
Neural Networks
in Unity

C# Programming for Windows 10
—
Abhishek Nandy
Manisha Biswas

http://www.allitebooks.org

Neural Networks
in Unity

C# Programming for
Windows 10

Abhishek Nandy
Manisha Biswas

http://www.allitebooks.org

Neural Networks in Unity

ISBN-13 (pbk): 978-1-4842-3672-7		 ISBN-13 (electronic): 978-1-4842-3673-4
https://doi.org/10.1007/978-1-4842-3673-4

Library of Congress Control Number: 2018951222

Copyright © 2018 by Abhishek Nandy, Manisha Biswas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software, or
by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3672-7.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Abhishek Nandy
Kolkata, West Bengal, India

Manisha Biswas
North 24 Parganas, West Bengal, India

https://doi.org/10.1007/978-1-4842-3673-4
http://www.allitebooks.org

This book is dedicated to my parents.

—Abhishek Nandy

This book is dedicated to my parents and
the spirit of Women Techmakers.

—Manisha Biswas

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Neural Network Basics���1

Introducing Neural Networks���2

Digging Deeper into Neural Networks��3

Perceptron���5

Activation Function and Its Different Types��6

Biases and Weights��13

Neural Network from Scratch��17

Backpropagation��26

Summary���26

Chapter 2: �Unity ML-Agents���27

Unity IDE���27

Getting Started with Machine Learning Agents��27

Internal Operations for Machine Learning��44

Summary���67

About the Authors��vii

About the Technical Reviewer��ix

Introduction��xi

http://www.allitebooks.org

vi

Chapter 3: �Machine Learning Agents and Neural
Network in Unity��69

Extending the Unity ML-Agents with Further Examples���������������������������������������70

Crawler Project���71

Testing the Simulation��83

Neural Network with Unity C#��85

Creating DataStructures���88

Experimenting with the Spider Asset���107

Summary���111

Chapter 4: �Backpropagation in Unity C#��113

Going Further into Backpropagation��113

Backpropogation in Unity C#��117

Constructing Data Structures���118

Feed Forwarding and Initializing Weights���123

Testing of Backpropagation Neural Network���133

Summary���136

Chapter 5: �Data Visualization in Unity���137

Machine Learning Data Visualization in Unity��137

Data Parsing���139

Working with Datasets���147

Another Example��149

Summary���154

Index��155

Table of ContentsTable of Contents

vii

About the Authors

Abhishek Nandy is B.Tech in IT and he is

a constant learner. He is a Microsoft MVP

for Windows Platform, Intel Black Belt

Developer as well as Intel Software Innovator.

He has a keen interest in AI, IoT, and game

development. 

He is currently serving as an Application

Architect in an IT firm as well as consulting on

AI, IoT and doing projects on AI, ML, and deep

learning. He also is an AI trainer, driving the technical part of the Intel AI

Student developer program. He was involved in the first Make in India

initiative, where he was among top 50 innovators and got trained in IIMA.

Manisha Biswas is B.Tech in Information

Technology and currently working as

Data Scientist at Prescriber360 in Kolkata,

India. She is involved with several areas of

technology including Web Development, IoT,

Soft Computing, and Artificial Intelligence.

She is an Intel Software Innovator and was

also awarded the SHRI DEWANG MEHTA

IT AWARDS 2016 by NASSCOM, a certificate

of excellence for top academic scores. She is

the founder of WOMEN IN TECHNOLOGY, Kolkata, a tech community to

empower women to learn and explore new technologies. She always likes

viii

to invent things, create something new, or to invent a new look for the old

things. When not in front of her terminal, she is an explorer, a traveller, a

foodie, a doodler, and a dreamer. She is always very passionate to share her

knowledge and ideas with others. She is following her passion and doing

the same currently by sharing her experiences with the community so that

others can learn and give shape to her ideas in a new way. This led her to

become Google Women Techmakers Kolkata Chapter Lead.  

About the AuthorsAbout the Authors

ix

About the Technical Reviewer

Ali Asad is an avid programmer with

experience in various areas, including

gameplay programming, custom add-in/

tool/plugin development, computation

programming, artificial intelligence,

consulting, and formulating strategies. His

career has covered the life cycle of application

across different domains, such as AEC industry

and Education. 

He authored a book The C# Programmer’s Study Guide (MCSD). He’s

also a Microsoft Specialist: Programming in C#. You can learn more about

his various other activities at: www.linkedin.com/in/imaliasad/

http://www.linkedin.com/in/imaliasad/

xi

Introduction

This book is an attempt to cover Unity with an approach to touch machine

learning and neural networks.

We have given a brief introduction to useful neural network

terminologies to start with.

The attempt has been made to use the new Unity-ML-Agents version 0.3

and clearly construct the process.

What do you need? A basic understanding or fresh approach to cover

the Unity engine with respect to ML and Neural Networks. We have kept

things simple to adapt.

1© Abhishek Nandy, Manisha Biswas 2018
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_1

CHAPTER 1

Neural Network
Basics
The evolvement of artificial intelligence, machine learning, and deep

learning has made so many people start asking questions about what

exactly the process of machine learning actually is?

We found that data scientists, enthusiasts, and developers are

very curious to learn how a neural network works for helping artificial

intelligence to perform better.

In this chapter, we will look at the neural network as a whole and touch

on some common terminologies associated with it. The chapter starts

with an explanation of neural networks. Then, we move along to defining

what exactly a perceptron is, with a brief introduction to it. Further, we will

compare a single-layer neural network with a multilayer neural network,

emphasizing the structure of the neural network.

In the subsequent section, we will look at the various activation

functions available. Next, we will define bias and weight and describe

why they are useful. In the next section, we will touch on a neural network

example.

In the last section, we will look at how to traverse a neural network.

We will cover backpropagation and touch on forward propagation and

feedforward neural networks.

2

�Introducing Neural Networks
An artificial neural network is similar to a biological neural network in a

brain. A biological neural network works as follows: information flows in, is

processed by the neurons, and the results flow out.

The basis of the neuron is to react to previously learned patterns.

When we are creating the same kind of replication in terms of

technology and computer science, we call it an artificial neural network.

Just like the biological neuron, information flows in, is processed by an

artificial neural network, and results flow out (Figure 1-1).

Figure 1-1.  A neural network

Chapter 1 Neural Network Basics

3

The single process becomes a mathematical formula that is the

combination of summation + threshold.

In terms of mathematics, it will be similar to a polynomial:

(In1 * weight1) + (In2 * Weight2) + (In3 * Weight3) = Summation.

�Digging Deeper into Neural Networks
Let us discuss more about neural networks.

Neural networks consist of:

•	 Input

•	 Output

•	 Weights and biases

•	 Activation function

Artificial neural networks are generally a chain of nodes associated

with each other via the link from which they start interacting accordingly.

Neurons perform operations and carry that result.

Let us consider a scenario. Suppose that a new movie has been

released at a movie theater. Now there are nearby options to watch this

movie in a particular movie theater. Our brain makes a split second

decision where we are going to watch the movie.

The split second decision is pretty obvious for the brain to trigger from

the neurons we have, but for same kinds of replication in a computer it is

tough. For that, we have devised a mathematical approach. Let's take an

example.

Chapter 1 Neural Network Basics

4

We have a single neuron whose threshold value is 7. We need to find

out if the neuron will trigger or not (Figure 1-2).

Now let us see how an artificial neuron does the mathematical

calculation.

The criterion is that when the threshold 7 is reached, the neuron will

trigger.

The summation rule says, as shown in Figure 1-2, if one input point has

value 2 and weight 1 and the other has input value 4 and weight 3, then

∑ Summation = (2 * 1) + (4 * 3) = 2 + 12 = 14.

As 14 is greater then 7, the neuron will trigger. This is the way a neuron

works.

Figure 1-2.  Formulating the mathematical formula

Chapter 1 Neural Network Basics

5

�Perceptron
In neural network implementation, a perceptron is very significant. When

a neural network consists of a single layer, we call it a perceptron. It is

used mostly in supervised learning to classify the data.

A perceptron is composed of four different things:

•	 Input values or one input layer

•	 Weights and bias

•	 Summation

•	 Activation function

When we look at a perceptron, it looks as shown in Figure 1-3.

It is generally used as a binary classifier. When we are looking to

classify data into two parts, we rely on a perceptron.

Figure 1-3.  Activation function

Chapter 1 Neural Network Basics

6

�Activation Function and Its Different Types
In this section, we will touch upon one of the most important topics in

terms of neural network, known as activation function.

The activation looks like Figure 1-4.

An activation function allows nonlinear properties to be constructed.

The activation function is used to predict the output of a neural network,

that is, yes or no. It maps the resulting values in the range of 0 to 1 or –1 to 1,

etc. (depending upon the function). It plays a mjor role in an artificial

neural network because it generates an output that becomes an input for

the next layer in the stack.

The general purpose of an activation function is to convert the input

into an artificial neural network and then into an output.

Activation functions are of various types, and we will discuss them

here. There are many activation functions used in machine learning, of

which the most commonly used are listed below.

•	 Identity function

•	 Binary step

•	 Logistic or sigmoid

•	 Tanh

Figure 1-4.  One input activation function

Chapter 1 Neural Network Basics

7

•	 Arctan

•	 Rectified linear unit(ReLU)

•	 Leaky ReLU

•	 Softmax

�Identity Function

In this function, we have x as an input, it will give us x itself (Figure 1-5).

F(x) = x

Figure 1-5.  The identity function

Chapter 1 Neural Network Basics

8

�Binary Step Function

This function is very important in classifiers. If we want to classify between

1 and 0, it is very useful.

•	 If our input is greater then 0, it gives us value 1.

•	 If our input is less then 0, it gives value 0.

F(x) = 0 for x <0

1 for x >=0

�Logistic or Sigmoid

Whatever the input, the sigmoid function maps it between 0 and 1

(Figure 1-6). It is very useful in neural networks.

Figure 1-6.  Sigmoid function curve

Chapter 1 Neural Network Basics

9

�Tan H Function

Useful for neural networks (Figure 1-7).

F(x) = tan h(x)= (2/1 + e–2x) - 1

Figure 1-7.  Tan H function curve

Chapter 1 Neural Network Basics

10

�Arctan Function

Whatever the input, the arctan function maps it between –π/2 and +π/2

(Figure 1-8).

F(x) = tan –1 (x)

Figure 1-8.  Arctan function

Chapter 1 Neural Network Basics

11

�Rectified Linear Unit

ReLU returns 0 if it receives negative input and returns the input value

back if it is positive (Figure 1-9).

F(x) = 0 for x <0

x for x >=0

Figure 1-9.  ReLU function

Chapter 1 Neural Network Basics

12

�Leaky ReLU

Leaky ReLU is very popular for deep learning. It removes the negative part

of the function (Figure 1-10).

F(x) = 0.01x for x <0

x for x >=0

It doesn’t make the negative input 0, however; it just reduces the

magnitude of it.

�Softmax Function

The softmax function is used to import probabilities when we have more

than one output.

It is useful for finding the most probable occurrence of an output with

respect to other outputs.

Figure 1-10.  Leaky ReLU curve

Chapter 1 Neural Network Basics

13

This is used for imparting probabilities.

s z
e

e
j K

j

z

z

k

K

j

k

() = = ¼
=å 1

1for ., ,

�Biases and Weights
These are important factors when we are dealing with neural networks.

When we create a neural network, we need some additional factors to

stabilize the nework. Hence, bias and weights come into the picture. The

essential understanding of bias is that when we are applying an activation

function to an input, bias allows us to shift the values either left or right.

Let’s create a simple neural network (Figure 1-11).

Figure 1-11.  A simple neural network

Chapter 1 Neural Network Basics

14

Now we consider there is no bias in this network. The output of the

network is the basis of two things, per the summation rule (Figure 1-12),

that is, ∑ Wi * Xi

where Wi is the weight and Xi is the input. We have single weight and

single input, so, the resultant is the multiplication.

Figure 1-12.  Summation rule

Chapter 1 Neural Network Basics

15

For a single unit network, the output as we know is found by

multiplying with input X0 and then passing it over to the activation

function. If we apply different weight values, the curve changes

accordingly (Figure 1-13).

Figure 1-13.  Role of weights

Chapter 1 Neural Network Basics

16

Using weights, we only change the steepness of the curve but cannot

shift the values either right or left.

For shifting the values either left or right we need bias (Figure 1-14).

Figure 1-14.  Applying bias

Chapter 1 Neural Network Basics

17

Bias is useful if we want a network to output the value of 0 when x has a

value of, say, 1 (Figure 1-15).

�Neural Network from Scratch
Neural networks have become popular with the advent of faster computers

and tons of data.

Building a model is the basis for doing lots of analysis. When we build a

model, we create a concrete structure for applying machine learning to it.

Figure 1-15.  Role of bias

Chapter 1 Neural Network Basics

18

When the model is being created, we train it using the input and

output data to make it better at implying pattern recognition for best

results.

We will build a model with a three-layer neural network—the

programmable approach as taken by the Python language (Figure 1-16).

