


Python Programming
Blueprints

Build nine projects by leveraging powerful frameworks such
as Flask, Nameko, and Django

Daniel Furtado
Marcus Pennington

BIRMINGHAM - MUMBAI



Python Programming Blueprints
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Sandeep Mishra
Content Development Editor: Lawrence Veigas
Technical Editor: Mehul Singh
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: February 2018

Production reference: 1260218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-816-1

www.packtpub.com

http://www.packtpub.com


I dedicate this book to my family—my sister, Camila, my mother, Silvia, and my father, Simão,
who have done everything in their power to help me achieve all my dreams. There are no words

to express how grateful and lucky I feel for being their child.
To my lovely Maria, who every day gives me strength, encouragement, inspiration, and love. I
wouldn't have made it without you. I love you! Also, to my loyal French bulldog friends, Edit

and Ella.

– Daniel Furtado

My parents, Dawn and Robert, who over my lifetime have always pushed me to do my best.
They instilled in me the ability to accomplish anything I put my mind to.

Fabrizio Romano for convincing me to contribute to this book. He is the greatest mentor an
aspiring developer could ask for.

And finally, my partner, Emily, for always being there for me.

– Marcus Pennington



Contributors

About the authors
Daniel Furtado is a software developer with over 20 years of experience in different
technologies such as Python, C, .NET, C#, and JavaScript. He started programming at the
age of 13 on his ZX Spectrum.

He joined the Bioinformatics Laboratory of the Human Cancer Genome Project in Brazil,
where he developed web applications and tools in Perl and Python to help researchers
analyze data. He has never stopped developing in Python ever since.

Daniel has worked on various open source projects; the latest one is a PyTerrier web micro-
framework.

Marcus Pennington started his journey into computer science at Highams Park Sixth Form
College where he took a Cisco CCNA course.

He then went to the University of Hertfordshire, where he graduated with a degree in
Computer Science with Artificial Intelligence. Since then, he has had the privilege of
working with some of the best developers and learning the benefits and pitfalls of many of
the software practices we use today.

He has a passion for writing clean, cohesive, and beautiful code.

I would like to acknowledge Tom Viner for giving my chapters a thorough review; his
insights not only improved the quality of my chapters but also taught me a great deal. 
Julio Trigo, an expert at using PostgreSQL with Python; his knowledge supplemented my
own when creating the database dependency.
Edward Melly, a JavaScript and React craftsman, for reviewing the frontend code in my
chapters.



About the reviewers
Tom Viner is a senior software developer living in London. He has over 10 years of
experience in building web applications and has been using Python and Django for 8 years.
He has special interests in open source software, web security, and Test-driven
development.

Tom has given two conference talks, Testing with two failure seeking missiles: fuzzing
and property based testing and Exploring unit-testing, unittest v pytest: FIGHT!

Tom works for Sohonet in central London and sometimes goes backpacking around the
world.

I would like to thank Marcus Pennington for inviting me to review this book.

Radovan Kavický is the principal data scientist and president at GapData Institute based in
Bratislava, Slovakia, harnessing the power of data and wisdom of economics for public
good.

He has an academic background in macroeconomics and is a consultant and data scientist
by profession.

Radovan is also an instructor at DataCamp and a founder of PyData Bratislava, R <-
Slovakia & SK/CZ Tableau User Group (skczTUG).

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com


mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com


Table of Contents
Preface 1

Chapter 1: Implementing the Weather Application 7
Setting up the environment 8
Core functionality 10

Loading parsers dynamically 10
Creating the application's model 12
Fetching data from the weather website 19

Getting the user's input with ArgumentParser 20
Creating the parser 27

Getting today's weather forecast 29
Adding helper methods 30
Implementing today's weather forecast 32

Getting five- and ten-day weather forecasts 37
Getting the weekend weather forecast 43

Summary 47

Chapter 2: Creating a Remote-Control Application with Spotify 48
Setting up the environment 49
Creating a Spotify app 52
The application's configuration 56

Creating a configuration file 57
Implementing a configuration file reader 58

Authenticating with Spotify's web API 63
Implementing the client credentials flow 64
Implementing the authorization code flow 68
Authorizing our application with authorization code flow 71

Querying Spotify's web API 77
Creating the player 85

Adding menus for albums and track selection 88
Implementing the menu panel 89
Creating the DataManager class 95



Table of Contents

[ ii ]

Time to listen to music! 99
Summary 111

Chapter 3: Casting Votes on Twitter 112
Setting up the environment 113
Creating a Twitter application 116
Adding the configuration file 119
Performing authentication 123

Creating the Flask application 124
Creating the application routes 126

Building the Twitter voting application 132
Enhancing our code 137

Summary 152

Chapter 4: Exchange Rates and the Currency Conversion Tool 153
Setting up the environment 154
Creating the API wrapper 161
Adding the database helper class 164
Creating the command line parser 167

Creating the currency enumeration 172
Creating the command line parser 173

Basic validation 177
Adding the application's entry point 179
Testing our application 182
Summary 184

Chapter 5: Building a Web Messenger with Microservices 185
TempMessenger Goals 186
Requirements 186
What is Nameko? 187

RPCs 187
How Nameko uses AMQP 188
RabbitMQ 188

Starting a RabbitMQ container 189
Installing Python requirements 189

Creating your first Nameko microservice 191
Making a call to our service 193



Table of Contents

[ iii ]

Unit-testing a Nameko microservice 193
Exposing HTTP entrypoints 194
Integration testing Nameko microservices 196
Storing messages 197

An introduction to Redis 197
Starting a Redis container 197
Installing the Python Redis client 198
Using Redis 198

Nameko Dependency Providers 199
Adding a Redis Dependency Provider 200

Designing the Client 200
Creating the Dependency Provider 201
Creating our Message Service 202
Putting it all together 203

Saving messages 204
Adding a save message method to our Redis client 204
Adding a save message RPC 205

Retrieving all messages 206
Adding a get all messages method to our Redis client 206
Adding a get all messages RPC 207
Putting it all together 208

Displaying messages in the web browser 208
Adding a Jinja2 Dependency Provider 208

Creating the template renderer 209
Creating our homepage template 210
Creating the Dependency Provider 211
Making a HTML response 211
Putting it all together 212

Sending messages via POST requests 214
Adding a send messages POST request 215
Adding an AJAX POST request in jQuery 216

Expiring messages in Redis 219
Sorting messages 220
Browser polling for messages 222

Polling with JavaScript 223
Summary 225



Table of Contents

[ iv ]

Chapter 6: Extending TempMessenger with a User Authentication
Microservice 226

TempMessenger goals 227
Requirements 227
Creating a Postgres dependency 228

Starting a Postgres Docker container 228
Creating the user model 229
Creating the user dependency 230

Creating users 232
Creating the User Service 232

Securely storing passwords in the database 238
Using Bcrypt 239
Hashing our user passwords 241
Handling duplicate users 244

Authenticating users 246
Retrieving users from the database 246
Authenticating a user's password 247

Splitting out the services 249
Creating a Flask server 251
Web sessions 256

Creating a sign-up page 256
Logging users out 263
Logging users in 264

Prepending the email to our messages 267
Summary 271

Chapter 7: Online Video Game Store with Django 273
Setting up the development environment 274

Installing Node.js 276
Creating a new Django project 277
Exploring the Django project's structure 281

Diving into the SQLite 282
Looking at the project's package directory 283

Creating the project's main app 284
Installing client-side dependencies 289
Adding login and logout views 293



Table of Contents

[ v ]

Testing the login/logout forms 300
Creating new users 303

Creating the views of the user creation 306
Creating the game data model 312

Creating the price list data model 316
Creating the game list and details page 317
Adding list games views 326

Creating the shopping cart model 328
Creating the shopping cart form 331
Creating the shopping cart view 334
Adding items to the cart 337

Summary 340

Chapter 8: Order Microservice 342
Setting up the environment 343
Creating the service models 345
Creating the model's managers 347
Learning to test 354

Creating the test files 355
Testing the cancel order function 356
Testing the get all orders function 357
Getting customer's incomplete orders 358
Getting customer's completed orders 359
Getting orders by status 359
Getting orders by period 360
Setting the order's next status 361
Setting the order's status 363

Creating the order model serializer 364
Creating the views 370

Adding views 372
Setting up the service URLs 376
Integration with the game online store 387

Testing the integration 394
Deploying to AWS 395

Modifying the settings.py file 397
Deploying the order service 398



Table of Contents

[ vi ]

Summary 401

Chapter 9: Notification Serverless Application 402
Setting up the environment 403
Setting up the Amazon Web Services CLI 403
Configuring a Simple Email Service 405

Registering the emails 406
Creating an S3 bucket 407
Implementing the notification service 407

Email templates 413
Deploying the application with Zappa 415
Restricting access to the API's endpoints 417
Modifying the order service 421
Testing all the pieces together 425
Summary 429

Other Books You May Enjoy 430

Index 433



Preface
If you have been within the software development industry for the last 20 years, you most
certainly have heard of a programming language named Python. Created by Guido van
Rossum, Python first appeared in 1991 and has captured the hearts of many software
developers across the globe ever since.

However, how is it that a language that is over 20 years old is still around and is gaining
more and more popularity every day?

Well, the answer to this question is simple. Python is awesome for everything (or almost
everything). Python is a general-purpose programming language, which means that you
can create simple terminal applications, web applications, microservices, games, and also
complex scientific applications. Even though it is possible to use Python for different
purposes, Python is a language that is well known for being easy to learn, which is perfect
for beginners as well as people with no computer science background.

Python is a batteries included programming language, which means that most of the time you
will not need to make use of any external dependencies when developing your projects.
Python's standard library is feature rich and most of the time contains everything you need
to create your programs, and just in case you need something that is not in the standard
library, the PyPI (Python Package Index) currently contains 117,652 packages.

The Python community is welcoming, helpful, diverse, and extremely passionate about the
language, and everyone in the community is always happy to help each other.

If you still not convinced, the popular website StackOverflow published this year's statistics
about the popularity of programming languages based on the number of questions the
users add to the site, and Python is one of the top languages, only behind JavaScript, Java,
C#, and PHP.

It is a perfect time to be a Python developer, so let's get started!

Who this book is for
This book is for software developers who are familiar with Python and want to gain hands-
on experience with web and software development projects. Basic knowledge of Python
programming is required.



Preface

[ 2 ]

What this book covers
Chapter 1, Implementing the Weather Application, guides you through developing a terminal
application that shows the current weather for a specific region and a forecast for the next 5
days. This chapter will introduce you to the basic concepts of Python programming. You
will learn how to parse command-line arguments to add more interactivity to programs,
and you will finally see how to scrape data from websites using the popular Beautiful Soup
framework.

Chapter 2, Creating a Remote-Control Application with Spotify, will teach you how to perform
authentication with the Spotify API using OAuth. We will use the curses library to make the
application more interesting and user-friendly.

Chapter 3, Casting Votes on Twitter, will teach you how to use the Tkinter library to create
beautiful user interfaces using Python. We will use Reactive Extensions for Python to detect
when a vote has been made in the backend, after which, we will publish the changes in the
user interface.

Chapter 4, Exchange Rates and the Currency Conversion Tool, will enable you to implement a
currency converter that will get foreign exchange rates in real time from different sources
and use the data to perform currency conversion. We will develop an API that contains
helper functions to perform the conversions. To start with, we will use opensource foreign
exchange rates and a currency conversion API (http:/ /fixer. io/ ).
The second part of the chapter will teach you how to create a command-line application
makes use of our API to fetch data from the data sources and also get the currency
conversion results with a few parameters.

Chapter 5, Building a Web Messenger with Microservices, will teach you how to use Nameko,
a microservice framework for Python. You will also learn how to make dependency
providers for external resources such as Redis. This chapter will also touch upon integration
testing Nameko services and basic AJAX requests to an API.

Chapter 6, Extending TempMessenger with a User Authentication Microservice, will build upon
your app from Chapter 5, Building a Web Messenger with Microservices. You will create a user
authentication microservice that stores users in a Postgres database. Using Bcrypt, you will
also learn how to store passwords in a database securely. This chapter also covers creating a
Flask web interface and how to utilize cookies to store web session data. By the end of these
chapters, you will be well equipped to create scalable and cohesive microservices.

http://fixer.io/
http://fixer.io/
http://fixer.io/
http://fixer.io/
http://fixer.io/
http://fixer.io/
http://fixer.io/
http://fixer.io/


Preface

[ 3 ]

Chapter 7, Online Video Game Store with Django, will enable you to create an online video
game store. It will contain features such as browsing video games by category, performing
searches using different criteria, viewing detailed information about each game, and finally
adding games to a shopping cart and placing an order. Here, you will learn about Django
2.0, the administration UI, the Django data model, and much more.

Chapter 8, Order Microservice, will help you build a microservice that will be responsible for
receiving orders from the web application that we developed in the previous chapter. The
order microservice also provides other features such as the ability to update the status of
orders and provide order information using different criteria.

Chapter 9, Notification Serverless Application, will teach you about Serverless functions
architecture and how to build a notification service using Flask and deploy the final
application to AWS Lambda using the great project Zappa. You will also learn how to
integrate the web application that was developed in Chapter 7, Online Video Game Store with
Django, and the order microservice developed in Chapter 8, Order Microservice, with the
serverless notification application.

To get the most out of this book
In order to execute the code from this book on your local machine, you will need the
following:

An internet connection
Virtualenv
Python 3.6
MongoDB 3.2.11
pgAdmin (refer to the official documentation at http:/ /url. marcuspen. com/
pgadmin for installation instructions)
Docker (refer to the official documentation at http:/ /url. marcuspen. com/
docker-install for installation instructions)

All other requirements will be installed as we progress through the chapters.
All instructions in this chapter are tailored toward macOS or Debian/Ubuntu systems;
however, the authors have taken care to only use cross-platform dependencies.

http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/pgadmin
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install


Preface

[ 4 ]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Python- Programming- Blueprints. We also have other code bundles from
our rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This method will call the method exec of the Runner to execute the function that
performs the requests to the Twitter API."

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/Python-Programming-Blueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/


Preface

[ 5 ]

A block of code is set as follows:

def set_header(self):
    title = Label(self,
                  text='Voting for hasthags',
                  font=("Helvetica", 24),
                  height=4)
    title.pack()

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

def start_app(args):
    root = Tk()
    app = Application(hashtags=args.hashtags, master=root)
    app.master.title("Twitter votes")
    app.master.geometry("400x700+100+100")
    app.mainloop()

Any command-line input or output is written as follows:

python app.py --hashtags debian ubuntu arch

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example: "It
says, Logged as with your username, and right after it there is a logout link. Give it a go,
and click on the link Log off"

Warnings or important notes appear like this.

Tips and tricks appear like this.



Preface

[ 6 ]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/


1
Implementing the Weather

Application
The first application in this book is going to be a web scraping application that will scrape
weather forecast information from https:/ /weather. com and present it in a terminal. We
will add some options that can be passed as arguments to the application, such as:

The temperature unit (Celsius or Fahrenheit)
The area where you can get the weather forecast
Output options where the user of our application can choose between the current
forecast, a five-day forecast, a ten-day forecast, and the weekend
Ways to complement the output with extra information such as wind and
humidity

Apart from the aforementioned arguments, this application will be designed to be
extendable, which means that we can create parsers for different websites to get a weather
forecast, and these parsers will be available as argument options.

In this chapter, you will learn how to:

Use object-oriented programming concepts in Python applications
Scrape data from websites using the BeautifulSoup package
Receive command line arguments
Utilize the inspect module
Load Python modules dynamically
Use Python comprehensions
Use Selenium to request a webpage and inspect its DOM elements

https://weather.com
https://weather.com
https://weather.com
https://weather.com
https://weather.com
https://weather.com
https://weather.com


Implementing the Weather Application Chapter 1

[ 8 ]

Before we get started, it is important to say that when developing web scraping
applications, you should keep in mind that these types of applications are susceptible to
changes. If the developers of the site that you are getting data from change a CSS class
name, or the structure of the HTML DOM, the application will stop working. Also, if the
URL of the site we are getting the data from changes, the application will not be able to
send requests. 

Setting up the environment
Before we get right into writing our first example, we need to set up an environment to
work and install any dependencies that the project may have. Luckily, Python has a really
nice tooling system to work with virtual environments.

Virtual environments in Python are a broad subject, and beyond the scope of this book.
However, if you are not familiar with virtual environments, it will suffice to know that a
virtual environment is a contained Python environment that is isolated from your global
Python installation. This isolation allows developers to easily work with different versions
of Python, install packages within the environment, and manage project dependencies
without interfering with Python's global installation.

Python's installation comes with a module called venv, which you can use to create virtual
environments; the syntax is fairly straightforward. The application that we are going to
create is called weatherterm (weather terminal), so we can create a virtual environment
with the same name to make it simple.

To create a new virtual environment, open a terminal and run the following command:

$ python3 -m venv weatherterm

If everything goes well, you should see a directory called weatherterm in the directory you
are currently at. Now that we have the virtual environment, we just need to activate it with
the following command:

$ . weatherterm/bin/activate

I recommend installing and using virtualenvwrapper, which is an
extension of the virtualenv tool. This makes it very simple to manage,
create, and delete virtual environments as well as quickly switch between
them. If you wish to investigate this further, visit: https:/ /
virtualenvwrapper. readthedocs. io/ en/ latest/ #.

https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#
https://virtualenvwrapper.readthedocs.io/en/latest/#


Implementing the Weather Application Chapter 1

[ 9 ]

Now, we need to create a directory where we are going to create our application. Don't
create this directory in the same directory where you created the virtual environment;
instead, create a projects directory and create the directory for the application in there. I
would recommend you name it with the same name as the virtual environment for
simplicity.

I am setting the environment and running all the examples in a machine
with Debian 9.2 installed, and at the time of writing, I am running the
latest Python version (3.6.2). If you are a Mac user, it shouldn't be so
different; however, if you are on Windows, the steps can be slightly
different, but it is not hard to find information on how to set up virtual
environments on it. A Python 3 installation works nicely on Windows
nowadays.

Go into the project's directory that you just created and create a file named
requirements.txt with the following content:

beautifulsoup4==4.6.0
selenium==3.6.0

These are all the dependencies that we need for this project:

BeautifulSoup: This is a package for parsing HTML and XML files. We will be
using it to parse the HTML that we fetch from weather sites and to get the
weather data we need on the terminal. It is very simple to use and it has a great
documentation available online at: http:/ /beautiful- soup- 4.readthedocs. io/
en/latest/ .
Selenium: This is a well-known set of tools for testing. There are many
applications, but it is mostly used for the automated testing of web applications. 

To install the required packages in our virtual environment, you can run the following
command:

pip install -r requirements.txt

It is always a good idea to make use of version-control tools like GIT or
Mercurial. It is very helpful to control changes, check history, rollback
changes, and more. If you are not familiar with any of these tools, there
are plenty of tutorials on the internet. You can get started by checking the
documentation for GIT at: https:/ /git- scm. com/book/ en/ v1/ Getting-
Started.

http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
http://beautiful-soup-4.readthedocs.io/en/latest/
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started
https://git-scm.com/book/en/v1/Getting-Started


Implementing the Weather Application Chapter 1

[ 10 ]

One last tool that we need to install is PhantomJS; you can download it from: http:/ /
phantomjs.org/download. html

After downloading it, extract the contents inside the weatherterm directory and rename
the folder to phantomjs.

With our virtual environment set up and PhantomJS installed, we are ready to start coding!

Core functionality
Let's start by creating a directory for your module. Inside of the project's root directory,
create a subdirectory called weatherterm. The subdirectory weatherterm is where our
module will live. The module directory needs two subdirectories - core and parsers. The
project's directory structure should look like this:

weatherterm
├── phantomjs
└── weatherterm
    ├── core
    ├── parsers

Loading parsers dynamically
This application is intended to be flexible and allow developers to create different parsers
for different weather websites. We are going to create a parser loader that will dynamically
discover files inside of the parsers directory, load them, and make them available to be
used by the application without requiring changes to any other parts of the code. Here are
the rules that our loader will require when implementing new parsers:

Create a file with a class implementing the methods for fetching the current
weather forecast as well as five-day, ten-day, and weekend weather forecasts
The file name has to end with parser, for example, weather_com_parser.py
The file name can't start with double underscores

http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html
http://phantomjs.org/download.html


Implementing the Weather Application Chapter 1

[ 11 ]

With that said, let's go ahead and create the parser loader. Create a file named
parser_loader.py inside of the weatherterm/core directory and add the following
content:

import os
import re
import inspect

def _get_parser_list(dirname):
    files = [f.replace('.py', '')
             for f in os.listdir(dirname)
             if not f.startswith('__')]

    return files

def _import_parsers(parserfiles):

    m = re.compile('.+parser$', re.I)

    _modules = __import__('weatherterm.parsers',
                          globals(),
                          locals(),
                          parserfiles,
                          0)

    _parsers = [(k, v) for k, v in inspect.getmembers(_modules)
                if inspect.ismodule(v) and m.match(k)]

    _classes = dict()

    for k, v in _parsers:
        _classes.update({k: v for k, v in inspect.getmembers(v)
                         if inspect.isclass(v) and m.match(k)})

    return _classes

def load(dirname):
    parserfiles = _get_parser_list(dirname)
    return _import_parsers(parserfiles)



Implementing the Weather Application Chapter 1

[ 12 ]

First, the _get_parser_list function is executed and returns a list of all files located in
weatherterm/parsers; it will filter the files based on the rules of the parser described
previously. After returning a list of files, it is time to import the module. This is done by the
_import_parsers function, which first imports the weatherterm.parsers module and
makes use of the inspect package in the standard library to find the parser classes within the
module.

The inspect.getmembers function returns a list of tuples where the first item is a key
representing a property in the module, and the second item is the value, which can be of
any type. In our scenario, we are interested in a property with a key ending with
parser and with the value of type class.

Assuming that we already have a parser in place in the weatherterm/parsers  directory,
the value returned by the inspect.getmembers(_modules) will look something like this:

[('WeatherComParser',
  <class
'weatherterm.parsers.weather_com_parser.WeatherComParser'>),
  ...]

inspect.getmembers(_module) returns many more items, but they
have been omitted since it is not relevant to show all of them at this point.

Lastly, we loop through the items in the module and extract the parser classes, returning a
dictionary containing the name of the class and the class object that will be later used to
create instances of the parser.

Creating the application's model
Let's start creating the model that will represent all the information that our application will
scrape from the weather website. The first item we are going to add is an enumeration to
represent each option of the weather forecast we will provide to the users of our
application. Create a file named forecast_type.py in the directory weatherterm/core
with the following contents:

from enum import Enum, unique

@unique
class ForecastType(Enum):



Implementing the Weather Application Chapter 1

[ 13 ]

    TODAY = 'today'
    FIVEDAYS = '5day'
    TENDAYS = '10day'
    WEEKEND = 'weekend'

Enumerations have been in Python's standard library since version 3.4 and they can be
created using the syntax for creating classes. Just create a class inheriting from enum.Enum
containing a set of unique properties set to constant values. Here, we have values for the
four types of forecast that the application will provide, and where values such
as ForecastType.TODAY, ForecastType.WEEKEND, and so on can be accessed.

Note that we are assigning constant values that are different from the property item of the
enumeration, the reason being that later these values will be used to build the URL to make
requests to the weather website.

The application needs one more enumeration to represent the temperature units that the
user will be able to choose from in the command line. This enumeration will contain Celsius
and Fahrenheit items. 

First, let's include a base enumeration. Create a file called base_enum.py in the
weatherterm/core directory with the following contents:

from enum import Enum

class BaseEnum(Enum):
    def _generate_next_value_(name, start, count, last_value):
        return name

 BaseEnum is a very simple class inheriting from Enum . The only thing we want to do here
is override the method _generate_next_value_ so that every enumeration that inherits
from BaseEnum and has properties with the value set to auto()  will automatically get the
same value as the property name.



Implementing the Weather Application Chapter 1

[ 14 ]

Now, we can create an enumeration for the temperature units. Create a file called unit.py
in the weatherterm/core directory with the following content:

from enum import auto, unique

from .base_enum import BaseEnum

@unique
class Unit(BaseEnum):
    CELSIUS = auto()
    FAHRENHEIT = auto()

This class inherits from the BaseEnum that we just created, and every property is set to
auto(), meaning the value for every item in the enumeration will be set automatically for
us. Since the Unit class inherits from BaseEnum, every time the auto() is called,
the _generate_next_value_ method on BaseEnum will be invoked and will return the
name of the property itself.

Before we try this out, let's create a file called __init__.py in the weatherterm/core
directory and import the enumeration that we just created, like so:

from .unit import Unit

If we load this class in the Python REPL and check the values, the following will occur:

Python 3.6.2 (default, Sep 11 2017, 22:31:28)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from weatherterm.core import Unit
>>> [value for key, value in Unit.__members__.items()]
[<Unit.CELSIUS: 'CELSIUS'>, <Unit.FAHRENHEIT: 'FAHRENHEIT'>]

Another item that we also want to add to the core module of our application is a class to
represent the weather forecast data that the parser returns. Let's go ahead and create a file
named forecast.py in the weatherterm/core directory with the following contents:

from datetime import date

from .forecast_type import ForecastType

class Forecast:
    def __init__(
            self,
            current_temp,



Implementing the Weather Application Chapter 1

[ 15 ]

            humidity,
            wind,
            high_temp=None,
            low_temp=None,
            description='',
            forecast_date=None,
            forecast_type=ForecastType.TODAY):
        self._current_temp = current_temp
        self._high_temp = high_temp
        self._low_temp = low_temp
        self._humidity = humidity
        self._wind = wind
        self._description = description
        self._forecast_type = forecast_type

        if forecast_date is None:
            self.forecast_date = date.today()
        else:
            self._forecast_date = forecast_date

    @property
    def forecast_date(self):
        return self._forecast_date

    @forecast_date.setter
    def forecast_date(self, forecast_date):
        self._forecast_date = forecast_date.strftime("%a %b %d")

    @property
    def current_temp(self):
        return self._current_temp

    @property
    def humidity(self):
        return self._humidity

    @property
    def wind(self):
        return self._wind

    @property
    def description(self):
        return self._description

    def __str__(self):
        temperature = None
        offset = ' ' * 4



Implementing the Weather Application Chapter 1

[ 16 ]

        if self._forecast_type == ForecastType.TODAY:
            temperature = (f'{offset}{self._current_temp}\xb0\n'
                           f'{offset}High {self._high_temp}\xb0 / '
                           f'Low {self._low_temp}\xb0 ')
        else:
            temperature = (f'{offset}High {self._high_temp}\xb0 / '
                           f'Low {self._low_temp}\xb0 ')

        return(f'>> {self.forecast_date}\n'
               f'{temperature}'
               f'({self._description})\n'
               f'{offset}Wind: '
               f'{self._wind} / Humidity: {self._humidity}\n')

In the Forecast class, we will define properties for all the data we are going to parse: 

current_temp
Represents the current temperature. It will only be available when
getting today's weather forecast.

humidity The humidity percentage for the day.

wind Information about today's current wind levels.

high_temp The highest temperature for the day.

low_temp The lowest temperature for the day.

description A description of the weather conditions, for example, Partly Cloudy.

forecast_date Forecast date; if not supplied, it will be set to the current date.

forecast_type
Any value in the enumeration ForecastType (TODAY, FIVEDAYS,
TENDAYS, or WEEKEND).

We can also implement two methods called forecast_date  with the decorators
@property  and @forecast_date.setter . The @property  decorator will turn the
method into a getter for the _forecast_date property of the Forecast class, and the
@forecast_date.setter will turn the method into a setter.  The setter was defined here
because, every time we need to set the date in an instance of Forecast, we need to make
sure that it will be formatted accordingly. In the setter, we call the strftime method,
passing the format codes %a (weekday abbreviated name), %b (monthly abbreviated name),
and %d (day of the month).



Implementing the Weather Application Chapter 1

[ 17 ]

The format codes %a and %b will use the locale configured in the machine
that the code is running on.

Lastly, we override the __str__ method to allow us to format the output the way we
would like when using the print, format, and str functions.

By default, the temperature unit used by weather.com is Fahrenheit, and we want to
give the users of our application the option to use Celsius instead. So, let's go ahead and
create one more file in the weatherterm/core directory called unit_converter.py with
the following content:

from .unit import Unit

class UnitConverter:
    def __init__(self, parser_default_unit, dest_unit=None):
        self._parser_default_unit = parser_default_unit
        self.dest_unit = dest_unit

        self._convert_functions = {
            Unit.CELSIUS: self._to_celsius,
            Unit.FAHRENHEIT: self._to_fahrenheit,
        }

    @property
    def dest_unit(self):
        return self._dest_unit

    @dest_unit.setter
    def dest_unit(self, dest_unit):
        self._dest_unit = dest_unit

    def convert(self, temp):

        try:
            temperature = float(temp)
        except ValueError:
            return 0

        if (self.dest_unit == self._parser_default_unit or
                self.dest_unit is None):
            return self._format_results(temperature)

        func = self._convert_functions[self.dest_unit]



Implementing the Weather Application Chapter 1

[ 18 ]

        result = func(temperature)

        return self._format_results(result)

    def _format_results(self, value):
        return int(value) if value.is_integer() else f'{value:.1f}'

    def _to_celsius(self, fahrenheit_temp):
        result = (fahrenheit_temp - 32) * 5/9
        return result

    def _to_fahrenheit(self, celsius_temp):
        result = (celsius_temp * 9/5) + 32
        return result

This is the class that is going to make the temperature conversions from Celsius to
Fahrenheit and vice versa. The initializer of this class gets two arguments; the default unit
used by the parser and the destination unit. In the initializer, we will define a dictionary
containing the functions that will be used for temperature unit conversion.

The convert method only gets one argument, the temperature. Here, the temperature is a
string, so the first thing we need to do is try converting it to a float value; if it fails, it will
return a zero value right away.

You can also verify whether the destination unit is the same as the parser's default unit or
not. In that case, we don't need to continue and perform any conversion; we simply format
the value and return it.

If we need to perform a conversion, we can look up the _convert_functions  dictionary
to find the conversion function that we need to run. If we find the function we are looking
for, we invoke it and return the formatted value.

The code snippet below shows the _format_results method, which is a utility method
that will format the temperature value for us:

return int(value) if value.is_integer() else f'{value:.1f}'

The _format_results method checks if the number is an integer; the
value.is_integer() will return True if the number is, for example, 10.0. If True, we will
use the int function to convert the value to 10; otherwise, the value is returned as a fixed-
point number with a precision of 1. The default precision in Python is 6. Lastly, there are
two utility methods that perform the temperature conversions, _to_celsius and
_to_fahrenheit.



Implementing the Weather Application Chapter 1

[ 19 ]

Now, we only need to edit the __init__.py file in the weatherterm/core directory and
include the following import statements:

from .base_enum import BaseEnum
from .unit_converter import UnitConverter
from .forecast_type import ForecastType
from .forecast import Forecast

Fetching data from the weather website
We are going to add a class named Request that will be responsible for getting the data
from the weather website. Let's add a file named request.py in the weatherterm/core
directory with the following content:

import os
from selenium import webdriver

class Request:
    def __init__(self, base_url):
        self._phantomjs_path = os.path.join(os.curdir,
'phantomjs/bin/phantomjs')
        self._base_url = base_url
        self._driver = webdriver.PhantomJS(self._phantomjs_path)

    def fetch_data(self, forecast, area):
        url = self._base_url.format(forecast=forecast, area=area)
        self._driver.get(url)

        if self._driver.title == '404 Not Found':
            error_message = ('Could not find the area that you '
                             'searching for')
            raise Exception(error_message)

        return self._driver.page_source

This class is very simple; the initializer defines the base URL and creates a PhantomJS
driver, using the path where PhantomJS is installed. The fetch_data method formats the
URL, adding the forecast option and the area. After that, the webdriver performs a request
and returns the page source. If the title of the markup returned is 404 Not Found, it will
raise an exception. Unfortunately, Selenium doesn't provide a proper way of getting the
HTTP Status code; this would have been much better than comparing strings.



Implementing the Weather Application Chapter 1

[ 20 ]

You may notice that I prefix some of the class properties with an
underscore sign. I usually do that to show that the underlying property is
private and shouldn't be set outside the class. In Python, there is no need
to do that because there's no way to set private or public properties;
however, I like it because I can clearly show my intent.

Now, we can import it in the __init__.py  file in the weatherterm/core directory:

from .request import Request

Now we have a parser loader to load any parser that we drop into the directory
weatherterm/parsers,  we have a class representing the forecast model, and an
enumeration ForecastType so we can specify which type of forecast we are parsing. The
enumeration represents temperature units and utility functions to convert temperatures
from Fahrenheit to Celsius and Celsius to Fahrenheit. So now, we should be ready
to create the application's entry point to receive all the arguments passed by the user, run
the parser, and present the data on the terminal.

Getting the user's input with
ArgumentParser
Before we run our application for the first time, we need to add the application's entry
point. The entry point is the first code that will be run when our application is executed. 

We want to give the users of our application the best user experience possible, so the first
features that we need to add are the ability to receive and parse command line arguments,
perform argument validation, set arguments when needed, and, last but not least, show an
organized and informative help system so the users can see which arguments can be used
and how to use the application. 

Sounds like tedious work, right?

Luckily, Python has batteries included and the standard library contains a great module
that allows us to implement this in a very simple way; the module is called argparse.

Another feature that would be good to have is for our application to be easy to distribute to
our users. One approach is to create a __main__.py file in the weatherterm module
directory, and you can run the module as a regular script. Python will automatically run
the __main__.py file, like so:

$ python -m weatherterm



Implementing the Weather Application Chapter 1

[ 21 ]

Another option is to zip the entire application's directory and execute the Python passing
the name of the ZIP file instead. This is an easy, fast, and simple way to distribute our
Python programs.

There are many other ways of distributing your programs, but they are beyond the scope of
this book; I just wanted to give you some examples of the usage of the __main__.py file.

With that said, let's create a __main__.py file inside of the weatherterm directory with the
following content:

import sys
from argparse import ArgumentParser

from weatherterm.core import parser_loader
from weatherterm.core import ForecastType
from weatherterm.core import Unit

def _validate_forecast_args(args):
    if args.forecast_option is None:
        err_msg = ('One of these arguments must be used: '
                   '-td/--today, -5d/--fivedays, -10d/--tendays, -
                    w/--weekend')
        print(f'{argparser.prog}: error: {err_msg}',
        file=sys.stderr)
        sys.exit()

parsers = parser_loader.load('./weatherterm/parsers')

argparser = ArgumentParser(
    prog='weatherterm',
    description='Weather info from weather.com on your terminal')

required = argparser.add_argument_group('required arguments')

required.add_argument('-p', '--parser',
                      choices=parsers.keys(),
                      required=True,
                      dest='parser',
                      help=('Specify which parser is going to be
                       used to '
                            'scrape weather information.'))

unit_values = [name.title() for name, value in
Unit.__members__.items()]

argparser.add_argument('-u', '--unit',



Implementing the Weather Application Chapter 1

[ 22 ]

                       choices=unit_values,
                       required=False,
                       dest='unit',
                       help=('Specify the unit that will be used to
                       display '
                             'the temperatures.'))

required.add_argument('-a', '--areacode',
                      required=True,
                      dest='area_code',
                      help=('The code area to get the weather
                       broadcast from. '
                            'It can be obtained at
                              https://weather.com'))

argparser.add_argument('-v', '--version',
                       action='version',
                       version='%(prog)s 1.0')

argparser.add_argument('-td', '--today',
                       dest='forecast_option',
                       action='store_const',
                       const=ForecastType.TODAY,
                       help='Show the weather forecast for the
                       current day')

args = argparser.parse_args()

_validate_forecast_args(args)

cls = parsers[args.parser]

parser = cls()
results = parser.run(args)

for result in results:
    print(results)

The weather forecast options (today, five days, ten days, and weekend forecast) that our
application will accept will not be required; however, at least one option must be provided
in the command line, so we create a simple function called _validate_forecast_args to
perform this validation for us. This function will show a help message and exit the
application.

First, we get all the parsers available in the weatherterm/parsers directory. The list of
parsers will be used as valid values for the parser argument.



Implementing the Weather Application Chapter 1

[ 23 ]

It is the ArgumentParser object that does the job of defining the parameters, parsing the
values, and showing help, so we create an instance of ArgumentParser and also create an
argument group for the required parameters. This will make the help output look much
nicer and organized.

In order to make the parameters and the help output more organized, we are going to
create a group within the ArgumentParser object. This group will contain all the required
arguments that our application needs. This way, the users of our application can easily see
which parameters are required and the ones that are not required.

We achieve this with the following statement:

required = argparser.add_argument_group('required arguments')

After creating the argument group for the required arguments, we get a list of all members
of the enumeration Unit and use the title() function to make only the first letter a capital
letter.

Now, we can start adding the arguments that our application will be able to receive on the
command line. Most argument definitions use the same set of keyword arguments, so I will
not be covering all of them.

The first argument that we will create is --parser or -p:

required.add_argument('-p', '--parser',
                      choices=parsers.keys(),
                      required=True,
                      dest='parser',
                      help=('Specify which parser is going to be
                       used to '
                            'scrape weather information.'))

Let's break down every parameter of the add_argument  used when creating the parser
flag:

The first two parameters are the flags. In this case, the user passes a value to this
argument using either -p or --parser in the command line, for example, --
parser WeatherComParser.
The choices parameter specifies a list of valid values for that argument that we
are creating. Here, we are using parsers.keys(), which will return a list of
parser names. The advantage of this implementation is that if we add a new
parser, it will be automatically added to this list, and no changes will be required
in this file.



Implementing the Weather Application Chapter 1

[ 24 ]

The required parameter, as the name says, specifies if the argument will be
required or not.
The dest parameter specifies the name of the attribute to be added to the
resulting object of the parser argument. The object returned
by parser_args() will contain an attribute called parser with the value that
we passed to this argument in the command line.
Finally, the help parameter is the argument's help text, shown when using the -h
or --help flag.

Moving on to the --today argument:

argparser.add_argument('-td', '--today',
                       dest='forecast_option',
                       action='store_const',
                       const=ForecastType.TODAY,
                       help='Show the weather forecast for the
                       current day')

Here we have two keyword arguments that we haven't seen before, action and const.

Actions can be bound to the arguments that we create and they can perform many things.
The argparse module contains a great set of actions, but if you need to do something
specific, you can create your own action that will meet your needs. Most actions defined in
the argparse module are actions to store values in the parse result's object attributes.

In the previous code snippet, we use the store_const action, which will store a constant
value to an attribute in the object returned by parse_args().

We also used the keyword argument const, which specifies the constant default value
when the flag is used in the command line.

Remember that I mentioned that it is possible to create custom actions? The argument unit
is a great use case for a custom action. The choices argument is just a list of strings, so we
use this comprehension to get the list of names of every item in the Unit enumeration, as
follows:

unit_values = [name.title() for name, value in
Unit.__members__.items()]

required.add_argument('-u', '--unit',
                      choices=unit_values,
                      required=False,
                      dest='unit',
                      help=('Specify the unit that will be used to



Implementing the Weather Application Chapter 1

[ 25 ]

                       display '
                            'the temperatures.'))

The object returned by parse_args() will contain an attribute called unit with a string
value (Celsius or Fahrenheit), but this is not exactly what we want. Wouldn't it be nice
to have the value as an enumeration item instead? We can change this behavior by creating
a custom action.

First, add a new file named set_unit_action.py in the weatherterm/core directory
with the following contents:

from argparse import Action

from weatherterm.core import Unit

class SetUnitAction(Action):

    def __call__(self, parser, namespace, values,
     option_string=None):
        unit = Unit[values.upper()]
        setattr(namespace, self.dest, unit)

This action class is very simple; it just inherits from argparse.Action and overrides
the __call__ method, which will be called when the argument value is parsed. This is
going to be set to the destination attribute.

The parser parameter will be an instance of ArgumentParser. The namespace is an
instance of argparser.Namespace and it is just a simple class containing all the attributes
defined in the ArgumentParser object. If you inspect this parameter with the debugger,
you will see something similar to this:

Namespace(area_code=None, fields=None, forecast_option=None,
parser=None, unit=None)

The values parameter is the value that the user has passed on the command line; in our
case, it can be either Celsius or Fahrenheit. Lastly, the option_string parameter is the flag
defined for the argument. For the unit argument, the value of option_string will be -u.

Fortunately, enumerations in Python allow us to access their members and attributes using
item access:

Unit[values.upper()]



Implementing the Weather Application Chapter 1

[ 26 ]

Verifying this in Python REPL, we have:

>>> from weatherterm.core import Unit
>>> Unit['CELSIUS']
<Unit.CELSIUS: 'CELSIUS'>
>>> Unit['FAHRENHEIT']
<Unit.FAHRENHEIT: 'FAHRENHEIT'>

After getting the correct enumeration member, we set the value of the property specified by
self.dest in the namespace object. That is much cleaner and we don't need to deal with
magic strings.

With the custom action in place, we need to add the import statement in
the __init__.py file in the weatherterm/core directory:

from .set_unit_action import SetUnitAction

Just include the line above at the end of the file. Then, we need to import it into the
__main__.py file,  like so:

from weatherterm.core import SetUnitAction

And we are going to add the action keyword argument in the definition of the unit
argument and set it to SetUnitAction, like so:

required.add_argument('-u', '--unit',
                      choices=unit_values,
                      required=False,
                      action=SetUnitAction,
                      dest='unit',
                      help=('Specify the unit that will be used to
                       display '
                            'the temperatures.'))

So, when the user of our application uses the flag -u for Celsius, the value of the attribute
unit in the object returned by the parse_args()  function will be:

<Unit.CELSIUS: 'CELSIUS'>

The rest of the code is very straightforward; we invoke the parse_args function to parse
the arguments and set the result in the args variable. Then, we use the value of
args.parser (the name of the selected parser) and access that item in the parser's
dictionary. Remember that the value is the class type, so we create an instance of the parser,
and lastly, invoke the method run, which will kick off website scraping.



Implementing the Weather Application Chapter 1

[ 27 ]

Creating the parser
In order to run our code for the first time, we need to create a parser. We can quickly create
a parser to run our code and check whether the values are being parsed properly.

Let's go ahead and create a file called weather_com_parser.py in
the weatherterm/parsers directory. To make it simple, we are going to create just the
necessary methods, and the only thing we are going to do when the methods are invoked is
to raise a NotImplementedError:

from weatherterm.core import ForecastType

class WeatherComParser:

    def __init__(self):
        self._forecast = {
            ForecastType.TODAY: self._today_forecast,
            ForecastType.FIVEDAYS:
self._five_and_ten_days_forecast,
            ForecastType.TENDAYS: self._five_and_ten_days_forecast,
            ForecastType.WEEKEND: self._weekend_forecast,
            }

    def _today_forecast(self, args):
        raise NotImplementedError()

    def _five_and_ten_days_forecast(self, args):
        raise NotImplementedError()

    def _weekend_forecast(self, args):
        raise NotImplementedError()

    def run(self, args):
        self._forecast_type = args.forecast_option
        forecast_function = self._forecast[args.forecast_option]
        return forecast_function(args)

In the initializer, we create a dictionary where the key is a member of
the ForecasType enumeration, and the value is the method bound to any of these options.
Our application will be able to present today's, a five-day, ten-day, and the weekend
forecast, so we implement all four methods.



Implementing the Weather Application Chapter 1

[ 28 ]

The run method only does two things; it looks up the function that needs to be executed
using the forecast_option that we passed as an argument in the command line, and
executes the function returning its value.

Now, the application is finally ready to be executed for the first time if you run the
command in the command line:

$ python -m weatherterm --help

You should see the application's help options:

usage: weatherterm [-h] -p {WeatherComParser} [-u {Celsius,Fahrenheit}] -a
AREA_CODE [-v] [-td] [-5d] [-10d] [-w]

Weather info from weather.com on your terminal

optional arguments:
  -h, --help show this help message and exit
  -u {Celsius,Fahrenheit}, --unit {Celsius,Fahrenheit}
                        Specify the unit that will be used to display
                        the temperatures.
  -v, --version show program's version number and exit
  -td, --today Show the weather forecast for the current day
require arguments:
  -p {WeatherComParser}, --parser {WeatherComParser}
                    Specify which parser is going to be used to scrape
                    weather information.
  -a AREA_CODE, --areacode AREA_CODE
                    The code area to get the weather broadcast from. It
                     can be obtained at https://weather.com

As you can see, the ArgumentParse module already provides out-of-the-box output for
help. There are ways you can customize the output how you want to, but I find the default
layout really good.

Notice that the -p argument already gave you the option to choose the
WeatherComParser. It wasn't necessary to hardcode it anywhere because the parser loader
did all the work for us. The -u (--unit) flag also contains the items of the enumeration
Unit. If someday you want to extend this application and add new units, the only thing
you need to do here is to add the new item to the enumeration, and it will be automatically
picked up and included as an option for the -u flag.



Implementing the Weather Application Chapter 1

[ 29 ]

Now, if you run the application again and this time pass some parameters:

$ python -m weatherterm -u Celsius -a SWXX2372:1:SW -p WeatherComParser -td

You will get an exception similar to this:

Don't worry -- this is exactly what we wanted! If you follow the stack trace, you can see that
everything is working as intended. When we run our code, we call the run method on the
selected parser from the __main__.py file, then we select the method associated with the
forecast option, in this case, _today_forecast, and finally store the result in the
forecast_function variable.

When the function stored in the forecast_function variable was executed, the
NotImplementedError exception was raised. So far so good; the code is working perfectly
and now we can start adding the implementation for each of these methods.

Getting today's weather forecast
The core functionality is in place and the entry point of the application with the argument
parser will give the users of our application a much better experience. Now, it is finally the
time we all have been waiting for, the time to start implementing the parser. We will start
implementing the method to get today's weather forecast.



Implementing the Weather Application Chapter 1

[ 30 ]

Since I am in Sweden, I will use the area code SWXX2372:1:SW (Stockholm, Sweden);
however, you can use any area code you want. To get the area code of your choice, go to
https://weather. com and search for the area you want. After selecting the area, the
weather forecast for the current day will be displayed. Note that the URL changes, for
example, when searching Stockholm, Sweden, the URL changes to:

https://weather. com/ weather/ today/ l/ SWXX2372:1:SW

For São Paulo, Brazil it will be:

https://weather. com/ weather/ today/ l/ BRXX0232:1:BR

Note that there is only one part of the URL that changes, and this is the area code that we
want to pass as an argument to our application.

Adding helper methods
To start with, we need to import some packages:

import re

from weatherterm.core import Forecast
from weatherterm.core import Request
from weatherterm.core import Unit
from weatherterm.core import UnitConverter

And in the initializer, we are going to add the following code:

self._base_url = 'http://weather.com/weather/{forecast}/l/{area}'
self._request = Request(self._base_url)

self._temp_regex = re.compile('([0-9]+)\D{,2}([0-9]+)')
self._only_digits_regex = re.compile('[0-9]+')

self._unit_converter = UnitConverter(Unit.FAHRENHEIT)

In the initializer, we define the URL template we are going to use to perform requests to the
weather website; then, we create a Request object. This is the object that will perform the
requests for us.

Regular expressions are only used when parsing today's weather forecast temperatures.

https://weather.com
https://weather.com
https://weather.com
https://weather.com
https://weather.com
https://weather.com
https://weather.com
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/SWXX2372:1:SW
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR
https://weather.com/weather/today/l/BRXX0232:1:BR


Implementing the Weather Application Chapter 1

[ 31 ]

We also define a UnitConverter object and set the default unit to Fahrenheit.

Now, we are ready to start adding two methods that will be responsible for actually
searching for HTML elements within a certain class and return its contents. The first
method is called _get_data:

def _get_data(self, container, search_items):
    scraped_data = {}

    for key, value in search_items.items():
        result = container.find(value, class_=key)
        data = None if result is None else result.get_text()
        if data is not None:
            scraped_data[key] = data

    return scraped_data

The idea of this method is to search items within a container that matches some criteria. The
container is just a DOM element in the HTML and the search_items is a dictionary
where the key is a CSS class and the value is the type of the HTML element. It can be a DIV,
SPAN, or anything that you wish to get the value from.

It starts looping through search_items.items() and uses the find method to find the
element within the container. If the item is found, we use get_text to extract the text of the
DOM element and add it to a dictionary that will be returned when there are no more items
to search.

The second method that we will implement is the _parser method. This will make use of
the _get_data that we just implemented:

def _parse(self, container, criteria):
    results = [self._get_data(item, criteria)
               for item in container.children]

    return [result for result in results if result]

Here, we also get a container and criteria like the _get_data method. The container is
a DOM element and the criterion is a dictionary of nodes that we want to find. The first
comprehension gets all the container's children elements and passes them to the
_get_data method.

The results will be a list of dictionaries with all the items that have been found, and we will
only return the dictionaries that are not empty.



Implementing the Weather Application Chapter 1

[ 32 ]

There are only two more helper methods we need to implement in order to get today's
weather forecast in place. Let's implement a method called _clear_str_number:

def _clear_str_number(self, str_number):
    result = self._only_digits_regex.match(str_number)
    return '--' if result is None else result.group()

This method will use a regular expression to make sure that only digits are returned.

And the last method that needs to be implemented is the _get_additional_info method:

def _get_additional_info(self, content):
    data = tuple(item.td.span.get_text()
                 for item in content.table.tbody.children)
    return data[:2]

This method loops through the table rows, getting the text of every cell. This
comprehension will return lots of information about the weather, but we are only interested
in the first 2, the wind and the humidity.

Implementing today's weather forecast
It's time to start adding the implementation of the _today_forecast method, but first, we
need to import BeautifulSoup. At the top of the file, add the following import statement:

from bs4 import BeautifulSoup

Now, we can start adding the _today_forecast method:

def _today_forecast(self, args):
    criteria = {
        'today_nowcard-temp': 'div',
        'today_nowcard-phrase': 'div',
        'today_nowcard-hilo': 'div',
        }

    content = self._request.fetch_data(args.forecast_option.value,
                                       args.area_code)

    bs = BeautifulSoup(content, 'html.parser')

    container = bs.find('section', class_='today_nowcard-
container')

    weather_conditions = self._parse(container, criteria)



Implementing the Weather Application Chapter 1

[ 33 ]

    if len(weather_conditions) < 1:
        raise Exception('Could not parse weather foreecast for
        today.')

    weatherinfo = weather_conditions[0]

    temp_regex = re.compile(('H\s+(\d+|\-{,2}).+'
                             'L\s+(\d+|\-{,2})'))
    temp_info = temp_regex.search(weatherinfo['today_nowcard-
hilo'])
    high_temp, low_temp = temp_info.groups()

    side = container.find('div', class_='today_nowcard-sidecar')
    humidity, wind = self._get_additional_info(side)

    curr_temp = self._clear_str_number(weatherinfo['today_nowcard-
    temp'])

    self._unit_converter.dest_unit = args.unit

    td_forecast = Forecast(self._unit_converter.convert(curr_temp),
                           humidity,
                           wind,
                           high_temp=self._unit_converter.convert(
                               high_temp),
                           low_temp=self._unit_converter.convert(
                               low_temp),
                           description=weatherinfo['today_nowcard-
                            phrase'])

    return [td_forecast]

That is the function that will be called when the -td or --today flag is used on the
command line. Let's break down this code so that we can easily understand what it does.
Understanding this method is important because these methods parse data from other
weather forecast options (five days, ten days, and weekend) that are very similar to this one.

The method's signature is quite simple; it only gets args, which is the Argument object that
is created in the __main__ method. The first thing we do in this method is to create
a criteria dictionary with all the DOM elements that we want to find in the markup:

criteria = {
    'today_nowcard-temp': 'div',
    'today_nowcard-phrase': 'div',
    'today_nowcard-hilo': 'div',
}



Implementing the Weather Application Chapter 1

[ 34 ]

As mentioned before, the key to the criteria dictionary is the name of the DOM element's
CSS class, and the value is the type of the HTML element:

The today_nowcard-temp class is a CSS class of the DOM element containing
the current temperature
The today_nowcard-phrase class is a CSS class of the DOM element containing
weather conditions text (Cloudy, Sunny, and so on)
The today_nowcard-hilo class is the CSS class of the DOM element containing
the highest and lowest temperature

Next, we are going to fetch, create, and use BeautifulSoup to parse the DOM:

content = self._request.fetch_data(args.forecast_option.value,
                                   args.area_code)

bs = BeautifulSoup(content, 'html.parser')

container = bs.find('section', class_='today_nowcard-container')

weather_conditions = self._parse(container, criteria)

if len(weather_conditions) < 1:
    raise Exception('Could not parse weather forecast for today.')

weatherinfo = weather_conditions[0]

First, we make use of the fetch_data method of the Request class that we created on the
core module and pass two arguments; the first is the forecast option and the second
argument is the area code that we passed on the command line.
After fetching the data, we create a BeautifulSoup object passing the content and a
parser. Since we are getting back HTML, we use html.parser.

Now is the time to start looking for the HTML elements that we are interested in.
Remember, we need to find an element that will be a container, and the _parser function
will search through the children elements and try to find items that we defined in the
dictionary criteria. For today's weather forecast, the element that contains all the data we
need is a section element with the today_nowcard-container CSS class.

BeautifulSoup contains the find method, which we can use to find elements in the
HTML DOM with specific criteria. Note that the keyword argument is called class_ and
not class because class is a reserved word in Python.



Implementing the Weather Application Chapter 1

[ 35 ]

Now that we have the container element, we can pass it to the _parse method, which will
return a list. We perform a check if the result list contains at least one element and raise an
exception if it is empty. If it is not empty, we just get the first element and assign it to
the weatherinfo variable. The weatherinfo variable now contains a dictionary with all
the items that we were looking for.

The next step is split the highest and lowest temperature:

temp_regex = re.compile(('H\s+(\d+|\-{,2}).+'
                         'L\s+(\d+|\-{,2})'))
temp_info = temp_regex.search(weatherinfo['today_nowcard-hilo'])
high_temp, low_temp = temp_info.groups()

We want to parse the text that has been extracted from the DOM element with
the today_nowcard-hilo CSS class, and the text should look something like H 50 L 60, H
-- L 60, and so on. An easy and simple way of extracting the text we want is to use a
regular expression:

H\s+(\d+|\-{,2}).L\s+(\d+|\-{,2})

We can break this regular expression into two parts. First, we want to get the highest
temperature—H\s+(\d+|\-{,2}); this means that it will match an H followed by some
spaces, and then it will group a value that matches either numbers or a maximum of two
dash symbols. After that, it will match any character. Lastly, comes the second part that
basically does the same; however, it starts matching an L.

After executing the search method, it gets regular expression groups that have been
returned calling the groups() function, which in this case will return two groups, one for
the highest temperature and the second for the lowest.

Other information that we want to provide to our users is information about wind and
humidity. The container element that contains this information has a CSS class called
today_nowcard-sidecar:

side = container.find('div', class_='today_nowcard-sidecar')
wind, humidity = self._get_additional_info(side)

We just find the container and pass it into the _get_additional_info method that will
loop through the children elements of the container, extracting the text and finally returning
the results for us.



Implementing the Weather Application Chapter 1

[ 36 ]

Finally, the last part of this method:

curr_temp = self._clear_str_number(weatherinfo['today_nowcard-
temp'])

self._unit_converter.dest_unit = args.unit

td_forecast = Forecast(self._unit_converter.convert(curr_temp),
                       humidity,
                       wind,
                       high_temp=self._unit_converter.convert(
                           high_temp),
                       low_temp=self._unit_converter.convert(
                           low_temp),
                       description=weatherinfo['today_nowcard-
                        phrase'])

return [td_forecast]

Since the current temperature contains a special character (degree sign) that we don't want
to have at this point, we use the _clr_str_number method to pass the today_nowcard-
temp item of the weatherinfo dictionary.

Now that we have all the information we need, we construct the Forecast object and
return it. Note that we are returning an array here; this is because all other options that we
are going to implement (five-day, ten-day, and weekend forecasts) will return a list, so to
make it consistent; also to facilitate when we will have to display this information on the
terminal, we are also returning a list.

Another thing to note is that we are making use of the convert method of our
UnitConverter to convert all the temperatures to the unit selected in the command line.

When running the command again:

$ python -m weatherterm -u Fahrenheit -a SWXX2372:1:SW -p WeatherComParser
-td

You should see an output similar to this:



Implementing the Weather Application Chapter 1

[ 37 ]

Congratulations! You have implemented your first web scraping application. Next up, let's
add the other forecast options.

Getting five- and ten-day weather forecasts
The site that we are currently scraping the weather forecast from (weather.com) also
provides the weather forecast for
five and ten days, so in this section, we are going to implement methods to parse these
forecast options as well.

The markup of the pages that present data for five and ten days are very similar; they have
the same DOM structure and share the same CSS classes, which makes it easier for us to
implement just one method that will work for both options. Let's go ahead and add a new
method to the wheater_com_parser.py file with the following contents:

def _parse_list_forecast(self, content, args):
    criteria = {
        'date-time': 'span',
        'day-detail': 'span',
        'description': 'td',
        'temp': 'td',
        'wind': 'td',
        'humidity': 'td',
    }

    bs = BeautifulSoup(content, 'html.parser')

    forecast_data = bs.find('table', class_='twc-table')
    container = forecast_data.tbody

    return self._parse(container, criteria)

As I mentioned before, the DOM for the five- and ten-day weather forecasts is very similar,
so we create the _parse_list_forecast method, which can be used for both options.
First, we define the criteria:

The date-time is a span element and contains a string representing the day of
the week
The day-detail is a span element and contains a string with the date, for
example, SEP 29
The description is a TD element and contains the weather conditions, for
example, Cloudy

https://weather.com/en-IN/


Implementing the Weather Application Chapter 1

[ 38 ]

temp is a TD element and contains temperature information such as high and low
temperature
wind is a TD element and contains wind information
humidity is a TD element and contains humidity information

Now that we have the criteria, we create a BeatufulSoup object, passing the content and
the html.parser. All the data that we would like to get is on the table with a CSS class
named twc-table. We find the table and define the tbody element as a container.
Finally, we run the _parse method, passing the container and the criteria that we
defined. The return of this function will look something like this:

[{'date-time': 'Today',
  'day-detail': 'SEP 28',
  'description': 'Partly Cloudy',
  'humidity': '78%',
  'temp': '60°50°',
  'wind': 'ESE 10 mph '},
 {'date-time': 'Fri',
  'day-detail': 'SEP 29',
  'description': 'Partly Cloudy',
  'humidity': '79%',
  'temp': '57°48°',
  'wind': 'ESE 10 mph '},
 {'date-time': 'Sat',
  'day-detail': 'SEP 30',
  'description': 'Partly Cloudy',
  'humidity': '77%',
  'temp': '57°49°',
  'wind': 'SE 10 mph '},
 {'date-time': 'Sun',
  'day-detail': 'OCT 1',
  'description': 'Cloudy',
  'humidity': '74%',
  'temp': '55°51°',
  'wind': 'SE 14 mph '},
 {'date-time': 'Mon',
  'day-detail': 'OCT 2',
  'description': 'Rain',
  'humidity': '87%',
  'temp': '55°48°',
  'wind': 'SSE 18 mph '}]



Implementing the Weather Application Chapter 1

[ 39 ]

Another method that we need to create is a method that will prepare the data for us, for
example, parsing and converting temperature values and creating a Forecast object. Add
a new method called _prepare_data with the following content:

def _prepare_data(self, results, args):
    forecast_result = []

    self._unit_converter.dest_unit = args.unit

    for item in results:
        match = self._temp_regex.search(item['temp'])
        if match is not None:
            high_temp, low_temp = match.groups()

        try:
            dateinfo = item['weather-cell']
            date_time, day_detail = dateinfo[:3], dateinfo[3:]
            item['date-time'] = date_time
            item['day-detail'] = day_detail
        except KeyError:
            pass

        day_forecast = Forecast(
            self._unit_converter.convert(item['temp']),
            item['humidity'],
            item['wind'],
            high_temp=self._unit_converter.convert(high_temp),
            low_temp=self._unit_converter.convert(low_temp),
            description=item['description'].strip(),
            forecast_date=f'{item["date-time"]} {item["day-
             detail"]}',
            forecast_type=self._forecast_type)
        forecast_result.append(day_forecast)

    return forecast_result

This method is quite simple. First, loop through the results and apply the regex that we
created to split the high and low temperatures stored in item['temp']. If there's a match,
it will get the groups and assign the value to high_temp and low_temp.

