAPTER 1  NEURAL NETWORK BASICS

e Arctan
e Rectified linear unit(ReLU)
e LeakyReLU

e Softmax

Identity Function

In this function, we have x as an input, it will give us x itself (Figure 1-5).
F(x)=x

\J

X X

v 7

Figure 1-5. The identity function



CHAPTER 1 NEURAL NETWORK BASICS

Binary Step Function

This function is very important in classifiers. If we want to classify between
1 and 0, it is very useful.

o Ifourinputis greater then 0, it gives us value 1.
o Ifourinputis less then 0, it gives value 0.

F(x) = 0 for x <0
1 for x >=0

Logistic or Sigmoid

Whatever the input, the sigmoid function maps it between 0 and 1
(Figure 1-6). It is very useful in neural networks.

Sig(x)=1/1+e™

sig(x)

Figure 1-6. Sigmoid function curve



CHAPTER 1  NEURAL NETWORK BASICS

Tan H Function

Useful for neural networks (Figure 1-7).
F(x) =tan h(x)=(2/1 + e-2x) - 1

Figure 1-7. Tan H function curve



CHAPTER 1 NEURAL NETWORK BASICS

Arctan Function

Whatever the input, the arctan function maps it between -x/2 and +m/2
(Figure 1-8).
F(x) =tan -1 (x)

1 /2

-n/2

Figure 1-8. Arctan function

10



CHAPTER 1  NEURAL NETWORK BASICS

Rectified Linear Unit

ReLU returns 0 if it receives negative input and returns the input value
back if it is positive (Figure 1-9).

F(x) = 0 for x <0

x for x>=0

Figure 1-9. ReLU function

11



CHAPTER 1 NEURAL NETWORK BASICS

Leaky RelLU

Leaky ReL.U is very popular for deep learning. It removes the negative part
of the function (Figure 1-10).

F(x) = 0.01x for x <0

x for x >=0

/

Figure 1-10. Leaky ReLU curve

It doesn’t make the negative input 0, however; it just reduces the
magnitude of it.

Softmax Function

The softmax function is used to import probabilities when we have more
than one output.

It is useful for finding the most probable occurrence of an output with
respect to other outputs.

12



CHAPTER 1  NEURAL NETWORK BASIC

This is used for imparting probabilities.

Zj

e ,
K—zk for]=l,..., K.

Sl S

Biases and Weights

These are important factors when we are dealing with neural networks.
When we create a neural network, we need some additional factors to
stabilize the nework. Hence, bias and weights come into the picture. The
essential understanding of bias is that when we are applying an activation
function to an input, bias allows us to shift the values either left or right.

Let’s create a simple neural network (Figure 1-11).
Input Output
X  Sig(w0 *X)

Wo

 J

Figure 1-11. A simple neural network

S

13



CHAPTER 1 NEURAL NETWORK BASICS

Now we consider there is no bias in this network. The output of the
network is the basis of two things, per the summation rule (Figure 1-12),
thatis, ), Wi* Xi
where Wi is the weight and Xi is the input. We have single weight and
single input, so, the resultant is the multiplication.

. . w1 Sig (W1X1 + W2X2)
3

@

X2

Applying summation rule JWiXi over the network we get
)

Figure 1-12. Summation rule

14



CHAPTER 1  NEURAL NETWORK BASICS

For a single unit network, the output as we know is found by
multiplying with input X0 and then passing it over to the activation
function. If we apply different weight values, the curve changes
accordingly (Figure 1-13).

Figure 1-13. Role of weights

15



CHAPTER 1 NEURAL NETWORK BASICS

Using weights, we only change the steepness of the curve but cannot
shift the values either right or left.
For shifting the values either left or right we need bias (Figure 1-14).

Input

X

. W0 Sig (WO*X + W1*1.0)
w1
Q/ Output

Bias

1.0

Figure 1-14. Applying bias

16



CHAPTER 1  NEURAL NETWORK BASICS

Bias is useful if we want a network to output the value of 0 when x has a

i

value of, say, 1 (Figure 1-15).

Figure 1-15. Role of bias

Neural Network from Scratch

Neural networks have become popular with the advent of faster computers
and tons of data.

Building a model is the basis for doing lots of analysis. When we build a
model, we create a concrete structure for applying machine learning to it.

17



CHAPTER 1 NEURAL NETWORK BASICS

When the model is being created, we train it using the input and
output data to make it better at implying pattern recognition for best
results.

We will build a model with a three-layer neural network—the
programmable approach as taken by the Python language (Figure 1-16).

Q
¢ Q"
)

Input . >

Input Output

Figure 1-16. The neural network we will be creating now

18



CHAPTER 1  NEURAL NETWORK BASICS

Before getting into the programming mold, we will go through the
steps we are to perform.

1. Train a neural network on input and output data.
2. Use Python as the basis of programming.

3. Importlibraries, one of them being NumPy.

4. Create a neural network model now.

5. Create and utilize an activation function.
6. Initialize input data.

7. Create an output dataset.

8. Generate arandom number.

9. Create synapse matrices.
10. Create the training code (training step).
11. Inthe next step, update weight.

Let’s start now.

We will be using NumPy. NumPy is a library specially meant
for scientific computing using Python. When we are considering
NumPy, it generally consists of a powerful n-dimensional array that is
multidimensional and contains items of the same type and size.

We have advanced functions to utilize. Within NumPy, we have
support for applying linear algebra, Fourier transform, and useful random
number capabilities.

First we will import NumPy.

import NumPy as np

Next we will be creating a function that maps to a value between 0 and 1.
The function that we would be using is called the sigmoid function.
The function that we create will be run on every neuron in our network

when it attracts a dataset.

19



CHAPTER 1 NEURAL NETWORK BASICS
It’s useful for creating probabilities.

def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))

Once we have created that, we will initialize the input dataset as a
matrix. Each row is a different training example. Each column represents a
different neuron.

Now we have four training examples and three input neurons each.

X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
Then we will create our output dataset.

Y = np.array([[o],[1],[1],[0]])

This contains four examples and one output neuron each. As we will
be generating a random number, we seed them to make it deterministic.

np.random.seed(1)

Random numbers are generated with the same seed so that we get
the same set of generated numbers (starting point) every time we run our
program. This is useful for debugging.

Next, we will work with Synapses.

Synapses are linked from one neuron to another. It is a connection
between each neuron in one layer to every neuron in a subsequent layer.

Since we have three layers in the neuron we need two synapse
matrices.

Each synapse has a random weight associated with it.

syn0 = 2*np.random.random((3,4)) - 1

2*np.random.random((4,1)) - 1

synl

20



CHAPTER 1  NEURAL NETWORK BASICS

Now, we will run the training module. We will create a for loop that
iterates the network for a given dataset.

We will start off by creating the first layer matrix multiplication
between each layer and its synapse, then we will run sigmoid on all the
values in the matrix to create the next layer.

lo = X
11 = nonlin(np.dot(10,syn0))
12 = nonlin(np.dot(11, syn1))

Let us compare the expected value using subtraction to get the
error rate.

12 error = Y - 12
if(iter % 10000) == 0: # Only print the error every 10000
steps, to save time and limit the amount of output.
print("Error: " + str(np.mean(np.abs(12 error))))

Let us recapitulate what we have done.

L is the input data.

Now comes the predicting state. We perform matrix multiplication.

The next layer contains the output of the predicting data.

The subsequent layer is more of a refined prediction.

We will also print the error rate to check it goes down over a period
of time.

Taking it further, we apply the following changes to the neural network.

Now we multiply the error rate with the result of our sigmoid function.
The function will allow us to get the derivate of output prediction from
layer 2; this will give us delta, from which we find the error rate of our
prediction when we update our synapses on each iteration.

12 delta = 12 error*nonlin(l2, deriv=True)

21



CHAPTER 1 NEURAL NETWORK BASICS

Then we will see how much layer 1 contributed to the error in layer 2;
this is called backpropagation. We will get this by multiplying the 12_delta
with Synapses 1’s transpose.

11 error = 12 delta.dot(syn1.T)

Then we get 11 delta by multiplying its error with (11_error) with the
result of the sigmoid function. The function is used to find the derivatives
of layer 1.

Now that we have deltas of all layers, we can use them to update the
synapse weights to reduce the error rate more and more on each iteration.
This is an algorithm called gradient descent. To do this, we will multiply
each layer by its delta.

The following is the full code.

import NumPy as np

# sigmoid function
def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))

# input dataset
X = “P-arraY([[O,O,l],[0:1,1],[1,0,1],[1,1,1]])

# output dataset
Y = np.array([[o],[1],[1],[0]])

# seed random numbers to make calculation
# deterministic (just a good practice)
np.random.seed(1)

# initialize weights randomly with mean 0
2*np.random.random((3,4)) - 1
2*np.random.random((4,1)) - 1

syno

synl

22



CHAPTER 1  NEURAL NETWORK BASICS

for iter in range(60000):

# forward propagation

1o = X

11 = nonlin(np.dot(10,syn0))
12 = nonlin(np.dot(1l1, syn1))

# Backpropagation of errors using the chain rule.

12 error = Y - 12

if(iter % 10000) == 0: # Only print the error every 10000
steps, to save time and limit the amount of output.

+ str(np.mean(np.abs(12 error))))

print("Error L2:

# how much did we miss?
# 11 error = 12 _delta.dot(syn1.T)

# multiply how much we missed by the
# slope of the sigmoid at the values in 11
12 delta = 12_error*nonlin(12, deriv=True)

11 error = 12_delta.dot(syn1.T)

11 delta = 11_error * nonlin(1l1,deriv=True)

if(iter % 10000) == 0: # Only print the error every 10000
steps, to save time and limit the amount of output.

+ str(np.mean(np.abs(1l1 error))))

print("Error L1:

# update weights
synl += 11.T.dot(12 delta)
syn0 += 10.T.dot(11 delta)

23



CHAPTER 1 NEURAL NETWORK BASICS

print ("Output After Training for 11:")
print (11)
print ("Output After training for 12")
print(12)

The output looks like Figure 1-17.

I Anaconda Prompt

TabError: inconsistent use of tabs and spaces in indentation

(tenscrflow-gpu) F:\Book2bupdatedspython nn5.py

Error L2: 8.496410831983

Error L1: 9.8813181826853

Error L2: ©.00858452565325

Error L1: 8.808548748335545

Error L2: 9.80578945986251

Error L1: 0.80025784710844

Error L2: 0.80462917677677

Error L1: ©.000169875077835

Error L2: ©.00395876528827

Error L1: 8.808125785591283

Error L2: 9.80351012256786

Error L1: ©.00010017306236

Output After Training for 11:

[[ 7.26191199%e-€1 1.16411967e-01 9.26183940e-01 9.97110310e-01]
[ 1.66762801e-01  3.9299016le-84  1.66519465e-02 B8.96576847e-01]
[ 9.96229372e-01 8.95211165e-81  2.23120442e-02  8.38385421e-01]
[ 9.52239003e-01 2.48589483e-82 3.07990327e-05 1.15301801e-01]]

Output After training for 12

[[ ©.00260572]

[ ©.99672209]
[ ©.99701711]
[ @.e8386759]]

(tenscrflow-gpu) F:\BookZbupdated:»g

Figure 1-17. Output of the neural network

24



CHAPTER 1  NEURAL NETWORK BASICS

We may get an error while running the code, such as TabError:
inconsistent use of tabs and spaces in indentation (Figure 1-18).

(tensorflow-gpu) F:\Book2bupdated>python nn5.py
File "nn5.py", line 34
print("Error L1: " + str(np.mean(np.abs(1l1l_error))))

A

labError: inconsistent use of tabs and spaces in indentation

Figure 1-18. Error for tabs and spaces

It can be rectified in the following way. In any IDE (integrated
development environment) that you are using, change the blank operation
from tab to space (Figure 1-19).

o e G o i
File Edit Search View Encoding Language Settings Macre Run  Plugins Window 7

ol  Undo akz (% 22 BEE|NTEREBpue | BEEER
B e i L*mwalamssa]amwalElraopalam”alﬁmmalawma*a;s;a
’_l Cut Ctrl+ X

E Copy CtrleC

8 Paste Ctel+V

= Delete DEL

S Selectal CtrleA

Begin/End Select

Copy to Clipboard
Indent
Convert Case e

#0,1). 01,1211

Line Operaticns

e

25 Comment/Uncomment ]:“nl:m:‘
' ctice!
7 Auto-Completicn
B OL Conversion
- Trim Trailing Space
Trim Leading Space
Column Mode... Trim Leading and Trailing Space
24 Column Editor... nlC EOL to Space
= Character Panel Remeve Unnecessary Blank and EOL
26
7 Clipboard History
Set Read-Only

Space to TAE (Leading)

Clear Read-Only Flag

1 —error =
v = | Af(iter ®

13 B print
34 I print

t # Only primt the e
© 4+ str(np.=tan(np.abs(l
“ + strinp.=tan(np.aba(ll

36 # how much did we miss?
T # 11 errer = 12 delta.dot(svnl.T)

Figure 1-19. Rectifying the error

25



CHAPTER 1 NEURAL NETWORK BASICS

Backpropagation

Backpropagation is a methodical approach especially famous in deep
learning, where we calculate the gradient in order to find errors and match
the weights found in the neural network.

Backpropagation leads to differantiation propagating back to the network
starting point. It uses the differentiation chain rule to propagate back.

Summary

In this chapter, we have gone through the basics of a neural network and
how the neural network has evolved. We touched upon activation function
and its types.

In the next chapter, we will start using neural networks in Unity, as well
as implementing machine learning agents to it.

26



CHAPTER 2

Unity ML-Agents

In this chapter, we will study how Unity ML-Agents work. First, we will start
with a brief description of Unity IDE and then we will look at this feature
from Unity. We will check on some demos and then create one simulation
of our own. We will see how the agents are trained using Python.

Unity IDE

Unity IDE is a game engine that supports developing games, with a physics
engine already available to build the games too. It supports multiple
formats including Windows, Linux, MacOS, and other devices too. The
Unity ML-Agents that they have declared is a very good extension, so

we can rapidly prototype lots of simulations based on Unity for research
purposes.

Getting Started with Machine Learning Agents

There are so many changes happening with Unity. They came up with
an exciting feature (using the ML-Agents) that helps developers to train
the game they created using ML implementation, so that the entire
process can be replicated by the trained model and we can compare the
differences. This method uses the reinforcment learning approach.

© Abhishek Nandy, Manisha Biswas 2018 27
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_2



CHAPTER 2  UNITY ML-AGENTS

Reinforcement learning is that part of machine learning where
the basis of learning is based upon environments and simulations,
where software agents (software program) take actions with effect from
environment so that we can provide a reward.

The steps we need to perform for the machine learning agents to work
perfectly are:

1. First we have to see that Unity IDE is installed.
Download and install the Unity game engine from
the following link.

https://store.unity.com/download?ref=personal
2. We have to clone the machine learning GitHub repo.

The following link will take us to the machine
learning background (Figure 2-1).

The Unity ML-Agents contain the latest version, so no need to search
for a specific version.

https://github.com/Unity-Technologies/ml-agents

Download ML Agents

Figure 2-1. The Unity ML-Agents website link

28



CHAPTER 2  UNITY ML-AGENTS

3. When we click Download ML-Agents, it will take us
to the GitHub repo.

It takes us to the following link, where we have the
important files for our machine learning agent
unity.

https://github.com/Unity-Technologies/ml-agents
4. The web page looks like Figure 2-2.

II jodwded Merge pull regquest #3542 from andersonsdda/petch-1 (e

. docs Updated the change with the agreed language.

i prythan

i unity-erndrenment

. urity-volune

El gitettributes k] Use gitattributes to treat all Uni
Romoved HTML di verted .gilignore
E| CODE_OF_CONDUCT.md Acdds code of eonduct 1o the rep
i) CONTRIBUTING md Fived lingering v links
2 Dodkerfile keantainerization] CPU bated containdrizsticn 1o support ell emvirenm...
=] LCENSE Initial commit
B READMEnd Maved contrib guidelines ta be recogrized by Github
IE READMEmd

& unity

Hlmitw RAL _Ammmbes (DAka)

Figure 2-2. GitHub repo to be cloned

The essential files for the project are there in the
repo, so we can get started with it.