Figure 1-16.  The neural network we will be creating now

Chapter 1 Neural Network Basics

19

Before getting into the programming mold, we will go through the

steps we are to perform.

	 1.	 Train a neural network on input and output data.

	 2.	 Use Python as the basis of programming.

	 3.	 Import libraries, one of them being NumPy.

	 4.	 Create a neural network model now.

	 5.	 Create and utilize an activation function.

	 6.	 Initialize input data.

	 7.	 Create an output dataset.

	 8.	 Generate a random number.

	 9.	 Create synapse matrices.

	 10.	 Create the training code (training step).

	 11.	 In the next step, update weight.

Let’s start now.

We will be using NumPy. NumPy is a library specially meant

for scientific computing using Python. When we are considering

NumPy, it generally consists of a powerful n-dimensional array that is

multidimensional and contains items of the same type and size.

We have advanced functions to utilize. Within NumPy, we have

support for applying linear algebra, Fourier transform, and useful random

number capabilities.

First we will import NumPy.

import NumPy as np

Next we will be creating a function that maps to a value between 0 and 1.

The function that we would be using is called the sigmoid function.

The function that we create will be run on every neuron in our network

when it attracts a dataset.

Chapter 1 Neural Network Basics

20

It’s useful for creating probabilities.

def nonlin(x,deriv=False):

 if(deriv==True):

 return x*(1-x)

 return 1/(1+np.exp(-x))

Once we have created that, we will initialize the input dataset as a

matrix. Each row is a different training example. Each column represents a

different neuron.

Now we have four training examples and three input neurons each.

X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])

Then we will create our output dataset.

Y = np.array([[0],[1],[1],[0]])

This contains four examples and one output neuron each. As we will

be generating a random number, we seed them to make it deterministic.

np.random.seed(1)

Random numbers are generated with the same seed so that we get

the same set of generated numbers (starting point) every time we run our

program. This is useful for debugging.

Next, we will work with Synapses.

Synapses are linked from one neuron to another. It is a connection

between each neuron in one layer to every neuron in a subsequent layer.

Since we have three layers in the neuron we need two synapse

matrices.

Each synapse has a random weight associated with it.

syn0 = 2*np.random.random((3,4)) - 1

syn1 = 2*np.random.random((4,1)) – 1

Chapter 1 Neural Network Basics

21

Now, we will run the training module. We will create a for loop that

iterates the network for a given dataset.

We will start off by creating the first layer matrix multiplication

between each layer and its synapse, then we will run sigmoid on all the

values in the matrix to create the next layer.

l0 = X

 l1 = nonlin(np.dot(l0,syn0))

 l2 = nonlin(np.dot(l1, syn1))

Let us compare the expected value using subtraction to get the

error rate.

l2_error = Y - l2

 �if(iter % 10000) == 0: # Only print the error every 10000

steps, to save time and limit the amount of output.

 print("Error: " + str(np.mean(np.abs(l2_error))))

Let us recapitulate what we have done.

L is the input data.

Now comes the predicting state. We perform matrix multiplication.

The next layer contains the output of the predicting data.

The subsequent layer is more of a refined prediction.

We will also print the error rate to check it goes down over a period

of time.

Taking it further, we apply the following changes to the neural network.

Now we multiply the error rate with the result of our sigmoid function.

The function will allow us to get the derivate of output prediction from

layer 2; this will give us delta, from which we find the error rate of our

prediction when we update our synapses on each iteration.

l2_delta = l2_error*nonlin(l2, deriv=True)

Chapter 1 Neural Network Basics

22

Then we will see how much layer 1 contributed to the error in layer 2;

this is called backpropagation. We will get this by multiplying the l2_delta

with Synapses 1’s transpose.

l1_error = l2_delta.dot(syn1.T)

Then we get l1 delta by multiplying its error with (l1_error) with the

result of the sigmoid function. The function is used to find the derivatives

of layer 1.

Now that we have deltas of all layers, we can use them to update the

synapse weights to reduce the error rate more and more on each iteration.

This is an algorithm called gradient descent. To do this, we will multiply

each layer by its delta.

The following is the full code.

import NumPy as np

sigmoid function

def nonlin(x,deriv=False):

 if(deriv==True):

 return x*(1-x)

 return 1/(1+np.exp(-x))

input dataset

X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])

output dataset

Y = np.array([[0],[1],[1],[0]])

seed random numbers to make calculation

deterministic (just a good practice)

np.random.seed(1)

initialize weights randomly with mean 0

syn0 = 2*np.random.random((3,4)) - 1

syn1 = 2*np.random.random((4,1)) - 1

Chapter 1 Neural Network Basics

23

for iter in range(60000):

 # forward propagation

 l0 = X

 l1 = nonlin(np.dot(l0,syn0))

 l2 = nonlin(np.dot(l1, syn1))

 # Backpropagation of errors using the chain rule.

 l2_error = Y - l2

 �if(iter % 10000) == 0: # Only print the error every 10000

steps, to save time and limit the amount of output.

 print("Error L2: " + str(np.mean(np.abs(l2_error))))

 # how much did we miss?

 # l1_error = l2_delta.dot(syn1.T)

 # multiply how much we missed by the

 # slope of the sigmoid at the values in l1

 l2_delta = l2_error*nonlin(l2, deriv=True)

 l1_error = l2_delta.dot(syn1.T)

 l1_delta = l1_error * nonlin(l1,deriv=True)

 �if(iter % 10000) == 0: # Only print the error every 10000

steps, to save time and limit the amount of output.

 print("Error L1: " + str(np.mean(np.abs(l1_error))))

 # update weights

 syn1 += l1.T.dot(l2_delta)

 syn0 += l0.T.dot(l1_delta)

Chapter 1 Neural Network Basics

24

print ("Output After Training for l1:")

print (l1)

print ("Output After training for l2")

print(l2)

The output looks like Figure 1-17.

Figure 1-17.  Output of the neural network

Chapter 1 Neural Network Basics

25

Figure 1-19.  Rectifying the error

We may get an error while running the code, such as TabError:

inconsistent use of tabs and spaces in indentation (Figure 1-18).

Figure 1-18.  Error for tabs and spaces

It can be rectified in the following way. In any IDE (integrated

development environment) that you are using, change the blank operation

from tab to space (Figure 1-19).

Chapter 1 Neural Network Basics

26

�Backpropagation
Backpropagation is a methodical approach especially famous in deep

learning, where we calculate the gradient in order to find errors and match

the weights found in the neural network.

Backpropagation leads to differantiation propagating back to the network

starting point. It uses the differentiation chain rule to propagate back.

�Summary
In this chapter, we have gone through the basics of a neural network and

how the neural network has evolved. We touched upon activation function

and its types.

In the next chapter, we will start using neural networks in Unity, as well

as implementing machine learning agents to it.

Chapter 1 Neural Network Basics

27© Abhishek Nandy, Manisha Biswas 2018
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_2

CHAPTER 2

Unity ML-Agents
In this chapter, we will study how Unity ML-Agents work. First, we will start

with a brief description of Unity IDE and then we will look at this feature

from Unity. We will check on some demos and then create one simulation

of our own. We will see how the agents are trained using Python.

�Unity IDE
Unity IDE is a game engine that supports developing games, with a physics

engine already available to build the games too. It supports multiple

formats including Windows, Linux, MacOS, and other devices too. The

Unity ML-Agents that they have declared is a very good extension, so

we can rapidly prototype lots of simulations based on Unity for research

purposes.

�Getting Started with Machine Learning Agents
There are so many changes happening with Unity. They came up with

an exciting feature (using the ML-Agents) that helps developers to train

the game they created using ML implementation, so that the entire

process can be replicated by the trained model and we can compare the

differences. This method uses the reinforcment learning approach.

28

Reinforcement learning is that part of machine learning where

the basis of learning is based upon environments and simulations,

where software agents (software program) take actions with effect from

environment so that we can provide a reward.

The steps we need to perform for the machine learning agents to work

perfectly are:

	 1.	 First we have to see that Unity IDE is installed.

Download and install the Unity game engine from

the following link.

https://store.unity.com/download?ref=personal

	 2.	 We have to clone the machine learning GitHub repo.

The following link will take us to the machine

learning background (Figure 2-1).

The Unity ML-Agents contain the latest version, so no need to search
for a specific version.

https://github.com/Unity-Technologies/ml-agents

Figure 2-1.  The Unity ML-Agents website link

Chapter 2 Unity ML-Agents

29

	 3.	 When we click Download ML-Agents, it will take us

to the GitHub repo.

It takes us to the following link, where we have the

important files for our machine learning agent

unity.

https://github.com/Unity-Technologies/ml-agents

	 4.	 The web page looks like Figure 2-2.

The essential files for the project are there in the

repo, so we can get started with it.

Figure 2-2.  GitHub repo to be cloned

Chapter 2 Unity ML-Agents

30

�Let’s Start with TensorFlow

Tensorflow is a framework that is primarily meant for dataflow-based

work. It uses Ttensors and their approach to nodes in a very effective way,

so that we can easily implement it in machine learning as well with deep

learning.

It has very good documentation from the Google side, so we can learn

it easily.

TensorFlow information and downloads are available in the
following link.

https://www.tensorflow.org/

�Understanding Anaconda

We need to discuss Anaconda too. Anaconda is a machine learning

library distribution for Python that contains lots of important libraries for

machine learning and deep learning.

Anaconda distribution is available from the following link.

https://www.anaconda.com/download/

First, we install Anaconda distribution for Python. After that we will see

that the Anaconda prompt is available. We need to open the prompt (it is

similar to a command prompt).

When we start, we need to create an environment. The command to

create a new environment is shown below.

conda create --name myenv

Chapter 2 Unity ML-Agents

31

myenv is the environment name, which you can update or change

according to your liking.

If we want to create an environment with a specific version of Python,

we need to use the following process.

conda create -n myenv python=3.4

To activete an environment we created, we need to use the following

command.

Activate <envname>

If we want to get out of the environment, we will use

Deactivate

If we want to add an environment with a GPU version of TensorFlow,

we will have to do the following. For a GPU version of TensorFlow we need

to have a graphics card installed to work properly.

The steps are:

	 1.	 Download and Install CUDA.

CUDA has different versions. We need CUDA Version 8.0. I have 8.0,
9.0, and 9.1 installed and set up identically to this guide for each
version. Stick with 8.0 for now to get that working. I set up the other
versions to prepare for the possiblity of TensorFlow GPU supporting
other CUDA versions.

	 2.	 Go to CUDA Toolkit downloads.

	 3.	 Scroll down to Legacy Releases or here.

Chapter 2 Unity ML-Agents

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-toolkit-archive

32

	 4.	 Click the version you want from CUDA Toolkit X.Y:

for 8.0, we’ll see CUDA Toolkit 8.0 GA, so replace

<Z> with the highest number available. I

downloaded CUDA Toolkit 8.0 GA2.

For 9.0, the file is CUDA Toolkit 9.0; for 9.1, the file is

CUDA Toolkit 9.1.

	 5.	 Select your operating system; mine is

OS: Windows

Architecture: x86_64

Version: 10

	 6.	 After CUDA downloads, run the file downloaded

and install with Express settings. This might take a

while and flicker the screen (due to it being for the

graphics card).

	 7.	 Verify you now have the following path on your

system.

C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v8.0

	 8.	 Download and install cuDNN.

For this, you’ll need an NVIDIA developer account.

It’s free.

	 9.	 Create a free NVIDIA Developer membership here.

	 10.	 After you sign up, go to https://developer.

nvidia.com/cudnn.

	 11.	 Click Download (ignore the current listed version

for now).

Chapter 2 Unity ML-Agents

https://developer.nvidia.com/developer-program/signup
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn

33

	 12.	 Agree to the terms.

	 13.	 Remember how previously we needed cuDNN v6.0?

You might see this listed here, or you might not. If

you don’t, just select Archived cuDNN Releases.

	 14.	 Click the version you need, as well as the system you

need. I clicked:

	 15.	 Download cuDNN v6.0 (April 27, 2017) for CUDA 8.0,

then cuDNN v6.0 Library for Windows 10.

	 16.	 Go to your recent downloaded zip file, something like

C:\Users\teamcfe\Downloads\cudnn-8.0-

windows10-x64-v6.0.zip

	 17.	 Unzip the file.

	 18.	 Open Cuda; you should see:

bin/

include/

lib/

	 19.	 Copy and paste the three folders in C:\Users\j\

Downloads\cudnn-8.0-windows10-x64-v6.0.zip\

cuda to C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v8.0

Do note that dragging and dropping will merge the folders and not
replace them; I don’t believe the same is true for Mac/Linux. If it asks
you to replace anything, say no and just drag and drop each folder’s
contents from cuDNN to Cuda. It might ask about admin privileges,
for which you should just say yes.

Chapter 2 Unity ML-Agents

34

	 20.	 Verify if you did the last step correctly; you should be

able to find this path.