After that, we create a Forecast object and append it to a list that will be returned later on.



Implementing the Weather Application Chapter 1

[ 40 ]

Lastly, we add the method that will be invoked when the -5d or -10d flag is used. Create
another method called _five_and_ten_days_forecast with the following contents:

def _five_and_ten_days_forecast(self, args):
    content = self._request.fetch_data(args.forecast_option.value,
    args.area_code)
    results = self._parse_list_forecast(content, args)
    return self._prepare_data(results)

This method only fetches the contents of the page passing the forecast_option value and
the area code, so it will be possible to build the URL to perform the request. When the data
is returned, we pass it down to the _parse_list_forecast, which will return a list of
Forecast objects (one for each day); finally, we prepare the data to be returned using the
_prepare_data method.

Before we run the command, we need to enable this option in the command line tool that
we implemented; go over to the __main__.py file, and, just after the definition of the -td
flag, add the following code:

argparser.add_argument('-5d', '--fivedays',
                       dest='forecast_option',
                       action='store_const',
                       const=ForecastType.FIVEDAYS,
                       help='Shows the weather forecast for the
next
                       5 days')

Now, run the application again, but this time using the -5d or --fivedays flag:

$ python -m weatherterm -u Fahrenheit -a SWXX2372:1:SW -p WeatherComParser
-5d

It will produce the following output:

>> [Today SEP 28]
    High 60° / Low 50° (Partly Cloudy)
    Wind: ESE 10 mph / Humidity: 78%

>> [Fri SEP 29]
    High 57° / Low 48° (Partly Cloudy)
    Wind: ESE 10 mph / Humidity: 79%

>> [Sat SEP 30]
    High 57° / Low 49° (Partly Cloudy)
    Wind: SE 10 mph / Humidity: 77%



Implementing the Weather Application Chapter 1

[ 41 ]

>> [Sun OCT 1]
    High 55° / Low 51° (Cloudy)
    Wind: SE 14 mph / Humidity: 74%

>> [Mon OCT 2]
    High 55° / Low 48° (Rain)
    Wind: SSE 18 mph / Humidity: 87%

To wrap this section up, let's include the option to get the weather forecast for the next ten
days as well, in the __main__.py file, just below the -5d flag definition. Add the
following code:

argparser.add_argument('-10d', '--tendays',
                       dest='forecast_option',
                       action='store_const',
                       const=ForecastType.TENDAYS,
                       help='Shows the weather forecast for the
next
                       10 days')

If you run the same command as we used to get the five-day forecast but replace the -5d
flag with -10d, like so:

$ python -m weatherterm -u Fahrenheit -a SWXX2372:1:SW -p WeatherComParser
-10d

You should see the ten-day weather forecast output:

>> [Today SEP 28]
    High 60° / Low 50° (Partly Cloudy)
    Wind: ESE 10 mph / Humidity: 78%

>> [Fri SEP 29]
    High 57° / Low 48° (Partly Cloudy)
    Wind: ESE 10 mph / Humidity: 79%

>> [Sat SEP 30]
    High 57° / Low 49° (Partly Cloudy)
    Wind: SE 10 mph / Humidity: 77%

>> [Sun OCT 1]
    High 55° / Low 51° (Cloudy)
    Wind: SE 14 mph / Humidity: 74%

>> [Mon OCT 2]
    High 55° / Low 48° (Rain)
    Wind: SSE 18 mph / Humidity: 87%



Implementing the Weather Application Chapter 1

[ 42 ]

>> [Tue OCT 3]
    High 56° / Low 46° (AM Clouds/PM Sun)
    Wind: S 10 mph / Humidity: 84%

>> [Wed OCT 4]
    High 58° / Low 47° (Partly Cloudy)
    Wind: SE 9 mph / Humidity: 80%

>> [Thu OCT 5]
    High 57° / Low 46° (Showers)
    Wind: SSW 8 mph / Humidity: 81%

>> [Fri OCT 6]
    High 57° / Low 46° (Partly Cloudy)
    Wind: SW 8 mph / Humidity: 76%

>> [Sat OCT 7]
    High 56° / Low 44° (Mostly Sunny)
    Wind: W 7 mph / Humidity: 80%

>> [Sun OCT 8]
    High 56° / Low 44° (Partly Cloudy)
    Wind: NNE 7 mph / Humidity: 78%

>> [Mon OCT 9]
    High 56° / Low 43° (AM Showers)
    Wind: SSW 9 mph / Humidity: 79%

>> [Tue OCT 10]
    High 55° / Low 44° (AM Showers)
    Wind: W 8 mph / Humidity: 79%

>> [Wed OCT 11]
    High 55° / Low 42° (AM Showers)
    Wind: SE 7 mph / Humidity: 79%

>> [Thu OCT 12]
    High 53° / Low 43° (AM Showers)
    Wind: NNW 8 mph / Humidity: 87%

As you can see, the weather was not so great here in Sweden while I was writing this book.



Implementing the Weather Application Chapter 1

[ 43 ]

Getting the weekend weather forecast
The last weather forecast option that we are going to implement in our application is the
option to get the weather forecast for the upcoming weekend. This implementation is a bit
different from the others because the data returned by the weekend's weather is slightly
different from today's, five, and ten days weather forecast.

The DOM structure is different and some CSS class names are different as well. If you
remember the previous methods that we implemented, we always use
the _parser method, which gives us arguments such as the container DOM and a
dictionary with the search criteria. The return value of that method is also a dictionary
where the key is the class name of the DOM that we were searching and the value is the text
within that DOM element. 

Since the CSS class names of the weekend page are different, we need to implement some
code to get that array of results and rename all the keys so the _prepare_data function can
use scraped results properly.

With that said, let's go ahead and create a new file in the weatherterm/core directory
called mapper.py with the following contents:

class Mapper:

    def __init__(self):
        self._mapping = {}

    def _add(self, source, dest):
        self._mapping[source] = dest

    def remap_key(self, source, dest):
        self._add(source, dest)

    def remap(self, itemslist):
        return [self._exec(item) for item in itemslist]

    def _exec(self, src_dict):
        dest = dict()

        if not src_dict:
            raise AttributeError('The source dictionary cannot be
            empty or None')

        for key, value in src_dict.items():
            try:
                new_key = self._mapping[key]



Implementing the Weather Application Chapter 1

[ 44 ]

                dest[new_key] = value
            except KeyError:
                dest[key] = value
        return dest

The Mapper class gets a list with dictionaries and renames specific keys that we would like
to rename. The important methods here are remap_key and remap. The remap_key gets
two arguments, source and dest. source is the key that we wish to rename and dest is
the new name for that key. The remap_key method will add it to an internal dictionary
called _mapping, which will be used later on to look up the new key name.

The remap method simply gets a list containing the dictionaries and, for every item on that
list, it calls the _exec method that first creates a brand new dictionary, then checks whether
the dictionary is empty. In that case, it raises an AttributeError.

If the dictionary has keys, we loop through its items, search for whether the current item's
key has a new name in the mapping dictionary. If the new key name is found, will to create
a new item with the new key name; otherwise, we just keep the old name. After the loop,
the list is returned with all the dictionaries containing the keys with a new name.

Now, we just need to add it to the __init__.py file in the weatherterm/core directory:

from .mapper import Mapper

And, in the weather_com_parser.py file in weatherterm/parsers, we need to import
the Mapper:

from weatherterm.core import Mapper

With the mapper in place, we can go ahead and create the _weekend_forecast method in
the weather_com_parser.py file, like so:

def _weekend_forecast(self, args):
    criteria = {
        'weather-cell': 'header',
        'temp': 'p',
        'weather-phrase': 'h3',
        'wind-conditions': 'p',
        'humidity': 'p',
    }

    mapper = Mapper()
    mapper.remap_key('wind-conditions', 'wind')
    mapper.remap_key('weather-phrase', 'description')



Implementing the Weather Application Chapter 1

[ 45 ]

    content = self._request.fetch_data(args.forecast_option.value,
                                       args.area_code)

    bs = BeautifulSoup(content, 'html.parser')

    forecast_data = bs.find('article', class_='ls-mod')
    container = forecast_data.div.div

    partial_results = self._parse(container, criteria)
    results = mapper.remap(partial_results)

    return self._prepare_data(results, args)

The method starts off by defining the criteria in exactly the same way as the other
methods; however, the DOM structure is slightly different and some of the CSS names are
also different:

weather-cell: Contains the forecast date: FriSEP 29
temp: Contains the temperature (high and low): 57°F48°F
weather-phrase: Contains the weather conditions: Cloudy
wind-conditions: Wind information
humidity: The humidity percentage

As you can see, to make it play nicely with the _prepare_data method, we will need to
rename some keys in the dictionaries in the result set—wind-conditions should be wind
and weather-phrase should be the description.

Luckily, we have introduced the Mapper class to help us out:

mapper = Mapper()
mapper.remap_key('wind-conditions', 'wind')
mapper.remap_key('weather-phrase', 'description')

We create a Mapper object and say, remap wind-conditions to wind and weather-
phrase to description:

content = self._request.fetch_data(args.forecast_option.value,
                                   args.area_code)

bs = BeautifulSoup(content, 'html.parser')

forecast_data = bs.find('article', class_='ls-mod')
container = forecast_data.div.div

partial_results = self._parse(container, criteria)



Implementing the Weather Application Chapter 1

[ 46 ]

We fetch all the data, create a BeautifulSoup object using the html.parser, and find the
container element that contains the children elements that we are interested in. For the
weekend forecast, we are interested in getting the article element with a CSS class called
ls-mod and within that article we go down to the first child element, which is a DIV, and
gets its first child element, which is also a DIV element.

The HTML should look something like this:

<article class='ls-mod'>
  <div>
    <div>
      <!-- this DIV will be our container element -->
    </div>
  </div>
</article>

That's the reason we first find the article, assign it to forecast_data, and then use
forecast_data.div.div so we get the DIV element we want.

After defining the container, we pass it to the _parse method together with the container
element; when we get the results back, we simply need to run the remap method of the
Mapper instance, which will normalize the data for us before we call _prepare_data.

Now, the last detail before we run the application and get the weather forecast for the
weekend is that we need to include the --w and --weekend flag to the ArgumentParser.
Open the __main__.py file in the weatherterm directory and, just below the --tenday
flag, add the following code:

argparser.add_argument('-w', '--weekend',
                       dest='forecast_option',
                       action='store_const',
                       const=ForecastType.WEEKEND,
                       help=('Shows the weather forecast for the
                             next or '
                             'current weekend'))



Implementing the Weather Application Chapter 1

[ 47 ]

Great! Now, run the application using the -w or --weekend flag:

>> [Fri SEP 29]
    High 13.9° / Low 8.9° (Partly Cloudy)
    Wind: ESE 10 mph / Humidity: 79%

>> [Sat SEP 30]
    High 13.9° / Low 9.4° (Partly Cloudy)
    Wind: SE 10 mph / Humidity: 77%

>> [Sun OCT 1]
    High 12.8° / Low 10.6° (Cloudy)
    Wind: SE 14 mph / Humidity: 74%

Note that this time, I used the -u flag to choose Celsius. All the temperatures in the output
are represented in Celsius instead of Fahrenheit.

Summary
In this chapter, you learned the basics of object-oriented programming in Python; we
covered how to create classes, use inheritance, and use the @property decorators to create
getter and setters.

We covered how to use the inspect module to get more information about modules, classes,
and functions. Last but not least, we made use of the powerful package Beautifulsoup to
parse HTML and Selenium to make requests to the weather website.

We also learned how to implement command line tools using the argparse module from
Python's standard library, which allows us to provide tools that are easier to use and with
very helpful documentation.

Next up, we are going to develop a small wrapper around the Spotify Rest API and use it to
create a remote control terminal.



2
Creating a Remote-Control

Application with Spotify
Spotify is a music streaming service that was developed in Stockholm, Sweden. The first
version was released back in 2008 and today it doesn't only provide music, but video and
podcasts as well. Growing rapidly from a startup in Sweden to the biggest music service in
the world, Spotify has apps running on video game consoles and mobile phones, and has
integration with many social networks.
The company really has changed how we consume music and has also enabled not only
well-known artists but small indie artists to share their music with the world.

Luckily, Spotify is also a great platform for developers and provides a really nice and well-
documented REST API where it's possible to make searches by artists, albums, song names,
and also create and share playlists.

For the second application in this book, we are going to develop a terminal application
where we can:

Search artists
Search albums
Search tracks
Play music

Apart from all these features, we are going to implement functions so we can control the
Spotify application through the terminal.



Creating a Remote-Control Application with Spotify Chapter 2

[ 49 ]

First, we are going to go through the process of creating a new application on Spotify; then,
it will be time to develop a small framework that will wrap some parts of Spotify's REST
API. We are also going to work on implementing different types of authentication
supported by Spotify, in order to consume its REST API.
When all these core functionalities are in place, we are going to develop a terminal user
interface using the curses package that is distributed with Python.

In this chapter, you will learn:

How to create a Spotify app
How to use OAuth
Object-oriented programming concepts
Using the popular package Requests to consume REST APIs
How to design terminal user interfaces using curses

I don't know about you, but I really feel like writing code and listening to some good music,
so let's get right into it!

Setting up the environment
Let's go ahead and configure our development environment. The first thing we need to do
is create a new virtual environment, so we can work and install the packages that we need
without interfering with the global Python installation.

Our application will be called musicterminal, so we can create a virtual environment with
the same name.

To create a new virtual environment, run the following command:

$ python3 -m venv musicterminal

Make sure that you are using Python 3.6 or later, otherwise the
applications in this book may not work properly.

And to activate the virtual environment, you can run the following command:

$ . musicterminal/bin/activate



Creating a Remote-Control Application with Spotify Chapter 2

[ 50 ]

Perfect! Now that we have our virtual environment set up, we can create the project's
directory structure. It should have the following structure:

musicterminal
├── client
├── pytify
│   ├── auth
│   └── core
└── templates

Like the application in the first chapter, we create a project directory
(called musicterminal here) and a sub-directory also named pytify, which will contain
the framework wrapping Spotify's REST API.
Inside the framework directory, we split auth into two modules which will contain
implementations for two authentication flows supported by Spotify—authorization code
and client credentials. Finally, the core module will contain all the methods to fetch data
from the REST API.

The client directory will contain all the scripts related to the client application that we are
going to build.

Finally, the templates directory will contain some HTML files that will be used when we
build a small Flask application to perform Spotify authentication.

Now, let's create a requirements.txt file inside the musicterminal directory with the
following content:

requests==2.18.4
PyYAML==3.12

To install the dependencies, just run the following command:

$ pip install -r requirements.txt



Creating a Remote-Control Application with Spotify Chapter 2

[ 51 ]

As you can see in the output, other packages have been installed in our virtual
environment. The reason for this is that the packages that our project requires also require
other packages, so they will also be installed.

Requests were created by Kenneth Reitz https:/ /www. kennethreitz. org/, and it is one of
the most used and beloved packages in the Python ecosystem. It is used by large companies
such as Microsoft, Google, Mozilla, Spotify, Twitter, and Sony, just to name a few, and it is
Pythonic and really straight-forward to use.

Check out other projects from Kenneth, especially the pipenv project,
which is an awesome Python packaging tool.

Another module that we are going to use is curses. The curses module is
simply a wrapper over the curses C functions and it is relatively simpler to
use than programming in C. If you worked with the curses C library
before, the curses module in Python should be familiar and easy to learn.

One thing to note is that Python includes the curses module on Linux and
Mac; however, it is not included by default on Windows. If you are
running Windows, the curses documentation at https:/ /docs. python.
org/3/ howto/ curses. html recommends the  UniCurses package
developed by Fredrik Lundh.

Just one more thing before we start coding. You can run into problems when trying to
import curses; the most common cause is that the libncurses are not installed in your
system. Make sure that you have libncurses and libncurses-dev installed on your
system before installing Python.

If you are using Linux, you will most likely find libncurses on the package repository of
our preferred distribution. In Debian/Ubuntu, you can install it with the following
command:

$ sudo apt-get install libncurses5 libncurses5-dev

Great! Now, we are all set to start implementing our application.

https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://www.kennethreitz.org/
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html
https://docs.python.org/3/howto/curses.html


Creating a Remote-Control Application with Spotify Chapter 2

[ 52 ]

Creating a Spotify app
The first thing we need to do is create a Spotify app; after that, we are going to get access
keys so we can authenticate and consume the REST API.

Head over to https:/ / beta. developer. spotify. com/ dashboard/  and further down on the
page you can find the Login button, and if you don't have an account, you can create a new
one:

At the time of writing, Spotify started changing its developer's site and
was currently in beta, so the address to log in and some screenshots may
be different.

If you don't have a Spotify account, you will have to create one first. You should be able to
create applications if you sign up for the free account, but I would recommend signing up
for the premium account because it is a great service with a great music catalog.

https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/


Creating a Remote-Control Application with Spotify Chapter 2

[ 53 ]

When you log in to the Spotify developer website, you will see a page similar to the
following:

At the moment, we don't have any application created (unless you have already created
one), so go ahead and click on the CREATE AN APP button. A dialog screen to create the
application will be displayed:



Creating a Remote-Control Application with Spotify Chapter 2

[ 54 ]

Here, we have three required fields: the application's name, description, and also some
checkboxes where you will have to tell Spotify what you're building. The name should be
pytify and in the description, you can put anything you want, but let's add something like
Application for controlling the Spotify client from the terminal. The
type of application we are building will be a website.

When you are done, click on the NEXT button at the bottom of the dialog screen.



Creating a Remote-Control Application with Spotify Chapter 2

[ 55 ]

The second step in the application's creation process is to inform Spotify whether you are
creating a commercial integration. For the purposes of this book, we are going to select NO;
however, if you are going to create an application that will monetize, you should definitely
select YES.

In the next step, the following dialog will be displayed:

If you agree with all the conditions, just select all the checkboxes and click the
SUBMIT button.

If the application has been created successfully, you will be redirected to the application's
page, which is shown as follows:



Creating a Remote-Control Application with Spotify Chapter 2

[ 56 ]

Click on the SHOW CLIENT SECRET link and copy the values of the Client ID and the
Client Secret. We are going to need these keys to consume Spotify's REST API.

The application's configuration
To make the application more flexible and easy to configure, we are going to create a
configuration file. This way, we don't need to hardcode the URL and access keys; also, if we
need to change these settings, changes in the source code will not be required.
We are going to create a config file in the YAML format to store information that will be
used by our application to authenticate, make requests to the Spotify RESP API endpoints,
and so on.



Creating a Remote-Control Application with Spotify Chapter 2

[ 57 ]

Creating a configuration file
Let's go ahead and create a file called config.yaml in the musicterminal directory with
the following contents:

client_id: '<your client ID>'
client_secret: '<your client secret>'
access_token_url: 'https://accounts.spotify.com/api/token'
auth_url: 'http://accounts.spotify.com/authorize'
api_version: 'v1'
api_url: 'https://api.spotify.com'
auth_method: 'AUTHORIZATION_CODE'

client_id and client_secret are the keys that were created for us when we created the
Spotify application. These keys will be used to get an access token that we will have to
acquire every time we need to send a new request to Spotify's REST API. Just replace the
<your client ID> and <your client secret> with your own keys.

Keep in mind that these keys have to be kept in a safe place. Don't share
the keys with anyone and if you are having your project on sites like
GitHub, make sure that you are not committing this configuration file
with your secret keys. What I usually do is add the config file to my
.gitignore file so it won't be source-controlled; otherwise, you can
always commit the file as I did by presenting it with placeholders instead
of the actual keys. That way, it will be easy to remember where you need
to add the keys.

After the client_id and client_secret keys, we have the access_token_url. This is
the URL to the API endpoint that we have to perform requests on in order to get the access
token.

 auth_url is the endpoint of Spotify's Account Service; we will use it when we need to
acquire or refresh an authorization token.

The api_version, as the name says, specifies Spotify's REST API version. This is appended
to the URL when performing requests.

Lastly, we have the api_url, which is the base URL for Spotify's REST API endpoints.



Creating a Remote-Control Application with Spotify Chapter 2

[ 58 ]

Implementing a configuration file reader
Before implementing the reader, we are going to add an enumeration to represent both
kinds of authentication flow that Spotify provides us with. Let's go ahead and create a file
called auth_method.py in the musicterminal/pytify/auth directory with the
following content:

from enum import Enum, auto

class AuthMethod(Enum):
    CLIENT_CREDENTIALS = auto()
    AUTHORIZATION_CODE = auto()

This will define an enumeration with the CLIENT_CREDENTIALS and
AUTHORIZATION_CODE properties. Now. we can use these values in the configuration file.
Another thing we need to do is create a file called __init__.py in
the musicterminal/pytify/auth directory and import the enumeration that we just
created:

from .auth_method import AuthMethod

Now, we can continue and create the functions that will read the configuration for us.
Create a file called config.py in the musicterminal/pytify/core directory, and let's
start by adding some import statements:

import os
import yaml
from collections import namedtuple

from pytify.auth import AuthMethod

First, we import the os module so we can have access to functions that will help us in
building the path where the YAML configuration file is located. We also import the yaml
package to read the configuration file and, last but not least, we are importing
namedtuple from the collections module. We will go into more detail about what
namedtuple does later.

The last thing we import is the AuthMethod enumeration that we just created in the
pytify.auth module.



Creating a Remote-Control Application with Spotify Chapter 2

[ 59 ]

Now, we need a model representing the configuration file, so we create a named tuple
called Config, such as:

Config = namedtuple('Config', ['client_id',
                               'client_secret',
                               'access_token_url',
                               'auth_url',
                               'api_version',
                               'api_url',
                               'base_url',
                               'auth_method', ])

The namedtuple is not a new feature in Python and has been around since version
2.6. namedtuple's are tuple-like objects with a name and with fields accessible by attribute
lookup. It is possible to create namedtuple in two different ways; let's start Python REPL
and try it out:

>>> from collections import namedtuple
>>> User = namedtuple('User', ['firstname', 'lastname', 'email'])
>>> u = User('Daniel','Furtado', 'myemail@test.com')
User(firstname='Daniel', lastname='Furtado', email='myemail@test.com')
>>>

This construct gets two arguments; the first argument is the name of the namedtuple, and
the second is an array of str elements representing every field in the namedtuple. It is also
possible to specify the fields of the namedtuple by passing a string with every field name
separated by a space, such as:

>>> from collections import namedtuple
>>> User = namedtuple('User', 'firstname lastname email')
>>> u = User('Daniel', 'Furtado', 'myemail@test.com')
>>> print(u)
User(firstname='Daniel', lastname='Furtado', email='myemail@test.com')

The namedtuple constructor also has two keyword-arguments:

Verbose, which, when set to True, displays the definition of the class that defines the
namedtuple on the terminal. Behind the scenes, namedtuple's are classes and the verbose
keyword argument lets us have a sneak peek at how the namedtuple class is constructed.
Let's see this in practice on the REPL:

>>> from collections import namedtuple
>>> User = namedtuple('User', 'firstname lastname email',
verbose=True)
from builtins import property as _property, tuple as _tuple
from operator import itemgetter as _itemgetter



Creating a Remote-Control Application with Spotify Chapter 2

[ 60 ]

from collections import OrderedDict

class User(tuple):
    'User(firstname, lastname, email)'

    __slots__ = ()

    _fields = ('firstname', 'lastname', 'email')

    def __new__(_cls, firstname, lastname, email):
        'Create new instance of User(firstname, lastname, email)'
        return _tuple.__new__(_cls, (firstname, lastname, email))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new User object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != 3:
            raise TypeError('Expected 3 arguments, got %d' %
            len(result))
        return result

    def _replace(_self, **kwds):
        'Return a new User object replacing specified fields with
         new values'
        result = _self._make(map(kwds.pop, ('firstname',
'lastname',
                             'email'), _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' %
                              list(kwds))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return self.__class__.__name__ + '(firstname=%r,
                                           lastname=%r, email=%r)'
        % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their
          values.'
        return OrderedDict(zip(self._fields, self))

    def __getnewargs__(self):
        'Return self as a plain tuple. Used by copy and pickle.'
        return tuple(self)



Creating a Remote-Control Application with Spotify Chapter 2

[ 61 ]

    firstname = _property(_itemgetter(0), doc='Alias for field
                          number 0')

    lastname = _property(_itemgetter(1), doc='Alias for field
number
                         1')

    email = _property(_itemgetter(2), doc='Alias for field number
                      2')

The other keyword argument is rename, which will rename every property in the
namedtuple that has an incorrect naming, for example:

>>> from collections import namedtuple
>>> User = namedtuple('User', 'firstname lastname email 23445',
rename=True)
>>> User._fields
('firstname', 'lastname', 'email', '_3')

As you can see, the field 23445 has been automatically renamed to _3, which is the field
position.

To access the namedtuple fields, you can use the same syntax when accessing properties in
a class, using the namedtuple —User as shown in the preceding example. If we would like
to access the lastname property, we can just write u.lastname.

Now that we have the namedtuple representing our configuration file, it is time to add the
function that will perform the work of loading the YAML file and returning the
namedtuple—Config. In the same file, let's implement the read_config function as
follows:

def read_config():
    current_dir = os.path.abspath(os.curdir)
    file_path = os.path.join(current_dir, 'config.yaml')

    try:
        with open(file_path, mode='r', encoding='UTF-8') as file:
            config = yaml.load(file)

            config['base_url'] =
            f'{config["api_url"]}/{config["api_version"]}'

            auth_method = config['auth_method']
            config['auth_method'] =
            AuthMethod.__members__.get(auth_method)



Creating a Remote-Control Application with Spotify Chapter 2

[ 62 ]

            return Config(**config)

    except IOError as e:
        print(""" Error: couldn''t file the configuration file
        `config.yaml`
        'on your current directory.

        Default format is:',

        client_id: 'your_client_id'
        client_secret: 'you_client_secret'
        access_token_url: 'https://accounts.spotify.com/api/token'
        auth_url: 'http://accounts.spotify.com/authorize'
        api_version: 'v1'
        api_url: 'http//api.spotify.com'
        auth_method: 'authentication method'

        * auth_method can be CLIENT_CREDENTIALS or
          AUTHORIZATION_CODE""")
        raise

The read_config function starts off by using the os.path.abspath function to get the
absolute path of the current directory, and assigns it to the current_dir variable. Then, we
join the path stored on the current_dir variable with the name of the file, in this case, the
YAML configuration file.

inside the try statement, we try to open the file as read-only and set the encoding to UTF-8.
In the event this fails, it will print a help message to the user saying that it couldn't open the
file and will show help describing how the YAML configuration file is structured.

If the configuration file can be read successfully, we call the load function in the yaml
module to load and parse the file, and assign the results to the config variable. We also
include an extra item in the config called base_url, which is just a helper value that
contains the concatenated values of api_url and api_version.

The value of the base_url will look something like this: https:/ /api. spotify. com/v1. 

Lastly, we create an instance of Config. Note how we spread the values in the constructor;
this is possible because the namedtuple—Config, has the same fields as the object
returned by yaml.load(). This would be exactly  the same as doing this:

return Config(
    client_id=config['client_id'],
    client_secret=config['client_secret'],

https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1
https://api.spotify.com/v1


Creating a Remote-Control Application with Spotify Chapter 2

[ 63 ]

    access_token_url=config['access_token_url'],
    auth_url=config['auth_url'],
    api_version=config['api_version'],
    api_url=config['api_url'],
    base_url=config['base_url'],
    auth_method=config['auth_method'])

The final touch here is to create a __init__.py file in the pytify/core directory and
import the read_config function that we just created:

from .config import read_config

Authenticating with Spotify's web API
Now that we have the code to load the configuration file for us, we are going to start coding
the authentication part of our framework. Spotify currently supports three kinds of
authentication: authorization code, client credentials, and implicitly grant. We are going to
implement authorization code and client credentials in this chapter, and we will start by
implementing the client credentials flow, which is the easiest to start with.

The client credentials flow has some disadvantages over the authorization code flow
because the flow does not include authorization and cannot access the user's private data as
well as control playback. We will implement and use this flow for now, but we will change
to authorization code when we start implementing the terminal player.

First, we are going to create a file called authorization.py in the
musicterminal/pytify/auth directory with the following contents:

from collections import namedtuple

Authorization = namedtuple('Authorization', [
    'access_token',
    'token_type',
    'expires_in',
    'scope',
    'refresh_token',
])



Creating a Remote-Control Application with Spotify Chapter 2

[ 64 ]

This is going to be the authentication model and it will contain the data we get after
requesting an access token. In the following list, you can see a description of every property:

access_token: The token that has to be sent together with every request to the
Web API
token_type: The type of the token, which is usually Bearer
expires_in: The access_token expiration time, which is 3600 seconds (1 hour)
scope: The scope is basically the permissions that Spotify's user granted to our
application
refresh_token: The token that can be used to refresh the access_token after
the expiration

The last touch is to create a __init__.py file in the musicterminal/pytify/auth
directory and import the Authorization , which is a namedtuple:

from .authorization import Authorization

Implementing the client credentials flow
The client credential flow is quite simple. Let's break down all the steps until we get the
access_token:

Our application will request the access token from the Spotify accounts service;1.
remember that in our configuration file, we have the api_access_token. That's
the URL we need to send the request to get hold of an access token. There are
three things that we will need to send the request, the client id, the client secret,
and the grant type, which in this case is client_credentials.
The Spotify account service will validate that request, check if the keys match2.
with the keys of the app that we register to the developer's site, and return an
access token.
Now, our application has to use this access token in order to consume data from3.
the REST APIs.
The Spotify REST API will return the data we requested.4.

Before we start implementing the functions that will make the authentication and get the
access token, we can add a custom exception that we will throw if we get a bad request
(HTTP 400) from the Spotify account service.



Creating a Remote-Control Application with Spotify Chapter 2

[ 65 ]

Let's create a file named exceptions.py in the musicterminal/pytify/core directory
with the following contents:

class BadRequestError(Exception):
    pass

This class doesn't do much; we simply inherit from Exception. We could have just thrown
a generic exception, but it is a good practice to create your own custom exceptions with
good names and descriptions when developing frameworks and libraries that other
developers will make use of.

So, instead of throwing an exception like this:

raise Exception('some message')

We can be more explicit and throw a BadRequestError, like so:

raise BadRequestError('some message')

Now, developers using this code can handle this kind of exception properly in their code.

Open the __init__.py file in the musicterminal/pytify/core directory and add the
following import statement:

from .exceptions import BadRequestError

Perfect! Now, it is time to add a new file called auth.py in
the musicterminal/pytify/auth directory, and the first thing we are going to add to this
file is a few imports:

import requests
import base64
import json

from .authorization import Authorization
from pytify.core import BadRequestError

I usually put all the imports from standard library modules first and
function imports in files from my applications last. It is not a requirement,
but it is just something I think makes the code cleaner and more
organized. This way, I can easily see which are standard library items and
which aren't.



Creating a Remote-Control Application with Spotify Chapter 2

[ 66 ]

Now, we can start adding the functions that will send the request the to the Spotify
account service and return the access token. The first function that we are going to add is
called get_auth_key:

def get_auth_key(client_id, client_secret):
    byte_keys = bytes(f'{client_id}:{client_secret}', 'utf-8')
    encoded_key = base64.b64encode(byte_keys)
    return encoded_key.decode('utf-8')

The client credential flow requires us to send the client_id and the client_secret,
which has to be base 64-encoded. First, we convert the string with
the client_id:client_secret format to bytes. After that, we encode it using base 64 and
then decode it, returning the string representation of that encoded data so we can send it
with the request payload.

The other function that we are going to implement in the same file is
called _client_credentials:

def _client_credentials(conf):

    auth_key = get_auth_key(conf.client_id, conf.client_secret)

    headers = {'Authorization': f'Basic {auth_key}', }

    options = {
        'grant_type': 'client_credentials',
        'json': True,
        }

    response = requests.post(
        'https://accounts.spotify.com/api/token',
        headers=headers,
        data=options
    )

    content = json.loads(response.content.decode('utf-8'))

    if response.status_code == 400:
        error_description = content.get('error_description','')
        raise BadRequestError(error_description)
    access_token = content.get('access_token', None)
    token_type = content.get('token_type', None)
    expires_in = content.get('expires_in', None)
    scope = content.get('scope', None)
    return Authorization(access_token, token_type, expires_in,
    scope, None)



Creating a Remote-Control Application with Spotify Chapter 2

[ 67 ]

This function gets an argument as the configuration and uses the get_auth_key function
to pass the client_id and the client_secret to build a base 64-encoded auth_key. This
will be sent to Spotify's accounts service to request an access_token.

Now, it is time to prepare the request. First, we set the Authorization in the request
header, and the value will be the Basic string followed by the auth_key. The payload for
this request will be grant_type, which in this case is client_credentials, and
json will be set to True, which tells the API that we want the response in JSON format.

We use the requests package to make the request to Spotify's account service, passing the
headers and the data that we configured.

When we get a response, we first decode and load the JSON data into the variable content.

If the HTTP status code is 400 (BAD_REQUEST) we raise a BadRequestError; otherwise,
we get the values for access_token, token_type, expires_in, and scope, and finally
create an Authorization tuple and return it.

Note that we are setting None to the last parameter when creating an
Authentication, namedtuple. The reason for this is that Spotify's
account service doesn't return a refresh_token when the type of
authentication is CLIENT_CREDENTIALS.

All the functions that we have created so far are meant to be private, so the last function
that we are going to add is the authenticate function. This is the function that developers
will invoke to start the authentication process:

def authenticate(conf):
    return _client_credentials(conf)

This function is pretty straightforward; the function gets an argument as an instance of the
Config, namedtuple, which will contain all the data that has been read from the
configuration file. We then pass the configuration to the _client_credentials function,
which will obtain the access_token using the client credentials flow.

Let's open the __init__.py file in the musicterminal/pytify/auth directory and
import the authenticate and get_auth_key functions:

from .auth import authenticate
from .auth import get_auth_key



Creating a Remote-Control Application with Spotify Chapter 2

[ 68 ]

Nice! Let's try this out in the Python REPL:

Python 3.6.2 (default, Oct 15 2017, 01:15:28)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from pytify.core import read_config
>>> from pytify.auth import authenticate
>>> config = read_config()
>>> auth = authenticate(config)
>>> auth
Authorization(access_token='BQDM_DC2HcP9kq5iszgDwhgDvq7zm1TzvzXXyJQwFD7trl0
Q48DqoZirCMrMHn2uUml2YnKdHOszAviSFGtE6w', token_type='Bearer',
expires_in=3600, scope=None, refresh_token=None)
>>>

Exactly what we expected! The next step is to start creating the functions that will consume
Spotify's REST API.

Implementing the authorization code flow
In this section, we are going to implement the authorization code flow, which we will be
using in the client. We need to use this authentication flow because we need to acquire
special access rights from the user using our application to execute certain actions. For
instance, our application will have to be able to send a request to Spotify's Web API to play
a certain track on the user's active device. In order to do that, we need to request user-
modify-playback-state.

Here are the steps involved in the authorization code flow:

Our application will request authorization to access data, redirecting the user to a1.
login page on Spotify's web page. There, the user can see all the access rights that
the application requires.
If the user approves it, the Spotify account service will send a request to the2.
callback URI, sending a code and the state.
When we get hold of the code, we send a new request passing the client_id,3.
client_secret, grant_type, and code to acquire the access_token. This
time, it will be different from the client credentials flow; we are going to get
scope and a refresh_token
Now, we can normally send requests to the Web API and if the access token has4.
expired, we can do another request to refresh the access token and continue
performing requests.



Creating a Remote-Control Application with Spotify Chapter 2

[ 69 ]

With that said, open the auth.py file in the musicterminal/pytify/auth directory and
let's add a few more functions. First, we are going to add a function called
_refresh_access_token; you can add this function after the get_auth_key function:

def _refresh_access_token(auth_key, refresh_token):

    headers = {'Authorization': f'Basic {auth_key}', }

    options = {
        'refresh_token': refresh_token,
        'grant_type': 'refresh_token',
        }

    response = requests.post(
        'https://accounts.spotify.com/api/token',
        headers=headers,
        data=options
    )

    content = json.loads(response.content.decode('utf-8'))

    if not response.ok:
        error_description = content.get('error_description', None)
        raise BadRequestError(error_description)

    access_token = content.get('access_token', None)
    token_type = content.get('token_type', None)
    scope = content.get('scope', None)
    expires_in = content.get('expires_in', None)

    return Authorization(access_token, token_type, expires_in,
    scope, None)

It basically does the same thing as the function handling the client credentials flow, but this
time we send the refresh_token and the grant_type. We get the data from the
response's object and create an Authorization, namedtuple.

The next function that we are going to implement will make use of the os module of the
standard library, so before we start with the implementation, we need to add the following
import statement at the top of the auth.py file:

import os



Creating a Remote-Control Application with Spotify Chapter 2

[ 70 ]

Now, we can go ahead and add a function called _authorization_code. You can add this
function after the get_auth_key function with the following contents:

def _authorization_code(conf):

    current_dir = os.path.abspath(os.curdir)
    file_path = os.path.join(current_dir, '.pytify')

    auth_key = get_auth_key(conf.client_id, conf.client_secret)

    try:
        with open(file_path, mode='r', encoding='UTF-8') as file:
            refresh_token = file.readline()
            if refresh_token:
                return _refresh_access_token(auth_key,
                 refresh_token)

    except IOError:
        raise IOError(('It seems you have not authorize the
                       application '
                       'yet. The file .pytify was not found.'))

Here, we try opening a file called .pytify in the musicterminal directory. This file will
contain the refresh_token that we are going to use to refresh the access_token every
time we open our application.

After getting the refresh_token from the file, we pass it to
the _refresh_access_token function, together with the auth_key. If for some reason we
are unable to open the file or the file does not exist in the musicterminal directory, an
exception will be raised.

The last modification we need to do now is in the authenticate function in the same file.
We are going to add support for both authentication methods; it should look like this:

def authenticate(conf):
    if conf.auth_method == AuthMethod.CLIENT_CREDENTIALS:
        return _client_credentials(conf)

    return _authorization_code(conf)

Now, we will start different authentication methods depending on what we have specified
in the configuration file.

Since the authentication function has a reference to AuthMethod, we need to import it:

from .auth_method import AuthMethod



Creating a Remote-Control Application with Spotify Chapter 2

[ 71 ]

Before we try this type of authentication out, we need to create a small web app that will
authorize our application for us. We are going to work on that in the next section.

Authorizing our application with authorization
code flow
In order to make our Spotify terminal client work properly, we need special access rights to
manipulate the user's playback. We do that by using the authorization code and we need to
specifically request for the user-modify-playback-state access right.

There are a few more access rights which would be a good idea to add from the beginning if
you intend to add more functionalities to this application; for example, if you want to be
able to manipulate a user's private and public playlists, you may want to add
the playlist-modify-private and playlist-modify-public scope.

You might also want to display a list of artists that the user follows on the client application,
so you need to include user-follow-read to the scope as well.

It will suffice to request user-modify-playback-state access rights for the
functionalities that we are going to implement in the client application.

The idea is to authorize our application using the authorization code flow. We are going to
create a simple web application using the framework Flask that will define two routes.
The / root will just render a simple page with a link that will redirect us to the Spotify
authentication page.

The second root will be /callback, which is the endpoint that Spotify will call after the
users of our application give authorization for our application to access their Spotify data.

Let's see how this is implemented, but first, we need to install Flask. Open a terminal and
type the following command:

pip install flask

After you have installed it you can even include it in the requirements.txt file such as:

$ pip freeze | grep Flask >> requirements.txt

The command pip freeze will print all the installed packages in the requirements format.
The output will return more items because it will also contain all the dependencies of the
packages that we already installed, which is why we grep Flask and append it to the
requirements.txt file.



Creating a Remote-Control Application with Spotify Chapter 2

[ 72 ]

Next time you are going to set up a virtual environment to work on this project you can just
run:

pip install -r requirements.txt

Great! Now, we can start creating the web application. Create a file called
spotify_auth.py.

First, we add all necessary imports:

from urllib.parse import urlencode

import requests
import json

from flask import Flask
from flask import render_template
from flask import request

from pytify.core import read_config
from pytify.core import BadRequestError
from pytify.auth import Authorization
from pytify.auth import get_auth_key

We are going to use the urlencode function in the urllib.parse module to encode the
parameters that are going to be appended to the authorize URL. We are also going to use
the requests to send a request to get the access_token after the user authorizes our app
and use the json package to parse the response.
Then, we will import Flask-related things, so we can create a Flask
application,  render_template, so we can return a rendered HTML template to the user,
and finally the request, so we can access the data sent back to us by Spotify's authorization
service.

We will also import some functions that we included in the core and auth submodules of
the pytify module: the read_config to load and read the YAML config file and the
_authorization_code_request. The latter will be explained in more detail in a short
while.

We will create a Flask app and the root route:

app = Flask(__name__)

@app.route("/")
def home():



Creating a Remote-Control Application with Spotify Chapter 2

[ 73 ]

    config = read_config()

    params = {
        'client_id': config.client_id,
        'response_type': 'code',
        'redirect_uri': 'http://localhost:3000/callback',
        'scope': 'user-read-private user-modify-playback-state',
    }

    enc_params = urlencode(params)
    url = f'{config.auth_url}?{enc_params}'

    return render_template('index.html', link=url)

Great! Starting from the top, we read the configuration file so we can get our client_id
and also the URL for Spotify's authorization service. We build the parameters dictionary
with the client_id; the response type for the authorization code flow needs to be set to
code; the redirect_uri is the callback URI which Spotify's authorization service will use
to send us the authorization code back. And finally, since we are going to send instructions
to the REST API to play a track in the user's active device, the application needs to have
user-modify-playback-state permissions.

Now, we encode all the parameters and build the URL.

The return value will be a rendered HTML. Here, we will use the render_template
function, passing a template as a first argument. By default, Flask will search this template
in a directory called templates. The second argument to this function is the model. We are
passing a property named link and setting the value of the variable URL. This way, we can
render the link in the HTML template such as: {{link}}.

Next, we are going to add a function to acquire the access_token and the
refresh_token for us after we get the authorization code back from Spotify's account
service. Create a function called _authorization_code_request with the following
content:

def _authorization_code_request(auth_code):
    config = read_config()

    auth_key = get_auth_key(config.client_id, config.client_secret)

    headers = {'Authorization': f'Basic {auth_key}', }

    options = {
        'code': auth_code,
        'redirect_uri': 'http://localhost:3000/callback',



Creating a Remote-Control Application with Spotify Chapter 2

[ 74 ]

        'grant_type': 'authorization_code',
        'json': True
    }

    response = requests.post(
        config.access_token_url,
        headers=headers,
        data=options
    )

    content = json.loads(response.content.decode('utf-8'))

    if response.status_code == 400:
        error_description = content.get('error_description', '')
        raise BadRequestError(error_description)

    access_token = content.get('access_token', None)
    token_type = content.get('token_type', None)
    expires_in = content.get('expires_in', None)
    scope = content.get('scope', None)
    refresh_token = content.get('refresh_token', None)
    return Authorization(access_token, token_type, expires_in,
    scope, refresh_token)

This function is pretty much the same as the _refresh_access_token function that we
previously implemented in the auth.py file. The only thing to note here is that in the
options, we are passing the authorization code, and the grant_type is set to
authorization_code:

@app.route('/callback')
def callback():
    config = read_config()
    code = request.args.get('code', '')
    response = _authorization_code_request(config, code)

    file = open('.pytify', mode='w', encoding='utf-8')
    file.write(response.refresh_token)
    file.close()

    return 'All set! You can close the browser window and stop the
    server.'

Here, we define the route that will be called by Spotify's authorization service to send back
the authorization code.

We start off by reading the configuration, parsing the code from the request data, and
calling the _authorization_code_request, passing the code we have just obtained.



Creating a Remote-Control Application with Spotify Chapter 2

[ 75 ]

This function will send another request using this code, and it will acquire an access token
that we can use to send requests, along with a refresh token that will be stored in a file
called .pytify in the musicterminal directory.

The access token that we obtain to make the requests to the Spotify REST API is valid for
3,600 seconds, or 1 hour, which means that within one hour, we can use the same access
token to make requests. After that, we need to refresh the access token. We can do that by
using the refresh token that is stored in the .pytify file.

Lastly, we send a message to the browser with a success message.

Now, to finish our Flask application, we need to add the following code:

if __name__ == '__main__':
    app.run(host='localhost', port=3000)

This tells Flask to run the server on the localhost and use port 3000.

The home function of our Flash application will, as a response, return a templated HTML
file called index.html. We haven't created that file yet, so let's go ahead and create a folder
called musicterminal/templates and inside the newly created directory, add a file
called index.html with the following contents:

<html>
    <head>
    </head>
    <body>
       <a href={{link}}> Click here to authorize </a>
    </body>
</html>

There's not much to explain here, but note that we are referencing the link property that we
passed to the render_template function in the home function of the Flask application. We
are setting the href attribute of that anchor element to the value of the link.

Great! There is only more thing before we try this out and see if everything is working
properly. We need to change the settings of our Spotify app; more specifically, we need to
configure the callback function for the application, so we can receive the authorization code.

With that said, head to the https:/ /beta. developer. spotify. com/dashboard/  website and
log in with your credentials. The dashboard will show the pytify app that we created at
the beginning of this chapter. Click on the app name and then click on the EDIT
SETTINGS button on the top right of the page.

https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/
https://beta.developer.spotify.com/dashboard/


Creating a Remote-Control Application with Spotify Chapter 2

[ 76 ]

Scroll down until you find Redirect URIs, and in the text field, enter
http://localhost:3000/callback and click on the ADD button. Your configuration should look
as follows:

Great! Scroll down to the bottom of the dialog and click the SAVE button.

Now, we need to run the Flask application that we just created. On the terminal, in the
projects root folder, type the following command:

python spotify_auth.py

You should see an output similar to this:

* Running on http://localhost:3000/ (Press CTRL+C to quit)

Open the browser of your choice and go to http://localhost:3000; you will see a
simple page with the link that we created:

Click on the link and you will be sent to Spotify's authorization service page.



Creating a Remote-Control Application with Spotify Chapter 2

[ 77 ]

A dialog will be displayed asking to connect the Pytify app to our account. Once you
authorize it, you will be redirected back to http://localhost:3000/callback. If
everything goes well, you should see the All set! You can close the browser window and
stop the server message on the page.

Now, just close the browser, and you can stop the Flask application.

Note that we now have a file named .pytify in the musicterminal directory. If you look
at the contents, you will have an encrypted key similar to this one:

AQB2jJxziOvuj1VW_DOBeJh-
uYWUYaR03nWEJncKdRsgZC6ql2vaUsVpo21afco09yM4tjwgt6Kkb_XnVC50CR0SdjW
rrbMnr01zdemN0vVVHmrcr_6iMxCQSk-JM5yTjg4

Now, we are ready to start coding the player.

Next up, we are going to add some functions that will perform requests to  Spotify's Web
API to search for artists, get a list of an artist's albums and a list of tracks in an album, and
play the selected track.

Querying Spotify's web API
So far, we have only prepared the terrain and now things start to get a bit more interesting.
In this section, we are going to create the basic functions to send requests to Spotify's Web
API; more specifically, we want to be able to search for an artist, get an artist's list of
albums, get a list of tracks in that album, and finally we want to send a request to actually
play a given track in Spotify's client that is currently active. It can be the browser, a mobile
phone, Spotify's client, or even video game consoles. So, let's dive right into it!

To start off, we are going to create a file called request_type.py in the
musicterminal/pytify/core directory with the following contents:

from enum import Enum, auto

class RequestType(Enum):
    GET = auto()
    PUT = auto()



Creating a Remote-Control Application with Spotify Chapter 2

[ 78 ]

We have gone through enumerations before, so we won't be going into so much detail. It
suffices to say that we create an enumeration with GET and PUT properties. This will be
used to notify the function that performs the requests for us that we want to do a GET
request or a PUT request.

Then, we can create another file named request.py in the
same musicterminal/pytify/core directory, and we start by adding a few import
statements and defining a function called execute_request:

import requests
import json

from .exceptions import BadRequestError
from .config import read_config
from .request_type import RequestType

def execute_request(
        url_template,
        auth,
        params,
        request_type=RequestType.GET,
        payload=()):

This function gets a few arguments:

url_template: This is the template that will be used to build the URL to
perform the request; it will use another argument called params to build the URL
auth: Is the Authorization object
params: It is a dict containing all the parameters that will be placed into the
URL that we are going to perform the request on
request: This is the request type; it can be GET or PUT
payload: This is the data that may be sent together with the request

As we continue to implement the same function, we can add:

conf = read_config()

params['base_url'] = conf.base_url

url = url_template.format(**params)

headers = {
    'Authorization': f'Bearer {auth.access_token}'



Creating a Remote-Control Application with Spotify Chapter 2

[ 79 ]

}

We read the configuration and add the base URL to the params so it is replaced in the
url_template string. We add Authorization in the request headers, together with the
authentication access token:

if request_type is RequestType.GET:
    response = requests.get(url, headers=headers)
else:
    response = requests.put(url, headers=headers,
data=json.dumps(payload))

    if not response.text:
        return response.text

result = json.loads(response.text)

Here, we check if the request type is GET. If so, we execute the get function from requests;
otherwise, we execute the put function. The function calls are very similar; the only thing
that differs here is the data argument. If the response returned is empty, we just return the
empty string; otherwise, we parse the JSON data into the result variable:

if not response.ok:
    error = result['error']
    raise BadRequestError(
        f'{error["message"]} (HTTP {error["status"]})')

return result

After parsing the JSON result, we test whether the status of the request is not 200 (OK); in
that case, we raise a BadRequestError. If it is a successful response, we return the results.

We also need some functions to help us prepare the parameters that we are going to pass to
the Web API endpoints. Let's go ahead and create a file called parameter.py in
the musicterminal/pytify/core folder with the following contents:

from urllib.parse import urlencode

def validate_params(params, required=None):

    if required is None:
        return

    partial = {x: x in params.keys() for x in required}
    not_supplied = [x for x in partial.keys() if not partial[x]]



Creating a Remote-Control Application with Spotify Chapter 2

[ 80 ]

    if not_supplied:
        msg = f'The parameter(s) `{", ".join(not_supplied)}` are
        required'
        raise AttributeError(msg)

def prepare_params(params, required=None):

    if params is None and required is not None:
        msg = f'The parameter(s) `{", ".join(required)}` are
        required'
        raise ValueErrorAttributeError(msg)
    elif params is None and required is None:
        return ''
    else:
        validate_params(params, required)

    query = urlencode(
        '&'.join([f'{key}={value}' for key, value in
         params.items()])
    )

    return f'?{query}'

We have two functions here, prepare_params and validate_params.
The validate_params function is used to identify whether there are parameters that are
required for a certain operation, but they haven't been supplied. The
prepare_params function first calls validate_params to make sure that all the
parameters have been supplied and to also join all the parameters together so they can be
easily appended to the URL query string.

Now, let's add an enumeration with the types of searches that can be performed. Create a
file called search_type.py in the musicterminal/pytify/core directory with the
following contents:

from enum import Enum

class SearchType(Enum):
    ARTIST = 1
    ALBUM = 2
    PLAYLIST = 3
    TRACK = 4

This is just a simple enumeration with the four search options.



Creating a Remote-Control Application with Spotify Chapter 2

[ 81 ]

Now, we are ready to create the function to perform the search. Create a file called
search.py in the musicterminal/pytify/core directory:

import requests
import json
from urllib.parse import urlencode

from .search_type import SearchType
from pytify.core import read_config

def _search(criteria, auth, search_type):

    conf = read_config()

    if not criteria:
        raise AttributeError('Parameter `criteria` is required.')

    q_type = search_type.name.lower()
    url = urlencode(f'{conf.base_url}/search?q={criteria}&type=
    {q_type}')

    headers = {'Authorization': f'Bearer {auth.access_token}'}
    response = requests.get(url, headers=headers)

    return json.loads(response.text)

def search_artist(criteria, auth):
    return _search(criteria, auth, SearchType.ARTIST)

def search_album(criteria, auth):
    return _search(criteria, auth, SearchType.ALBUM)

def search_playlist(criteria, auth):
    return _search(criteria, auth, SearchType.PLAYLIST)

def search_track(criteria, auth):
    return _search(criteria, auth, SearchType.TRACK)



Creating a Remote-Control Application with Spotify Chapter 2

[ 82 ]

We start by explaining the _search function. This function gets three criteria parameters
(what we want to search for), the Authorization object, and lastly the search type, which
is a value in the enumeration that we just created.

The function is quite simple; we start by validating the parameters, then we build the URL
to make the request, we set the Authorization head using our access token, and lastly, 
we perform the request and return the parsed response.

The other functions search_artist, search_album, search_playlist, and
search_track simply get the same arguments, the criteria and the Authorization object,
and pass it to the _search function, but they pass different search types.

Now that we can search for an artist, we have to get a list of albums. Add a file called
artist.py in the musicterminal/pytify/core directory with the following contents:

from .parameter import prepare_params
from .request import execute_request

def get_artist_albums(artist_id, auth, params=None):

    if artist_id is None or artist_id is "":
        raise AttributeError(
            'Parameter `artist_id` cannot be `None` or empty.')

    url_template = '{base_url}/{area}/{artistid}/{postfix}{query}'
    url_params = {
        'query': prepare_params(params),
        'area': 'artists',
        'artistid': artist_id,
        'postfix': 'albums',
        }

    return execute_request(url_template, auth, url_params)

So, given an artist_id, we just define the URL template and parameters that we want to
make the request and run the execute_request function which will take care of building
the URL, getting and parsing the results for us.



Creating a Remote-Control Application with Spotify Chapter 2

[ 83 ]

Now, we want to get a list of the tracks for a given album. Add a file called album.py in the
musicterminal/pytify/core directory with the following contents:

from .parameters import prepare_params
from .request import execute_request

def get_album_tracks(album_id, auth, params=None):

    if album_id is None or album_id is '':
        raise AttributeError(
            'Parameter `album_id` cannot be `None` or empty.')

    url_template = '{base_url}/{area}/{albumid}/{postfix}{query}'
    url_params = {
        'query': prepare_params(params),
        'area': 'albums',
        'albumid': album_id,
        'postfix': 'tracks',
        }

    return execute_request(url_template, auth, url_params)

The get_album_tracks function is very similar to the get_artist_albums function that
we just implemented.

Finally, we want to be able to send an instruction to Spotify's Web API, telling it to play a
track that we selected. Add a file called player.py in the musicterminal/pytify/core
directory, and add the following contents:

from .parameter import prepare_params
from .request import execute_request

from .request_type import RequestType

def play(track_uri, auth, params=None):

    if track_uri is None or track_uri is '':
        raise AttributeError(
            'Parameter `track_uri` cannot be `None` or empty.')

    url_template = '{base_url}/{area}/{postfix}'
    url_params = {
        'query': prepare_params(params),
        'area': 'me',
        'postfix': 'player/play',



Creating a Remote-Control Application with Spotify Chapter 2

[ 84 ]

        }

    payload = {
        'uris': [track_uri],
        'offset': {'uri': track_uri}
    }

    return execute_request(url_template,
                           auth,
                           url_params,
                           request_type=RequestType.PUT,
                           payload=payload)

This function is also very similar to the previous ones (get_artist_albums and
get_album_tracks), except that it defines a payload. A payload is a dictionary containing
two items: uris, which is a list of tracks that should be added to the playback queue, and
offset, which contains another dictionary with the URIs of tracks that should be played
first. Since we are interested in only playing one song at a time, uris and offset will
contain the same track_uri.

The final touch here is to import the new function that we implemented. In the
__init__.py file at the musicterminal/pytify/core directory, add the following code:

from .search_type import SearchType

from .search import search_album
from .search import search_artist
from .search import search_playlist
from .search import search_track

from .artist import get_artist_albums
from .album import get_album_tracks
from .player import play

Let's try the function to search artists in the python REPL to check whether everything is
working properly:

Python 3.6.2 (default, Dec 22 2017, 15:38:46)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from pytify.core import search_artist
>>> from pytify.core import read_config
>>> from pytify.auth import authenticate
>>> from pprint import pprint as pp
>>>
>>> config = read_config()



Creating a Remote-Control Application with Spotify Chapter 2

[ 85 ]

>>> auth = authenticate(config)
>>> results = search_artist('hot water music', auth)
>>> pp(results)
{'artists': {'href':
'https://api.spotify.com/v1/search?query=hot+water+music&type=artist&market
=SE&offset=0&limit=20',
             'items': [{'external_urls': {'spotify':
'https://open.spotify.com/artist/4dmaYARGTCpChLhHBdr3ff'},
                        'followers': {'href': None, 'total': 56497},
                        'genres': ['alternative emo',
                                   'emo',
                                   'emo punk',

The rest of the output has been omitted because it was too long, but now we can see that
everything is working just as expected.

Now, we are ready to start building the terminal player.

Creating the player
Now that we have everything we need to authenticate and consume the Spotify Rest API,
we are going to create a small terminal client where we can search for an artist, browse
his/her albums, and select a track to play in the Spotify client. Note that to use the client, we
will have to issue an access token from a premium account and the authentication flow we
need to use here is the AUTHENTICATION_CODE.
We will also need to require from the user of our application the user-modify-playback-
state scope, which will allow us to control playback. With that said, let's get right into it!

First, we need to create a new directory to keep all the client's related files in it, so go ahead
and create a directory named musicterminal/client.

Our client will only have three views. In the first view, we are going to get the user input
and search for an artist. When the artist search is complete, we are going to switch to the
second view, where a list of albums for the selected artist will be presented. In this view, the
user will be able to select an album on the list using the keyboard's Up and Down arrow
keys and select an album by hitting the Enter key.

Lastly, when an album is selected, we are going to switch to the third and final view on our
application, where the user will see a list of tracks for the selected album. Like the previous
view, the user will also be able to select a track using the keyboard's Up and Down arrow
key; hitting Enter will send a request to the Spotify API to play the selected track on the
user's available devices.



Creating a Remote-Control Application with Spotify Chapter 2

[ 86 ]

One approach is to use curses.panel. Panels are a kind of window and they are very
flexible, allowing us to stack, hide and show, and switch panels, go back to the top of the
stack of panels, and so on, which is perfect for our purposes.

So, let's create a file inside the musicterminal/client directory called panel.py with the
following contents:

import curses
import curses.panel
from uuid import uuid1

class Panel:

    def __init__(self, title, dimensions):
        height, width, y, x = dimensions

        self._win = curses.newwin(height, width, y, x)
        self._win.box()
        self._panel = curses.panel.new_panel(self._win)
        self.title = title
        self._id = uuid1()

        self._set_title()

        self.hide()

All we do here is import the modules and functions we need and create a class called
Panel. We are also importing the uuid module so we can create a GUID for every new
panel.

The Panel's initializer gets two arguments: title, which is the title of the window,
and dimensions. The dimensions argument is a tuple and follows the curses convention.
It is composed of height, width, and the positions y and x, where the panel should start to
be drawn.

We unpack the values of the dimensions tuple so it is easier to work with and then we use
the newwin function to create a new window; it will have the same dimensions that we
passed in the class initializer. Next, we call the box function to draw lines on the four sides
of the terminal.

Now that we have the window created, it is time to create the panel for the window that we
just created, calling curses.panel.new_panel and passing the window. We also set the
window title and create a GUID.



Creating a Remote-Control Application with Spotify Chapter 2

[ 87 ]

Lastly, we set the state of the panel to hidden. Continuing working on this class, let's add a
new method called hide:

def hide(self):
    self._panel.hide()

This method is quite simple; the only thing that it does is call the hide method in our panel.