29



CHAPTER 2  UNITY ML-AGENTS

Let’s Start with TensorFlow

Tensorflow is a framework that is primarily meant for dataflow-based
work. It uses Ttensors and their approach to nodes in a very effective way,
so that we can easily implement it in machine learning as well with deep
learning.

It has very good documentation from the Google side, so we can learn
it easily.

TensorFlow information and downloads are available in the
following link.

https://www.tensorflow.org/

Understanding Anaconda

We need to discuss Anaconda too. Anaconda is a machine learning
library distribution for Python that contains lots of important libraries for
machine learning and deep learning.

Anaconda distribution is available from the following link.

https://www.anaconda.com/download/

First, we install Anaconda distribution for Python. After that we will see
that the Anaconda prompt is available. We need to open the prompt (it is
similar to a command prompt).

When we start, we need to create an environment. The command to
create a new environment is shown below.

conda create --name myenv

30



CHAPTER 2  UNITY ML-AGENTS

myenv is the environment name, which you can update or change
according to your liking.
If we want to create an environment with a specific version of Python,

we need to use the following process.
conda create -n myenv python=3.4

To activete an environment we created, we need to use the following
command.

Activate <envname>
If we want to get out of the environment, we will use
Deactivate

If we want to add an environment with a GPU version of TensorFlow,
we will have to do the following. For a GPU version of TensorFlow we need
to have a graphics card installed to work properly.

The steps are:

1. Download and Install CUDA.

CUDA has different versions. We need CUDA Version 8.0. | have 8.0,
9.0, and 9.1 installed and set up identically to this guide for each
version. Stick with 8.0 for now to get that working. | set up the other
versions to prepare for the possiblity of TensorFlow GPU supporting
other CUDA versions.

2. Go to CUDA Toolkit downloads.

3. Scroll down to Legacy Releases or here.

31


https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-toolkit-archive

CHAPTER 2

32

4.

10.

11.

UNITY ML-AGENTS

Click the version you want from CUDA Toolkit XY:
for 8.0, we'll see CUDA Toolkit 8.0 GA, so replace
*<Z>* with the highest number available. I
downloaded CUDA Toolkit 8.0 GA2.

For 9.0, the file is CUDA Toolkit 9.0; for 9.1, the file is
CUDA Toolkit 9.1.

Select your operating system; mine is
OS: Windows

Architecture: x86_64

Version: 10

After CUDA downloads, run the file downloaded
and install with Express settings. This might take a
while and flicker the screen (due to it being for the
graphics card).

Verify you now have the following path on your
system.

C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v8.0

Download and install cuDNN.

For this, you'll need an NVIDIA developer account.
It’s free.

Create a free NVIDIA Developer membership here.

After you sign up, go to https://developer.
nvidia.com/cudnn.

Click Download (ignore the current listed version

for now).


https://developer.nvidia.com/developer-program/signup
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn

12.

13.

14.

15.

16.

17.

18.

19.

CHAPTER 2  UNITY ML-AGENTS

Agree to the terms.

Remember how previously we needed cuDNN v6.0?
You might see this listed here, or you might not. If
you don'’t, just select Archived cuDNN Releases.

Click the version you need, as well as the system you
need. I clicked:

Download cuDNN v6.0 (April 27, 2017) for CUDA 8.0,
then cuDNN v6.0 Library for Windows 10.

Go to your recent downloaded zip file, something like
C:\Users\teamcfe\Downloads\cudnn-8.0-
windows10-x64-v6.0.zip

Unzip the file.

Open Cuda; you should see:
bin/

include/

lib/

Copy and paste the three folders in C: \Users\j\
Downloads\cudnn-8.0-windows10-x64-v6.0.zip\
cudato C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v8.0

Do note that dragging and dropping will merge the folders and not
replace them; | don’t believe the same is true for Mac/Linux. If it asks
you to replace anything, say no and just drag and drop each folder’s
contents from cuDNN to Cuda. It might ask about admin privileges,
for which you should just say yes.

33



CHAPTER 2

UNITY ML-AGENTS

20. Verify if you did the last step correctly; you should be

21.

able to find this path.
C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v8.0\1ib\x64\cudnn.lib

Update the %PATH% on the system.

Update your system environment variables’ PATH to
have

C:\Program Files\NVIDIA GPU Computing Toolkit\
CUDA\v8.0\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\
CUDA\V8.0\1libnvvp

To get here, do a start menu/cortana search to Edit
the system environment variables.

It should open System Properties and the Advanced tab.
Click Environment Variables.

Under System Variables, look for PATH, and click
Edit. Add the two lines from step 21.

Now we will download the ml agents file. If you are not conversant with

git, you can directly download the file as a zip file and then extract it.

What Is the NVDIA CUDA Toolkit?

The NVIDIA CUDA Toolkit is used for creating high-performance GPU-
accelerated applications. The Toolkit includes GPU-accelerated libraries,

debugging and optimization tools, and a C/C++ complier and a runtime

library to deploy our application. It’s an industry benchmark for deep

learning for the entire training process to work seamlessly. We use the

underlying principles of CUDA for better performance of TensorFlow GPU.

34



CHAPTER 2  UNITY ML-AGENTS

GPU-Accelerated TensorFlow

Training in deep learning takes lots of time. As we implement the GPU
version of TensorFlow, the speed of training increases by 50%.

Now, with the GPU version, you can train the models in hours instead
of days. Using the GPU version hence makes training the machine learning
process much faster and gets more accurate results. Let’s clone the repo
using the GPU version of TensorFlow.

We will be using Anaconda and first we will have to activate the

environment.
(C:\Users\abhis\Anaconda3) C:\Users\abhis>activate tensorflow-gpu

After activating it will enable the environment.
(tensorflow-gpu) C:\Users\abhis>

Now we will clone the repo (Figure 2-3). Let us assume we do it in
Desktop.

(tensorflow-gpu) C:\Users\abhis\Desktop>git clone
https://github.com/Unity-Technologies/ml-agents.git

If we are not familiar with git, we can directly download and save the
file as a zip file, unzip it in a folder, and start working with it.

(tensorflow-gpu) (:\Users\abhis\Desktop>

(tensorflow-gpu) C:\Users\abhis\Desktop>git clone https://github.com/Unity-Technologies/ml-agents.git
Cloning into ‘ml-agents’...

remote: Counting objects: 8868, done.

remote: Compressing objects: 100X (48/48), done.

remote: Total 8868 (delta 24), reused 7 (delta @), pack-reused 8820

Receiving objects: 100X (8868/8868), 151.49 MiB | 139.00 KiB/s, done.

Resolving deltas: 100X (5444/5444), done.

(tensorflow-gpu) C:\Users\abhis\Desktop>,

Figure 2-3. Cloning the GitHub repo

35



CHAPTER 2  UNITY ML-AGENTS

1. Let’s open up Unity.

When you open Unity, it looks as shown in Figure 2-4.

€ Unity 2017.3.003

Projects  Learn Binew  [Nopen (@) Myccount

On Disk unity-environment
Path: C\Usevstabhis\Deskop\Unity AT\ mi-agents-master | Unity version: 2017.3.0

In the Cloud
Proj23

Path: FATizenEx | Unity version: 2017.3.0 | abhisheks1

Crick123

Path: F\TizenEx | Unty version: 2017 2.0 | abhisheka1

VR

Path: FATizenEx | Unty version: 2017.3.0 | abhisheka1

eql

Path: F\TizenEx | Uity version: 2017 2.0 | abhizhek81

Mew Unity Project

Path: F\UnityProjects | Uinity version: 2017.20

Figure 2-4. Opening the project file in Unity IDE

2. Now we will have to open the cloned project. At the
top right-hand side we have an option called Open;
we need to click that.

We have to get inside the repo, then select
unity-environment as the folder (Figure 2-5).

36



CHAPTER 2  UNITY ML-AGENTS

) Open existing project *
- v 4 » ThisPC » Desitop » ml-agents » w O Search ml-agents 2

Organize = New folder . @
- MName Date modified Type Size
# Quick access
gt 28-03-2018 01:32 File folder

i OneDrive docs 28-03-2018 01:32 File folder
9 This PC python 28-03-2018 01:32 File folder
T unity-emvironment 28-03-2018 01:32 File folder

B D Cbjects
unity-volume 28-03-2018 01:32 File folder

[ Desitop

[Z Documents
& Downloads

B Music

=] Pictures

B Videcs

‘i Local Disk (C:)
= #bhishekconten!

o Network
v

Felder: | unity-enviranment

ISdﬂFdd I_Canr.d

Figure 2-5. Selecting the appropriate folder

After selecting unity-environment, the game engine
will open up.

3. We need to accept the details if we are using an
older version of Unity (Figure 2-6).

Opening Project in Non-Matching Editor Installation X

Your project was last saved with a different version of
Unity.
il oy S i .

The saved project (2018. 1.0b6) does not match the
launched editor (2017.3.0F3).

This may require re-import. Please be aware that

opening in an older version is unsupported.

Note that if a buld target installation is missing, this
may also cause a re-mport.

=] =

Figure 2-6. We accept to continue

37



CHAPTER 2  UNITY ML-AGENTS

4. When everything is done, the Unity IDE will open up
(Figure 2-7).

Figure 2-7. The Unity IDE

Let us go through the file structure of the GitHub ML-Agents repo
(Figure 2-8).

UnityRIZ » ml-agents-master »

~

Name Date modified Type Size
| does 01-11-2017 08:38 File folder
| images 01-11-201708:38  File folder
 python 28-03-201803:43  File folder
| unity-environment 28-03-201817:57  File folder
B 01-11-201708:38  Tet Document 2KB
£7 CODE_OF_CONDUCT 01-11-201708:38  MD File 4KB
{7 LICENSE 01-11-201708:38  File 12K8
&7 README 01-11-2017 08:38 MD File 2KB

(F:
Figure 2-8. The ml-agents folder

38



CHAPTER 2  UNITY ML-AGENTS

The important files in the hierarchy are the Python folder and the unity-
environment.

Within the Unity environment we have the Assets folder, which contains
all the objects required to run the scene as well as the C# scripts for enabling
the movements of the object.

Within the Python folder we have the script for training the exe file
generated after compiling the project.

The unity environment contains the following important Unity Assets
file (Figure 2-9).

» UnityRIZ » mil-agents-master > unity-environment >

Name Date modified Type Size
Assets 18 18:43 File folder
Library 1 File folder
ProjectSettings 201 File folder
UnityPackageManager 1 File folder
& README 17 08:38 MD File 4KB

Figure 2-9. The unity environments folder

The Python folder is important, as we have to keep the build files in
this folder.

We need to save the file in the Python subfolder, because the necessary
file for traing the exe we generated is residing in this folder. The code for
training is also present there.

39



CHAPTER 2  UNITY ML-AGENTS

Building a Project in Unity

Let’s now start with the project.

1. We open up Unity, if it was not already done
(Figure 2-10).

Figure 2-10. Unity engine opening up

2. We have to open up the cloned project.

We refer to the same project over here from
the Unity ML-Agents file we downloaded from
the website. We need to open it up in Unity for
compiling and also changing the details of the
project.

40



CHAPTER 2  UNITY ML-AGENTS

There are a lot of examples in the repo; we will start
with 3D Ball (Figure 2-11).

i @ Project
icuan '|
¥ | /Favorites 4 Assets » ML-Agents » Examples »

@AII Materi[ | p———

©L All Model
3peall Basic Gridworld Tennis

©L Al Prefa

Figure 2-11. The example we will be working on

3. We will open the Scene file (Figure 2-12).

0 Uity 20171000 Parsonal (5454) - Scons unity - ursty-amvrormant - €, Mac & Linax Standalcns <BIC11s

Figure 2-12. The scene file

41



CHAPTER 2  UNITY ML-AGENTS

4. The changes that are to be made can be found in
the Hierarchy tab, the most important one being
Ball3DAcademy (Figure 2-13).

Figure 2-13. The Ball3dBrain

42



CHAPTER 2  UNITY ML-AGENTS

5. To try out how the simulation works with a player
setting, we have to go inside the inspector window.

We will have to change the brain type to player
(Figure 2-14).

. s [Ball3DBrain
Tag | Untagged

Figure 2-14. Changing the player type to external

43



CHAPTER 2  UNITY ML-AGENTS

6. If we run the application now, we will be able to see

how it works within player mode without the ML-
Agents being added (Figure 2-15).

Figure 2-15. Running the simulation

As we stop the application now, we will move to how ML-Agents work.

Internal Operations for Machine Learning

First of all, within the inspector window we will change the brain type to
external.

We have to make some changes within the edit tab of the Unity IDE.

1. We will go inside edit » project settings » player as
shown in Figure 2-16).

44



CHAPTER 2  UNITY ML-AGENTS

Unity 2017.3.0f3 Personal (64bit) - Scene.unity - unity-environment - PC, Mac 8 Linux Standalone* <DX11>

e Edit Assets GameObject Component Window Help
& Unde Inspector Ctrl+Z
ﬁ Redo Ctrl+Y
!é‘ Cut CtrlsX
=] Copy Ctrl+C
I Paste Ctrl+V
1 Duplicate Ctrl+D
'.' Delete Shift+Del
| Frame Selected F
: : Lock View to Selected Shift+F
i Find Ctrl+F
-] Select All Ctrl+A
i
| Preferences...
Bl Modules..
| -]
] Play Ctrl+P
L
> Pause Ctrl+Shift+P
Step Ctrl+Alt+P
Sign in
Sign out
Selection »
Project Settings >
Graphics Emulation »
Network Emulation »
Snap Settings...

Project

Favorites A[ n.sse-t\s » !;l-L-a:lqcn.t.s »".Examp.!.
(1 Al Mate
©1 all Model

) all Prefa
© ANl seri
i Assets Prefabs Scripts T
¥ G ML-Age

&l Editor

— -

_ cllzol[# @) @il

Input
Tags and Layers
Audio

Time

Player

Physics

Physics 2D

Quality

Graphics

Network

Editor

Script Execution Order

Figure 2-16. Getting inside the player options

45



CHAPTER 2  UNITY ML-AGENTS

2. Within the inspector window (Figure 2-17), we
will have to check that in the tab resolution and
presentation

e Runin background is checked.

o Display Resolution Dialog is disabled.

o | #

Settings for PC, Mac & Linux Standalone

Resolution and Presentation

Resolution

Default Is Full Screen* |
Default Screen Width 1024
Default Screen Height |768

Mac Retina Support of
Run In Background* n

Standalone Player Options
Capture Single Screen

Display Resolution Dialog Disabled

Use Player Log

Resizable Window ¥4

Mac Fullscreen Mode | Fullscreen Window With Menu Bar And Dock
D3D11 Fullscreen Mode | Fullscreen Window

Visible In Background (.

Allow Fullscreen Switch 4

Force Single Instance |

» Supported Aspect Ratios

* Shared setting between multiple platforms.

| Icon

|. Splash Image

| Other Settings

Figure 2-17. Inspector window

46



CHAPTER 2  UNITY ML-AGENTS

3. We will go inside the file and save the scene.
4. Again we will go back to the file tab and inside the
Build Settings (Figure 2-18).

@ Unity 2017.3.0f3 Personal (64bit) - Scene.unit
File Edit Assets GameObject Componer

New Scene Ctrl+N
Open Scene Ctrl+O
Save Scenes Ctrl+S
Save Scene as... Ctrl+Shift+S
New Project...

Open Project...

Save Project

Build & Run

Figure 2-18. Building the exe file

47



CHAPTER 2  UNITY ML-AGENTS

5. We will have to add the scene and select it and then
click Build (Figure 2-19).

We need to check the options for Development
Build, so we can track any error while running the
project exe. With development build enabled, we
can see the changes while the exe file is run too.