C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v8.0\lib\x64\cudnn.lib

	 21.	 Update the %PATH% on the system.

Update your system environment variables’ PATH to

have

C:\Program Files\NVIDIA GPU Computing Toolkit\

CUDA\v8.0\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\

CUDA\v8.0\libnvvp

To get here, do a start menu/cortana search to Edit

the system environment variables.

It should open System Properties and the Advanced tab.

Click Environment Variables.

Under System Variables, look for PATH, and click

Edit. Add the two lines from step 21.

Now we will download the ml agents file. If you are not conversant with

git, you can directly download the file as a zip file and then extract it.

�What Is the NVDIA CUDA Toolkit?

The NVIDIA CUDA Toolkit is used for creating high-performance GPU-

accelerated applications. The Toolkit includes GPU-accelerated libraries,

debugging and optimization tools, and a C/C++ complier and a runtime

library to deploy our application. It’s an industry benchmark for deep

learning for the entire training process to work seamlessly. We use the

underlying principles of CUDA for better performance of TensorFlow GPU.

Chapter 2 Unity ML-Agents

35

�GPU-Accelerated TensorFlow

Training in deep learning takes lots of time. As we implement the GPU

version of TensorFlow, the speed of training increases by 50%.

Now, with the GPU version, you can train the models in hours instead

of days. Using the GPU version hence makes training the machine learning

process much faster and gets more accurate results. Let’s clone the repo

using the GPU version of TensorFlow.

We will be using Anaconda and first we will have to activate the

environment.

(C:\Users\abhis\Anaconda3) C:\Users\abhis>activate tensorflow-gpu

After activating it will enable the environment.

(tensorflow-gpu) C:\Users\abhis>

Now we will clone the repo (Figure 2-3). Let us assume we do it in

Desktop.

(tensorflow-gpu) C:\Users\abhis\Desktop>git clone

https://github.com/Unity-Technologies/ml-agents.git

If we are not familiar with git, we can directly download and save the

file as a zip file, unzip it in a folder, and start working with it.

Figure 2-3.  Cloning the GitHub repo

Chapter 2 Unity ML-Agents

36

	 1.	 Let’s open up Unity.

When you open Unity, it looks as shown in Figure 2-4.

	 2.	 Now we will have to open the cloned project. At the

top right-hand side we have an option called Open;

we need to click that.

We have to get inside the repo, then select

unity-environment as the folder (Figure 2-5).

Figure 2-4.  Opening the project file in Unity IDE

Chapter 2 Unity ML-Agents

37

After selecting unity-environment, the game engine

will open up.

	 3.	 We need to accept the details if we are using an

older version of Unity (Figure 2-6).

Figure 2-5.  Selecting the appropriate folder

Figure 2-6.  We accept to continue

Chapter 2 Unity ML-Agents

38

	 4.	 When everything is done, the Unity IDE will open up

(Figure 2-7).

Let us go through the file structure of the GitHub ML-Agents repo

(Figure 2-8).

Figure 2-7.  The Unity IDE

Figure 2-8.  The ml-agents folder

Chapter 2 Unity ML-Agents

39

The important files in the hierarchy are the Python folder and the unity-

environment.

Within the Unity environment we have the Assets folder, which contains

all the objects required to run the scene as well as the C# scripts for enabling

the movements of the object.

Within the Python folder we have the script for training the exe file

generated after compiling the project.

The unity environment contains the following important Unity Assets

file (Figure 2-9).

The Python folder is important, as we have to keep the build files in

this folder.

We need to save the file in the Python subfolder, because the necessary

file for traing the exe we generated is residing in this folder. The code for

training is also present there.

Figure 2-9.  The unity environments folder

Chapter 2 Unity ML-Agents

40

�Building a Project in Unity

Let’s now start with the project.

	 1.	 We open up Unity, if it was not already done

(Figure 2-10).

	 2.	 We have to open up the cloned project.

We refer to the same project over here from

the Unity ML-Agents file we downloaded from

the website. We need to open it up in Unity for

compiling and also changing the details of the

project.

Figure 2-10.  Unity engine opening up

Chapter 2 Unity ML-Agents

41

There are a lot of examples in the repo; we will start

with 3D Ball (Figure 2-11).

	 3.	 We will open the Scene file (Figure 2-12).

Figure 2-11.  The example we will be working on

Figure 2-12.  The scene file

Chapter 2 Unity ML-Agents

42

	 4.	 The changes that are to be made can be found in

the Hierarchy tab, the most important one being

Ball3DAcademy (Figure 2-13).

Figure 2-13.  The Ball3dBrain

Chapter 2 Unity ML-Agents

43

	 5.	 To try out how the simulation works with a player

setting, we have to go inside the inspector window.

We will have to change the brain type to player

(Figure 2-14).

Figure 2-14.  Changing the player type to external

Chapter 2 Unity ML-Agents

44

�Internal Operations for Machine Learning
First of all, within the inspector window we will change the brain type to

external.

We have to make some changes within the edit tab of the Unity IDE.

	 1.	 We will go inside edit ➤ project settings ➤ player as

shown in Figure 2-16).

	 6.	 If we run the application now, we will be able to see

how it works within player mode without the ML-

Agents being added (Figure 2-15).

As we stop the application now, we will move to how ML-Agents work.

Figure 2-15.  Running the simulation

Chapter 2 Unity ML-Agents

45

Figure 2-16.  Getting inside the player options

Chapter 2 Unity ML-Agents

46

	 2.	 Within the inspector window (Figure 2-17), we

will have to check that in the tab resolution and

presentation

•	 Run in background is checked.

•	 Display Resolution Dialog is disabled.

Figure 2-17.  Inspector window

Chapter 2 Unity ML-Agents

47

	 3.	 We will go inside the file and save the scene.

	 4.	 Again we will go back to the file tab and inside the

Build Settings (Figure 2-18).

Figure 2-18.  Building the exe file

Chapter 2 Unity ML-Agents

48

	 5.	 We will have to add the scene and select it and then

click Build (Figure 2-19).

We need to check the options for Development

Build, so we can track any error while running the

project exe. With development build enabled, we

can see the changes while the exe file is run too.

Figure 2-19.  Selecting the scene and building it

Chapter 2 Unity ML-Agents

49

	 6.	 When we click Build, it will ask us to save the file

(Figure 2-20). We name the file too.

	 7.	 We will save the file in Python sub directory of the

project.

�Training Anaconda in Python Mode

Now we will have to start Anaconda, as we will be training it in Python

mode.

We will activate the environment.

First of all we will have to open the command prompt; as the

command prompt comes up we need to activate the Anaconda

environment we created for tensorflow-gpu.

Figure 2-20.  Saving the exe file

Chapter 2 Unity ML-Agents

50

We have to write the following command.

Activate tensorflow-gpu

(C:\Users\abhis\Anaconda3) C:\Users\abhis>activate tensorflow-gpu

(tensorflow-gpu) C:\Users\abhis>

First of all, there is the Unity Ml-Agents file that we download or have

added as a git. We need to get inside the file, which contains the Python

subdirectory, as within that we have built the Unity game exe file.

Now we will go to the place where the file is cloned and the exe file is

generated.

(tensorflow-gpu) C:\Users\abhis\Desktop\UnityRl2\ml-agents-

master>dir

We will be getting inside the Python subfolder, from which we will

launch the Jupyter Notebook.

The volume in drive C has no label.

The volume serial number is 1E9F-654C.

Directory of C:\Users\abhis\Desktop\UnityRl2\ml-agents-master

01-11-2017 08:38 <DIR> .

01-11-2017 08:38 <DIR> ..

01-11-2017 08:38 1,108 .gitignore

01-11-2017 08:38 3,191 CODE_OF_CONDUCT.md

01-11-2017 08:38 <DIR> docs

01-11-2017 08:38 <DIR> images

01-11-2017 08:38 11,348 LICENSE

29-03-2018 00:16 <DIR> python

01-11-2017 08:38 1,490 README.md

28-03-2018 21:48 <DIR> unity-environment

 4 File(s) 17,137 bytes

 6 Dir(s) 29,652,058,112 bytes free

Chapter 2 Unity ML-Agents

51

We will get inside the Python folder.

We will have to start Jupyter Notebook.

�Working with Jupyter Notebook

What is Jupyter Notebook?

Jupyter Notebook is a client server-based application that allows us

write Python notebook online in a web browser mode.

To enable Jupyter Notebook, we have to put in this command.

(tensorflow-gpu) C:\Users\abhis\Desktop\UnityRl2\ml-agents-

master\python>jupyter notebook

Figure 2-21.  Analyzing the ml-agents-master file

Chapter 2 Unity ML-Agents

52

Figure 2-23.  The important IPython files

Figure 2-22.  Opening Jupyter Notebook

It opens up in a web browser and appropriate files are shown. It is

shown in Figure 2-22.

The two important files needed by us are shown in Figure 2-23.

We will open the Basics.ipynb first.

We will go through the basics of Jupyter notebook.

First we have to load the dependencies.

The necessary files are all structured in the Jupyter Notebook that

comes bundled up with the ML-Agents we downloaded.

Chapter 2 Unity ML-Agents

53

If some of the libraries such as NumPy and matplotlib are not installed,

we have to install them from Anaconda.

conda install -c anaconda numpy

For matplotlib we use the following command.

conda install -c conda-forge matplotlib

We will import the necessary files to train our ML-Agents.

import matplotlib.pyplot as plt

import numpy as np

from unityagents import UnityEnvironment

%matplotlib inline

After that we will have to name the exe file that we created in Unity, so

that we can train the model. We will run the environment in training mode.

env_name = "abhi4" # Name of the Unity environment binary to

launch

train_mode = True # Whether to run the environment in training

or inference mode

Now we will start the environment, so that communication between

the Und the environity anment created starts.

In the Unity script, we have a brain that controls the agents and is

responsible for what the agents will do.

env = UnityEnvironment(file_name=env_name)

Examine environment parameters

print(str(env))

Chapter 2 Unity ML-Agents

54

Set the default brain to work with

default_brain = env.brain_names[0]

brain = env.brains[default_brain]

In the next section we will observe the states they are in

currently.

Reset the environment

env_info = env.reset(train_mode=train_mode)[default_brain]

Examine the state space for the default brain

print("Agent state looks like: \n{}".format(env_info.

states[0]))

Examine the observation space for the default brain

for observation in env_info.observations:

 print("Agent observations look like:")

 if observation.shape[3] == 3:

 plt.imshow(observation[0,:,:,:])

 else:

 plt.imshow(observation[0,:,:,0])

In the next section we will choose actions based on the action_space_

type of our default brain.

for episode in range(10):

 env_info = env.reset(train_mode=train_mode)[default_brain]

 done = False

 episode_rewards = 0

 while not done:

 if brain.action_space_type == 'continuous':

 �env_info = env.step(np.random.randn(len

(env_info.agents),

 �brain.action_

space_size))

[default_brain]

Chapter 2 Unity ML-Agents

55

 else:

 �env_info = env.step(np.random.randint(0, brain.

action_space_size,

 �size=(len(env_

info.agents))))

[default_

brain]

 episode_rewards += env_info.rewards[0]

 done = env_info.local_done[0]

 �print("Total reward this episode: {}".format

(episode_rewards))

After that we close the environment.

env.close()

When we start the environment, it will launch the exe. We need to click

Allow (Figure 2-24).

Figure 2-24.  Allowing access to the Unity file

Chapter 2 Unity ML-Agents

56

The agents will start as shown in Figure 2-25.

After that we see the reward (Figure 2-26).

Then we close the environment.

Figure 2-25.  The variables and parameters

Figure 2-26.  Getting to know the reward

Chapter 2 Unity ML-Agents

57

Proximity Policy Optimization

The next job we do is using Jupyter Notebook to get the proximal policy

optimization. PPO is a proximity technique specially meant for applying

reinforcement learning methods. We will do the same.

First we import the important files. Here we need TensorFlow for

training the agents.

import numpy as np

import os

import tensorflow as tf

from ppo.history import *

from ppo.models import *

from ppo.trainer import Trainer

from unityagents import *

Then we declare the hyperparameters.

General parameters

max_steps = 50000 # Set maximum number of steps to run

environment.

run_path = "ppo" # The sub-directory name for model and summary

statistics

load_model = False # Whether to load a saved model.

train_model = True # Whether to train the model.

summary_freq = 10000 # Frequency at which to save training

statistics.

save_freq = 50000 # Frequency at which to save model.

env_name = "abhi4" # Name of the training environment file.

Algorithm-specific parameters for tuning

gamma = 0.99 # Reward discount rate.

lambd = 0.95 # Lambda parameter for GAE.

Chapter 2 Unity ML-Agents

58

time_horizon = 2048 # How many steps to collect per agent

before adding to buffer.

beta = 1e-3 # Strength of entropy regularization

num_epoch = 5 # Number of gradient descent steps per batch of

experiences.

epsilon = 0.2 # Acceptable threshold around ratio of old and

new policy probabilities.

buffer_size = 5000 # How large the experience buffer should be

before gradient descent.

learning_rate = 3e-4 # Model learning rate.

hidden_units = 64 # Number of units in hidden layer.

batch_size = 512 # How many experiences per gradient descent

update step.