The other method that we call in the initializer is _set_title; let's create it now:

def _set_title(self):
    formatted_title = f' {self._title} '
    self._win.addstr(0, 2, formatted_title, curses.A_REVERSE)

In _set_title, we format the title by adding some extra padding on both sides of the title
string, and then we call the addstr method of the window to print the title in row zero,
column two, and we use the constant A_REVERSE, which will invert the colors of the string,
like this:

We have a method to hide the panel; now, we need a method to show the panel. Let's add
the show method:

def show(self):
    self._win.clear()
    self._win.box()
    self._set_title()
    curses.curs_set(0)
    self._panel.show()

The show method first clears the window and draws the borders around it with
the box method. Then, we set the title again. The cursers.curs_set(0) call will
disable the cursor; we do that here because we don't want the cursor visible when we are
selecting the items in the list. Finally, we call the show method in the panel.

It would also be nice to have a way to know whether the current panel is visible or not. So,
let's add a method called is_visible:

def is_visible(self):
    return not self._panel.hidden()



Creating a Remote-Control Application with Spotify Chapter 2

[ 88 ]

Here, we can use the hidden method on the panel, which returns true if the panel is
hidden and false if the panel is visible.

The last touch in this class is to add the possibility of comparing panels. We can achieve this
by overriding some special methods; in this case, we want to override the __eq__ method,
which will be invoked every time we use the == operator. Remember that we created an id
for every panel? We can use that id now to test the equality:

def __eq__(self, other):
    return self._id == other._id

Perfect! Now that we have the Panel base class, we are ready to create a special
implementation of the panel that will contain menus to select items.

Adding menus for albums and track selection
Now, we are going to create a file called menu_item.py in the musicterminal/client/
directory and we will start by importing some functions that we will need:

from uuid import uuid1

We only need to import the uuid1 function from the uuid module because, like the panels,
we are going to create an id (GUID) for every menu item in the list.

Let's start by adding the class and the constructor:

class MenuItem:
    def __init__(self, label, data, selected=False):
        self.id = str(uuid1())
        self.data = data
        self.label = label

        def return_id():
            return self.data['id'], self.data['uri']

        self.action = return_id
        self.selected = selected

The MenuItem initializer gets three arguments, the label item, the data which will contain
the raw data returned by the Spotify REST API, and a flag stating whether the item is
currently selected or not.



Creating a Remote-Control Application with Spotify Chapter 2

[ 89 ]

We start off by creating an id for the item, then we set the values for the data and label
properties using the argument values that are passed in the class initializer.

Every item in the list will have an action that will be executed when the item is selected on
the list, so we create a function called return_id that returns a tuple with the item id (not
the same as the id that we just created). This is the id for the item on Spotify, and the URI is
the URI for the item on Spotify. The latter will be useful when we select and play a song.

Now, we are going to implement some special methods that will be useful for us when
performing item comparisons and printing items. The first method that we are going to
implement is __eq__:

def __eq__(self, other):
    return self.id == other.id

This will allow us to use the index function to find a specific MenuItem in a list of
MenuItem objects.

The other special method that we are going to implement is the __len__ method:

def __len__(self):
    return len(self.label)

It returns the length of the MenuItem label and it will be used when measuring the length of
the menu item labels on the list. Later, when we are building the menu, we are going to use
the max function to get the menu item with the longest label, and based on that, we'll add
extra padding to the other items so that all the items in the list look aligned.

The last method that we are going to implement is the __str__ method:

def __str__(self):
    return self.label

This is just for convenience when printing menu items; instead of doing
print(menuitem.label), we can just do print(menuitem) and it will invoke __str__,
which will return the value of the MenuItem label.

Implementing the menu panel
Now, we are going to implement the menu panel, which will be the container class that will
accommodate all the menu items, handle events, and perform rendering on the terminal
screen.



Creating a Remote-Control Application with Spotify Chapter 2

[ 90 ]

Before we start with the implementation of the menu panel, let's add an enumeration that
will represent different item alignment options, so we can have a bit more flexibility on how
to display the menu items inside the menu.

Create a file called alignment.py in the musicterminal/client directory with the
following contents:

from enum import Enum, auto

class Alignment(Enum):
    LEFT = auto()
    RIGHT = auto()

You should be an enumeration expert if you followed the code in the first chapter. There's
nothing as complicated here; we define a class Alignment inheriting from Enum and define
two attributes, LEFT and RIGHT, both with their values set to auto(), which means that the
values will be set automatically for us and they will be 1 and 2, respectively.

Now, we are ready to create the menu. Let's go ahead and create a final class
called menu.py in the musicterminal/client directory.

Let's add some imports and the constructor:

import curses
import curses.panel

from .alignment import Alignment
from .panel import Panel

class Menu(Panel):

    def __init__(self, title, dimensions, align=Alignment.LEFT,
                 items=[]):
        super().__init__(title, dimensions)
        self._align = align
        self.items = items

The Menu class inherits from the Panel base class that we just created, and the class
initializer gets a few arguments: the title, the dimensions (tuple with height, width, y
and x values) the alignment setting which is LEFT by default, and the items. The items
argument is a list of MenuItems objects. This is optional and it will be set to an empty list if
no value is specified.



Creating a Remote-Control Application with Spotify Chapter 2

[ 91 ]

The first thing we do in the class initializer is invoke the __init__ method in the base class.
We can do that by using the super function. If you remember, the __init__ method on the
Panel class gets two arguments,  title and dimension, so we pass it to the base class
initializer.

Next, we assign the values for the properties align and items.

We also need a method that returns the currently selected item on the list of menu items:

def get_selected(self):
    items = [x for x in self.items if x.selected]
    return None if not items else items[0]

This method is very straightforward; the comprehension returns a list of selected items, and
it will return None if no items are selected; otherwise, it returns the first item on the list.

Now, we can implement the method that will handle item selection. Let's add another
method called _select:

def _select(self, expr):
    current = self.get_selected()
    index = self.items.index(current)
    new_index = expr(index)

    if new_index < 0:
        return

    if new_index > index and new_index >= len(self.items):
        return

    self.items[index].selected = False
    self.items[new_index].selected = True

Here, we start getting the current item selected, and right after that we get the index of the
item in the list of menu items using the index method from the array. This is possible
because we implemented the __eq__ method in the Panel class.

Then, we get to run the function passed as the argument, expr, passing the value of the
currently selected item index.

expr will determine the next current item index. If the new index is less than 0, it means
that we reached the top of the menu item's list, so we don't take any action.



Creating a Remote-Control Application with Spotify Chapter 2

[ 92 ]

If the new index is greater than the current index, and the new index is greater than or
equal to the number of menu items on the list, then we have reached the bottom of the list,
so no action is required at this point and we can continue selecting the same item.

However, if we haven't reached to top or the bottom of the list, we need to swap the
selected items. To do this, we set the selected property on the current item to False and set
the selected property of the next item to True.

The _select method is a private method, and it is not intended to be called externally, so
we define two methods—next and previous:

def next(self):
    self._select(lambda index: index + 1)

def previous(self):
    self._select(lambda index: index - 1)

The next method will invoke the _select method and pass a lambda expression that will
receive an index and add one to it, and the previous method will do the same thing, but
instead of increasing the index by 1, it will subtract it. So, in the _select method when we
call:

new_index = expr(index)

We are calling either lambda index: index + 1 or lambda index: index + 1.

Great! Now, we are going to add a method that will be responsible for formatting menu
items before we render them on the screen. Create a method called _initialize_items,
which is shown as follows:

def _initialize_items(self):
    longest_label_item = max(self.items, key=len)

    for item in self.items:
        if item != longest_label_item:
            padding = (len(longest_label_item) - len(item)) * ' '
            item.label = (f'{item}{padding}'
                          if self._align == Alignment.LEFT
                          else f'{padding}{item}')

        if not self.get_selected():
            self.items[0].selected = True



Creating a Remote-Control Application with Spotify Chapter 2

[ 93 ]

First, we get the menu item that has the largest label; we can do that by using the built-in
function max and passing the items, and, as the key, another built-in function called len.
This will work because we implemented the special method __len__ in the menu item.

After discovering the menu item with the largest label, we loop through the items of the list,
adding padding on the LEFT or RIGHT, depending on the alignment options. Finally, if
there's no menu item in the list with the selected flag set to True, we select the first item as
selected.

We also want to provide a method called init that will initialize the items on the list for us:

def init(self):
    self._initialize_items()

We also need to handle keyboard events so we can perform a few actions when the user
specifically presses the Up and Down arrow keys,  as well as Enter.

First, we need to define a few constants at the top of the file. You can add these constants
between the imports and the class definition:

NEW_LINE = 10
CARRIAGE_RETURN = 13

Let's go ahead and include a method called handle_events:

    def handle_events(self, key):
        if key == curses.KEY_UP:
            self.previous()
        elif key == curses.KEY_DOWN:
            self.next()
        elif key == curses.KEY_ENTER or key == NEW_LINE or key ==
         CARRIAGE_RETURN:
            selected_item = self.get_selected()
            return selected_item.action

This method is pretty simple; it gets a key argument, and if the key is equal to
curses.KEY_UP, then we call the previous method. If the key is equal to
curses.KEY_DOWN, then we call the next method. Now, if the key is ENTER, then we get
the selected item and return its action. The action is a function that will execute another
function; in our case, we might be selecting an artist or song on a list or executing a function
that will play a music track.



Creating a Remote-Control Application with Spotify Chapter 2

[ 94 ]

In addition to testing whether the key is curses.KEY_ENTER, we also need to check
whether the key is a new line \n or a carriage return \r. This is necessary because the code
for the Enter key can differ depending on the configuration of the terminal the application is
running in.

We are going to implement the __iter__ method, which will make our Menu class behave
like an iterable object:

    def __iter__(self):
        return iter(self.items)

The last method of this class is the update method. This method will do the actual work of
rendering the menu items and refreshing the window screen:

def update(self):
    pos_x = 2
    pos_y = 2

    for item in self.items:
        self._win.addstr(
                pos_y,
                pos_x,
                item.label,
                curses.A_REVERSE if item.selected else
                curses.A_NORMAL)
        pos_y += 1

    self._win.refresh()

First, we set the x and y coordinates to 2, so the menu on this window will start at line 2
and column 2. We loop through the menu items and call the addstr method to print the
item on the screen.



Creating a Remote-Control Application with Spotify Chapter 2

[ 95 ]

The addstr method gets a y position, the x position, the string that will be written on the
screen, in our case item.label, and the last argument is the style. If the item is selected,
we want to show it highlighted; otherwise, it will display with normal colors. The following
screenshot illustrates what the rendered list will look like:

Creating the DataManager class
We have implemented the base functionality to authenticate and consume data from the
Spotify REST API, but now we need to create a class that will make use of this functionality
so we get the information that we need to be displayed in the client.

Our Spotify terminal client will perform the following actions:

Search an artist by name
List the artist's albums
List the album's tracks
Request a track to be played



Creating a Remote-Control Application with Spotify Chapter 2

[ 96 ]

The first thing we are going to add is a custom exception that we can raise, and no result is
returned from the Spotify REST API. Create a new file called empty_results_error.py in
the musicterminal/client directory with the following contents:

class EmptyResultsError(Exception):
    pass

To make it easier for us, let's create a DataManager class that will encapsulate all these
functionalities for us. Create a file called data_manager.py in the
musicterminal/client directory:

from .menu_item import MenuItem

from pytify.core import search_artist
from pytify.core import get_artist_albums
from pytify.core import get_album_tracks
from pytify.core import play

from .empty_results_error import EmptyResultsError

from pytify.auth import authenticate
from pytify.core import read_config

class DataManager():

    def __init__(self):
        self._conf = read_config()
        self._auth = authenticate(self._conf)

First, we import the MenuItem, so we can return MenuItem objects with the request's
results. After that, we import functions from the pytify module to search artists, get
albums, list albums tracks, and play tracks. Also, in the pytify module, we import
the read_config function and authenticate it.

Lastly, we import the custom exception that we just created, EmptyResultsError.

The initializer of the DataManager class starts reading the configuration and performs the
authentication. The authentication information will be stored in the _auth property.



Creating a Remote-Control Application with Spotify Chapter 2

[ 97 ]

Next up, we are going to add a method to search for artists:

def search_artist(self, criteria):
    results = search_artist(criteria, self._auth)
    items = results['artists']['items']

    if not items:
        raise EmptyResultsError(f'Could not find the artist:
        {criteria}')

    return items[0]

The _search_artist method will get criteria as an argument and call the
search_artist function from the python.core module. If no items are returned, it will
raise an EmptyResultsError; otherwise, it will return the first match.

Before we continue creating the methods that will fetch the albums and the tracks, we need
two utility methods to format the labels of the MenuItem objects.

The first one will format the artist label:

def _format_artist_label(self, item):
    return f'{item["name"]} ({item["type"]})'

Here, the label will be the name of the item and the type, which can be an album, single, EP,
and so on.

And the second one formats the name of the tracks:

def _format_track_label(self, item):

    time = int(item['duration_ms'])
    minutes = int((time / 60000) % 60)
    seconds = int((time / 1000) % 60)

    track_name = item['name']

    return f'{track_name} - [{minutes}:{seconds}]'

Here, we extract the duration of the track in milliseconds, convert is to minutes: seconds,
and format the label with the name of the track and its duration between square brackets.



Creating a Remote-Control Application with Spotify Chapter 2

[ 98 ]

After that, let's create a method to get the artist's albums:

def get_artist_albums(self, artist_id, max_items=20):

     albums = get_artist_albums(artist_id, self._auth)['items']

     if not albums:
         raise EmptyResultsError(('Could not find any albums for'
                                  f'the artist_id: {artist_id}'))

     return [MenuItem(self._format_artist_label(album), album)
             for album in albums[:max_items]]

The get_artist_albums method gets two arguments, the artist_id and the max_item,
which is the maximum number of albums that will be returned by the method. By default, it
is set to 20.

The first thing we do here is use the get_artist_albums method from the pytify.core
module, passing the artist_id and the authentication objects, and we get the item's
attribute from the results, assigning it to the variable albums. If the albums variable is
empty, it will raise an EmptyResultsError; otherwise, it will create a list of MenuItem
objects for every album.

And we can add another method for the tracks:

def get_album_tracklist(self, album_id):

    results = get_album_tracks(album_id, self._auth)

    if not results:
        raise EmptyResultsError('Could not find the tracks for this
        album')

    tracks = results['items']

    return [MenuItem(self._format_track_label(track), track)
            for track in tracks]

The get_album_tracklist method gets album_id as an argument and the first thing we
do is get the tracks for that album using the get_album_tracks function in the
pytify.core module. If no result is returned, we raise an EmptyResultsError;
otherwise, we build a list of MenuItem objects.



Creating a Remote-Control Application with Spotify Chapter 2

[ 99 ]

The last method is the one that will actually send a command to the Spotify REST API to
play a track:

def play(self, track_uri):
    play(track_uri, self._auth)

Very straightforward. Here, we just get track_uri as an argument and pass it down the
play function in the pytify.core module, along with the authentication object. That
will make the track start playing on the available device; it can be a mobile phone, Spotify's
client on your computer, the Spotify web player, or even your games console.

Next up, let's put together everything we have built and run the Spotify player terminal.

Time to listen to music!
Now, we have all the pieces we need to start building the terminal player. We have the
pytify module, which provides a wrapper around the Spotify RESP API and will allow us
to search for artists, albums, tracks, and even control the Spotify client running on a mobile
phone or a computer.

The pytify module also provides two different types of authentication—client credentials
and authorization code—and in the previous sections, we implemented all the
infrastructures necessary to build an application using curses. So, let's glue all the parts
together and listen to some good music.

On the musicterminal directory, create a file called app.py; this is going to be the entry
point for our application. We start by adding import statements:

import curses
import curses.panel
from curses import wrapper
from curses.textpad import Textbox
from curses.textpad import rectangle

from client import Menu
from client import DataManager

We need to import curses and curses.panel of course, and this time, we are also
importing wrapper. This is used for debugging purposes. When developing curses
applications, they are extremely hard to debug, and when something goes wrong and some
exception is thrown, the terminal will not go back to its original state.



Creating a Remote-Control Application with Spotify Chapter 2

[ 100 ]

The wrapper takes a callable and it returns the terminal original state when the
callable function returns.

The wrapper will run the callable within a try-catch block and it will restore the terminal in
case something goes wrong. It is great for us while developing the application. Let's use the
wrapper so we can see any kind of problem that may occur.

We are going to import two new functions, Textbox and rectangle. We are going to use
those to create a search box where the users can search for their favorite artist.

Lastly, we import the Menu class and the DataManager that we implemented in the
previous sections.

Let's start implementing some helper functions; the first one is show_search_screen:

def show_search_screen(stdscr):
    curses.curs_set(1)
    stdscr.addstr(1, 2, "Artist name: (Ctrl-G to search)")

    editwin = curses.newwin(1, 40, 3, 3)
    rectangle(stdscr, 2, 2, 4, 44)
    stdscr.refresh()

    box = Textbox(editwin)
    box.edit()

    criteria = box.gather()
    return criteria

It gets an instance of the window as an argument, so we can print text and add our textbox
on the screen.

The curses.curs_set function turns the cursor on and off; when set to 1, the cursor will
be visible on the screen. We want that in the search screen so the user knows where he/she
can start typing the search criteria. Then, we print help text so the user knows that the name
of the artist should be entered; then, to finish, they can press Ctrl + G or just Enter to
perform the search.

To create the textbox, we create a new small window with a height that equals 1 and a
width that equals 40, and it starts at line 3, column 3 of the terminal screen. After that, we
use the rectangle function to draw a rectangle around the new window and we refresh
the screen so the changes we made take effect.



Creating a Remote-Control Application with Spotify Chapter 2

[ 101 ]

Then, we create the Textbox object, passing the window that we just created, and call the
method edit, which will set the box to the textbox and enter edit mode. That will stop the
application and let the user enter some text in the textbox; it will exit when the user
clicks Ctrl + G or Enter.

When the user is done editing the text, we call the gather method that will collect the data
entered by the user and assign it to the criteria variable, and finally, we return
criteria.

We also need a function to clean the screen easily Let's create another function called
clean_screen:

def clear_screen(stdscr):
    stdscr.clear()
    stdscr.refresh()

Great! Now, we can start with the main entry point of our application, and create a function
called main with the following contents:

def main(stdscr):

    curses.cbreak()
    curses.noecho()
    stdscr.keypad(True)

    _data_manager = DataManager()

    criteria = show_search_screen(stdscr)

    height, width = stdscr.getmaxyx()

    albums_panel = Menu('List of albums for the selected artist',
                        (height, width, 0, 0))

    tracks_panel = Menu('List of tracks for the selected album',
                        (height, width, 0, 0))

    artist = _data_manager.search_artist(criteria)

    albums = _data_manager.get_artist_albums(artist['id'])

    clear_screen(stdscr)

    albums_panel.items = albums
    albums_panel.init()
    albums_panel.update()



Creating a Remote-Control Application with Spotify Chapter 2

[ 102 ]

    albums_panel.show()

    current_panel = albums_panel

    is_running = True

    while is_running:
        curses.doupdate()
        curses.panel.update_panels()

        key = stdscr.getch()

        action = current_panel.handle_events(key)

        if action is not None:
            action_result = action()
            if current_panel == albums_panel and action_result is
            not None:
                _id, uri = action_result
                tracks = _data_manager.get_album_tracklist(_id)
                current_panel.hide()
                current_panel = tracks_panel
                current_panel.items = tracks
                current_panel.init()
                current_panel.show()
            elif current_panel == tracks_panel and action_result is
            not None:
                _id, uri = action_result
                _data_manager.play(uri)

        if key == curses.KEY_F2:
            current_panel.hide()
            criteria = show_search_screen(stdscr)
            artist = _data_manager.search_artist(criteria)
            albums = _data_manager.get_artist_albums(artist['id'])

            clear_screen(stdscr)
            current_panel = albums_panel
            current_panel.items = albums
            current_panel.init()
            current_panel.show()

        if key == ord('q') or key == ord('Q'):
            is_running = False

        current_panel.update()



Creating a Remote-Control Application with Spotify Chapter 2

[ 103 ]

try:
    wrapper(main)
except KeyboardInterrupt:
    print('Thanks for using this app, bye!')

Let's break this down into its constituent parts:

curses.cbreak()
curses.noecho()
stdscr.keypad(True)

Here, we do some initialization. Usually, curses don't register the key immediately. When it
is typed, this is called buffered mode; the user has to type something and then hit Enter. In
our application, we don't want this behavior; we want the key to be registered right after
the user types it. This is what cbreak does; it turns off the curses buffered mode.

We also use the noecho function to be able the read the keys and to control when we want
to show them on the screen.

The last curses setup we do is to turn on the keypad so curses will do the job of reading and
processing the keys accordingly, and returning constant values representing the key that
has been pressed. This is much cleaner and easy to read than trying to handle it yourself
and test key code numbers.

We create an instance of the DataManager class so we can get the data we need to be
displayed on the menus and perform authentication:

_data_manager = DataManager()

Now, we create the search dialog:

criteria = show_search_screen(stdscr)

We call the show_search_screen function, passing the instance of the window; it will
render the search field on the screen and return the results to us. When the user is done
typing, the user input will be stored in the criteria variable.

After we get the criteria, we call get_artist_albums, which will first search an artist and
then get a list of the artist's albums and return a list of MenuItem objects.



Creating a Remote-Control Application with Spotify Chapter 2

[ 104 ]

When the list of albums is returned, we can create the other panels with the menus:

height, width = stdscr.getmaxyx()

albums_panel = Menu('List of albums for the selected artist',
                    (height, width, 0, 0))

tracks_panel = Menu('List of tracks for the selected album',
                    (height, width, 0, 0))

artist = _data_manager.search_artist(criteria)

albums = _data_manager.get_artist_albums(artist['id'])

clear_screen(stdscr)

Here, we get the height and the width of the main window so we can create panels with the
same dimensions.  albums_panel will display the albums and tracks_panel will display
the tracks; as I mentioned before, it will have the same dimensions as the main window and
both panels will start at row 0, column 0.

After that, we call clear_screen to prepare the window to render the menu window with
the albums:

albums_panel.items = albums
albums_panel.init()
albums_panel.update()
albums_panel.show()

current_panel = albums_panel

is_running = True

We first set the item's properties with the results of the albums search. We also call init on
the panel, which will internally run _initialize_items, format the labels and set the
currently selected item. We also call the update method, which will do the actual work of
printing the menu items in the window; lastly, we show how to set the panel to visible.

We also define the current_panel variable, which will hold the instance of the panel that
is currently being displayed on the terminal.

The is_running flag is set to True and it will be used in the application's main loop. We
will set it to False when we want to stop the application's execution.



Creating a Remote-Control Application with Spotify Chapter 2

[ 105 ]

Now, we enter the main loop of the application:

while is_running:
    curses.doupdate()
    curses.panel.update_panels()

    key = stdscr.getch()

    action = current_panel.handle_events(key)

To start off, we call doupdate and update_panels:

doupdate: Curses keeps two data structures representing the physical screen (the
one you see on the terminal screen) and a virtual screen (the one keeping the next
updated). doupdate updates the physical screen so it matches the virtual screen.
update_panels: Updates the virtual screen after changes in the panel stack,
changes like hiding, show panels, and so on.

After updating the screen, we wait until a key is pressed using the getch function, and
assign the key pressed value to the key variable. The key variable is then passed to the
current panel's handle_events method.

If you remember the implementation of handle_events in the Menu class, it looks like this:

def handle_events(self, key):
    if key == curses.KEY_UP:
        self.previous()
    elif key == curses.KEY_DOWN:
        self.next()
    elif key == curses.KEY_ENTER or key == NEW_LINE or key ==
    CARRIAGE_RETURN:
    selected_item = self.get_selected()
    return selected_item.action

It handles KEY_DOWN, KEY_UP, and KEY_ENTER. If the key is KEY_UP or KEY_DOWN, it will
just update the position in the menu and set a newly selected item, and that will be updated
on the screen on the next loop interaction. If the key is KEY_ENTER, we get the selected item
and return its action function.

Remember that, for both panels, it will return a function that, when executed, will return a
tuple containing the item id and the item URI.



Creating a Remote-Control Application with Spotify Chapter 2

[ 106 ]

Moving on, we handle if the action is returned:

if action is not None:
    action_result = action()
    if current_panel == albums_panel and action_result is not None:
        _id, uri = action_result
        tracks = _data_manager.get_album_tracklist(_id)
        current_panel.hide()
        current_panel = tracks_panel
        current_panel.items = tracks
        current_panel.init()
        current_panel.show()
    elif current_panel == tracks_panel and action_result is not
    None:
        _id, uri = action_result
        _data_manager.play(uri)

If the handle_events method of the current panel returned a callable action, we execute
it and get the result. Then, we check if the active panel is the first panel (with the albums).
In this case, we need to get a list of tracks for the selected album, so we call
get_album_tracklist in the DataManager instance.
We hide the current_panel, switch the current panel to the second panel (the tracks
panel), set the items property with the list of tracks, call the init method so the items are
formatted properly and a first item in the list is set as selected, and finally we call show so
the track's panel is visible.

In the event the current panel is the tracks_panel, we get the action results and invoke
play on the DataManager, passing the track URI. It will request the selected track to be
played on the device you have active on Spotify.

Now, we want a way of returning to the search screen. We do that when the user hits
the F12 function key:

if key == curses.KEY_F2:
    current_panel.hide()
    criteria = show_search_screen(stdscr)
    artist = _data_manager.search_by_artist_name(criteria)
    albums = _data_manager.get_artist_albums(artist['id'])

    clear_screen(stdscr)
    current_panel = albums_panel
    current_panel.items = albums
    current_panel.init()
    current_panel.show()



Creating a Remote-Control Application with Spotify Chapter 2

[ 107 ]

For the if statement above, test if the user pressed the  F12 function key; in this case, we
want to return to the search screen so that the user can search for a new artist. When the F12
key is pressed, we hide the current panel. Then, we call the show_search_screen function
so the search screen is rendered and the textbox will enter in edit mode, waiting for the
user's input.

When the user is done typing and hits Ctrl+ G or Enter, we search the artist. Then, we get
the artist's albums and we show the panel with a list of albums.

The last event that we want to handle is when the user press either the q or Q key, which
sets the is_running variable to False and the application closes:

if key == ord('q') or key == ord('Q'):
    is_running = False

Finally, we call update on the current panel, so we redraw the items to reflect the changes
on the screen:

current_panel.update()

Outside the main function, we have the code snippet where we actually execute the main
function:

try:
    wrapper(main)
except KeyboardInterrupt:
    print('Thanks for using this app, bye!')

We surround it with a try catch so if the user presses Ctrl + C, a KeyboardInterrupt
exception will be raised and we just finish the application gracefully without throwing the
exception on the screen.

We are all done! Let's try it out!

Open a terminal and type the command—python app.py.



Creating a Remote-Control Application with Spotify Chapter 2

[ 108 ]

The first screen you will see is the search screen:



Creating a Remote-Control Application with Spotify Chapter 2

[ 109 ]

Let me search for one of my favorite artists:

After pressing Enter or Ctrl + G, you should see a list of albums:



Creating a Remote-Control Application with Spotify Chapter 2

[ 110 ]

Here, you can use the arrow keys (Up and Down) to navigate albums, and press Enter to
select an album. Then, you will see the screen showing all the tracks of the selected album:

If this screen is the same, you can use the arrow keys (Up and Down) to select the track, and
Enter will send a request to play the song on the device you have Spotify active on.



Creating a Remote-Control Application with Spotify Chapter 2

[ 111 ]

Summary
We have covered a lot of ground in this chapter; we started by creating an application on
Spotify and learning our way around its developer's website. Then, we learned how to
implement the two types of authentication flow that Spotify supports: the client credentials
flow and the authorization flow.

In this chapter, we also implemented a whole module wrapper with some of the
functionality available from Spotify's REST API.

Then, we implemented a simple terminal client where users can search for artists, browse
the artist's albums and tracks, and finally play a song in the user's active device, which can
be a computer, mobile phone, or even a video game console.

In the next chapter, we are going to create a desktop application that shows the number of
votes given through Twitter hashtags.



3
Casting Votes on Twitter

In the previous chapter, we implemented a Terminal application that serves as a remote
control for the popular music service Spotify. In this application, we could search for artists,
browse albums, and browse the tracks in each album. Lastly, we could even request the
track to be played on the user's active device.

This time, we are going to develop an application that will integrate with Twitter, making
use of its REST API. Twitter is a social network that has been around since 2006 and there
are over 300 million active users. Private users, companies, artists, soccer clubs, you can find
almost everything on Twitter. But what makes Twitter so popular, I believe, is its simplicity.

Unlike blog posts, Twitter posts or tweets have to be short and get right to the point, and it
doesn't require too much time to prepare something to post. Another point that makes
Twitter so popular is the fact that the service is a great news source. If you want to keep
updated with what's going on in the world, politics, sports, technology, you name it,
Twitter is the place to be.

Apart from all that, Twitter has a fairly decent API for us developers and, to take advantage
of that, we are going to develop an application where users can cast votes using hashtags. In
our application, we are going to configure which hashtags we are going to monitor and it
will automatically, from time to time, fetch the latest tweets matching that hashtag, count
them, and display them in a user interface.



Casting Votes on Twitter Chapter 3

[ 113 ]

In this chapter, you will learn how to do the following:

Create a tweet application
Use the OAuth library and implement a three-legged authentication flow
Search for the latest tweets using the Twitter API
Build a simple user interface using Tkinter
Learn the basics of multiprocessing and reactive programming

Setting up the environment
The first thing we have to do is, as usual, set up our development environment and the first
step is to create a virtual environment for our application. Our application will be called
twittervotes, so let's go ahead and create a virtual environment called twittervotes:



Casting Votes on Twitter Chapter 3

[ 114 ]

When the virtualenv environment has been created, you can activate it with the following
command:

. twittervotes/bin/activate

Great! Now let's set up the project's directory structure. It should look like the following:

twittervotes
├── core
│   ├── models
│   └── twitter
└── templates

Let's dive into the structure a bit:

twittervotes
The application's root directory. Here, we will create the
application's entry point as well as a small helper
application to perform the Twitter authentication.

twittervotes/core
This will contain all the core functionality of our project. It
will contain the code to authenticate, read config files, send
requests to the Twitter API, and so on.

twittervotes/core/models Directory in which to keep the application's data models.

twittervotes/core/twitter
In the twitter directory, we are going to keep helper
functions to interact with the Twitter API.

twittervotes/templates
Here, we are going to keep all the HTML templates that
will be used by our application.

Next, it is time to add our project's dependencies. Go ahead and create a file called
requirements.txt in the twittervotes directory with the following content:

Flask==0.12.2
oauth2==1.9.0.post1
PyYAML==3.12
requests==2.18.4
Rx==1.6.0



Casting Votes on Twitter Chapter 3

[ 115 ]

The following table explains what the preceding dependencies mean:

Flask
We are going to use Flask here to create a simple web application to perform the
authentication with Twitter.

oauth2
This is a great package that will abstract a lot of the complexity when performing
OAuth authentication.

PyYAML We are going to use this package to create and read config files in YAML format.

Requests Allow us to access the Twitter API over HTTP.

Rx
Finally, we are going to use Reactive Extensions for Python so we can reactively
update our UI soon as a new tweet count arrives.

When the file has been created, run the command pip install -r requirements.txt,
and you should see an output similar to the following:



Casting Votes on Twitter Chapter 3

[ 116 ]

If you run the command pip freeze, you will get a list of dependencies
in pip format and you will notice that the output lists more dependencies
that we actually added to the requirements file. The reason for that is
that the packages that our project requires also have dependencies and
they will also be installed. So do not worry if you have more packages
installed than you specified in your requirements file.

Now that our environment is set up, we can start creating our Twitter application. As usual,
before you start coding, make sure that you have your code under a source control system
such as Git; there are plenty of online services that will host your repositories for free.

In this way, you can roll back different versions of your projects and you don't have the risk
of losing your work if you have problems with your computers. With that said, let's create
our Twitter application.

Creating a Twitter application
In this section, we are going to create our first Twitter application so we can consume the
Twitter REST API. You will need to create an account if you don't already have one. If you
are not using Twitter, I would strongly recommend it; it is a great way of getting up-to-date
with all the news and what is going on in the development world, and it is a great way of
making new friends in the Python community.



Casting Votes on Twitter Chapter 3

[ 117 ]

After you create an account, head over to https:/ /apps. twitter. com/, sign in with your
login credentials, and you will land on a page where you can see a list of apps that you have
already created (the first time, you will probably have an empty list of apps), and on the
same page you will have the possibility of creating new apps. Click on the Create new
app button in the top-right corner and it will open up the following page:

In this form, there are three fields that are required—name, description, and website:

Name: This is the name of your application; it is also the name that will be
presented to the users of your application when performing authorization. The
name doesn't need to follow any specific naming convention, you can have
anything you want.
Description: As the name suggests, this is the description of your application.
This field will also be presented to the users of your application, so it is good to
have nice text describing your application. In this case, here we don't need much
text. Let's add Application to cast votes on Twitter using hashtags.

https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/


Casting Votes on Twitter Chapter 3

[ 118 ]

Website: Specify your application's website; it is also going to be presented to the
users during authorization and it is the site where your users can go to download
or get more information about your application. Since we are in the development
phase, we can just add a placeholder such as http:/ /www. example. com.
Callback URL: This works the same way as the callback URL in the previous
application (the Spotify Terminal app) in the previous chapter. It is a URL that
Twitter will call to send the authorization code. It is not a required field but we
are going to need it, so let's go ahead and
add ;http://localhost:3000/callback.

After filling in all the fields, you just need to check the Twitter Developer Agreement and
click the Create your Twitter application button.

If everything went well, you will be directed to another page where you can see more
details of your newly created application. Just below the name of the application, you will
see an area with tabs that shows settings and different pieces of information about the
application:

On the first tab, Details, we want to copy all the URLs that we are going to use to perform
the authentication. Scroll down to Application settings, and copy Request token URL,
Authorize URL, and Access token URL:

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com


Casting Votes on Twitter Chapter 3

[ 119 ]

Great! Now let's head over to the Keys and Access Tokens tab and copy Consumer
Key and Consumer Secret:

Now that we have copied all the necessary information, we can create a configuration file
that is going to be used by our application. It is always good practice to keep all this in a
configuration file so we don't need to hardcode those URLs in our code.

We are going to add the consumer key and consumer secret to a
configuration file in our project; as the name suggests, this key is secret so
if you are planning to create a repository for your code in a service such as
GitHub, make sure to add the configuration file to the .gitignore file so
the keys are not pushed to the cloud repository. Never share these keys
with anyone; if you suspect that someone has the keys, you can generate
new keys for your application on the Twitter app's website.

Adding the configuration file
In this section, we are going to create the configuration file for our application; the
configuration file will be in YAML format. If you would like to know more about YAML,
you can check the site http:/ / yaml. org/ , where you will find examples, the specification,
and also a list of libraries in different programming languages that can be used to
manipulate YAML files.

For our application, we are going to use PyYAML, which will allow us to read and write
YAML files in a very simple manner. Our configuration file is quite simple so we will not
need to use any advanced features of the library, we just want to read the content and write,
and the data that we are going to add is quite flat; we will not have any nested objects or
lists of any kind.

http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/


Casting Votes on Twitter Chapter 3

[ 120 ]

Let's get the information that we obtained from Twitter when we created our app and add it
to the configuration file. Create a file called config.yaml in the application's
twittervotes directory with the following content:

consumer_key: '<replace with your consumer_key>'
consumer_secret: '<replace with your consumer secret>'
request_token_url: 'https://api.twitter.com/oauth/request_token'
authorize_url: 'https://api.twitter.com/oauth/authorize'
access_token_url: 'https://api.twitter.com/oauth/access_token'
api_version: '1.1'
search_endpoint: 'https://api.twitter.com/1.1/search/tweets.json'

Great! Now we are going to create the first Python code in our project. If you have followed
the previous chapters, the functions to read the configuration file will be familiar to you.
The idea is simple: we are going to read the configuration file, parse it, and create a model
that we can easily use to access the data we added to the config. First, we need to create the
configuration model.

Create a file called models.py in twittervotes/core/models/ with the following
content:

from collections import namedtuple

Config = namedtuple('Config', ['consumer_key',
                               'consumer_secret',
                               'request_token_url',
                               'access_token_url',
                               'authorize_url',
                               'api_version',
                               'search_endpoint', ])

There was a more extensive introduction to namedtuple in the previous chapter, so I will
not go into as much  detail about it again; if you haven't been going through the second
chapter, it will suffice to know that namedtuple is a kind of class and this code will define a
namedtuple called Config with the fields specified in the array in the second argument.

Great, now let's create another file called __init__.py in
twittervotes/core/models and import the namedtuple that we just created:

from .models import Config



Casting Votes on Twitter Chapter 3

[ 121 ]

Now it is time to create the functions that will do the actual work of reading the YAML file
and returning it to us. Create a file called config.py in twittervotes/core/. Let's get
started by adding the import statements:

import os
import yaml

from .models import Config

We are going to use the os package to easily obtain the user's current directory and
manipulate paths. We also import PyYAML so we can read the YAML files and, lastly, from
the models module, we import the Config model that we just created.

Then we define two functions, starting with the _read_yaml_file function. This function
gets two arguments—the filename, which is the name of the config file that we want to
read, and also cls, which can be a class or namedtuple that we will use to store the
configuration data.

In this case, we are going to pass the Config—namedtuple, which has the same properties
as the YAML configuration file that we are going to read:

def _read_yaml_file(filename, cls):
    core_dir = os.path.dirname(os.path.abspath(__file__))
    file_path = os.path.join(core_dir, '..', filename)
    with open(file_path, mode='r', encoding='UTF-8') as file:
        config = yaml.load(file)
        return cls(**config)

First, we use the os.path.abspath function, passing as an argument the special variable
__file__. When a module is loaded, the variable __file__ will be set to the same name
as the module. That will allow us to easily find where to load the configuration file. So the
following snippet will return the path of the core module

/projects/twittervotes/core:

core_dir = os.path.dirname(os.path.abspath(__file__)) will return

We know that the configuration file will live in /projects/twittervotes/ so we need to
join .. to the path to go up one level in the directory structure so we can read the file. That's
why we build the complete configuration file's path as follows:

file_path = os.path.join(core_dir, '..', filename)

That will give us the flexibility of running this code from any location in our system.



Casting Votes on Twitter Chapter 3

[ 122 ]

We open the file in the reading mode using UTF-8 encoding and pass it to the yaml.load
function, assigning the results to the config variable. The config variable will be a
dictionary with all the data we have in the config file.

The last line of this function is the interesting part: if you recall, the cls argument was a
class or a namedtuple so we spread the values of the config dictionary as an argument.
Here, we are going to use the Config—namedtuple so cls(**config) is the same as
Config, (**config) and passing the arguments with ** will be the same as passing all the
arguments one by one:

Config(
    consumer_key: ''
    consumer_secret: ''
    app_only_auth: 'https://api.twitter.com/oauth2/token'
    request_token_url:
'https://api.twitter.com/oauth/request_token'
    authorize_url: 'https://api.twitter.com/oauth/authorize'
    access_token_url: 'https://api.twitter.com/oauth/access_token'
    api_version: '1.1'
    search_endpoint: '')

Now we are going to add the second function we are going to need, the
read_config function:

def read_config():
    try:
        return _read_yaml_file('config.yaml', Config)
    except IOError as e:
        print(""" Error: couldn\'t file the configuration file
        `config.yaml`
        'on your current directory.

        Default format is:',

        consumer_key: 'your_consumer_key'
        consumer_secret: 'your_consumer_secret'
        request_token_url:
        'https://api.twitter.com/oauth/request_token'
        access_token_url:
        'https://api.twitter.com/oauth/access_token'
        authorize_url: 'https://api.twitter.com/oauth/authorize'
        api_version: '1.1'
        search_endpoint: ''
        """)
        raise



Casting Votes on Twitter Chapter 3

[ 123 ]

This function is pretty straightforward; it just makes use of the _read_yaml_file function
that we just created, passing the config.yaml file in the first argument and also the
Config, namedtuple in the second argument.

We catch the IOError exception that will be thrown if the file doesn't exist in the
application's  directory; in that case, we throw a help message showing the users of your
application how the config file should be structured.

The final touch is to import it into the __init__.py in the twittervotes/core directory:

from .config import read_config

Let's try this out in the Python REPL:

Great, it worked just like we wanted! In the next section, we can start creating the code that
will perform the authentication.

Performing authentication
In this section, we are going to create the program that will perform authentication for us so
we can use the Twitter API. We are going to do that using a simple Flask application that
will expose two routes. The first is the root /, which will just load and render a simple
HTML template with a button that will redirect us to the Twitter authentication dialog.

The second route that we are going to create is /callback. Remember when we specified
the callback URL in the Twitter app configuration? This is the route that will be called after
we authorize the app. It will return an authorization token that will be used to perform
requests to the Twitter API. So let's get right into it!



Casting Votes on Twitter Chapter 3

[ 124 ]

Before we start implementing the Flask app, we need to add another model to our model's
module. This model will represent the request authorization data. Open the
models.py file in twittervotes/core/models and add the following code:

RequestToken = namedtuple('RequestToken', ['oauth_token',
                                         'oauth_token_secret',
'oauth_callback_confirmed'])

This will create a namedtuple called RequestToken with the fields oauth_token,
oauth_token_secret, and outh_callback_confirmed; this data will be necessary for us
to perform the second step of the authentication.

Lastly, open the __init__.py file in the twittervotes/core/models directory and let's
import the RequestToken namedtuple that we just created, as follows:

from .models import RequestToken

Now that we have the model in place, let's start creating the Flask application. Let's add a
very simple template to show a button that will start the authentication process.

Create a new directory in the twittervotes directory called templates and create a file
called index.html  with the following content:

<html>
    <head>
    </head>
    <body>
       <a href="{{link}}"> Click here to authorize </a>
    </body>
</html>

Creating the Flask application
Perfect, now let's add another file called twitter_auth.py in the twittervotes
directory. We are going to create three functions in it but, first, let's add some imports:

from urllib.parse import parse_qsl

import yaml

from flask import Flask
from flask import render_template
from flask import request



Casting Votes on Twitter Chapter 3

[ 125 ]

import oauth2 as oauth

from core import read_config
from core.models import RequestToken

First, we import the parser_qls from the urllib.parse module to parse the returned
query string, and the yaml module so we can read and write YAML configuration files. Then
we import everything we need to build our Flask application. The last third-party module
that we are going to import here is the oauth2 module, which will help us to perform the
OAuth authentication.

Lastly, we import our function read_config and the RequestToken namedtuple that we
just created.

Here, we create our Flask app and a few global variables that will hold values for the client,
consumer, and the RequestToken instance:

app = Flask(__name__)

client = None
consumer = None
req_token = None

The first function that we are going to create is a function called get_req_token with the
following content:

def get_oauth_token(config):

    global consumer
    global client
    global req_token

    consumer = oauth.Consumer(config.consumer_key,
     config.consumer_secret)
    client = oauth.Client(consumer)

    resp, content = client.request(config.request_token_url, 'GET')

    if resp['status'] != '200':
        raise Exception("Invalid response
        {}".format(resp['status']))

    request_token = dict(parse_qsl(content.decode('utf-8')))

    req_token = RequestToken(**request_token)



Casting Votes on Twitter Chapter 3

[ 126 ]

This function gets as argument an instance to the configuration and the global statements
say to the interpreter that the consumer, client, and req_token used in the function will be
referencing the global variables.

We create a consumer object using the consumer key and the consumer secret that we
obtained when the Twitter app was created. When the consumer is created, we can pass it
to the client function to create the client, then we call the function request, which, as the
name suggests, will perform the request to Twitter, passing the request token URL.

When the request is complete, the response and the content will be stored in the variables
resp and content. Right after that, we test whether the response status is not 200 or
HTTP.OK; in that case, we raise an exception, otherwise we parse the query string to get the
values that have been sent back to us and create a RequestToken instance.

Creating the application routes
Now we can start creating the routes. First, we are going to add the root route:

@app.route('/')
def home():
    config = read_config()

    get_oauth_token(config)

    url = f'{config.authorize_url}?oauth_token=
    {req_token.oauth_token}'

    return render_template('index.html', link=url)

We read the configuration file and pass it the get_oauth_token function. This function
will populate the global variable req_token with the oauth_token value; we need this
token to start the authorization process. Then we build the authorization URL with the
values of authorize_url obtained from the configuration file and the OAuth request
token.

Lastly, we use the render_template to render the index.html template that we created
and we also pass to the function a second argument, which is the context. In this case, we
are creating an item called link with the value set to url. If you remember the
index.html template, there is an "{{url}}" placeholder. This placeholder will be
replaced by the value that we assigned to link in the render_template function.



Casting Votes on Twitter Chapter 3

[ 127 ]

By default, Flask uses Jinja2 as a template engine but that can be changed to the engine of
your preference; we are not going into the details of how to do this in this book because it is
beyond our scope.

The last route that we are going to add is the /callback route and that will be the route
that will be called by Twitter after the authorization:

@app.route('/callback')
def callback():

    global req_token
    global consumer

    config = read_config()

    oauth_verifier = request.args.get('oauth_verifier', '')

    token = oauth.Token(req_token.oauth_token,
                        req_token.oauth_token_secret)

    token.set_verifier(oauth_verifier)

    client = oauth.Client(consumer, token)

    resp, content = client.request(config.access_token_url, 'POST')
    access_token = dict(parse_qsl(content.decode('utf-8')))

    with open('.twitterauth', 'w') as req_auth:
        file_content = yaml.dump(access_token,
        default_flow_style=False)
        req_auth.write(file_content)

    return 'All set! You can close the browser window and stop the
    server.'

The implementation of the callback route starts off by using global statements so we can use
the global variables req_token and consumer.

Now we get to the interesting part. After the authorization, Twitter will return an
outh_verifier so we get it from the request arguments and set it to the variable
oauth_verifier; we create a Token instance using the oauth_token and
oauth_token_secret that we obtained in the first part of our authorization process.

And we set the oauth_verifier in the Token object and finally create a new client that we
are going to use to perform a new request with.



Casting Votes on Twitter Chapter 3

[ 128 ]

We decode the data received from the request and add it to the access token variable and, to
wrap things up, we write the content of access_token to a file .twitterauth in the
twittervotes directory. This file is also in YAML format so we are going to add another
model and one more function in the config.py file to read the new settings.

Note that this process needs to be done just once. That is the reason that we store the data in
the .twitterauth file. Further requests need only to use the data contained in this file.

If you check the contents of the .twitterauth file, you should have something similar to
the following:

oauth_token: 31******95-**************************rt*****io
oauth_token_secret: NZH***************************************ze8v
screen_name: the8bitcoder
user_id: '31******95'
x_auth_expires: '0'

To finish the Flask application, we need to add the following code at the end of the file:

if __name__ == '__main__':
    app.run(host='localhost', port=3000)

Let's add a new model to the models.py file in twittervotes/core/models/ with the
following content:

RequestAuth = namedtuple('RequestAuth', ['oauth_token',
                                         'oauth_token_secret',
                                         'user_id',
                                         'screen_name',
                                         'x_auth_expires', ])

Great! One more thing—we need to import the new model in the __init__.py file in the
twittervotes/core/models directory:

from .models import RequestAuth

Also, let's add a function to read the .twittervotes file in config.py in
twittervotes/core. First, we need to import the RequestAuth—namedtuple that we
just created:

from .models import RequestAuth



Casting Votes on Twitter Chapter 3

[ 129 ]

Then we create a function called read_reqauth shown as follows:

def read_reqauth():
    try:
        return _read_yaml_file('.twitterauth', RequestAuth)
    except IOError as e:
        print(('It seems like you have not authorized the
        application.\n'
               'In order to use your twitter data, please run the '
               'auth.py first.'))

This function is very straightforward: we just call the _read_yaml_file, passing as
arguments the .twitterauth file and the new namedtuple, RequestAuth, that we just
created. Again, if some error occurs, we raise an exception and show a help message.

Now we can try the authentication. In the twittervotes directory, execute the script
twitter_auth.py. You should see the following output:

Great! The server is up and running so we can open a browser and go to
http://localhost:3000. You should see a very simple page with a link to perform the
authentication:



Casting Votes on Twitter Chapter 3

[ 130 ]

If you inspect the link with the browser development tools, you will see that the link is
pointing to the authorize endpoint and it is passing the oauth_token that we created:

Go ahead and click on the link and you will be sent to the authorization page:



Casting Votes on Twitter Chapter 3

[ 131 ]

If you click on the Authorize app button, you will be redirected back to localhost and a
success message will be displayed:

If you pay attention to the URL Twitter has sent back to us, you will find some information.
The important point here is the oauth_verifier that we will set to the request token and
we perform one last request to get the access token. Now you can close the browser, stop
the Flask app, and see the results in the file .twitterauth in the twittervotes directory:

oauth_token: 31*******5-KNAbN***********************K40
oauth_token_secret: d**************************************Y3
screen_name: the8bitcoder
user_id: '31******95'
x_auth_expires: '0'

Now, all the functionality that we implemented here is very useful if other users are going
to use our application; however, there's an easier way to obtain the access token if you are 
authorizing your own Twitter app. Let's have a look at how that is done.

Go back to the Twitter application settings in https:/ /apps. twitter. com/ ; select the Keys
and Access Tokens tab and scroll all the way down. If you have already authorized this
application, you will see the same information we have now in the file .twitterauth but if
you haven't authorized the application yet, you will see a Your Access
Token section looking like the following:

https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/


Casting Votes on Twitter Chapter 3

[ 132 ]

If you click on Create my access token, Twitter will generate the access token for you:

After the access token is created, you can just copy the data into the .twitterauth file.

Building the Twitter voting application
Now we have our environment set up and we have seen how to create an app on Twitter
and perform three-legged authentication, it is time to get right into building the actual 
application that will count the Twitter votes.



Casting Votes on Twitter Chapter 3

[ 133 ]

We start off by creating a model class that will represent a hashtag. Create a file called
hashtag.py in the twittervotes/core/twitter directory with the following content:

class Hashtag:
    def __init__(self, name):
        self.name = name
        self.total = 0
        self.refresh_url = None

This is a very simple class. We can pass a name as an argument to the initializer; the name is
the hashtag without the hash sign (#). In the initializer, we define a few properties: the
name, which will be set to the argument that we pass to the initializer, then a property
called total that will keep the hashtag usage count for us.

Finally, we set the refresh_url. The refresh_url is going to be used to perform queries
to the Twitter API, and the interesting part here is that the refresh_url already contains
the id of the latest tweet that has been returned, so we can use that to fetch only tweets that
we haven't already fetched, to avoid counting the same tweet multiple times. 

The refresh_url looks like the following:

refresh_url':
'?since_id=963341767532834817&q=%23python&result_type=mixed&include
_entities=1

Now we can open the file __init__.py in the twittervotes/core/twitter directory
and import the class that we just created, as follows:

from .hashtag import Hashtag

Perfect! Now go ahead and create a file called request.py in the twittervotes/core/
directory.

As usual, we start adding some imports:

import oauth2 as oauth
import time
from urllib.parse import parse_qsl
import json

import requests

from .config import read_config
from .config import read_reqauth



Casting Votes on Twitter Chapter 3

[ 134 ]

First, we import the oauth2 package that we are going to use to perform authentication; we
prepare the request, signing it with the SHA1 key. We also import time to set the OAuth
timestamp setting. We import the function parse_qsl, which we are going to use to parse
a query string so we can prepare a new request to search for the latest tweets, and the json
module so we can deserialize the JSON data that the Twitter API sends back to us.

Then, we import our own functions, read_config and read_req_auth, so we can read
both configuration files. Lastly, we import the json package to parse the results and the
requests package to perform the actual request to the Twitter search endpoint:

def prepare_request(url, url_params):
    reqconfig = read_reqauth()
    config = read_config()

    token = oauth.Token(
        key=reqconfig.oauth_token,
        secret=reqconfig.oauth_token_secret)

    consumer = oauth.Consumer(
        key=config.consumer_key,
        secret=config.consumer_secret)

    params = {
        'oauth_version': "1.0",
        'oauth_nonce': oauth.generate_nonce(),
        'oauth_timestamp': str(int(time.time()))
    }

    params['oauth_token'] = token.key
    params['oauth_consumer_key'] = consumer.key

    params.update(url_params)

    req = oauth.Request(method="GET", url=url, parameters=params)

    signature_method = oauth.SignatureMethod_HMAC_SHA1()
    req.sign_request(signature_method, consumer, token)

    return req.to_url()

This function will read both configuration files—the config.org configuration file
contains all the endpoint URLs that we need, and also the consumer keys. The
.twitterauth file contains the oauth_token and oauth_token_secret that we will use
to create a Token object that we will pass along with our request.



Casting Votes on Twitter Chapter 3

[ 135 ]

After that, we define some parameters. oauth_version should, according to the Twitter
API documentation, always be set to 1.0. We also send oauth_nonce, which is a unique
token that we must generate for every request, and lastly, oauth_timestamp, which is the
time at which the request was created. Twitter will reject a request that was created too long
before sending the request.

The last thing that we attach to the parameters is oauth_token, which is the token that is
stored in the .twitterath file, and the consumer key, which is the key that was stored in
the config.yaml file.

We perform a request to get an authorization and if everything goes right, we sign the
request with an SHA1 key and return the URL of the request.

Now we are going to add the function that will perform a request to search for a specific
hashtag and return the results to us. Let's go ahead and add another function called
execute_request:

def execute_request(hashtag):
    config = read_config()

    if hashtag.refresh_url:
        refresh_url = hashtag.refresh_url[1:]
        url_params = dict(parse_qsl(refresh_url))
    else:
        url_params = {
            'q': f'#{hashtag.name}',
            'result_type': 'mixed'
        }

    url = prepare_request(config.search_endpoint, url_params)

    data = requests.get(url)

    results = json.loads(data.text)

    return (hashtag, results, )

This function will get a Hashtag object as an argument and the first thing we do in this
function is to read the configuration file. Then we check whether the Hashtag object has a
value in the refresh_url property; in that case, we are going remove the ? sign in the
front of the refresh_url string.



Casting Votes on Twitter Chapter 3

[ 136 ]

After that, we use the function parse_qsl to parse the query string and return a list of
tuples where the first item in the tuple is the name of the parameter and the second is its
value. For example, let's say we have a query string that looks like this:

'param1=1&param2=2&param3=3'

If we use the parse_qsl, passing as an argument this query string, we will get the
following list:

[('param1', '1'), ('param2', '2'), ('param3', '3')]

And then if we pass this result to the dict function, we will get a dictionary like this:

{'param1': '1', 'param2': '2', 'param3': '3'}

As I showed before, the refresh_url has the following format:

refresh_url':
'?since_id=963341767532834817&q=%23python&result_type=mixed&include
_entities=1

And after parsing and transforming it into a dictionary, we can use it to get refreshed data
for the underlying hashtag.

If the Hashtag object does not have the property refresh_url set, then we simply define a
dictionary where the q is the hashtag name and the result type is set to mixed to tell the
Twitter API that it should return popular, recent, and real-time tweets.

After defining the search parameters, we use the prepare_request function that we
created above to authorize the request and sign it; when we get the URL back, we perform
the request using the URL we get back from the prepare_request function.

We make use of the json.loads function to parse the JSON data and return a tuple
containing the first item, the hashtag itself; the second item will be the results we get back
from the request.

The final touch, as usual, is to import the execute_request function in the __init__.py
file in the core module:

from .request import execute_request



Casting Votes on Twitter Chapter 3

[ 137 ]

Let's see how that works in the Python REPL:

The output above is much bigger than this but a lot of it has been omitted; I just wanted to
demonstrate how the function works.

Enhancing our code
We also want to give our users a good experience so we are going to add a command-line
parser so the users of our application can specify some parameters before starting the
voting process. There will be only one argument that we are going to implement and that is
--hashtags, where users can pass a space-separated list of hashtags.

With that said, we are going to define some rules for these arguments. First, we will limit
the maximum number of hashtags that we are going to monitor, so we are going to add a
rule that no more than four hashtags can be used.

If the user specifies more than four hashtags, we will simply display a warning on the
Terminal and pick the first four hashtags. We also want to remove the duplicated hashtags.



Casting Votes on Twitter Chapter 3

[ 138 ]

When showing these warning messages that we talked about, we could simply print them
on the Terminal and it would definitely work; however, we want to make things more
interesting, so we are going to use the logging package to do it. Apart from that,
implementing a proper logging will give us much more control over what kind of log we
want to have and also how we want to present it to the users.

Before we start implementing the command-line parser, let's add the logger. Create a file
called app_logger.py in the twittervotes/core directory with the following content:

import os
import logging
from logging.config import fileConfig

def get_logger():
    core_dir = os.path.dirname(os.path.abspath(__file__))
    file_path = os.path.join(core_dir, '..', 'logconfig.ini')
    fileConfig(file_path)
    return logging.getLogger('twitterVotesLogger')

This function doesn't do much but first we import the os module, then we import the
logging package, and lastly, we import the function fileConfig, which reads the logging
configuration from a config file. This configuration file has to be in
the configparser format and you can get more information about this format at https:/ /
docs.python.org/ 3. 6/library/ logging. config. html#logging- config- fileformat.

After we read the configuration file, we just return a logger called twitterVotesLogger.

Let's see what the configuration file for our application looks like. Create a file called
logconfig.ini in the twittervotes directory with the following content:

[loggers]
keys=root,twitterVotesLogger

[handlers]
keys=consoleHandler

[formatters]
keys=simpleFormatter

[logger_root]
level=INFO
handlers=consoleHandler

[logger_twitterVotesLogger]
level=INFO

https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.6/library/logging.config.html#logging-config-fileformat


Casting Votes on Twitter Chapter 3

[ 139 ]

handlers=consoleHandler
qualname=twitterVotesLogger

[handler_consoleHandler]
class=StreamHandler
level=INFO
formatter=simpleFormatter
args=(sys.stdout,)

[formatter_simpleFormatter]
format=[%(levelname)s] %(asctime)s - %(message)s
datefmt=%Y-%m-%d %H:%M:%S

So here we define two loggers, root and twitterVotesLogger; the loggers are
responsible for exposing methods that we can use at runtime to log messages. It is also
through the loggers that we can set the level of severity, for example, INFO, DEBUG and so
on. Lastly, the logger passes the log messages along to the appropriated handler.

In the definition of our twitterVotesLogger, we set the level of severity to INFO, we set
the handler to consoleHandler (we are going to describe this very soon), and we also set a
qualified name that will be used when we want to get hold of the twitterVotesLogger. 

The last option for twitterVotesLoggers is propagate. Since the twitterVotesLogger
is a child logger, we don't want the log message sent through the twittersVotesLogger
to propagate to its ancestors. Without propagate set to 0, every log message would be
shown twice since the twitterVotesLogger's ancestor is the root logger.

The next component in the logging configuration is the handler. Handlers are the
component that sends the log messages of a specific logger to a destination. We defined a
handler called consoleHandler of type StreamHandler, which is a built-in handler of the
logging module. The StreamHandler sends out log messages to streams such
as sys.stdout, sys.stderr, or a file. This is perfect for us because we want to send
messages to the Terminal.

In the consoleHandler, we also set the severity level to INFO and also we set the formatter
which is set to the customFormatter; then we set the value for args to (sys.stdout, ).
Args specify where the log messages will be sent to; in this case, we set only sys.stdout
but you can add multiple output streams if you need.



Casting Votes on Twitter Chapter 3

[ 140 ]

The last component of this configuration is the formatter customFormatter. Formatters
simply define how the log message should be displayed. In our customFormatter, we just
define how the message should be displayed and show the date format.

Now that we have the logging in place, let's add the functions that will parse the command
line. Create a file cmdline_parser.py in twittervotes/core and add some imports:

from argparse import ArgumentParser

from .app_logger import get_logger

Then we will need to add a function that will validate the command-line arguments:

def validated_args(args):

    logger = get_logger()

    unique_hashtags = list(set(args.hashtags))

    if len(unique_hashtags) < len(args.hashtags):
        logger.info(('Some hashtags passed as arguments were '
                     'duplicated and are going to be ignored'))

        args.hashtags = unique_hashtags

    if len(args.hashtags) > 4:
        logger.error('Voting app accepts only 4 hashtags at the
        time')
        args.hashtags = args.hashtags[:4]

    return args

validate_args functions have only one parameter and it is the arguments that have been
parsed by the ArgumentParser. The first thing we do in this function is to get hold of the
logger that we just created, so we can send log messages to inform the user about possible
problems in the command-line arguments that have been passed to the application.