=——— PR
“ Build Settings el S o L) -1

Scenes In Build /
of ML-Ag: les/IDBal ~ 0

I ML-Ag: /E les/GridWorld/GridWarld
[_] ML-Agents/Examples/Tennis/Tennis
|_Imanisha

[ abhiz

Add Open Scenes

Platform

—fc PC, Mac & Linux Standalone <4 @J PC, Mac & Linux Standalone

=

Target Platform | Windows 4]
Architecture xB6_64 I
Copy PDB files Ll
Development Build ¥4
Autoconnect Profiler "
Script Debugging -
Scripts Only Build "
PS Vita
=ra P54 ) Compression Method Oefacle ¢
= Universal Windows Platform
B h i Uniity Cloud Build
es - 30Ball | | Sptch Platorm || Player Settings... | { Build |§ Euild And Run_| B

mg

Figure 2-19. Selecting the scene and building it

48



CHAPTER 2  UNITY ML-AGENTS

6. When we click Build, it will ask us to save the file
(Figure 2-20). We name the file too.

) Build Windows P4 Ii » |
T » This PC » Desitop » UnityRIZ » mi-agents-master » python » w & Search python 2
Organize = Mew folder SR S ]
& OneDrive *  Name = Date modified Type Size 0
B This PC pynb_checkpoints 21-0 7 File folder
o . abhil_Data 2 File folder
B 30 Objects abhiZ_Data o File foldes
I Desiop abhi3_Data F: 3 File folder
%] Documents rranisha_Data 20 File folder
4 Downloads models File folder
D Music ppo Fille folder —
E Pictures SUmMmMaries File folder
i File folder
B Videos unityagents e folde
€ abhil Application
‘i Local Disk (C) @ abhi2
- abhishekcontent @ sbhi3 %
& Network ) manisha 2
File name: |ibh~1 V|
Save s type: | e -
~ Hide Folders
Pra PSa
. Universal windows Platform
& Project £
! - Learn sbeut Unity Cloud Build
| Craate - | e e
¥ i Favorites &« Assets - ML-Agents - » 30Ball + | swach piatform |[Player Settings... __ Buid ]
AN b 1 "

Figure 2-20. Saving the exe file

7. We will save the file in Python sub directory of the
project.

Training Anaconda in Python Mode

Now we will have to start Anaconda, as we will be training it in Python
mode.

We will activate the environment.

First of all we will have to open the command prompt; as the
command prompt comes up we need to activate the Anaconda

environment we created for tensorflow-gpu.

49



CHAPTER 2 UNITY ML-AGENTS
We have to write the following command.
Activate tensorflow-gpu

(C:\Users\abhis\Anaconda3) C:\Users\abhis>activate tensorflow-gpu
(tensorflow-gpu) C:\Users\abhis>

First of all, there is the Unity Ml-Agents file that we download or have
added as a git. We need to get inside the file, which contains the Python
subdirectory, as within that we have built the Unity game exe file.

Now we will go to the place where the file is cloned and the exe file is
generated.

(tensorflow-gpu) C:\Users\abhis\Desktop\UnityR12\ml-agents-
master>dir

We will be getting inside the Python subfolder, from which we will
launch the Jupyter Notebook.

The volume in drive C has no label.

The volume serial number is 1E9F-654C.

Directory of C:\Users\abhis\Desktop\UnityR1l2\ml-agents-master

01-11-2017 08:38 <DIR>
01-11-2017 08:38 <DIR>

01-11-2017 08:38 1,108 .gitignore

01-11-2017 08:38 3,191 CODE_OF CONDUCT.md

01-11-2017 08:38 <DIR> docs

01-11-2017 08:38 <DIR> images

01-11-2017 08:38 11,348 LICENSE

29-03-2018 00:16 <DIR> python

01-11-2017 08:38 1,490 README.md

28-03-2018 21:48 <DIR> unity-environment
4 File(s) 17,137 bytes

6 Dir(s) 29,652,058,112 bytes free

50



CHAPTER 2  UNITY ML-AGENTS
8 fnaconda Prompt - o x
P2-82-2018 ©3:16 6,127 212018 Titanic Kaggle Competition - Copy2.csv ~
P1-11-2017 @8:38 <DIR> ml-agents-master
2-11-2017 ©3:49 4,439,937 ml-agents-master.zip
2 File(s) 4,446,864 bytes

3 Dir(s) 29,652,058,112 bytes free

(tensorflow-gpu) C:\Users\abhis\Desktop\UnityR12>cd ml-agents-master
(tensorflow-gpu) C:\Users\abhis\Desktop\UnityR12\ml-agents-master>dir
Velume in drive C has no label.

Volume Serial Number is 1E9F-554C

Directory of C:\Users\abhis\Desktop\UnityR12\ml-agents-master

P1-11-2017 @8:38 <DIR>
P1-11-2017 ©8:38 <DIR>

P1-11-2017 ©8:38 1,188 _gitignore

P1-11-2817 @8:38 3,191 CODE_OF_CONDUCT .md

P1-11-2017 ©8:38 <DIR> docs

01-11-2817 ©8:38 <DIR> images

P1-11-2817 @8:38 11,348 LICENSE

09-93-2018 @0:16 <DIR> python

P1-11-2017 @8:38 1,498 README.md

28-83-2018 21:48 <DIR> unity-environment
4 File(s) 17,137 bytes

6 Dir(s) 29,652,858,112 bytes free

I tensorf 1""“'&2“! C: }Users\abhislnesktog \UnityR12\ml-agents-master>

Figure 2-21. Analyzing the ml-agents-master file

We will get inside the Python folder.
We will have to start Jupyter Notebook.

Working with Jupyter Notebook

What is Jupyter Notebook?

Jupyter Notebook is a client server-based application that allows us

write Python notebook online in a web browser mode.

To enable Jupyter Notebook, we have to put in this command.

(tensorflow-gpu) C:\Users\abhis\Desktop\UnityR12\ml-agents-

master\python>jupyter notebook

51



CHAPTER 2  UNITY ML-AGENTS

It opens up in a web browser and appropriate files are shown. It is
shown in Figure 2-22.

@ | @ ettt L.

= lupyter Logmt

Bt 1 st o 54 Ba [

o m ag
P

iy
FLr
Smentia g

aday g

P
S agn
g

ity
Smarsha sga
& ontha a2
R,
amerma uga
Free—re.
morsha aga
Smortha uga
[Tee
St a2
]
Ao aa

Smeema ign

Figure 2-22. Opening Jupyter Notebook

The two important files needed by us are shown in Figure 2-23.

;@ o

Ly}

Basics.ipynb
& PPO.ipynb

Figure 2-23. The important IPython files

We will open the Basics.ipynb first.

We will go through the basics of Jupyter notebook.

First we have to load the dependencies.

The necessary files are all structured in the Jupyter Notebook that
comes bundled up with the ML-Agents we downloaded.

52



CHAPTER 2  UNITY ML-AGENTS

If some of the libraries such as NumPy and matplotlib are not installed,
we have to install them from Anaconda.

conda install -c anaconda numpy
For matplotlib we use the following command.
conda install -c conda-forge matplotlib
We will import the necessary files to train our ML-Agents.

import matplotlib.pyplot as plt
import numpy as np

from unityagents import UnityEnvironment

Zmatplotlib inline

After that we will have to name the exe file that we created in Unity, so
that we can train the model. We will run the environment in training mode.

env_name = "abhi4" # Name of the Unity environment binary to
launch

train_mode = True # Whether to run the environment in training
or inference mode

Now we will start the environment, so that communication between
the Und the environity anment created starts.

In the Unity script, we have a brain that controls the agents and is
responsible for what the agents will do.

env = UnityEnvironment(file_name=env_name)

# Examine environment parameters
print(str(env))

53



CHAPTER 2  UNITY ML-AGENTS

# Set the default brain to work with
default brain = env.brain names[0]
brain = env.brains[default brain]

In the next section we will observe the states they are in
currently.

# Reset the environment

env_info = env.reset(train mode=train mode)[default brain]

# Examine the state space for the default brain
print("Agent state looks like: \n{}".format(env_info.
states[0]))

# Examine the observation space for the default brain
for observation in env_info.observations:
print("Agent observations look like:")
if observation.shape[3] ==
plt.imshow(observation[0,:,:,:])
else:
plt.imshow(observation[0,:,:,0])

In the next section we will choose actions based on the action_space_
type of our default brain.

for episode in range(10):
env_info = env.reset(train mode=train mode)[default brain]
done = False
episode rewards = 0
while not done:
= 'continuous':

if brain.action_space_type
env_info = env.step(np.random.randn(len
(env_info.agents),
brain.action_
space_size))
[default brain]

54



CHAPTER 2  UNITY ML-AGENTS

else:
env_info = env.step(np.random.randint(0, brain.
action_space size,
size=(len(env_
info.agents))))
[default
brain]
episode rewards += env_info.rewards[O]
done = env_info.local done[0]
print("Total reward this episode: {}".format
(episode_rewards))

After that we close the environment.
env.close()

When we start the environment, it will launch the exe. We need to click
Allow (Figure 2-24).

2, Set environment parameters

Be sue 10560 env_name 10 g name of 1N Unity éaveonment M you want 1o Bunch

Tn [2]: env_mame = “abhle® & Mome of the Unfty emvircoment binory te Lounch WP Wndees Securty Aot *
‘traln sode = True # Whether to run the covironment in training or inference mode

k/.{ Start the environment
UnityErwironmant Runches and beging communicalion wil the envionment when nstaniied .
Q e
Enviromen’s coan oraes which an 9 ther e gy Here| Fubicher: Unneany
th Cefaut rain we wil be Coningling from Python, are € e\ e Uiy Tl agenti-master oy thon.
e
In [*]: emv = UnityEnviconseat(7ile_nene=env_nsse) Ao b e comrmunicale o these mehrodan

[EPrwate metworia, such a5 oy home o sork rebenk
# Cxamine environment percmeters

“ e s e v
print(stelenvi} e B e ey

E Set the defoult broin to work with
defamlt_braln = env.brain_nass(e] el sk o o s s a rsnclt

brain = wrv, bralns [defauli_brain] [_l
L Carcel

4. Examine the observation and state spaces

an an3 states sor I ENVIONTENL I MLAQENS. S1afes feter 10

Figure 2-24. Allowing access to the Unity file

55



CHAPTER 2  UNITY ML-AGENTS

The agents will start as shown in Figure 2-25.

In [3]: env = onnent{file_: _name)

# Exgmine environment parameters
print{str{em))

# Set the defoult broin to work with
default_brain = env.brain_names[a]
brain = env.brains[default_brain]

INFO:unityagents.environment :
*Ball3DAcademy’ started successfully!

Unity Academy name: Ball3DAcademy
Nusber of brains: 1
Reset Parameters :

Unity brain name: BalliD@rain
Nusber of observations (per agent): @
State space type: continuous
State space size (per agent): &
Action space type: continuous
Action space size (per agent): 2
Memory space slze (per agent): @
Action descriptions: ,

Figure 2-25. The variables and parameters

After that we see the reward (Figure 2-26).

5. Take rands i in the envir

Once we resian an environment. we can step the environment forward and provide actions to all of the agents within the environment. Here we simply choose
rangorm actions based on the action_space_type of ihe defaull brain

In [6]: for episode in range(1@):
env_info = env.reset({train_mode=train scde)[default_brain]
done = False
episode_rewards = 8
while not done:
if brain.action_space type == ‘contlnucus':
env_info = env.step(np.random.randn{len{env_info.agents),
brain.action_space_size))[default_brain]
else:
env_info = env.step(np.random.randint(d, brain.action_space size,
sizea{len{env_info.agents))))[default_brain]
episode_rewards += env_info.rewards[a]
dane = env_info.local_done[a]
print("Total reward this episode: {}".format(episode_rewards))

Total reward this epizode: @.48008000080000813
Total reward this episode: 1.2000000000000006
Total reward this episode: @.5e@edacogasasdes
Total reward this episode: 0.7000008000000804
Total reward this episode: 0.9000000000000006
Total reward this episode: 1.8099832008808812
Total reward this episcde: 9. BBB08085
Total reward this episode: @.6000000000000003
Total reward this episode: @.6000800000008083
Total reward this episode: 0.5000000000000003

Figure 2-26. Getting to know the reward

Then we close the environment.

56



CHAPTER 2  UNITY ML-AGENTS
Proximity Policy Optimization

The next job we do is using Jupyter Notebook to get the proximal policy
optimization. PPO is a proximity technique specially meant for applying
reinforcement learning methods. We will do the same.

First we import the important files. Here we need TensorFlow for
training the agents.

import numpy as np

import os
import tensorflow as tf

from ppo.history import *
from ppo.models import *
from ppo.trainer import Trainer
from unityagents import *

Then we declare the hyperparameters.
### General parameters

max_steps = 50000 # Set maximum number of steps to run
environment.

run_path = "ppo" # The sub-directory name for model and summary
statistics

load_model = False # Whether to load a saved model.

train model = True # Whether to train the model.

summary freq = 10000 # Frequency at which to save training
statistics.

save_freq = 50000 # Frequency at which to save model.

env_name = "abhi4" # Name of the training environment file.

### Algorithm-specific parameters for tuning
gamma = 0.99 # Reward discount rate.
lambd = 0.95 # Lambda parameter for GAE.

57



CHAPTER 2  UNITY ML-AGENTS

time_horizon = 2048 # How many steps to collect per agent
before adding to buffer.

beta = 1e-3 # Strength of entropy regularization

num_epoch = 5 # Number of gradient descent steps per batch of
experiences.

epsilon = 0.2 # Acceptable threshold around ratio of old and
new policy probabilities.

buffer size = 5000 # How large the experience buffer should be
before gradient descent.

learning rate = 3e-4 # Model learning rate.

hidden_units = 64 # Number of units in hidden layer.

batch size = 512 # How many experiences per gradient descent
update step.

After that we load the environments.

env = UnityEnvironment(file name=env_name)
print(str(env))
brain _name = env.brain names[0]

Then we train the environment using the TensorFlow framework and
create the model graph.

tf.reset default graph()

# Create the Tensorflow model graph

ppo_model = create_agent_model(env, lr=learning rate,
h size=hidden units,
epsilon=epsilon,
beta=beta, max_step=max_steps)

is_continuous = (env.brains[brain name].action space type ==
"continuous")

58



CHAPTER 2  UNITY ML-AGENTS

use_observations = (env.brains[brain name].number observations > 0)
use_states = (env.brains[brain_name].state space size > 0)

model path = './models/{}'.format(run_path)
summary path = './summaries/{}"'.format(run_path)

if not os.path.exists(model path):
os.makedirs(model_path)

if not os.path.exists(summary path):
os.makedirs(summary path)

init = tf.global variables initializer()
saver = tf.train.Saver()

with tf.Session() as sess:
# Instantiate model parameters
if load model:
print('Loading Model...")
ckpt = tf.train.get checkpoint state(model path)
saver.restore(sess, ckpt.model checkpoint path)
else:
sess.run(init)
steps = sess.run(ppo_model.global step)
summary writer = tf.summary.FileWriter(summary path)
info = env.reset(train mode=train model)[brain name]
trainer = Trainer(ppo _model, sess, info, is continuous,
use_observations, use states)
while steps <= max_steps:
if env.global done:
info = env.reset(train mode=train model)[brain name]
# Decide and take an action
new_info = trainer.take action(info, env, brain_name)
info = new_info

59



CHAPTER 2  UNITY ML-AGENTS

trainer.process_experiences(info, time_horizon, gamma,
lambd)
if len(trainer.training buffer['actions']) > buffer_
size and train_model:
# Perform gradient descent with experience buffer
trainer.update model(batch_size, num epoch)
if steps % summary freq == 0 and steps != 0 and train_
model:
# Write training statistics to tensorboard.
trainer.write summary(summary writer, steps)
if steps % save freq == 0 and steps != 0 and train_model:
# Save Tensorflow model
save_model(sess, model path=model path,
steps=steps, saver=saver)
steps += 1
sess.run(ppo_model.increment step)
# Final save Tensorflow model
if steps != 0 and train_model:
save_model(sess, model path=model path, steps=steps,
saver=saver)
env.close()
export _graph(model path, env_name)

Now we will export the TensorFlow graph, and the bytes file that is
being created is taken inside the Unity so that we can see the ML-Agents
performing.

export_graph(model path, env_name)

60



CHAPTER 2  UNITY ML-AGENTS

As it works toward creating the environment, the following things are
created first, as shown in Figure 2-27.