After that we load the environments.

env = UnityEnvironment(file_name=env_name)

print(str(env))

brain_name = env.brain_names[0]

Then we train the environment using the TensorFlow framework and

create the model graph.

tf.reset_default_graph()

Create the Tensorflow model graph

ppo_model = create_agent_model(env, lr=learning_rate,

 �h_size=hidden_units,

epsilon=epsilon,

 beta=beta, max_step=max_steps)

is_continuous = (env.brains[brain_name].action_space_type ==

"continuous")

Chapter 2 Unity ML-Agents

59

use_observations = (env.brains[brain_name].number_observations > 0)

use_states = (env.brains[brain_name].state_space_size > 0)

model_path = './models/{}'.format(run_path)

summary_path = './summaries/{}'.format(run_path)

if not os.path.exists(model_path):

 os.makedirs(model_path)

if not os.path.exists(summary_path):

 os.makedirs(summary_path)

init = tf.global_variables_initializer()

saver = tf.train.Saver()

with tf.Session() as sess:

 # Instantiate model parameters

 if load_model:

 print('Loading Model...')

 ckpt = tf.train.get_checkpoint_state(model_path)

 saver.restore(sess, ckpt.model_checkpoint_path)

 else:

 sess.run(init)

 steps = sess.run(ppo_model.global_step)

 summary_writer = tf.summary.FileWriter(summary_path)

 info = env.reset(train_mode=train_model)[brain_name]

 �trainer = Trainer(ppo_model, sess, info, is_continuous,

use_observations, use_states)

 while steps <= max_steps:

 if env.global_done:

 info = env.reset(train_mode=train_model)[brain_name]

 # Decide and take an action

 new_info = trainer.take_action(info, env, brain_name)

 info = new_info

Chapter 2 Unity ML-Agents

60

 �trainer.process_experiences(info, time_horizon, gamma,

lambd)

 �if len(trainer.training_buffer['actions']) > buffer_

size and train_model:

 # Perform gradient descent with experience buffer

 trainer.update_model(batch_size, num_epoch)

 �if steps % summary_freq == 0 and steps != 0 and train_

model:

 # Write training statistics to tensorboard.

 trainer.write_summary(summary_writer, steps)

 if steps % save_freq == 0 and steps != 0 and train_model:

 # Save Tensorflow model

 �save_model(sess, model_path=model_path,

steps=steps, saver=saver)

 steps += 1

 sess.run(ppo_model.increment_step)

 # Final save Tensorflow model

 if steps != 0 and train_model:

 �save_model(sess, model_path=model_path, steps=steps,

saver=saver)

env.close()

export_graph(model_path, env_name)

Now we will export the TensorFlow graph, and the bytes file that is

being created is taken inside the Unity so that we can see the ML-Agents

performing.

export_graph(model_path, env_name)

Chapter 2 Unity ML-Agents

61

As it works toward creating the environment, the following things are

created first, as shown in Figure 2-27.

After that we start training the model (Figure 2-28).

Figure 2-27.  The features are created

Figure 2-28.  Training has started

Chapter 2 Unity ML-Agents

62

Then we export the TensorFlow graph (Figure 2-29).

Let us check if the byte file is created or not within the folder (Figure 2-30).

Figure 2-29.  The TensorFlow graph is exported

Figure 2-30.  The bytes file generated needs to be copied

Chapter 2 Unity ML-Agents

63

We will have to copy the abhi4.bytes file to the Unity file folder,

but before that we will have to download the TensorFlowSharp plugin

(Figure 2-31). It is available in the following link:

https://github.com/Unity-Technologies/ml-agents/blob/master/

docs/Using-TensorFlow-Sharp-in-Unity.md

TensorFlowSharp is useful for running pretrained TensorFlow graphs

in Unity games. We will first import the plugin inside Unity.

Within the edit project settings and then player, we will target the

inspector window and check the configuration option that Scripting

Runtime Version is Experimental (.NET 4.6 Equivalent).

Figure 2-31.  Opening the TensorFlowSharp plugin

Chapter 2 Unity ML-Agents

https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-TensorFlow-Sharp-in-Unity.md
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-TensorFlow-Sharp-in-Unity.md

64

And within Scripting Define Symbols, we have to enable TensorFlow

(Figure 2-32).

Figure 2-32.  Enabling the TensorFlow mode

Figure 2-33.  The bytes file is being copied to the tfmodels folder

Now we will copy the bytes we generated to the tfmodels folder

(Figure 2-33).

Chapter 2 Unity ML-Agents

65

Within the brain script, we will change the ball type from external to

internal.

As we change the ball type to internal, it asks for the missing text asset

(Figure 2-34). Here we have to drag and drop the bytes file.

Figure 2-34.  The missing text asset will have to be added

Chapter 2 Unity ML-Agents

66

After adding the bytes file, we will click Run (Figure 2-35).

Figure 2-35.  The text asset is added

Chapter 2 Unity ML-Agents

67

Figure 2-36.  The results after applying ML

You will see now see the MK-Agents trained version running (Figure 2-36).

�Summary
In this chapter we have touched on the Unity ML-Agents feature. It’s one

of the important features now enabled in Unity for research purposes. It

enables us to do a lot of simulation for different scenarios of our own.

In the chapter we touched on how we downloaded Unity ML-Agents

and set it up in Unity. Then we trained the model in Jupyter Notebook.

Finally, using PPO, we trained an example already present in the cloned

repo.

In the next chapter, we will explore more and also use Neural Networks

with Unity.

Chapter 2 Unity ML-Agents

69© Abhishek Nandy, Manisha Biswas 2018
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_3

CHAPTER 3

Machine Learning
Agents and Neural
Network in Unity
In this chapter we will cover the extended Machine Learning Agents v

0.3 in Unity with an example and then move along to creating a neural

network in Unity and adding different assets to it.

First we introduce Machine Learning agents in Unity. Then we will

move along with the crawler example in Unity, applying reinforcement

learning and comparing both the outputs before training as output from

the player and then internally with machine learning agents.

We move along to creating a feedforward neural network in Unity and

then getting to know it using Unity output.

Finally we will add the spider animation asset to it and extend the

example accordingly.

70

�Extending the Unity ML-Agents with Further
Examples
In the previous chapter we were focusing on v 0.2 of the ML-Agents, but

in this chapter we look at the advanced version 0.3 of the ML-Agents. Let’s

now download the 0.3 version (Figure 3-1).

The unity environment needs to be opened up so that we can take the

example project.

Figure 3-1.  Opening the project

Chapter 3 Machine Learning Agents and Neural Network in Unity

71

�Crawler Project
We will work on the crawler example (Figure 3-2).

When we open up the assets folder the Ml-agents we will have a

crawler subfolder there and need to open it up in the Unity Game Engine.

For simulation purposes, we consider the crawler as a creature with

four arms and four forearms.

Goal: The purpose of the simulation is to move the creature on the x

axis without falling to the ground.

Figure 3-2.  Crawler example

Chapter 3 Machine Learning Agents and Neural Network in Unity

72

Now we will save the scene and build the project (Figure 3-3).

Figure 3-3.  Building the project

Chapter 3 Machine Learning Agents and Neural Network in Unity

73

We will save the build now.

We need to save the build in a Python subfolder, because we have

important files and libraries for running the training for the machine

learning agents in this folder (Figure 3-4).

Now let us open Anaconda and enable Tensorflow.

Figure 3-4.  Saving the scene and creating the exe

Chapter 3 Machine Learning Agents and Neural Network in Unity

74

We open a command prompt; within there we will write the following

command.

(C:\Users\abhis\Anaconda3) C:\Users\abhis>activate tensorflow-

gpu

Activate tensorflow-gpu

Directory of C:\Users\abhis\Desktop\ml-agents

28-03-2018 01:32 <DIR> .

28-03-2018 01:32 <DIR> ..

28-03-2018 01:32 64 .gitattributes

28-03-2018 01:32 1,365 .gitignore

28-03-2018 01:32 3,264 CODE_OF_CONDUCT.md

28-03-2018 01:32 2,519 CONTRIBUTING.md

28-03-2018 01:32 312 Dockerfile

28-03-2018 01:32 <DIR> docs

28-03-2018 01:32 11,549 LICENSE

30-03-2018 02:07 <DIR> python

28-03-2018 01:32 4,352 README.md

30-03-2018 01:45 <DIR> unity-environment

28-03-2018 01:32 <DIR> unity-volume

 7 File(s) 23,425 bytes

 6 Dir(s) 30,530,846,720 bytes free

(tensorflow-gpu) C:\Users\abhis\Desktop\ml-agents>cd python

(tensorflow-gpu) C:\Users\abhis\Desktop\ml-agents\python>

Chapter 3 Machine Learning Agents and Neural Network in Unity

75

Let us create a specialized environment for it.

We will set up an environment with Python and Tensorflow (Figure 3-5).

After that it starts installing Tensorflow (Figure 3-6).

Figure 3-5.  Creating an environment in Anaconda

Figure 3-6.  Installing Tensorflow

Chapter 3 Machine Learning Agents and Neural Network in Unity

76

We use the following command to start training the exe we created.

python learn.py C:\Users\abhis\Desktop\ml-agents\python\abhi2.

exe --run-id=abhi2 –train

The logs are created as it is getting trained.

INFO:unityagents:{'--curriculum': 'None',
 '--docker-target-name': 'Empty',
 '--help': False,
 '--keep-checkpoints': '5',
 '--lesson': '0',
 '--load': False,
 '--run-id': 'abhi2',
 '--save-freq': '50000',
 '--seed': '-1',
 '--slow': False,
 '--train': True,
 '--worker-id': '0',
 '<env>': 'C:\\Users\\abhis\\Desktop\\ml-agents\\python\\abhi2.exe'}
INFO:unityagents:
'Academy' started successfully!
Unity Academy name: Academy
 Number of Brains: 1
 Number of External Brains : 1
 Lesson number : 0
 Reset Parameters :

Unity brain name: CrawlerBrain
 Number of Visual Observations (per agent): 0
 Vector Observation space type: continuous
 Vector Observation space size (per agent): 117
 Number of stacked Vector Observation: 1
 Vector Action space type: continuous

 Vector Action space size (per agent): 12

Chapter 3 Machine Learning Agents and Neural Network in Unity

77

 Vector Action descriptions: , , , , , , , , , , ,
2018-03-30 02:15:20.293743: W c:\l\work\tensorflow-1.1.0\
tensorflow\core\platform\cpu_feature_guard.cc:45] The
TensorFlow library wasn't compiled to use SSE instructions,
but these are available on your machine and could speed up CPU
computations.
2018-03-30 02:15:21.068815: I c:\l\work\tensorflow-1.1.0\
tensorflow\core\common_runtime\gpu\gpu_device.cc:887] Found
device 0 with properties:
name: GeForce GTX 960M
major: 5 minor: 0 memoryClockRate (GHz) 1.176
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.35GiB
2018-03-30 02:15:21.076770: I c:\l\work\tensorflow-1.1.0\
tensorflow\core\common_runtime\gpu\gpu_device.cc:908] DMA: 0
2018-03-30 02:15:21.083223: I c:\l\work\tensorflow-1.1.0\
tensorflow\core\common_runtime\gpu\gpu_device.cc:918] 0: Y
2018-03-30 02:15:21.102662: I c:\l\work\tensorflow-1.1.0\
tensorflow\core\common_runtime\gpu\gpu_device.cc:977] Creating
TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX
960M, pci bus id: 0000:01:00.0)
C:\Users\abhis\.conda\envs\tensorflow-gpu\lib\site-packages\
tensorflow\python\ops\gradients_impl.py:93: UserWarning:
Converting sparse IndexedSlices to a dense Tensor of unknown
shape. This may consume a large amount of memory.
 �"Converting sparse IndexedSlices to a dense Tensor of unknown
shape. "

INFO:unityagents:Hypermarameters for the PPO Trainer of brain
CrawlerBrain:
 batch_size: 2024

 beta: 0.005

 buffer_size: 20240

Chapter 3 Machine Learning Agents and Neural Network in Unity

78

 epsilon: 0.2

 gamma: 0.995

 hidden_units: 128

 lambd: 0.95

 learning_rate: 0.0003

 max_steps: 1e6

 normalize: True

 num_epoch: 3

 num_layers: 2

 time_horizon: 1000

 sequence_length: 64

 summary_freq: 3000

 use_recurrent: False

 graph_scope:

 summary_path: ./summaries/abhi2

 memory_size: 256

As we get the training details we also have rewards too (Figure 3-7).

Figure 3-7.  Training started on the crawler model

Chapter 3 Machine Learning Agents and Neural Network in Unity

79

We will have to wait for training to be completed.

As we see the saved model being shown, we know a file has been

generated (Figure 3-8).

Figure 3-8.  When the state is saved

Chapter 3 Machine Learning Agents and Neural Network in Unity

80

As the model is generated, we now have the bytes file generated

(Figure 3-9).