Next, we transform the list of hashtags into a set so all the duplicated hashtags are removed
and then we transform it back to a list. After that, we check whether the number of unique
hashtags is less than the original number of hashtags that have been passed on the
command line. That means that we had duplication and we log a message to inform the
user about that.



Casting Votes on Twitter Chapter 3

[ 141 ]

The last verification we do is to make sure that a maximum of four hashtags will be
monitored by our application. If the number of items in the hashtag list is greater than four,
then we slice the array, getting only the first four items, and we also log a message to
inform the user that only four hashtags will be displayed.

Let's add another function, parse_commandline_args:

def parse_commandline_args():
    argparser = ArgumentParser(
        prog='twittervoting',
        description='Collect votes using twitter hashtags.')

    required = argparser.add_argument_group('require arguments')

    required.add_argument(
        '-ht', '--hashtags',
        nargs='+',
        required=True,
        dest='hashtags',
        help=('Space separated list specifying the '
              'hashtags that will be used for the voting.\n'
              'Type the hashtags without the hash symbol.'))

    args = argparser.parse_args()

    return validated_args(args)

We saw how the ArgumentParser works when we were developing the application in the
first chapter, the weather application. However, we can still go through what this function
does.

First, we define an ArgumentParser object, defining a name and a description, and we
create a subgroup called required that, as the name suggests, will have all the required
fields.

Note that we don't really need to create this extra group; however, I find
that it helps to keep the code more organized and easier to maintain in
case it is necessary to add new options in the future.

We define only one argument, hashtags. In the definition of the hashtags argument,
there is an argument called nargs and we have set it to +; this means that I can pass an
unlimited number of items separated by spaces, as follows:

--hashtags item1 item2 item3



Casting Votes on Twitter Chapter 3

[ 142 ]

The last thing we do in this function is to parse the arguments with the parse_args
function and run the arguments through the validate_args function that has been shown
previously.

Let's import the parse_commandline_args function in the __init__.py file in the
twittervotes/core directory:

from .cmdline_parser import parse_commandline_args

Now we need to create a class that will help us to manage hashtags and perform tasks such
as keeping the score count of hashtags, updating its value after every request. So let's go
ahead and create a class called HashtagStatsManager. Create a file called
hashtagstats_manager.py in twittervotes/core/twitter with the following
content:

from .hashtag import Hashtag

class HashtagStatsManager:

    def __init__(self, hashtags):

        if not hashtags:
            raise AttributeError('hashtags must be provided')

        self._hashtags = {hashtag: Hashtag(hashtag) for hashtag in
         hashtags}
    def update(self, data):

        hashtag, results = data
        metadata = results.get('search_metadata')
        refresh_url = metadata.get('refresh_url')
        statuses = results.get('statuses')

        total = len(statuses)

        if total > 0:
            self._hashtags.get(hashtag.name).total += total
            self._hashtags.get(hashtag.name).refresh_url =
            refresh_url

    @property
    def hashtags(self):
        return self._hashtags



Casting Votes on Twitter Chapter 3

[ 143 ]

This class is also very simple: in the constructor, we get a list of hashtags and initialize a
property, _hashtags, which will be a dictionary where the key is the name of the hashtag
and the value is an instance of the Hashtag class.

The update method gets a tuple containing a Hashtag object and the results are returned by
the Twitter API.  First, we unpack the tuple values and set it to the hashtag and results
variables. The results dictionary has two items that are interesting to us. The first is the
search_metadata; in this item, we will find the refresh_url and the statuses contain a
list of all tweets that used the hashtag that we were searching for.

So we get the values for the search_metadata, the refresh_url, and lastly the
statuses. Then we count how many items there are in the statuses list. If the number of
items on the statuses list is greater than 0, we update the total count for the underlying
hashtag as well as its refresh_url.

Then we import the HashtagStatsManager class that we just created in the __init__.py
file in the twittervotes/core/twitter directory:

from .hashtagstats_manager import HashtagStatsManager

The heart of this application is the class Runner. This class will perform the execution of a
function and queue it in the process pool. Every function will be executed in parallel in a
different process, which will make the program much faster than if I executed these
functions one by one.

Let's have a look at how the Runner class is implemented:

import concurrent.futures

from rx import Observable

class Runner:

    def __init__(self, on_success, on_error, on_complete):
        self._on_success = on_success
        self._on_error = on_error
        self._on_complete = on_complete

    def exec(self, func, items):

        observables = []

        with concurrent.futures.ProcessPoolExecutor() as executor:
            for item in items.values():



Casting Votes on Twitter Chapter 3

[ 144 ]

                _future = executor.submit(func, item)
                observables.append(Observable.from_future(_future))
        all_observables = Observable.merge(observables)
        all_observables.subscribe(self._on_success,
                                  self._on_error,
                                  self._on_complete)

The class Runner has an initializer taking three arguments; they are all functions that will
be called in different statuses of the execution. on_success will be called when the
execution of the item has been successful, on_error when the execution of one function has
failed for some reason, and finally on_complete will be called when all the functions in the
queue have been executed.

There is also a method called exec that takes a function as the first argument, which is the
function that will be executed, and the second argument is a list of Hashtag instances.

There are a few interesting things in the Runner class. First, we are using the
concurrent.futures module, which is a really nice addition to Python and has been
around since Python 3.2; this module provides ways of executing callables asynchronously. 

The concurrent.futures module also provides the ThreadPoolExecutor, which will
perform asynchronous executions using threads, and the ProcessPollExecutor, which
uses a process. You can easily switch between these execution strategies according to your
needs.

The rule of thumb is if your function is CPU-bound, it is a good idea to use
ProcessPollExecutor, otherwise, you will suffer big performances issues because of the
Python Global Interpreter Lock (GIL). For I/O-bound operations, I prefer using
ThreadPoolExecutor.

If you want to read more about the GIL, you can check out the following wiki page: https:/
/wiki.python.org/ moin/ GlobalInterpreterLock.

Since we are not doing any I/O-bound operations, we use ProcessPoolExecutor. Then,
we loop through the values of the items, which is a dictionary containing all the hashtags
that our application is monitoring. And for every hashtag, we pass it to the submit function
of the ProcessPollExecutor along with the function that we want to execute; in our case,
it will be the execute_request function defined in the core module of our application.

https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock


Casting Votes on Twitter Chapter 3

[ 145 ]

The submit function, instead of returning the value returned by the execute_request
function, will return a future object, which encapsulates the asynchronous execution of the
execute_request function. The future object provides methods to cancel an execution,
check the status of the execution, get the results of the execution, and so on.

Now, we want a way to be notified when the executions change state or when they finish.
That is where reactive programming comes in handy.

Here, we get the future object and create an Observable. Observables are the core of
reactive programming. An Observable is an object that can be observed and emit events at
any given time. When an Observable emits an event, all observers that subscribed to that
Observable will be notified and react to those changes.

This is exactly what we are trying to achieve here: we have an array of future executions
and we want to be notified when those executions change state. These states will be
handled by the functions that we passed as an argument to the Runner
initializer—_on_sucess, _on_error, and _on_complete.

Perfect! Let's import the Runner class into __init__.py in the twittervotes/core
directory:

from .runner import Runner

The last piece of our project is to add the entry point of our application. We are going to add
the user interface using the Tkinter package from the standard library. So let's start
implementing it. Create a file called app.py in the twittervotes directory, and let's start
by adding some imports:

from core import parse_commandline_args
from core import execute_request
from core import Runner

from core.twitter import HashtagStatsManager

from tkinter import Tk
from tkinter import Frame
from tkinter import Label
from tkinter import StringVar
from tkinter.ttk import Button

Here, we import the command-line argument parser that we created, execute_request to
perform the requests to the Twitter API, and also the Runner class that will help us execute
the requests to the Twitter API  in parallel.



Casting Votes on Twitter Chapter 3

[ 146 ]

We also import the HashtagStatsManager to manage the hashtag voting results for us.

Lastly, we have all the imports related to tkinter.

In the same file, let's create a class called Application as follows:

class Application(Frame):

    def __init__(self, hashtags=[], master=None):
        super().__init__(master)

        self._manager = HashtagStatsManager(hashtags)

        self._runner = Runner(self._on_success,
                              self._on_error,
                              self._on_complete)

        self._items = {hashtag: StringVar() for hashtag in
hashtags}
        self.set_header()
        self.create_labels()
        self.pack()

        self.button = Button(self, style='start.TButton',
                             text='Update',
                             command=self._fetch_data)
        self.button.pack(side="bottom")

So here, we create a class, Application, that inherits from Frame. The initializer takes two
arguments: hashtags, which are the hashtags that we are going to monitor, and the master
argument, which is an object of type Tk.

Then we create an instance of HashtagStatsManager, passing the list of hashtags; we also
create an instance of the Runner class passing three arguments. These arguments are
functions that will be called when one execution finishes successfully, when the execution
fails, and when all the executions are complete.

Then we have a dictionary comprehension that will create a dictionary where the keys are
the hashtags and the values are a Tkinter variable of type string, which in the Tkinter
world is called StringVar. We do that so it will be easier to update the labels with the
results later on.



Casting Votes on Twitter Chapter 3

[ 147 ]

We call the methods set_header and create_labels that we are going to implement
shortly and finally we call pack. The pack function will organize widgets such as buttons
and labels and place them in the parent widget, in this case, the Application.

Then we define a button that will execute the function _fetch_data when clicked and
we use pack to place the button at the bottom of the frame:

def set_header(self):
    title = Label(self,
                  text='Voting for hasthags',
                  font=("Helvetica", 24),
                  height=4)
    title.pack()

Here's the set_header method that I mentioned earlier; it simply creates Label objects
and places them at the top of the frame.

Now we can add the create_labels method:

def create_labels(self):
    for key, value in self._items.items():
        label = Label(self,
                      textvariable=value,
                      font=("Helvetica", 20), height=3)
        label.pack()
        self._items[key].set(f'#{key}\nNumber of votes: 0')

The create_labels method loops through self._items, which, if you remember, is a
dictionary where the key is the name of the hashtag and the value is a Tkinter variable of
type string.

First, we create a Label, and the interesting part is the textvariable argument; we set it
to value, which is a Tkinter variable related to a specific hashtag. Then we place the
Label in the frame and, lastly, we set the value of the label using the function set.



Casting Votes on Twitter Chapter 3

[ 148 ]

Then we need to add a method that will update the Labels for us:

def _update_label(self, data):
    hashtag, result = data

    total = self._manager.hashtags.get(hashtag.name).total

    self._items[hashtag.name].set(
        f'#{hashtag.name}\nNumber of votes: {total}')

The _update_label, as the name suggests, updates the label of a specific hashtag. The data
argument is the results returned by the Twitter API and we get the total number of the
hashtags from the manager. Finally, we use the set function again to update the label.

Let's add another function that will actually do the work of sending the requests to the
Twitter API:

def _fetch_data(self):
    self._runner.exec(execute_request,
                      self._manager.hashtags)

This method will call the method exec of the Runner to execute the function that performs
the requests to the Twitter API.

Then we need to define the methods that will handle the events emitted by the
Observables created in the Runner class; we start by adding the method that will handle
execution errors:

def _on_error(self, error_message):
    raise Exception(error_message)

This is a helper method just to raise an exception in case something goes wrong with the
execution of the requests.

Then we add another method that handles when the execution of an Observable has been
successful:

def _on_success(self, data):
    hashtag, _ = data
    self._manager.update(data)
    self._update_label(data)



Casting Votes on Twitter Chapter 3

[ 149 ]

The _on_success method is going to be called when one execution from the Runner
finished successfully, and it will just update the manager with the new data and also update
the label in the UI.

Lastly, we define a method that will handle when all the executions have been completed:

def _on_complete(self):
    pass

The _on_complete will be called when all the executions of the Runner finish. We are not
going to be using it so we just use the pass statement.

Now it is time to implement the function that will set up the application and initialize the
UI—the function start_app:

def start_app(args):
    root = Tk()

    app = Application(hashtags=args.hashtags, master=root)
    app.master.title("Twitter votes")
    app.master.geometry("400x700+100+100")
    app.mainloop()

This function creates the root application, sets the title, defines its dimensions, and also calls
the mainloop function so the application keeps running.

The last piece is to define the main function:

def main():
    args = parse_commandline_args()
    start_app(args)

if __name__ == '__main__':
    main()



Casting Votes on Twitter Chapter 3

[ 150 ]

The main function is pretty simple. First, we parse the command-line arguments, then we
start the application, passing the command-line arguments to it.

Let's see the application in action! Run the following command:

python app.py --help

You will see the following output:

Let's say we want the voting process to run for 3 minutes and it will monitor the hashtags
#debian, #ubuntu, and #arch:

python app.py --hashtags debian ubuntu arch



Casting Votes on Twitter Chapter 3

[ 151 ]

Then you should see the following UI:

And if you click the Update button, the count for every hashtag will be updated.



Casting Votes on Twitter Chapter 3

[ 152 ]

Summary
In this chapter, we developed an application to cast votes on Twitter and we learned the
different concepts and paradigms of the Python programming language.

By creating the hashtag voting application, you have learned how to create and configure a
Twitter app and also how to implement a three-legged OAuth authentication to consume
data from the Twitter API.

We also learned how to use the logging module to show informational messages to the
users of our application. Like the previous modules, we also created a command-line parser
using the ArgumentParser module in the standard library.

We also had an introduction to reactive programming using the Rx (Reactive Extensions for
Python) module. Then we used the concurrent.futures module to enhance the
performance of our application, running multiple requests to the Twitter API in parallel.

Lastly, we built a user interface using the Tkinter module.

In the next chapter, we are going to build an application that will fetch exchange rate data
from the site http:/ /fixer. io to perform currency conversion.

http://fixer.io
http://fixer.io
http://fixer.io
http://fixer.io
http://fixer.io
http://fixer.io
http://fixer.io


4
Exchange Rates and the

Currency Conversion Tool
In the previous chapter, we built a really cool application to count votes on Twitter and
learned how to authenticate and consume the Twitter API using Python. We also had a
good introduction to how to use Reactive Extensions for Python. In this chapter, we are
going to create a terminal tool that will fetch exchange rates for the current day from
fixer.io and use this information to convert the value between different currencies.

Fixer.io is a very nice project created by https:/ /github. com/ hakanensari; on a daily
basis, it fetches foreign exchange rate data from the European Central Bank. The API that he
created is simple to use and works pretty well.

Our project starts out by creating a framework around the API; when that is in place, we are
going to create a terminal application where we can perform currency conversion. All the
data that we fetch from the fixer.io is going to be stored in a MongoDB database, so we
can perform conversions without doing requests to fixer.io all the time. This will
increase the performance of our application.

In this chapter, we will cover the following:

How to use pipenv to install and manage our project's dependencies
Working with MongoDB using the PyMongo module
Consuming REST APIs using Requests

With that said, let's get started!

https://github.com/hakanensari
https://github.com/hakanensari
https://github.com/hakanensari
https://github.com/hakanensari
https://github.com/hakanensari
https://github.com/hakanensari
https://github.com/hakanensari
https://github.com/hakanensari
https://github.com/hakanensari


Exchange Rates and the Currency Conversion Tool Chapter 4

[ 154 ]

Setting up the environment
As usual, we will start by setting up our environment; the first thing we need to do is set up
a virtual environment that will allow us to easily install our project dependencies without
interfering with Python's global installation.

In the previous chapters, we used virtualenv to create our virtual environment; however,
Kenneth Reitz (the creator of the popular package requests) created pipenv.
pipenv is for Python what NPM is for Node.js. However, pipenv is used for much more
than package management, and it also creates and manages a virtual environment for you.
In my opinion, there are a lot of advantages of the old development workflows, but for me,
there are two things that stand out: the first is that you no longer need two different tools
(pip, virtualenv), and the second is that it is much simpler to have all these great features
in just one place.

Another thing that I really like about pipenv is the use of Pipfile. Sometimes, it is really
hard to work with requirement files. Our production environment and development
environment have the same dependencies, and you end up having to maintain two
different files; plus, every time you need to remove one dependency, you will need to edit
the requirement file manually.

With pipenv, you don't need to worry about having multiple requirement files.
Development and production dependencies are placed in the same file, and pipenv also
takes care of updating the Pipfile.

Installing pipenv is quite simple, just run: 

pip install pipenv

After installing it you can run:

pipenv --help



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 155 ]

You should see an output like the following:

We are not going to go through all the different options because that is beyond the scope of
this book, but while we are creating our environment, you will acquire a good knowledge
of the basics.

The first step is to create a directory for our project. Let's create a directory called
currency_converter:

mkdir currency_converter && cd currency_converter

Now that you are inside the currency_converter directory, we are going to use pipenv
to create our virtual environment. Run the following command:

pipenv --python python3.6



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 156 ]

This will create a virtual environment for the project living in the current directory and will
use Python 3.6. The --python option also accepts a path to where you installed Python. In
my case, I always download the Python source code, build it, and install it in a different
location, so this is very useful for me.

You could also use the --three option, which would use the default Python3 installation
on your system. After running the command, you should see the following output:

If you have a look at the contents of the Pipfile, you should have something similar to the
following:

[[source]]

url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[dev-packages]

[packages]

[requires]

python_version = "3.6"



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 157 ]

This file starts defining where to get the packages from, and in this case, it will download
packages from pypi. Then, we have a place for the development dependencies of our
project, and in packages, the production dependencies. Lastly, it says that this project
requires Python version 3.6.

Great! Now you can use some commands. For example, if you want to know which virtual
environment the project uses, you can run pipenv --venv; you will see the following
output:

If you want to activate the virtual environment for the project, you can use the
shell command, as follows:

Perfect! With the virtual environment in place, we can start adding our project's
dependencies.

The first dependency that we are going to add is requests.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 158 ]

Run the following command:

pipenv install requests

We will get the following output:

As you can see, pipenv installs requests as well as all its dependencies.

The author of pipenv is the same developer who created the popular
requests library. In the installation output, you can see an easter egg,
saying PS: You have excellent taste!.

The other dependency that we need to add to our project is pymongo so that we can connect
and manipulate data in a MongoDB database.

Run the following command:

pipenv install pymongo



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 159 ]

We will get the following output:

Let's have a look at the Pipfile and see how it looks now:

[[source]]

url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[dev-packages]

[packages]

requests = "*"
pymongo = "*"

[requires]

python_version = "3.6"

As you can see, under the packages folder, we have now our two dependencies.

Not much has changed in comparison with installing packages with pip. The exception is
that now installing and removing dependencies will automatically update the Pipfile.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 160 ]

Another command that is very useful is the graph command. Run the following command:

pipenv graph

We will get the following output:

As you can see, the graph command is very helpful when you want to know what the
dependencies of the packages you have installed are. In our project, we can see that
pymongo doesn't have any extra dependencies. However, requests has four
dependencies: certifi, chardet, idna, and urllib3.

Now that you have had a great introduction to pipenv, let's have a look at what this
project's structure will look like:

currency_converter
└── currency_converter
    ├── config
    ├── core

The top currency_converter is the application's root directory. Then, one level down
we have another currency_converter and that is the currency_converter module that
we are going to create.

Inside the currency_converter module directory, we have a core which contains the
application core functionality, for example, a command line argument parser, helper
functions to handle data, and so on.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 161 ]

We have also configured, as with the other projects, which project will contain functions to
read YAML configuration files; finally, we have HTTP, which have all the functions that
will perform HTTP requests to the fixer.io REST API.

Now that we have learned how to use pipenv and how it will help us to be more
productive, we can install the initial dependencies to our project. We created the project's
directory structure, too. The only missing piece of the puzzle is installing MongoDB.

I'm using Linux Debian 9 and I can easily just install this using Debian's package manager
tool:

sudo apt install mongodb

You will find MongoDB in the package repositories of the most popular Linux distributions,
and if you are using Windows or macOS, you can see the instructions in the following 
links:

For macOS: https:/ /docs. mongodb. com/ manual/ tutorial/ install- mongodb- on-os- x/

For Windows: https:/ /docs. mongodb. com/manual/ tutorial/ install- mongodb- on-
windows/

After installation, you can verify that everything is working properly using the MongoDB
client. Open a terminal and just run the mongo command.

And you should get into the MongoDB shell:

MongoDB shell version: 3.2.11
connecting to: test

To exit the MongoDB shell, just type CTRL + D.

Perfect! Now we are ready to start coding!

Creating the API wrapper
In this section, we are going to create a set of functions that will wrap the fixer.io API
and will help us use it in a simple way within our project.

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/


Exchange Rates and the Currency Conversion Tool Chapter 4

[ 162 ]

Let's go ahead and create a new file called request.py in
the currency_converter/currency_converter/core directory. First, we are going to
include some import statements:

import requests
from http import HTTPStatus
import json

We obviously need requests so that we can perform requests to the fixer.io endpoints,
and we are also importing HTTPStatus from the HTTP module so we can return the correct
HTTP status code; also be a bit more verbose in our code. It's much nicer and easier to read
the HTTPStatus.OK return than only 200.

Lastly, we import the json package so that we can parse the JSON content that we get from
fixer.io into Python objects.

Next, we are going to add our first function. This function will return the current exchange
rates given a specific currency:

def fetch_exchange_rates_by_currency(currency):
    response = requests.get(f'https://api.fixer.io/latest?base=
                            {currency}')

    if response.status_code == HTTPStatus.OK:
        return json.loads(response.text)
    elif response.status_code == HTTPStatus.NOT_FOUND:
        raise ValueError(f'Could not find the exchange rates for:
                         {currency}.')
    elif response.status_code == HTTPStatus.BAD_REQUEST:
        raise ValueError(f'Invalid base currency value:
{currency}')
    else:
        raise Exception((f'Something went wrong and we were unable
                         to fetch'
                         f' the exchange rates for: {currency}'))

This function gets a currency as an argument and starts off by sending a request to
the fixer.io API to get the latest exchange rates using the currency as a base, which was
given as an argument.

If the response was HTTPStatus.OK (200), we use the load function from the JSON module
to parse the JSON response; otherwise, we raise exceptions depending on the error that
occurs.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 163 ]

We can also create a file called __init__.py in
the currency_converter/currency_converter/core directory and import the function
that we just created:

from .request import fetch_exchange_rates_by_currency

Great! Let's try it out in the Python REPL:

Python 3.6.3 (default, Nov 21 2017, 06:53:07)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from currency_converter.core import fetch_exchange_rates_by_currency
>>> from pprint import pprint as pp
>>> exchange_rates = fetch_exchange_rates_by_currency('BRL')
>>> pp(exchange_rates)
{'base': 'BRL',
 'date': '2017-12-06',
 'rates': {'AUD': 0.40754,
           'BGN': 0.51208,
           'CAD': 0.39177,
           'CHF': 0.30576,
           'CNY': 2.0467,
           'CZK': 6.7122,
           'DKK': 1.9486,
           'EUR': 0.26183,
           'GBP': 0.23129,
           'HKD': 2.4173,
           'HRK': 1.9758,
           'HUF': 82.332,
           'IDR': 4191.1,
           'ILS': 1.0871,
           'INR': 19.963,
           'JPY': 34.697,
           'KRW': 338.15,
           'MXN': 5.8134,
           'MYR': 1.261,
           'NOK': 2.5548,
           'NZD': 0.4488,
           'PHP': 15.681,
           'PLN': 1.1034,
           'RON': 1.2128,
           'RUB': 18.273,
           'SEK': 2.599,
           'SGD': 0.41696,
           'THB': 10.096,
           'TRY': 1.191,
           'USD': 0.3094,



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 164 ]

           'ZAR': 4.1853}}

Perfect! It works just like we expected.

Next, we are going to start building the database helper class.

Adding the database helper class
Now that we have implemented the function that will fetch the exchange rate information
from fixer.io, we need to add the class that will retrieve and save the information we
fetched into our MongoDB.

So, let's go ahead and create a file called db.py inside
the currency_converter/currency_converter/core directory; let's add some import
statements:

  from pymongo import MongoClient

The only thing we need to import is the MongoClient. The MongoClient will be
responsible for opening a connection with our database instance.

Now, we need to add the DbClient class. The idea of this class is to serve as a wrapper
around the pymongo package functions and provide a simpler set of functions, abstracting
some of the repetitive boilerplate code when working with pymongo:

class DbClient:

    def __init__(self, db_name, default_collection):
        self._db_name = db_name
        self._default_collection = default_collection
        self._db = None

a class called DbClient and its constructor gets two arguments, db_name and
default_collection. Note that, in MongoDB, we don't need to create the database and
the collection before using it. When we try to insert data for the first time, the database and
the collection will be created for us.

This might seem strange if you are used to working with SQL databases such as MySQL or
MSSQL where you have to connect to the server instance, create a database, and create all
the tables before using it.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 165 ]

We aren't concerned about security in this example since MongoDB is
beyond the scope of this book and we are only focusing on Python.

Then, we are going to add two methods, connect and disconnect, to the database:

    def connect(self):
        self._client = MongoClient('mongodb://127.0.0.1:27017/')
        self._db = self._client.get_database(self._db_name)

    def disconnect(self):
        self._client.close()

The connect method will use the MongoClient connecting to the database instance at our
localhost, using the port 27017 which is the default port that MongoDB runs right after the
installation. These two values might be different for your environment. The disconnect
method simply calls the method close to the client and, as the name says, it closes the
connection.

Now, we are going to add two special functions, __enter__ and __exit__:

    def __enter__(self):
        self.connect()
        return self

    def __exit__(self, exec_type, exec_value, traceback):
        self.disconnect()

        if exec_type:
            raise exec_type(exec_value)

        return self

We want the DbClient class to be used within its own context, and this is achieved by
using a context manager and with the with statement. The basic implementation of a
context manager is done by implementing these two functions, __enter__ and __exit__.
__enter__ will be called when we enter the context that the DbClient is running. In this
case, we are going to call the connect method to connect to our MongoDB instance.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 166 ]

The __exit__ method, on the other hand, is called when the current context is terminated.
The context can be terminated by normal causes or by some exception that has been thrown.
In our case, we disconnect from the database and, if exec_type is not equal to None, which
means that if some exception has occurred, we raise that exception. This is necessary,
otherwise, exceptions occurring within the context of the DbClient would be suppressed.

Now, we are going to add a private method called _get_collection:

    def _get_collection(self):
        if self._default_collection is None:
            raise AttributeError('collection argument is required')

        return self._db[self._default_collection]

This method will simply check if we have defined a default_collection. If not, it will
throw an exception; otherwise, we return the collection.

We need just two methods to finish this class, one to find items in the database and another
to insert or update data:

    def find_one(self, filter=None):
        collection = self._get_collection()
        return collection.find_one(filter)

    def update(self, filter, document, upsert=True):
        collection = self._get_collection()

        collection.find_one_and_update(
            filter,
            {'$set': document},
            upsert=upsert)

The find_one method gets one optional argument called filter, which is a dictionary with
criteria that will be used to perform the search. If omitted, it will just return the first item in
the collection.

There are a few more things going on in the update method. It gets three
arguments: filter, document, and the optional argument, upsert.

The filter argument is exactly the same as the find_one method; it is a criterion that will
be used to search the collection's item that we want to update.

The document argument is a dictionary with the fields that we want to update in the
collection's item or insert.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 167 ]

Lastly, the optional argument upsert, when set to True, means that if the item that we are
trying to update doesn't exist in the database's collection, then we are going to perform an
insert operation and add the item to the collection. 

The method starts off by getting the default collection and then uses the
collection's find_on_and_update method, passing the filter to the dictionary with the
fields that we want to update and also the upsert option.

We also need to update the __init__.py file in the
currency_converter/currency_converter/core directory with the following
contents:

from .db import DbClient

Great! Now, we can start creating the command line parser.

Creating the command line parser
I have to confess one thing: I'm a command-line type of guy. Yes, I know it is considered by
some people as outdated, but I love doing work on the terminal. I am definitely more
productive and if you are using Linux or macOS, you can combine tools to get the results
that you want. That's the reason that we are going to add a command line parser for this
project.

There are some things we need to implement in order to start creating the command line
parser. One functionality that we are going to add is the possibility of setting a default
currency, which will avoid user of our application always having to specify the base
currency to perform currency conversions.

To do that, we are going to create an action, We have seen how actions work in Chapter 1,
Implementing the Weather Application, but just to refresh our minds, actions are classes that
can be bound to command line arguments to execute a certain task. These actions are called
automatically when the argument is used in the command line.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 168 ]

Before going into the development of custom actions, we need to create a function that will
fetch the configuration of our application from the database. First, we are going to create a
custom exception that will be used to raise errors when we cannot retrieve the configuration
from the database. Create a file named config_error.py in
the currency_converter/currency_converter/config directory with the following
contents:

    class ConfigError(Exception):
      pass

Perfect! This is all we need to create our custom exception. We could have used a built-in
exception, but that would have been too specific to our application. It is always a good
practice to create custom exceptions for your application; it will make your life and the life
of your colleagues much easier when troubleshooting bugs.

Create a file named config.py in
the currency_converter/currency_converter/config/ directory with the following
contents:

from .config_error import ConfigError
from currency_converter.core import DbClient

def get_config():
    config = None

    with DbClient('exchange_rates', 'config') as db:
        config = db.find_one()

    if config is None:
        error_message = ('It was not possible to get your base
                        currency, that '
                       'probably happened because it have not been
'
                         'set yet.\n Please, use the option '
                         '--setbasecurrency')
        raise ConfigError(error_message)

    return config

Here, we start off by adding from the import statements. We start importing the
ConfigError custom exception that we just created and we also import the DbClient class
so we can access the database to retrieve the configuration for our application.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 169 ]

Then, we define the get_config function. This function will not take any argument, and
the function starts by defining a variable config with a None value. Then, we use the
DbClient to connect to the exchange_rate database and use the collection named
config. inside the DbClient context, we use the find_one method without any argument,
which means that the first item in that config collection will be returned.

If the config variable is still None, we raise an exception saying to the user that there's no
configuration in the database yet and that it is necessary to run the application again with
the --setbasecurrency argument. We are going to implement the command line
arguments in a short while. If we have the value of the config, we just return it.

We also need to create a __init__.py file in the
currency_converter/currency_converter/config directory with the following
contents:

from .config import get_config

Now, let's start adding our first action, which will set the default currency. Add a file called
actions.py in the currency_converter/currency_converter/core directory: 

  import sys
  from argparse import Action
  from datetime import datetime

  from .db import DbClient
  from .request import fetch_exchange_rates_by_currency
  from currency_converter.config import get_config

First, we import sys so we can terminate the program's execution if something goes wrong.
Then, we import the Action from the argparse module. We need to create a class
inheriting from Action when creating custom actions. We also import datetime because
we are going to add functionality to check if the exchange rates that we are going to use are
outdated.

Then, we import some of the classes and functions that we created. We start with the
DbClient so we can fetch and store data in the MongoDB,
then fetch_exchange_rates_by_currency to fetch fresh data from fixer.io when
necessary. Finally, we import a helper function called get_config so we can get the
default currency from the config collection in the database.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 170 ]

Let's start by adding the SetBaseCurrency class:

class SetBaseCurrency(Action):
    def __init__(self, option_strings, dest, args=None, **kwargs):
        super().__init__(option_strings, dest, **kwargs)

Here, we define the SetBaseCurrency class, inheriting from Action, and we also add a
constructor. It doesn't do much; it just all the constructor of the base class.

Now, we need to implement a special method called __call__. It will be called when the
argument that the action is bound to is parsed:

    def __call__(self, parser, namespace, value, option_string=None):
        self.dest = value

        try:
            with DbClient('exchange_rates', 'config') as db:
                db.update(
                    {'base_currency': {'$ne': None}},
                    {'base_currency': value})

            print(f'Base currency set to {value}')
        except Exception as e:
            print(e)
        finally:
            sys.exit(0)

This method gets four arguments, and the parser is an instance of the ArgumentParser
that we are going to create shortly.  namespace is an object which is the result of the
argument parser;  we went through namespace objects in detail in Chapter 1, Implementing
the Weather Application. The value is the value that has been passed to the underlying
argument and lastly, the option_string  is the argument that the action is bound to.

We start the method by setting the value, the destination variable for the argument, and
then create an instance of the DbClient. Note that we are using the with statement here, so
we run the update within the DbClient context.

Then, we call the update method. Here, we are passing two arguments to the update
method, the first being filter. When we have {'base_currrency': {'$ne': None}},
it means that we are going to update an item in the collection where the base currency is not
equal to None; otherwise, we are going to insert a new item. This is the default behavior of
the update method in the DbClient class because we have the upsert option set to True
by default.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 171 ]

When we finish updating, we print the message to the user saying that the default currency
has been set and we exit the execution of the code when we hit the finally clause. If
something goes wrong, and for some reason, we cannot update the config collection, an
error will be displayed and we exit the program.

The other class that we need to create it is the UpdateForeignerExchangeRates class:

class UpdateForeignerExchangeRates(Action):
    def __init__(self, option_strings, dest, args=None, **kwargs):
        super().__init__(option_strings, dest, **kwargs)

As with the class before, we define the class and inherit from Action. The constructor only
calls the constructor in the base class:

def __call__(self, parser, namespace, value, option_string=None):

        setattr(namespace, self.dest, True)

        try:
            config = get_config()
            base_currency = config['base_currency']
            print(('Fetching exchange rates from fixer.io'
                   f' [base currency: {base_currency}]'))
            response =
            fetch_exchange_rates_by_currency(base_currency)
            response['date'] = datetime.utcnow()

            with DbClient('exchange_rates', 'rates') as db:
                db.update(
                    {'base': base_currency},
                    response)
        except Exception as e:
            print(e)
        finally:
            sys.exit(0)

We also need to implement the __call__ method, which will be called when using the
argument that this action will be bound to. We are not going through the method
arguments again because it is exactly the same as the previous one.

The method starts by setting the value to True for the destination property. The argument
that we are going to use to run this action will not require arguments and it will default to
False, so if we use the argument, we set it to True. It is just a way of stating that we have
used that argument.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 172 ]

Then, we get the configuration from the database and get the base_currency. We show a
message to the user saying that we are fetching the data from fixer.io and then we use
our fetch_exchange_rates_by_currency function, passing the base_currency to it.
When we get a response, we change the date to UTC time so it will be easier for us to
calculate if the exchange rate for a given currency needs to be updated.

Remember that fixer.io updates its data around 16:00 CET.

Then, we create another instance of the DbClient and use the update method with two
arguments. The first one is filter, so it will change any item in the collection that matches
the criteria, and the second argument is the response that we get from fixer.io API.

After everything is done, we hit the finally clause and terminate the program's execution.
If something goes wrong, we show a message to the user in the terminal and terminate the
program's execution.

Creating the currency enumeration
Another thing we need to do before starting the command line parser is to create an
enumeration with the possible currencies that the users of our application will be able to
choose from. Let's go ahead and create a file called currency.py in
the currency_converter/currency_converter/core directory with the following
contents:

from enum import Enum

class Currency(Enum):
    AUD = 'Australia Dollar'
    BGN = 'Bulgaria Lev'
    BRL = 'Brazil Real'
    CAD = 'Canada Dollar'
    CHF = 'Switzerland Franc'
    CNY = 'China Yuan/Renminbi'
    CZK = 'Czech Koruna'
    DKK = 'Denmark Krone'
    GBP = 'Great Britain Pound'
    HKD = 'Hong Kong Dollar'
    HRK = 'Croatia Kuna'
    HUF = 'Hungary Forint'



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 173 ]

    IDR = 'Indonesia Rupiah'
    ILS = 'Israel New Shekel'
    INR = 'India Rupee'
    JPY = 'Japan Yen'
    KRW = 'South Korea Won'
    MXN = 'Mexico Peso'
    MYR = 'Malaysia Ringgit'
    NOK = 'Norway Kroner'
    NZD = 'New Zealand Dollar'
    PHP = 'Philippines Peso'
    PLN = 'Poland Zloty'
    RON = 'Romania New Lei'
    RUB = 'Russia Rouble'
    SEK = 'Sweden Krona'
    SGD = 'Singapore Dollar'
    THB = 'Thailand Baht'
    TRY = 'Turkish New Lira'
    USD = 'USA Dollar'
    ZAR = 'South Africa Rand'
    EUR = 'Euro'

This is pretty straightforward. We have already covered enumerations in Python in the
previous chapters, but here we define the enumeration where the key is the currency's
abbreviation and the value is the name. This matches the currencies that are available in
fixer.io as well.

Open the __init__.py file in the
currency_converter/currency_converter/core directory and add the following
import statement:

from .currency import Currency

Creating the command line parser
Perfect! Now, we are all set to create the command line parser. Let's go ahead and create a
file called cmdline_parser.py in the
currency_converter/currency_converter/core directory and as usual, let's start
importing everything we need:

import sys
from argparse import ArgumentParser

from .actions import UpdateForeignerExchangeRates
from .actions import SetBaseCurrency



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 174 ]

from .currency import Currency

From the top, we import sys, so that can we exit the program if something is not right. We
also include the ArgumentParser so we can create the parser; we also import
the UpdateforeignerExchangeRates and SetBaseCurrency actions that we just
created. The last thing in the Currency enumeration is that we are going to use it to set
valid choices in some arguments in our parser.

Create a function called parse_commandline_args:

def parse_commandline_args():

    currency_options = [currency.name for currency in Currency]

    argparser = ArgumentParser(
        prog='currency_converter',
        description=('Tool that shows exchange rated and perform '
                     'currency convertion, using http://fixer.io
                       data.'))

The first thing we do here is get only the names of the Currency enumeration's keys; this
will return a list like this:

Here, we finally create an instance of the ArgumentParser and we pass two arguments:
prog, which is the name of the program, we can call it currency_converter, and the
second is description(the description that will be displayed to the user when the help
argument is passed in the command line).



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 175 ]

This is the first argument that we are going to add in --setbasecurrency:

argparser.add_argument('--setbasecurrency',
                           type=str,
                           dest='base_currency',
                           choices=currency_options,
                           action=SetBaseCurrency,
                           help='Sets the base currency to be
                           used.')

The first argument that we define is --setbasecurrency. It will store the currency in the
database, so we don't need to specify the base currency all the time in the command line.
We specify that this argument will be stored as a string and the value that the user enters
will be stored in an attribute called base_currency.

We also set the argument choices to the currency_options that we defined in the
preceding code. This will ensure that we can only pass currencies matching the Currency
enumeration.

action specifies which action is going to be executed when this argument is used, and we
are setting it to the SetBaseCurrency custom action that we defined in the actions.py
file. The last option, help, is the text that is displayed when the application's help is
displayed.

Let's add the --update argument:

 argparser.add_argument('--update',
                           metavar='',
                           dest='update',
                           nargs=0,
                           action=UpdateForeignerExchangeRates,
                           help=('Update the foreigner exchange
                                  rates '
                                 'using as a reference the base
                                  currency'))

The --update argument, as the name says, will update the exchange rates for the default
currency. It is meant to be used after the --setbasecurrency argument.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 176 ]

Here, we define the argument with the name --update, then we set
the metavar argument. The metavar keyword --update will be referenced when the help
is generated. By default, it's the same as the name of the argument but in uppercase. Since
we don't have any value that we need to pass to this argument, we set metavar to nothing.
The next argument is nargs, which tells the argparser that this argument does not require
a value to be passed. Finally, we have the action that we set to the other custom action that
we created previously, the UpdateForeignExchangeRates action. The last argument
is help, which specifies the help text for the argument.

 The next argument is the --basecurrency argument:

argparser.add_argument('--basecurrency',
                           type=str,
                           dest='from_currency',
                           choices=currency_options,
                           help=('The base currency. If specified
it
                                  will '
                                 'override the default currency set
                                  by'
                                 'the --setbasecurrency option'))

The idea with this argument is that we want to allow users to override the default currency
that they set using the --setbasecurrency argument when asking for a currency
conversion.

Here, we define the argument with the name --basecurrency. With the string type, we
are going to store the value passed to the argument in an attribute called from_currency;
we also set the choices to currency_option here so we can make sure that only currencies
that exist in the Currency enumeration are allowed. Lastly, we set the help text.

The next argument that we are going to add is called --value. This argument will receive
the value that the users of our application want to convert to another currency.

Here's how we will write it:

argparser.add_argument('--value',
                           type=float,
                           dest='value',
                           help='The value to be converted')



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 177 ]

Here, we set the name of the argument as --value. Note that the type is different from the
previous arguments that we defined. Now, we will receive a float value, and the argument
parser will store the value passed to the --value argument to the attribute called value.
The last argument is the help text.

Finally, the last argument that we are going to add in the argument that specifies which
currency the value will be converted to is going to be called --to:

   argparser.add_argument('--to',
                           type=str,
                           dest='dest_currency',
                           choices=currency_options,
                           help=('Specify the currency that the value
                                  will '
                                 'be converted to.'))

This argument is very similar to the --basecurrency argument that we defined in the
preceding code. Here, we set the argument's name to --to and it is going to be of type
string. The value passed to this argument will be stored in the attribute called
dest_currency. Here, we also set a choice of arguments to the list of valid currencies that
we extracted from the Currency enumeration; last but not the least, we set the help text.

Basic validation
Note that many of these arguments that we defined are required. However, there are some
arguments that are dependent on each other, for example, the arguments --value and --
to. You cannot try to convert a value without specifying the currency that you want to
convert to and vice versa.

Another problem here is that, since many arguments are required, if we run the application
without passing any argument at all, it will just accept it and crash; the right thing to do
here is that, if the user doesn't use any argument, we should display the Help menu. With
that said, we need to add a function to perform this kind of validation for us, so let's go
ahead and add a function called validate_args. You can add this function right at the
top, after the import statements:

def validate_args(args):

    fields = [arg for arg in vars(args).items() if arg]

    if not fields:
        return False



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 178 ]

    if args.value and not args.dest_currency:
        return False
    elif args.dest_currency and not args.value:
        return False

    return True

So, args is going to be passed to this function. args is actually an object of
time and namespace. This object will contain properties with the same name that we
specified in the dest argument in the argument's definitions. In our case, the namespace
will contain these properties: base_currency, update, from_currency, value, and
dest_currency.

We use a comprehension to get all the fields that are not set to None. In this comprehension,
we use the built-in function vars, which will return the value of the property __dict__ of
args, which is an instance of the Namespace object. Then, we use the .items() function so
we can iterate through the dictionary items and one by one test if its value is None.

If any argument is passed in the command line, the result of this comprehension will be an
empty list, and in that case, we return False.

Then, we test the arguments that need to be used in pairs: --value (value) and --to
(dest_currency). It will return False if we have a value, but dest_currency is equal to
None and vice versa. 

Now, we can complete parse_commandline_args. Let's go to the end of this function and
add the code as follows:

      args = argparser.parse_args()

      if not validate_args(args):
          argparser.print_help()
          sys.exit()

      return args

Here, we parse the arguments and set them to the variable args, and remember that args
will be of the namespace type. Then, we pass args to the function that we just created, the
validate_args function. If the validate_args returns False, it will print the help and
terminate the program's execution; otherwise, it will return args.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 179 ]

Next, we are going to develop the application's entry point that will glue together all the
pieces that we have developed so far.

Adding the application's entry point
This is the section of this chapter that we all have been waiting for; we are going to create
the application entry point and glue together all the pieces of code that we have written so
far.

Let's create a file called __main__.py in the
currency_converter/currency_converter directory. We have already used the
_main__ file before in Chapter 1, Implementing the Weather Application. When we place a file
called __main__.py in the module's root directory, it means that that file is the entry
script of the module. So, if we run the following command:

python -m currency_converter

It is the same as running:

python currency_converter/__main__.py

Great! So, let's start adding content to this file. First, add some import statements:

import sys

from .core.cmdline_parser import parse_commandline_args
from .config import get_config
from .core import DbClient
from .core import fetch_exchange_rates_by_currency

We import the sys package as usual in case we need to call exit to terminate the execution
of the code, then we import all the classes and utility functions that we developed so far.
We start by importing the parse_commandline_args function for command line parsing,
the get_config so that we can get hold of the default currency set by the user, the
DbClient class so we can access the database and fetch the exchange rates; lastly, we also
import the fetch_exchange_rates_by_currency  function, which will be used when
we choose a currency that is not in our database yet. We will fetch this from the fixer.io
API.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 180 ]

Now, we can create the main function:

def main():
    args = parse_commandline_args()
    value = args.value
    dest_currency = args.dest_currency
    from_currency = args.from_currency

    config = get_config()
    base_currency = (from_currency
                     if from_currency
                     else config['base_currency'])

The main function starts off by parsing the command line arguments. If everything is
entered by the user correctly, we should receive a namespace object containing all the
arguments with its values. In this stage, we only care about three arguments: value,
dest_currency, and from_currency. If you recall from earlier, value is the value that
the user wants to convert to another currency, dest_currency is the currency that the user
wants to convert to, and from_currency is only passed if the user wishes to override the
default currency that is set on the database.

After getting all these values, we call get_config to get the base_currency from the
database, and right after that we check if there is a from_currency where we can use the
value; otherwise, we use the base_currency from the database. This will ensure that if the
user specifies a from_currency value, then that value will override the default currency
stored in the database.

Next, we implement the code that will actually fetch the exchange rates from the database
or from the fixer.io API, like so:

    with DbClient('exchange_rates', 'rates') as db:
        exchange_rates = db.find_one({'base': base_currency})

        if exchange_rates is None:
            print(('Fetching exchange rates from fixer.io'
                   f' [base currency: {base_currency}]'))

            try:
                response =
                fetch_exchange_rates_by_currency(base_currency)
            except Exception as e:
                sys.exit(f'Error: {e}')

            dest_rate = response['rates'][dest_currency]
            db.update({'base': base_currency}, response)



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 181 ]

        else:
            dest_rate = exchange_rates['rates'][dest_currency]

        total = round(dest_rate * value, 2)
        print(f'{value} {base_currency} = {total} {dest_currency}')

We create a connection with the database using the DbClient class and also specify that we
are going to access the rates collection. inside the context, we first try to find the exchange
rated for the base currency. if it is not in the database, we try to fetch it from fixer.io.

After that, we extract the exchange rate value for the currency that we are converting to and
insert the result in the database so that, the next time that we run the program and want to
use this currency as the base, we don't need to send a request to fixer.io again.

If we find the exchange rate for the base currency, we simply get that value and assign it to
the dest_rate variable.

The last thing we have to do is perform the conversion and use the built-in round function
to limit the number of digits after the decimal point to two digits, and we print the value in
the terminal.

At the end of the file, after the main() function, add the following code:

if __name__ == '__main__':
    main()

And we're all done!



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 182 ]

Testing our application
Let's test our application. First, we are going to show the help message to see which options
we have available:

Nice! Just as expected. Now, we can use the --setbasecurrency argument to set the base
currency:



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 183 ]

Here, I have set the base currency to SEK (Swedish Kronor) and, every time I need to
perform a currency conversion, I don't need to specify that my base currency is SEK. Let's
convert 100 SEK to USD (United States Dollars):

As you can see, we didn't have the exchange rate in the database yet, so the first thing the
application does is to fetch it from fixer.io and save it into the database.

Since I am a Brazilian developer based in Sweden, I want to convert SEK to BRL (Brazil
Real) so that I know how much Swedish Crowns I will have to take to Brazil next time I go
to visit my parents:

Note that, since this is the second time that we are running the application, we already have
exchange rates with  SEK as the base currency, so the application does not fetch the data
from fixer.io again.



Exchange Rates and the Currency Conversion Tool Chapter 4

[ 184 ]

Now, the last thing that we want to try is overriding the base currency.  At the moment, it is
set to SEK. We use MXN (Mexico Peso) and convert from MXN to SEK:

Summary
In this chapter, we have covered a lot of interesting topics. In the first section, while setting
up the environment for our application, you learned how to use the super new and popular
tool pipenv, which has become the recommend tool at python.org for creating virtual
environments and also managing project dependencies.

You also learned the basic concepts of object-oriented programming, how to create custom
actions for your command line tools, the basics about context managers which is a really
powerful feature in the Python language, how to create enumerations in Python, and how
to perform HTTP requests using Requests, which is one of the most popular packages in
the Python ecosystem.

Last but not the least, you learned how to use the pymongo package to insert, update, and
search for data in a MongoDB database.

In the next chapter, we are going to switch gears and develop a complete, very functional
web application using the excellent and very popular Django web framework!

https://www.python.org/


5
Building a Web Messenger with

Microservices
In today's application development world, Microservices have become the standard in
designing and architecting distributed systems. Companies like Netflix have pioneered this
shift and revolutionized the way in which software companies operate, from having small
autonomous teams to designing systems that scale with ease.

In this chapter, I will guide you through the process of creating two microservices that will
work together to make a messaging web application that uses Redis as a datastore.
Messages will automatically expire after a configurable amount of time, so for the purpose
of this chapter, let's call it TempMessenger.

In this chapter, we will cover the following topics:

What is Nameko?
Creating your first Nameko microservice
Storing messages
Nameko Dependency Providers
Saving messages
Retrieving all messages
Displaying messages in the web browser
Sending messages via POST requests
Browser polling for messages



Building a Web Messenger with Microservices Chapter 5

[ 186 ]

TempMessenger Goals
Before starting, let's define some goals for our application:

A user can go to a website and send messages
A user can see messages that others have sent
Messages automatically expire after a configurable amount of time

To achieve this, we will be using Nameko - A microservices framework for Python.

If at any point during this chapter you would like to refer to all of the code
in this chapter in its entirety, feel free to see it, with tests, at: http:/ /url.
marcuspen. com/ github- ppb.

Requirements
In order to partake in this chapter, your local machine will need the following:

An internet connection
 Docker - If you haven't installed Docker already, see the official
documentation: http:/ / url. marcuspen. com/ docker- install

All other requirements will be installed as we progress through the chapter.

All instructions in this chapter are tailored towards macOS or Debian/Ubuntu systems. I
have, however,  taken care to only use cross-platform dependencies.

Throughout this chapter, there will be blocks of code. Different types of
code will have their own prefixes, which are as follows:
$: To be executed in your terminal, always within your virtualenv
>>>: To be executed in your Nameko/Python shell
No prefix: Block of Python code to be used in your editor

http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install


Building a Web Messenger with Microservices Chapter 5

[ 187 ]

What is Nameko?
Nameko is an open-source framework used for building microservices in Python. Using
Nameko, you can create microservices that communicate with each other using RPC
(Remote Procedure Calls) via AMQP (Advanced Message Queueing Protocol).

RPCs
RPC stands for Remote Procedure Call, and I'll briefly explain this with a short example
based on a cinema booking system. Within this cinema booking system, there are many
microservices, but we will focus on the booking service, which is responsible for managing
bookings, and the email service, which is responsible for sending emails. The booking
service and email service both exist on different machines and both are unaware of where
the other one is. When making a new booking, the booking service needs to send an email
confirmation to the user, so it makes a Remote Procedure Call to the email service, which
could look something like this:

def new_booking(self, user_id, film, time):
    ...
    self.email_service.send_confirmation(user_id, film, time)
    ...

Notice in the preceding code how the booking service makes the call as if it were executing
code that was local to it? It does not care about the network or the protocol and it doesn't
even give details on which email address it needs to send it to. For the booking service,
email addresses and any other email related concepts are irrelevant! This allows the
booking service to adhere to the Single Responsibility Principle, a term introduced by
Robert C. Martin in his article Principles of Object Orientated Design (http:/ /url. marcuspen.
com/bob-ood), which states that:

"A Class should have only one reason to change"

The scope of this quote can also be extended to microservices, and is something we should
keep in mind when developing them. This will allow us to keep our microservices self-
contained and cohesive. If the cinema decided to change its email provider, then the only
service that should need to change is the email service, keeping the work required minimal,
which in turn reduces the risk of bugs and possible downtime.

http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood
http://url.marcuspen.com/bob-ood


Building a Web Messenger with Microservices Chapter 5

[ 188 ]

However, RPCs do have their downsides when compared to other techniques such as REST,
the main one being that it can be hard to see when a call is remote. One could make
unnecessary remote calls without realizing it, which can be expensive since they go over the
network and use external resources. So when using RPCs, it's important to make them
visibly different.

How Nameko uses AMQP
AMQP stands for Advanced Message Queueing Protocol, which is used by Nameko as the
transport for our RPCs. When our Nameko services make RPCs to each other, the requests
are placed on the messaging queue, which are then consumed by the destination service.
Nameko services use workers to consume and carry out requests; when an RPC is made,
the target service will spawn a new worker to carry out the task. Once it's complete, it dies.
Since there can be multiple workers executing tasks simultaneously, Nameko can scale up
to the amount of workers it has available. If all workers are exhausted, then messages will
stay on the queue until a free worker is available.

You can also scale Nameko horizontally by increasing the amount of instances running
your service. This is known as clustering, which is also where the name Nameko originates,
since Nameko mushrooms grow in clusters.

Nameko can also respond to requests from other protocols such as HTTP and websockets.

RabbitMQ
RabbitMQ is used as the message broker for Nameko and allows it to utilize AMQP. Before
we start, you will need to install it on your machine; to do so, we will use Docker, which is
available on all major operating systems.

For those new to Docker, it allows us to run our code in a standalone, self-contained
environment called a container. Within a container is everything that is required for that
code to run independently from anything else. You can also download and run pre-built
containers, which is how we are going to run RabbitMQ. This saves us from installing it on
our local machine and minimizes the amount of issues that can arise from running
RabbitMQ on different platforms such as macOS or Windows.



Building a Web Messenger with Microservices Chapter 5

[ 189 ]

If you do not already have Docker installed, please visit http:/ /url. marcuspen. com/
docker-install where there are detailed installation instructions for all platforms. The rest
of this chapter will assume that you already have Docker installed.

Starting a RabbitMQ container
In your terminal, execute the following:

$ docker run -d -p 5672:5672 -p 15672:15672 --name rabbitmq rabbitmq

This will start a RabbitMQ container with the following setup:

-d: Specifies we want to run the container in daemon mode (background
process).
-p: Allows us to expose ports 5672 and 15672 on the container to our local
machine. These are needed for Nameko to communicate with RabbitMQ.
--name: Sets the container name to rabbitmq.

You can check that your new RabbitMQ container is running by executing:

$ docker ps

Installing Python requirements
For this project, I'll be using Python 3.6, which, at the time of writing, is the latest stable
release of Python. I recommend always using the latest stable version of Python, not only
for the new features but to also ensure the latest security updates are applied to your
environment at all times.

Pyenv is a really simple way to install and switch between different
versions of Python: http:/ / url.marcuspen. com/ pyenv.

I also strongly recommend using virtualenv to create an isolated environment to install our
Python requirements. Installing Python requirements without a virtual environment can
cause unexpected side-effects with other Python applications, or worse, your operating
system!

http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv
http://url.marcuspen.com/pyenv


Building a Web Messenger with Microservices Chapter 5

[ 190 ]

To learn more about virtualenv and how to install it visit: http:/ /url.
marcuspen. com/ virtualenv

Normally, when dealing with Python packages, you would create a requirements.txt
file, populate it with your requirements and then install it. I'd like to show you a different
way that will allow you to easily keep track of Python package versions.

To get started, let's install pip-tools within your virtualenv:

pip install pip-tools

Now create a new folder called requirements and create two new files:

base.in
test.in

The base.in file will contain the requirements needed in order for the core of our service
to run, whereas the test.in file will contain the requirements needed in order to run our
tests. It's important to keep these requirements separate, especially when deploying code in
a microservice architecture. It's okay for our local machines to have test packages installed,
but a deployed version of our code should be as minimal and lightweight as possible.

In the base.in file, put the following line:

nameko

In the test.in file, put the following line:

pytest

Provided you are in the directory containing your requirements folder, run the following:

pip-compile requirements/base.in
pip-compile requirements/test.in

This will generate two files, base.txt, and test.txt. Here's a small sample of the
base.txt:

...
nameko==2.8.3
path.py==10.5             # via nameko
pbr==3.1.1                # via mock
pyyaml==3.12              # via nameko
redis==2.10.6

http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv
http://url.marcuspen.com/virtualenv


Building a Web Messenger with Microservices Chapter 5

[ 191 ]

requests==2.18.4          # via nameko
six==1.11.0               # via mock, nameko
urllib3==1.22             # via requests
...

Notice how we now have a file that contains all of the latest dependencies and sub-
dependencies of Nameko. It specifies which versions are required and also what caused
each sub-dependency to be installed. For example, six is required by nameko and mock.

This makes it extremely easy to troubleshoot upgrade issues in the future by being able to
easily track version changes between each release of your code.

At the time of writing, Nameko is currently version 2.8.3 and Pytest is 3.4.0. Feel free to use
newer versions of these packages if available, but if you have any issues throughout the
book then revert back to these by appending the version number in your base.in or
test.in file as follows:

nameko==2.8.3

To install the requirements, simply run:

$ pip-sync requirements/base.txt requirements/test.txt

The pip-sync command installs all requirements specified in the files while also removing
any packages that are in your environment that aren't specified. It's a nice way to keep your
virtualenv clean. Alternatively, you can also use:

$ pip install -r requirements/base.txt -r requirements/test.txt

Creating your first Nameko microservice
Let's start by creating a new folder titled temp_messenger and placing a new file inside,
named service.py, with the following code:

from nameko.rpc import rpc

class KonnichiwaService:

    name = 'konnichiwa_service'

    @rpc
    def konnichiwa(self):
        return 'Konnichiwa!'



Building a Web Messenger with Microservices Chapter 5

[ 192 ]

We first start by importing rpc from nameko.rpc. This will allow us to decorate our
methods with the rpc decorator and expose them as entrypoints into our service. An
entrypoint is any method in a Nameko service that acts as a gateway into our service.

In order to create a Nameko service, we simply create a new class, KonnichiwaService,
and assign it a name attribute. The name attribute gives it a namespace; this will be used
later when we attempt to make a remote call to the service.

We've written a method on our service which simply returns the word Konnichiwa!.
Notice how this method is decorated with rpc. The konnichiwa method is now going to be
exposed via RPC.

Before we test this code out we need to create a small config file which will tell Nameko
where to access RabbitMQ and what RPC exchange to use. Create a new file, config.yaml:

AMQP_URI: 'pyamqp://guest:guest@localhost'
rpc_exchange: 'nameko-rpc'

The AMQP_URI configuration here is correct for users who have started the
RabbitMQ container using the instructions given earlier. If you have
adjusted the username, password or location, ensure that your changes are
reflected here.

You should now have a directory structure that resembles the following:

.
├── config.yaml
├── requirements
│   ├── base.in
│   ├── base.txt
│   ├── test.in
│   └── test.txt
├── temp_messenger
    └── service.py

Now in your terminal, within the root of your project directory, execute the following:

$ nameko run temp_messenger.service --config config.yaml

You should have the following output:

starting services: konnichiwa_service
Connected to amqp://guest:**@127.0.0.1:5672//



Building a Web Messenger with Microservices Chapter 5

[ 193 ]

Making a call to our service
Our microservice is now running! In order to make our own calls, we can launch a Python
shell that has Nameko integrated to allow us to call our entrypoints. To access it, open a
new terminal window and execute the following:

$ nameko shell

This should give you access to a Python shell with the ability to make Remote Procedure
Calls. Let's try that out:

>>> n.rpc.konnichiwa_service.konnichiwa()
'Konnichiwa!'

It worked! We have successfully made a call to our Konnichiwa Service and received some
output back. When we executed this code in our Nameko shell, we put a message on the
queue, which was then received by our KonnichiwaService. It then spawned a new
worker to carry out the work of the konnichiwa RPC.

Unit-testing a Nameko microservice
According to the documentation, http:/ /url. marcuspen. com/ nameko, Nameko is:

"A microservices framework for Python that lets service developers concentrate on
application logic and encourages testability."

We will now focus on the testability part of Nameko; it provides some very useful tools for
isolating and testing its services.

Create a new folder, tests, and place two new files inside, __init__.py (which can be left
blank) and test_service.py:

from nameko.testing.services import worker_factory
from temp_messenger.service import KonnichiwaService

def test_konnichiwa():
    service = worker_factory(KonnichiwaService)
    result = service.konnichiwa()
    assert result == 'Konnichiwa!'

http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko
http://url.marcuspen.com/nameko


Building a Web Messenger with Microservices Chapter 5

[ 194 ]

When running outside of the test environment, Nameko spawns a new worker for each
entrypoint that is called. Earlier, when we tested our konnichiwa RPC, the Konnichiwa
Service would have been listening for new messages on the Rabbit queue. Once it received a
new message for the konnichiwa entrypoint, it would spawn a new worker that would
carry out that method and then die.