BRI SALE = sa W meT SN CAREI LIS MES ME UM LSS SEILENL URUULE 3 LS

Load the environment

In [3]: env = UnityEnvironment(file_name-env_name)
print(strienv))
brain_name = env.brain_names[e]

INFO:unityagents.environment:
“BalliDAcadesmy’ started successfully!

Unity Academy name: BalllDAcademy
Number of brains: 1
Reset Parameters :

Unity brain name: Ball3DBrain
Nunber of observations (per agent): @
State space type: continuous
State space size (per agent): 8
Action space type: continuous
Action space size (per agent): 2
Memory space size (per agent): @
Action descriptions: ,

Figure 2-27. The features are created

After that we start training the model (Figure 2-28).

T JUPYLEr PPO Las Chackosrt GIRVINE funsrved charges A

Hep Trsted Fytn 3 @
B+ ¥[Q B+ F HRe W QW im (=

nfo = cav.reset(trais, -mdwi- modal J[Erain rams]
Tralsar o Tralman(ppe_meeal, saus, lefs, Lo eontiausus, (se_sbisvatioes, ute_Stater)

\_madentrain_sodel)[brale_ssse]

ske_acticatiefe, nv, bratn e}

Tralas 5 _expariances{info, Tie_hoeizos, arod)
I TenCErainer Erainiog. mabfert’ 311) 3 batie size axd train_nedel:
fence boffer

peate_ses
EF atem & sumary_fre
x write troining stari

Sk 1510 W eeaLiseials
To tensarsoand.
tralrer, urite_ssmary(summary_witer, stegs)
1F stess & save. == 0 and steps f= 0 ond tradn madel;
o model
mofa] pazheacdel path, stess-ateps, saver-smar)

3avs_nod

aeas m:vn_mn Sncresent_stez]
& Fiaat save kel
I stwgs 1u@ 53 n_mee
sive_podelisess, model p-»-mdul path, ategaestes, ssver-aaver)
v closa()
export_grach(sode]_path, em_sanc)

Faaa Rrwards & EITETRINTIN

Export the tralned Tenscrflow gragh

008 184 0001 NS DHGN AN NG 539 25 3 yws e wnicn Lney

B (8] mapart_prach (mecke]_ath, e rane)

INFG:tenssrflowiRestaring sarsseters from . /medels/proimocel S804

INFO:TaRSaFLeu RS LSRRG SarMaTart From | Recels/ppn\mocel

Figure 2-28. Training has started

61



CHAPTER 2  UNITY ML-AGENTS

Then we export the TensorFlow graph (Figure 2-29).

export_graph(model_path, env_name)

Mean Reward: 5.281767023271587

Mean Rewdrd: 50.53947368421027

Mean Reward: 87.87826886956417

Mean Reward: 91.27615384515268

Mean Reward: 93.52558139534750

Saved Model

Saved Model

INFO: tensorflow:Restoring parameters from . /models/ppo\model-58001,cpth

INFO: tensorflow:Restoring parameters from . /models/ppo'model-50001.cptk
INFO:tensorflow:Froze 4 variables.
INFO: tensorflow:Froze 4 varlables.

Converted 4 variables to const ops.
20 ops in the final graph.

Export the trained Tensorflow graph

Once the model has been trained and saved, we can export it as a byles file which Unity can embed

In [5]: export_graph(model _path, env_name)
INFO: tensorflow:Restoring parameters from ./models/ppo‘model-58001.cptk
INFO: tensorflow:Restoring parameters from ./models/ppo‘model-58001.cpthk
INFO:tensorflow:Froze 4 variables.
INFO: tensorflow:Froze 4 variables.

Converted 4 variables to const ops.
20 ops in the final graph.

I In[ ]:

Figure 2-29. The TensorFlow graph is exported
Let us check if the byte file is created or not within the folder (Figure 2-30).

» ThisPC » LocalDisk(C:) » Users » abhis » Desktop » UnityRI2 » mi-agents-master > python » models > ppo

Mame & Date modified Type Size
a [ abhidbytes 28-03-201803:43  BYTES File 211KB
] abhid.bytes 29-03-201803:05  BYTES File 20KB
] checkpoint 29.03-20180255  File 1K
] model-50000.cptk.data-00000-of-00001 29-03-2018 02:55 DATA-00000-OF-0... 111KB
= model-50000.cptk.index 29-03-201802:55  INDEX File 1KB
| model-50000.cptk.meta 29-03-20180255  METAFile 116 KB
its ] model-50001.cptk.data-00000-of-00001 29-03-201802:55  DATA-00000-OF-0... 111K8
s | model-50001.cptk.index 29-03-2018 02:55 INDEX File 1KE
| model-50001.cpticmeta 20-03-20180255  METAFile 116 K8
| raw_graph_def.pb 29-03-2018 02:55 PE File 29 KB
¢(C)
rontent (F:

Figure 2-30. The bytes file generated needs to be copied

62



CHAPTER 2  UNITY ML-AGENTS

We will have to copy the abhi4.bytes file to the Unity file folder,
but before that we will have to download the TensorFlowSharp plugin
(Figure 2-31). It is available in the following link:

https://github.com/Unity-Technologies/ml-agents/blob/master/
docs/Using-TensorFlow-Sharp-in-Unity.md

TensorFlowSharp is useful for running pretrained TensorFlow graphs
in Unity games. We will first import the plugin inside Unity.

I ) Import package ... =

j - v » ThisPC » abhishekcontent (F:) » TenscrFlowSharpPlugin v O Search TenserFlewSharpPlugin 2
! Crganize »  Mewfclder - M @
A Mame - Date modified Type Size

o Quick access
) TFsharpPlugin 01-11-20170217  Unity packagefile 207,760 KB

i Onelrive

3 This PC
B 30 Objects
B Desktop
[ Documents
¥ Downloads
B Music
*=| Pictures
B videos
‘& Local Disk (C)

= 2bhishekconten!

o Network

w

File name: | TFSharpPlugin

Figure 2-31. Opening the TensorFlowSharp plugin

Within the edit project settings and then player, we will target the
inspector window and check the configuration option that Scripting
Runtime Version is Experimental (.NET 4.6 Equivalent).

63


https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-TensorFlow-Sharp-in-Unity.md
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-TensorFlow-Sharp-in-Unity.md

CHAPTER 2  UNITY ML-AGENTS

And within Scripting Define Symbols, we have to enable TensorFlow
(Figure 2-32).

Mac App Store Options

Bundle Identifier \com.Company ProductName

Version* 1.0

Build 0

Category public.app-category.games

Mac App Store Validation |

Configuration 5

Scripting Runtime Version* s Experimental (.NET 4.6 Equivalent) Y|
Scripting Backend | Mano |
Api Compatibility Level* | .NET 4.6 s

Dlsable HW Statistics®

ENABLE TENSORFLOW ]

Optimization

Prebake Collision Meshes* 4

Keep Loaded Shaders Alive* |
b Preloaded Assets*

Figure 2-32. Enabling the TensorFlow mode

Now we will copy the bytes we generated to the tfmodels folder
(Figure 2-33).

Name Date modified Type Size

(] 30Ball.bytes 01-11-2017 08:38 BYTES File 20KB
3DBall.bytes.meta 01-11-2017 08:38 META File 1KB

] abhid.bytes Vet 29-03-2018 03:05 BYTES File 20KB

Figure 2-33. The bytes file is being copied to the tfmodels folder

64



CHAPTER 2  UNITY ML-AGENTS

Within the brain script, we will change the ball type from external to
internal.

As we change the ball type to internal, it asks for the missing text asset
(Figure 2-34). Here we have to drag and drop the bytes file.

Figure 2-34. The missing text asset will have to be added

65



CHAPTER 2  UNITY ML-AGENTS

After adding the bytes file, we will click Run (Figure 2-35).

Figure 2-35. The text asset is added

66



CHAPTER 2  UNITY ML-AGENTS

You will see now see the MK-Agents trained version running (Figure 2-36).

Figure 2-36. The results after applying ML

Summary

In this chapter we have touched on the Unity ML-Agents feature. It’s one
of the important features now enabled in Unity for research purposes. It
enables us to do a lot of simulation for different scenarios of our own.

In the chapter we touched on how we downloaded Unity ML-Agents
and set it up in Unity. Then we trained the model in Jupyter Notebook.
Finally, using PPO, we trained an example already present in the cloned
repo.

In the next chapter, we will explore more and also use Neural Networks
with Unity.

67



CHAPTER 3

Machine Learning
Agents and Neural
Network in Unity

In this chapter we will cover the extended Machine Learning Agents v
0.3 in Unity with an example and then move along to creating a neural
network in Unity and adding different assets to it.

First we introduce Machine Learning agents in Unity. Then we will
move along with the crawler example in Unity, applying reinforcement
learning and comparing both the outputs before training as output from
the player and then internally with machine learning agents.

We move along to creating a feedforward neural network in Unity and
then getting to know it using Unity output.

Finally we will add the spider animation asset to it and extend the
example accordingly.

© Abhishek Nandy, Manisha Biswas 2018 69
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_3



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Extending the Unity ML-Agents with Further
Examples

In the previous chapter we were focusing on v 0.2 of the ML-Agents, but
in this chapter we look at the advanced version 0.3 of the ML-Agents. Let’s
now download the 0.3 version (Figure 3-1).

Unity 2017.3.0f3 %
< unity

Projects  Learn Htew  [Fopen () Myaccoun

On Disk unity-eny
Path: C:\Use

In the Cloud

unity-environment
Path: C\Users\abhis\Desktop\UnityRiZwm

Proj23

Path: FATzenEx | Unity ver 017
Crick123

Path: FATzenEx | Unity wersion: 201 hishek
VR

Path: FATizenEx | Linit 1730

egl

Path: FATizenEx | Unity version: 2017.3.0

Figure 3-1. Opening the project

The unity environment needs to be opened up so that we can take the

example project.

70



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Crawler Project

We will work on the crawler example (Figure 3-2).
When we open up the assets folder the Ml-agents we will have a
crawler subfolder there and need to open it up in the Unity Game Engine.

Figure 3-2. Crawler example

For simulation purposes, we consider the crawler as a creature with
four arms and four forearms.

Goal: The purpose of the simulation is to move the creature on the x
axis without falling to the ground.

71



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Now we will save the scene and build the project (Figure 3-3).

Figure 3-3. Building the project

72



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

We will save the build now.

We need to save the build in a Python subfolder, because we have
important files and libraries for running the training for the machine
learning agents in this folder (Figure 3-4).

€ Unity 20173063 Personal (54bit) - Crawler.unity - unity-emvitonment - PC, Mac & Linux Standalane” <DX11>
File Edit Assets GameObject Component Window Help

€ Build Windows % AL
4 |+ ThisPC » Desiktop » mi-agents » python » w & | Searchpythen 2
Qrganize = New folder =~ °
& OneDr A Name Date modified Type Size
. || ipynb_checkpaints 22-03-201213:26  File folder
™ - | abhi_Data 28-03-20130215  File folder
30 Objects | curricula 032180132 File folder
[ Desktop | medels 28-03-20121341  File folder
E Documents | ppe 28-03-2018 13:28 Fille folder
& Downloads | summaries 28-03-201213:41  Filefolder
B Music ] 4 tests 28-03-201301:32  File folder
= i | unityagents 28-03-20130223  Filefolder
By | unitytrainers 28-03-2002 13:34 File foldes
MIM'(C ) abhi 121220172018 Applieation £35 KB
Y sk (C:)
‘ b
File name: |8'1Na
Save astype |¢|

|=ra pse

Figure 3-4. Saving the scene and creating the exe

Now let us open Anaconda and enable Tensorflow.

73



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

We open a command prompt; within there we will write the following
command.

(C:\Users\abhis\Anaconda3) C:\Users\abhis>activate tensorflow-

gpu
Activate tensorflow-gpu

Directory of C: \Users\abhis\Desktop\ml-agents

28-03-2018 01:32 <DIR>
28-03-2018 01:32 <DIR> ..
28-03-2018 01:32 64 .gitattributes

28-03-2018 01:32 1,365 .gitignore
28-03-2018 01:32 3,264 CODE_OF CONDUCT.md
28-03-2018 01:32 2,519 CONTRIBUTING.md
28-03-2018 01:32 312 Dockerfile
28-03-2018 01:32 <DIR> docs
28-03-2018 01:32 11,549 LICENSE
30-03-2018 02:07 <DIR> python
28-03-2018 01:32 4,352 README.md
30-03-2018 01:45 <DIR> unity-environment
28-03-2018 01:32 <DIR> unity-volume

7 File(s) 23,425 bytes

6 Dir(s) 30,530,846,720 bytes free

(tensorflow-gpu) C:\Users\abhis\Desktop\ml-agents>cd python

(tensorflow-gpu) C:\Users\abhis\Desktop\ml-agents\python>

74



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Let us create a specialized environment for it.
We will set up an environment with Python and Tensorflow (Figure 3-5).

B Anaconda Prompt - conda create -n ml-agents python=3.6

(C:\Users\abhis\Anaconda3) C:\Users\abhis>conda create -n ml-agents python=3.6
Fetching package metadata .................
Bolving package specifications: .

Package plan for installation in environment C:\Users\abhis\Anaconda3\envs\ml-agents:

[The following MNEW packages will be INSTALLED:

pip: 9.0.1-py36_1 conda-forge
python: 3.6.4-0 conda-forge
setuptools: 27.2.8-py36_1

vs2015_runtime: 14.8.25420-@ conda-forge
wheel: ©.308.0-py36_2 conda-forge

Proceed ([y]/n)? o

Figure 3-5. Creating an environment in Anaconda

After that it starts installing Tensorflow (Figure 3-6).

I Anscands Promet - ip iatad,

[ Downloading erumia.1.1.6-pyl-none-any.whl

tequirement already satisfied: wheel>=8.26 in c:\usershashis\anacandadienvsiml-agents),
ollectirg tensorflow-tensorboard<d.5.0,>=2.4.0rc on tensorflows=1.4.0->unitysgents==0.3.0)
Denenloading tensarflou_tensorboard-0, 4, 8-py3-rorm-any. «hl (1,743)

oo I © 7 7115
allecting python-dateutils=2.1 [from matplotlib->unit
Downloading python dateutil-2.7.2-py2.cy3-none-any..

loex

\site-packages (from tensorflow==1.4.8->unitysgents==8.3.9)

onts==0.3.8)
{Z1218)

sllecting cyclers=B.18 (from matplat]
Dounloading cycler-0.12.8-pyd.pyd-

ollecting pyparsingle=2.8.4,1=2.1.2,1=2.1.58,>=. {#roe matplotlin-sunityagents==8.5.0)

Downloading pyparsing-2.2.8-py2.py3-rone-amy (S6KE)
Il scorrmee | aua/s
sllecting kiwisolvers=1.8,1 (fros matple yagents==B_1,0)

Downloading kiwisolvor-1.9.1-cp36-nora-uln_amced.whl (5718)
G1kE 1.5M8/s
ollecting pytz (from matplotlib-sunityagents==-8.3.8)
Deawnloading pyte-2816.3-oy2.pyd-nane-any.whl (589kE)

e | N | 5175 . 5%/
sllecting nocorvart (from jupyter-sunityagentsesd.3.8)
Using cached ribconvert-5.3.1-py2.py3-ncae-any.whl
ollecting ipykernel (from jupyter-sunityagents--2.3.9)
ed ipykernel-4.8.2-py3-none-any.whl

g Jupyter-console (fros jupyn Mityag:

Using cached jupyt nsole-5.2.8-py

allocting notebock (from jupytor-unit
Using cached motebook:-5.4.1-py2.py3-none-any.whl

Figure 3-6. Installing Tensorflow

75



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY
We use the following command to start training the exe we created.

python learn.py C:\Users\abhis\Desktop\ml-agents\python\abhi2.
exe --run-id=abhi2 -train

The logs are created as it is getting trained.