Figure 3-9.  Byte file is created

Chapter 3 Machine Learning Agents and Neural Network in Unity

81

Now we will copy the bytes file in the GitHub folder that we have

downloaded and opened in the Unity IDE, so it is the same project we are

working on. Within the assets folder there will be a TFModels folder. We

will copy it there (Figure 3-10).

Figure 3-10.  Copying the bytes file in TFModels

Chapter 3 Machine Learning Agents and Neural Network in Unity

82

As the bytes file is copied, now we need to change the Brain Type

in the inspector window, with the mode being Internal and the byte file

generated added as a text asset within Graph Model.

Now let us change certain factors as we have done in the previous

chapter. We need to check that in the inspector window within the

Configuration option, Scripting Runtime Version is Experimental .net 4.6,

and Scripting Define Symbols is set to ENABLE_TENSORFLOW (Figure 3-12).

Figure 3-12.  Updating details in configuration

Figure 3-11.  Changing the brain type to internal

Chapter 3 Machine Learning Agents and Neural Network in Unity

83

�Testing the Simulation
Let us test the simulation first in player mode, then machine learning

mode using internal mode.

When the brain type is player, we see that the output is not perfect

(Figure 3-13).

Figure 3-13.  Training output when the brain type is player

Chapter 3 Machine Learning Agents and Neural Network in Unity

84

When the brain type is internal, we can see an improvement (Figure 3-14).

Figure 3-14.  Training output when brain type is internal

Chapter 3 Machine Learning Agents and Neural Network in Unity

85

�Neural Network with Unity C#
The project that we are trying to create will use 2D capability, so we toggle

from 3D to 2D. We name the project NeuralNetwork (Figure 3-15).

Figure 3-15.  Creating a new project

Chapter 3 Machine Learning Agents and Neural Network in Unity

86

The project will open up (Figure 3-16).

Now we will create two folders, naming one “scene” and the other

“script” (Figure 3-17).

Figure 3-16.  The project window is opened up

Figure 3-17.  Creating folders

Chapter 3 Machine Learning Agents and Neural Network in Unity

87

Now we will save the scene in the scene folder. In the file tab we will

click save scene and name it as neural.

In the script folder (right click and create a new c# file), we will create a

c# file and name it neural network.

The c# file looks like this (Figure 3-18).

We will remove everything and the skeleton code will look like this.

public class neuralnetwork {

}

Now we will create a constructor and name it neural network.

First we need to have some layer array so that we can store the

information.

private int[] layers;

Figure 3-18.  The script file in C# generated

Chapter 3 Machine Learning Agents and Neural Network in Unity

88

�Creating DataStructures
In this section we will work on creating the essential data structures for

neurons and the weights associated with them.

Now we will have two data structures: weights and neurons.

We will initialize the layers.

public neuralnetwork(int[] layers)

 {

 this.layers = new int[layers.length];

 for(int i=0; i<layers.length; i++)

 {

 this.layers[i] = layers[i];

 }

 InitNeurons();

 InitWeights();

 }

We will also initialize two methods: InitNeurons and InitWeights.

 private void InitNeurons()

 {

 }

 private void InitWeights()

 {

 }

Now we will create a list and convert it into a jagged array.

We need the jagged array in the neural network because the neural

network structure has different flows in one node and in a different node.

Chapter 3 Machine Learning Agents and Neural Network in Unity

89

List<float> neuronsList = new List<float>();

 for (int i = 0; i < layers.length; i++)

 {

 neuronsList.Add(new float[layers[i]]);

 }

 neurons = neuronsList.ToArray();

The preceding code generates the neuron matrix for us.

Now we will create the code for weights.

List<float[][]> weightsList = new List<float>([][]);

Now we will have to iterate through every single neuron that has a

weight connection.

Each layer will need its weight matrix for its neuron, so for this we

create a list that contains actual weights of every single neuron.

List<float[][]> weightsList = new List<float>([][]);

 for (int i = 1; i < layers.Length; i++)

 {

 �List<float[]> layerWeightList = new

List<float[]>();

 }

Now we will have a variable as neuronsInPreviousLayer that gives us

how many neurons are there in the previous layer.

int neuronsInPreviousLayer = layers[i - 1];

Now we will iterate through all the neurons in the current layer.

Chapter 3 Machine Learning Agents and Neural Network in Unity

90

We iterate through all the neurons because if we miss one neuron

too, that would result in erroneous output for the entire neural network

structure.

for (int j = 0;j < neurons[i].Length; j++)

 {

 }

We will create a neuronWeights, which is the connections of all the

neurons that we are targeting, and we will also attach a random weight.

for (int j = 0;j < neurons[i].Length; j++)

 {

 �float[] neuronWeights = new

float[neuronsInPreviousLayer]

 �for (int k = 0; k <

neuronsInPreviousLayer; k++)

 {

 }

 �layerWeightList.

Add(neuronWeights);

 }

The updated code after adding random weight is shown as follows.

using System.Collections.Generic;

using System;

public class neuralnetwork

{

 private int[] layers;

 private float[][] neurons;

 private float[][][] weights;

Chapter 3 Machine Learning Agents and Neural Network in Unity

91

 private Random random;

 public neuralnetwork(int[] layers)

 {

 this.layers = new int[layers.Length];

 for(int i=0; i<layers.length; i++)

 {

 this.layers[i] = layers[i];

 }

 �random = new Random(System.DateTime.Today.

Millisecond);

 InitNeurons();

 InitWeights();

 }

 private void InitNeurons()

 {

 �List<float[]> neuronsList = new

List<float[]>();

 for (int i = 0; i < layers.length; i++)

 {

 neuronsList.Add(new float[layers[i]]);

 }

 neurons = neuronsList.ToArray();

 }

 private void InitWeights()

 {

 �List<float[][]> weightsList = new

List<float>([][]);

Chapter 3 Machine Learning Agents and Neural Network in Unity

92

 for (int i = 1; i < layers.Length; i++)

 {

 �List<float[]> layerWeightList = new

List<float[]>();

 �int neuronsInPreviousLayer =

layers[i - 1];

 �for (int j = 0;j < neurons[i].Length;

j++)

 {

 �float[] neuronWeights = new

float[neuronsInPreviousLayer]

 �for (int k = 0; k <

neuronsInPreviousLayer; k++)

 {

 �neuronWeights[k]

= (float)random.

NextDouble() - 0.5f;

 }

 �layerWeightList.

Add(neuronWeights);

 }

 }

 }

}

Chapter 3 Machine Learning Agents and Neural Network in Unity

93

Now we will convert layerweights to 2D jagged array and add it to our

weight list.

weightsList.Add(layerWeightList.ToArray());

We will again convert to 3D weight array.

weight = weightsList.ToArray();

FeedForward Network

In this section we will see how we apply a feedforward network.

Now we will write a feedforward method for the neural network. We

will iterate through the inputs, and add the contents of the input to the first

layer of the network.

for (int i = 0; i < inputs.Length; i++)

 {

 neurons[0][i] = inputs[i];

 }

Now we are iterating from every single layer, starting from the second

layer.

We will now iterate through every single neuron in this layer.

for (int i =1; i < layers.Length; i++)

 {

 �for (int j = 0; j < neurons[i].Length;

j++)

 {

 }

 }

Chapter 3 Machine Learning Agents and Neural Network in Unity

94

We give a value that is a constant bias of 0.25f; it is to be computed

from the neuron values, which we will iterate.

float value = 0.25f;

When we find the value of the weights, it is one item shorter, that is,

[i-1] at jth neuron [j] at [k]([i-1][j][k]), multiplying with the values in the

previous neuron.

value += weights[i-1][j][k] * neurons[i-1][k];

We have to pull the value back after applying activation to it.

neurons[i][j] = (float)Math.Tanh(value);

Now we return the activations.

return neurons[neurons.Length -1];

We will add a mutate method, which will iterate through all the values

on the weight matrix and mutate it based on chance.

float randomNumber = (float)random.NextDouble() * 1000f;

We will apply four different types of mutation to the weights, based on

chance.

if (randomNumber <= 2f)

 {

 weight *= -1f;

 }

 else if (randomNumber <= 4f)

 {

 �weight = UnityEngine.

Random.Range(-0.5f, 0.5f)

 }

 else if (randomNumber <= 6f)

Chapter 3 Machine Learning Agents and Neural Network in Unity

95

 {

 �float factor =

UnityEngine.Random.

Range(0f, 1f) + 1f;

 }

 else if (randomNumber <= 8f)

 {

 �float factor =

UnityEngine.Range

(0f, 1f);

 weight *= factor;

 }

The mutate method is shown as follows.

public void Mutate()

 {

 for (int i =0;i < weights.Length; i++)

 {

 for (int j =0; j < weights[i].Length; j++)

 {

 float weight = weights[i][j][k];

 �float randomNumber = (float)

random.NextDouble() * 1000f;

 if (randomNumber <= 2f)

 {

 weight *= -1f;

 }

 else if (randomNumber <= 4f)

 {

Chapter 3 Machine Learning Agents and Neural Network in Unity

96

 �weight = UnityEngine.

Random.Range(-0.5f,

0.5f)

 }

 else if (randomNumber <= 6f)

 {

 �float factor =

UnityEngine.Random.

Range(0f, 1f) + 1f;

 }

 else if (randomNumber <= 8f)

 {

 �float factor =

UnityEngine.Range(0f,

1f);

 weight *= factor;

 }

 weights[i][j][k] = weight;

 }

 }

 }

Now we will do a deep copy of the network.

public NeuralNetwork(NeuralNetwork copyNetwork)

 {

 �this.layers = new int[copyNetwork.

layers.Length];

 �for (int i = 0; i < copyNetwork.layers.

Length; i++)

 {

Chapter 3 Machine Learning Agents and Neural Network in Unity

97

 �this.layers[i] = copyNetwork.

layers[i];

 }

 InitNeurons();

 InitWeights();

 CopyWeights(copyNetwork.layers);

 }

We will add a method called copyweights.

private void CopyWeights(float[][][] CopyWeights)

 {

 for (int i = 0; i<weights.Length; i++)

 {

 �for (int j = 0; j<weights[i].

Length; j++)

 {

 �for (int k =0; k <

weights[i][j].Length;

k++)

 {

 �weights[i][j][k]

= CopyWeights[i]

[j][k];

 }

 }

 }

 }

Chapter 3 Machine Learning Agents and Neural Network in Unity

98

The following is the complete code.

using System.Collections.Generic;

using System;

/// <summary>

/// Neural Network C# (Unsupervised)

/// </summary>

public class NeuralNetwork : IComparable<NeuralNetwork>

{

 private int[] layers; //layers

 private float[][] neurons; //neuron matix

 private float[][][] weights; //weight matrix

 private float fitness; //fitness of the network

 /// <summary>

 /// Initilizes and neural network with random weights

 /// </summary>

 �/// <param name="layers">layers to the neural network</param>

 public NeuralNetwork(int[] layers)

 {

 //deep copy of layers of this network

 this.layers = new int[layers.Length];

 for (int i = 0; i < layers.Length; i++)

 {

 this.layers[i] = layers[i];

 }

 //generate matrix

 InitNeurons();

 InitWeights();

 }

Chapter 3 Machine Learning Agents and Neural Network in Unity

99

 /// <summary>

 /// Deep copy constructor

 /// </summary>

 /// <param name="copyNetwork">Network to deep copy</param>

 public NeuralNetwork(NeuralNetwork copyNetwork)

 {

 this.layers = new int[copyNetwork.layers.Length];

 for (int i = 0; i < copyNetwork.layers.Length; i++)

 {

 this.layers[i] = copyNetwork.layers[i];

 }

 InitNeurons();

 InitWeights();

 CopyWeights(copyNetwork.weights);

 }

 private void CopyWeights(float[][][] copyWeights)

 {

 for (int i = 0; i < weights.Length; i++)

 {

 for (int j = 0; j < weights[i].Length; j++)

 {

 for (int k = 0; k < weights[i][j].Length; k++)

 {

 weights[i][j][k] = copyWeights[i][j][k];

 }

 }

 }

 }

Chapter 3 Machine Learning Agents and Neural Network in Unity

100

 /// <summary>

 /// Create neuron matrix

 /// </summary>

 private void InitNeurons()

 {

 //Neuron Initilization

 List<float[]> neuronsList = new List<float[]>();

 �for (int i = 0; i < layers.Length; i++)

//run through all layers

 {

 �neuronsList.Add(new float[layers[i]]);

//add layer to neuron list

 }

 neurons = neuronsList.ToArray(); //convert list to array

 }

 /// <summary>

 /// Create weights matrix.