To learn more about the anatomy of Nameko services, see: http:/ / url.
marcuspen. com/ nam- key.

For our tests, Nameko provides a way to emulate that via a woker_factory. As you can
see, our test uses worker_factory, which we pass our service class, KonnichiwaService.
This will then allow us to call any entrypoint on that service and access the result.

To run the test, from the root of your code directory, simply execute:

pytest

That's it. The test suite should now pass. Have a play around and try to make it break.

Exposing HTTP entrypoints
We will now create a new microservice responsible for handling HTTP requests. First of all,
let's amend our imports in the service.py file:

from nameko.rpc import rpc, RpcProxy
from nameko.web.handlers import http

Beneath the KonnichiwaService we made earlier, insert the following:

class WebServer:

    name = 'web_server'
    konnichiwa_service = RpcProxy('konnichiwa_service')

    @http('GET', '/')
    def home(self, request):
        return self.konnichiwa_service.konnichiwa()

http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key
http://url.marcuspen.com/nam-key


Building a Web Messenger with Microservices Chapter 5

[ 195 ]

Notice how the follows a similar pattern to the KonnichiwaService. It has a name
attribute and a method decorated in order to expose it as an entrypoint. In this case, it is
decorated with the http entrypoint. We specify inside the http decorator that it is a GET
request and the location of that request - in this case, the root of our website.

There is also one more crucial difference: This service holds a reference to the Konnichiwa
Service via an RpcProxy object. RpcProxy allows us to make calls to another Nameko
service via RPC. We instantiate it with the name attribute, which we specified earlier in
KonnichiwaService.

Let's try this out - simply restart the Nameko using the command from earlier (this is
needed to take into account any changes to the code) and go to http://localhost:8000/
in your browser of choice:

It worked! We've now successfully made two microservices—one responsible for showing a
message and one responsible for serving web requests.



Building a Web Messenger with Microservices Chapter 5

[ 196 ]

Integration testing Nameko microservices
Earlier we looked at testing a service in isolation by spawning a single worker. This is great
for unit testing but it is not a viable option for integration testing.

Nameko gives us the ability to test multiple services working in tandem in a single test.
Look at the following:

def test_root_http(web_session, web_config, container_factory):
    web_config['AMQP_URI'] = 'pyamqp://guest:guest@localhost'

    web_server = container_factory(WebServer, web_config)
    konnichiwa = container_factory(KonnichiwaService, web_config)
    web_server.start()
    konnichiwa.start()

    result = web_session.get('/')

    assert result.text == 'Konnichiwa!'

As you can see in the preceding code, Nameko also gives us access to the following test
fixtures:

web_session: Gives us a session in which to make HTTP requests to the service
web_config: Allows us to access the configuration for the service (outside of
testing, this is equivalent to the config.yaml file)
container_factory: This allows us to simulate a service as a whole rather than
just an instance of a worker, which is necessary when integration testing

Since this is running the actual services, we need to specify the location of the AMQP broker
by injecting it into the web_config. Using container_factory, we create two containers:
web_server and konnichiwa. We then start both containers.

It's then a simple case of using web_session to make a GET request to the root of our site
and checking that the result is what we expect.

As we go through the rest of the chapter, I encourage you to write your own tests for the
code, as it will not only prevents bugs but also help to solidify your knowledge on this
topic. It's also a good way to experiment with your own ideas and modifications to the code
as they can tell you quickly if you have broken anything.



Building a Web Messenger with Microservices Chapter 5

[ 197 ]

For more information on testing Nameko services, see: http:/ /url.
marcuspen. com/ nam- test.

Storing messages
The messages we want our application to display need to be temporary. We could use a
relational database for this, such as PostgreSQL, but that would mean having to design and
maintain a database for something as simple as text.

An introduction to Redis
Redis is an in-memory data store. The entire dataset can be stored in memory making reads
and writes much faster than relational databases, which is useful for data that is not going
to need persistence. In addition, we can store data without making a schema, which is fine
if we are not going to need complex queries. In our case, we simply need a data store that
will allow us to store messages, get messages, and expire messages. Redis fits our use case
perfectly!

Starting a Redis container
In your terminal, execute the following:

$ docker run -d -p 6379:6379 --name redis redis

This will start a Redis container with the following setup:

-d: Specifies we want to run the container in daemon mode (background
process).
-p: Allows us to expose port 6379 on the container to our local machine. This are
needed for Nameko to communicate with Redis.
--name: Sets the container name to redis.

You can check that your new Redis container is running by executing:

$ docker ps

http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test
http://url.marcuspen.com/nam-test


Building a Web Messenger with Microservices Chapter 5

[ 198 ]

Installing the Python Redis client
You will also need to install the Python Redis client to allow you to interact with Redis via
Python. To do this, I recommend amending your base.in file from earlier to include
redis and recompiling it to generate your new base.txt file. Alternatively, you can run
pip install redis.

Using Redis
Let's briefly look at the types of Redis commands that could be useful to us for
TempMessenger:

SET: Sets a given key to hold a given string. It also allows us to set an expiration
in seconds or milliseconds.
GET: Gets the value of the data stored with the given key.
TTL: Gets the time-to-live for a given key in seconds.
PTTL: Gets the time-to-live for a given key in milliseconds.
KEYS: Returns a list of all keys in the data store.

To try them out, we can use redis-cli which is a program that ships with our Redis
container. To access it, first log in to the container by executing the following in your
terminal:

docker exec -it redis /bin/bash

Then access redis-cli in the same terminal window by simply running:

redis-cli

There are some examples given as follows on how to use redis-cli; if you're not familiar
with Redis then I encourage you to experiment with the commands yourself.

Set some data, hello, to key msg1:

127.0.0.1:6379> SET msg1 hello
OK

Get data stored at key, msg1:

127.0.0.1:6379> GET msg1
"hello"



Building a Web Messenger with Microservices Chapter 5

[ 199 ]

Set some more data, hi there, at key msg2  and retrieve it:

127.0.0.1:6379> SET msg2 "hi there"
OK
127.0.0.1:6379> GET msg2
"hi there"

Retrieve all keys currently stored in Redis:

127.0.0.1:6379> KEYS *
1) "msg2"
2) "msg1"

Save data at msg3 with an expiry of 15 seconds:

127.0.0.1:6379> SET msg3 "this message will die soon" EX 15
OK

Get the time-to-live for msg3 in seconds:

127.0.0.1:6379> TTL msg3
(integer) 10

Get the time-to-live for msg3 in milliseconds:

127.0.0.1:6379> PTTL msg3
(integer) 6080

Retrieve msg3 before it expires:

127.0.0.1:6379> GET msg3
"this message will die soon"

Retrieve msg3 after it expires:

127.0.0.1:6379> GET msg3
(nil)

Nameko Dependency Providers
When building microservices, Nameko encourages the use of dependency providers to
communicate with external resources such as databases, servers, or anything that our
application depends on. By using a dependency provider, you can hide away logic that is
specific only to that dependency, keeping your service level code clean and agnostic to the
ins-and-outs of interfacing with this external resource.



Building a Web Messenger with Microservices Chapter 5

[ 200 ]

By structuring our microservices like this, we have the ability to easily swap out or re-use
dependency providers in other services.

Nameko provides a list of open source dependency providers that are
ready to use: http:/ / url. marcuspen. com/ nam- ext.

Adding a Redis Dependency Provider
Since Redis is an external resource for our application, we will create a dependency
provider for it.

Designing the Client
First, let's create a new folder named dependencies inside of our temp_messenger folder.
Inside, place a new file, redis.py. We will now create a Redis client with a simple method
that will get a message, given a key:

from redis import StrictRedis

class RedisClient:

    def __init__(self, url):
        self.redis = StrictRedis.from_url(
            url, decode_responses=True
        )

We start off our code by implementing the __init__ method, which creates our Redis
client and assigns it to self.redis. StrictRedis that can take a number of optional
arguments, however, we have only specified the following:

url: Rather than specifying the host, port and database number separately, we
can use StrictRedis' from_url, which will allow us to specify all three with a
single string, like so—redis://localhost:6379/0. This is a lot more
convenient when it comes to storing it in our config.yaml later.
decode_responses: This will automatically convert the data we get from Redis
into a Unicode string. By default, data is retrieved in bytes.

http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
http://url.marcuspen.com/nam-ext
https://nameko.readthedocs.io/en/stable/community_extensions.html


Building a Web Messenger with Microservices Chapter 5

[ 201 ]

Now, in the same class, let's implement a new method:

def get_message(self, message_id):
    message = self.redis.get(message_id)

    if message is None:
        raise RedisError(
            'Message not found: {}'.format(message_id)
        )

    return message

Outside of our new class, let's also implement a new error class:

class RedisError(Exception):
    pass

Here we have a method, get_message, that takes a message_id that will be used as our
Redis key. We use the get method on our Redis client to retrieve the message with our
given key. When retrieving values from Redis, if the key does not exist, it will simply return
None. Since this method expects there to be a message, we should handle raising an error
ourselves. In this case, we've made a simple exception, RedisError.

Creating the Dependency Provider
So far we've created a Redis Client with a single method. We now need to create a Nameko
Dependency Provider to utilize this client for use with our services. In the same redis.py
file, update your imports to include the following:

from nameko.extensions import DependencyProvider

Now, let's implement the following code:

class MessageStore(DependencyProvider):

    def setup(self):
        redis_url = self.container.config['REDIS_URL']
        self.client = RedisClient(redis_url)

    def stop(self):
        del self.client

    def get_dependency(self, worker_ctx):
        return self.client



Building a Web Messenger with Microservices Chapter 5

[ 202 ]

In the preceding code, you can see that our new MessageStore class inherits from the
DependencyProvider class. The methods we have specified in our new MessageStore class
will be called at certain moments of our microservice lifecycle:

setup: This will be called before our Nameko services starts. Here we get the
Redis URL from config.yaml and create a new RedisClient using the code
we made earlier.
stop: When our Nameko services begin to shut down, this will be called.
get_dependency: All dependency providers need to implement this method.
When an entrypoint fires, Nameko creates a worker and injects the result of
get_dependency for each dependency specified in the service into the worker.
In our case, this means that our workers will all have access to an instance of
RedisClient.

Nameko offers more methods to control how your dependency providers
function at different moments of the service lifecycle: http:/ /url.
marcuspen. com/ nam- writ.

Creating our Message Service
In our service.py, we can now make use of our new Redis Dependency Provider. Let's
start off by creating a new service, which will replace our Konnichiwa Service from earlier.
First, we need to update our imports at the top of our file:

from .dependencies.redis import MessageStore

Now we can create our new service:

class MessageService:

    name = 'message_service'
    message_store = MessageStore()

    @rpc
    def get_message(self, message_id):
        return self.message_store.get_message(message_id)

This is similar to our earlier services; however, this time we are specifying a new class
attribute, message_store. Our RPC entrypoint, get_message, can now make use of this
and call get_message in our RedisClient and simply return the result.

http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ
http://url.marcuspen.com/nam-writ


Building a Web Messenger with Microservices Chapter 5

[ 203 ]

We could have done all of this by creating a new Redis client within our RPC entrypoint
and implementing a Redis GET. However, by creating a dependency provider, we promote
reusability and hide away the unwanted behavior of Redis returning None when a key does
not exist. This is just a small example of why Dependency Providers are extremely good at
decoupling our services from external dependencies.

Putting it all together
Let's try out the code we have just created. Start by saving a new key-value pair to Redis
using the redis-cli:

127.0.0.1:6379> set msg1 "this is a test"
OK

Now start our Nameko services:

$ nameko run temp_messenger.service --config config.yaml

We can now use nameko shell to make remote calls to our new MessageService:

>>> n.rpc.message_service.get_message('msg1')
'this is a test'

As expected, we were able to retrieve a message that we set earlier using redis-cli via
our MessageService entrypoint.

Let's now try to get a message that does not exist:

    >>> n.rpc.message_service.get_message('i_dont_exist')
    Traceback (most recent call last):
      File "<console>", line 1, in <module>
      File
"/Users/marcuspen/.virtualenvs/temp_messenger/lib/python3.6/site-
packages/nameko/rpc.py", line 393, in __call__
        return reply.result()
      File
"/Users/marcuspen/.virtualenvs/temp_messenger/lib/python3.6/site-
packages/nameko/rpc.py", line 379, in result
        raise deserialize(error)
    nameko.exceptions.RemoteError: RedisError Message not found:
i_dont_exist



Building a Web Messenger with Microservices Chapter 5

[ 204 ]

This isn't the prettiest of errors and there are certain things we can do to reduce the
traceback with this, but the final line states the exception we defined earlier and clearly
shows us why that request failed.

We will now move on to saving messages.

Saving messages
Earlier, I introduced the Redis SET method. This will allow us to save a message to Redis,
but first, we need to create a new method in our dependency provider that will handle this.

We could simply create a new method that called redis.set(message_id, message),
but how would we handle new message IDs? It would be a bit troublesome if we expected
the user to input a new message ID for each message they wanted to send, right? An
alternative is to have the message service generate a new random message ID before it calls
the dependency provider, but that would clutter our service with logic that could be
handled by the dependency itself.

We'll solve this by having the dependency create a random string to be used as the message
ID.

Adding a save message method to our Redis
client
In redis.py, let's amend our imports to include uuid4:

from uuid import uuid4

uuid4 generates us a unique random string that we can use for our message.

We can now add our new save_message method to the RedisClient:

    def save_message(self, message):
        message_id = uuid4().hex
        self.redis.set(message_id, message)

        return message_id

First off, we generate a new message ID using uuid4().hex. The hex attribute gives us the
UUID as a 32-character hexadecimal string. We then use it as a key to save the message and
return it.



Building a Web Messenger with Microservices Chapter 5

[ 205 ]

Adding a save message RPC
Let's now create the RPC method that is going to call our new client method. In our
MessageService, add the following method:

    @rpc
    def save_message(self, message):
        message_id = self.message_store.save_message(message)
        return message_id

Nothing fancy here, but notice how easy it is becoming to add new functionality to our
service. We are separating logic that belongs in the dependency from our entrypoints, and
at the same time making our code reusable. If another RPC method we create in the future
needs to save a message to Redis, we can easily do so without having to recreate the same
code again.

Let's test this out by only using the nameko shell - remember to restart your Nameko
service for changes to take effect!

>>> n.rpc.message_service.save_message('Nameko is awesome!')
    'd18e3d8226cd458db2731af8b3b000d9'

The ID returned here is random and will differ from the one you get from
your session.

>>>n.rpc.message_service.get_message
   ('d18e3d8226cd458db2731af8b3b000d9')
    'Nameko is awesome!'

As you can see, we have successfully saved a message and used the UUID that is returned
to retrieve our message.

This is all well and good, but for the purposes of our app we don't expect the user to have to
supply a message UUID in order to read messages. Let's make this a bit more practical and
look at how we can get all of the messages in our Redis store.



Building a Web Messenger with Microservices Chapter 5

[ 206 ]

Retrieving all messages
Similar to our previous steps, we will need to add a new method to our Redis dependency
in order to add more functionality. This time, we will be creating a method that will iterate
through all of our keys in Redis and return the corresponding messages in a list.

Adding a get all messages method to our Redis
client
Let's add the following to our RedisClient:

def get_all_messages(self):
    return [
        {
            'id': message_id,
            'message': self.redis.get(message_id)
        }
        for message_id in self.redis.keys()
    ]

We start off by using self.redis.keys() to gather all keys that are stored in Redis,
which, in our case, are the message IDs. We then have a list comprehension that will iterate
through all of the message IDs and create a dictionary for each one, containing the message
ID itself and the message that is stored in Redis, using self.redis.get(message_id).

For large scale applications in a production environment, it is not
recommended to use the Redis KEYS method, since this will block the
server until it has finished completing its operation. For more information,
see: http:/ / url. marcuspen. com/ rediskeys.

Personally, I prefer to use a list comprehension here to build the list of messages, but if you
are struggling to understand this method, I recommend writing it as a standard for loop.

For the sake of this example, see the following code for the same method built as a for loop:

def get_all_messages(self):
    message_ids = self.redis.keys()
    messages = []

    for message_id in message_ids:
        message = self.redis.get(message_id)
        messages.append(
            {'id': message_id, 'message': message}

http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys
http://url.marcuspen.com/rediskeys


Building a Web Messenger with Microservices Chapter 5

[ 207 ]

        )
    return messages

Both of these methods do exactly the same thing. Which do you prefer? I'll leave that choice
to you...

Whenever I write a list or dictionary comprehension, I always start by having a test that
checks the output of my function or method. I then write my code with a comprehension
and test it to ensure the output is correct. I'll then change my code to a for loop and ensure
the test still passes. After that, I look at both versions of my code and decide which one
looks the most readable and clean. Unless the code needs to be super efficient, I always opt
for code that reads well, even if that means a few more lines. This approach pays off in the
long run when it comes to reading back and maintaining that code later!

We now have a way to obtain all messages in Redis. In the preceding code, I could have
simply returned a list of messages with no dictionaries involved, just the string value of the
message. But what if we wanted to add more data to each message later? For example,
some metadata to say when the message was created or how long the message has until it
expires... we'll get to that part later! Using a dictionary here for each message will allow us
to easily evolve our data structures later on.

We can now look at adding a new RPC to our MessageService that will allow us to get all
of the messages.

Adding a get all messages RPC
In our MessageService class, simply add:

@rpc
def get_all_messages(self):
    messages = self.message_store.get_all_messages()
    return messages

I'm sure that by now, I probably do not need to explain what is going on here! We are
simply calling the method we made earlier in our Redis dependency and returning the
result.



Building a Web Messenger with Microservices Chapter 5

[ 208 ]

Putting it all together
Within your virtualenv, using nameko shell, we can now test this out.:

>>> n.rpc.message_service.save_message('Nameko is awesome!')
'bf87d4b3fefc49f39b7dd50e6d693ae8'
>>> n.rpc.message_service.save_message('Python is cool!')
'd996274c503b4b57ad5ee201fbcca1bd'
>>> n.rpc.message_service.save_message('To the foo bar!')
'69f99e5863604eedaf39cd45bfe8ef99'
>>> n.rpc.message_service.get_all_messages()
[{'id': 'd996274...', 'message': 'Python is cool!'},
{'id': 'bf87d4b...', 'message': 'Nameko is awesome!'},
{'id': '69f99e5...', 'message': 'To the foo bar!'}]

There we have it! We can now retrieve all of the messages in our data store. (For the sake of
space and readability, I've truncated the message IDs.)

There is one issue with the messages that are returned here - can you spot what it is? The
order in which we put the messages into Redis is not the same order that we have received
when we get them out again. We'll come back to this later, but for now, let's move on to
displaying these messages in our web browser.

Displaying messages in the web browser
Earlier, we added the WebServer microservice to handle HTTP requests; we will now
amend this so that when a user lands on the root home page, they are shown all of the
messages in our data store.

One way to do this is to use a templating engine such as Jinja2.

Adding a Jinja2 Dependency Provider
Jinja2 is a templating engine for Python that is extremely similar to the templating engine in
Django. For those who are familiar with Django, you should feel right at home using it.

Before we start, you should amend your base.in file to include jinja2, re-compile your
requirements and install them. Alternatively, simply run pip install jinja2.



Building a Web Messenger with Microservices Chapter 5

[ 209 ]

Creating the template renderer
When generating a simple HTML template in Jinja2, the following three steps are required:

Creating a template environment
Specifying the template
Rendering the template

With these three steps, it's important to identify which parts are never subject (or at least
extremely unlikely) to change while our application is running... and which are. Keep this
in mind as I explain through the following code.

In your dependencies directory, add a new file, jinja2.py and start with the following
code:

from jinja2 import Environment, PackageLoader, select_autoescape

class TemplateRenderer:

    def __init__(self, package_name, template_dir):
        self.template_env = Environment(
            loader=PackageLoader(package_name, template_dir),
            autoescape=select_autoescape(['html'])
        )

    def render_home(self, messages):
        template = self.template_env.get_template('home.html')
        return template.render(messages=messages)

In our __init__ method, we require a package name and a template directory. With these,
we can then create the template environment. The environment requires a loader, which is
simply a way of being able to load our template files from a given package and directory.
We've also specified that we want to enable auto-escaping on our HTML files for security.

We've then made a render_home method that will allow us to render our home.html
template once we've made it. Notice how we render our template with messages... you'll
see why later!

Can you see why I've structured the code this way? Since the __init__ method is always
executed, I've put the creation of our template environment there, since this is unlikely to
ever change while our application is running.



Building a Web Messenger with Microservices Chapter 5

[ 210 ]

However, which template we want to render and the variables we give to that template are
always going to change, depending on what page the user is trying to access and what data
is available at that given moment in time. With the preceding structure, it becomes trivial to
add a new method for each webpage of our application.

Creating our homepage template
Let's now look at the HTML required for our template. Let's start by creating a new
directory next to our dependencies, titled templates.

Inside our new directory, create the following home.html file:

<!DOCTYPE html>

<body>
    {% if messages %}
        {% for message in messages %}
            <p>{{ message['message'] }}</p>
        {% endfor %}
    {% else %}
        <p>No messages!</p>
    {% endif %}
</body>

This HTML is nothing fancy, and neither is the templating logic! If you are unfamiliar to
Jinja2 or Django templating then you're probably thinking that this HTML looks weird with
the curly braces everywhere. Jinja2 uses these to allow us to input Python-like syntax into
our template.

In the preceding example, we start off with an if statement to see if we have any messages
(the format and structure of messages will be the same as the messages that are returned
by the get_all_messages RPC we made earlier). If we do, then we have some more logic,
including a for loop that will iterate and display the value of 'message' for each dictionary
in our messages list.

If there are no messages, then we will just show the No messages! text.

To learn more about Jinja2, visit: http:/ / url.marcuspen. com/ jinja2.

http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2
http://url.marcuspen.com/jinja2


Building a Web Messenger with Microservices Chapter 5

[ 211 ]

Creating the Dependency Provider
We will now need to expose our TemplateRenderer as a Nameko Dependency Provider.
In the jinja2.py file we made earlier, update our imports to include the following:

from nameko.extensions import DependencyProvider

Then add the following code:

class Jinja2(DependencyProvider):

    def setup(self):
        self.template_renderer = TemplateRenderer(
            'temp_messenger', 'templates'
        )

    def get_dependency(self, worker_ctx):
        return self.template_renderer

This is extremely similar to our previous Redis dependency. We specify a setup method
that creates an instance of our TemplateRenderer and a get_dependency method that
will inject it into the worker.

This is now ready to be used by our WebServer.

Making a HTML response
We can now start to use our new Jinja2 dependency in our WebServer. First, we need to
include it in our imports of service.py:

from .dependencies.jinja2 import Jinja2

Let's now amend our WebServer class to be the following:

class WebServer:

    name = 'web_server'
    message_service = RpcProxy('message_service')
    templates = Jinja2()

    @http('GET', '/')
    def home(self, request):
        messages = self.message_service.get_all_messages()
        rendered_template = self.templates.render_home(messages)



Building a Web Messenger with Microservices Chapter 5

[ 212 ]

        return rendered_template

Notice how we have assigned a new attribute, templates, like we did earlier in our
MessageService with message_store. Our HTTP entrypoint now talks to our
MessageService, retrieves all of the messages in Redis, and uses them to create a rendered
template using our new Jinja2 dependency. We then return the result.

Putting it all together
Restart your Nameko services and let's try this out in the browser:



Building a Web Messenger with Microservices Chapter 5

[ 213 ]

It's worked... sort of! The messages we stored in Redis earlier are present, which means the
logic in our template is functioning properly, but we also have all of the HTML tags and
indentation from our home.html.

The reason for this is because we haven't yet specified any headers for our HTTP response
to indicate that it is HTML. To do this, let's create a small helper function outside of our
WebServer class, which will convert our rendered template into a response with proper
headers and a status code.

In our service.py, amend our imports to include:

from werkzeug.wrappers import Response

Then add the following function outside of our classes:

def create_html_response(content):
    headers = {'Content-Type': 'text/html'}
    return Response(content, status=200, headers=headers)

This function creates a headers dictionary, which contains the correct content type, HTML.
We then create and return a Response object with an HTTP status code of 200, our headers,
and the content, which in our case will be the rendered template.

We can now amend our HTTP entrypoint to use our new helper function:

@http('GET', '/')
def home(self, request):
    messages = self.message_service.get_all_messages()
    rendered_template = self.templates.render_home(messages)
    html_response = create_html_response(rendered_template)

    return html_response



Building a Web Messenger with Microservices Chapter 5

[ 214 ]

Our home HTTP entrypoint now makes use of the create_html_reponse, giving it the
rendered template, and then returns the response that is made. Let's try this out again in
our browser:

As you can now see, our messages now display as we expect them with no HTML tags to be
found! Have a try at deleting all data in Redis with the flushall command using the
redis-cli and reload the webpage. What happens?

We will now move on to sending messages.

Sending messages via POST requests
So far we've made good progress; we have a site that has the ability to display all of the
messages in our data store with two microservices. One microservice handles the storing
and retrieval of our messages, and the other acts as a web server for our users. Our
MessageService already has the ability to save messages; let's expose that in our
WebServer via a POST request.



Building a Web Messenger with Microservices Chapter 5

[ 215 ]

Adding a send messages POST request
In our service.py, add the following import:

import json

Now add the following to our WebServer class:

@http('POST', '/messages')
def post_message(self, request):
    data_as_text = request.get_data(as_text=True)

    try:
        data = json.loads(data_as_text)
    except json.JSONDecodeError:
        return 400, 'JSON payload expected'

    try:
        message = data['message']
    except KeyError:
        return 400, 'No message given'

    self.message_service.save_message(message)

    return 204, ''

With our new POST entrypoint, we start off by extracting the data from the request. We
specify the parameter as_text=True, because we would otherwise get the data back as
bytes.

Once we have that data, we can then attempt to load it from JSON into a Python dictionary.
If the data is not valid JSON then this can cause a JSONDecodeError in our service, so it's
best to handle that nicely and return a bad request status code of 400. Without this
exception handling, our service would return an internal server error, which has a status
code of 500.

Now that the data is in a dictionary format, we can obtain the message inside it. Again, we
have some defensive code which will handle any occurrences of an absent 'message' key
and return another 400.

We then proceed to save the message using the save_message RPC we made earlier in our
MessageService.



Building a Web Messenger with Microservices Chapter 5

[ 216 ]

With this, TempMessenger now has the ability to save new messages via an HTTP POST
request! If you wanted to, you can test this out using curl or another API client, like so:

$ curl -d '{"message": "foo"}' -H "Content-Type: application/json" -X POST
http://localhost:8000/messages

We will now update our home.html template to include the ability to use this new POST
request.

Adding an AJAX POST request in jQuery
Now before we start, let me say that at the time of writing, I am in no way a JavaScript
expert. My expertise lie more in back-end programming than front-end. That being said, if
you have worked in web development for more than 10 minutes, then you know that trying
to avoid JavaScript is near impossible. At some point, we will probably have to dabble in
some just to deliver a piece of work.

With that in mind, please do not be scared off!

The code you are about to read is something that I learned just by reading the jQuery
documentation, so it's extremely simple. If you are comfortable with front-end code then
I'm sure there are probably a million different and probably better ways to do this in
JavaScript, so please amend as you see fit.

You will first need to add the following after the <!DOCTYPE html>:

<head>
  <script src="https://code.jquery.com/jquery-latest.js"></script>
</head>

This will download and run the latest version of jQuery in the browser.

In our home.html, before the closing </body> tag, add the following:

<form action="/messages" id="postMessage">
  <input type="text" name="message" placeholder="Post message">
  <input type="submit" value="Post">
</form>

We start off here with some simple HTML to add a basic form. This only has a text input
and a submit button. On its own, it will render a text box and a submit button, but it will
not do anything.



Building a Web Messenger with Microservices Chapter 5

[ 217 ]

Let's now follow that code with some jQuery JavaScript:

<script>

$( "#postMessage" ).submit(function(event) { # ①
  event.preventDefault(); # ②

  var $form = $(this),
    message = $form.find( "input[name='message']" ).val(),
    url = $form.attr("action"); # ③

  $.ajax({ # ④
    type: 'POST',
    url: url,
    data: JSON.stringify({message: message}), # ⑤
    contentType: "application/json", # ⑥
    dataType: 'json', # ⑦
    success: function() {location.reload();} # ⑧
  });
});
</script>

This will now add some functionality to our submit button. Let's briefly cover what is
happening here:

This will create an event listener for our page that listens for the postMessage1.
event.
We also prevent the default behavior of our submit button using2.
event.preventDefault();. In this case, it would submit our form and attempt
to perform a GET on /messages?message=I%27m+a+new+message.
Once that is triggered, we then find the message and URL in our form.3.
With these, we then construct our AJAX request, which is a POST request.4.
We use JSON.stringify to convert our payload into valid JSON data.5.
Remember earlier, when we had to construct a response and supply header6.
information to say that our content type was text/html? Well, we are doing the
same thing here in our AJAX request, but this time, our content type is
application/json.
We set the datatype to json. This tells the browser the type of data we are7.
expecting back from the server.
We also register a callback that reloads the webpage if the request is successful.8.
This will allow us to see our new message on the page (and any other new ones)
since it will get all of the messages again. This forced page reload is not the most
elegant way of handling this, but it will do for now.



Building a Web Messenger with Microservices Chapter 5

[ 218 ]

Let's restart Nameko and try this out in the browser:

Provided you haven't cleared the data from Redis (this can be done by manually deleting
them or by simply restarting your machine), you should still see the old messages from
earlier.



Building a Web Messenger with Microservices Chapter 5

[ 219 ]

Once you've typed your message, click the Post button to submit your new message:

Looks like it worked! Our application now has the ability to send new messages. We will
now move onto the last requirement for our application, which is to expire messages after a
given period of time.

Expiring messages in Redis
We are now onto the last requirement for our app, expiring messages. Since we are using
Redis to store our messages, this becomes a trivial task.

Let's look back at our save_message method in our Redis dependency. Redis' SET has
some optional parameters; the two we are most interested in here are ex and px. Both allow
us to set the expiry of the data we are about to save, with one difference: ex is in seconds
and px is in milliseconds:

def save_message(self, message):
    message_id = uuid4().hex
    self.redis.set(message_id, message, ex=10)

    return message_id



Building a Web Messenger with Microservices Chapter 5

[ 220 ]

In the preceding code, you can see that the only amendment to the code I've made is to add
ex=10 to the redis.set method; this will cause all of our messages to expire in 10 seconds.
Restart your Nameko services now and try this out. When you send a new message, wait 10
seconds and refresh the page, and it should be gone.

Please note that if there were any messages in Redis before you made this
change, they will still be present, since they were saved without an expiry.
To remove them, delete all data in Redis with the flushall command
using the redis-cli.

Feel free to play around with the expiry time, setting it to whatever you wish with either
the ex or px parameters. One way you could make this better is to move the expiry time
constant to the configuration file, which is then loaded whenever you start Nameko, but for
now, this will suffice.

Sorting messages
One thing you will quickly notice with the current state of our app is that the messages are
not in any order at all. When you send a new message it could be inserted anywhere in the
thread of messages, making our app pretty inconvenient, to say the least!

To remedy this, we will sort the messages by the amount of time left before they expire.
First, we will have to amend our get_all_messages method in our Redis dependency to
also get the time-to-live for each message:

def get_all_messages(self):
    return [
        {
            'id': message_id,
            'message': self.redis.get(message_id),
            'expires_in': self.redis.pttl(message_id),
        }
        for message_id in self.redis.keys()
    ]



Building a Web Messenger with Microservices Chapter 5

[ 221 ]

As you can see in the preceding code, we have added a new expires_in value to each
message. This uses the Redis PTTL command, which returns the time to live in milliseconds
for a given key. Alternatively, we could also use the Redis TTL command, which returns the
time to live in seconds, but we want this to be as precise as possible to make our sorting
more accurate.

Now, when our MessageService calls get_all_messages, it will also know how long
each message has to live. With this, we can create a new helper function to sort the
messages.

First, add the following to our imports:

from operator import itemgetter

Outside of the MessageService class, create the following function:

def sort_messages_by_expiry(messages, reverse=False):
    return sorted(
        messages,
        key=itemgetter('expires_in'),
        reverse=reverse
    )

This uses Python's built-in sorted function, which has the ability to return a sorted list
from a given iterable; in our case the iterable is messages. We use key to specify what we
want messages to be sorted by. Since we want the messages to be sorted by expires_in,
we use an itemgetter to extract it to be used as the comparison. We've given the
sort_messages_by_expiry function an optional parameter, reverse, which, if set to
True, will make sorted return the sorted list in a reverse order.

With this new helper function, we can now amend our get_all_messages RPC in our
MessageService:

@rpc
def get_all_messages(self):
    messages = self.message_store.get_all_messages()
    sorted_messages = sort_messages_by_expiry(messages)
    return sorted_messages

Our app will now return our messages, sorted with the newest messages at the bottom. If
you'd like to have the newest messages at the top, then simply change sorted_messages
to be:

sorted_messages = sort_messages_by_expiry(messages, reverse=True)



Building a Web Messenger with Microservices Chapter 5

[ 222 ]

Our app now fits all the acceptance criteria we specified earlier. We have the ability to send
messages and get existing messages, and they all expire after a configurable amount of time.
One thing that is less than ideal is that we rely on a browser refresh to fetch the latest state
of the messages. We can fix this in a number of ways, but I will demonstrate one of the
simplest ways to solve this; via polling.

By using polling, the browser can constantly make a request to the server to get the latest
messages without forcing a page refresh. We will have to introduce some more JavaScript to
achieve this, but so would any other method.

Browser polling for messages
When the browser makes a poll to get the latest messages, our server should return the
messages in a JSON format. To achieve this, we'll need to create a new HTTP endpoint that
returns the messages as JSON, without using the Jinja2 templating. We will first construct a
new helper function to create a JSON response, setting the correct headers.

Outside of our WebServer, create the following function:

def create_json_response(content):
    headers = {'Content-Type': 'application/json'}
    json_data = json.dumps(content)
    return Response(json_data, status=200, headers=headers)

This is similar to our create_html_response from earlier, but here it sets the Content-
Type to 'application/json' and converts our data into a valid JSON object.

Now, within the WebServer, create the following HTTP entrypoint:

@http('GET', '/messages')
def get_messages(self, request):
    messages = self.message_service.get_all_messages()
    return create_json_response(messages)

This will call our get_all_messages RPC and return the result as a JSON response to the
browser. Notice how we are using the same URL, /messages, as we do in our endpoint,
here to send a new message. This is a good example of being RESTful. We use a POST
request to /messages to create a new message and we use a GET request to /messages to
get all messages.



Building a Web Messenger with Microservices Chapter 5

[ 223 ]

Polling with JavaScript
To enable our messages to update automatically without a browser refresh, we will create
two JavaScript functions—messagePoll, which will get the latest messages, and
updateMessages, which will update the HTML with these new messages.

Start by replacing the Jinja2 if block in our home.html, which iterates through our list of
messages, with the following line:

<div id="messageContainer"></div>

This will be used later to hold our new list of messages generated by our jQuery function.

Inside the <script> tags in our home.html, write the following code:

function messagePoll() {
  $.ajax({
    type: "GET", # ①
    url: "/messages",
    dataType: "json",
    success: function(data) { # ②
      updateMessages(data);
    },
    timeout: 500, # ③
    complete: setTimeout(messagePoll, 1000), # ④
  })
}

This is another AJAX request, similar to the one we made earlier to send a new message,
with a few differences:

Here, we are performing a GET request to the new endpoint we made in our1.
WebServer instead of a POST request.
If successful, we use the success callback to call the updateMessages function2.
that we will create later.
Set timeout to 500 milliseconds - this is the amount of time in which we should3.
expect a response from our server before giving up.
Use complete, which allows us to define what happens once the success or4.
error callback has completed - in this case, we set it to call poll again after 1000
milliseconds using the setTimeout function.



Building a Web Messenger with Microservices Chapter 5

[ 224 ]

We will now create the updateMessages function:

function updateMessages(messages) {
  var $messageContainer = $('#messageContainer'); # ①
  var messageList = []; # ②
  var emptyMessages = '<p>No messages!</p>'; # ③

  if (messages.length === 0) { # ④
    $messageContainer.html(emptyMessages); #
  } else {
    $.each(messages, function(index, value) {
      var message = $(value.message).text() || value.message;
      messageList.push('<p>' + message + '</p>'); #
    });
    $messageContainer.html(messageList); # ⑤
  }
}

By using this function, we can replace all of the code in our HTML template that generates
the list of messages in the Jinja2 template. Let's go through this step-by-step:

First, we get the messageContainer within the HTML so that we can update it.1.
We generate an empty messageList array.2.
We generate the emptyMessages text.3.
We check if the amount of messages is equal to 0:4.

If so, we use .html() to replace messageContainer HTML with "Noa.
messages!".
Otherwise, for each message in messages, we first strip any HTMLb.
tags that could be present using jQuery's built-in .text() function.
Then we wrap the message in <p> tags and append them to the
messageList using .push().

Finally, we use .html() to replace the messageContainer HTML with the5.
messagesList.

In point 4b, it's important to escape any HTML tags that could be present
in the message, as a malicious user could send a nasty script as a message,
which would be executed by everyone using the app!



Building a Web Messenger with Microservices Chapter 5

[ 225 ]

This is by no means the best way to solve the issue of having to force refresh the browser to
update the messages, but it is one of the simplest ways for me to demonstrate in this book.
There are probably more elegant ways to achieve the polling, and if you really wanted to do
this properly then WebSockets is by far your best option here.

Summary
This now brings us to a close with the guide to writing the TempMessenger application. If
you have never used Nameko before or written a microservice, I hope I have given you a
good base to build on when it comes to keeping services small and to the point.

We started by creating a service with a single RPC method and then used that within
another service via HTTP. We then looked at ways in which we can test Nameko services
with fixtures that allow us to spawn workers and even the services themselves.

We introduced dependency providers and created a Redis client with the ability to get a
single message. With that, we expanded the Redis dependency with methods that allowed
us to save new messages, expire messages, and return them all in a list.

We looked at how we can return HTML to the browser using Jinja2, and at creating a
dependency provider. We even looked at some JavaScript and JQuery to enable us to make
requests from the browser.

One of the main themes you will have probably noticed is the need to keep dependency
logic away from your service code. By doing this we keep our services agnostic to the
workings that are specific to only that dependency. What if we decided to switch Redis for a
MySQL database? In our code, it would just be a case of creating a new dependency
provider for MySQL and new client methods that mapped to the ones our
MessageService expects. We'd then make the minimal change of swapping Redis for
MySQL in our MessageService. If we did not write our code in this way then we would
have to invest more time and effort to make changes to our service. We'd also introduce
more scope for bugs to arise.

If you are familiar with other Python frameworks, you should now see how Nameko allows
us to easily create scalable microservices while still giving us a more batteries not
included approach when compared to something like Django. When it comes to writing
small services that serve a single purpose that are focused on backend tasks, Nameko can be
a perfect choice.

In the next chapter, we will look at extending TempMessenger with a User Authentication
microservice using a PostgreSQL database.



6
Extending TempMessenger

with a User Authentication
Microservice

In the last chapter, we created a web-based messenger, TempMessenger, which consists of
two microservices—one that is responsible for storing and retrieving messages and another
that is responsible for serving web requests.

In this chapter, we will look to extend our existing TempMessenger platform with a User
Authentication microservice. This will consist of a Nameko service with a PostgreSQL
database dependency that has the ability to create new users and authenticate existing
users.

We will also replace our Nameko Web Server microservice with a more suitable Flask app
that will allow us to keep track of web sessions for our users.

It is necessary to have read the last chapter in order to follow this chapter.

We will cover the following topics:

Creating a Postgres dependency
Creating a User Service
Securely storing passwords in a Database
Authenticating users
Creating a Flask app
Web sessions



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 227 ]

TempMessenger goals
Let's add some new goals for our new and improved TempMessenger:

Users can now sign-up for the application
To send messages, users must be logged in
Users not logged in can still read all messages

If at any point you would like to refer to all of the code in this chapter in
its entirety, feel free to view it with tests at:
http://url.marcuspen.com/github-ppb.

Requirements
In order to function in this chapter, your local machine will need the following:

An internet connection
 Docker: If you haven't installed Docker already, please see the official
documentation: http://url.marcuspen.com/docker-install
A virtualenv running Python 3.6 or later; you can reuse your virtualenv from the
last chapter.
pgAdmin: see the official documentation for installation instructions:
http://url.marcuspen.com/pgadmin

A RabbitMQ container running on the default ports: this should be present from
the last chapter, Chapter 5, Building a Web Messenger with Microservices.
A Redis container running on the default ports: this should be present from the
last chapter, Chapter 5, Building a Web Messenger with Microservices.

All other requirements will be installed as we progress through the chapter.

All instructions in this chapter are tailored towards macOS or Debian/Ubuntu systems;
however, I have made an effort to only use multi-platform dependencies.

Throughout this chapter, there will be blocks of code. Different types of
code will have their own prefixes, which are as follows:
$: to be executed in your terminal, always within your virtualenv
>>>: to be executed in your Nameko/Python shell
No prefix: block of Python code to be used in your editor

http://url.marcuspen.com/github-ppb
http://url.marcuspen.com/docker-install
http://url.marcuspen.com/pgadmin


Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 228 ]

Creating a Postgres dependency
Previously, all the data we wanted to store was temporary. Messages had a fixed lifetime
and would expire automatically; if our application had a catastrophic failure then the worst-
case scenario would be that our messages would be lost, which for TempMessenger is
hardly an issue at all!

However, user accounts are a totally different kettle of fish altogether. They must be stored
for as long as the user wishes and they must be stored securely. We also need a proper
schema for these accounts to keep the data consistent. We also need to be able to query and
update the data with ease.

For these reasons, Redis probably isn't the best solution. One of the many benefits of
building microservices is that we aren't tied to a specific technology; just because our
Message Service uses Redis for storage doesn't mean that our User Service has to follow
suit...

Starting a Postgres Docker container
To begin, you will start a Postgres Docker container in your terminal:

$ docker run --name postgres -e POSTGRES_PASSWORD=secret -e
POSTGRES_DB=users -p 5432:5432 -d postgres

This will start a Postgres container with some basic setup:

--name sets the name of the container
-e allows us to set environment variables:

POSTGRES_PASSWORD: The password used to access the database
POSTGRES_DB: The name of the database

-p allows us to expose port 5432 on the container to
port 5432 on our local machine
-d allows us to start the container in daemon mode
(runs in the background)

If you are creating a database for a production environment then it is
important to set a more secure password and keep it safe!



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 229 ]

You can check if the container is up and running by executing the following and ensuring
that your postgres container is present:

$ docker ps

Creating the user model
In order to store data about our users in Postgres, we first need to create a model that will
define the fields and type of data we want to store.

We will first need to install two new Python packages: SQLAlchemy and Psycopg.
SQLAlchemy is a toolkit and object-relational mapper that will serve as our gateway into
the world of SQL. Psycopg is a PostgreSQL database adapter for Python.

Start by adding sqlalchemy (version 1.2.1 at the time of writing) and psycopg2 (version 2.7.4
at the time of writing) to your base.in file. From the root of your project folder, within your
virtualenv, run:

$ pip-compile requirements/base.in
$ pip-sync requirements/base.txt requirements/test.txt

This will add sqlalchemy and psycopg2 to our requirements and will ensure that our
virtualenv packages match them exactly. Alternatively, you can pip install them if you
are choosing not to use pip-tools.

In our dependencies folder, create a new file, users.py. Usually, you would have a
different file for your database models, but for the purpose of simplicity we will embed it
within our dependency. To start, let's define our imports and the base class to be used by
our model:

from sqlalchemy import Column, Integer, Unicode
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

We start by importing Column, which will be used to declare our database columns, and
some basic field types: Integer and Unicode. As for declarative_base, we use that to
create our Base class, from which our User model will inherit. This will create the mapping
between our model and a database table.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 230 ]

Now let's define a basic model for our users:

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    first_name = Column(Unicode(length=128))
    last_name = Column(Unicode(length=128))
    email = Column(Unicode(length=256), unique=True)
    password = Column(Unicode(length=512))

As you can see, our User class inherits from the Base class we defined earlier.
__tablename__ sets the name of the table. Let's briefly go over some of the database
columns we have defined:

id: A unique identifier and primary key for each user in our database. It's
common practice for database models to have their IDs as integers for simplicity.
first_name and last_name: a maximum length of 128 characters should be
enough for any name. We've also used Unicode as our type to cater for names
that include symbols such as Chinese.
email: Again, a large field length and Unicode to cater for symbols. We've also
made this field unique, which will prevent multiple users with the same email
address from being created.
password: We won't be storing passwords in plain text here; we'll come back to
this later!

To learn more about SQLAlchemy, see
http://url.marcuspen.com/sqlalchemy.

Creating the user dependency
Now that we have a basic user model defined, we can create a Nameko dependency for it.
Luckily for us, some of the work has already been done for us in the form of nameko-
sqlalchemy, an open-source Nameko dependency that will handle all of the semantics
around database sessions and also gives us some very useful Pyest fixtures for testing.

Install nameko-sqlalchemy (version 1.0.0 at the time of writing) by adding it to the
requirements/base.in file, and follow the same procedure as earlier to install
sqlalchemy.

http://url.marcuspen.com/sqlalchemy


Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 231 ]

We will now create a wrapper class that will be used to encapsulate all of the logic around
managing users. In users.py, add the following code:

class UserWrapper:

    def __init__(self, session):
        self.session = session

This will be the basis of our wrapper and will require a database session object in the form
of session. Later, we will add more methods to this class, such as create and
authenticate. In order to create our user dependency, first let's add the following to our
imports:

from nameko_sqlalchemy import DatabaseSession

Now let's create a new class, User Store, which will serve as our dependency:

class UserStore(DatabaseSession):

    def __init__(self):
        super().__init__(Base)

    def get_dependency(self, worker_ctx):
        database_session = super().get_dependency(worker_ctx)
        return UserWrapper(session=database_session)

To explain this code, first, let's talk about DatabaseSession. This pre-made dependency
provider for Nameko, given to us by nameko-sqlalchemy, already includes methods such
as setup and get_dependency, as covered in the previous chapter. Therefore, our
UserStore class is simply inheriting from it to use this existing functionality.

The DatabaseSession class' __init__ method takes the declarative base for our models
as its only argument. In our UserStore class, we override this with our own __init__
method, which amends it to use our Base and carry out the same functionality as it would
have originally done by using Python's in-built super function.

To learn more about Python's super method, see:
http://url.marcuspen.com/python-super.

http://url.marcuspen.com/python-super


Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 232 ]

The original get_dependency method in the DatabaseSession class simply returns a
database session; however, we want ours to return an instance of our UserWrapper so that
we can easily call the create and authenticate methods that we will make later. To
override this in an elegant way so that we still keep all of the logic that generates the
database session, we again use the super function to generate database_session and
return an instance of our UserWrapper.

Creating users
Now that we have our Nameko dependency in place, we can start to add functionality to
our UserWrapper. We will start by creating users. Add the following to the UserWrapper
class:

def create(self, **kwargs):
    user = User(**kwargs)
    self.session.add(user)
    self.session.commit()

This create method will create a new User object, add it to our database session, commit
that change to the database, and return the user. Nothing fancy here! But let's talk about the
process of self.session.add and self.session.commit. When we first add the user to
the session, this adds the user to our local database session in memory, rather than adding
them to our actual database. The new user has been staged but no changes have actually
taken place in our database. This is rather useful. Say we wanted to do multiple updates to
the database, making a number of calls to the database can be expensive, so we first make
all the changes we want in memory, then commit them all with a single database
transaction.

Another thing you'll notice in the preceding code is that we use **kwargs instead of
defining the actual arguments to create a new User. If we were to change the user model,
this minimizes the changes needed since the keyword arguments directly map to the fields.

Creating the User Service
In the last chapter, we simply had two services in the same module, which is fine for any
small-scale project. However, now that our platform is starting to grow and new roles are
being defined between services, let's start to split these out by keeping them in different
modules. Alongside your service.py, create a new file, user_service.py.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 233 ]

Add the following code:

from nameko.rpc import rpc
from .dependencies.users import UserStore

class UserService:

    name = 'user_service'
    user_store = UserStore()

    @rpc
    def create_user(self, first_name, last_name, email, password):
        self.user_store.create(
            first_name=first_name,
            last_name=last_name,
            email=email,
            password=password,
        )

If you read the last chapter, then there is nothing new here. We've created a new
UserService, given it the UserStore dependency and made an RPC, which is simply a
pass-through to the create method on the dependency. However, here we have opted to
define the arguments to create a user rather than use **kwargs like we did in the
dependency method. This is because we want the RPC to define the contract it has with
other services that will interface with it. If another service makes an invalid call, then we
want the RPC to reject it as soon as possible without wasting time making a call to the
dependency or, worse, making a database query.

We are close to the point where we can test this out, but first we need to update our
config.yaml with our database settings. Provided you used the command supplied earlier
to create a Docker Postgres container, append the following:

DB_URIS:
  user_service:Base:
    "postgresql+psycopg2://postgres:secret@localhost/
    users?client_encoding=utf8"

DB_URIS is used by nameko-sqlalchemy to map a Nameko service and a declarative base
pair to a Postgres database.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 234 ]

We will also have to create the tables in our Postgres database. Usually, you would do this
with a database migration tool, such as Alembic. However, for the purposes of this book,
we will use a small one-off Python script to do this for us. In the root of your project
directory, create a new file, setup_db.py, with the following code:

from sqlalchemy import create_engine
from temp_messenger.dependencies.users import User

engine = create_engine(
    'postgresql+psycopg2://postgres:secret@localhost/'
    'users?client_encoding=utf8'
)
User.metadata.create_all(engine)

This code takes our user model in our dependency module and creates the required table in
our database for us. create_engine is the starting point as it establishes a connection with
the database. We then use our user model metadata (which in our case consists of the table
name and columns) and call create_all, which issues the CREATE SQL statements to the
database using the engine.

If you are going to want to make changes to the User model while retaining your existing
user data, then learning how to use a database migration tool, such as Alembic, is a must
and I strongly recommend it.

To learn more about how to use Alembic, see
http://url.marcuspen.com/alembic.

To run, in your terminal with your virtualenv simply execute:

$ python setup_db.py

Now let's take a look at our new table using a Database Admin tool. There are many
Database Admin tools out there, my personal favorite being Postico for Mac, but for the
purposes of this book, we will use pgAdmin, which works on all platforms.

http://url.marcuspen.com/alembic


Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 235 ]

Download and install pgAdmin from http://url.marcuspen.com/pgadmin. Once installed,
open and select Add new server, which will bring up the following window:

Simply give it a name of your choice in the General tab, then in the Connection tab, you
can fill out the details of our database with the configuration we set when we created our
Postgres Docker screenshot earlier. However, if you did not make any changes to this, you
can simply copy the details in the preceding image. Remember that the password was set to
secret. Once you've filled this out, hit Save and it should connect to our database.

Once connected, we can start to look at the details of our database. To see our table, you'll
need to expand out and action the menus like so:

http://url.marcuspen.com/pgadmin


Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 236 ]



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 237 ]

You should now be able to see our table, which represents our user model:

We can now try out creating a user with the Nameko shell. Start our new User Service in the
terminal by executing the following, within a virtualenv, in the root of our project folder:

$ nameko run temp_messenger.user_service --config config.yaml

In another terminal window, within your virtualenv, execute:

$ nameko shell

Once in your Nameko shell, execute the following to create a new user:

>>> n.rpc.user_service.create_user('John', 'Doe', 'john@example.com',
'super-secret')



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 238 ]

Now let's check pgAdmin to see if the user was successfully created. To refresh the data,
simply follow the earlier steps to show the user table or click the Refresh button:

It worked! We now have a functioning User Service that can create new users. However,
there is one major issue here... We have just committed one of the worst offenses a software
developer can commit—storing passwords in plain text!

Securely storing passwords in the database
The year is 2018 and by now we've probably all heard dozens of stories about companies
leaking our sensitive data, including passwords, to hackers. In a lot of these cases, the
passwords that were leaked were stored with extremely poor cryptography, meaning that
they could be cracked with ease. In some cases, the passwords were even stored in plain
text!



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 239 ]

Either way, this negligence has led to the leak of millions of users' email and password
combinations. This would not be such an issue if we used different passwords for every
online account we made... but unfortunately, we are lazy and password reuse is quite
common practice. Therefore, the responsibility for mitigating some of the damage done by
hackers infiltrating our servers falls to us, the developers.

In October 2016, the popular video sharing platform Dailymotion suffered a data breach in
which 85 million accounts were stolen. Of those 85 million accounts, 18 million had
passwords attached to them, but luckily they were hashed using Bcrypt. This meant that it
would take hackers decades, maybe even centuries, of brute-force computing to crack them
with today's hardware (source: http://url.marcuspen.com/dailymotion-hack).

So despite hackers successfully breaching Dailymotion's servers, some of the damage was
mitigated by using a hashing algorithm, such as Bcrypt, to store the passwords. With this in
mind, we will now look at how to implement bcrypt hashing for our user passwords,
rather than storing them insecurely in plain text.

Using Bcrypt
Start by adding bcrypt to your base.in file and installing it (version 3.1.4 at the time of
writing) using the same process as earlier.

If you have issues installing Bcrypt, please see their installation
instructions, which include details on system package dependencies:
http://url.marcuspen.com/pypi-bcrypt.

In order for bcrypt to create a hash of a password, it requires two things—your password
and a salt. A salt is simply a string of random characters. Let's look at how you can
create a salt in Python:

>>> from bcrypt import gensalt
>>> gensalt()
b'$2b$12$fiDoHXkWx6WMOuIfOG4Gku'

http://url.marcuspen.com/dailymotion-hack
http://url.marcuspen.com/pypi-bcrypt


Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 240 ]

This is the simplest way to create a salt compatible with Bcrypt. The $ symbols represent
different parts of the salt, and I'd like to point out the second section: $12. This part
represents how many rounds of work are required to hash the password, which by default,
is 12. We can configure this like so:

>>> gensalt(rounds=14)
b'$2b$14$kOUKDC.05iq1ANZPgBXxYO'

Notice how in this salt, it has changed to $14. By increasing this, we are also increasing
the amount of time it would take to create a  hash of the password. This will also increase
the amount of time it takes to check the password attempt against the hash later on. This is
useful since we are trying to prevent hackers from brute-forcing password attempts if they
do manage to get hold of our database. However, the default number of rounds,  12, is
plenty enough already! Let's now create a hash of a password:

>>> from bcrypt import hashpw, gensalt
>>> my_password = b'super-secret'
>>> salt = gensalt()
>>> salt
b'$2b$12$YCnmXxOcs/GJVTHinSoVs.'
>>> hashpw(my_password, salt)
b'$2b$12$YCnmXxOcs/GJVTHinSoVs.43v/.RVKXQSdOhHffiGNk2nMgKweR4u'

Here, we have simply generated a new salt using the default amount of rounds and used
hashpw to generate the hash. Notice how the salt is also in the first part of the hash for our
password? This is quite convenient as it means we don't also have to store the salt
separately, which we'll need when it comes to authenticating users later.

Since we used the default number of rounds to generate the salt, why not try setting your
own amount of rounds? Notice how the amount of time taken by hashpw increases the
higher you set this. My machine took almost 2 minutes to create a hash when the amount of
rounds was set to 20!

Now let's look at how we check passwords against the hash:

>>> from bcrypt import hashpw, checkpw, gensalt
>>> my_password = b'super-secret'
>>> salt = gensalt()
>>> hashed_password = hashpw(my_password, salt)
>>> password_attempt = b'super-secret'
>>> checkpw(password_attempt, hashed_password)
True



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 241 ]

As you can see, checkpw takes the password attempt that we are checking and the hashed
password as arguments. When we implement this in our dependency, the password
attempt will be the part coming from the web request and the hashed password will be
stored in the database. Since it was a successful attempt, checkpw returns True. Let's
attempt the same operation  with an invalid password:

>>> password_attempt = b'invalid-password'
>>> checkpw(password_attempt, hashed_password)
False

No surprises here! It returned False.

If you'd like to learn more about storing passwords and the pitfalls of
certain methods, I'd suggest you read this short article from Dustin
Boswell: http:/ / url. marcuspen. com/ dustwell- passwords. It explains
nicely how hackers can attempt to crack passwords using brute force and
rainbow tables. It also goes into a Bcrypt in bit more detail.

Hashing our user passwords
Now that we know how to store passwords more securely, let's amend our create method
to hash our passwords before storing them in the database. Firstly, at the top of our
users.py dependency file, let's add bcrypt to our imports and add a new constant:

import bcrypt

HASH_WORK_FACTOR = 15

Our new constant, HASH_WORK_FACTOR will be used for the rounds argument that gensalt
uses. I've set it to 15, which will cause it to take slightly longer to create password hashes
and check passwords, but it will be more secure. Please feel free to set this as you wish; just
bare in mind that the more you increase this, the longer it will take for our application to
create and authenticate users later on.

Now, outside any classes, we will define a new helper function for hashing passwords:

def hash_password(plain_text_password):
    salt = bcrypt.gensalt(rounds=HASH_WORK_FACTOR)
    encoded_password = plain_text_password.encode()

    return bcrypt.hashpw(encoded_password, salt)

http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords
http://url.marcuspen.com/dustwell-passwords


Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 242 ]

This helper function simply takes our plain text password, generates a salt, and returns a
hashed password. Now, you may have noticed that when using Bcrypt, we always have to
ensure that the passwords we give it are bytestrings. As you'll notice from the preceding
code, we had to .encode() the password (which by default is UTF-8) before giving it to
hashpw. Bcrypt also will return the hashed password in the bytestring format. The problem
this will bring is that our field for passwords in our database is currently set to Unicode,
making it incompatible with our passwords. We have two options here: either call
.decode() on the password before we store it or amend our password field to something
that will accept bytestrings, such as LargeBinary. Let's go with the latter, as it is cleaner
and saves us from having to convert our data every time we wish to access it.

First, let's amend the line where we import our field types to include LargeBinary:

from sqlalchemy import Column, Integer, LargeBinary, Unicode

Now we can update our User model to use our new field type:

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    first_name = Column(Unicode(length=128))
    last_name = Column(Unicode(length=128))
    email = Column(Unicode(length=256), unique=True)
    password = Column(LargeBinary())

The only problem we have now is that our existing database is not compatible with our new
schema. To solve this, we can either delete the database table or perform a migration. In
real-world environments, deleting a whole table is not an option, ever! If you have already
taken my advice earlier to study Alembic, then I'd encourage you to put your knowledge to
the test and perform a database migration. But for the purposes of this book, I will take
advantage of throwaway Docker containers and start from scratch. To do this, in the root of
your project, and inside your virtualenv, execute:

$ docker rm -f postgres
$ docker run --name postgres -e POSTGRES_PASSWORD=secret -e
POSTGRES_DB=users -p 5432:5432 -d postgres
$ python setup_db.py

This will delete your existing Postgres container, create a new one and run the
setup_db.py script we made earlier. If you check pgAdmin, you'll now see that the field
type in the column headers for password has changed from character varying (512)
to bytea.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 243 ]

At last, we are now ready to update our create method to use our new hash_password
function:

def create(self, **kwargs):
    plain_text_password = kwargs['password']
    hashed_password = hash_password(plain_text_password)
    kwargs.update(password=hashed_password)

    user = User(**kwargs)
    self.session.add(user)
    self.session.commit()

As you can see, in the first three lines of the method we:

Extract the plain_text_password from kwargs.1.
Call hash_password to create our hashed_password.2.
Perform an update on kwargs to replace the password with the hashed version.3.

The rest of the code is unchanged from our previous version.