INFO:unityagents:{'--curriculum': 'None’,
'--docker-target-name': 'Empty',
'--help': False,

'--keep-checkpoints': '5',

'--lesson': '0',

'--load': False,

'--run-id': 'abhi2’',

'--save-freq': '50000',

'--seed': '-1',

'--slow': False,

'--train': True,

'--worker-id': '0',

<env>': 'C:\\Users\\abhis\\Desktop\\ml-agents\\python\\abhi2.exe"}

INFO:unityagents:

'Academy' started successfully!

Unity Academy name: Academy

Number of Brains: 1

Number of External Brains : 1
Lesson number : 0

Reset Parameters :

Unity brain name: CrawlerBrain
Number of Visual Observations (per agent): O
Vector Observation space type: continuous
Vector Observation space size (per agent): 117
Number of stacked Vector Observation: 1
Vector Action space type: continuous
Vector Action space size (per agent): 12

76



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Vector Action descriptions: , , , , , , , , , , »
2018-03-30 02:15:20.293743: W c:\1\work\tensorflow-1.1.0\
tensorflow\core\platform\cpu feature guard.cc:45] The
TensorFlow library wasn't compiled to use SSE instructions,
but these are available on your machine and could speed up CPU
computations.

2018-03-30 02:15:21.068815: I c:\1\work\tensorflow-1.1.0\
tensorflow\core\common_runtime\gpu\gpu device.cc:887] Found
device 0 with properties:
name: GeForce GTX 960M
major: 5 minor: O memoryClockRate (GHz) 1.176
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.35GiB
2018-03-30 02:15:21.076770: I c:\1\work\tensorflow-1.1.0\
tensorflow\core\common_runtime\gpu\gpu device.cc:908] DMA: 0
2018-03-30 02:15:21.083223: I c:\1\work\tensorflow-1.1.0\
tensorflow\core\common_runtime\gpu\gpu device.cc:918] 0: Y
2018-03-30 02:15:21.102662: I c:\1\work\tensorflow-1.1.0\
tensorflow\core\common_runtime\gpu\gpu device.cc:977] Creating
TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX
960M, pci bus id: 0000:01:00.0)
C:\Users\abhis\.conda\envs\tensorflow-gpu\lib\site-packages\
tensorflow\python\ops\gradients impl.py:93: UserWarning:
Converting sparse IndexedSlices to a dense Tensor of unknown
shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown
shape. "
INFO:unityagents:Hypermarameters for the PPO Trainer of brain
CrawlerBrain:

batch size: 2024
beta:  0.005
buffer size: 20240

77



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

epsilon: 0.2
gamma: 0.995

hidden units: 128
lambd: 0.95

learning rate: 0.0003

max_steps: leb
normalize: True
num_epoch: 3
num_layers: 2
time_horizon: 1000
sequence_length: 64

summary freq: 3000

use recurrent: False
graph_scope:

summary_path: ./summaries/abhi2
memory size: 256

As we get the training details we also have rewards too (Figure 3-7).

ETEOT 98 T 9. R W i) T T Tevrers gk ee i Vi TenssetTow Tieory waan' conpITed to st T Tovtrecnions, bor Doase od SvelTole on yoor mchlod wd coald soeed ©

LEpega_Sevice, ceTHET] Fasad Sevice B with propertisn

, ning Tessarlon cevite (fgmib) > (deice! 0, sane: Gefosce GIX SN, poi bas 18 BOBDCEL100.0)
_imal a1 Leriialag Ghereting sparie bedeneiiliies Tn & deeds Tessbe of sianes shaps, THIE Aay Geviust & lirge et of mesony,

Figure 3-7. Training started on the crawler model

78



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

We will have to wait for training to be completed.
As we see the saved model being shown, we know a file has been
generated (Figure 3-8).

time_horizon: Lo
sequence_length: 64

summary_freq: a8
use_recurrent: False
graph_scope:

summary_path: . /summaries/abhi2
memory_size: 256

[NFO:unityagents:Cannot write text summary for Tensorboard. Tensorflow version must be rl.2 or above.

[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
INFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:

:unityagents

:Saved Model

CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CravlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:

[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:
[NFO:unityagents:

CrawlerBrain:
CrawlerBrain:
CrawlerBrain:
CrawlerBrain:

Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:

;. Step:

Step:
Step:
Step:
Step:
Step:

3808. Mean Reward:
6008. Mean Reward:
9008, Mean Reward:

12e@8. Mean Reward:
1500@. Mean Reward:

18@88. Mean Reward

210@@. Mean Reward:
2406@. Mean Reward:

27008. Mean Reward

3000@. Mean Reward:
33000. Mean Reward:
3608@. Mean Reward:
390@@. Mean Reward:
42000. Mean Reward:
45e08. Mean Reward:
48e08. Mean Reward:

51@@@. Mean Reward:
5400@. Mean Reward:
5700@. Mean Reward:
60088. Mean Reward:
63008. Mean Reward:

-5.548. Std of
-4.638. Std of
-1.258. 5td of
3.426. S5td of
5.606. Std of
: 7.461. Std of
18.725. Std of
11.733. Std of
: 15.888. Std of
19.162. Std of
208.211. Std of
23.895. Std of
27.865. Std of
33.584. Std of
34,968, 5td of
37.556. Std of

39.821. Std of
45.486. Std of
63.017. Std of
191.674. Std o

Figure 3-8. When the state is saved

307.939. Std of Reward:

Reward: 3.411.
Reward: 4.128.
Reward: 6.745.
Reward: B.739.
Reward: 9.785.
Reward: 18.296.
Reward: 10.688.
Reward: 13.261.
Reward: 8.796.
Reward: 9.148.
Reward: 8.248.
Reward: 9.558.
Reward: 13.840.
Reward: 17.340.
Reward: 18.354.
Reward: 18.181.

Reward: 17.987.
Reward: 19.278.
Reward: 40.757.
f Reward: 233.743.
344.752.

79



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

As the model is generated, we now have the bytes file generated
(Figure 3-9).

ThisPC » Desktop * ml-agents > python » models » abv

~

Name Date modified Type Size
30-03-2018 05:40 BYTES File 261 KB
checkpoint 30-03-2018 05:40 File 1KB
] model-50000.cptk.data-00000-of-00001 DATA-00000-OF-0... 762 KB
0 model-50000.cptk.index INDEX File 2KB
| model-50000.cptk.meta META File 204 KB
"] model-54793.cptk.data-00000-of-00001 30-03-2018 05:40 DATA-00000-OF-0... 762 KB
] model-54793.cptk.index 30-03-2018 05:40 INDEX File 2KB
"] model-54793.cptk.meta 30-03-2018 05:40 META File 204 KB
"] raw_graph_def.pb 30-03-2018 05:40 PB File 15T KB

t(F:

Figure 3-9. Byte file is created

80



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Now we will copy the bytes file in the GitHub folder that we have
downloaded and opened in the Unity IDE, so it is the same project we are
working on. Within the assets folder there will be a TFModels folder. We
will copy it there (Figure 3-10).

Figure 3-10. Copying the bytes file in TFModels

81



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

As the bytes file is copied, now we need to change the Brain Type
in the inspector window, with the mode being Internal and the byte file
generated added as a text asset within Graph Model.

Figure 3-11. Changing the brain type to internal

Now let us change certain factors as we have done in the previous
chapter. We need to check that in the inspector window within the
Configuration option, Scripting Runtime Version is Experimental .net 4.6,
and Scripting Define Symbols is set to ENABLE_TENSORFLOW (Figure 3-12).

Configuration

Scripting Runtime Version*
Scripting Backend

Api Compatibility Level*
Disable HW Statistics*

Figure 3-12. Updating details in configuration

82



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Testing the Simulation

Let us test the simulation first in player mode, then machine learning
mode using internal mode.

When the brain type is player, we see that the output is not perfect
(Figure 3-13).

Figure 3-13. Training output when the brain type is player

83



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

When the brain type is internal, we can see an improvement (Figure 3-14).

Figure 3-14. Training output when brain type is internal

84



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Neural Network with Unity C#

The project that we are trying to create will use 2D capability, so we toggle
from 3D to 2D. We name the project NeuralNetwork (Figure 3-15).

<@ unity 20173063 X

Projects  Learn Bnew  [Hopm () My Accoum

NeuralNetwork 30 @ 2D | add Asset Package

FATizenEx i -:_'ou .::n Enable Unity Analytics (%)

AbhishekB1 w

Figure 3-15. Creating a new project

85



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

The project will open up (Figure 3-16).

mBRK QG O0MES 8= 4D

Figure 3-16. The project window is opened up

Now we will create two folders, naming one “scene” and the other
“script” (Figure 3-17).

@ Project | O console

|Create ™)

4 {4 Favorites Assets »
€1 Al Materials :
©\ All Models

©\ All Prefabs
{CLAll Scripts
L script

W scene
Wl script

Figure 3-17. Creating folders

86



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Now we will save the scene in the scene folder. In the file tab we will
click save scene and name it as neural.

In the script folder (right click and create a new c# file), we will create a
c# file and name it neural network.

The c# file looks like this (Figure 3-18).

System.Collections;
System.Collections.Generic;
UnityEngine;

ass neuralne

Figure 3-18. The script file in C# generated

We will remove everything and the skeleton code will look like this.

public class neuralnetwork {

Now we will create a constructor and name it neural network.
First we need to have some layer array so that we can store the
information.

private int[] layers;

87



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Creating DataStructures

In this section we will work on creating the essential data structures for
neurons and the weights associated with them.

Now we will have two data structures: weights and neurons.

We will initialize the layers.

public neuralnetwork(int[] layers)

{
this.layers = new int[layers.length];
for(int i=0; i<layers.length; i++)
{
this.layers[i] = layers[i];
}
InitNeurons();
InitWeights();
}

We will also initialize two methods: InitNeurons and InitWeights.

private void InitNeurons()

{
}
private void InitWeights()
{
}

Now we will create a list and convert it into a jagged array.
We need the jagged array in the neural network because the neural
network structure has different flows in one node and in a different node.

88



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

List<float> neuronsList = new List<float>();

for (int i = 0; i < layers.length; i++)
{
neuronsList.Add(new float[layers[i]]);

}

neurons = neuronsList.ToArray();

The preceding code generates the neuron matrix for us.
Now we will create the code for weights.

List<float[][]> weightsList = new List<float>([][]);

Now we will have to iterate through every single neuron that has a
weight connection.

Each layer will need its weight matrix for its neuron, so for this we

create a list that contains actual weights of every single neuron.

List<float[][]> weightsList = new List<float>([][]);
for (int i = 1; i < layers.Length; i++)
{
List<float[]> layerWeightlList = new

List<float[]>();
}

Now we will have a variable as neuronsInPreviousLayer that gives us
how many neurons are there in the previous layer.

int neuronsInPreviouslLayer = layers[i - 1];

Now we will iterate through all the neurons in the current layer.

89



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

We iterate through all the neurons because if we miss one neuron
too, that would result in erroneous output for the entire neural network
structure.

for (int j = 0;j < neurons[i].Length; j++)

{
}

We will create a neuronWeights, which is the connections of all the
neurons that we are targeting, and we will also attach a random weight.

for (int j = 0;j < neurons[i].Length; j++)
{
float[] neuronWeights = new
float[neuronsInPreviouslayer]

for (int k = 0; k <
neuronsInPreviouslLayer; k++)

{

}
layerWeightlist.

Add(neuronleights);

}
The updated code after adding random weight is shown as follows.

using System.Collections.Generic;

using System;

public class neuralnetwork

{
private int[] layers;
private float[][] neurons;
private float[][][] weights;

90



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

private Random random;
public neuralnetwork(int[] layers)

{

private

{

this.layers = new int[layers.Length];
for(int i=0; i<layers.length; i++)
{

this.layers[i] = layers[i];

}

random = new Random(System.DateTime.Today.
Millisecond);
InitNeurons();
InitWeights();

void InitNeurons()

List<float[]> neuronsList = new
List<float[]>();

for (int i = 0; i < layers.length; i++)
{
neuronsList.Add(new float[layers[i]]);

}

neurons = neuronsList.ToArray();

private void InitWeights()

{

List<float[][]> weightsList = new
List<float>([]1[]);

91



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

for (int i = 1; i < layers.Length; i++)

{
List<float[]> layerWeightlList = new
List<float[]>();
int neuronsInPreviouslLayer =
layers[i - 1];
for (int j = 0;j < neurons[i].Length;
)
{
float[] neuronWeights = new
float[neuronsInPreviouslLayer]
for (int k = 0; k <
neuronsInPreviouslLayer; k++)
{
neuronWeights[k]
= (float)random.
NextDouble() - 0.5f;
}
layerWeightlist.
Add(neuronWeights);
}
}

92



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Now we will convert layerweights to 2D jagged array and add it to our
weight list.

weightsList.Add(layerWeightList.ToArray());
We will again convert to 3D weight array.

weight = weightslList.ToArray();
FeedForward Network

In this section we will see how we apply a feedforward network.

Now we will write a feedforward method for the neural network. We
will iterate through the inputs, and add the contents of the input to the first
layer of the network.

for (int i = 0; i < inputs.Length; i++)

{

neurons[0][i] = inputs[i];

}

Now we are iterating from every single layer, starting from the second
layer.
We will now iterate through every single neuron in this layer.

for (int i =1; i < layers.lLength; i++)

{
for (int j = 0; j < neurons[i].Length;
j++)
{
}
}

93



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

We give a value that is a constant bias of 0.25f; it is to be computed
from the neuron values, which we will iterate.

float value = 0.25f;

When we find the value of the weights, it is one item shorter, that is,
[i-1] at jth neuron [j] at [k]([i-1][j][k]), multiplying with the values in the

previous neuron.
value += weights[i-1][j][k] * neurons[i-1][k];
We have to pull the value back after applying activation to it.
neurons[i][j] = (float)Math.Tanh(value);
Now we return the activations.
return neurons[neurons.Length -1];

We will add a mutate method, which will iterate through all the values
on the weight matrix and mutate it based on chance.

float randomNumber = (float)random.NextDouble() * 1000f;

We will apply four different types of mutation to the weights, based on
chance.

if (randomNumber <= 2f)

{
weight *= -1f;
}
else if (randomNumber <= 4f)
{
weight = UnityEngine.
Random.Range(-0.5f, 0.5f)
}

else if (randomNumber <= 6f)

94



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

{
float factor =
UnityEngine.Random.
Range(of, 1f) + 1f;
}
else if (randomNumber <= 8f)
{
float factor =
UnityEngine.Range
(of, 1f);
weight *= factor;
}

The mutate method is shown as follows.

public void Mutate()
{
for (int i =0;i < weights.Length; i++)
{
for (int j =0; j < weights[i].Length; j++)
{
float weight = weights[i][j][k];

float randomNumber = (float)
random.NextDouble() * 1000f;
if (randomNumber <= 2f)

{
weight *= -1f;
}
else if (randomNumber <= 4f)
{

95



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

weight = UnityEngine.
Random.Range(-0.5f,

0.5f)
}
else if (randomNumber <= 6f)
{
float factor =
UnityEngine.Random.
Range(of, 1f) + 1f;
}
else if (randomNumber <= 8f)
{
float factor =
UnityEngine.Range(o0f,
1f);
weight *= factor;
}

weights[i][j][k] = weight;

}

Now we will do a deep copy of the network.

public NeuralNetwork(NeuralNetwork copyNetwork)
{
this.layers = new int[copyNetwork.
layers.Length];
for (int i = 0; i < copyNetwork.layers.
Length; i++)
{

96



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

this.layers[i] = copyNetwork.
layers[i];

}

InitNeurons();
InitWeights();
CopyWeights(copyNetwork.layers);

}
We will add a method called copyweights.

private void CopyWeights(float[][][] CopyWeights)

{
for (int i = 0; i<weights.Length; i++)
{
for (int j = 0; j<weights[i].
Length; j++)
{
for (int k =0; k <
weights[i][j].Length;
k++)
{
weights[1][11[k]
= CopyWeights[i]
[310k];
}
}
}
}

97



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY
The following is the complete code.

using System.Collections.Generic;
using System;