 /// </summary>

 private void InitWeights()

 {

 �List<float[][]> weightsList = new List<float[][]>();

//weights list which will later will converted into a

weights 3D array

Chapter 3 Machine Learning Agents and Neural Network in Unity

101

 �//itterate over all neurons that have a weight

connection

 for (int i = 1; i < layers.Length; i++)

 {

 �List<float[]> layerWeightsList = new List<float[]>();

 //layer weight list for this current layer

(will be converted to 2D array)

 int neuronsInPreviousLayer = layers[i - 1];

 //itterate over all neurons in this current layer

 for (int j = 0; j < neurons[i].Length; j++)

 {

 �float[] neuronWeights = new

float[neuronsInPreviousLayer]; //neruons

weights

 �//itterate over all neurons in the previous

layer and set the weights randomly between 0.5f

and -0.5

 for (int k = 0; k < neuronsInPreviousLayer; k++)

 {

 //give random weights to neuron weights

 �neuronWeights[k] = UnityEngine.Random.

Range(-0.5f,0.5f);

 }

 �layerWeightsList.Add(neuronWeights); //add

neuron weights of this current layer to layer

weights

 }

Chapter 3 Machine Learning Agents and Neural Network in Unity

102

 �weightsList.Add(layerWeightsList.ToArray());

//add this layers weights converted into 2D array

into weights list

 }

 weights = weightsList.ToArray(); //convert to 3D array

 }

 /// <summary>

 /// Feed forward this neural network with a given input array

 /// </summary>

 /// <param name="inputs">Inputs to network</param>

 /// <returns></returns>

 public float[] FeedForward(float[] inputs)

 {

 //Add inputs to the neuron matrix

 for (int i = 0; i < inputs.Length; i++)

 {

 neurons[0][i] = inputs[i];

 }

 //itterate over all neurons and compute feedforward values

 for (int i = 1; i < layers.Length; i++)

 {

 for (int j = 0; j < neurons[i].Length; j++)

 {

 float value = 0f;

 for (int k = 0; k < neurons[i-1].Length; k++)

 {

 �value += weights[i - 1][j][k] * neurons[i -

1][k]; //sum off all weights connections of

Chapter 3 Machine Learning Agents and Neural Network in Unity

103

this neuron weight their values in previous

layer

 }

 �neurons[i][j] = (float)Math.Tanh(value);

//Hyperbolic tangent activation

 }

 }

 return neurons[neurons.Length-1]; //return output layer

 }

 /// <summary>

 /// Mutate neural network weights

 /// </summary>

 public void Mutate()

 {

 for (int i = 0; i < weights.Length; i++)

 {

 for (int j = 0; j < weights[i].Length; j++)

 {

 for (int k = 0; k < weights[i][j].Length; k++)

 {

 float weight = weights[i][j][k];

 //mutate weight value

 �float randomNumber = UnityEngine.Random.

Range(0f,100f);

 if (randomNumber <= 2f)

 { //if 1

 //flip sign of weight

 weight *= -1f;

 }

Chapter 3 Machine Learning Agents and Neural Network in Unity

104

 else if (randomNumber <= 4f)

 { //if 2

 //pick random weight between -1 and 1

 �weight = UnityEngine.Random.Range

(-0.5f, 0.5f);

 }

 else if (randomNumber <= 6f)

 { //if 3

 //randomly increase by 0% to 100%

 �float factor = UnityEngine.Random.

Range(0f, 1f) + 1f;

 weight *= factor;

 }

 else if (randomNumber <= 8f)

 { //if 4

 //randomly decrease by 0% to 100%

 �float factor = UnityEngine.Random.

Range(0f, 1f);

 weight *= factor;

 }

 weights[i][j][k] = weight;

 }

 }

 }

 }

 public void AddFitness(float fit)

 {

 fitness += fit;

 }

 public void SetFitness(float fit)

Chapter 3 Machine Learning Agents and Neural Network in Unity

105

 {

 fitness = fit;

 }

 public float GetFitness()

 {

 return fitness;

 }

 /// <summary>

 /// Compare two neural networks and sort based on fitness

 /// </summary>

 /// <param name="other">Network to be compared to</param>

 /// <returns></returns>

 public int CompareTo(NeuralNetwork other)

 {

 if (other == null) return 1;

 if (fitness > other.fitness)

 return 1;

 else if (fitness < other.fitness)

 return -1;

 else

 return 0;

 }

}

Chapter 3 Machine Learning Agents and Neural Network in Unity

106

Let us run the application (Figure 3-19).

Figure 3-19.  Application running

Chapter 3 Machine Learning Agents and Neural Network in Unity

107

�Experimenting with the Spider Asset
Let us try the experiment with a different asset; we will use the spider asset.

	 1.	 Within the asset store we will find the spider

animation asset (Figure 3-20).

Figure 3-20.  Adding the spider asset

Chapter 3 Machine Learning Agents and Neural Network in Unity

108

	 2.	 We need to import the asset (Figure 3-21).

Figure 3-21.  Importing the spider asset

Chapter 3 Machine Learning Agents and Neural Network in Unity

109

	 3.	 We will drag and drop the spider asset to the scene

(Figure 3-22).

Figure 3-22.  Adding the spider prefab

Chapter 3 Machine Learning Agents and Neural Network in Unity

110

	 4.	 We rotate the spider using the rotate tool (Figure 3-23).

	 5.	 In the Manager in the inspector widow, we add the

hex prefab as spider_myOldOne.

	 6.	 Add the hexagonAnimator script to the spider_

myOldOne and then click play.

	 7.	 We add a mesh renderer to the spider (Figure 3-24).

Figure 3-23.  Rotating the spider asset to match

Chapter 3 Machine Learning Agents and Neural Network in Unity

111

�Summary
In this chapter, we have gone through the details of extending ML-Agents

in different environments using an example.

Then we moved along creating a neural network in Unity. Using that,

we did one neural network simulation followed by a change in behavior

with a different game object.

Figure 3-24.  The output

Chapter 3 Machine Learning Agents and Neural Network in Unity

113© Abhishek Nandy, Manisha Biswas 2018
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_4

CHAPTER 4

Backpropagation
in Unity C#
In this chapter we will discuss backpropagation with Unity C# and

implement accordingly.

As we have already given a brief introduction to backpropagation in

the first chapter, in this chapter we will take it further.

We will use an empty Unity project and then start writing a script for

backpropagation.

�Going Further into Backpropagation
Backpropagation is used to optimize the weights so that the neural

network can learn how to correctly map arbitrary inputs to outputs.

In this section we will demonstrate backpropogation with an example

(Figure 4-1).

114

The input from the input layer goes to the hidden layer and then to the

output layer, and from the output layer we get the actual output.

Now we will backpropagate the error from the output to the input layer

so that we will be updating the weights accordingly.

Let’s work on the equation formed by getting the hidden layer.

H1 = X1W1 + X2W2 + b

We will apply a sigmoid activation function to get the output from the

hidden layer and also from the output layer.

Sigmoid σ(x) = 1/1+ e-x

Output H1 = 1/ 1 + e-x

Figure 4-1.  The Neural network that will have backpropagation

Chapter 4 Backpropagation in Unity C#

115

Let us assign some values.

X1 =0.05 b1 = 0.35

X2 =0.1 b2= 0.60

Intial weights

W1 = 0.15 W5 = 0.40

W2 =0.20 W6=0.45

W3 = 0.25 W7= 0.50

W4 =0.30 W8 =0.35

Target Values(Output)

T1 T2

0.99

Now we will calculate the forward pass.

H1 = X1W1 + X2W2 + b1

=0.05*0.15 + 0.10*0.20 + 0.35

=0.3775

Out H1 = 1/1+ e-H1 = 1/ 1+e-0.3775 = 0.593269992

In the same way, we derive the Out H2 = 0.596884378

Now we will Calculate Y1.

Y1 = outH1 * W5 +outH2*W6 + b2

=0.4*0.593269992 + 0.596884378*0.45 + 0.6

= 1.105905967

outY1 = 1/1+e-y1 = 1/1+e-1.105905967

= 0.75136507

In the same way, we find Y2.

OutY2 = 0.772928465

The formula for finding the error follows.

Etotal = ∑ ½ (target –output)2

=1/2(T1 –OutY1)2 + ½(T2-outY2)2

= ½(0.01-0.75136507)2 + ½(0.99 -0.772)2

=0.274811083 + 0.023560026

=0.298371109

E1 = ½(T1- outY1)2

E2=1/2(T2 –outY2)2

Chapter 4 Backpropagation in Unity C#

116

For calculating error we do a backward pass, which is a chained

derivate or is a partial differentiation.

This is required to update the weights accordingly.

Consider updating the weight W5.

Error at W5 = ∂Etotal/∂W5

This is partial differentiation.

In the error there is no value for W5. We will use the chain rule for

further splitting and getting the desired value.

∂Etotal/∂W5 = ∂outY1/∂outY1 * ∂outY1/∂Y1 * ∂Y1/∂W5

Etotal = ½(T1-outY1)2 + ½(T2-OutY2)2

∂Etotal/∂OUTY1 = 2*1/2(T1-OutY1)2-1 * -1

= -(T1-OutY1)

= -(0.01 -0.75136507)

∂Etotal/∂OUtY1 = 0.74136507

OutY1 = 1/1+ e-Y1

∂outY1/∂Y1 =outy1(1-OutY1)

= 0.186815602

∂Y1/∂W1 = 1* OUTH1 * W5(1-1)

=OutH1

=0.08216704 --→ Change in W5

Now we will be updating W5. We will be using something called

learning rate, which is how a neural network leaves the old values and

adapts to the change, so we get the updated values for the weights we are

looking for at each weight level.

The learning rate always stays between 0 and 1.

Learning rate assigned η
is 0.5 in this example.

W5 = W5 -η* ∂Etotal/∂W5

=0.4 -0.5 * 0.082167041

W5 = 0.35891648

In the same way, we calculate W6,W7, and W8.

Now at the hidden layer we will update values for W1, W2, W3, and W4.

Chapter 4 Backpropagation in Unity C#

117

∂Etotal/∂W1 = ∂Etotal/∂OutH1 * ∂outH1/∂H1 * ∂H1/∂W1

In the same way, we will calculate the total and get the weighted

values, and again update and get the outputs Y1 and Y2. We will iterate

backward in the neural until and unless we reduce the error.

•	 We will discuss important data structures and

implement them.

•	 We will create the complete backpropgation

application and test it with an XOR gate.

Let’s begin step by step.

�Backpropogation in Unity C#
We will apply backpropogation in Unity C#. For that we need to open a

new project in Unity (Figure 4-2).

We name the project “backp.”

Figure 4-2.  Opening a new project in Unity

Chapter 4 Backpropagation in Unity C#

118

�Constructing Data Structures
Before getting in deep, we will be constructing data structures that we will

be implementing for backpropogation. First we will have a simple one-

dimensional matrix, which will have the output values of any given layer of

a neural network.

Float[] output = new float[number of neurons in layer].

Now we will have to have a weight matrix.

Float[,] weights = new float[number of neurons in layer, number

of neurons in previous layer]

We also need delta values of the weights.

Float[,] weightsDelta = new float[number of neurons in layer,

number of neurons in previous layer]

We will gamma the matrix.

Float[] gamma =new float[number of neurons in layer]

Float[] error =new float[number of neurons in layer]

These data structures fulfill the criteria for implementing

backpropagation in C#.

Chapter 4 Backpropagation in Unity C#

119

Now we will create a folder within Unity that will contain our C# Script

(Figure 4-3).

Figure 4-3.  Creating a new C# script

We will name the folder “script” (Figure 4-4).

Figure 4-4.  Creating a script folder

Chapter 4 Backpropagation in Unity C#

120

Now we will create a new C# script and name it NeuralNetwork

(Figure 4-5).

Figure 4-5.  Creating the neural network script

Chapter 4 Backpropagation in Unity C#

121

We will open it up in some editor, in our case Sublime Text (Figure 4-6).