Let's try this out. In your terminal within your virtualenv, start (or restart) the User Service:

$ nameko run temp_messenger.user_service --config config.yaml

In another terminal window within your virtualenv, start your Nameko shell:

$ nameko shell

Inside your Nameko shell, execute the following to add a new user again:

>>> n.rpc.user_service.create_user('John', 'Doe', 'john@example.com',
'super-secret')

You should notice (depending on how large you set HASH_WORK_FACTOR) that there is now
a slight delay compared to last time when creating a new user.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 244 ]

You should now see the following in your pgAdmin:

Handling duplicate users
Since we set our email field to be unique, our database already prevents duplicate users.
However, if you were to try this for yourself, the output we receive back is not the best. Try
it for yourself by adding the same user again in the Nameko shell.

Another problem with this is that, if there were any other errors when creating a new user,
there is no nice way for our external services to react to these different types of errors
without knowing the type of database we are using, which we want to avoid at all costs.

To solve this, let's start by creating two new exception classes in our users.py:

class CreateUserError(Exception):
    pass

class UserAlreadyExists(CreateUserError):
    pass



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 245 ]

We also need to update our imports to include IntegrityError, which is the type of error
SQLAlchemy raises when there is a unique key violation:

from sqlalchemy.exc import IntegrityError

Again, we will amend our create method, this time to use our two new exceptions:

def create(self, **kwargs):
    plain_text_password = kwargs['password']
    hashed_password = hash_password(plain_text_password)
    kwargs.update(password=hashed_password)

    user = User(**kwargs)
    self.session.add(user)

    try:
        self.session.commit() # ①
    except IntegrityError as err:
        self.session.rollback() # ②
        error_message = err.args[0] # ③

        if 'already exists' in error_message:
            email = kwargs['email']
            message = 'User already exists - {}'.format(email)
            raise UserAlreadyExists(message) # ④
        else:
            raise CreateUserError(error_message) # ⑤

What we have done here is to:

Wrap the self.session.commit() in a try except block.1.
If an IntegrityError occurs, rollback our session, which removes the user from2.
our database session - not completely necessary in this case, but good practice
nevertheless.
Extract the error message.3.
Check to see if it contains the string 'already exists'. If so, then we know4.
that the user already exists and we raise the appropriate exception,
UserAlreadyExists, and give it an error message containing the user's email.
If not, then we have an unexpected error and raise the more generic error tailored5.
to our service, CreateUserError, and give it the whole error message.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 246 ]

By doing this, our external services will now be able to differentiate between a user error
and an unexpected error.

To test this out, restart the User Service and attempt to add the same user again in the
Nameko shell.

Authenticating users
We can now look at how to authenticate users. This is a very simple process:

Retrieve the user we want to authenticate from the database.1.
Perform a bcrypt.checkpw giving it the attempted password and the password2.
hash of the user.
Raise an exception if the result is False.3.
Return the user if it's True.4.

Retrieving users from the database
Starting with the first point, we will need to add a new dependency method, get, which 
returns the user, given the email, if it exists.

First, add a new exception class in users.py:

class UserNotFound(Exception):
    pass

This is what we will raise in the event of the user not being found. Now we will update our
imports to include the following:

from sqlalchemy.orm.exc import NoResultFound

NoResultFound, as the name implies, is raised by SQLAlchemy when a requested object is
not found in the database. Now we can add a new method to our UserWrapper class:

def get(self, email):
    query = self.session.query(User) # ①

    try:
        user = query.filter_by(email=email).one() # ②
    except NoResultFound:
        message = 'User not found - {}'.format(email)



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 247 ]

        raise UserNotFound(message) # ③

    return user

Let's understand what we've done in the preceding code:

In order to query our database, we first must make a query object using our user1.
model as an argument.
Once we have this, we can use filter_by and specify some parameters; in this2.
case, we just want to filter by email. filter_by always returns an iterable, since
you could have multiple results, but since we have a unique constraint on the
email field, it's safe to assume that we are only ever going to have one match if it
exists. Therefore, we call .one(), which returns the single object or raises
NoResultFound if the filter is empty.
We handle NoResultFound and raise our own exception, UserNotFound, with3.
an error message, which better suits our User Service.

Authenticating a user's password
We will now implement an authenticate method that will use the get method we just
created.

First, let's create a new exception class that will be raised if there is a password mismatch:

class AuthenticationError(Exception):
    pass

We can now create another method for our UserWrapper to authenticate users:

def authenticate(self, email, password):
    user = self.get(email) # ①

    if not bcrypt.checkpw(password.encode(), user.password): # ②
        message = 'Incorrect password for {}'.format(email)
        raise AuthenticationError(message) # ③

We start by using our recently created get method to retrieve the user we want1.
to authenticate from our database.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 248 ]

We then use bcrypt.checkpw to check that the attempted password matches the2.
password stored on the user object retrieved from the database. We call
.encode() on the password attempt because our external services aren't going to
do this for us. Nor should they; this is something specific to Bcrypt and such logic
should stay in the dependency.
If the password is incorrect, we raise our AuthenticationError error with an3.
appropriate message.

All that's left to do now is to create an RPC on our UserService class in
user_service.py:

@rpc
def authenticate_user(self, email, password):
    self.user_store.authenticate(email, password)

Nothing special here, just a simple pass-through to the user_store dependency method
we just made.

Let's test this out. Restart the user_service and execute the following in your Nameko
shell:

>>> n.rpc.user_service.authenticate_user('john@example.com', 'super-
secret')
>>>

If successful, it should do nothing! Now let's try it with an incorrect password:

>>> n.rpc.user_service.authenticate_user('john@example.com', 'wrong')
Traceback (most recent call last):
...
nameko.exceptions.RemoteError: PasswordMismatch Incorrect password for
john@example.com
>>>

That's it! That concludes our work on our User Service. We will now look at integrating it
with our existing services.

If you'd like to see how to write some tests for the User Service, you'll find
them, plus all the code, in the Github repository mentioned at the start of
this chapter.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 249 ]

Splitting out the services
As it stands, we have our MessageServer and WebServer in the same service.py
module. It's now time to split these, especially since we will be removing the WebServer in
favor of a Flask server. At the end of this chapter, the goal is to have a total of three
microservices working together, each with its own specific roles:



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 250 ]

The preceding diagram demonstrates how our services will integrate with each other. Take
note of how the Message Service and User Service are totally unaware of each other. A
change to the User Service should not require a change to the Message Service and vice
versa. By splitting these services, we also gain the advantage of being able to deploy new
code to a single service without affecting the others. A bonus from Nameko using
RabbitMQ is that, if a service does go down for a short period of time, any work will simply
be queued until the service comes back online. We will now begin to reap some of the
benefits of a microservice architecture.

To start this refactoring, let's create a new file within our temp_messenger folder,
message_service.py:

from nameko.rpc import rpc
from .dependencies.messages import MessageStore

class MessageService:

    name = 'message_service'

    message_store = MessageStore()

    @rpc
    def get_message(self, message_id):
        return self.message_store.get_message(message_id)

    @rpc
    def save_message(self, message):
        message_id = self.message_store.save_message(message)
        return message_id

    @rpc
    def get_all_messages(self):
        messages = self.message_store.get_all_messages()
        sorted_messages = sort_messages_by_expiry(messages)
        return sorted_messages

def sort_messages_by_expiry(messages, reverse=False):
    return sorted(
        messages,
        key=lambda message: message['expires_in'],
        reverse=reverse
    )



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 251 ]

All we have done here is take the MessageService and all related code from our old
service.py and place it into our new message_service.py module.

Creating a Flask server
We will now create a new Flask web server, which will replace our Nameko Web Server.
Flask is better suited to handling web requests than Nameko and comes with a lot more
baked in while still being fairly lightweight. One of the features we will take advantage of is
Sessions, which will allow our server to keep track of who's logged in. It also works with
Jinja2 for templating, meaning that our existing template should already work.

Start by adding flask to our base.in file, then pip-compile and install (version 0.12.2 at
the time of writing) using the same process as earlier.

Getting started with Flask is quite straightforward; we will start by creating our new home
page endpoint. Within your temp_messenger directory, create a new file,
web_server.py , with the following:

from flask import Flask, render_template # ①

app = Flask(__name__) # ②

@app.route('/') # ③
def home():
    return render_template('home.html') # ④

We import the following from flask:1.
Flask: used to create our Flask app object
render_template: renders a given template file

Create our app, the only argument being the name of our module derived from2.
__name__.
@app.route allows you decorate a function with a URL endpoint.3.

With this, we will be able to get our new Flask web server up and running, albeit with no
functionality. To test this, first export some environment variables:

$ export FLASK_DEBUG=1
$ export FLASK_APP=temp_messenger/web_server.py



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 252 ]

The first will set the app to debug mode, one of the features I like about this as it will hot-
reload when we update our code, unlike a Nameko service. The second simply tells Flask
where our app lives.

Before we start the Flask app, please ensure that you are not currently
running your old Nameko web server as this will cause a port clash.

Within your virtualenv, execute the following in the root of our project to start the server:

$ flask run -h 0.0.0.0 -p 8000

This will start the Flask server on port 8000, the same port we had our old Nameko web
server running on. Provided your local network allows, you can even have other devices on
the same network navigate to your machine's IP and use TempMessenger! Now go to
http://127.0.0.1:8000 on your browser and you should see the following (albeit with
no functionality):

Looks similar to what we had before right? That's because Flask already uses Jinja2 as its
default templating engine, so if we want we can delete our old jinja2.py dependency as
it's no longer needed. Flask also looks for a folder called templates in the same directory
as the app, which is how it automatically knew where to find home.html.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 253 ]

Let's now add the functionality of retrieving messages from our Message Service. This is
slightly different from when we were communicating between two Nameko services since
Flask does not know how to perform RPC's. First, let's add the following to our imports:

from flask.views import MethodView
from nameko.standalone.rpc import ClusterRpcProxy
from flask.json import jsonify

We will also need to add some config so that Flask knows where to find our RabbitMQ
server. We could just add this in our module as a constant, but since we already have
AMQP_URI in our config.yaml, it makes no sense to duplicate it! In our web_server.py
module, before app = Flask(__name__), add the following:

import yaml
with open('config.yaml', 'r') as config_file:
    config = yaml.load(config_file)

This will load all of our config variables from config.yaml. Now add the following class
to web_server.py:

class MessageAPI(MethodView):

    def get(self):
        with ClusterRpcProxy(config) as rpc:
            messages = rpc.message_service.get_all_messages()

        return jsonify(messages)

Whereas our home page endpoint has a function-based view, here we have a class-based
view. We've defined a get method, which will be used for any GET requests to this
MessageAPI. Take note that the names of the methods are important here since they map to
their respective request types. If we were to add a post method (and we will later), then
that would map to all POST requests on the MessageAPI.

ClusterRpcProxy allows us to make RPCs outside a Nameko service. It's used as a context
manager and allows us to easily call our Message Service. Flask comes with a handy helper
function, jsonify, which converts our list of messages into JSON. It's then a simple task of
returning that payload, whereby Flask handles the response headers and status code for us.

Let's now add the functionality of sending new messages. First, amend your flask import to
include request:

from flask import Flask, render_template, request



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 254 ]

Now add a new post method to the MessageAPI class:

def post(self): # ①
    data = request.get_json(force=True) # ②

    try:
        message = data['message'] # ③
    except KeyError:
        return 'No message given', 400

    with ClusterRpcProxy(config) as rpc: # ④
        rpc.message_service.save_message(message)

    return '', 204 # ⑤

You may notice that, rather than obtaining the request object from the post1.
parameters like we did with our Nameko web server, we are importing it from
Flask. In this context, it is a global object that parses all incoming request data for
us.
We use get_json, which is an inbuilt JSON parser that will replace our2.
get_request_data function from the last chapter. We specify that force=True,
which will enforce that the request has valid JSON data; otherwise it will return a
400 Bad Request error code.
Like our old post_message HTTP endpoint, we try to get data['message']3.
or return a 400.
We then again use ClusterRpcProxy to make an RPC to save the message.4.
Return a 204 if all went well. We use 204 rather than a 200 here to indicate that,5.
while the request was still successful, there is no content to be returned.

There's one more thing we need to do before this will work, and that is to register our
MessageAPI with an API endpoint. At the bottom of our web_server.py, outside the
MessageAPI class, add the following:

app.add_url_rule(
    '/messages', view_func=MessageAPI.as_view('messages')
)

This will direct any requests to /messages to the MessageAPI.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 255 ]

It's now time to bring our Message Service back online. In a new terminal window and
inside your virtualenv, execute:

$ nameko run temp_messenger.message_service --config config.yaml

Since we now have multiple services, this requires multiple instances
running in different terminal windows. If one of your Nameko services is
down when you make a request, this can cause functionality to hang
indefinitely until that service is back online. This is a side-effect of
Nameko using a messaging queue to consume new tasks; the task is
simply on the queue, waiting for a service to take it.

Provided that you still have your Flask server running, you should now be able to visit our
app in all its former glory at http://127.0.0.1:8000!



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 256 ]

Web sessions
Now that we have our old functionality back using our new Flask server, we can start to
add some new features such as logging users in and out, creating new users , and allowing
only logged in users to send messages. All of these depend heavily on web sessions.

Web sessions allow us to keep track of users between different requests via cookies. In these
cookies, we store information that can be passed on from one request to the next. For
example, we could store whether a user is authenticated, what their email address is, and so
on. The cookies are signed cryptographically using a secret key, which we will need to
define before we can use Flask's Sessions. In config.yaml, add the following:

FLASK_SECRET_KEY: 'my-super-secret-flask-key'

Feel free to set your own secret key, this is just an example. In a production-like
environment, this would have to be kept safe and secure, otherwise a user could forge their
own session cookies.

We will now need to tell our app to use this secret key. After app = Flask(__name__),
add the following:

app.secret_key = config['FLASK_SECRET_KEY']

With this done, Flask will now use our FLASK_SECRET_KEY from our config.yaml to sign
cookies.

Creating a sign-up page
We will start these new features by adding the ability for new users to sign up. In
web_server.py, add the following new class:

class SignUpView(MethodView):

    def get(self):
        return render_template('sign_up.html')

This new SignUpView class will be responsible for dealing with the sign-up process. We've
added a get method, which will simply render the sign_up.html template that we will
create later.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 257 ]

At the end of the web_server.py module, create the following URL rule:

app.add_url_rule(
    '/sign_up', view_func=SignUpView.as_view('sign_up')
)

As you probably already know, this will direct all requests to /sign_up to our new
SignUpView class.

Now let's create our new template. In the templates folder, create a new file,
sign_up.html:

<!DOCTYPE html>
<body>
  <h1>Sign up</h1>
  <form action="/sign_up" method="post">
    <input type="text" name="first_name" placeholder="First Name">
    <input type="text" name="last_name" placeholder="Last Name">
    <input type="text" name="email" placeholder="Email">
    <input type="password" name="password" placeholder="Password">
    <input type="submit" value="Submit">
  </form>
  {% if error_message %}
    <p>{{ error_message }}</p>
  {% endif %}
</body>

This is a basic HTML form, consisting of the fields needed to create a new user in our
database. The  action and method forms tell it to make a post request to the /sign_up
endpoint. All fields are text fields with the exception of password, which is of type
password, which will cause the user input to be masked. We also have a Jinja if statement
that will check to see if the template was rendered with an error_message. If so, then it
will be displayed in a paragraph block. We will use this later to display messages such
as User already exists to the user.

With these changes made, provided you still have the Flask server running, navigate to
http://127.0.0.1:8000/sign_up and you should see the new sign-up page:



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 258 ]

This form will not yet do anything, as we have not defined a post method for our
SignUpView. Let's go ahead and create that. First, update our imports in web_server.py
to include RemoteError from Nameko and session, redirect, and url_for from Flask:

from nameko.exceptions import RemoteError
from flask import (
    Flask,
    Redirect,
    render_template,
    request,
    session,
    url_for,
)

In your SignUpView class, add the following post method:

def post(self):
    first_name = request.form['first_name'] # ①
    last_name = request.form['last_name']
    email = request.form['email']
    password = request.form['password']

    with ClusterRpcProxy(config) as cluster_rpc:



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 259 ]

        try:
            cluster_rpc.user_service.create_user( # ②
                first_name=first_name,
                last_name=last_name,
                email=email,
                password=password,
            )
        except RemoteError as err: # ③
            message = 'Unable to create user {} - {}'.format(
                err.value
            )
            app.logger.error(message)
            return render_template(
                'sign_up.html', error_message=message
            )

    session['authenticated'] = True # ④
    session['email'] = email # ⑤

    return redirect(url_for('home')) # ⑥

This is quite a long method, but it's fairly simple. Let's go through it step-by-step:

We start by retrieving all relevant fields for a user from request.form.1.
We then use ClusterRpcProxy to make a create_user RPC to our2.
user_service.
If an error occurs, handle it by:3.

Constructing an error message
Logging that message to the console using Flask's app.logger
Rendering the sign_up.html template with the error message

If there are no errors, then we continue by adding an authenticated Boolean of4.
True to the session object.
Add the user's email to the session object.5.
Finally, we redirect the user using url_for, which will look for the function6.
endpoint named home.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 260 ]

Before we test this out, if you don't already have the User Service running, in a new
terminal within your virtualenv execute:

nameko run temp_messenger.user_service --config config.yaml

With this, you should now have your User Service, Message Service and Flask web server
running simultaneously in different terminal windows. If not, then start them using the
nameko and flask commands from earlier.

Navigate to http://127.0.0.1:8000/sign_up and attempt to create a new user:

Once you hit Submit, it should redirect you to the home page and you should have a new
user in your database. Check pgAdmin to ensure that they have been created.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 261 ]

Now go back to http://127.0.0.1:8000/sign_up and attempt to add the same user
again. It should keep you on the same page and display the error message:

It's all well and good having a sign-up page, but our users need to be able to navigate to it
without knowing the URL! Let's make some adjustments to our home.html to add a simple
Sign up link. While we are at it, we can also hide the ability to send new messages unless
they are logged in! In our home.html, amend our existing postMessage form to the
following:

{% if authenticated %}
  <form action="/messages" id="postMessage">
    <input type="text" name="message" placeholder="Post message">
    <input type="submit" value="Post">
  </form>
{% else %}
  <p><a href="/sign_up">Sign up</a></p>
{% endif %}

What we have done here is to wrap our form in a Jinja if block. If the user is
authenticated, then we will show the postMessage form; otherwise, we will display a
link directing the user to the sign-up page.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 262 ]

We will now also have to update our home endpoint to pass the authenticated Boolean
from the session object to the template renderer. First, let's add a new helper function that
gets the authenticated state of a user. This should sit outside any classes inside your
web_server.py module:

def user_authenticated():
    return session.get('authenticated', False)

This will attempt to get the authenticated Boolean from the session object. If it's a
brand new session then we can't guarantee that the authenticated will be there, so we
default it to False and return it.

In web_server.py, update the home endpoint to be the following:

@app.route('/')
def home():
    authenticated = user_authenticated()
    return render_template(
        'home.html', authenticated=authenticated
    )

This will make a call to user_authenticated to get the authenticated Boolean of our user.
We then render the template by passing it authenticated.

Another nice adjustment we can make is to only allow the user to go to the sign up page if
they are not authenticated. To do this, we will need to update our get method in our
SignUpView as follows:

def get(self):
    if user_authenticated():
        return redirect(url_for('home'))
    else:
        return render_template(sign_up.html')

If we are authenticated, then we redirect the user to the home endpoint; otherwise, we
render the sign_up.html template.

If you still have the browser open that you used to create your first user, then if you try to
navigate to http://127.0.0.1:8000/sign_up it should redirect you to the home page of
our site since you are already authenticated.

If you open a different browser, on the home page, you should see the new Sign up link we
made and the ability to send new messages should have disappeared, since you have a new
session.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 263 ]

We now have a new issue. We have prevented users from sending new messages from the
app, but they can still send them if they were to use Curl or a REST client. To stop this from
happening, we need to make a small tweak to our MessageAPI. At the start of the
MessageAPI post method, add the following:

def post(self):
    if not user_authenticated()
        return 'Please log in', 401
    ...

Be sure not to adjust any of the other code; the ... denotes the rest of the code from our
post method. This will simply reject the user's request with a 401 response that tells the
user to log in.

Logging users out
We now need to implement the ability for users to log out. In web_server.py, add the
following logout function endpoint:

@app.route('/logout')
def logout():
    session.clear()
    return redirect(url_for('home'))

If a user hits this endpoint, Flask will clear their session object and redirect them to the
home endpoint. Since the session is cleared, the authenticated Boolean will be deleted.

In home.html, let's update our page to include the link for users to log out. To do this, we
will add a new link just after our postMessage form:

{% if authenticated %}
  <form action="/messages" id="postMessage">
    <input type="text" name="message" placeholder="Post message">
    <input type="submit" value="Post">
  </form>
  <p><a href="/logout">Logout</a></p>
...



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 264 ]

Once saved, and provided we are logged in, we should now have a Logout link underneath
our message form:

After clicking the Logout link, you should be redirected back to the home page, where you
will no longer be able to send messages.

Logging users in
Our app can't be complete without the ability to log a user in! In our web_server.py,
create a new class, LoginView:

class LoginView(MethodView):

    def get(self):
        if user_authenticated():
            return redirect(url_for('home'))
        else:
            return render_template('login.html')



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 265 ]

Like the get in our SignUpView, this one will check to see if the user is already
authenticated. If so, then we will redirect them to the home endpoint, otherwise, we will
render the login.html template.

At the end of our web_server.py module, add the following URL rule for the LoginView:

app.add_url_rule(
    '/login', view_func=LoginView.as_view('login')
)

Any request to /login will now be directed to our LoginView.

Now create a new template, login.html , inside our templates folder:

<!DOCTYPE html>
<body>
  <h1>Login</h1>
  <form action="/login" method='post'>
    <input type="text" name="email" placeholder="Email">
    <input type="password" name="password" placeholder="Password">
    <input type="submit" value="Post">
  </form>
  {% if login_error %}
    <p>Bad log in</p>
  {% endif %}
</body>

As you can see, this is quite similar to our sign_up.html template. We create a form, but
this time we only have the email and password fields. We also have a Jinja if block for
error messages. However, this one has a hardcoded error message rather than one returned
from the LoginView. This is because it is bad practice to tell a user why they failed to log in.
If it was a malicious user and we were telling them things such as This user does not exist or
Password incorrect then this alone would tell them which users exist in our database and
they could possibly attempt to brute-force passwords.

In our home.html template, let's also add a link for users to log in. To do this, we will add a
new link in the else statement of our if authenticated block:

{% if authenticated %}
...
{% else %}
  <p><a href="/login">Login</a></p>
  <p><a href="/sign_up">Sign up</a></p>
{% endif %}



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 266 ]

We should now be able to navigate to the Login page from the home page:

In order for our Login page to work, we will need to create a post method in our
LoginView. Add the following to LoginView:

def post(self):
    email = request.form['email'] # ①
    password = request.form['password']

    with ClusterRpcProxy(config) as cluster_rpc:
        try:
            cluster_rpc.user_service.authenticate_user( # ②
                email=email,
                password=password,
            )
        except RemoteError as err: # ③
            app.logger.error(
                'Bad login for %s - %s', email, str(err)
            )
            return render_template(
                'login.html', login_error=True



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 267 ]

            )

    session['authenticated'] = True # ④
    session['email'] = email # ⑤

    return redirect(url_for('home')) # ⑥

You'll notice that this is quite similar to our SignUpView post method. Let's briefly go over
what is happening:

We retrieve the email and password from request.form.1.
We use ClusterRpcProxy to make an authenticate_user RPC to the2.
user_service.
If a RemoteError occurs, then we:3.

Use Flask's app.logger to log the error to the console
Render the login.html template with login_error set to True

If they authenticate successfully, we set authenticated to True in the session4.
object.
Set email to the user's email in the session object.5.
Redirect the user to the home endpoint.6.

With the preceding code, rather than return the error message to the user, we choose to log
the error message to the console where only we can see it. This allows us to see if there are
any issues with our authentication system or if a malicious user is up to no good, while still
letting the user know that they supplied invalid information.

Provided our services are all still running, you should now be able to test this out! We now
have a fully functioning authentication system for TempMessenger and our goals are
complete.

Prepending the email to our messages
One thing that our TempMessenger is missing is accountability. We have no idea which
users are posting what, which is fine for an anonymous messaging application (and if that is
what you want, then skip this section altogether). To do this, when we store our messages,
we will want to also store the email of the user who sent it.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 268 ]

Let's start by revisiting the messages.py dependency. Update save_message in our
RedisClient to the following:

def save_message(self, email, message):
    message_id = uuid4().hex
    payload = {
        'email': email,
        'message': message,
    }
    self.redis.hmset(message_id, payload)
    self.redis.pexpire(message_id, MESSAGE_LIFETIME)

    return message_id

The first thing you'll notice is that, in order to call save_message, we now require the
user's email.

What we have also done here is to change the format of the data we are storing in Redis
from a string to a hash. Redis hashes allow us to store dictionary-like objects as the value.
They also have the added benefit of being able to pick which key from the dictionary we
want to get back out later, as opposed to getting the whole object out.

So here we create a dictionary of the user's email and password and use hmset to store it in
Redis. hmset does not have a px or ex argument, so instead we make a call to pexpire,
which expires the given key for the given number of milliseconds. There is also an expire
equivalent of this for seconds.

To learn more about Redis hashes and other data types, see:
http://url.marcuspen.com/redis-data-types.

We will now update our get_all_messages method in the RedisClient to the following:

def get_all_messages(self):
    return [
        {
            'id': message_id,
            'email': self.redis.hget(message_id, 'email'),
            'message': self.redis.hget(message_id, 'message'),
            'expires_in': self.redis.pttl(message_id),
        }
        for message_id in self.redis.keys()
    ]

http://url.marcuspen.com/redis-data-types


Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 269 ]

Since the data has changed to a hash, we also have to retrieve it from Redis differently,
using the hget method. We also get the email corresponding to each message.

Now we will move on to message_service.py. Within the MessageService, update the
save_message RPC to the following:

@rpc
def save_message(self, email, message):
    message_id = self.message_store.save_message(
        email, message
    )
    return message_id

All we have done here is update the arguments for the RPC to include email and pass that
to the updated message_store.save_message.

Back in our web_server.py, we will need to update the MessageAPI post method to send
the user's email when it makes the RPC to the MessageService:

def post(self):
    if not user_authenticated():
        return 'Please log in', 401

    email = session['email'] # ①
    data = request.get_json(force=True)

    try:
        message = data['message']
    except KeyError:
        return 'No message given', 400

    with ClusterRpcProxy(config) as rpc:
        rpc.message_service.save_message(email, message) # ②

    return '', 204



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 270 ]

Two small changes we have just made:

Obtain the email from the session object.1.
Update the RPC to also pass the email.2.

In order to see these changes on our page, we will also need to update the home.html
template. For our JavaScript function, updateMessages, update it to the following:

function updateMessages(messages) {
  var $messageContainer = $('#messageContainer');
  var messageList = [];
  var emptyMessages = '<p>No messages!</p>';

  if (messages.length === 0) {
    $messageContainer.html(emptyMessages);
  } else {
    $.each(messages, function(index, value) {
      var message = $(value.message).text() || value.message;
      messageList.push(
        '<p>' + value.email + ': ' + message + '</p>'
      );
    });
    $messageContainer.html(messageList);
  }
}

This is a minor tweak. If you can't spot it, we've updated the messageList.push to include
the email.

Before you test this, ensure that your Redis store is empty, as old messages will be in the old
format and will break our app. You can do this by using redis-cli inside of our Redis
container:

$ docker exec -it redis /bin/bash
$ redis-cli -h redis
redis:6379> flushall
OK
redis:6379>



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 271 ]

Also, be sure to restart our Message Service so that it takes the new changes into effect.
Once you have done that, we can test this new functionality:

Summary
This now concludes our work on the TempMessenger User Authentication system. We
started this chapter by using a Postgres database with Python and created a Nameko
Dependency to encapsulate it. This was different from our Redis dependency from the last
chapter since the data is permanent and required a lot more planning. Despite this, we
tucked this logic away and simply exposed two RPC's: create_user and
authenticate_user.

We then looked at how to securely store user passwords in a database. We explored some of
the ways you can do this incorrectly, such as by storing passwords in plain text. We used
Bcrypt to cryptographically hash our passwords to prevent them from being read if our
database was compromised.



Extending TempMessenger with a User Authentication Microservice Chapter 6

[ 272 ]

When it came to linking the new User Service to the rest of our application, we first split out
each service into its own module to allow us to deploy, update, and manage them
independently. We reaped some of the benefits of a microservice architecture by showing
how easy it was to replace one framework (Nameko) with another (Flask) in the Web Server
without affecting the rest of the platform.

We explored the Flask framework and how to create function-based and class-based views.
We also looked at Flask session objects and how we could store user data from one request
to the next.

As a bonus, we amended our message list to also include the email address of the user who
sent it.

I'd encourage you to think of new enhancements to make for TempMessenger and plan
accordingly how you would add them, ensuring that logic from our dependencies does not
leak outside the service it belongs to—a mistake made by many! Keeping our service
boundaries well defined is a hard task and sometimes it helps to start off with a more
monolithic approach and separate them out later once they are clear. This is similar to the
approach we took with MessageService and WebServer from the last chapter. Building
Microservices (O'Reilly) by Sam Newman explains this very well and also covers in more
detail the benefits, drawbacks, and challenges associated with building distributed systems.

With this chapter complete, I hope I have given you a deeper insight into how you can
benefit from a Microservice architecture in practice. The journey we took creating this
application was purposely modular, not only to reflect the modularity of microservices but
to demonstrate how we should go about adding new features with minimal impact to the
rest of the platform.



7
Online Video Game Store with

Django
I was born in the late seventies, which means that I grew up during the birth of the video
game industry. My first video game console was the Atari 2600, and it was because of that
specific video game console that I decided that I wanted to be a programmer and make
video games. I never got a job within the gaming industry, however, but I still love playing
video games, and in, my spare time, I try to develop my own games.
To this day, I still go around the internet—especially eBay—buying old video games to
bring back my nice childhood memories when all the family, my parents, and my sister,
used to play Atari 2600 games together.
Because of my interest in vintage video games, we are going to develop a vintage video
game online store; this will be a great way to develop something fun and also learn a lot
about web development with the popular Django web framework.

In this chapter, we will cover the following:

Setting up the environment
Creating a Django project
Creating Django apps
Exploring the Django admin interface
Learning how to create an application model and perform queries with the
Django ORM

Also, as an extra, we will be using the npm (Node Package Manager) to download the
client-side dependencies. We will also cover how to create simple tasks using the task
runner Gulp.



Online Video Game Store with Django Chapter 7

[ 274 ]

To make our application prettier without a lot of effort, we are going to use Bootstrap.

So, let's get started!

Setting up the development environment
As usual, we are going to start setting up the environment for development. In Chapter 4,
Exchange Rates and the Currency Conversion Tool, you were introduced to pipenv, so in this
and the following chapters, we are going to be using pipenv to create our virtual
environment and manage our dependencies.

First, we want to create the directory where we are going to keep our project. In your
working directory, create a directory called django-project as follows:

mkdir django-project && cd django-project

Now we can run pipenv to create our virtual environment:

pipenv --three

If you have Python 3 installed in another location, you can use the argument --python and
specify the path where the Python executable is located. If everything went fine, you should
see an output such as the following:



Online Video Game Store with Django Chapter 7

[ 275 ]

Now we can activate our virtual environment using the pipenv command shell:

pipenv shell

Great! The only dependency that we are going to add for now is Django.

At the time of writing this book, Django 2.0 had been released. It has really
nice features compared to its predecessor. You can see the list of new
features at https:/ /docs. djangoproject. com/ en/2. 0/releases/ 2.0/ .

Let's install Django in our virtual environment:

pipenv install django

Django 2.0 has dropped support for Python 2.0, so if you are planning to develop an
application using Python 2, you should install Django 1.11.x or lower. I strongly
recommend that you start a new project using Python 3. Python 2 will stop being
maintained after a couple of years, and new packages will be created for Python 3. Popular
packages of Python 2 will migrate to Python 3.

In my opinion, the best new feature of Django 2 is the new routing syntax, because now it is
not necessary to write regular expressions. It is much cleaner and more readable to write
something like the following:

path('user/<int:id>/', views.get_user_by_id)

The previous syntax relied more on regular expressions:

url('^user/?P<id>[0-9]/$', views.get_user_by_id)

It is much simpler this way. Another feature that I really like in Django 2.0 is that they have
improved the admin UI a little bit and made it responsive; this is a great feature, because I
have experienced that creating a new user (while you are on the go with no access to a
desktop) on a non-responsive site on a small mobile phone screen can be painful.

https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/
https://docs.djangoproject.com/en/2.0/releases/2.0/


Online Video Game Store with Django Chapter 7

[ 276 ]

Installing Node.js
When it comes to web development, it is almost impossible to stay away from Node.js.
Node.js is a project that was released back in 2009. It is a JavaScript runtime that allows us
to run JavaScript on the server-side. Why do we care about Node.js if we are developing a
website using Django and Python? The reason is that the Node.js ecosystem has several
tools that will help us to manage the client-side dependencies in a simple manner. One of
these tools that we are going to use is the npm.

Think about npm as the pip of the JavaScript world. npm, however, has many more
features. One of the features that we are going to use is npm scripts.

So, let's go ahead and install Node.js. Usually, developers need to go over to the Node.js
website and download it from there, but I find it much simpler to use a tool called NVM,
which allows us to install and switch easily between different versions of Node.js.

To install NVM in our environment, you can follow the instructions at https:/ /github.
com/creationix/nvm.

We are covering installation of NVM on Unix/Linux and macOS systems.
If you are using Windows, there's an awesome version for Windows that
has been developed in the Go language; it can be found at https:/ /
github. com/ coreybutler/ nvm- windows.

When NVM is installed, you are ready to install the latest version of Node.js with the
following command:

nvm install node

You can verify if the installation is correct with the command:

node --version

While writing this book, the latest Node.js version is v8.8.1.

You can also type npm on the terminal, where you should see an output similar to the
output that follows:

https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows


Online Video Game Store with Django Chapter 7

[ 277 ]

Creating a new Django project
To create a new Django project, run the following command:

django-admin startproject gamestore

Note that django-admin created a directory called gamestore that contains some
boilerplate code for us. We will go through the files that Django created in a little while, but,
first, we are going to create our first Django application. In the Django world, you have the
project and the application, and according to the Django documentation, the project
describes the web application itself, and the application is a Python package that provides
some kind of feature; these applications contain their own set of routes, views, static files
and can be reused across different Django projects.



Online Video Game Store with Django Chapter 7

[ 278 ]

Don't worry if you don't understand it completely; you will learn more as we progress.

With that said, let's create the project's initial application. Run cd gamestore, and once
you are inside the gamestore directory, execute the following command:

python-admin startapp main

If you list the contents of the gamestore directory, you should see a new directory named
main; that's the directory of the Django application that we are going to create.

Without writing any code at all, you already have a totally functional web application. To
run the application and see the results, run the following command:

python manage.py runserver

You should see the following output:

Performing system checks...

System check identified no issues (0 silenced).

You have 14 unapplied migration(s). Your project may not work properly
until you apply the migrations for app(s): admin, auth, contenttypes,
sessions.
Run 'python manage.py migrate' to apply them.

December 20, 2017 - 09:27:48
Django version 2.0, using settings 'gamestore.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Open your favorite web browser, and go to http://127.0.0.1:8000, where you will see
the following page:



Online Video Game Store with Django Chapter 7

[ 279 ]

One thing to note when we start the application for the first time is the following warning:

You have 14 unapplied migration(s). Your project may not work properly
until you apply the migrations for app(s): admin, auth, contenttypes,
sessions.
Run 'python manage.py migrate' to apply them.

This means that the apps that are registered by default on a Django project, admin, auth,
contenttypes, and sessions have migrations (database changes) that haven't been
applied to this project. We can run these migrations with the following command:

➜ python manage.py migrate
Operations to perform:
  Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:



Online Video Game Store with Django Chapter 7

[ 280 ]

  Applying contenttypes.0001_initial... OK
  Applying auth.0001_initial... OK
  Applying admin.0001_initial... OK
  Applying admin.0002_logentry_remove_auto_add... OK
  Applying contenttypes.0002_remove_content_type_name... OK
  Applying auth.0002_alter_permission_name_max_length... OK
  Applying auth.0003_alter_user_email_max_length... OK
  Applying auth.0004_alter_user_username_opts... OK
  Applying auth.0005_alter_user_last_login_null... OK
  Applying auth.0006_require_contenttypes_0002... OK
  Applying auth.0007_alter_validators_add_error_messages... OK
  Applying auth.0008_alter_user_username_max_length... OK
  Applying auth.0009_alter_user_last_name_max_length... OK
  Applying sessions.0001_initial... OK

Here Django created all the tables in a SQLite database, you will find the SQLite database
file in the application's root directory.

The db.sqlite3 file is the database file that contains the tables for our application. The
choice of SQLite is just to make the application simpler for this chapter. Django supports a
large set of databases; the most popular databases, such as, Postgres, Oracle, and even
MSSQL are supported.

If you run the runserver command again, there should not be any migration warnings:

→ python manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).
December 20, 2017 - 09:50:49
Django version 2.0, using settings 'gamestore.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Now there's only one thing that we need to do to wrap this section up; we need to create an
administrator user so we can log in to the Django admin UI and administrate our web
application.

As with everything else in Django, this is very simple. Just run the following command:

python manage.py createsuperuser



Online Video Game Store with Django Chapter 7

[ 281 ]

You will be asked to enter a username and email and to set the password, that is all you
have to do to set an administrator account.

In the next section, we are going to have a closer look at the files that the Django created for
us.

Exploring the Django project's structure
If you look at the Django website, it says Django: The Web framework for perfectionists with
deadlines, and I could not agree more with this statement. So far, we haven't written any
lines of code, and we already have a site up and running. In just a few commands, we can
create a new project with the same directory structure and boilerplate code. Let's start with
the development.

We can set up a new database and create a superuser, and, on the top of that, Django comes
with a very nice and useful admin UI, where you can visualize our data, , and users.

In this section, we are going to explore the code that Django created for us when starting a
new project so that we can get familiar with the structure. Let's go ahead and start adding
the other components of our project.

If you have a look inside of the project's root directory, you will find a file called
db.sqlite3, another file called manage.py, and, lastly, a directory with the same name as
the project, in our case gamestore. The db.sqlite3 file, as the name suggests, is the
database file; this file is created here on the project's root folder because we are working
with SQLite. You can explore this file directly from the command line; we are going to
demonstrate how to do that shortly.

The second file is manage.py. This file is created automatically by the django-admin in
every Django project. It basically does the same things as django-admin, plus two extra
things; it will set the DJANGO_SETTINGS_MODULE to point to the project's setting file and
also put the project's package on the sys.path. If you execute manage.py without any
arguments, you can see the help with all the commands available.

As you can see with manage.py, you have many options, such as manage passwords,
create a superuser, manage the database, create and execute database migrations, start new
apps and projects, and a very important option in runserver, which, as the name says, will
start the Django development server for you.



Online Video Game Store with Django Chapter 7

[ 282 ]

Now that we have learned about manage.py and how to execute its commands, we are
going to take a step back and learn how to inspect the database that we just created. The
command to do that is dbshell; let's give it a go:

python manage.py dbshell

Diving into the SQLite
You should get into the SQLite3 command prompt:

SQLite version 3.16.2 2017-01-06 16:32:41
Enter ".help" for usage hints.
sqlite>

If you want to get a list of all the database's tables, you can use the command .tables:

sqlite> .tables
auth_group auth_user_user_permissions
auth_group_permissions django_admin_log
auth_permission django_content_type
auth_user django_migrations
auth_user_groups django_session

Here you can see that we have all the tables that we created through the migrate
command.

To look at every table structure, you can use the command .schema, and we can use the
option --indent, so the output will be displayed in a more readable manner:

sqlite> .schema --indent auth_group
CREATE TABLE IF NOT EXISTS "auth_group"(
 "id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,
 "name" varchar(80) NOT NULL UNIQUE
 );

These are the commands that I use the most when working with SQLite3 databases, but the
command-line interface offers a variety of commands. You can use the .help command to
get a list of all available commands.



Online Video Game Store with Django Chapter 7

[ 283 ]

SQLite3 databases are very useful when creating prototypes, creating
proof of concept projects, or for creating really small projects. If our project
does not fall in any of these categories, I would recommend using other
SQL databases, such as MySQL, Postgres, and Oracle. There are also non-
SQL databases, such as MongoDB. With Django, you can use any of these
databases without any problem; if you are using the Django ORM (Object
relation model), most of the time you can switch between databases, and
the application will continue to work perfectly.

Looking at the project's package directory
Next, let's have a look at the project's package directory. There, you will find a bunch of
files. The first file you will see is settings.py, which is a very important file, as it is where
you are going to put all the settings of our application. In this settings file, you can specify
which apps and database you will use, and you can also tell Django where to search for
static files and templates, middlewares, and more.

Then you have the urls.py; this file is where you specify the URLs that will be available on
your application. You can setup URLs on the project level but also for every Django app. If
you examine the contents of this urls.py file, you won't find much detail. Basically, you
will see text explaining how to add new URLs, but Django has defined (out of the box) a
URL to the Django admin site:

  from django.contrib import admin
  from django.urls import path

  urlpatterns = [
      path('admin/', admin.site.urls),
  ]

We are going to go through the process of adding new URLs to the project, but we can
explain this file anyway; remember when I mentioned that in Django you can have diverse
apps? So django.contrib.admin is also an app, and an app has its own set of URLs,
views, templates. So what it is doing here? When we import the admin app and then define
a list called urlpatterns, in this list we use a function path where the first argument is the
URL, and the second argument here can be a view that is going to be executed. But in this
case, it is passing the URLs of the admin.site app, which means that admin/ will be the
base URL, and all the URLs defined in admin.site.urls will be created under it.



Online Video Game Store with Django Chapter 7

[ 284 ]

For example, if in admin.site.url, I have defined two URLs, users/ and groups/, when
I have path('admin/', admin.site.urls), I will be actually creating two URLs:

admin/users/

admin/groups/

Lastly, we have the wsgi.py, which is a simple WSGI configuration that Django creates for
us when creating a new project.

Now that we are a bit more familiar with the Django's project structure, it is time to create
our project's first app.

Creating the project's main app
In this section, we are going to create our first Django app. One Django project can contain
multiple apps. Splitting the project into apps is a good practice for many reasons; the most
obvious is that you can reuse the same app across different projects. Another reason to split
the project into multiple apps is that it enforces separation of concerns. Your project will be
more organized, easier to reason, and our colleagues will thank you because it will be much
easier to maintain.

Let's go ahead and run the command startapp, and, as shown before, you can either use
the django-admin command or use manager.py. As we created the project using the
django-admin command, it is a good opportunity to test the manager.py command. To
create a new Django app, run the following command:

python manager.py startapp main

Here, we are going to create an app named main. Don't worry that no output is displayed,
Django creates the project and the app silently. If you get a list of the directory contents
now, you will see that there is a directory named main, and inside the main directory you
will find some files; we are going to explain every file while we are adding changes to it.

So, the first thing we want to do is to add a landing page to our application. To do that, we
have to do three things:

First, we add a new URL to tell Django that when a user of our site browses to the
root, it should go the site / and display some content
The second step is to add a view that will be executed when the user browses to
the site's root /



Online Video Game Store with Django Chapter 7

[ 285 ]

The last step is to add an HTML template with the content that we want to
display to the users

With that said, we need to include a new file called urls.py inside of the main app
directory. First, we add some imports:

from django.urls import path
from . import views

In the preceding code, we imported the function path from django.urls. The path
function will return an element to be included in the urlpatterns list, and we also import
the views file in the same directory; we want to import this view because it is there that we
are going to define functions that will be executed when a specific route is accessed:

  urlpatterns = [
      path(r'', views.index, name='index'),
  ]

Then we use the path function to define a new route. The first argument of the function
path is a string that contains the URL pattern that we wish to make available in our
application. This pattern may contain angle brackets (for example, <int:user_id>) to
capture parameters passed on the URL, but, at this point, we are not going use it; we just
want to add a URL for the application's root, so we add an empty string ''. The second
argument is the function that is going to be executed, and, optionally, you can add the
keyword argument name, which sets the URL's name. We will see why this is useful in a
short while.

The second part is to define the function called index in the views.py file, as follows:

  from django.shortcuts import render

  def index(request):
      return render(request, 'main/index.html', {})

As there are not too many things going on at this point, we first import the render function
from django.shortcuts. Django has its own template engine that is built into the
framework, and it is possible to change the default template engine to other template
engines you like (such as Jinja2, which is one of the most popular template engines in the
Python ecosystem), but, for simplicity, we are going to use the default engine. The render
function gets the request object, the template, and a context object; the latter is an object that
contains data to be displayed in the template.



Online Video Game Store with Django Chapter 7

[ 286 ]

The next thing we need to do is to add a template that will contain the content that we want
to display when the user browses to our application. Now, most of the web application's
pages contain parts that never change, such as a top menu bar or a page's footer, and these
parts can be put into a separate template that can be reused by other templates. Luckily, the
Django template engine has this feature. In fact, we can not only inject sub-templates inside
a template, but also we can have a base template that will contain the HTML that will be
shared between all of the pages. With that said, we are going to create a file called
base.html inside the gamestore/templates directory that has the following contents:

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width,
        initial-scale=1">
    <meta name="description" content="">
    <meta name="author" content="">
    <link rel="icon" href="../../favicon.ico">

    <title>Vintage video games store</title>

    {% load staticfiles %}
    <link href="{% static 'styles/site.css' %}" rel='stylesheet'>
    <link href="{% static 'styles/bootstrap.min.css' %}"
       rel='stylesheet'>
    <link href="{% static 'styles/font-awesome.min.css' %}"
          rel='stylesheet'>
  </head>

  <body>

    <nav class="navbar navbar-inverse navbar-fixed-top">
      <div class="container">
        <div class="navbar-header">
          <button type="button" class="navbar-toggle
             collapsed" data-toggle="collapse" data-
target="#navbar"
             aria-expanded="false" aria-controls="navbar">
            <span class="sr-only">Toggle navigation</span>
            <span class="icon-bar"></span>
            <span class="icon-bar"></span>
            <span class="icon-bar"></span>
          </button>
          <a class="navbar-brand" href="/">Vintage video
         games store</a>



Online Video Game Store with Django Chapter 7

[ 287 ]

        </div>
        <div id="navbar" class="collapse navbar-collapse">
          <ul class="nav navbar-nav">
            <li>
              <a href="/">
                <i class="fa fa-home" aria-hidden="true"></i> HOME
              </a>
            </li>
            {% if user.is_authenticated%}
            <li>
              <a href="/cart/">
                <i class="fa fa-shopping-cart"
                   aria-hidden="true"></i> CART
              </a>
            </li>
            {% endif %}
          </ul>
        </div><!--/.nav-collapse -->
      </div>
    </nav>

    <div class="container">

      <div class="starter-template">
        {% if messages %}
          {% for message in messages %}
            <div class="alert alert-info" role="alert">
              {{message}}
            </div>
          {% endfor %}
        {% endif %}

        {% block 'content' %}
        {% endblock %}
      </div>
    </div>
  </body>
</html>

We are not going to go through all the HTML parts, just the parts that are the specific
syntax of Django's template engine:

  {% load static %}
  <link href="{% static 'styles/site.css' %}" rel='stylesheet'>
  <link href="{% static 'styles/bootstrap.min.css' %}"
          rel='stylesheet'>
  <link href="{% static 'styles/font-awesome.min.css' %}"
         rel='stylesheet'>



Online Video Game Store with Django Chapter 7

[ 288 ]

The first thing to note here is {% load static %}, which will tell Django's template
engine that we want to load the static template tag. The static template tag is used to link
static files. These files can be images, JavaScript, or Stylesheet files. How does Django
find those files, you may ask, and the answer is simple: by magic! No, just kidding; the
static template tag will look for the files in the directory specified in the STATIC_ROOT
variable in the settings.py file; in our case we defined STATIC_ROOT = '/static/', so
when using the tag {% static 'styles/site.css' %} the link
/static/styles/site.css will be returned.

You may be wondering, why not just write /static/styles/site.css instead of using
the tag? The reason for this is that the tag gives us much more flexibility for change in case
we need to update the path where we serve our static files. Imagine a situation where you
have a large application with hundreds of templates, and in all of them, you
hardcode /static/ and then decide to change that path (and you don't have a team). You
would need to change every single file to perform this change. If you use the static tag, you
can simply move the files to a different location, and the tag changes the value of the
STATIC_ROOT variable in the settings files.

Another tag that we are using in this template is the block tag:

{% block 'content' %}
{% endblock %}

The block tag is very simple; it defines an area in the base template that can be used by
children templates to inject content in that area. We are going to see exactly how this works
when we create the next template file.

The third part is to add the template. The index function is going to render a
template stored at main/index.html, which means that it will leave it in the directory
main/templates/main/. Let's go ahead and create the folder main/templates and
then main/templates/main:

mkdir main/templates && mkdir main/templates/main

Create a file called index.html  in the directory main/templates/main/, with the
contents as follows:

{% extends 'base.html' %}

{% block 'content' %}
   <h1>Welcome to the gamestore!</h1>
{% endblock %}



Online Video Game Store with Django Chapter 7

[ 289 ]

As you can see, here, we start off by extending the base template, which means that all the
content of the base.html file will be used by the Django template engine to build the
HTML that will be provided back to the browser when the user browses to /. Now, we also
use the block tag; in this context, it means that the engine will search for a block tag named
'content' in the base.html file, and, if it finds it, the engine will insert the h1 html tab
inside the 'content' block.

This is all about reusability and maintainability of code, because you don't need to insert the
menu markup and tags to load JavaScript and CSS files in every single template of our
application; you just need to insert them in the base template and use the block tag here.
The content will change. A second reason to use base templates is that, again, imagine a
situation where you need to change something—let's say the top menu that we defined in
the base.html file, as the menu is only defined in the base.html file. All you need to do
to perform changes is to change the markup in the base.html, and all the other templates
will inherit the changes.

We are almost ready to run our code and see how the application is looking so far, but, first,
we need to install some client-side dependencies.

Installing client-side dependencies
Now that we have NodeJS installed, we can install the project's client-side dependencies. As
the focus of this chapter is Django and Python, we don't want to spend too much time
styling our application and going through huge CSS files. However, we do want our
application to look great, and for this reason we are going to install two things: Bootstrap
and Font Awesome.

Bootstrap is a very well-known toolkit that has been around for many years. It has a very
nice set of components, a grid system, and plugins that will help us make our application
look great for our users when they are browsing the application on a desktop, or even a
mobile device.

Font Awesome is another project that has been around for a while, and it is a font and icons
framework.

To install these dependencies, we could just run the npm's install command. However, we
are going to do better. Similar to pipenv, which creates a file for our Python dependencies,
npm has something similar. This file is called package.json, and it contains not only the
project's dependencies but also scripts and meta information about the package.



Online Video Game Store with Django Chapter 7

[ 290 ]

So let's go ahead and add the package.json file to the gamestore/ directory, with the
following content:

    {
      "name": "gamestore",
      "version": "1.0.0",
      "description": "Retro game store website",
      "dependencies": {
         "bootstrap": "^3.3.7",
        "font-awesome": "^4.7.0"
      }
    }

Great! Save the file, and run this command on the terminal:

npm install

If everything goes well, you should see a message saying that two packages have been
installed.

If you list the contents of the gamestore directory, you will see that npm created a new
directory called node_modules, and it is there that npm installed Bootstrap and Font
Awesome.

For simplicity, we are going to just copy the CSS files and fonts that we need to the static
folder. However, when building an application, I would recommend using tools such
as webpack, which will bundle all our client-side dependencies and set up a webpack dev
server to serve the files for your Django application. Since we want to focus on Python and
Django we can just go ahead and copy the files manually.

First, we can create the directory of the CSS files as follows:

mkdir static && mkdir static/styles

Then we need to copy the bootstrap files. First, the minified CSS file:

cp node_modules/bootstrap/dist/css/bootstrap.min.css static/styles/

Next, we need to copy the Font Awesome files, starting with the minified CSS:

cp node_modules/font-awesome/css/font-awesome.min.css static/styles/



Online Video Game Store with Django Chapter 7

[ 291 ]

And the fonts:

cp -r node_modules/font-awesome/fonts/ static/

We are going to add another CSS file that will contain some custom CSS that we may add to
the application to give a personal touch to the application. Add a file called site.css in
the gamestore/static/styles directory with the following contents:

  .nav.navbar-nav .fa-home,
  .nav.navbar-nav .fa-shopping-cart {
     font-size: 1.5em;
   }
   .starter-template {
      padding: 70px 15px;
   }

   h2.panel-title {
      font-size: 25px;
   }

There are a few things we need to do to run our application for the first time; first, we need
to add the main app that we created to the INSTALLED_APPS list in the settings.py file in
the gamestore/gamestore directory. It should look like this:

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'main',
]

In the same settings file you will find the list TEMPLATES:

TEMPLATES = [
    {
        'BACKEND':
       'django.templates.backends.django.DjangoTemplates',
        'DIRS': [],
        'APP_DIRS': True,
        'OPTIONS': {
            'context_processors': [
                'django.templates.context_processors.debug',
                'django.templates.context_processors.request',
                'django.contrib.auth.context_processors.auth',



Online Video Game Store with Django Chapter 7

[ 292 ]

          'django.contrib.messages.context_processors.messages',
            ],
        },
    },
]

The value of DIRS is an empty list. We need to change it to:

'DIRS': [
    os.path.join(BASE_DIR, 'templates')
]

That will tell Django to search for templates in the templates directory.

Then, at the end of the settings.py file, add the following line:

STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), ]

This will tell Django to search for static files in the gamestore/static directory.

Now we need to tell Django to register the URLs that we have defined in the main app. So,
let's go ahead and open the file urls.py in the gamestore/gamestore directory. We need
to include  "main.urls" in the urlpatterns list. After the changes, the urls.py file
should look like this:

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
    path('admin/', admin.site.urls),
    path('', include('main.urls'))
]

Note that we also need to import the include function of the django.urls module.

Great! Now we have all the client-site dependencies in place and ready to be used by our
application, and we can start the application for the first time to see the changes that we
have implemented so far. Open the terminal, and use the command runserver to start
Django's development server, like so:

python manage.py runserver



Online Video Game Store with Django Chapter 7

[ 293 ]

Browse to http://localhost:8000; you should see a page like the one shown in the
following screenshot:

Adding login and logout views
Every online store needs some sort of user management. Our application's users should be
able to create an account, change their account details, obviously log in to our application so
they can place orders, and also log out from the application.

We are going to start adding the login and logout functionality. The good news is that it is
super easy to implement in Django.

First, we need to add a Django form to our login page. Django has a built-in form of
authentication; however, we want to customize it, so we are going to create another class
that inherits from the Django built-in AuthenticationForm and add our changes.

Create a file called forms.py in gamestore/main/ with the following content:

from django import forms
from django.contrib.auth.forms import AuthenticationForm

class AuthenticationForm(AuthenticationForm):
    username = forms.CharField(
        max_length=50,
        widget=forms.TextInput({
            'class': 'form-control',



Online Video Game Store with Django Chapter 7

[ 294 ]

            'placeholder': 'User name'
        })
    )

    password = forms.CharField(
        label="Password",
        widget=forms.PasswordInput({
            'class': 'form-control',
            'placeholder': 'Password'
        })
    )

This class is quite simple. First, we import forms from the django module and
the AuthenticationForm from django.contrib.auth.forms, and then we create
another class, also called AuthenticationForm, which inherits from Django's
AuthenticationForm. Then we define two properties, the username and the password.
We define the username as an instance of CharField , and there are some keyword
arguments that we pass in its constructor. They are:

max_length, which, as the name suggests limits the size of the string to 50
characters.
We also use the widget argument, which specifies how this property will be
rendered on the page. In this case, we want to render it as an input text element,
so we pass an instance to TextInput. It is possible to pass some options to the
widget; in our case, here we pass 'class', which is the CSS class and the
placeholder.

All these options will be used when the template engine renders this property on the page.

The second property that we define here is the password. We also define it as a CharField,
and, instead of passing max_length, this time we set the label to 'Password'. The widget
we set to PasswordInput so the template engine will render the field on the page as input
with a type equal to the password, and, lastly, we define the same settings for this field class
and placeholder.

Now we can start registering the new URLs for logging in and out. Open the file
gamestore/main/urls.py. To start, we are going to add some import statements:

from django.contrib.auth.views import login
from django.contrib.auth.views import logout
from .forms import AuthenticationForm



Online Video Game Store with Django Chapter 7

[ 295 ]

After the import statements, we can start registering the authentication URLs. At the end of
the urlpattens list, add the following code:

  path(r'accounts/login/', login, {
      'template_name': 'login.html',
      'authentication_form': AuthenticationForm
  }, name='login'),

So, here we are creating a new URL, 'accounts/login', and when requesting this URL
the function view login will be executed. The third argument for the path function is a
dictionary with some options, and the template_name specifies the template that will be
rendered on the page when browsing to the underlying URL. We also define the
authetication_form with the AuthenticationForm value that we just created. Lastly,
we set the keyword argument name to login; naming the URL is very helpful when we
need to create a link for this URL and also improves maintainability, because changes in the
URL itself won't require changes in the templates as the templates reference the URL by its
name.

Now that the login is in place, let's add the logout URL:

  path(r'accounts/logout/', logout, {
      'next_page': '/'
  }, name='logout'),

Similar to the login URL, in the logout URL we use the path function passing first the URL
itself (accounts/logout); we pass the function logout that we imported from the Django
built-in authentication views, and, as an option, we set next_page to /. This means that
when the user logs out, we redirect the user to the application's root page. Lastly, we also
name the URL as logout.

Great. Now it is time to add the templates. The first template that we are going to add is the
login template. Create a file named login.html at gamestore/templates/ with the
following contents:

{% extends 'base.html' %}

{% block 'content' %}

<div>
  <form action="." method="post" class="form-signin">

    {% csrf_token %}

    <h2 class="form-signin-heading">Login</h2>
    <label for="inputUsername" class="sr-only">User name</label>



Online Video Game Store with Django Chapter 7

[ 296 ]

    {{form.username}}
    <label for="inputPassword" class="sr-only">Password</label>
    {{form.password}}
    <input class="btn btn-lg btn-primary btn-block"
        type="Submit" value="Login">
  </form>
  <div class='signin-errors-container'>
    {% if form.non_field_errors %}
    <ul class='form-errors'>
      {% for error in form.non_field_errors %}
        <li>{{ error }}</li>
      {% endfor %}
    </ul>
    {% endif %}
  </div>
</div>

{% endblock %}

In this template, we also extend the base template, and we add the content of the login
template with the content block that has been defined in the base template.

First, we create a form tag and set the method to POST. Then, we add the csrf_token tag.
The reason we add this tag is to prevent cross-site request attacks, where a malicious site
performs a request to our site on behalf of the current logged in user.

If you want to know more about this type of attack, you can visit the site
at https:/ / www. owasp. org/ index. php/ Cross- Site_ Request_ Forgery_
(CSRF).

After the Cross-Site Request Forgery tag, we add the two fields we need: username and
password.

Then we have the following markup:

  <div class='signin-errors-container'>
    {% if form.non_field_errors %}
    <ul class='form-errors'>
      {% for error in form.non_field_errors %}
      <li>{{ error }}</li>
      {% endfor %}
    </ul>
    {% endif %}
  </div>

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)


Online Video Game Store with Django Chapter 7

[ 297 ]

This is where we are going to display possible authentication errors. The forms object has a
property called non_field_error, which contains errors that are not related to field
validation. For example, if your user types the wrong username or password, then the error
will be added the to non_field_error list.
We create a ul element (unordered list) and loop through the non_field_errors list
adding li elements (list items) with the error text.