/// <summary>
/// Neural Network C# (Unsupervised)
/// </summary>
public class NeuralNetwork : IComparable<NeuralNetwork>
{
private int[] layers; //layers
private float[][] neurons; //neuron matix
private float[][][] weights; //weight matrix
private float fitness; //fitness of the network

/// <summary>

/// Initilizes and neural network with random weights

/// </summary>

/// <param name="layers">layers to the neural network</param>
public NeuralNetwork(int[] layers)

{
//deep copy of layers of this network
this.layers = new int[layers.Length];
for (int i = 0; i < layers.Length; i++)
{
this.layers[i] = layers[i];
}
//generate matrix
InitNeurons();
InitWeights();
}

98



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

/// <summary>

/// Deep copy constructor

/// </summary>

/// <param name="copyNetwork">Network to deep copy</param>
public NeuralNetwork(NeuralNetwork copyNetwork)

{

}

this.layers = new int[copyNetwork.layers.Length];
for (int i = 0; i < copyNetwork.layers.lLength; i++)
{

this.layers[i] = copyNetwork.layers[i];

}

InitNeurons();
InitWeights();
CopyWeights(copyNetwork.weights);

private void CopyWeights(float[][][] copyWeights)

{

for (int i = 0; i < weights.Length; i++)

{
for (int j = 0; j < weights[i].Length; j++)
{
for (int k = 0; k < weights[i][j].Length; k++)
{
weights[1][j][k] = copyWeights[i][j][k];
}
}
}

99



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

/// <summary>

/// Create neuron matrix
/// </summary>

private void InitNeurons()

{
//Neuron Initilization
List<float[]> neuronsList = new List<float[]>();
for (int i = 0; i < layers.Length; i++)
//run through all layers
{
neuronsList.Add(new float[layers[i]]);
//add layer to neuron list
}
neurons = neuronsList.ToArray(); //convert list to array
}

/// <summary>
/// Create weights matrix.
/// </summary>
private void InitWeights()

{

List<float[][]> weightsList = new List<float[][]>();
//weights list which will later will converted into a
weights 3D array

100



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

//itterate over all neurons that have a weight
connection
for (int i = 1; i < layers.length; i++)
{
List<float[]> layerWeightsList = new List<float[]>();
//layer weight list for this current layer
(will be converted to 2D array)

int neuronsInPreviouslLayer = layers[i - 1];

//itterate over all neurons in this current layer

for (int j = 0; j < neurons[i].Length; j++)

{
float[] neuronWeights = new
float[neuronsInPreviouslLayer]; //neruons
weights

//itterate over all neurons in the previous
layer and set the weights randomly between 0.5f

and -0.5
for (int k = 0; k < neuronsInPreviousLayer; k++)
{

//give random weights to neuron weights
neuronWeights[k] = UnityEngine.Random.
Range(-0.5f,0.5f);

}

layerWeightsList.Add(neuronWeights); //add
neuron weights of this current layer to layer
weights

101



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

weightsList.Add(layerWeightsList.ToArray());
//add this layers weights converted into 2D array
into weights list

}

weights = weightsList.ToArray(); //convert to 3D array
}

/// <summary>
/// Feed forward this neural network with a given input array
/// </summary>
/// <param name="inputs">Inputs to network</param>
/// <returns></returns>
public float[] FeedForward(float[] inputs)
{

//Add inputs to the neuron matrix

for (int i = 0; i < inputs.Length; i++)

{

neurons[0][i] = inputs[i];

h

//itterate over all neurons and compute feedforward values
for (int i = 1; i < layers.Length; i++)
{

for (int j = 0; j < neurons[i].Length; j++)

{

float value = of;

for (int k = 0; k < neurons[i-1].Length; k++)

{
value += weights[i - 1][j][k] * neurons[i -
1][k]; //sum off all weights connections of

102



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

this neuron weight their values in previous
layer

}

neurons[i][j] = (float)Math.Tanh(value);
//Hyperbolic tangent activation

}

return neurons[neurons.length-1]; //return output layer

}

/// <summary>
/// Mutate neural network weights
/// </summary>
public void Mutate()
{
for (int i = 0; i < weights.Length; i++)
{
for (int j = 0; j < weights[i].Length; j++)
{
for (int k = 0; k < weights[i][j].Length; k++)

{
float weight = weights[i][j][k];

//mutate weight value
float randomNumber = UnityEngine.Random.
Range(0f,100f);

if (randomNumber <= 2f)
{ /7/7if 1
//flip sign of weight
weight *= -1f;

103



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

else if (randomNumber <= 4f)
{ 77if 2
//pick random weight between -1 and 1
weight = UnityEngine.Random.Range
(-0.5f, 0.5f);
}
else if (randomNumber <= 6f)
{ /7/7if 3
//randomly increase by 0% to 100%
float factor = UnityEngine.Random.
Range(of, 1f) + 1f;
weight *= factor;
}
else if (randomNumber <= 8f)
{ 7/7if 4
//randomly decrease by 0% to 100%
float factor = UnityEngine.Random.
Range(of, 1f);
weight *= factor;

}
weights[i][j][k] = weight;
}
}
}
}
public void AddFitness(float fit)
{
fitness += fit;
}

public void SetFitness(float fit)

104



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

{
fitness = fit;
}
public float GetFitness()
{
return fitness;
}

/// <summary>

/// Compare two neural networks and sort based on fitness
/// </summary>

/// <param name="other">Network to be compared to</param>
/// <returns></returns>

public int CompareTo(NeuralNetwork other)

{

if (other == null) return 1;

if (fitness > other.fitness)
return 1;

else if (fitness < other.fitness)
return -1;

else
return 0;

105



CHAPTER 3 MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Let us run the application (Figure 3-19).

Figure 3-19. Application running

106



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Experimenting with the Spider Asset

Let us try the experiment with a different asset; we will use the spider asset.

1. Within the asset store we will find the spider
animation asset (Figure 3-20).

Complete Frojecta/Pecks

Fdier Extensiona/Eifects

w m‘w Space Man 1.1
PacKAGEs |

Free Funtany Spider 118
Kalamons 30 Modela/Characters/Coeatures.

30 Madela/Charactens Humansigs SeFi

Fabio Calire Taatures & Materiala/20 Chacasters

L
e

T3 Gaeme Jam Mena Temslane
ﬂWQ‘T«.Wwﬂ

[51] OoKit Teen Library DEPRECATED

. o Domriaa 4
3 e |
;Mnﬂ - Seripts

Figure 3-20. Adding the spider asset

107



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

2. We need to import the asset (Figure 3-21).

- neural.unity - Mutation_NeuralNetworkTutorial - PC, Mac & Linux Standalone <DX11>

3D Models/Characters/Humane

[ #PAC Sl

Kalame..

Free Maya Indian Hero 1.0
Fabio Cujino Textures & Materials/2D C

| #PACKAGES I

3D Models/Characters)

Figure 3-21. Importing the spider asset

108



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

3. We will drag and drop the spider asset to the scene
(Figure 3-22).

Materiad
e
L AN Pretals
L 5ot

"l Assers

i prefab
Easene

Figure 3-22. Adding the spider prefab

109



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

4. We rotate the spider using the rotate tool (Figure 3-23).

@) Unity 20173007 Perscnal i6458) - neursluniy « Wataticn MearsNetwork Tusorial - PC. Mac B Lisas Standalone® <D0 s

yspider -
- Q =HE4E

Figure 3-23. Rotating the spider asset to match

fif

5. Inthe Manager in the inspector widow, we add the
hex prefab as spider_myOldOne.

6. Add the hexagonAnimator script to the spider_
myOldOne and then click play.

7. We add a mesh renderer to the spider (Figure 3-24).

110



CHAPTER 3  MACHINE LEARNING AGENTS AND NEURAL NETWORK IN UNITY

Figure 3-24. The output

Summary

In this chapter, we have gone through the details of extending ML-Agents
in different environments using an example.

Then we moved along creating a neural network in Unity. Using that,
we did one neural network simulation followed by a change in behavior
with a different game object.

111



CHAPTER 4

Backpropagation
in Unity C#

In this chapter we will discuss backpropagation with Unity C# and
implement accordingly.

As we have already given a brief introduction to backpropagation in
the first chapter, in this chapter we will take it further.

We will use an empty Unity project and then start writing a script for
backpropagation.

Going Further into Backpropagation

Backpropagation is used to optimize the weights so that the neural
network can learn how to correctly map arbitrary inputs to outputs.

In this section we will demonstrate backpropogation with an example
(Figure 4-1).

© Abhishek Nandy, Manisha Biswas 2018 113
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_4



CHAPTER 4  BACKPROPAGATION IN UNITY C#

Figure 4-1. The Neural network that will have backpropagation

The input from the input layer goes to the hidden layer and then to the
output layer, and from the output layer we get the actual output.

Now we will backpropagate the error from the output to the input layer
so that we will be updating the weights accordingly.

Let’s work on the equation formed by getting the hidden layer.

HI1 =X1W1 +X2W2 + b

We will apply a sigmoid activation function to get the output from the
hidden layer and also from the output layer.

Sigmoid 6(x) = 1/1+ ex

OutputH1=1/1+ex

114



CHAPTER 4  BACKPROPAGATION IN UNITY C#

Let us assign some values.
X1=0.05 bl=0.35
X2=0.1 b2=0.60

Intial weights

W1=0.15 W5=0.40
W2=0.20 W6=0.45
W3=0.25 W7=0.50
W4=0.30 W8=0.35

Target Values(Output )
T1 T2
0.99

Now we will calculate the forward pass.

H1=X1W1 + X2W2 + b1

=0.05*0.15 + 0.10*0.20 + 0.35

=0.3775

OutH1 =1/1+e-H1 =1/ 1+e-0.3775 = 0.593269992

In the same way, we derive the Out H2 = 0.596884378

Now we will Calculate Y1.

Y1 = outH1 * W5 +outH2*W6 + b2

=0.4%0.593269992 + 0.596884378%0.45 + 0.6

=1.105905967

outYl =1/1+e-yl =1/1+e-1.105905967

=0.75136507

In the same way, we find Y2.

OutY2 = 0.772928465

The formula for finding the error follows.

Etotal = ) ¥ (target -output)2
=1/2(T1 -OutY1)2 + ¥(T2-outY2)2
=14(0.01-0.75136507)2 + ¥(0.99 -0.772)2
=0.274811083 + 0.023560026
=0.298371109

E1 =%(T1- outY1)2

E2=1/2(T2 -outY2)2

115



CHAPTER 4  BACKPROPAGATION IN UNITY C#

For calculating error we do a backward pass, which is a chained
derivate or is a partial differentiation.
This is required to update the weights accordingly.
Consider updating the weight W5.
Error at W5 = 0Etotal/dW5
This is partial differentiation.
In the error there is no value for W5. We will use the chain rule for
further splitting and getting the desired value.
oEtotal/dW5 = doutY1/doutY1 * doutY1/dY1 * 0Y1/0W5
Etotal = 12(T1-outY1)2 + %(T2-OutY2)2
0Etotal/00UTY1 = 2*1/2(T1-OutY1)2-1 * -1
=-(T1-OutY1)
=-(0.01-0.75136507)
oEtotal/00UtY1 = 0.74136507
OutYl =1/1+e-Y1
ooutY1/0Y1 =outyl(1-OutY1)
=0.186815602
0Y1/0W1 = 1* OUTHI * W5(1-1)
=0OutH1
=0.08216704 --— Change in W5
Now we will be updating W5. We will be using something called
learning rate, which is how a neural network leaves the old values and
adapts to the change, so we get the updated values for the weights we are
looking for at each weight level.
The learning rate always stays between 0 and 1.
Learning rate assigned n
is 0.5 in this example.
W5 = W5 -i* 9Etotal/dW5
=0.4-0.5%0.082167041
W5 =0.35891648
In the same way, we calculate W6,W7, and W8.
Now at the hidden layer we will update values for W1, W2, W3, and W4.

116



CHAPTER 4  BACKPROPAGATION IN UNITY C#

oEtotal/0W1 = gEtotal/00utH1 * doutH1/0H1 * 0H1/0W1

In the same way, we will calculate the total and get the weighted
values, and again update and get the outputs Y1 and Y2. We will iterate
backward in the neural until and unless we reduce the error.

o We will discuss important data structures and
implement them.

e We will create the complete backpropgation
application and test it with an XOR gate.

Let’s begin step by step.

Backpropogation in Unity C#

We will apply backpropogation in Unity C#. For that we need to open a
new project in Unity (Figure 4-2).

) Unity 2017.3.003 ®

Projects  Learn Bnew  Popm () MyAccoum

New Unily Project (2) @ 3D ) 2D | add Asset Package

Fa\TizenEx . (on @) Enable Unity Analytics (7)

Abhishek81 w

Figure 4-2. Opening a new project in Unity

We name the project “backp.”

117



CHAPTER 4  BACKPROPAGATION IN UNITY C#

Constructing Data Structures

Before getting in deep, we will be constructing data structures that we will
be implementing for backpropogation. First we will have a simple one-
dimensional matrix, which will have the output values of any given layer of
a neural network.

Float[] output = new float[number of neurons in layer].

Now we will have to have a weight matrix.

Float[,] weights = new float[number of neurons in layer, number
of neurons in previous layer]

We also need delta values of the weights.

Float[,] weightsDelta = new float[number of neurons in layer,
number of neurons in previous layer]

We will gamma the matrix.

Float[] gamma =new float[number of neurons in layer]
Float[] error =new float[number of neurons in layer]

These data structures fulfill the criteria for implementing
backpropagation in C#.

118



CHAPTER 4  BACKPROPAGATION IN UNITY C#

Now we will create a folder within Unity that will contain our C# Script
(Figure 4-3).

Figure 4-3. Creating a new C# script

We will name the folder “script” (Figure 4-4).

Figure 4-4. Creating a script folder

119



CHAPTER 4  BACKPROPAGATION IN UNITY C#

Now we will create a new C# script and name it NeuralNetwork
(Figure 4-5).

Shader > |4 % *
| Assets » script
Testing ,
Playables 3
== | Assembly Definition
2
Shaw in Explorer Scene
I — o Prefeb
pen
Delete Audio Mixer
Open Scene Additive Material
Import New Asset... Lens Flare
Import Package » Render Texture
Export Package... Lightmap Parameters
Find References In Scane Custom Render Texture
Select Dependencies Sprite Atlas
Refresh CHil-R Sprites 3
Reimport Tile
& scriot Reimpert All Animator Contreller
Animation
or Pausa | Editer - | Extract From Prefab o, s el
Run API Updater... Avatar Mask
Open C# Project Timeline

Figure 4-5. Creating the neural network script

120



CHAPTER 4  BACKPROPAGATION IN UNITY C#

We will open it up in some editor, in our case Sublime Text (Figure 4-6).