We will create a constructor for the neural network.

public NeuralNetwork {

 }

 public class Layer {

 }

Figure 4-6.  Opening the file in Sublime Text

Chapter 4 Backpropagation in Unity C#

122

The neural network will take layer information. We will deep copy the

layer.

public class NeuralNetwork {

 int[] layer;

 public NeuralNetwork(int[] layer)

 {

 this.layer = new int[layer.Length];

 for(int i = 0; i < layer.Length; i++)

 this.layer[i] = layer[i];

 }

We will create layer objects.

layers = new Layer[layer.length-1]

We will work on the layer class now. We will declare the number of

neurons in the previous layer as well as the number of neurons in the

current layer.

public class Layer {

 int numberOFInputs;

 int numberOfOutputs;

 �public Layer(int numberOFInputs,

int numberOfOutputs)

 {

 this.numberOFInputs = numberOFInputs;

 this.numberOfOutputs = numberOfOutputs;

 }

 }

Chapter 4 Backpropagation in Unity C#

123

Now we will declare the data structure in the same manner.

float[] outputs;
 float[] inputs;
 float[,] weights;
 float[,] weightsDelta;
 float[] gamma;
 float[] error;

We will declare the size of the outputs and inputs.

outputs = new float[numberOfOutputs];
inputs = new float[numberOFInputs];

weights = new float[numberOfOutputs, numberOFInputs];
 �weightsDelta = new float[numberOfOutputs,

numberOFInputs];
 gamma = new float[numberOfOutputs];
 error = new float[numberOfOutputs];

�Feed Forwarding and Initializing Weights
Now we will do feed forward. It will receive an input and feed forward the

input. We need to have the last layers of the output values. We have to pass

the input in the first layer of the layers.

public float[] FeedForward(float[] inputs)
 {
 layers[0].FeedForward(inputs);
 for (int i =1; i < layers.Length; i++)
 {
 �layers[i].FeedForward

(layers[i-1].outputs);
 }
 �return layers[layers.Length -

1].outputs;
 }

Chapter 4 Backpropagation in Unity C#

124

We need to initialize a random number so that we can initialize the

weights.

public static Random random = new Random();

Now we will write a function to initialize the weight.

public void InitilizeWeights()

 {

 for (int i = 0; i < numberOfOutputs; i++)

 {

 �for (int j =0; j <

numberOFInputs; j++)

 {

 �weights[i, j] = (float)

random.NextDouble() -

0.5f;

 }

 }

 }

Now we will write a function that will update the weights for us.

public void UpdateWeights()

 {

 for (int i = 0; i < numberOfOuputs; i++)

 {

 for (int j = 0; j < numberOfInputs; j++)

 {

 weights[i, j] -= weightsDelta[i, j]*0.033f;

 }

 }

 }

Chapter 4 Backpropagation in Unity C#

125

We subtract from weightsDelta, multiplied by some learning rate.

 weights[i, j] -= weightsDelta[i, j]*0.033f;

We need to add two functions: one is the backpropagation output layer

and one is the hidden layer. We need to calculate the derivatives of the

error. We will have to write a function that will calculate the derivative of

the tanh function.

After updating, the entire code looks like this.

using System;

/// <summary>

/// Simple MLP Neural Network

/// </summary>

public class NeuralNetwork

{

 int[] layer; //layer information

 Layer[] layers; //layers in the network

 /// <summary>

 /// Constructor setting up layers

 /// </summary>

 /// <param name="layer">Layers of this network</param>

 public NeuralNetwork(int[] layer)

 {

 //deep copy layers

 this.layer = new int[layer.Length];

 for (int i = 0; i < layer.Length; i++)

 this.layer[i] = layer[i];

Chapter 4 Backpropagation in Unity C#

126

 //creates neural layers

 layers = new Layer[layer.Length-1];

 for (int i = 0; i < layers.Length; i++)

 {

 layers[i] = new Layer(layer[i], layer[i+1]);

 }

 }

 /// <summary>

 /// High level feedforward for this network

 /// </summary>

 /// <param name="inputs">Inputs to be feed forwared</param>

 /// <returns></returns>

 public float[] FeedForward(float[] inputs)

 {

 //feed forward

 layers[0].FeedForward(inputs);

 for (int i = 1; i < layers.Length; i++)

 {

 layers[i].FeedForward(layers[i-1].outputs);

 }

 �return layers[layers.Length - 1].outputs;

//return output of last layer

 }

 /// <summary>

 /// High level back porpagation

 �/// Note: It is expexted the one feed forward was done

before this back prop.

 /// </summary>

Chapter 4 Backpropagation in Unity C#

127

 �/// <param name="expected">The expected output form the

last feedforward</param>

 public void BackProp(float[] expected)

 {

 // run over all layers backwards

 for (int i = layers.Length-1; i >=0; i--)

 {

 if(i == layers.Length - 1)

 {

 �layers[i].BackPropOutput(expected);

//back prop output

 }

 else

 {

 �layers[i].BackPropHidden(layers[i+1].gamma,

layers[i+1].weights); //back prop hidden

 }

 }

 //Update weights

 for (int i = 0; i < layers.Length; i++)

 {

 layers[i].UpdateWeights();

 }

 }

 /// <summary>

 /// Each individual layer in the ML{

 /// </summary>

 public class Layer

 {

 int numberOfInputs; //# of neurons in the previous layer

 int numberOfOuputs; //# of neurons in the current layer

Chapter 4 Backpropagation in Unity C#

128

 public float[] outputs; //outputs of this layer

 public float[] inputs; //inputs in into this layer

 public float[,] weights; //weights of this layer

 public float[,] weightsDelta; //deltas of this layer

 public float[] gamma; //gamma of this layer

 public float[] error; //error of the output layer

 �public static Random random = new Random(); //Static

random class variable

 /// <summary>

 /// Constructor initilizes vaiour data structures

 /// </summary>

 �/// <param name="numberOfInputs">Number of neurons in

the previous layer</param>

 �/// <param name="numberOfOuputs">Number of neurons in

the current layer</param>

 public Layer(int numberOfInputs, int numberOfOuputs)

 {

 this.numberOfInputs = numberOfInputs;

 this.numberOfOuputs = numberOfOuputs;

 //initilize datastructures

 outputs = new float[numberOfOuputs];

 inputs = new float[numberOfInputs];

 �weights = new float[numberOfOuputs, numberOfInputs];

 �weightsDelta = new float[numberOfOuputs,

numberOfInputs];

 gamma = new float[numberOfOuputs];

 error = new float[numberOfOuputs];

Chapter 4 Backpropagation in Unity C#

129

 InitilizeWeights(); //initilize weights

 }

 /// <summary>

 /// Initilize weights between -0.5 and 0.5

 /// </summary>

 public void InitilizeWeights()

 {

 for (int i = 0; i < numberOfOuputs; i++)

 {

 for (int j = 0; j < numberOfInputs; j++)

 {

 �weights[i, j] = (float)random.

NextDouble() - 0.5f;

 }

 }

 }

 /// <summary>

 /// Feedforward this layer with a given input

 /// </summary>

 �/// <param name="inputs">The output values of the

previous layer</param>

 /// <returns></returns>

 public float[] FeedForward(float[] inputs)

 {

 �this.inputs = inputs;// keep shallow copy which can

be used for backpropagation

 //feed forwards

 for (int i = 0; i < numberOfOuputs; i++)

 {

 outputs[i] = 0;

Chapter 4 Backpropagation in Unity C#

130

 for (int j = 0; j < numberOfInputs; j++)

 {

 outputs[i] += inputs[j] * weights[i, j];

 }

 outputs[i] = (float)Math.Tanh(outputs[i]);

 }

 return outputs;

 }

 /// <summary>

 /// TanH derivate

 /// </summary>

 �/// <param name="value">An already computed TanH

value</param>

 /// <returns></returns>

 public float TanHDer(float value)

 {

 return 1 - (value * value);

 }

 /// <summary>

 /// Backpropagation for the output layer

 /// </summary>

 /// <param name="expected">The expected output</param>

 public void BackPropOutput(float[] expected)

 {

 //Error dervative of the cost function

 for (int i = 0; i < numberOfOuputs; i++)

 error[i] = outputs[i] - expected[i];

 //Gamma calculation

 for (int i = 0; i < numberOfOuputs; i++)

 gamma[i] = error[i] * TanHDer(outputs[i]);

Chapter 4 Backpropagation in Unity C#

131

 //Caluclating detla weights

 for (int i = 0; i < numberOfOuputs; i++)

 {

 for (int j = 0; j < numberOfInputs; j++)

 {

 weightsDelta[i, j] = gamma[i] * inputs[j];

 }

 }

 }

 /// <summary>

 /// Backpropagation for the hidden layers

 /// </summary>

 �/// <param name="gammaForward">the gamma value of the

forward layer</param>

 �/// <param name="weightsFoward">the weights of the

forward layer</param>

 �public void BackPropHidden(float[] gammaForward,

float[,] weightsFoward)

 {

 �//Caluclate new gamma using gamma sums of the

forward layer

 for (int i = 0; i < numberOfOuputs; i++)

 {

 gamma[i] = 0;

 for (int j = 0; j < gammaForward.Length; j++)

 {

 �gamma[i] += gammaForward[j] *

weightsFoward[j, i];

 }

Chapter 4 Backpropagation in Unity C#

132

 gamma[i] *= TanHDer(outputs[i]);

 }

 //Caluclating detla weights

 for (int i = 0; i < numberOfOuputs; i++)

 {

 for (int j = 0; j < numberOfInputs; j++)

 {

 weightsDelta[i, j] = gamma[i] * inputs[j];

 }

 }

 }

 /// <summary>

 /// Updating weights

 /// </summary>

 public void UpdateWeights()

 {

 for (int i = 0; i < numberOfOuputs; i++)

 {

 for (int j = 0; j < numberOfInputs; j++)

 {

 weights[i, j] -= weightsDelta[i, j]*0.033f;

 }

 }

 }

 }

}

Chapter 4 Backpropagation in Unity C#

133

�Testing of Backpropagation Neural Network
For testing the backpropagation neural network, we need to create a tester

that will be an XOR gate trained over 5,000 times (Figure 4-7).

We name it “tester.” The XOR will have three values. We have input,

hidden layers, and output. It will iterate through more than 5,000 times.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Tester : MonoBehaviour {

 void Start () {

 // 0 0 0 => 0

Figure 4-7.  Creating the tester script

Chapter 4 Backpropagation in Unity C#

134

 // 0 0 1 => 1

 // 0 1 0 => 1

 // 0 1 1 => 0

 // 1 0 0 => 1

 // 1 0 1 => 0

 // 1 1 0 => 0

 // 1 1 1 => 1

 �NeuralNetwork net = new NeuralNetwork(new int[]

{ 3, 25, 25, 1 }); //intiilize network

 //Itterate 5000 times and train each possible output

 //5000*8 = 40000 traning operations

 for (int i = 0; i < 5000; i++)

 {

 net.FeedForward(new float[] { 0, 0, 0 });

 net.BackProp(new float[] { 0 });

 net.FeedForward(new float[] { 0, 0, 1 });

 net.BackProp(new float[] { 1 });

 net.FeedForward(new float[] { 0, 1, 0 });

 net.BackProp(new float[] { 1 });

 net.FeedForward(new float[] { 0, 1, 1 });

 net.BackProp(new float[] { 0 });

 net.FeedForward(new float[] { 1, 0, 0 });

 net.BackProp(new float[] { 1 });

 net.FeedForward(new float[] { 1, 0, 1 });

 net.BackProp(new float[] { 0 });

 net.FeedForward(new float[] { 1, 1, 0 });

 net.BackProp(new float[] { 0 });

Chapter 4 Backpropagation in Unity C#

135

 net.FeedForward(new float[] { 1, 1, 1 });

 net.BackProp(new float[] { 1 });

 }

 //output to see if the network has learnt

 //WHICH IT HAS!!!!!

 �UnityEngine.Debug.Log(net.FeedForward(new float[]

{ 0, 0, 0 })[0]);

 �UnityEngine.Debug.Log(net.FeedForward(new float[]

{ 0, 0, 1 })[0]);

 �UnityEngine.Debug.Log(net.FeedForward(new float[]

{ 0, 1, 0 })[0]);

 �UnityEngine.Debug.Log(net.FeedForward(new float[]

{ 0, 1, 1 })[0]);

 �UnityEngine.Debug.Log(net.FeedForward(new float[]

{ 1, 0, 0 })[0]);

 �UnityEngine.Debug.Log(net.FeedForward(new float[]

{ 1, 0, 1 })[0]);

 �UnityEngine.Debug.Log(net.FeedForward(new float[]

{ 1, 1, 0 })[0]);

 �UnityEngine.Debug.Log(net.FeedForward(new float[]

{ 1, 1, 1 })[0]);

 }

 // Update is called once per frame

 void Update () {

 }

}

We will add this to the main camera and see the output.

Chapter 4 Backpropagation in Unity C#

136

�Summary
We have covered backpropagation with Unity C#. We have covered the

concepts where we introduced the important data structures for the

creation of neural network backpropagation.

In Chapter 5 we will be studying a concept of visualizing a dataset in

Unity.

We will take example datasets and try to visualize the dataset within a

3D projection in Unity.

Chapter 4 Backpropagation in Unity C#

137© Abhishek Nandy, Manisha Biswas 2018
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4_5

CHAPTER 5

Data Visualization
in Unity
In this final chapter, we will touch base on how data visualization is

implemented in Unity. We conclude the book by visualizing CSV (comma-

separated values) data for a good look and feel.

In this chapter, we will start with data visualization and how it is

implemented in Unity. As Unity is powered with good GUI options, we can

process very rich data for visualization. We start with downloading one

open source project from GitHub and modify accordingly. We open the

project in Unity and start exploring the options in there. Finally, we create

visualizations from CSV files.

�Machine Learning Data Visualization
in Unity
In this section, we will study how to do data visualization in Unity. Data

visualization for ML datasets is very interesting; we will stress that.

138

We will get started with an open source GitHub project (Figure 5-1)

and modify it accordingly.

Let’s start.

https://github.com/PrinzEugn/Scatterplot_Standalone

Now we will have to download it (Figure 5-2).