We have now the login in place, and we need to just include it to the page—more
specifically, to the base.html template. But, first, we need to create a little partial template
that will display the login and logout links on the page. Go ahead and add a file called
_loginpartial.html to the gamestore/templates directory that has the following
contents:

  {% if user.is_authenticated %}
  <form id="logoutForm" action="{% url 'logout' %}" method="post"
       class="navbar-right">
      {% csrf_token %}
    <ul class="nav navbar-nav navbar-right">
      <li><span class="navbar-brand">Logged as:
            {{ user.username }}</span></li>
      <li><a href="javascript:document.getElementById('
           logoutForm').submit()">Log off</a></li>
    </ul>

  </form>

  {% else %}

  <ul class="nav navbar-nav navbar-right">
      <li><a href="{% url 'login' %}">Log in</a></li>
  </ul>

  {% endif %}

This partial template will render two different contents depending on whether the user is
authenticated or not. If the user is authenticated, it will render the logout form. Note that
the action of the form makes use of the named URL; we don't set it to /accounts/logout
but to {% url 'logout' %}. Django's URL tag will replace the URL name with the URL.
Again, we need to add the csrf_token tag to prevent Cross-Site Request Forgery attacks,
and, finally, we define an unordered list with two items; the first item will display the text
Logged as: and the user's username, and the second item on the list will show the logout
button.



Online Video Game Store with Django Chapter 7

[ 298 ]

Note that we added an anchor tag inside of the list item element, and that the href
property has some JavaScript code in it. That code is pretty simple; it uses the function
getElementById to get the form and then call the form's submit function to submit to the
server the request to /accounts/logout.

This is just a preference for implementation; you could easily have skipped this JavaScript
code and added a submit button instead. It would have the same effect.

In case the user is not authenticated, we only show the login link. The login link also uses
the URL tag that will replace the name login with the URL.

Great! Let's add the login partial template to the base template. Open the file base.html at
gamestore/templates, and locate the unordered list, shown as follows:

  <ul class="nav navbar-nav">
    <li>
      <a href="/">
        <i class="fa fa-home" aria-hidden="true"></i> HOME
      </a>
    </li>
  </ul>

We are going to add the _loginpartial.html template using the include tag:

  {% include '_loginpartial.html' %}

The include tag will inject the content of the _loginpartial.html template in this
position in the markup.

The final touch here is to add some styling, so the login page looks nice like the rest of the
application. Open the file site.css in the gamestore/static/styles directory, and 
include the following contents:

    /* Signin page */
    /* Styling extracted from http://getbootstrap.com/examples/signin/
    */

    .form-signin {
        max-width: 330px;
        padding: 15px;
        margin: 0 auto;
    }
    .form-signin input[type="email"] {
        margin-bottom: -1px;
    }



Online Video Game Store with Django Chapter 7

[ 299 ]

    .form-signin input[type="email"] border-top {
        left-radius: 0;
       right-radius: 0;
    }
    .form-signin input[type="password"] {
        margin-bottom: 10px;
    }

    .form-signin input[type="password"] border-top {
        left-radius: 0;
        right-radius: 0;
    }

    .form-signin .form-signin-heading {
      margin-bottom: 10px;
    }

    .form-signin .checkbox {
      font-weight: normal;
    }

    .form-signin .form-control {
      position: relative;
      height: auto;
      -webkit-box-sizing: border-box;
      -moz-box-sizing: border-box;
      box-sizing: border-box;
      padding: 10px;
      font-size: 16px;
    }

    .form-signin .form-control:focus {
      z-index: 2;
    }

    .signin-errors-container .form-errors {
      padding: 0;
      display: flex;
      flex-direction: column;
      list-style: none;
      align-items: center;
      color: red;
    }

    .signin-errors-container .form-errors li {
      max-width: 350px;
     }



Online Video Game Store with Django Chapter 7

[ 300 ]

Testing the login/logout forms
Before we try this out, let's open the file settings.py in the gamestore/gamestore
directory, and at the end of the file add the following setting:

LOGIN_REDIRECT_URL = '/'

This will tell Django that, after the login, the user will be redirected to "/".

Now we are ready to test the login and logout functionality, although you probably don't
have any users in the database. However, we created the superuser while we were setting
up our Django project, so go ahead and try logging in with that user. Run the command
runserver to start the Django development server again:

python manage.py runserver

Browse to http://localhost:8000 and note that you now have the login link in the top
right corner of the page:



Online Video Game Store with Django Chapter 7

[ 301 ]

If you click that, you will be redirected to /accounts/login, and the login page template
that we created will be rendered:



Online Video Game Store with Django Chapter 7

[ 302 ]

First, try typing the wrong password or username so we can verify that the error message is
being displayed correctly:

Great! It works!

Now log in with the superuser, and if everything works fine, you should be redirected to
the application root's URL. It says, Logged as with your username, and right after it there is
a logout link. Give it a go, and click on the link Log off:



Online Video Game Store with Django Chapter 7

[ 303 ]

Creating new users
Now that we are able to log in and log out of our application, we need to add another page
so the users can create accounts on our application and place orders.

There are some rules that we want to enforce when creating a new account. The rules are:

The username field is required, and it has to be unique to our application
The email field is required, and it has to be unique to our application
The last and first name are required
Both password fields are required, and they must match

If any of these rules are not followed, we will not create the user account, and an error 
should be returned to the user.

With that said, let's add a small helper function that will verify whether a field has a value
that already exists in the database. Open the file forms.py in gamestore/main. First, we
need to import the User model:

from django.contrib.auth.models import User

Then, add the validate_unique_user function:

def validate_unique_user(error_message, **criteria):
    existent_user = User.objects.filter(**criteria)

    if existent_user:
        raise forms.ValidationError(error_message)



Online Video Game Store with Django Chapter 7

[ 304 ]

This function gets an error message and keyword arguments that will be used as a criterion
to search for items matching a specific value. We create a variable called existent_user,
and filter the user models passing the criteria. If the value of the variable existent_user is
different to None, it means that we have found a user who matches our criterion. We then
raise a ValidationError exception with the error message that we passed to the function.

Nice. Now we can start adding a form that will contain all the fields that we want the user
to fill out when creating an account. In the same file, forms.py in
the gamestore/main directory, add the following class:

class SignupForm(forms.Form):
    username = forms.CharField(
       max_length=10,
       widget=forms.TextInput({
           'class': 'form-control',
           'placeholder': 'First name'
       })
    )

    first_name = forms.CharField(
        max_length=100,
        widget=forms.TextInput({
            'class': 'form-control',
            'placeholder': 'First name'
        })
    )

    last_name = forms.CharField(
        max_length=200,
        widget=forms.TextInput({
            'class': 'form-control',
            'placeholder': 'Last name'
        })
    )

    email = forms.CharField(
        max_length=200,
        widget=forms.TextInput({
            'class': 'form-control',
            'placeholder': 'Email'
        })
    )

    password = forms.CharField(
        min_length=6,
        max_length=10,



Online Video Game Store with Django Chapter 7

[ 305 ]

        widget=forms.PasswordInput({
           'class': 'form-control',
           'placeholder': 'Password'
        })
    )

    repeat_password = forms.CharField(
        min_length=6,
        max_length=10,
        widget=forms.PasswordInput({
            'class': 'form-control',
            'placeholder': 'Repeat password'
        })
    )

So, we start by creating a class called SignupForm that will inherit from Form, we define a
property for every field that is going to be necessary for creating a new account, and we add
a username, a first and a last name, an email, and then two password fields. Note that in the
password fields we set the min and max length for a password to 6 and 10, respectively.

Continuing in the same class, SignupForm, let's add a method called clean_username:

  def clean_username(self):
      username = self.cleaned_data['username']

      validate_unique_user(
         error_message='* Username already in use',
          username=username)

      return username

The prefix clean in the name of this method will make Django automatically call this
method when parsing the posted data for the field; in this case, it will execute when parsing
the field username.

So, we get the username value, and then call the method validate_unique_user, passing
a default error message and a keyword argument username that will be used as a filter
criterion.

Another field that we need to verify for uniqueness is the email ID, so let's implement the
clean_email method, as follows:

  def clean_email(self):
      email = self.cleaned_data['email']

      validate_unique_user(



Online Video Game Store with Django Chapter 7

[ 306 ]

         error_message='* Email already in use',
         email=email)

      return email

It is basically the same as the clean username. First, we get the email from the request and
pass it to the validate_unique_user function. The first argument is the error message,
and the second argument is the email that will be used as the filter criteria.

Another rule that we defined for our create account page is that the password and (repeat)
password fields must match, otherwise an error will be displayed to the user. So let's add
the same and implement the clean method, but this time we want to validate the
repeat_password field and not password. The reason for that is that if we implement a
clean_password function, at that point repeat_password won't be available in the
cleaned_data dictionary yet, because the data is parsed in the same order as they were
defined in the class. So, to ensure that we will have both values we implement
clean_repeat_password:

    def clean_repeat_password(self):
      password1 = self.cleaned_data['password']
      password2 = self.cleaned_data['repeat_password']

      if password1 != password2:
         raise forms.ValidationError('* Passwords did not match')

     return password1

Great. So here we first define two variables; password1, which is the request value for the
password field, and password2, the request value for the field repeat_password. After
that, we just compare if the values are different; if they are, we raise a ValidationError
exception with the error message to inform the user that the password didn't match and the
account will not be created.

Creating the views of the user creation
With the form and validation in place, we can now add the view that will handle the
request to create a new account. Open the file views.py at gamestore/main, and start by
adding some import statements:

from django.views.decorators.csrf import csrf_protect
from .forms import SignupForm
from django.contrib.auth.models import User



Online Video Game Store with Django Chapter 7

[ 307 ]

As we will be receiving data from a POST request, it is a good idea to add Cross-Site
Request Forgery checkings, so we need to import the csrf_protect decorator.

We also import the SignupForm that we just created so we can pass it to the view or use it
to parse the request data. Lastly, we import the User model.

So, let's create the signup function:

@csrf_protect
def signup(request):

    if request.method == 'POST':

        form = SignupForm(request.POST)

        if form.is_valid():
            user = User.objects.create_user(
                username=form.cleaned_data['username'],
                first_name=form.cleaned_data['first_name'],
                last_name=form.cleaned_data['last_name'],
                email=form.cleaned_data['email'],
                password=form.cleaned_data['password']
            )
            user.save()

            return render(request,
           'main/create_account_success.html', {})

    else:
        form = SignupForm()
    return render(request, 'main/signup.html', {'form': form})

We start by decorating the signup function with the csrf_protect decorator. The
function starts by checking whether the request's HTTP method is equal to POST; in that
case, it will create an instance of the SignupForm passing as an argument the POST data.
Then we call the function is_valid() on the form, which will return true if the form is
valid; otherwise it will return  false. If the form is valid, we create a new user and call the
save function, and, finally, we render the create_account_success.html.



Online Video Game Store with Django Chapter 7

[ 308 ]

If the request HTTP method is a GET, the only thing we do is create an instance of
a SignupForm without any argument. After that, we call the render function, passing as a
first argument the request object, then the template that we are going to render, and,
finally, the last argument is the instance of the SignupForm. 

We are going to create both templates referenced in this function in a short while, but, first,
we need to create a new URL in the url.py file at gamestore/main:

path(r'accounts/signup/', views.signup, name='signup'),

This new URL can be added right at the end of the urlpatterns list.

We also need to create the templates. We start with the signup template; create a file called
signup.html at gamestore/main/templates/main with the following contents:

{% extends "base.html" %}

{% block "content" %}

    <div class="account-details-container">
        <h1>Signup</h1>
        <form action="{% url 'signup' %}" method="POST">
          {% csrf_token %}
          {{ form }}
          <button class="btn btn-primary">Save</button>
        </form>
    </div>

{% endblock %}

This template is again very similar to the template that we created before, in that it extends
the base template and injects some data into the base template's content block. We add an
h1 tag with the header text and a form with the action set to {% url 'signup' %}, which
the url tag will change to /accounts/signup, and we set the method to POST.

As is usual in forms, we use the csrf_token tag that will work together with the
@csrf_protect decorator in the signup function in the views file to protect against
Cross-Site Request Forgery.



Online Video Game Store with Django Chapter 7

[ 309 ]

Then we just call {{ form }}, which will render the entire form in this area, and, right
after the fields, we add a button to submit the form.

Lastly, we create a template for showing that the account has been successfully created.
Add a file called create_account_success.html to the
gamestore/main/templates/main directory with the following contents:

{% extends 'base.html' %}

{% block 'content' %}

    <div class='create-account-msg-container'>
        <div class='circle'>
          <i class="fa fa-thumbs-o-up" aria-hidden="true"></i>
        </div>
        <h3>Your account have been successfully created!</h3>
        <a href="{% url 'login' %}">Click here to login</a>
    </div>

{% endblock %}

Great! To make it look great, we are going to include some CSS code in the file site.css in
the gamestore/static directory. Add the content shown as follows, at the end of the file:

/* Account created page */
.create-account-msg-container {
    display: flex;
    flex-direction: column;
    align-items: center;
    margin-top: 100px;
}

.create-account-msg-container .circle {
    width: 200px;
    height: 200px;
    border: solid 3px;
    display: flex;
    flex-direction: column;
    align-items: center;
    padding-top: 30px;
    border-radius: 50%;
}

.create-account-msg-container .fa-thumbs-o-up {
    font-size: 9em;
}



Online Video Game Store with Django Chapter 7

[ 310 ]

.create-account-msg-container a {
    font-size: 1.5em;
}

/* Sign up page */

.account-details-container #id_password,

.account-details-container #id_repeat_password {
    width:200px;
}

.account-details-container {
    max-width: 400px;
    padding: 15px;
    margin: 0 auto;
}

.account-details-container .btn.btn-primary {
    margin-top:20px;
}

.account-details-container label {
    margin-top: 20px;
}

.account-details-container .errorlist {
    padding-left: 10px;
    display: inline-block;
    list-style: none;
    color: red;
}



Online Video Game Store with Django Chapter 7

[ 311 ]

That's all for the create a user page; let's give it a go! Start the Django developer server
again, and browse to http://localhost:8000/accounts/signup, where you should
see the create user form, as follows:



Online Video Game Store with Django Chapter 7

[ 312 ]

After you fill up all the fields, you should be redirected to a confirmation page, like this:

Perform some tests yourself! Try adding invalid passwords, just to verify that the
validations we implemented are working properly.

Creating the game data model
Alright, we can log into our application, we can create new users, and we also added the
front page template, which is currently blank, but we are going to fix that. We have got to
the core of this chapter; we are going to start adding models that will represent the items
that we can buy at the store.



Online Video Game Store with Django Chapter 7

[ 313 ]

The requirements for the game's model that we are going to have on the site is:

The store is going to sell games for different gaming platforms
There will be a section on the first page that will list highlighted games
The users of the store should be able to go to the game's details page and see
more information about the game
The games should be discoverable by different criteria, for example, developer,
publisher, release date, and so on
The administrator of the store should be able to change product details using the
Django admin UI.
The product's picture can be changed, and if not found, it should show a default
image

With that said, let's start adding our first model class. Open the file models.py in
gamestore/main/, and add the following code:

class GamePlatform(models.Model):
    name = models.CharField(max_length=100)

    def __str__(self):
        return self.name

Here, we have added the class GamePlatform, and it will represent the gaming platforms
that will be available at the store. The class is super simple; we just create a class inheriting
from the Model class, and we define just one property called name. The name property is
defined as a CharField of a maximum length of 100 characters. Django provides a large
variety of data types; you can see the complete list at https:/ /docs. djangoproject. com/
en/2.0/ref/models/ fields/ .

Then we override the method __str__. This method will dictate how an instance of
GamePlatform will be displayed when being printed out. The reason that I am overriding
this method is that I want to display the name of GamePlatform in the list
of GamePlatform in the Django admin UI.

The second model class that we are going to add here is the Game model. In the same file,
add the following code:

class Game(models.Model):
    class Meta:
        ordering = ['-promoted', 'name']

    name = models.CharField(max_length=100)

https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/
https://docs.djangoproject.com/en/2.0/ref/models/fields/


Online Video Game Store with Django Chapter 7

[ 314 ]

    release_year = models.IntegerField(null=True)

    developer = models.CharField(max_length=100)

    published_by = models.CharField(max_length=100)

    image = models.ImageField(
        upload_to='images/',
        default='images/placeholder.png',
        max_length=100
    )

    gameplatform = models.ForeignKey(GamePlatform,
                                     null=False,
                                     on_delete=models.CASCADE)

    highlighted = models.BooleanField(default=False)

Like the previous model class that we created, the Game class also inherits from Model and
we define all the fields that we need according to the specifications. There are some things
to note here that are new; the property release_year is defined as an integer field, and we
set the property null=True, which means that this field will not be required.

Another property that used a different type is the image property, which is defined as an
ImageField, and that will allow us to provide the application's administrators the
possibility of changing the game's image. This type inherits from FileField, and in the
Django Administration UI the field will be rendered as a file picker. The ImageFile
argument upload_to specifies where the image will be stored, and the default is the
default image that will be rendered if the game does not have an image. The last argument
that we specify here is max_length, which is the image path's maximum length.

Then, we define a ForeignKey. If you don't know what it is, a foreign key is basically a file
that identifies a row in another table. In our case, here we want the game platform to be
associated with multiple games. There are a few keyword arguments that we are passing to
the definition of the primary key; first we pass the foreign key type, the null argument is
set to False, meaning that the field is required, and, lastly we set the deletion rule to
CASCADE, so if the application's admin deletes a gaming platform, that operation will
cascade and delete all the games associated with that specific gaming platform.

The last property that we define is the highlighted property. Do you remember that one
of the requirements was to be able to highlight some products and also have them in a more
visible area so the users can find them easily? This property does just that. It is a property
type Boolean that has the default value set to False.



Online Video Game Store with Django Chapter 7

[ 315 ]

Another detail, that I was saving for last is this: have you noticed that we have a class
named Meta inside the model class? This is the way that we can add meta information
about the model. In this example we are setting a property called ordering with the value
as an array of strings, where each item represents a property of the Game model, so we have
first -highlighted - the dash sign in front of the property name means descending
order—and then we also have the name, which will appear in ascending order.

Let's continue adding more code to the class:

    objects = GameManager()

    def __str__(self):
      return f'{self.gameplatform.name} - {self.name}'

Here, we have two things. First, we assign an instance of a class called GameManager, which
I will go into in more detail in a short while, and we also define the special method
__str__, which defines that when printing an instance of the Game object, it will display
the gaming platform and a symbol dash, followed by the name of the name itself.

Before the definition of the Gameclass, let's add another class called GameManager:

class GameManager(models.Manager):

    def get_highlighted(self):
        return self.filter(highlighted=True)

    def get_not_highlighted(self):
        return self.filter(highlighted=False)

    def get_by_platform(self, platform):
        return self.filter(gameplatform__name__iexact=platform)

Before we get into the details of this implementation, I just want to say a few words about
Manager objects in Django. The Manager is the interface between the database and the
model classes in Django. By default, every model class has a Manager, and it is accessed
through the property objects, so why define our own manager? The reason that I
implemented a Manager for this models class is that I wanted to leave all the code
concerning database operations within the model, as it makes the code cleaner and more
testable.

So, here I defined another class, GameManager, that inherits from Manager, and so far we
defined three methods—get_highlighted, which get all games that have the highlighted
flag set to True, get_not_highlighted, which gets all games that highlighted flag is set to
False, and get_by_platform, which gets all the games given a gaming platform.



Online Video Game Store with Django Chapter 7

[ 316 ]

About the two first methods in this class: I could have just used the filter function and
passed an argument where highlighted equals True or False, but, as I mentioned
previously, it is much cleaner to have all these methods inside the manager.

Now we are ready to create the database. In the terminal, run the following command:

python manage.py makemigrations

This command will create a migration file with the changes that we just implemented in the
model. When the migrations are created, we can run the command migrate and then apply
the changes to the database:

python manage.py migrate

Great! Next up, we are going to create a model to store the game's prices.

Creating the price list data model
Another feature that we want to have in our application is the ability to change the prices of
the products as well as knowing when a price was added and, most importantly, when it
was last updated. To achieve this, we are going to create another model class, called
PriceList, in the models.py file in the gamestore/main/ directory, using the following
code:

class PriceList(models.Model):
    added_at = models.DateTimeField(auto_now_add=True)

    last_updated = models.DateTimeField(auto_now=True)

    price_per_unit = models.DecimalField(max_digits=9,
                                         decimal_places=2,
                                         default=0)

    game = models.OneToOneField(
        Game,
        on_delete=models.CASCADE,
        primary_key=True)

    def __str__(self):
        return self.game.name



Online Video Game Store with Django Chapter 7

[ 317 ]

As you can see here, you have two datetime fields. The first one is added_at, and it has a
property auto_now_add equals True. What it does is get Django to automatically add the
current date when we add this price to the table. The last_update field is defined with
another argument, the auto_now equals True; this tells Django to set the current date every
time an update occurs.

Then, we have a field for the price called price_per_unit, which is defined as a
DecimalField with a maximum of 9 digits and 2 decimal places. This field is not required,
and it will always default to 0.

Next, we create a OneToOneField to create a link between the PriceList and the Game
object. We define that when a game is deleted, the related row in the PriceList table will
also be removed, and we define this field as the primary key.

Finally, we override the __str__ method so that it returns the game's name. This will be
helpful when updating prices using the Django admin UI.

Now we can make the migration files again:

python manage.py makemigrations

Apply the changes with the following command:

python manage.py migrate

Perfect! Now we are ready to start adding the views and the templates to display our games
on the page.

Creating the game list and details page
After creating the model for the games and the prices, we have reached the fun part of this
section, which is to create the views and templates that will display the games on the page.
Let's get started!



Online Video Game Store with Django Chapter 7

[ 318 ]

So, we have created a template called index.html in main/templates/main, but we are
not displaying anything on it. To make that page more interesting, we are going to add two
things:

A section on the top of the page that will display the games that we want to1.
highlight. It could be a new game that arrived at the store, a very popular game,
or some game that has a good price for the moment.
Following the section with the highlighted games, we are going to list all the2.
other games.

The first template that we are going to add is a partial view that will be used to list games.
This partial view will be shared to all the templates that we want to display a list of games.
This partial view will receive two arguments: gameslist and highlight_games. Let's go
ahead and add a file called games-list.html at gamestore/main/templates/main/
with the following contents:

{% load staticfiles %}
{% load humanize %}

<div class='game-container'>
    {% for game in gameslist %}
    {% if game.highlighted and highlight_games %}
      <div class='item-box highlighted'>
    {% else %}
      <div class='item-box'>
    {% endif %}
      <div class='item-image'>
      <img src="{% static game.image.url %}"></img>
    </div>
      <div class='item-info'>
        <h3>{{game.name}}</h3>
        <p>Release year: {{game.release_year}}</p>
        <p>Developer: {{game.developer}}</p>
        <p>Publisher: {{game.published_by}}</p>
        {% if game.pricelist.price_per_unit %}
          <p class='price'>
            Price:
          ${{game.pricelist.price_per_unit|floatformat:2|intcomma}}
          </p>
        {% else %}
        <p class='price'>Price: Not available</p>
        {% endif %}
      </div>
     <a href="/cart/add/{{game.id}}" class="add-to-cart btn



Online Video Game Store with Django Chapter 7

[ 319 ]

        btn-primary">
       <i class="fa fa-shopping-cart" aria-hidden="true"></i>
       Add to cart
     </a>
   </div>
   {% endfor %}
</div>

One thing to note here is that we added at the top of the page {% load humanize %}; this
is a set of template filters that are built into the Django framework, which we are going to
use to format the game price properly. To make use of these filters we need to edit the
settings.py file in the gamestore/gamestore directory and add
django.contrib.humanize to the INSTALLED_APPS setting.

This code will create a container with some boxes containing the game image, details, and
an add-to-cart button, similar to the following:

Now we want to modify the index.html at gamestore/main/templates/main. We can
replace the whole content of the index.html file with the code, shown as follows:

{% extends 'base.html' %}

{% block 'content' %}
  {% if highlighted_games_list %}
    <div class='panel panel-success'>
      <div class='panel-heading'>
        <h2 class='panel-title'><i class="fa fa-gamepad"
        aria-hidden="true"></i>Highlighted games</h2>
      </div>
      <div class='panel-body'>
        {% include 'main/games-list.html' with
         gameslist=highlighted_games_list highlight_games=False%}



Online Video Game Store with Django Chapter 7

[ 320 ]

        {% if show_more_link_highlighted %}
        <p>
          <a href='/games-list/highlighted/'>See more items</a>
        </p>
        {% endif %}
      </div>
    </div>
  {% endif %}

  {% if games_list %}
    {% include 'main/games-list.html' with gameslist=games_list
     highlight_games=False%}
    {% if show_more_link_games %}
      <p>
        <a href='/games-list/all/'>See all items</a>
      </p>
    {% endif %}
  {% endif %}

{% endblock %}

Great! The interesting code is:

   {% include 'main/games-list.html' with
     gameslist=highlighted_games_list
       highlight_games=False%}

As you can see, we are including the partial view and passing two parameters: gameslist
and highlight_games. The gameslist is obviously a list of games that we want the
partial view to render, while highlight_games will be used when we want to show the
promoted games with a different color so they can be easily identified. In the index page,
the highlight_games parameter is not used, but when we create a view to list all the
games regardless of the fact that it is promoted or not, it may be interesting to change the
color of the promoted ones.

Below the promoted games section, we have a section with a list of games that are not
promoted, which also makes use of the partial view games-list.html.



Online Video Game Store with Django Chapter 7

[ 321 ]

The last touch on the frontend side is to include the related CSS code, so let's edit the file
site.css at gamestore/static/styles/ and add the following code:

.game-container {
    margin-top: 10px;
    display:flex;
    flex-direction: row;
    flex-wrap: wrap;
}

.game-container .item-box {
    flex-grow: 0;
    align-self: auto;
    width:339px;
    margin: 0px 10px 20px 10px;
    border: 1px solid #aba5a5;
    padding: 10px;
    background-color: #F0F0F0;
}

.game-container .item-box .add-to-cart {
    margin-top: 15px;
    float: right;
}

.game-container .item-box.highlighted {
    background-color:#d7e7f5;
}

.game-container .item-box .item-image {
    float: left;
}

.game-container .item-box .item-info {
    float: left;
    margin-left: 15px;
    width:100%;
    max-width:170px;
}

.game-container .item-box .item-info p {
    margin: 0 0 3px;
}

.game-container .item-box .item-info p.price {
    font-weight: bold;
    margin-top: 20px;



Online Video Game Store with Django Chapter 7

[ 322 ]

    text-transform: uppercase;
    font-size: 0.9em;
}

.game-container .item-box .item-info h3 {
    max-width: 150px;
    word-wrap: break-word;
    margin: 0px 0px 10px 0px;
}

Now we need to modify the index view, so edit the views.py file at gamestore/main/
and perform these changes in the index function:

def index(request):
    max_highlighted_games = 3
    max_game_list = 9

    highlighted_games_list = Game.objects.get_highlighted()
    games_list = Game.objects.get_not_highlighted()

    show_more_link_promoted = highlighted_games_list.count() >
    max_highlighted_games
    show_more_link_games = games_list.count() > max_game_list

    context = {
        'highlighted_games_list':
         highlighted_games_list[:max_highlighted_games],
        'games_list': games_list[:max_game_list],
        'show_more_link_games': show_more_link_games,
        'show_more_link_promoted': show_more_link_promoted
    }

    return render(request, 'main/index.html', context)

Here, we first define how many items of each category of games we want to show; for
promoted games, it will be three games, and the non-promoted category will show a
maximum of nine games.

Then, we fetch the promoted and non-promoted games, and we create two
variables, show_more_link_promoted and show_more_link_games, which will be set to
True in case there are more games in the database than the maximum number we defined
previously. 



Online Video Game Store with Django Chapter 7

[ 323 ]

We create a context variable that will contain all the data that we want to render in the
template, and, lastly, we call the render function and pass the request to the template we
want to render, along with the context.

Because we make use of the Game model, we have to import it:

from .models import Game

Now we are ready to see the results on the page, but, first, we need to create some games.
To do that, we first need to register the models in the admin. To do that, edit the admin.py
file and include the following code:

    from django.contrib import admin

    from .models import GamePlatform
    from .models import Game
    from .models import PriceList

    admin.autodiscover()

    admin.site.register(GamePlatform)
    admin.site.register(Game)
    admin.site.register(PriceList)

Registering the models within the Django admin site will allow us to add, edit, and remove
games, games platforms, and items in the price list. Because we will be adding images to
our games, we need to configure the location where Django should save the images that we
upload through the administration site. So, let's go ahead and open the file settings.py in
the gamestore/gamestore directory, and just below the STATIC_DIRS setting, add this
line:

MEDIA_ROOT = os.path.join(BASE_DIR, 'static'</span>)

Now, start the site:

python manage.py runserver



Online Video Game Store with Django Chapter 7

[ 324 ]

Browse to http://localhost:8000/admin, and log in as the superuser account that we
created. You should see the models listed on the page:

If you click first in Game platforms, you will see an empty list. Click on the button ADD on
the Game platforms row on the top right-hand side of the page, and the following form will
be displayed:

Just type any name you like, and click on the SAVE button to save your changes.

Before we add the games, we need to find a default image and place it at
gamestore/static/images/. The image should be named placeholder.png.

The layout that we build will work better with images that are of the size
130x180. To make it simpler, when I am creating prototypes, and I don't
want to spend too much time looking for the perfect image, I go to the
site https:/ / placeholder. com/ . Here, you can build a placeholder image
of any size you want. To get the correct size for our application you can go
directly to http:/ / via. placeholder. com/130x180. 

https://placeholder.com/
https://placeholder.com/
https://placeholder.com/
https://placeholder.com/
https://placeholder.com/
https://placeholder.com/
https://placeholder.com/
https://placeholder.com/
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180
http://via.placeholder.com/130x180


Online Video Game Store with Django Chapter 7

[ 325 ]

When you have the default image in place, you can start adding games the same way you
added the game platforms and just repeat the process multiple times to add a few games
that are set as promoted as well.

After adding the games, and going to the site again, you should see the list of games on the
index page, as follows:

On my project, I added four promoted games. Notice that because we only show three
promoted games on the first page, we render the link See more items.



Online Video Game Store with Django Chapter 7

[ 326 ]

Adding list games views
As we are not displaying all the items on the first page, we need to build pages that will
display all the items if the user clicks on See more items link. This should be fairly simple,
as we already have a partial view that lists the games for us.

Let's create two more URLs in the url.py file of the main app, and let's add these two to
the urlpatterns list:

    path(r'games-list/highlighted/', views.show_highlighted_games),
    path(r'games-list/all/', views.show_all_games),

Perfect! Now we need to add one template to list all the games. Create a file called
all_games.html at gamestore/main/templates/main with the following contents:

{% extends 'base.html' %}

{% block 'content' %}

 <h2>Highlighted games</h2>
 <hr/>

 {% if games %}
   {% include 'main/games-list.html' with gameslist=games
        highlight_promoted=False%}
   {% else %}
   <div class='empty-game-list'>
   <h3>There's no promoted games available at the moment</h3>
  </div>
 {% endif %}

 {% endblock %}



Online Video Game Store with Django Chapter 7

[ 327 ]

Add another file in the same folder called highlighted.html:

{% extends 'base.html' %}

{% block 'content' %}

<h2>All games</h2>
<hr/>

{% if games %}
  {% include 'main/games-list.html' with gameslist=games
    highlight_games=True%}
  {% else %}
  <div class='empty-game-list'>
    <h3>There's no promoted games available at the moment</h3>
  </div>
{% endif %}

{% endblock %}

There is nothing here that we haven't seen before. This template will receive a list of games,
and it will pass it down to the games-list.html partial view that will do all the work of
rendering the games for us. There is an if statement here that checks if there are games on
the list. If the list is empty, it will display a message that there are no games available at the
moment. Otherwise, it will render the content.

The last thing now is to add the views. Open the views.py file at gamestore/main/, and
add the following two functions:

def show_all_games(request):
    games = Game.objects.all()

    context = {'games': games}

    return render(request, 'main/all_games.html', context)

def show_highlighted_games(request):
    games = Game.objects.get_highlighted()

    context = {'games': games}

    return render(request, 'main/highlighted.html', context)

These functions are very similar; one gets a list of all games and the other one gets a list of
only promoted games



Online Video Game Store with Django Chapter 7

[ 328 ]

Let's open the application again. As we have more promoted items in the database, let's
click on the link See more items in the Highlighted games section of the page. You should
land on the following page:

Perfect! It worked just as expected.

Next up, we are going to add functionality to the buttons so we can add those items to the
cart.

Creating the shopping cart model
It seems like now we have an application up and running, we can display our games, but
there's a big issue here. Can you guess what? Okay, this question wasn't so hard, I gave the
answer for that in the title of the section. Anyway, our users cannot buy the games—we
need to implement a shopping cart so we can start making our users happy!



Online Video Game Store with Django Chapter 7

[ 329 ]

Now, there are many ways you can implement a shopping cart on an application, but we
are going to do it by simply saving the cart items on the database instead of doing an
implementation based in the user session.

The requirements for the shopping cart are as follows:

The users can add as many items they wish
The users should be able to change the items in the shopping cart; for example,
they should be able to change the quantity of an item
Removal of items should be possible
There should be an option to empty the shopping cart
All the data should be validated
If the user owning that shopping cart is removed, the shopping cart and its items
should also be removed

With that said, open the file models.py in the gamestore/main directory, and let's add
our first class:

class ShoppingCartManager(models.Manager):

    def get_by_id(self, id):
        return self.get(pk=id)

    def get_by_user(self, user):
        return self.get(user_id=user.id)

    def create_cart(self, user):
        new_cart = self.create(user=user)
        return new_cart

The same way we created a custom Manager for the Game object, we are also going to create
a Manager for the ShoppingCart. We are going to add three methods. The first one is
get_by_id, which, as the name says, retrieves a shopping cart, given an ID. The second
method is get_by_user, which receives as a parameter an instance
of django.contrib.auth.models.User, and it will return the cart given a user instance.
The last method is create_cart; this method will be called when the user creates an
account



Online Video Game Store with Django Chapter 7

[ 330 ]

Now that we have the manager with the methods that we need, let's add the
ShoppingCart class:

class ShoppingCart(models.Model):
    user = models.ForeignKey(User,
                             null=False,
                             on_delete=models.CASCADE)

    objects = ShoppingCartManager()

    def __str__(self):
        return f'{self.user.username}\'s shopping cart'

This class is super simple. As always, we inherit from Model, and we define one foreign key
for the type User. This foreign key is required, and if the user is deleted it will also delete
the shopping cart.
After the foreign key, we assign our custom Manager to the object's property, and we also
implement the special method __str__ so the shopping carts are displayed in a nicer way
in the Django admin UI.

Next, let's add a manager class for the ShoppingCartItem model, as follows:

class ShoppingCartItemManager(models.Manager):

    def get_items(self, cart):
        return self.filter(cart_id=cart.id)

Here, we only define one method, called get_items, which receives a cart object and
returns a list of items for the underlying shopping cart. After the Manager class, we can
create the model:

class ShoppingCartItem(models.Model):
    quantity = models.IntegerField(null=False)

    price_per_unit = models.DecimalField(max_digits=9,
                                         decimal_places=2,
                                         default=0)

    cart = models.ForeignKey(ShoppingCart,
                             null=False,
                             on_delete=models.CASCADE)
    game = models.ForeignKey(Game,
                             null=False,
                             on_delete=models.CASCADE)

    objects = ShoppingCartItemManager()



Online Video Game Store with Django Chapter 7

[ 331 ]

We start by defining two properties: quantity, which is an integer value, and the price per
item, which is defined as a decimal value. We have price_per_item in this model as well,
because when a user adds an item to the shopping cart and if the administrator changes the
price for a product, we don't want that change in the price to be reflected on the items
already added to the cart. The price should be the same price as when the user first added
the product to the cart.

In case the user removes the item entirely and re-adds them, the new price should be
reflected. After those two properties, we define two foreign keys, one for the type
ShoppingCart and another one for Game.

Lastly, we set the ShoppingCartItemManager to the object's property.

We also need to import the User model:

from django.contrib.auth.models import User

Before we try to verify that everything is working, we should create and apply the
migrations. On the terminal, run the following command:

python manage.py makemigrations

As we did before, we need to run the migrate command to apply the migrations to the
database:

python manage.py migrate

Creating the shopping cart form
We now have the models in place. Let's add a new form that will display the cart data on a
page for editing. Open the forms.py file at gamestore/main/, and at the end of the file
add the following code:

    ShoppingCartFormSet = inlineformset_factory(
      ShoppingCart,
      ShoppingCartItem,
      fields=('quantity', 'price_per_unit'),
      extra=0,
      widgets={
          'quantity': forms.TextInput({
             'class': 'form-control quantity',
          }),
          'price_per_unit': forms.HiddenInput()
      }



Online Video Game Store with Django Chapter 7

[ 332 ]

    )

Here, we create an inline formset using the function inlineformset_factory. Inline
formsets are suitable when we want to work with related objects via a foreign key. This is
very convenient in the case we have here; we have a model ShoppingCart that relates to
the ShoppingCartItem.

So, we pass a few arguments to the inlineformset_factory function. First is the parent
model (ShoppingCart), then it's the model (ShoppingCartItems). Because in the
shopping cart we just want to edit the quantities and also remove items from the cart, we
add a tuple containing the fields from the ShoppingCartItem that we want to render on
the page—in this case, the quantity and price_per_unit. The next argument, extra,
specifies whether the form should render any empty extra rows on the form; in our case, we
don't need that, as we don't want to add extra items in the shopping cart to the shopping
cart view.

In the last argument, widgets, we can specify how the fields should be rendered in the
form. The quantity field will be rendered as a text input, and we don't want
price_per_unit to be visible, so we define it as a hidden input so it is sent back to the
server when we submit the form to the server.

Lastly, in the same file, let's add some necessary imports:

from django.forms import inlineformset_factory
from .models import ShoppingCartItem
from .models import ShoppingCart

Open the views.py file, and let's add a class-based view. First, we need to add some
import statements:

from django.views.generic.edit import UpdateView
from django.http import HttpResponseRedirect
from django.urls import reverse_lazy
from django.db.models import Sum, F, DecimalField

from .models import ShoppingCart
from .models import ShoppingCartItem
from .forms import ShoppingCartFormSet

Then, we can create the class, as follows:

class ShoppingCartEditView(UpdateView):
    model = ShoppingCart
    form_class = ShoppingCartFormSet
    template_name = 'main/cart.html'



Online Video Game Store with Django Chapter 7

[ 333 ]

    def get_context_data(self, **kwargs):
        context = super().get_context_data(**kwargs)

        items = ShoppingCartItem.objects.get_items(self.object)

        context['is_cart_empty'] = (items.count() == 0)

        order = items.aggregate(
            total_order=Sum(F('price_per_unit') * F('quantity'),
                            output_field=DecimalField())
        )

        context['total_order'] = order['total_order']

        return context

    def get_object(self):
        try:
            return
ShoppingCart.objects.get_by_user(self.request.user)
        except ShoppingCart.DoesNotExist:
            new_cart =
ShoppingCart.objects.create_cart(self.request.user)
            new_cart.save()
            return new_cart

    def form_valid(self, form):
        form.save()
        return HttpResponseRedirect(reverse_lazy('user-cart'))

This is slightly different than the view that we created so far, as this is a class-based view
that inherits from an UpdateView. In reality, views in Django are callable objects, and when
using classes instead of functions, we can take advantage of inheritance and mixins. In our
case, we use UpdateView because it is a view to display forms that will edit an existing
object.

This class view starts off by defining a few properties, such as the model, which is the
model that we are going to be editing in the form. The form_class is the form that is going
to be used for editing the data. Lastly, we have the template that will be used to render the
form.



Online Video Game Store with Django Chapter 7

[ 334 ]

We override the get_context_data because we include some extra data in the form
context. So, first, we call the get_context_data on the base class so as to build the context,
then we get the list of items of the current cart so we can determine whether the cart is
empty. We set this value to the context item called is_cart_empty, which can be accessed
from the template.

After that, we want to calculate the total value of the items that are currently in the cart. To
do that, we need to first calculate the total price for each item by doing (price * quantity),
and then sum the results. In Django, it is possible to aggregate the values of a QuerySet; we
have already the QuerySet that contains the list of items in a cart, so all we have to do is to
use the aggregate function. In our case, we are passing two arguments to the aggregate
function. First, we get the sum of the field price_per_unit multiplied by the quantity,
and the results will be stored in a property called total_order. The second argument of
the aggregate function defines the output data type, which we want to be a decimal value.

When we get the results of the aggregation, we create a new item in the context dictionary
called total_order and assign the results to it. Finally, we return the context.

We also override the get_object method. In this method, we try to get the shopping cart
for the requesting user. If the shopping cart does not exist, an exception
ShoppingCart.DoesNotExist will be raised. In that case, we create a shopping cart for
the user and return it.

Lastly, we also implement the form_valid method, which only saves the form and
redirects the user back to the cart page.

Creating the shopping cart view
Now it is time to create the shopping cart views. This view will render the form that we just
created, and the users should be able to change the quantities for every item on the cart, as
well as remove items. If the shopping cart is empty, we should show a message saying that
the cart is empty.

Before we add the view, let's go ahead and open the urls.py file in gamestore/main/ and
add the following URL:

 path(r'cart/', views.ShoppingCartEditView.as_view(), name='user-
  cart'),



Online Video Game Store with Django Chapter 7

[ 335 ]

Here, we define a new URL, 'cart/', and, when accessed, it will execute the class-based
view ShoppingCartEditView. We also define a name for the URL for simplicity.

We are going to create a new file called cart.html at
gamestore/main/templates/main, with the contents as follows:

{% extends 'base.html' %}

{% block 'content' %}

{% load humanize %}

<div class='cart-details'>

<h3>{{ shoppingcart}}</h3>

{% if is_cart_empty %}

<h2>Your shopping cart is empty</h2>

{% else %}

<form action='' method='POST'>

  {% csrf_token %}

  {{ form.management_form }}

 <button class='btn btn-success'>
  <i class="fa fa-refresh" aria-hidden="true"></i>
     Updated cart
</button>
  <hr/>
  <table class="table table-striped">
  <thead>
    <tr>
      <th scope="col">Game</th>
      <th scope="col">Quantity</th>
      <th scope="col">Price per unit</th>
      <th scope="col">Options</th>
    </tr>
  </thead>
  <tbody>
   {% for item_form in form %}
   <tr>
     <td>{{item_form.instance.game.name}}</td>
     <td class=



Online Video Game Store with Django Chapter 7

[ 336 ]

       "{% if item_form.quantity.errors %}has-errors{% endif%}">
     {{item_form.quantity}}
   </td>
   <td>${{item_form.instance.price_per_unit|
            floatformat:2|intcomma}}</td>
   <td>{{item_form.DELETE}} Remove item</td>
   {% for hidden in item_form.hidden_fields %}
     {{ hidden }}
   {% endfor %}
  </tr>
  {% endfor %}
  <tbody>
 </table>
 </form>
<hr/>
<div class='footer'>
  <p class='total-value'>Total of your order:
     ${{total_order|floatformat:2|intcomma}}</p>
  <button class='btn btn-primary'>
     <i class="fa fa-check" aria-hidden="true"></i>
        SEND ORDER
  </button>
</div>
  {% endif %}
</div>
{% endblock %}

The template is quite simple; we just loop through the forms and render each one of them.
One thing to note here in that we are loading humanize in the beginning of the template.

humanize is a set of template filters that we can use to format data in the
template.

We use the intcomma filter from humanize to format the sum of all items in the shopping
cart. The intcomma filter will convert an integer or float value to a string and add a comma
every three digits.

You can try it out on the new view. However, the cart will be empty and no data will be
displayed. Next, we are going to add functionality to include items in the cart.



Online Video Game Store with Django Chapter 7

[ 337 ]

Adding items to the cart
We are getting close to finishing up the shopping cart. Now we are going to implement a
view that will include items in the cart.

The first thing we need to do is create a new URL. Open the file url.py in the directory
gamestore/main/, and add this URL to the urlpatterns list:

   path(r'cart/add/<int:game_id>/', views.add_to_cart),

Perfect. In this URL, we can pass the game ID, and it will execute a view called
add_to_cart. Let's add this new view. Open the file views.py in gamestore/main. First,
we add import statements, shown as follows:

from decimal import Decimal
from django.shortcuts import get_object_or_404
from django.contrib import messages
from django.contrib.auth.decorators import login_required

Now, we need a way to know if a specific item has been already added to the cart, so we go
over to the models.py in gametore/main and add a new method to the
ShoppingCartItemManager class:

def get_existing_item(self, cart, game):
    try:
        return self.get(cart_id=cart.id,
                        game_id=game.id)
    except ShoppingCartItem.DoesNotExist:
        return None

get_existing_item searches for a ShoppingCartItem object using as criteria the cart
id and the game id. If the item is not found in the cart, it returns None; otherwise, it will
return the cart item.

Now we add the view to the views.py file:

@login_required
def add_to_cart(request, game_id):
    game = get_object_or_404(Game, pk=game_id)
    cart = ShoppingCart.objects.get_by_user(request.user)

    existing_item =
ShoppingCartItem.objects.get_existing_item(cart,
    game)

    if existing_item is None:



Online Video Game Store with Django Chapter 7

[ 338 ]

        price = (Decimal(0)
            if not hasattr(game, 'pricelist')
            else game.pricelist.price_per_unit)

        new_item = ShoppingCartItem(
            game=game,
            quantity=1,
            price_per_unit=price,
            cart=cart
        )
        new_item.save()
    else:
        existing_item.quantity = F('quantity') + 1
        existing_item.save()

        messages.add_message(
             request,
             messages.INFO,
             f'The game {game.name} has been added to your cart.')

        return HttpResponseRedirect(reverse_lazy('user-cart'))

This function gets a request and the game ID, and we start by getting the game and the
current user's shopping cart. We then pass the cart and the game to the get_existing
function that we just created. If we don't have that specific item in the shopping cart, we
create a new ShoppingCartItem; otherwise, we just update the quantity and save.

We also add a message to inform the user that the item has been added to the shopping
cart.

Lastly, we redirect the user to the shopping cart page.

As a final touch, let's open the site.css file in the gamestore/static/styles and add
the styling to our shopping cart's view:

.cart-details h3 {
    margin-bottom: 40px;
}

.cart-details .table tbody tr td:nth-child(2) {
    width: 10%;
}

.cart-details .table tbody tr td:nth-child(3) {
    width: 25%;
}



Online Video Game Store with Django Chapter 7

[ 339 ]

.cart-details .table tbody tr td:nth-child(4) {
    width: 20%;
}

.has-errors input:focus {
    border-color: red;
    box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px
rgba(255,0,0,1);
    webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px
rgba(255,0,0,1);
}

.has-errors input {
    color: red;
    border-color: red;
}

.cart-details .footer {
    display:flex;
    justify-content: space-between;
}

.cart-details .footer .total-value {
    font-size: 1.4em;
    font-weight: bold;
    margin-left: 10px;
}

Before we try this out, we need to add the link to the cart view on the top menu. Open the
file base.html in gamestore/templates, locate where we do the include of the
_loginpartial.html file, and include the following code right before it:

{% if user.is_authenticated%}
<li>
  <a href="/cart/">
    <i class="fa fa-shopping-cart"
       aria-hidden="true"></i> CART
  </a>
</li>
{% endif %}



Online Video Game Store with Django Chapter 7

[ 340 ]

Now we should be ready to test it out. Go to the first page, and try adding some games to
the cart. You should be redirected to the cart page:

Summary
It has been a long journey, and we have covered a lot of ground in this chapter. In this
chapter, you have seen how easy it is to build an application with Django. The framework
really honors the phrase Framework for perfectionists with deadlines.

You have learned how to create a new Django project and applications, with a short
walkthrough of the boilerplate code that Django generates for us when we start a new
project. We learned how to create models and use migrations to apply changes to the
database.



Online Video Game Store with Django Chapter 7

[ 341 ]

Django forms was also a subject that we covered a lot in this chapter, and you should be
able to create complex forms for your projects.

As a bonus, we learned how to install and use NodeJS Version Manager (NVM) to install
Node.js, so as to install project dependencies using the npm.

In Chapter 5, Building a Web Messenger with Microservices, we are going to extend this
application and create services that will handle the store inventory.



8
Order Microservice

In this chapter, we are going to extend the web application that we implemented in Chapter
7, Online Video Game Store with Django. I don't know if you noticed, but there are a few
important things missing in that project. The first is the ability to submit an order. As of
right now, users can browse products and add items to the shopping cart; however, there's
no way of sending the order and completing the purchase.

Another item that is missing is a page where the users of our application will be able to see
all the orders that have been sent, as well as a history of their orders.

With that said, we are going to create a microservice called order, which will do everything
related to orders made on the site. It will receive orders, update orders, and so on.

In this chapter, you will learn:

The basics of how to create microservices
How to use the Django REST Framework to create RESTful APIs
How to consume the services and integrate them with other applications
How to write tests
How to deploy an application on AWS
How to run our web application with Gunicorn behind the HTTP proxy nginx

So, let's get started!



Order Microservice Chapter 8

[ 343 ]

Setting up the environment
Like all the previous chapters, we are going to start off this chapter by setting up the
environment that we need to develop our services on. Let's start by creating our working
directory:

mkdir microservices && cd microservices

Then, we create our virtual environment with pipenv:

pipenv --python ~/Install/Python3.6/bin/python3.6

If you don't know how to use pipenv, in the section Setting up the
environment in Chapter 4, Exchange Rates and the Currency Conversion
Tool, there is a very good introduction about how to get started with
pipenv.

With the virtual environment created, we need to install the project dependencies. For this
project, we are going to install Django and the Django REST Framework:

pipenv install django djangorestframework requests python-dateutil

The reason that we are using Django and the Django REST Framework instead of a simpler
framework like Flask is that the main idea of this project is to provide a separation of
concerns, creating a microservice that will handle orders made in the online game store that
we developed in the previous chapter. We don't want to only provide APIs to be consumed
by the web application. It would be great to have a simple website so that we can list the
orders, see the details of each order, and also perform updates such as changing the order's
status.
As you saw in the previous chapter, Django already has a very powerful and flexible admin
UI that we can customize to provide that kind of functionality to our users--all without
spending too much time developing a web application.

After installing the dependencies, your Pipfile should look as follows:

[[source]]

verify_ssl = true
name = "pypi"
url = "https://pypi.python.org/simple"

[packages]

django = "*"



Order Microservice Chapter 8

[ 344 ]

djangorestframework = "*"

[dev-packages]

[requires]

python_version = "3.6"

Perfect! Now, we can start a new Django project. We are going to create the project using
the django-admin tool. Let's go ahead and create a project called order:

django-admin startproject order

With the project created, we are going to create a Django app. For this project, we are going
to create just one app that is going to be called main. First, we change the directory to the
service directory:

cd order

And again, we use the django-admin tool to create an app:

django-admin startapp main

After creating the Django app, your project structure should look similar to the following
structure:

.
├── main
│   ├── admin.py
│   ├── apps.py
│   ├── __init__.py
│   ├── migrations
│   │   └── __init__.py
│   ├── models.py
│   ├── tests.py
│   └── views.py
├── manage.py
└── order
    ├── __init__.py
    ├── settings.py
    ├── urls.py
    └── wsgi.py

Next up, we are going to start creating the model for our service.



Order Microservice Chapter 8

[ 345 ]

Creating the service models
In the first part of the order service, we are going to create the model that will store data
about the order coming from the online video game store. Let's go ahead and open
the models.py file in the main app directory and start adding the model:

class OrderCustomer(models.Model):
    customer_id = models.IntegerField()
    name = models.CharField(max_length=100)
    email = models.CharField(max_length=100)

We will create a class called OrderCustomer that inherits from Model, and define three
properties; the customer_id, which will correspond to the customer ID in the online game
store, the name of the customer, and lastly, the email.

Then, we will create the model that will store information about the order:

class Order(models.Model):

    ORDER_STATUS = (
        (1, 'Received'),
        (2, 'Processing'),
        (3, 'Payment complete'),
        (4, 'Shipping'),
        (5, 'Completed'),
        (6, 'Cancelled'),
    )

    order_customer = models.ForeignKey(
        OrderCustomer,
        on_delete=models.CASCADE
    )
    total = models.DecimalField(
        max_digits=9,
        decimal_places=2,
        default=0
    )
    created_at = models.DateTimeField(auto_now_add=True)
    last_updated = models.DateTimeField(auto_now=True)
    status = models.IntegerField(choices=ORDER_STATUS, default='1')



Order Microservice Chapter 8

[ 346 ]

The Order class inherits from Model, and we start this class by adding a tuple containing
the status that the orders in our application can have. We also define a foreign key,
order_customer, which will create the relationship between the OrderCustomer and
Order. It is then time to define other fields, starting with total, which is the total purchase
value of that order. We then have two datetime fields; created_at, which is the date that
the order has been submitted by the customer, and last_update, which is a field that is
going to be used when we want to know when the order has a status update.

When adding auto_now_add to a DateTimeField, Django uses the
django.utils.timezone.now function, which will return the current
datetime object with timezone information. DateField uses
datetime.date.today(), which does not contain timezone information.

The last model that we are going to create is OrderItems. This will hold items belonging to
an order. We will define it like this:

class OrderItems(models.Model):
    class Meta:
        verbose_name_plural = 'Order items'

    product_id = models.IntegerField()
    name = models.CharField(max_length=200)
    quantity = models.IntegerField()
    price_per_unit = models.DecimalField(
        max_digits=9,
        decimal_places=2,
        default=0
    )
    order = models.ForeignKey(
        Order, on_delete=models.CASCADE, related_name='items')

Here, we also define a Meta class so we can set some metadata to the model. In this case, we
are setting the verbose_name_plural to Order items so that it looks correctly spelled in
the Django admin UI. Then, we define product_id, name, quantity, and
price_per_unit, which refer to the Game model in the online video game store.
Lastly, we have the item quantity and the foreign key Order.



Order Microservice Chapter 8

[ 347 ]

Now, we need to edit the settings.py file in microservices/order/order directory
and add the main app to INSTALLED_APPS. It should look like this:

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'main',
]

The only thing left is to create and apply the database migrations. First, we run the
command makemigrations:

python manage.py makemigrations

And migrate to apply the changes to the database:

python manage.py migrate

Creating the model's managers
To make our application more readable and not clutter the endpoints with a lot of business
logic, we are going to create managers for our model classes. If you followed the previous
chapter, you should be very familiar with this. In a nutshell, managers are an interface that
provide query operations to Django models.

By default, Django adds a manager to every model; it is stored on a
property named objects. The default manager that Django adds to the
models is sometimes sufficient and there's no need to create a custom
manager, but it is a good practice to keep all database-related code within
the model. This will make our code more consistent, readable, and easier
to test and maintain.



Order Microservice Chapter 8

[ 348 ]

In our case, the only model we are interested in creating is a custom model manager called
Order, but before we start implementing the order manager, we need to create a few helper
classes. The first class that we need to create is a class that will define custom exceptions
that may occur when performing queries on our database. Of course, we could use the
exceptions that are already defined in the standard library, but it is always a good practice
to create exceptions that make sense within the context of your application.
The three exceptions that we are going to create are InvalidArgumentError,
OrderAlreadyCompletedError, and OrderCancellationError.

The exception InvalidArgumentError will be raised when invalid arguments are passed
to the functions that we are going to define in the manager, so let's go ahead and create a
file called exceptions.py in the main app directory with the following contents:

class InvalidArgumentError(Exception):
    def __init__(self, argument_name):
        message = f'The argument {argument_name} is invalid'
        super().__init__(message)

Here, we define a class called InvalidArgumentError that inherits from Exception, and
the only thing we do in it is override the constructor and receive an argument called
argument_name. With this argument, we can specify what caused the exception to be
raised.

We will also customize the exception message, and lastly, we will call the constructor on the
superclass.

We are also going to create an exception that will be raised when we try to cancel an order
that has the status as canceled, and also when we try to set the status of an order to
completed when the order is already completed:

class OrderAlreadyCompletedError(Exception):
    def __init__(self, order):
        message = f'The order with ID: {order.id} is already
        completed.'
        super().__init__(message)

class OrderAlreadyCancelledError(Exception):
    def __init__(self, order):
        message = f'The order with ID: {order.id} is already
        cancelled.'
        super().__init__(message)



Order Microservice Chapter 8

[ 349 ]

Then, we are going to add two more custom exceptions:

class OrderCancellationError(Exception):
    pass

class OrderNotFoundError(Exception):
    pass

These two classes don't do too much. They only inherit from Exception. We will configure
and customize a message for each exception and pass it over to the super class initializer.
The value of adding custom exception classes is that it will improve the readability and
maintainability of our applications.

Great! There is only one more thing we need to add before starting with the manager. We
will create functions in the model manager that will return data filtered by status. As you
can see, in the definition of the Order model, we defined the status like this:

ORDER_STATUS = (
    (1, 'Received'),
    (2, 'Processing'),
    (3, 'Payment complete'),
    (4, 'Shipping'),
    (5, 'Completed'),
    (6, 'Cancelled'),
)

Which means that if we want to get all the orders with a status of Completed, we would
need to write something similar to the following line:

  Order.objects.filter(status=5)

There's only one problem with this code, can you guess what? If you guessed that
magic number, 5, you are absolutely right! Imagine how frustrated our colleagues would be
if they needed to maintain this code and see only the number 5 there and have no idea what
5 actually means. Because of this, we are going to create an enumeration that we can use to
express the different statuses. Let's create a file called status.py in the main app directory 
and add the following enumeration:

from enum import Enum, auto

class Status(Enum):
    Received = auto()
    Processing = auto()
    Payment_Complete = auto()



Order Microservice Chapter 8

[ 350 ]

    Shipping = auto()
    Completed = auto()
    Cancelled = auto()

So, now, when we need to get all the orders with a Completed status, we can do:

Order.objects.filter(Status.Received.value)

Much better!

Now, let's create the model manager for it. Create a file called managers.py in the mail app
directory, and we can start by adding a few imports:

from datetime import datetime
from django.db.models import Manager, Q

from .status import Status

from .exceptions import InvalidArgumentError
from .exceptions import OrderAlreadyCompletedError
from .exceptions import OrderCancellationError

from . import models

Then, we define the OrderManager class and the first method called set_status:

class OrderManager(Manager):

    def set_status(self, order, status):
        if status is None or not isinstance(status, Status):
            raise InvalidArgumentError('status')

        if order is None or not isinstance(order, models.Order):
            raise InvalidArgumentError('order')

        if order.status is Status.Completed.value:
            raise OrderAlreadyCompletedError()

        order.status = status.value
        order.save()

This method takes two parameters, order, and status. The order is an object of type Order
and the status is an item of the Status enumeration that we created previously.



Order Microservice Chapter 8

[ 351 ]

We start this method by validating the arguments and raising the corresponding exception.
First, we validate if the fields have a value and are the correct type. If the validation fails, it
will raise an InvalidArgumentError. Then, we check if the order that we are trying to set
the status for is already completed; in this case, we cannot change it anymore, so we raise an
OrderAlreadyCompletedError. If all the arguments are valid, we set the order's status
and save.

In our application, we want to be able to cancel an order that is still not being processed; in
other words, we will allow orders to be canceled only if the status is Received. Here is
what the cancel_order method should look like:

def cancel_order(self, order):
    if order is None or not isinstance(order, models.Order):
        raise InvalidArgumentError('order')

    if order.status != Status.Received.value:
        raise OrderCancellationError()

    self.set_status(order, Status.Cancelled)

This method only gets the order argument, and first, we need to check if the order object is
valid and raise an InvalidArgumentError if it is invalid. Then, we check if the order's
status is not Received. In this case, we raise an OrderCancellationError exception.
Otherwise, we go ahead and call the set_status method, passing Status.Cancelled as
an argument.

We also need to get a list of all orders for a given customer:

def get_all_orders_by_customer(self, customer_id):
    try:
        return self.filter(
            order_customer_id=customer_id).order_by(
            'status', '-created_at')
    except ValueError:
        raise InvalidArgumentError('customer_id')

The get_all_orders_by_customer method gets the customer_id as an argument. Then,
we use the filter function to filter orders by the customer_id and we also order it by status;
the orders that are still being processed will be on the top of the QuerySet.

In case the customer_id is invalid, for example, if we pass a string instead of an integer, a
ValueError exception will be raised. We catch this exception and raise our custom
exception InvalidArgumentError.