System.Collections;
System.Collections.Generic;
UnityEngine;

class NeuralNetwork : M

Start () {

Figure 4-6. Opening the file in Sublime Text

We will create a constructor for the neural network.

public NeuralNetwork {

public class Layer {

121



CHAPTER 4  BACKPROPAGATION IN UNITY C#

The neural network will take layer information. We will deep copy the
layer.

public class NeuralNetwork {
int[] layer;
public NeuralNetwork(int[] layer)

{
this.layer = new int[layer.length];
for(int i = 0; i < layer.lLength; i++)
this.layer[i] = layer[i];

}

We will create layer objects.
layers = new Layer[layer.length-1]

We will work on the layer class now. We will declare the number of
neurons in the previous layer as well as the number of neurons in the
current layer.

public class Layer {
int numberOFInputs;
int numberOfOutputs;

public Layer(int numberOFInputs,
int numberOfOutputs)

{
this.numberOFInputs = numberOFInputs;

this.numberOfOutputs = numberOfOutputs;

122



CHAPTER 4 BACKPROPAGATION IN UNITY C#
Now we will declare the data structure in the same manner.

float[] outputs;
float[] inputs;
float[,] weights;
float[,] weightsDelta;
float[] gamma;
float[] error;

We will declare the size of the outputs and inputs.

outputs = new float[numberOfOutputs];
inputs = new float[numberOFInputs];

weights = new float[numberOfOutputs, numberOFInputs];
weightsDelta = new float[numberOfOutputs,
numberOFInputs];
gamma = new float[numberOfOutputs];
error = new float[numberOfOutputs];

Feed Forwarding and Initializing Weights

Now we will do feed forward. It will receive an input and feed forward the
input. We need to have the last layers of the output values. We have to pass
the input in the first layer of the layers.

public float[] FeedForward(float[] inputs)
{

layers[0].FeedForward(inputs);

for (int i =1; i < layers.length; i++)

{
layers[i].FeedForward
(layers[i-1].outputs);

}

return layers[layers.Length -

1].outputs;

123



CHAPTER 4  BACKPROPAGATION IN UNITY C#

We need to initialize a random number so that we can initialize the
weights.

public static Random random = new Random();
Now we will write a function to initialize the weight.

public void InitilizeWeights()

{
for (int i = 0; i < numberOfOutputs; i++)
{
for (int j =0; j <
numberOFInputs; j++)
{
weights[i, j] = (float)
random.NextDouble() -
0.5f;
}
}
}

Now we will write a function that will update the weights for us.

public void UpdateWeights()

{
for (int i = 0; i < numberOfOuputs; i++)
{
for (int j = 0; j < numberOfInputs; j++)
{
weights[i, j] -= weightsDelta[i, j]*0.033f;
}
}
}

124



CHAPTER 4  BACKPROPAGATION IN UNITY C#
We subtract from weightsDelta, multiplied by some learning rate.
weights[i, j] -= weightsDelta[i, j]*0.033f;

We need to add two functions: one is the backpropagation output layer
and one is the hidden layer. We need to calculate the derivatives of the
error. We will have to write a function that will calculate the derivative of
the tanh function.

After updating, the entire code looks like this.

using System;

/// <summary>

/// Simple MLP Neural Network
/// </summary>

public class NeuralNetwork

{

int[] layer; //layer information
Layer[] layers; //layers in the network

/// <summary>
/// Constructor setting up layers
/// </summary>
/// <param name="layer">lLayers of this network</param>
public NeuralNetwork(int[] layer)
{
//deep copy layers
this.layer = new int[layer.Length];
for (int i = 0; i < layer.Length; i++)
this.layer[i] = layer[i];

125



CHAPTER 4  BACKPROPAGATION IN UNITY C#

//creates neural layers
layers = new Layer[layer.Length-1];

for (int i = 0; i < layers.lLength; i++)

{

layers[i] = new Layer(layer[i], layer[i+1]);

}

/// <summary>
/// High level feedforward for this network
/// </summary>
/// <param name="inputs">Inputs to be feed forwared</param>
/// <returns></returns>
public float[] FeedForward(float[] inputs)
{
//feed forward
layers[0].FeedForward(inputs);
for (int i = 1; i < layers.length; i++)
{

layers[i].FeedForward(layers[i-1].outputs);

}

return layers[layers.Length - 1].outputs;
//return output of last layer

}

/// <summary>

/// High level back porpagation

/// Note: It is expexted the one feed forward was done
before this back prop.

/// </summary>

126



CHAPTER 4  BACKPROPAGATION IN UNITY C#

/// <param name="expected">The expected output form the
last feedforward</param>
public void BackProp(float[] expected)

{
// run over all layers backwards
for (int i = layers.Length-1; i >=0; i--)
{
if(i == layers.Length - 1)
{
layers[i].BackPropOutput(expected);
//back prop output
}
else
{
layers[i].BackPropHidden(layers[i+1].gamma,
layers[i+1].weights); //back prop hidden
}
}
//Update weights
for (int i = 0; i < layers.lLength; i++)
{
layers[i].UpdateWeights();
}
}

/// <summary>

/// Each individual layer in the ML{

/// </summary>

public class Layer

{
int numberOfInputs; //# of neurons in the previous layer
int numberOfOuputs; //# of neurons in the current layer

127



CHAPTER 4  BACKPROPAGATION IN UNITY C#

public float[] outputs; //outputs of this layer
public float[] inputs; //inputs in into this layer
public float[,] weights; //weights of this layer
public float[,] weightsDelta; //deltas of this layer
public float[] gamma; //gamma of this layer

public float[] error; //error of the output layer

public static Random random = new Random(); //Static
random class variable

/// <summary>

/// Constructor initilizes vaiour data structures

/// </summary>

/// <param name="numberOfInputs">Number of neurons in
the previous layer</param>

/// <param name="numberOfOuputs">Number of neurons in
the current layer</param>

public Layer(int numberOfInputs, int numberOfOuputs)

{

this.numberOfInputs
this.numberOfOuputs

numberOfInputs;
numberOfOuputs;

//initilize datastructures

outputs = new float[numberOfOuputs];

inputs = new float[numberOfInputs];

weights = new float[numberOfOuputs, numberOfInputs];
weightsDelta = new float[numberOfOuputs,
numberOfInputs];

gamma = new float[numberOfOuputs];

error = new float[numberOfOuputs];

128



CHAPTER 4  BACKPROPAGATION IN UNITY C#

InitilizeWeights(); //initilize weights
}

/// <summary>

/// Initilize weights between -0.5 and 0.5
/17 </summary>

public void InitilizeWeights()

{
for (int i = 0; i < numberOfOuputs; i++)
{
for (int j = 0; j < numberOfInputs; j++)
{
weights[i, j] = (float)random.
NextDouble() - 0.5f;
}
}
}

/// <summary>

/// Feedforward this layer with a given input

/// </summary>

/// <param name="inputs">The output values of the

previous layer</param>

/// <returns></returns>

public float[] FeedForward(float[] inputs)

{
this.inputs = inputs;// keep shallow copy which can
be used for backpropagation

//feed forwards
for (int i = 0; i < numberOfOuputs; i++)

{

outputs[i] = 0;

129



CHAPTER 4  BACKPROPAGATION IN UNITY C#

for (int j = 0; j < numberOfInputs; j++)
{

outputs[i] += inputs[j] * weights[i, j];
}

outputs[i] = (float)Math.Tanh(outputs[i]);
}

return outputs;

}

/// <summary>

/// TanH derivate

/// </summary>

/// <param name="value">An already computed TanH
value</param>

/// <returns></returns>

public float TanHDer(float value)

{

return 1 - (value * value);

}

/// <summary>
/// Backpropagation for the output layer
/// </summary>
/// <param name="expected">The expected output</param>
public void BackPropOutput(float[] expected)
{

//Error dervative of the cost function

for (int i = 0; i < numberOfOuputs; i++)

error[i] = outputs[i] - expected[i];

//Gamma calculation
for (int i = 0; i < numberOfOuputs; i++)
gamma[i] = error[i] * TanHDer(outputs[i]);

130



}

/17
/17
/17
/17

CHAPTER 4  BACKPROPAGATION IN UNITY C#

//Caluclating detla weights
for (int i = 0; i < numberOfOuputs; i++)
{
for (int j = 0; j < numberOfInputs; j++)

{
weightsDelta[i, j] = gamma[i] * inputs[j];

<summary>

Backpropagation for the hidden layers

</summary>

<param name="gammaForward">the gamma value of the

forward layer</param>

/11

<param name="weightsFoward">the weights of the

forward layer</param>
public void BackPropHidden(float[] gammaForward,
float[,] weightsFoward)

{

//Caluclate new gamma using gamma sums of the
forward layer

for (int i = 0; i < numberOfOuputs; i++)

{

gamma[i] = 0;

for (int j = 0; j < gammaForward.Length; j++)

{
gamma[i] += gammaForward[j] *
weightsFoward[j, i];

131



CHAPTER 4  BACKPROPAGATION IN UNITY C#

gamma[i] *= TanHDer(outputs[i]);
}

//Caluclating detla weights
for (int i = 0; i < numberOfOuputs; i++)

{
for (int j = 0; j < numberOfInputs; j++)
{
weightsDelta[i, j] = gamma[i] * inputs[j];
}
}

}

/// <summary>

/// Updating weights

/11 </summary>

public void UpdateWeights()

{
for (int i = 0; i < numberOfOuputs; i++)
{
for (int j = 0; j < numberOfInputs; j++)
{
weights[i, j] -= weightsDelta[i, j]*0.033f;
}
}
}

132



CHAPTER 4  BACKPROPAGATION IN UNITY C#

Testing of Backpropagation Neural Network

For testing the backpropagation neural network, we need to create a tester
that will be an XOR gate trained over 5,000 times (Figure 4-7).

CirlsR Sprites

Anirvales Override Contreler
Byatar Mask

Timeline

Physic Material
Phaics Material 20

Figure 4-7. Creating the tester script

We name it “tester” The XOR will have three values. We have input,
hidden layers, and output. It will iterate through more than 5,000 times.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Tester : MonoBehaviour {

void Start () {
// 000 => 0

133



CHAPTER 4  BACKPROPAGATION IN UNITY C#

// 001 = 1
// 010 => 1
// 011 = 0
// 100 = 1
// 101 => 0
// 110 => 0
// 111 =1

NeuralNetwork net = new NeuralNetwork(new int[]
{3, 25, 25, 1 }); //intiilize network

//Itterate 5000 times and train each possible output
//5000%8 = 40000 traning operations
for (int i = 0; i < 5000; i++)
{
net.FeedForward(new float[] { 0, 0, 0 });
net.BackProp(new float[] { 0 });

net.FeedForward(new float[] { 0, 0, 1 });
net.BackProp(new float[] { 1 });

net.FeedForward(new float[] { 0, 1, 0 });
net.BackProp(new float[] { 1 });

net.FeedForward(new float[] { 0, 1, 1 });
net.BackProp(new float[] { 0 });

net.FeedForward(new float[] { 1, 0, 0 });
net.BackProp(new float[] { 1 });

net.FeedForward(new float[] { 1, 0, 1 });
net.BackProp(new float[] { 0 });

net.FeedForward(new float[] { 1, 1, 0 });
net.BackProp(new float[] { 0 });

134



CHAPTER 4  BACKPROPAGATION IN UNITY C#

net.FeedForward(new float[] { 1, 1, 1 });
net.BackProp(new float[] { 1 });

}

//output to see if the network has learnt

UnityEngine.Debug.Log(net.FeedForward(new

{0, 0, 0 })[o]);

UnityEngine.Debug.

{0, 0, 1 })[0]);

UnityEngine.Debug.

{0, 1, 0 H[o]);

UnityEngine.Debug.

{0, 1,1 }[o]);

UnityEngine.Debug.

{ 1, 0, 0 })[0]);

UnityEngine.Debug.

{1, 0, 1 H[o]);

UnityEngine.Debug.

{1, 1, 0o H[o]);

UnityEngine.Debug.

{1, 1, 1 Hlo]);

Log(net.
Log(net.
Log(net.
Log(net.
Log(net.
Log(net.

Log(net.

FeedForward(new
FeedForward(new
FeedForward(new
FeedForward(new
FeedForward(new
FeedForward(new

FeedForward(new

// Update is called once per frame

void Update () {
}

float[]
float[]
float[]
float[]
float[]
float[]
float[]

float[ ]

We will add this to the main camera and see the output.

135



CHAPTER 4  BACKPROPAGATION IN UNITY C#

Summary

We have covered backpropagation with Unity C#. We have covered the
concepts where we introduced the important data structures for the
creation of neural network backpropagation.

In Chapter 5 we will be studying a concept of visualizing a dataset in
Unity.

We will take example datasets and try to visualize the dataset within a
3D projection in Unity.

136



CHAPTER 5

Data Visualization
in Unity

In this final chapter, we will touch base on how data visualization is
implemented in Unity. We conclude the book by visualizing CSV (comma-
separated values) data for a good look and feel.

In this chapter, we will start with data visualization and how it is
implemented in Unity. As Unity is powered with good GUI options, we can
process very rich data for visualization. We start with downloading one
open source project from GitHub and modify accordingly. We open the
project in Unity and start exploring the options in there. Finally, we create
visualizations from CSV files.

Machine Learning Data Visualization

in Unity

In this section, we will study how to do data visualization in Unity. Data
visualization for ML datasets is very interesting; we will stress that.

© Abhishek Nandy, Manisha Biswas 2018 137
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_5



CHAPTER 5  DATA VISUALIZATION IN UNITY

We will get started with an open source GitHub project (Figure 5-1)
and modify it accordingly.
Let’s start.

https://github.com/PrinzEugn/Scatterplot_Standalone

U PrinzEugn / Scatterplot_Standalone OWak | ke 2 YWek 1

e Cadn e © Pul soquests 0 Projecs 0 nEghts

E;. Join GitHub today Ly

GitHub i homs to over 20 milion davolopers working togather t host
snvd review code, maage projects and buikd softvere together

3D seaterplot in Unity
BT oo 11 branch 0 releases 41 eemibutor & Unbeerse
e
!
B Seamapken_Stndalong Aty Semenbat

Figure 5-1. The open source project

Now we will have to download it (Figure 5-2).

© 0 releases 42 1 contributor s Unlicense

Find file Clone or download ~

Clone with HTTPS @
Use Git or checkout with SVN using the web URL.

Added Screenshot

https://github.com/PrinzEugn/Scatterplot [

Initial commit
Initial commit

Open in Desktop Download ZIP
Initial commit ~
Update README.md a month ago

Figure 5-2. Downloading the file

138


https://github.com/PrinzEugn/Scatterplot_Standalone

CHAPTER 5  DATA VISUALIZATION IN UNITY

Data Parsing

We will be looking at data parsing in this section. Here we will see how we
consume the data from CSV files and use Unity's graphical capability to
visualize the dataset.

Before going further, we will touch base on what data we will be
parsing. We will be parsing CSV files.

Now, the most important part is the parsing process. We are using a
free script that goes through the regular expressions, reads the CSV file,
and finally converts it as a dictionary <list> for further usage. The code
follows.

In the first section we import the libaries that are required for the
project.
using UnityEngine;
using System;
using System.Collections;

using System.Collections.Generic;
using System.Text.RegularExpressions;

// Taken from here: https://bravenewmethod.com/2014/09/13/
lightweight-csv-

In this section we are declaring a class that intializes the CSV Reader
and, using regex expressing, we are going through the dataset and doing
the parsing accordingly.

reader-for-unity/
// Comments

// Code parses a CSV, converting values into ints or floats if
able, and returning a List<Dictionary<string, object>>.

139



CHAPTER 5  DATA VISUALIZATION IN UNITY

public class CSVReader

{
static string SPLIT_RE = @",(?=(2:[~""]*""[~""]*"")*(21[~""
1*""))"; // Define delimiters, regular expression craziness
static string LINE_SPLIT RE = @"\r\n|\n\r|\n|\r";

// Define line delimiters, regular experession craziness
static char[] TRIM CHARS = { '"\"' };

public static List<Dictionary<string, object>>
Read(string file) //Declare method
{
//Debug.Log("CSVReader is reading " + file);
// Print filename, make sure parsed correctly

var list = new List<Dictionary<string, object>>();
//declare dictionary list

TextAsset data = Resources.Load(file) as TextAsset;
//Loads the TextAsset named in the file argument of the
function

// Debug.Log("Data loaded:" + data);
// Print raw data, make sure parsed correctly

var lines = Regex.Split(data.text, LINE SPLIT RE);
// Split data.text into lines using LINE_SPLIT RE

characters

if (lines.Length <= 1) return list;
//Check that there is more than one line

140



CHAPTER 5  DATA VISUALIZATION IN UNITY

var header = Regex.Split(lines[0], SPLIT RE);
//Split header (element 0)

// Loops through lines
for (var i = 1; i < lines.Length; i++)

{

var values = Regex.Split(lines[i], SPLIT RE);
//Split lines according to SPLIT RE, store in var
(usually string array)

if (values.Length == 0 || values[0] == "") continue;
// Skip to end of loop (continue) if value is 0

In this section we are declaring the dictionary object and trimming the
characters in the CSV file.

length OR first value is empty

var entry = new Dictionary<string, object>();
// Creates dictionary object

// Loops through every value

for (var j = 0; j < header.Length 88& j

< values.length; j++)

{
string value = values[j]; // Set local variable
value
value = value.TrimStart(TRIM CHARS).
TrimEnd(TRIM_CHARS).Replace("\\", "");
// Trim characters
object finalvalue = value;
//set final value

141



CHAPTER 5

142

DATA VISUALIZATION IN UNITY

}

int n; // Create int, to hold value if int
float f; // Create float, to hold value if float

// If-else to attempt to parse value into int
or float
if (int.TryParse(value, out n))

{

finalvalue = n;

}
else if (float.TryParse(value, out f))

{

finalvalue = f;

}
entry[header[j]] = finalvalue;

list.Add(entry); // Add Dictionary ("entry"
variable) to list

return list; //Return list



CHAPTER 5  DATA VISUALIZATION IN UNITY

Let us open the downloaded project (Figure 5-3).