Figure 5-1.  The open source project

Figure 5-2.  Downloading the file

Chapter 5 Data Visualization in Unity

https://github.com/PrinzEugn/Scatterplot_Standalone

139

�Data Parsing
We will be looking at data parsing in this section. Here we will see how we

consume the data from CSV files and use Unity's graphical capability to

visualize the dataset.

Before going further, we will touch base on what data we will be

parsing. We will be parsing CSV files.

Now, the most important part is the parsing process. We are using a

free script that goes through the regular expressions, reads the CSV file,

and finally converts it as a dictionary <list> for further usage. The code

follows.

In the first section we import the libaries that are required for the

project.

using UnityEngine;

using System;

using System.Collections;

using System.Collections.Generic;

using System.Text.RegularExpressions;

// Taken from here: https://bravenewmethod.com/2014/09/13/

lightweight-csv-

In this section we are declaring a class that intializes the CSV Reader

and, using regex expressing, we are going through the dataset and doing

the parsing accordingly.

reader-for-unity/

// Comments

// Code parses a CSV, converting values into ints or floats if

able, and returning a List<Dictionary<string, object>>.

Chapter 5 Data Visualization in Unity

140

public class CSVReader

{

 �static string SPLIT_RE = @",(?=(?:[^""]*""[^""]*"")*(?![^""

]*""))"; // Define delimiters, regular expression craziness

 �static string LINE_SPLIT_RE = @"\r\n|\n\r|\n|\r";

 // Define line delimiters, regular experession craziness

 static char[] TRIM_CHARS = { '\"' };

 �public static List<Dictionary<string, object>>

Read(string file) //Declare method

 {

 �//Debug.Log("CSVReader is reading " + file);

// Print filename, make sure parsed correctly

 �var list = new List<Dictionary<string, object>>();

//declare dictionary list

 �TextAsset data = Resources.Load(file) as TextAsset;

//Loads the TextAsset named in the file argument of the

function

 �// Debug.Log("Data loaded:" + data);

// Print raw data, make sure parsed correctly

 �var lines = Regex.Split(data.text, LINE_SPLIT_RE);

// Split data.text into lines using LINE_SPLIT_RE

characters

 �if (lines.Length <= 1) return list;

//Check that there is more than one line

Chapter 5 Data Visualization in Unity

141

 �var header = Regex.Split(lines[0], SPLIT_RE);

//Split header (element 0)

 // Loops through lines

 for (var i = 1; i < lines.Length; i++)

 {

 �var values = Regex.Split(lines[i], SPLIT_RE);

//Split lines according to SPLIT_RE, store in var

(usually string array)

 �if (values.Length == 0 || values[0] == "") continue;

// Skip to end of loop (continue) if value is 0

In this section we are declaring the dictionary object and trimming the

characters in the CSV file.

length OR first value is empty

 �var entry = new Dictionary<string, object>();

// Creates dictionary object

 // Loops through every value

 �for (var j = 0; j < header.Length && j

< values.Length; j++)

 {

 �string value = values[j]; // Set local variable

value

 �value = value.TrimStart(TRIM_CHARS).

TrimEnd(TRIM_CHARS).Replace("\\", "");

// Trim characters

 �object finalvalue = value;

//set final value

Chapter 5 Data Visualization in Unity

142

 int n; // Create int, to hold value if int

 float f; // Create float, to hold value if float

 �// If-else to attempt to parse value into int

or float

 if (int.TryParse(value, out n))

 {

 finalvalue = n;

 }

 else if (float.TryParse(value, out f))

 {

 finalvalue = f;

 }

 entry[header[j]] = finalvalue;

 }

 �list.Add(entry); // Add Dictionary ("entry"

variable) to list

 }

 return list; //Return list

 }

}

Chapter 5 Data Visualization in Unity

143

Let us open the downloaded project (Figure 5-3).

The project when opened is shown in Figure 5-4.

Figure 5-3.  Opening the project in Unity

Figure 5-4.  The project windows

Chapter 5 Data Visualization in Unity

144

The resources folder will contain all the CSV files (Figure 5-5); you can

also add your own files too.

If we go to the hierarchy tab, we see a subchild of Scatterplot named

Plotter (Figure 5-6).

Figure 5-5.  The CSV files

Figure 5-6.  The plotter subchild

Chapter 5 Data Visualization in Unity

145

Now, in the inspector window we see the point renderer script. One

of the options available is Inputfile, where we can name the CSV file

(Figure 5-7).

Figure 5-7.  Selecting an input file

Chapter 5 Data Visualization in Unity

146

We are using the iris dataset over here (Figure 5-8).

Let’s hit the play button to check the visualization.

Figure 5-8.  Visualizing the iris data

Chapter 5 Data Visualization in Unity

147

�Working with Datasets
Let’s work on some other datasets.

We open up datagov.in the following address (Figure 5-9).

https://data.gov.in/

Figure 5-9.  Exploring data.gov.in

Chapter 5 Data Visualization in Unity

https://data.gov.in/

148

We will work on agriculture data and export it in a CSV file (Figure 5-10).

We use the air quality data and save it (Figure 5-11).

Then we run it.

Figure 5-10.  Saving datagov.in data from website

Figure 5-11.  Visualizing the air quality data

Chapter 5 Data Visualization in Unity

149

The color effects on the dataset point are added by this part of the script.

dataPoint.GetComponent<Renderer>().material.color =

 new Color(x,y,z, 1.0f);

�Another Example
In this section we will work on another dataset. Let’s use it.

We will be using an industrial production dataset (Figure 5-12).

https://data.gov.in/catalog/index-industrial-production-0

Figure 5-12.  The CSV file that is hosted at datagov.in

Chapter 5 Data Visualization in Unity

https://data.gov.in/catalog/index-industrial-production-0

150

We have saved the file as a CSV format so that the CSV parser is able to

parse the information. Let’s copy the file in the resources folder.

The file as copied in the resources folder is shown in Figure 5-13.

Figure 5-13.  The resources subfolder within the Assets folder

Chapter 5 Data Visualization in Unity

151

Now we will work on the CSV file in the inspector window.

In the hierarchy window we see that the plotter is the main field, which

contains the CSV input (Figure 5-14).

Figure 5-14.  The place where we update the input CSV file

Chapter 5 Data Visualization in Unity

152

We will change the input file to read the CSV file we just downloaded

from the datagov website. The process as selected from the inspector

window is shown in Figure 5-15.

Let’s take a look at the snapshot of the CSV file, which contains data

related to an index of industrial production, as shown in Figure 5-16.

Figure 5-15.  We changed the input file with the downloaded CSV file
name

Figure 5-16.  A snapshot of the CSV dataset

Chapter 5 Data Visualization in Unity

153

In the columns to project between x, y, and z, we can select years. So

let us select 2006-2007, 2011-12, and 2013-14

The columns selections will be numbered from 0 to 11.

We select the first column as 4.

The second column is 9.

The last column is 11.

The inspector view is shown in Figure 5-17.

Figure 5-17.  Selecting the columns

Chapter 5 Data Visualization in Unity

154

Now let us run the application and see the output.

The output as achieved is shown in Figure 5-18.

�Summary
We hereby concluded the book by adding the essence of data visualization

with Unity.

We covered how to use CSV to parse data within Unity, to cover the

basic concepts of 3D data visualizations.

Figure 5-18.  Showing the output for the dataset

Chapter 5 Data Visualization in Unity

155© Abhishek Nandy, Manisha Biswas 2018
A. Nandy and M. Biswas, Neural Networks in Unity,
https://doi.org/10.1007/978-1-4842-3673-4

Index

A
Anaconda, 30–34

Python mode, 49–51
Arctan function, 10
Artificial neural network, 2

B
Backpropagation, 22, 26

input layer, 114
neural network, 113–114
sigmoid activation function, 114
testing of, 133
Unity C#

constructor, 121
data structures, 118
feed forward and weight

initialization, 123
neural network script, 120
new project, 117
script folder, 119
Sublime Text, 121

Binary step function, 8

C
Crawler project

assets folder, 71

brain type, 82
byte file, 80
command prompt, 74
configuration, 82
DataStructures, 88
exe creation, 73
logs, 76
scene and build, 72
simulation test, 83
spider asset, 107
Tensorflow installation, 75
TFModels, 81
training details, 78
training output, 83
Unity C#

folders creation, 86
project creation, 85
script file, 87

D, E, F
Data visualization, see

Visualization

G, H
Gradient descent, 22

https://doi.org/10.1007/978-1-4842-3673-4

156

I
Identity function, 7
InitNeurons and InitWeights

methods, 88
Internal operations,

ML-Agents, 44
exe file, 47, 49
inspector window, 46
Jupyter Notebook (see Jupyter

Notebook)
ml-agents-master file, 51
player options, 45
Python mode, 49–51
scene and building

selection, 48

J, K
Jupyter Notebook

action_space_type, 54
browser mode, 51
IPython files, 52
matplotlib command, 53
proximity policy

optimization, 57
reward, 56
training mode, 53
Unity file, 55
Unity script, 53
variables and parameters, 56
web browser and appropriate

files, 52

L
Leaky ReLU, 12
Logistic/Sigmoid, 8

M
Machine learning agents

(ML-Agents), 27
Anaconda, 30–34
crawler project (see Crawler

project)
GitHub repo, 29
GPU-accelerated TensorFlow

appropriate folder, 37
details, 37
environment, 35
GitHub repo, 35
ml-agents folder, 38
project file, 36
training, 35
unity environments folder, 39
Unity IDE, 38

internal operations (see Internal
operations, ML-Agents)

NVIDIA CUDA Toolkit, 34
reinforcement, 28
steps, 28
Tensorflow, 30
unity environment, 70
Unity project

Ball3dBrain, 42
engine opening up, 40

Index

157

external type, 43
scene file, 41
simulation, 44
working process, 41

website link, 28
Mathematical approach, 3–4

N, O
NVIDIA CUDA Toolkit, 34

P, Q
Parsing

CSV files, 144
downloaded project, 143
input file, 145
iris data, 146
libaries, 139
plotter subchild, 144
project, 143
windows, 143

Perceptron
activation function, 5

arctan function, 10
binary step function, 8
different types, 6
identity function, 7
input, 6
Leaky ReLU, 12
logistic/sigmoid, 8
ReLU function, 11
softmax function, 12

Tan H function, 9
biases and weights

applying bias, 16
bias roles, 17
creation, 13
role of, 15
summation rule, 14

list of, 5
Proximal policy

optimization (PPO)
bytes file, 62
enable mode, 64
environments, 58
features, 61
hyperparameters, 57
links, 63
missing text asset, 65
model graph, 58
results, 67
source code, 57
TensorFlow graph, 62
TensorFlowSharp

plugin, 63
text asset, 66
tfmodels folder, 64
training model, 61

R
Rectified Linear

Unit (ReLU), 11
Reinforcement

learning, 28

Index

158

S
Scratch, 17

creation, 18
error, 25
gradient descent, 22
input neurons, 20
NumPy, 19
probabilities, 20
rectification, 25
source code, 22
steps, 19
subsequent layer, 21
synapses, 20
training module, 21

Sigmoid function, 8
Softmax function, 12
Synapses, 20

T, U
Tan H function, 9
Tensorflow, 30

V, W, X, Y, Z
Visualization

air quality data, 148
assets folder, 150
column selection, 153
CSV file, 149
datasets, 147
file download, 138
input CSV file, 151
inspector window, 152
open source project, 138
output for, 154
parsing

CSV files, 144
downloaded project, 143
input file, 145
iris data, 146
libaries, 139
plotter subchild, 144
project, 143
windows, 143

snapshot, 152

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Neural Network Basics
	Introducing Neural Networks
	Digging Deeper into Neural Networks
	Perceptron
	Activation Function and Its Different Types
	Identity Function
	Binary Step Function
	Logistic or Sigmoid
	Tan H Function
	Arctan Function
	Rectified Linear Unit
	Leaky ReLU
	Softmax Function

	Biases and Weights

	Neural Network from Scratch
	Backpropagation
	Summary

	Chapter 2: Unity ML-Agents
	Unity IDE
	Getting Started with Machine Learning Agents
	Let’s Start with TensorFlow
	Understanding Anaconda
	What Is the NVDIA CUDA Toolkit?
	GPU-Accelerated TensorFlow
	Building a Project in Unity

	Internal Operations for Machine Learning
	Training Anaconda in Python Mode
	Working with Jupyter Notebook
	Proximity Policy Optimization

	Summary

	Chapter 3: Machine Learning Agents and Neural Network in Unity
	Extending the Unity ML-Agents with Further Examples
	Crawler Project
	Testing the Simulation
	Neural Network with Unity C#
	Creating DataStructures
	Experimenting with the Spider Asset

	Summary

	Chapter 4: Backpropagation in Unity C#
	Going Further into Backpropagation
	Backpropogation in Unity C#
	Constructing Data Structures
	Feed Forwarding and Initializing Weights

	Testing of Backpropagation Neural Network
	Summary

	Chapter 5: Data Visualization in Unity
	Machine Learning Data Visualization in Unity
	Data Parsing
	Working with Datasets
	Another Example

	Summary

	Index