) Uniny 2017.3.003 ®
Projects  Learn Binew  [Dopen (@ Mysccom
On Disk unity-environment I
i | Unigy 201730
In the Cloud
propag: kTuterial

Pathc F ial | Unity version: 5 6.0

backp

ath: FATE ity version: 2017.3,

Pathr | Uity version: 201730 | prinz-rugn

UnityScatterplot-master

Path FAD3 | Unisy version: 2017.3.0

3D-TSNE-master
Path: FAD3 | Unity version: 2017.3.0

Figure 5-3. Opening the project in Unity

The project when opened is shown in Figure 5-4.

Figure 5-4. The project windows

143



CHAPTER 5  DATA VISUALIZATION IN UNITY

The resources folder will contain all the CSV files (Figure 5-5); you can
also add your own files too.

Figure 5-5. The CSV files

If we go to the hierarchy tab, we see a subchild of Scatterplot named
Plotter (Figure 5-6).

Figure 5-6. The plotter subchild

144



CHAPTER 5  DATA VISUALIZATION IN UNITY

Now, in the inspector window we see the point renderer script. One
of the options available is Inputfile, where we can name the CSV file
(Figure 5-7).

Figure 5-7. Selecting an input file

145



CHAPTER 5  DATA VISUALIZATION IN UNITY

We are using the iris dataset over here (Figure 5-8).
Let’s hit the play button to check the visualization.

L Unity 2017.3.03 Personal (64bit) - prescriber.unity - Scatterplot_Standalone - PC, Mac & Linux Standalone <DX11>
File Edit Assets GameObject Component Window Help

@ Project

| Create =

Figure 5-8. Visualizing the iris data

146



CHAPTER 5  DATA VISUALIZATION IN UNITY

Working with Datasets

Let’s work on some other datasets.
We open up datagov.in the following address (Figure 5-9).

https://data.gov.in/

INDICATOR
DASHBOARD

AMALYTICS TO MOVE FROM DATA TO INSICHTS

Figure 5-9. Exploring data.gov.in

147


https://data.gov.in/

CHAPTER 5  DATA VISUALIZATION IN UNITY

We will work on agriculture data and export it in a CSV file (Figure 5-10).

T S P P PR —

o g e ey

- datagov(

403 % & Tt

006G O Fvs

O Koyt Chmesaty St
Akt

L e

O fortors igrcunes Mrkotng Agriutus

© Pabihed on Dt st

B ey

n.‘.lr ama(Gram) iy on date

n. .rm.vlaum.x..nau

il vl s

& G

1 rsmiaa

A e——

B it
.

[

B

e () R

) Yoriogemban Cally Maret Prices
- of Bangal Grams(Gram) for
o

~ B ey

[ EErp——.
X v
0% Mt
&, Dewrcas a7

[ stwnce
e

@ reemase '3 8

[
ovon ss o) ()
L E - Bt | ¥

Figure 5-10. Saving datagov.in data from website

We use the air quality data and save it (Figure 5-11).

Then we run it.

Figure 5-11. Visualizing the air quality data

148



CHAPTER 5  DATA VISUALIZATION IN UNITY
The color effects on the dataset point are added by this part of the script.

dataPoint.GetComponent<Renderer>().material.color =
new Color(x,y,z, 1.0f);

Another Example

In this section we will work on another dataset. Let’s use it.
We will be using an industrial production dataset (Figure 5-12).

https://data.gov.in/catalog/index-industrial-production-0

# ¢ Catalogs ¢ Index of Industrial Production ]

1 Besewrceis) found
Catalog info
i i

a Index of industrial production -
annual averages -(2-digit level)-
201314

@ Duta Shasing ane

Aevisiziry Pelicy INIEAR

© Contriuter;
My o StatiEcs andd Srogramime
Implpmesttion

© Weywords  UF | marsdsctring | Mining
Texties  eectriity  Food  Incustry Al un s in
AtETUGUE O & cramisey Anusl
@ tiesie A il smseisr o
O Seeters Tmemes  Insustie & Dowrkosci 1738
D Published on Dats Pertal Sepember 00 7519

B nefereeun
IiIpTIEsL IS0 New upl0adi VR . of
3 8 o
Tyl Data Officer B soou: Originai Sowne : Contral Statisties Offiee.

higse Aant ; 300845100100 a'20 ubished in
susissieal year book 2015 by MOSPL

DPOAT Il

xs G_cot )

Figure 5-12. The CSV file that is hosted at datagov.in

149


https://data.gov.in/catalog/index-industrial-production-0

CHAPTER 5  DATA VISUALIZATION IN UNITY

We have saved the file as a CSV format so that the CSV parser is able to
parse the information. Let’s copy the file in the resources folder.
The file as copied in the resources folder is shown in Figure 5-13.

4 Assets = Resources -

Figure 5-13. The resources subfolder within the Assets folder

150



CHAPTER 5  DATA VISUALIZATION IN UNITY

Now we will work on the CSV file in the inspector window.
In the hierarchy window we see that the plotter is the main field, which
contains the CSV input (Figure 5-14).

®
®
[ ]
[ ]
@
E
]
®
o
[ ]
R
R
[ IE
]
e
T
®
L ]
]
]
®
T

Figure 5-14. The place where we update the input CSV file

151



CHAPTER 5  DATA VISUALIZATION IN UNITY

We will change the input file to read the CSV file we just downloaded
from the datagov website. The process as selected from the inspector
window is shown in Figure 5-15.

¥ || & Point Renderer (Script)
Script | - PointRenderer
Render Point Prefabs 4
Render Particles m
Render Prefabs With Colorly/
Inputfile [datafile1
Column 1 o
Caliimn 2 ‘1

Figure 5-15. We changed the input file with the downloaded CSV file
name

Let’s take a look at the snapshot of the CSV file, which contains data
related to an index of industrial production, as shown in Figure 5-16.

A B < 1] E F G H | J K L
Industry code Description ‘Weight  2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-20112011-12 201213 201314
15 Food products and beverag 7276 11317 13118 14752 13535 13351 14287 1648 1695  167.7
16 Tobaceo produtcts 157 10103 10288 9839 10268 10203 10408 1097  109.2 1105
17 Textiles 6164 10833 1168 12457 12007 127.36 13587 134 142 14825

18 Wearing apparel; dressing ¢ 27.82 11408 13719 14991 13455 13712 14218 1301 1436 17161
15 Luggage; handbags; saddler 5.82 50.87 10357  109.96 10436 10576  114.29 1185 1271 133.68
20 Wood and products of woo 10.51 106.84 126.02 148.03 155.28 180.06 156.49 159.2 1475 144.56
21 Paper and paper products 9.9 106.33 11.01 112.55 118 12108 131.43 138 138.7 138.62
22 Publishing; printing and reg 1078 113.68 1228 14018 142,36 13382 14883 1928 183 18341
23 Coke; refined petroleum pr 6715 100.64 11258 11958 1234 12175 12152 1258 1364 14352
24 Chemicals and chemical pre  100.59 101.02 110.43 118.43 114.96 120.73 12311 122.7 127.3 138.64

25 Rubber and plastics produc 20,25 11226 119.64  135.68 1426  167.41  185.21 184.6 185  18L11
26 Other non-metallic mineral 43.14 107.81 11934 130.63 13494 14544 15137 1586 1616 163.3
27 Basicmetals 113.35 11553 13257 156.32 15899 162.4  176.69 1921 1958 19643
28 Fabricated metal products; 30.85 11114 13331 14377 14395 15859 18278 203.3 153.8  180.22
25 Machinery and equipment 37.63 126,07 150.93 18499 170.97 158.04  256.26 2413 230 215.23

30 Office; accounting and com 3.05 14533 155.51 164.83 143.82 15442 146.23 1487 128.1 108.03
31 Electrical machinery and ap 13.8 11678 131.56  372.99  530.79 459.1B  472.06 367.1 369.2 42263
32 Radio; TV and communicati 9.89 12268 31282 604.16 72665 BO9.0B 91148 950.5 10037 730.11
33 Medical; precision and opti 5.67 9535 10478 11139 11977 10088 10778 1195 1171 11113
34 Motorvehicles; trailersanc ~ 40.64 110,13 138.04  151.19 13803 17941  233.28 2586 448 22133
35 Other transport equipment 1825 11531 132.86  129.01 13358 17012 210.7W4 2358 235.7 248.5
36 Furniture; manufacturing n 23.97 11621 111.73 132.67 1425 15267 14113 1386 1315 113.27

NA Mining and Quarrying 14157 10227 10755 11251 1154 12452 13103 1285 1255 1471
NA Manufacturing 755.27 11028 12679 15011 153.82 16125 175.7 181 1833 18183
NA Electricity 103.16  105.16 112.3  119.97 123.26  130.77  138.03 149.3 155.2 164.7

Figure 5-16. A snapshot of the CSV dataset

152



CHAPTER 5  DATA VISUALIZATION IN UNITY

In the columns to project between x, y, and z, we can select years. So
let us select 2006-2007, 2011-12, and 2013-14

The columns selections will be numbered from 0 to 11.

We select the first column as 4.

The second column is 9.

The last column is 11.

The inspector view is shown in Figure 5-17.

Figure 5-17. Selecting the columns

153



CHAPTER 5  DATA VISUALIZATION IN UNITY

Now let us run the application and see the output.
The output as achieved is shown in Figure 5-18.

O EA S = e | Slocs |

Croate <] e lalw

Figure 5-18. Showing the output for the dataset

Summary

We hereby concluded the book by adding the essence of data visualization
with Unity.

We covered how to use CSV to parse data within Unity, to cover the
basic concepts of 3D data visualizations.

154



Index

A

Anaconda, 30-34

Python mode, 49-51
Arctan function, 10
Artificial neural network, 2

B

Backpropagation, 22, 26
input layer, 114
neural network, 113-114
sigmoid activation function, 114
testing of, 133
Unity C#
constructor, 121
data structures, 118
feed forward and weight
initialization, 123
neural network script, 120
new project, 117
script folder, 119
Sublime Text, 121
Binary step function, 8

C

Crawler project
assets folder, 71

© Abhishek Nandy, Manisha Biswas 2018

brain type, 82
byte file, 80
command prompt, 74
configuration, 82
DataStructures, 88
exe creation, 73
logs, 76
scene and build, 72
simulation test, 83
spider asset, 107
Tensorflow installation, 75
TFModels, 81
training details, 78
training output, 83
Unity C#
folders creation, 86
project creation, 85
script file, 87

D, E,F
Data visualization, see
Visualization

G H

Gradient descent, 22

A. Nandy and M. Biswas, Neural Networks in Unity,

https://doi.org/10.1007/978-1-4842-3673-4

155


https://doi.org/10.1007/978-1-4842-3673-4

INDEX

Identity function, 7
InitNeurons and InitWeights

methods, 88

Internal operations,

ML-Agents, 44
exe file, 47, 49
inspector window, 46
Jupyter Notebook (see Jupyter

Notebook)
ml-agents-master file, 51
player options, 45
Python mode, 49-51
scene and building

selection, 48

J, K

Jupyter Notebook

action_space_type, 54

browser mode, 51

IPython files, 52

matplotlib command, 53

proximity policy
optimization, 57

reward, 56

training mode, 53

Unity file, 55

Unity script, 53

variables and parameters, 56

web browser and appropriate
files, 52

156

L

Leaky ReLU, 12
Logistic/Sigmoid, 8

Machine learning agents
(ML-Agents), 27
Anaconda, 30-34
crawler project (see Crawler
project)
GitHub repo, 29
GPU-accelerated TensorFlow
appropriate folder, 37
details, 37
environment, 35
GitHub repo, 35
ml-agents folder, 38
project file, 36
training, 35
unity environments folder, 39
Unity IDE, 38
internal operations (see Internal
operations, ML-Agents)
NVIDIA CUDA Toolkit, 34
reinforcement, 28
steps, 28
Tensorflow, 30
unity environment, 70
Unity project
Ball3dBrain, 42
engine opening up, 40



external type, 43
scene file, 41
simulation, 44
working process, 41
website link, 28
Mathematical approach, 3-4

N, O

NVIDIA CUDA Toolkit, 34

PQ
Parsing
CSV files, 144
downloaded project, 143
input file, 145
iris data, 146
libaries, 139
plotter subchild, 144
project, 143
windows, 143
Perceptron
activation function, 5
arctan function, 10
binary step function, 8
different types, 6
identity function, 7
input, 6
Leaky ReLU, 12
logistic/sigmoid, 8
ReLU function, 11
softmax function, 12

INDEX

Tan H function, 9
biases and weights

applying bias, 16

bias roles, 17

creation, 13

role of, 15

summation rule, 14
list of, 5

Proximal policy

optimization (PPO)
bytes file, 62
enable mode, 64
environments, 58
features, 61
hyperparameters, 57
links, 63
missing text asset, 65
model graph, 58
results, 67
source code, 57
TensorFlow graph, 62
TensorFlowSharp
plugin, 63
text asset, 66
tfmodels folder, 64
training model, 61

Rectified Linear

Unit (ReLU), 11

Reinforcement

learning, 28

157



INDEX

S

Scratch, 17
creation, 18
error, 25
gradient descent, 22
input neurons, 20
NumPy, 19
probabilities, 20
rectification, 25
source code, 22
steps, 19
subsequent layer, 21
synapses, 20
training module, 21
Sigmoid function, 8
Softmax function, 12
Synapses, 20

T, U

Tan H function, 9
Tensorflow, 30

158

VW, X, Y, Z

Visualization

air quality data, 148
assets folder, 150
column selection, 153
CSVfile, 149
datasets, 147
file download, 138
input CSV file, 151
inspector window, 152
open source project, 138
output for, 154
parsing
CSV files, 144
downloaded project, 143
input file, 145
iris data, 146
libaries, 139
plotter subchild, 144
project, 143
windows, 143
snapshot, 152



	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Neural Network Basics
	Introducing Neural Networks
	Digging Deeper into Neural Networks
	Perceptron
	Activation Function and Its Different Types
	Identity Function
	Binary Step Function
	Logistic or Sigmoid
	Tan H Function
	Arctan Function
	Rectified Linear Unit
	Leaky ReLU
	Softmax Function

	Biases and Weights

	Neural Network from Scratch
	Backpropagation
	Summary

	Chapter 2: Unity ML-Agents
	Unity IDE
	Getting Started with Machine Learning Agents
	Let’s Start with TensorFlow
	Understanding Anaconda
	What Is the NVDIA CUDA Toolkit?
	GPU-Accelerated TensorFlow
	Building a Project in Unity

	Internal Operations for Machine Learning
	Training Anaconda in Python Mode
	Working with Jupyter Notebook
	Proximity Policy Optimization



	Summary

	Chapter 3: Machine Learning Agents and Neural Network in Unity
	Extending the Unity ML-Agents with Further Examples
	Crawler Project
	Testing the Simulation
	Neural Network with Unity C#
	Creating DataStructures
	Experimenting with the Spider Asset

	Summary

	Chapter 4: Backpropagation in Unity C#
	Going Further into Backpropagation
	Backpropogation in Unity C#
	Constructing Data Structures
	Feed Forwarding and Initializing Weights

	Testing of Backpropagation Neural Network
	Summary

	Chapter 5: Data Visualization in Unity
	Machine Learning Data Visualization in Unity
	Data Parsing
	Working with Datasets
	Another Example

	Summary

	Index