Order Microservice Chapter 8

[ 352 ]

The financial department of our online video game store had the requirement of getting a
list of all complete and incomplete orders for a specific user, so let's go ahead and add some
methods for it:

def get_customer_incomplete_orders(self, customer_id):
    try:
        return self.filter(
            ~Q(status=Status.Completed.value),
            order_customer_id=customer_id).order_by('status')
    except ValueError:
        raise InvalidArgumentError('customer_id')

def get_customer_completed_orders(self, customer_id):
    try:
        return self.filter(
            status=Status.Completed.value,
            order_customer_id=customer_id)
    except ValueError:
        raise InvalidArgumentError('customer_id')

The first method, get_customer_incomplete_orders, gets an argument
called customer_id. It is like the previous method; we will catch a ValueError exception
in case the customer_id is invalid, and raise an InvalidArgumentError. The interesting
part of this method is the filter. Here, we use a Q() object, which encapsulates an SQL
expression in the form of a Python object.

Here, we have ~Q(status=Status.Completed.value), which is the 'not' operator,
which is the same as saying the status is not Status.Complete. We also filter
order_customer_id to check if it's equal to the method's customer_id argument, and
lastly, we order the QuerySet by status.

get_customer_completed_orders is basically the same, but this time, we filter orders
that have a status equal to Status.Completed.

The Q() object allows us to write much more complex queries making use of | (OR) and &
(AND) operators.



Order Microservice Chapter 8

[ 353 ]

Next, every department that is responsible for taking care of the order life cycle wants an
easy way to get orders at a certain stage; for example, the workers responsible for shipping
the games want to get a list of all orders that have a status equal to Payment Complete so
they can ship these orders to the customers. So, we need to add a method that will do just
that:

def get_orders_by_status(self, status):
    if status is None or not isinstance(status, Status):
        raise InvalidArgumentError('status')

    return self.filter(status=status.value)

This is a very simple method; here, we get the status as an argument. We check if the status
is valid; if not, we raise an InvalidArgumentError. Otherwise, we continue and filter the
orders by status.

Another requirement from our finance department is to get a list of orders in a given date
range:

def get_orders_by_period(self, start_date, end_date):
    if start_date is None or not isinstance(start_date, datetime):
        raise InvalidArgumentError('start_date')

    if end_date is None or not isinstance(end_date, datetime):
        raise InvalidArgumentError('end_date')

    result = self.filter(created_at__range=[start_date, end_date])
    return result

Here, we get two parameters, start_date and end_date. As with all the other methods,
we start by checking if these arguments are valid; in this case, the arguments cannot be
None and have to be an instance of the Datetime object. If any of the fields are invalid, an
InvalidArgumentError will be raised. When the arguments are valid, we filter the orders
using the created_at field and we also use this special syntax, created_at__range,
which means that we are going to pass a date range and it will be used as a filter. Here, we
are passing start_date and end_date.

There is just one method that might be interesting to implement and it can add value to the
administrators of our application. The idea here is to add a method that, when called,
automatically changes the order to the next status:

def set_next_status(self, order):
    if order is None or not isinstance(order, models.Order):
        raise InvalidArgumentError('order')



Order Microservice Chapter 8

[ 354 ]

    if order.status is Status.Completed.value:
        raise OrderAlreadyCompletedError()

    order.status += 1
    order.save()

This method gets just one argument, the order. We check if the order is valid, and if it is
invalid, we raise an InvalidArgumentError. We also want to make sure that once the
order gets to the Completed status, it can no longer be changed. So, we check if the order is
of the status Completed, then we raise an OrderAlreadyCompleted exception. Lastly, we
add 1 to the current status and save the object.

Now, we can change our Order model so that it makes use of the OrderManager that we
just created. Open the model.py file in the main app directory, and at the end of the Order
class, add the following line:

objects = OrderManager()

So, now we can access all the methods that we defined in the OrderManager through
Order.objects.

Next up, we are going to add tests to our model manager methods.

Learning to test
So far in this book, we haven't covered how to create tests. Now is a good time to do that, so
we are going to create tests for the methods that we created in the model manager.

Why do we need tests? The short answer to this question is that tests will allow us to know
that the methods or functions are doing the right thing. The other reason (and one of the
most important, in my opinion) is that tests give us more confidence when it comes to
performing changes in the code.

Django has great tools out of the box for creating unit and integration tests, and combined
with frameworks like Selenium, it is possible to basically test all of our application.

With that said, let's create our first tests. Django creates a file called test.py in the app
directory when creating a new Django app. You can write your tests in there, or if you
prefer to keep the project more organized by separating the tests into multiple files, you can
remove that file and create a directory called tests and place all your tests files in there.
Since we are only going to create tests for the Order model manager, we are going to keep
all the tests in the tests.py file that Django created for us.



Order Microservice Chapter 8

[ 355 ]

Creating the test files
Open the test.py file and let's start by adding a few imports:

from dateutil.relativedelta import relativedelta

from django.test import TestCase
from django.utils import timezone

from .models import OrderCustomer, Order
from .status import Status

from .exceptions import OrderAlreadyCompletedError
from .exceptions import OrderCancellationError
from .exceptions import InvalidArgumentError

Great! We start by importing the relative delta function so we can easily perform date
operations, like adding days or months to a date. This will be very helpful when testing the
methods that get orders for a certain period of time.

Now, we import some Django-related things. First is the TestCase class, which is a
subclass of unittest.TestCase. Since we are going to write tests that will interact with
the database, it is a good idea to use django.tests.TestCase instead of
unittest.TestCase. Django's TestCase implementation will make sure that your test is
running within a transaction to provide isolation. This way, we will not have unpredictable
results when running the test because of data created by another test in the test suite.
We also import some of the model classes that we are going to use in our test, the Order,
the OrderCustomer models, and also the Status class when we are going to test the method
that changes order statuses.

When writing tests for your application, we don't want to only test the good scenarios, we
also want to test when things go wrong, and bad arguments are passed to the functions and
methods that are being tested. For this reason, we are importing our custom error classes, so
we can make sure that the right exception is being raised in the right situation.

Now that we have the imports in place, it is time to create the class and the method that will
set up data for our tests:

class OrderModelTestCase(TestCase):

    @classmethod
    def setUpTestData(cls):
        cls.customer_001 = OrderCustomer.objects.create(
            customer_id=1,
            email='customer_001@test.com'



Order Microservice Chapter 8

[ 356 ]

        )

        Order.objects.create(order_customer=cls.customer_001)

        Order.objects.create(order_customer=cls.customer_001,
                             status=Status.Completed.value)

        cls.customer_002 = OrderCustomer.objects.create(
            customer_id=1,
            email='customer_002@test.com'
        )

        Order.objects.create(order_customer=cls.customer_002)

Here, we create a class called OrderModelTestCase, inheriting from the
django.test.TestCase. Then, we define the setUpTestData method, which will be the
method that will be responsible for setting up the data that will be used by each test.

Here, we create two users; the first one has two orders and one of the orders is set to
Completed. The second user has only one order.

Testing the cancel order function 
The first method that we are going to test is the cancel_orders method. As the name says,
it will cancel an order. There a few things we want to test in this method:

The first test is quite straightforward; we only want to test if we can cancel an
order, setting its status to Cancelled
The second test is that it shouldn't be possible to cancel orders that have not been
received; in other words, only the orders that have the current status set to
Received can be canceled
We need to test if the correct exception is raised in case we pass an invalid
argument to the cancel_order method

With that said, let's add our tests:

def test_cancel_order(self):
    order = Order.objects.get(pk=1)

    self.assertIsNotNone(order)
    self.assertEqual(Status.Received.value, order.status)

    Order.objects.cancel_order(order)



Order Microservice Chapter 8

[ 357 ]

    self.assertEqual(Status.Cancelled.value, order.status)

def test_cancel_completed_order(self):
    order = Order.objects.get(pk=2)

    self.assertIsNotNone(order)
    self.assertEqual(Status.Completed.value, order.status)

    with self.assertRaises(OrderCancellationError):
        Order.objects.cancel_order(order)

def test_cancel_order_with_invalid_argument(self):
    with self.assertRaises(InvalidArgumentError):
        Order.objects.cancel_order({'id': 1})

The first test, test_cancel_order, starts off by getting an order with ID 1. We assert that
the returned value is not None using the assertIsNotNone function, and we also use the
function assertEqual to make sure that the order has the status 'Received'.

Then, we call the cancel_order method from the order model manager passing the order,
and lastly, we use the assertEqual function again to verify that the order's status is in fact
changed to Cancelled.

The second test, test_cancel_complated_order, starts by getting the order with ID
equal to 2; remember that we have set this order with the Completed status. Then, we do
the same thing as the previous test; we verify that the order is not equal to None, and we
verify that the status is set to Complete. Finally, we use the assertRaises function to test
that the correct exception is raised if we try to cancel an order that is already cancelled; in
this case, an exception of type OrderCancellationError will be raised.

Lastly, we have the test_cancel_order_with_invalid_argument function, which will
test if the correct exception will be raised if we pass an invalid argument to the
cancel_order function.

Testing the get all orders function
Now, we are going to add tests to the get_all_orders_by_customer method. For this
method, we need to test:

If the correct number of orders is returned when given a customer ID



Order Microservice Chapter 8

[ 358 ]

If the correct exception is raised when passing an invalid argument to the method

def test_get_all_orders_by_customer(self):
    orders =
Order.objects.get_all_orders_by_customer(customer_id=1)

    self.assertEqual(2, len(orders),
                     msg='It should have returned 2 orders.')

def test_get_all_order_by_customer_with_invalid_id(self):
    with self.assertRaises(InvalidArgumentError):
        Order.objects.get_all_orders_by_customer('o')

The tests for the get_all_orders_by_customer method are quite simple. In the first test,
we fetch the orders for the customer with ID 1 and test if the returned number of items is
equal to 2.

In the second test, we assert if calling get_all_orders_by_customer with an invalid
argument, in fact, raises an exception of type InvalidArgumentError. In this case, the test
will successfully pass.

Getting customer's incomplete orders
The get_customer_incomplete_orders method returns all the orders with the statuses
that are different from Completed given a customer ID. For this test, we need to verify that:

The method returns the correct number of items and also if the item returned
does not have a status equal to Completed
We are going to test if an exception is raised when an invalid value is passed as
an argument to this method

def test_get_customer_incomplete_orders(self):
    orders =
Order.objects.get_customer_incomplete_orders(customer_id=1)

    self.assertEqual(1, len(orders))
    self.assertEqual(Status.Received.value, orders[0].status)

def test_get_customer_incomplete_orders_with_invalid_id(self):
    with self.assertRaises(InvalidArgumentError):
        Order.objects.get_customer_incomplete_orders('o')



Order Microservice Chapter 8

[ 359 ]

The test test_get_customer_incomplete_orders starts off by calling the 
get_customer_incomplete_orders function and passing as an argument a customer ID
equal to 1. Then, we verify that the number of returned items is correct; in this case, there's
only one incomplete order, so it should be 1. Lastly, we check if the item that was returned
in fact has a status different to Completed.

The other test, exactly like the previous one testing that tested exceptions, just calls the
method and asserts that the correct exception has been raised.

Getting customer's completed orders
Next, we are going to test get_customer_completed_order. This method, as the name
says, returns all the orders that have a status of Completed for a given customer. Here, we
will test the same scenarios as get_customer_incompleted_orders:

def test_get_customer_completed_orders(self):
    orders = Order.objects.get_customer_completed_orders(customer_id=1)

    self.assertEqual(1, len(orders))
    self.assertEqual(Status.Completed.value, orders[0].status)

def test_get_customer_completed_orders_with_invalid_id(self):
    with self.assertRaises(InvalidArgumentError):
        Order.objects.get_customer_completed_orders('o')

First, we call get_customer_completed_orders, passing a customer ID equal to 1, and
then we verify that the number of items returned is equal to 1. To finish it up, we verify that
the item that was returned has, in fact, a status set to Completed.

Getting orders by status
The get_order_by_status function returns a list of orders given a status. There are two
scenarios we have to test here:

If the method returns the correct number of orders given a specific status
That the correct exception is raised when passing an invalid argument to the
method

def test_get_order_by_status(self):
    order = Order.objects.get_orders_by_status(Status.Received)



Order Microservice Chapter 8

[ 360 ]

    self.assertEqual(2, len(order),
                     msg=('There should be only 2 orders '
                          'with status=Received.'))

    self.assertEqual('customer_001@test.com',
                     order[0].order_customer.email)

def test_get_order_by_status_with_invalid_status(self):
    with self.assertRaises(InvalidArgumentError):
        Order.objects.get_orders_by_status(1)

Simple enough. The first test we call is get_orders_by_status, passing as an
argument Status.Received. Then, we verify that only two orders are returned.
For the second test, for the get_order_by_status method, like the previous exceptions
tests, run the method, passing an invalid argument and then verify that the exception of
type InvalidArgumentError has been raised.

Getting orders by period
Now, we are going to test the get_order_by_period method, which returns a list of
orders given an initial and an end date. For this method, we are going to perform the
following tests:

Call the method, passing as arguments, and orders created within that period
should be returned
Call the method, passing as arguments valid dates where we know that no orders
were created, which should return an empty result
Test if an exception is raised when calling the method, passing an invalid start
date
Test if an exception is raised when calling the method, passing an invalid end
date

def test_get_orders_by_period(self):

    date_from = timezone.now() - relativedelta(days=1)
    date_to = date_from + relativedelta(days=2)

    orders = Order.objects.get_orders_by_period(date_from, date_to)

    self.assertEqual(3, len(orders))

    date_from = timezone.now() + relativedelta(days=3)
    date_to = date_from + relativedelta(months=1)



Order Microservice Chapter 8

[ 361 ]

    orders = Order.objects.get_orders_by_period(date_from, date_to)

    self.assertEqual(0, len(orders))

def test_get_orders_by_period_with_invalid_start_date(self):
    start_date = timezone.now()

    with self.assertRaises(InvalidArgumentError):
        Order.objects.get_orders_by_period(start_date, None)

def test_get_orders_by_period_with_invalid_end_date(self):
    end_date = timezone.now()

    with self.assertRaises(InvalidArgumentError):
        Order.objects.get_orders_by_period(None, end_date)

We start this method by creating date_from, which is the current date minus one day.
Here, we use the relativedelta method of the python-dateutil package to perform
date operations. Then, we define date_to, which is the current date plus two days.

Now that we have our period, we can pass these values as arguments to the
get_orders_by_period method. In our case, we set up three orders, all created with the
current date, so this method call should return exactly three orders.

Then, we define a different period where we know that there won't be any orders. The
date_from function is defined with the current date plus three days, so date_from is the
current date plus 1 month.

Calling the method again passing the new values of date_from and date_to should not
return any orders.

The last two tests for get_orders_by_period are the same as the exception tests that we
implemented previously.

Setting the order's next status
The next method from the Order model manager that we are going to create is the
set_next_status method. The set_next_status method is just a method that can be
used for convenience and it will set the next status of an order. If you remember, the
Status enumeration that we created means that every item in the enumeration is set to
auto(), which means that items in the enumeration will get a numeric sequential number
as a value.



Order Microservice Chapter 8

[ 362 ]

When we save an order in the database and set its status to, for example,
Status.Processing, the value of the status field in the database will be 2.

The function simply adds 1 to the current order's status, so it goes to the next status item
unless the status is Completed; that's the last status of the order's lifecycle.

Now that we have refreshed our memories about how this method works, it is time to
create the tests for it, and we will have to perform the following tests:

That the order gets the next status when set_next_status is called
Test if an exception will be raised when calling set_next_status and passing
as an argument an order with the status Completed
Test if an exception is raised when passing an invalid order as an argument

def test_set_next_status(self):
    order = Order.objects.get(pk=1)

    self.assertTrue(order is not None,
                    msg='The order is None.')

    self.assertEqual(Status.Received.value, order.status,
                     msg='The status should have been
                     Status.Received.')

    Order.objects.set_next_status(order)

    self.assertEqual(Status.Processing.value, order.status,
                     msg='The status should have been
                     Status.Processing.')

def test_set_next_status_on_completed_order(self):
    order = Order.objects.get(pk=2)

    with self.assertRaises(OrderAlreadyCompletedError):
        Order.objects.set_next_status(order)

def test_set_next_status_on_invalid_order(self):
    with self.assertRaises(InvalidArgumentError):
        Order.objects.set_next_status({'order': 1})



Order Microservice Chapter 8

[ 363 ]

The first test, test_set_next_status, starts by getting the order with an ID equal to 1.
Then, it asserts that the order object is not equal to none, and we also assert that the value of
the order's status is Received. Then, we call the set_next_status method, passing the
order as an argument. Right after that, we assert again to make sure that the status has
changed. The test will pass if the order's status is equals to 2, which is Processing in the
Status enumeration.

The other two tests are very similar to the order test where we assert exceptions, but it is
worth mentioning that the test test_set_next_status_on_completed_order asserts
that if we try calling the set_next_status on an order that has a status equal to
Status.Completed, then an exception of type OrderAlreadyCompletedError will be
raised.

Setting the order's status
Finally, we are going to implement the last tests of the Order model manager. We are going
to create tests for the set_status method. The set_status method does exactly what the
name implies; it will set a status for a given order. We need to perform the following tests:

Set a status and verify that the order's status has really changed
Set the status in an order that is already completed; it should raise an exception of
type OrderAlreadyCompletedError
Set the status in an order that is already canceled; it should raise an exception of
type OrderAlreadyCancelledError
Call the set_status method using an invalid order; it should raise an exception
of type InvalidArgumentError
Call the set_status method using an invalid status; it should raise an exception
of type InvalidArgumentError

def test_set_status(self):
    order = Order.objects.get(pk=1)

    Order.objects.set_status(order, Status.Processing)

    self.assertEqual(Status.Processing.value, order.status)

def test_set_status_on_completed_order(self):
    order = Order.objects.get(pk=2)

    with self.assertRaises(OrderAlreadyCompletedError):
        Order.objects.set_status(order, Status.Processing)



Order Microservice Chapter 8

[ 364 ]

def test_set_status_on_cancelled_order(self):
    order = Order.objects.get(pk=1)
    Order.objects.cancel_order(order)

    with self.assertRaises(OrderAlreadyCancelledError):
        Order.objects.set_status(order, Status.Processing)

def test_set_status_with_invalid_order(self):
    with self.assertRaises(InvalidArgumentError):
        Order.objects.set_status(None, Status.Processing)

def test_set_status_with_invalid_status(self):
    order = Order.objects.get(pk=1)

    with self.assertRaises(InvalidArgumentError):
        Order.objects.set_status(order, {'status': 1})

We are not going to go through all the tests where we are testing exceptions, because they
are similar to the tests that we implemented previously, but it is worth going through the
first test. On the test test_set_status, it will get the order with an ID equal to 1, which as
we defined in the setUpTestData, has a status equal to Status.Received. We call the
set_status method passing the order and the new status as arguments, in this case,
Status.Processing. After setting the new status, we just call assertEquals to make
sure that the order's status in fact changed to Status.Processing.

Creating the order model serializer
We now have everything we need to start creating out API endpoints. In this section, we are
going to create endpoints for every method that we implemented in the Order manager.

For some of these endpoints, we are going to use the Django REST Framework. The
advantage of using the Django REST Framework is that the framework includes a lot of out
of the box features. It has different authentication methods, a really robust serialization of
objects, and my favorite is that it will give you a web interface where you can browse the
API, which also contains a large collection of base classes and mixins when you need to
create class-based views.



Order Microservice Chapter 8

[ 365 ]

So, let's dive right into it!

The first thing that we need to do at this point is to create serializer classes for the entities of
our model, the Order, OrderCustomer, and OrderItem.

Go ahead and create a file called serializers.py in the main app directory, and let's start
by adding a few import statements:

import functools

from rest_framework import serializers

from .models import Order, OrderItems, OrderCustomer

We start by importing the functools module from the standard library; then, we import
the serializer from the rest_framework module. We are going to use it to create our model
serializers. Lastly, we will import the models that we are going to use to create the
serializers, the Order, OrderItems, and OrderCustomer.

The first serializer that we are going to create is the OrderCustomerSerializer:

class OrderCustomerSerializer(serializers.ModelSerializer):
    class Meta:
        model = OrderCustomer
        fields = ('customer_id', 'email', 'name', )

The OrderCustomerSerializer inherits from ModelSerializer and it is quite simple; it
just defines some class metadata. We will set the model, the OrderCustomer, and also the
property fields which will contain a tuple with the fields, that we are going to serialize.

Then, we create the OrderItemSerializer:

class OrderItemSerializer(serializers.ModelSerializer):
    class Meta:
        model = OrderItems
        fields = ('name', 'price_per_unit', 'product_id',
'quantity', )

The OrderItemSerializer is pretty similar to the OrderCustomerSerializer. The class
also inherits from ModelSerializer and defines a couple of metadata properties. The first
one is a model, which we set to OrderItems, and then the fields with a tuple containing
every model field that we want to serialize.



Order Microservice Chapter 8

[ 366 ]

The last serializer that we are going to create is the OrderSerializer, so let's start by
defining a class called OrderSerializer:

class OrderSerializer(serializers.ModelSerializer):
    items = OrderItemSerializer(many=True)
    order_customer = OrderCustomerSerializer()
    status = serializers.SerializerMethodField()

First, we define two properties. The items property is set to OrderItemSerializer,
which means that it will use that serializer when we need to serialize the JSON data that we
are going to send when we want to add new orders. The items property refers to the items
(the games) that an order contains. Here, we use only one keyword argument
(many=True). This will tell you that the serializer items will be an array.

The status field is a little bit special; if you remember the status field in the Order model, it
is defined as a ChoiceField. When we save an order in the database, that field will store
the value 1 if the order has a status of Received, 2 if the status is Processing, and so on.
When the consumers of our API call the endpoint to get orders, they will be interested in
the name of the status and not the number.

So, the solution to this problem is to define the field as SerializeMethodField, and then
we are going to create a function called get_status, which will return the display name of
the order's status. We are going to see what the implementation of the get_status method
looks like in a short while.

We also define the order_customer property, which is set to
OrderCustomerSerializer, and that means that the framework will use the
OrderCustomerSerializer class when trying to deserialize the JSON object we send
when trying to add a new order.

Then, we define a Meta class, so that we can add some metadata information to the
serializer class:

    class Meta:
        depth = 1
        model = Order
        fields = ('items', 'total', 'order_customer',
                  'created_at', 'id', 'status', )



Order Microservice Chapter 8

[ 367 ]

The first property, depth, specifies the depth of the relationships that should be traversed
before the serialization. In this case, it is set to 1, because when fetching an order object, we
also want to have information about the customers and items. Like the other serializers, we
set the model to Order and the fields property specifies which fields will be serialized and
deserialized.

Then, we implement the get_status method:

    def get_status(self, obj):
        return obj.get_status_display()

This is the method that will get the display value for the ChoiceField status. This will
override the default behavior and return the result of the get_status_display() function
instead.

The _created_order_item method is just a helper method which we are going to use to
create and prepare the order item's objects prior to performing a bulk insert:

    def _create_order_item(self, item, order):
        item['order'] = order
        return OrderItems(**item)

Here, we are going to get two arguments. The first argument will be a dictionary with the
data about the OrderItem and an order argument with an object of type Order. First, we
update the dictionary passed in the first argument, adding the order object, then we call
the OrderItem constructor, passing the items as an argument in the item dictionary.

I am going to show you what that's used for a short while. Now that we have got to the core
of this serializer, we are going to implement the create method, which will be a method
that will be called automatically every time we call the serializer's save method:

def create(self, validated_data):
    validated_customer = validated_data.pop('order_customer')
    validated_items = validated_data.pop('items')

    customer = OrderCustomer.objects.create(**validated_customer)

    validated_data['order_customer'] = customer
    order = Order.objects.create(**validated_data)

    mapped_items = map(
        functools.partial(
        self._create_order_item, order=order), validated_items
    )



Order Microservice Chapter 8

[ 368 ]

    OrderItems.objects.bulk_create(mapped_items)

    return order

So, the create method will be called automatically when calling the save method, and it will
get the validated_data as an argument. The validated_date is a validated, de-
serialized order data. It will look similar to the following data:

{
    "items": [
        {
            "name": "Prod 001",
            "price_per_unit": 10,
            "product_id": 1,
            "quantity": 2
        },
        {
            "name": "Prod 002",
            "price_per_unit": 12,
            "product_id": 2,
            "quantity": 2
        }
    ],
    "order_customer": {
        "customer_id": 14,
        "email": "test@test.com",
        "name": "Test User"
    },
    "order_id": 1,
    "status": 4,
    "total": "190.00"
}

As you can see, in this JSON, we are passing all the information at once. Here, we have the
order, the items property, which is a list of order items, and the order_customer, which
contains information about the customer who submitted the order.

Since we have to perform the creation of these objects individually, we first pop the
order_customer and the items so we have three different objects. The
first, validated_customer, will only contain data related to the person who made the
order. The validated_items object will only contain data related to each item of the
order, and finally, the validated_data object will only contain data related to the order
itself.



Order Microservice Chapter 8

[ 369 ]

After splitting the data, we can now start adding the objects. We start by creating an
OrderCustomer:

customer = OrderCustomer.objects.create(**validated_customer)

Then, we can create the order. The Order has a foreign key field called order_customer,
which is the customer that is connected to that particular Order. What we need to do is
create a new item in the validated_data dictionary with a key called order_customer,
and set its value to the customer that we just created:

validated_data['order_customer'] = customer
order = Order.objects.create(**validated_data)

Lastly, we are going to add  OrderItems. Now, to add the order items, we need to do a few
things. The validated_items variable is a list of items that belong to the underlying
order, and we need to first set the order to each one of these items, and create an
OrderItem object for each one of the items on the list.
There are different ways of performing this operation. You could do it in two parts; for
example, first loop through the item's list and set the order property, then loop through the
list again and create the OrderItem objects. However, that wouldn't be so elegant, would
it?

A better approach here is to take advantage of the fact that Python is a multi-paradigm
programming language, and we can solve this problem in a more functional way:

mapped_items = map(
    functools.partial(
        self._create_order_item, order=order), validated_items
)

OrderItems.objects.bulk_create(mapped_items)

Here, we make use of one of the built-in function maps. The map function will apply a
function that I specify as the first argument to an iterable that is passed as the second
argument, which then returns an iterable with the results.
The function that we are going to pass as the first argument to map is a function
called partial, from the functools module. The partial function is a high-order
function, meaning that it will return another function (the one in the first argument) and
will add the argument and keyword arguments to its signature. In the preceding code, it
will return self._create_order_item, and the first argument will be an item of the
iterable validated_items. The second argument is the order that we created previously.



Order Microservice Chapter 8

[ 370 ]

After that, the value of mapped_items should contain a list of OrderItem objects, and the
only thing left to do is call bulk_create, which will insert all the items on the list for us.

Next up, we are going to create the views.

Creating the views
Before we create the views, we are going to create some helper classes and functions that
will make the code in the view simpler and clean. Go ahead and create a file called
view_helper.py in the main app directory, and as usual, let's start by including the
import statements:

from rest_framework import generics, status
from rest_framework.response import Response

from django.http import HttpResponse

from .exceptions import InvalidArgumentError
from .exceptions import OrderAlreadyCancelledError
from .exceptions import OrderAlreadyCompletedError

from .serializers import OrderSerializer

Here, we import some things from the Django REST Framework, the main one being the
generic, which contains definitions for the generic view classes that we are going to use to
create our own custom views. The status contains all the HTTP status codes, which are very
useful when sending the response back to the client. Then, we import the Response class,
which will allow us to send content to the client that can be rendered in different content
types, for example, JSON and XML.

Then, we import the HttpResponse from Django with its equivalent of Response in the
rest framework.

We also import all the custom exceptions that we implemented previously, so we can
handle the data properly and send useful error messages to the client when something goes
wrong.

Lastly, we import the OrderSerializer, which we will use for serialization,
deserialization, and the validation model.



Order Microservice Chapter 8

[ 371 ]

The first class that we are going to create is the OrderListAPIBaseView class, which will
serve as a base class for all the views that will return a list of content to the client:

class OrderListAPIBaseView(generics.ListAPIView):
    serializer_class = OrderSerializer
    lookup_field = ''

    def get_queryset(self, lookup_field_id):
        pass

    def list(self, request, *args, **kwargs):
        try:
            result =
self.get_queryset(kwargs.get(self.lookup_field, None))
        except Exception as err:
            return Response(err,
status=status.HTTP_400_BAD_REQUEST)

        serializer = OrderSerializer(result, many=True)
        return Response(serializer.data, status=status.HTTP_200_OK)

The OrderListAPIBaseView inherits from generics. ListAPIView provides us with get
and list methods, which we can override to add functionality which meets our
requirements.

The class starts by defining two properties; serializer_class, which is set to
OrderSerializer, and the lookup_field, which in this case we set to empty string. We
will override this value in the child classes. Then, we define the get_queryset method,
and that is also going to be overridden in the child classes.

Lastly, we implement the list method, which will first run the get_queryset method to get
the data that will be returned to the user. If an error occurs, it will return a response with
status 400 (BAD REQUEST), otherwise, it will use the OrderSerializer to serialize the
data. The result argument is the QuerySet result returned by the get_queryset method,
and the many keyword argument tells the serializer that we will serialize a list of items.

When the data is serialized properly, we send a response with status 200 (OK) with the
results of the query.

The idea of this base class is that all the children classes will only need to implement the
get_queryset method, which will keep the view classes small and neat.



Order Microservice Chapter 8

[ 372 ]

Now, we are going to add a function that will help us with the methods that will perform a
POST request. Let's go ahead and add a function called set_status_handler:

def set_status_handler(set_status_delegate):
    try:
        set_status_delegate()
    except (
            InvalidArgumentError,
            OrderAlreadyCancelledError,
            OrderAlreadyCompletedError) as err:
        return HttpResponse(err, status=status.HTTP_400_BAD_REQUEST)

    return HttpResponse(status=status.HTTP_204_NO_CONTENT)

This function is very simple; it will just get a function as an argument. Run the function; if
one of the exceptions occurs, it will return a 400 (BAD REQUEST) response back to the client,
otherwise, it will return a 204 (NO CONTENT) response.

Adding views
Now, it is time to start adding the views! Open the views.py file in the main app directory,
and let's add some import statements:

from django.http import HttpResponse
from django.shortcuts import get_object_or_404

from rest_framework import generics, status
from rest_framework.response import Response

from .models import Order
from .status import Status
from .view_helper import OrderListAPIBaseView
from .view_helper import set_status_handler
from .serializers import OrderSerializer

First, we will import the HttpReponse from the django.http module and
get_object_or_404 from the django.shortcuts module. The latter is just a helper
function that will get an object, and in case it cannot find it, it will return a response with
the status 440 (NOT FOUND).

Then, we import generics for creating generic views and statuses, and from
the rest_framework, we import the Response class.



Order Microservice Chapter 8

[ 373 ]

Lastly, we import some of the models, helper methods, and functions, and the serializer that
we are going to be using in the views.

We should be ready to start creating the views. Let's create a view that will get all the orders
for a given customer:

class OrdersByCustomerView(OrderListAPIBaseView):
    lookup_field = 'customer_id'

    def get_queryset(self, customer_id):
        return
Order.objects.get_all_orders_by_customer(customer_id)

Nice! So, we created a class that inherits from the base class (OrderListAPIBaseView),
which we created in the view_helpers.py, and since we have already implemented the
list method, the only method that we needed to implement here was the get_queryset.
The get_queryset method gets a customer_id as an argument and simply calls the
get_all_orders_by_customer that we created in the Order model manager, passing the
customer_id.
We also defined the value of the lookup_field, which will be used to get the value of the
keyword argument that is passed on to the kwargs of the list method on the base class.

Let's add two more views to get the incomplete and complete orders:

class IncompleteOrdersByCustomerView(OrderListAPIBaseView):
    lookup_field = 'customer_id'

    def get_queryset(self, customer_id):
        return Order.objects.get_customer_incomplete_orders(
            customer_id
        )

class CompletedOrdersByCustomerView(OrderListAPIBaseView):
    lookup_field = 'customer_id'

    def get_queryset(self, customer_id):
        return Order.objects.get_customer_completed_orders(
            customer_id
        )

Pretty much the same as the first view that we implemented, we define the lookup_field
and override the get_queryset to call the appropriated method in the Order model
manager.



Order Microservice Chapter 8

[ 374 ]

Now, we are going to add a view that will get a list of orders when given a specific status:

class OrderByStatusView(OrderListAPIBaseView):
    lookup_field = 'status_id'

    def get_queryset(self, status_id):
        return Order.objects.get_orders_by_status(
            Status(status_id)
        )

As you can see here, we are defining the lookup_field as status_id and we override the
get_queryset to call get_orders_by_status, passing the status value.

Here, we use Status(status_id), so we pass the Enum item and not only the ID.

All the views that we implemented so far will only accept GET requests and it will return a
list of orders. Now, we are going to implement a view that supports POST requests so we
are able to receive new orders:

class CreateOrderView(generics.CreateAPIView):

    def post(self, request, *arg, **args):
        serializer = OrderSerializer(data=request.data)

        if serializer.is_valid():
            order = serializer.save()
            return Response(
                {'order_id': order.id},
                status=status.HTTP_201_CREATED)

        return Response(status=status.HTTP_400_BAD_REQUEST)

Now, this class differs a bit from the previous ones that we created, the base class being
generics. CreateAPIView provides us with a post method, so we override that method in
order to add the logic that we need. First, we get the request's data and pass it as an
argument to the OrderSerializer class; it will deserialize the data and set it to the
serializer variable. Then, we call the method is_valid(), which will validate the received
data. If the request's data is not valid, we return a 400 response (BAD REQUEST), otherwise,
we go ahead and call the save() method. This method will internally call the create
method on the serializer, and it will create the new order along with the new order's
customer and the order's items. If everything goes well, we return a 202 response
(CREATED) together with the ID of the newly created order.



Order Microservice Chapter 8

[ 375 ]

Now, we are going to create three functions that will handle the order canceling, setting the
next order's status, and lastly, setting a specific order's status:

def cancel_order(request, order_id):
    order = get_object_or_404(Order, order_id=order_id)

    return set_status_handler(
        lambda: Order.objects.cancel_order(order)
    )

def set_next_status(request, order_id):
    order = get_object_or_404(Order, order_id=order_id)

    return set_status_handler(
        lambda: Order.objects.set_next_status(order)
    )

def set_status(request, order_id, status_id):
    order = get_object_or_404(Order, order_id=order_id)

    try:
        status = Status(status_id)
    except ValueError:
        return HttpResponse(
            'The status value is invalid.',
            status=status.HTTP_400_BAD_REQUEST)

    return set_status_handler(
        lambda: Order.objects.set_status(order, status)
    )

As you can see, we are not using the Django REST framework class-based views here. We
are just using regular functions. The first one, the cancel_order function, gets two
parameters—the request and the order_id. We start by using the shortcut function,
get_object_or_404. The get_object_or_404 function returns a 404 response (NOT
FOUND) if it cannot find the object matching the criteria passed in the second argument.
Otherwise, it will return the object.



Order Microservice Chapter 8

[ 376 ]

Then, we use the helper function set_status_handler that we implemented in the
view_helpers.py file. This function gets another function as an argument. So, we are
passing a lambda function that will execute the method in the Order model manager that
we want. In this case, when the lambda function is executed, it will execute the
cancel_order method that we defined in the Order model manager, passing the order
that we want to cancel.

The set_next_status function is quite similar, but instead of calling the cancel_order
inside of the lambda function, we will call set_next_status, passing the order that we
want to set to the next status.

The set_status function contains a bit more logic in it, but it is also quite simple. This
function will get two arguments, the order_id and the status_id. First, we get the order
object, then we look up the status using the status_id. If the status doesn't exist, a
ValueError exception will be raised and then we return a 400 response (BAD REQUEST).
Otherwise, we call the set_status_handle, passing a lambda function that will execute
the set_status function passing the order and the status objects.

Setting up the service URLs
Now that we have all the views in place, it is a good time to start setting up the URLs that
the users of our order service can call to fetch and modify orders. Let's go ahead and open
the urls.py file in the main app directory; first, we need to import all the view classes and
functions that we are going to use:

from .views import (
    cancel_order,
    set_next_status,
    set_status,
    OrdersByCustomerView,
    IncompleteOrdersByCustomerView,
    CompletedOrdersByCustomerView,
    OrderByStatusView,
    CreateOrderView,
)



Order Microservice Chapter 8

[ 377 ]

Perfect! Now, we can start adding the URLs:

urlpatterns = [
    path(
        r'order/add/',
        CreateOrderView.as_view()
    ),
    path(
        r'customer/<int:customer_id>/orders/get/',
        OrdersByCustomerView.as_view()
    ),
    path(
        r'customer/<int:customer_id>/orders/incomplete/get/',
        IncompleteOrdersByCustomerView.as_view()
    ),
    path(
        r'customer/<int:customer_id>/orders/complete/get/',
        CompletedOrdersByCustomerView.as_view()
    ),
    path(
        r'order/<int:order_id>/cancel',
        cancel_order
    ),
    path(
        r'order/status/<int:status_id>/get/',
        OrderByStatusView.as_view()
    ),
    path(
        r'order/<int:order_id>/status/<int:status_id>/set/',
        set_status
    ),
    path(
        r'order/<int:order_id>/status/next/',
        set_next_status
    ),
]

To add new URLs, we need to use the path function to pass the first argument, the URL.
The second argument is the function that will be executed when a request is sent to the URL
specified by the first argument. Every URL that we create has to be added to the
urlspatterns list. Note that Django 2 simplified how parameters were added to the URL.
Previously, you would need to some using regular expressions; now, you can just follow
the notation <type:param>.



Order Microservice Chapter 8

[ 378 ]

Before we try this out, we have to open the urls.py file, but this time in the order directory
because we need to include the URLs that we just created.

The urls.py file should look similar to this:

"""order URL Configuration

The `urlpatterns` list routes URLs to views. For more information
please see:
    https://docs.djangoproject.com/en/2.0/topics/http/urls/
Examples:
Function views
    1. Add an import: from my_app import views
    2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
    1. Add an import: from other_app.views import Home
    2. Add a URL to urlpatterns: path('', Home.as_view(),
name='home')
Including another URLconf
    1. Import the include() function: from django.urls import
include, path
    2. Add a URL to urlpatterns: path('blog/',
include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
    path('admin/', admin.site.urls),
]

Now, we want all the URLs that we defined on the main app to be under /api/. To achieve
this, the only thing we need to do is create a new route and include the URLs from the main
app. Add the following code in the urlpatterns list:

path('api/', include('main.urls')),

And let's not forget to import the include function:

from django.urls import include

The order service won't be public when we deploy it to the AWS; however as an extra
security measure, we are going to enable token authentication for this service.



Order Microservice Chapter 8

[ 379 ]

To call the service's APIs, we will have to send an authentication token. Let's go ahead and
enable it. Open the settings.py file in the order directory and add the following content:

REST_FRAMEWORK = {
    'DEFAULT_PERMISSION_CLASSES': (
        'rest_framework.permissions.IsAuthenticated',
    ),
    'DEFAULT_AUTHENTICATION_CLASSES': (
        'rest_framework.authentication.TokenAuthentication',
    )
}

You can place this right after INSTALLED_APPS.

The DEFAULT_PERMISSION_CLASSES function defines the global permission policy. Here,
we set it to rest_framework.permissions.IsAuthenticated, which means that it will
deny access to any unauthorized user.

The DEFAULT_AUTHENTICATION_CLASSES function specifies the global authentication
schemas. In this case, we are going to use token authentication.

Then, in INSTALLED_APPS, we need to include the rest_framework.authtoken. Your
INSTALLED_APPS should look like this:

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'main',
    'rest_framework',
    'rest_framework.authtoken',
]

Perfect! Save the file, and on the terminal, run the following command:

python manage.py migrate

The Django REST framework has out of the box views, so the users can call and acquire a
token. However, for simplicity, we are going to create a user who can have access to the
APIs. Then, we can manually create an authentication token that can be used to do the
request to the order service APIs.



Order Microservice Chapter 8

[ 380 ]

Let's go ahead and create this user. Start the service with the following command:

python manage.py runserver

And browse to https://localhost:8000/admin.

Under the AUTHENTICATION AND AUTHORIZATION tab, you will see the Users
model. Click on Add and create a user with the username api_user. When the user is
created, browse back to the admin first page and under the AUTH TOKEN, click on Add.
Select the api_user in the drop-down menu and click SAVE. You should see a page like
the following:

Copy the key and let's create a small script just to add an order so we can test the APIs.

Create a file called send_order.py; it can be placed anywhere you want as long as you
have the virtual environment activated, since we are going to use the package requests to
send the order to the order services. Add the following content to the send_order.py file:

import json
import sys
import argparse
from http import HTTPStatus

import requests

def setUpData(order_id):
    data = {
        "items": [
            {



Order Microservice Chapter 8

[ 381 ]

                "name": "Prod 001",
                "price_per_unit": 10,
                "product_id": 1,
                "quantity": 2
            },
            {
                "name": "Prod 002",
                "price_per_unit": 12,
                "product_id": 2,
                "quantity": 2
            }
        ],
        "order_customer": {
            "customer_id": 14,
            "email": "test@test.com",
            "name": "Test User"
        },
        "order_id": order_id,
        "status": 1,
        "total": "190.00"
    }

    return data

def send_order(data):

    response = requests.put(
        'http://127.0.0.1:8000/api/order/add/',
        data=json.dumps(data))

    if response.status_code == HTTPStatus.NO_CONTENT:
        print('Ops! Something went wrong!')
        sys.exit(1)

    print('Request was successfull')

if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='Create a order for test')

    parser.add_argument('--orderid',
                        dest='order_id',
                        required=True,
                        help='Specify the the order id')



Order Microservice Chapter 8

[ 382 ]

    args = parser.parse_args()

    data = setUpData(args.order_id)
    send_order(data)

Great! Now, we can start the development server:

python manage.py runserver

In another window, we will run the script that we just created:

python send_order.py --orderid 10

You can see the results as follows:



Order Microservice Chapter 8

[ 383 ]

What? Something went wrong here, can you guess what it is? Note the log message that
was printed in the screenshot in the terminal where I have the Django development server
running:

[21/Jan/2018 09:30:37] "PUT /api/order/add/ HTTP/1.1" 401 58

Ok, it says here that the server has received a PUT request to /api/order/add/, and one
thing to notice here is that code 401 signifies Unauthorized. This means that the settings
that we have added in the settings.py file worked fine. To call the APIs, we need to be
authenticated, and we are using token authentication.

To create a token for a user, we need to log in in the Django administration UI. There, we
will find the AUTH TOKEN section as follows:

Click on that green plus sign on the right-hand side. Then, you can select the user you wish
to create a token for and when you are ready, click save. After that, you will see a list of
tokens that have been created:



Order Microservice Chapter 8

[ 384 ]

That key is the key you want to send in the request's HEADER.

Now that we have a token, we can modify the send_order.py script and add the token
information to the request, so on the top of the send_order function, add the following
code:

token = '744cf4f8bd628e62f248444a478ce06681cb8089'

headers = {
    'Authorization': f'Token {token}',
    'Content-type': 'application/json'
}

The token variable is the token that we created for the user api_user. To get the token, just
log in to the Django admin UI and under AUTH TOKEN, you will see the tokens that have
been created. Just remove the token that I added here and replace it with the one that was
generated for the api_user on your application.

Then, we need to send the headers along with the request. Change the following code:

response = requests.put(
    'http://127.0.0.1:8000/api/order/add/',
    data=json.dumps(data))

Replace it with this:

response = requests.put(
    'http://127.0.0.1:8000/api/order/add/',
    headers=headers,
    data=json.dumps(data))



Order Microservice Chapter 8

[ 385 ]

Now, we can go to the terminal and run our code again. You should see an output similar
to the output shown in the following screenshot:

Note that now, we get the following log message:

[21/Jan/2018 09:49:40] "PUT /api/order/add/ HTTP/1.1" 201 0

This means that the authentication works properly. Go ahead and take the time to explore
the Django admin UI and verify that now we have one customer and one order with a
couple of items created on our database.

Let's try some of the other endpoints to see if they are working as expected. For example,
we can get all the orders for that customer that we just created.



Order Microservice Chapter 8

[ 386 ]

You can perform small tests to the endpoints using any tool you want.
There are a few very handy browser plugins that you can install, or, if you
are like me and like to do everything on the terminal, you can use cURL.
Alternatively if you want to try to build something with Python, there is
the httpie package that you can install using pip. Use the pip install
httpie --upgrade --user command to install httpie on your local
directory under ./local/bin. So, don't forget to add this directory to
your PATH. I like to use httpie instead of cURL because httpie shows a
nice and formatted JSON output so I can get a better view of the response
that I'm getting back from the endpoint.

So, let's try the first GET endpoint that we created:

  http http://127.0.0.1:8000/api/customer/1/orders/get/
'Authorization: Token 744cf4f8bd628e62f248444a478ce06681cb8089'

And you should see the following output:

HTTP/1.1 200 OK
Allow: GET, HEAD, OPTIONS
Content-Length: 270
Content-Type: application/json
Date: Sun, 21 Jan 2018 10:03:00 GMT
Server: WSGIServer/0.2 CPython/3.6.2
Vary: Accept
X-Frame-Options: SAMEORIGIN

[
    {
        "items": [
            {
                "name": "Prod 001",
                "price_per_unit": 10,
                "product_id": 1,
                "quantity": 2
            },
            {
                "name": "Prod 002",
                "price_per_unit": 12,
                "product_id": 2,
                "quantity": 2
            }
        ],
        "order_customer": {
            "customer_id": 14,
            "email": "test@test.com",



Order Microservice Chapter 8

[ 387 ]

            "name": "Test User"
        },
        "order_id": 10,
        "status": 1,
        "total": "190.00"
    }
]

Perfect! Just as expected. Go ahead and try the other endpoints!

Next up, we are going back to the online video game store and send the order.

Integration with the game online store
Now that we have the service up and running, we are ready to finish the online video game
store project from Chapter 7, Online Video Game Store with Django. We are not going to
perform many changes, but there are two improvements that we are going to do:

At the moment, in the online video game store, it is not possible to submit orders.
The users of our site can only add items to the cart, visualize, and edit the cart's
items. We are going to finish that implementation and create a view so that we
can submit the order.
We are going to implement one more view where we can see the order history.

So, let's get right to it!

The first change that we are going to do is add the authentication token for the api_user
that we created in the service orders. We also want to add the base URL to the order service,
so it will be easier for us to build up the URLs that we need to perform the requests. Open
the settings.py file in the gamestore directory and add these two constant variables:

ORDER_SERVICE_AUTHTOKEN =
'744cf4f8bd628e62f248444a478ce06681cb8089'
ORDER_SERVICE_BASEURL = 'http://127.0.0.1:8001'

It does not matter where you place this code, but maybe it's a good idea to just place it at
the end of the file.



Order Microservice Chapter 8

[ 388 ]

The next change that we are going to do is add a namedtuple called OrderItem, just to
help us prepare the order's data so it is compatible with the format that the order service is
expecting. Open the models.py file in the gamestore/main directory and add import:

from collections import namedtuple

Another change to the models file is that we are going to add a new method in the
ShoppingCartManager class called empty, so that when it's called, it will remove all the
cart's items. Inside of the ShoppingCartManager class, add the following method:

def empty(self, cart):
    cart_items = ShoppingCartItem.objects.filter(
        cart__id=cart.id
    )

    for item in cart_items:
        item.delete()

At the end of the file, let's create the namedtuple:

OrderItem = namedtuple('OrderItem',
                         'name price_per_unit product_id quantity')

Next up, we are going to change the cart.html template. Locate the send order button:

<button class='btn btn-primary'>
  <i class="fa fa-check" aria-hidden="true"></i>
  &nbsp;SEND ORDER
</button>

Replace it with the following:

<form action="/cart/send">
  {% csrf_token %}
  <button class='btn btn-primary'>
    <i class="fa fa-check" aria-hidden="true"></i>
    &nbsp;SEND ORDER
  </button>
</form>

Nice! We just created a form around the button and added the Cross-Site Request Forgery
token within the form, so that when we click the button, it will send a request to
cart/send.



Order Microservice Chapter 8

[ 389 ]

Let's add the new URLs. Open the urls.py file in the main app directory, and let's add two
new URLs:

path(r'cart/send', views.send_cart),
path(r'my-orders/', views.my_orders),

You can place these two URL definitions right after the definition of the /cart/ URL.

Open the views.py file and add some new imports:

import json
import requests
from http import HTTPStatus
from django.core.serializers.json import DjangoJSONEncoder
from gamestore import settings

Then, we add a function that will help us with the serialization of the order data to be sent
to the order service:

def _prepare_order_data(cart):

    cart_items = ShoppingCartItem.objects.values_list(
        'game__name',
        'price_per_unit',
        'game__id',
        'quantity').filter(cart__id=cart.id)

    order = cart_items.aggregate(
        total_order=Sum(F('price_per_unit') * F('quantity'),
output_field=DecimalField(decimal_places=2))
    )

    order_items = [OrderItem(*x)._asdict() for x in cart_items]

    order_customer = {
        'customer_id': cart.user.id,
        'email': cart.user.email,
        'name': f'{cart.user.first_name} {cart.user.last_name}'
    }

    order_dict = {
        'items': order_items,
        'order_customer': order_customer,
        'total': order['total_order']
    }

    return json.dumps(order_dict, cls=DjangoJSONEncoder)



Order Microservice Chapter 8

[ 390 ]

Now, we have two more views to add, the first being the send_order:

@login_required
def send_cart(request):
    cart = ShoppingCart.objects.get(user_id=request.user.id)

    data = _prepare_order_data(cart)

    headers = {
        'Authorization': f'Token
{settings.ORDER_SERVICE_AUTHTOKEN}',
        'Content-type': 'application/json'
    }

    service_url =
f'{settings.ORDER_SERVICE_BASEURL}/api/order/add/'

    response = requests.post(
        service_url,
        headers=headers,
        data=data)

    if HTTPStatus(response.status_code) is HTTPStatus.CREATED:
        request_data = json.loads(response.text)
        ShoppingCart.objects.empty(cart)
        messages.add_message(
            request,
            messages.INFO,
            ('We received your order!'
             'ORDER ID: {}').format(request_data['order_id']))
    else:
        messages.add_message(
            request,
            messages.ERROR,
            ('Unfortunately, we could not receive your order.'
             ' Try again later.'))

    return HttpResponseRedirect(reverse_lazy('user-cart'))

Next is the my_orders view, which will be the new view that returns the order history:

@login_required
def my_orders(request):
    headers = {
        'Authorization': f'Token
{settings.ORDER_SERVICE_AUTHTOKEN}',
        'Content-type': 'application/json'
    }



Order Microservice Chapter 8

[ 391 ]

    get_order_endpoint =
f'/api/customer/{request.user.id}/orders/get/'
    service_url =
f'{settings.ORDER_SERVICE_BASEURL}{get_order_endpoint}'

    response = requests.get(
        service_url,
        headers=headers
    )

    if HTTPStatus(response.status_code) is HTTPStatus.OK:
        request_data = json.loads(response.text)
        context = {'orders': request_data}
    else:
        messages.add_message(
            request,
            messages.ERROR,
            ('Unfortunately, we could not retrieve your orders.'
             ' Try again later.'))
        context = {'orders': []}

    return render(request, 'main/my-orders.html', context)

We need to create the my-orders.html file, which is going to be the template that is
rendered by the my_orders view. Create a new file called my-orders.html in the
main/templates/main/ directory with the following contents:

{% extends 'base.html' %}

{% block 'content' %}

<h3>Order history</h3>

{% for order in orders %}

<div class="order-container">
  <div><strong>Order ID:</strong> {{order.id}}</div>
  <div><strong>Create date:</strong> {{ order.created_at }}</div>
  <div><strong>Status:</strong> <span class="label label-
success">{{order.status}}</span></div>
  <div class="table-container">
    <table class="table table-striped">
      <thead>
        <tr>
          <th>Product name</th>
          <th>Quantity</th>
          <th>Price per unit</th>



Order Microservice Chapter 8

[ 392 ]

        </tr>
      </thead>
      <tbody>
        {% for item in order.items %}
        <tr>
          <td>{{item.name}}</td><td>{{item.quantity}}</td>
          <td>${{item.price_per_unit}}</td>
        </tr>
        {% endfor %}
      </tbody>
    </table>
  </div>
  <div><strong>Total amount:</strong>{{order.total}}</div>
  <hr/>
</div>
{% endfor %}
{% endblock %}

This template is very basic; it is just looping through the orders and then looping the items
and building a HTML table with the item's information.

We need to do some changes in site.css, where we have the custom styling of the online
video game store. Open the site.css file in the static/styles folder and let's do some
modifications. First, locate this code, which is shown as follows:

.nav.navbar-nav .fa-home,

.nav.navbar-nav .fa-shopping-cart {
    font-size: 1.5em;
}

Replace it with the following:

.nav.navbar-nav .fa-home,

.nav.navbar-nav .fa-shopping-cart,

.nav.navbar-nav .fa-truck {
    font-size: 1.5em;
}

At the end of this file, we can add stylings that are specific to the order history page:

.order-container {
    border: 1px solid #000;
    margin: 20px;
    padding: 10px;
}



Order Microservice Chapter 8

[ 393 ]

Now, we are going to add one more menu option that will be a link to the new my
orders page. Open the base.html file in the templates directory in the applications
root directory, and locate the menu option CART:

<li>
  <a href="/cart/">
    <i class="fa fa-shopping-cart" aria-hidden="true"></i> CART
  </a>
</li>

Right after the closing </li> tag, add the following code:

<li>
  <a href="/my-orders/">
    <i class="fa fa-truck" aria-hidden="true"></i> ORDERS
  </a>
</li>

Finally, the last change that we are going to do is improve the layout of error messages that
we show in the UI. Locate this code at the end of the base.html file:

{% if messages %}
  {% for message in messages %}
    {{message}}
    </div>
  {% endfor %}
{% endif %}

Replace it with the following code:

{% if messages %}
  {% for message in messages %}
    {% if message.tags == 'error' %}
      <div class="alert alert-danger" role="alert">
    {% else %}
      <div class="alert alert-info" role="alert">
    {% endif %}
    {{message}}
    </div>
  {% endfor %}
{% endif %}



Order Microservice Chapter 8

[ 394 ]

Testing the integration
We have everything in place. Now, we need to start both the website and the services so we
can verify if everything is working properly.

One thing to keep in mind is that for testing, we will need to run the Django application in
different ports. We can run the website (game online store) using the default port 800, and
for the order services, we can use port 8001.

Open two terminals; in one terminal, we are going to start the online video game store:

python manage.py runserver

And, on the second terminal, we are going to start the order service:

python manage.py runserver 127.0.0.1:8001

Great! Open the browser and head to http://localhost:8000 and log in with our
credentials. After logging in, you will notice that a few things are different. Now, there is a
new option in the top menu called ORDERS. It should be empty, so go ahead and add a few
items to the cart. When you are done, go to the cart view and click on the send order button.

If everything went right, you should see a notification at the top of the page, as follows:

Perfect! It worked just as expected. Notice that after sending the order to the order service,
the shopping cart got emptied as well.



Order Microservice Chapter 8

[ 395 ]

Now, click on the ORDERS option on the top menu, and you should see the order that we
just submitted:

Deploying to AWS
Now, it is time to show the world the work that we have been doing so far.

We are going to deploy the gamestore Django application and also the order service to EC2
instances in Amazon Web services.

This section is not about configuring Virtual Private Cloud, Security
groups, Routing tables, and EC2 instances. Packt has plenty of excellent
books and videos available that talk about this topic.

Instead, we will assume that you already have your environment set up, and focus on:

Deploying the application
Installing all necessary dependencies
Installing and using gunicorn
Installing and configuring nginx



Order Microservice Chapter 8

[ 396 ]

My AWS setup is quite simple, but it definitely works for more complex setups. Right now,
I have one VPC with one subnet and two EC2 instances on it (gamestore and order-
service). See the following screenshot:

We can start with the gamestore application; connect via ssh to the EC2 instance that you
wish to deploy the game online application on. Remember that to ssh in one of those
instances, you will need to have the .pem file:

ssh -i gamestore-keys.pem ec2-user@35.176.16.157

We will start by updating any package that we have installed on that machine; it is not
required, but it is a good practice since some of the packages may have security fixes and
performance improvements that you probably want to have on your installs. Amazon Linux
uses the yum package manager, so we run the following command:

sudo yum update

Just answer yes y to any package that needs an update.

These EC2 instances do not have Python installed by default, so we need to install it as well:

sudo yum install python36.x86_64 python36-pip.noarch python36-
setuptools.noarch

We also need to install nginx:

sudo yum install nginx

Then, we install our project dependencies:

sudo pip-3.6 install django requests pillow gunicorn

Perfect! Now, we can copy our application, exit this instance, and from our local machine,
run the following command:

scp -R -i gamestore-keys.pem ./gamestore ec2-user@35.176.16.157:~/gamestore



Order Microservice Chapter 8

[ 397 ]

This command will recursively copy all the files from the gamestore directory on our local
machine over to our home directory in the EC2 instance.

Modifying the settings.py file
There is one thing we have to change here. In the settings.py file, there is a list called
ALLOWED_HOSTS, which was empty when we created the Django project. We will need to 
add the IP address of the EC2 that we are deploying the application to; in my case, it would
be:

ALLOWED_HOSTS=["35.176.16.157"]

We also need to change the ORDER_SERVICE_BASEURL that we defined at the end of the
file. It needs to be the address of the instance that we are going to deploy to the order
service. In my case, the IP is 35.176.194.15, so my variable will look like this:

ORDER_SERVICE_BASEURL = "http://35.176.194.15"

We are going to create a folder to keep the application since it is not a good idea to keep the
application running in the ec2-user folder. So, we are going to create a new folder in the
root directory called app and copy the gamestore directory over to the newly created
directory:

sudo mkdir /app && sudo cp -R ./gamestore /app/

We need also to set the current permissions on that directory. When nginx is installed, it
also creates a nginx user and a group. So, let's change the ownership of the entire folder:

cd / && sudo chown -R nginx:nginx ./gamestore

Finally, we are going to set up nginx, edit the /etc/nginx/nginx.conf file, and under
service, add the following configuration:

location / {
  proxy_pass http://127.0.0.1:8000;
  proxy_set_header Host $host;
  proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}

location /static {
  root /app/gamestore;
}



Order Microservice Chapter 8

[ 398 ]

We need to restart the nginx service so that the service reflects the changes that we just
made:

sudo service nginx restart

Finally, we go over to the application folder:

cd /app/gamestore

Start the application with gunicorn. We are going to start the application as an nginx user:

sudo gunicorn -u nginx gamestore.wsgi

Now, we can browse to the site. You don't need to specify port 8000 since nginx will route
the requests coming from port 80 to 127.0.0.1:8000.

Deploying the order service
Deploying the order service is pretty much the same as the gamestore project, the only
difference is that we are going to install different Python dependencies and deploy the
application in a different directory. So, let's get started.

You can pretty much repeat all the steps up until installing the nginx step. Also, make sure
that you are using the elastic IP address of the other EC2 instance from now on.

After you install nginx, we can install the order service dependencies:

sudo pip-3.6 install django djangorestframework requests

We can now copy the project file. Go to the directory where you have the service's
directory, and run this command:

scp -R -i order-service-keys.pem ./order ec2-user@35.176.194.15:~/gamestore

Like gamestore, we also need to edit the settings.py file and add our EC2 instance
elastic IP:

ALLOWED_HOSTS=["35.176.194.15"]



Order Microservice Chapter 8

[ 399 ]

We will also create a folder in the root directory so the project is not laying around in the
ec2-user home directory:

sudo mkdir /srv && sudo cp -R ./order /srv/

Let's change the owner of the entire directory as well:

cd / && sudo chown -R nginx:nginx ./order

Let's edit the /etc/nginx/nginx.conf file, and, under service, add the following
configuration:

location / {
  proxy_pass http://127.0.0.1:8000;
  proxy_set_header Host $host;
  proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}

This time, we don't need to configure the static folder since the order services don't have
anything like images, templates, JS, or CSS files.

Restart the nginx service:

sudo service nginx restart

Go over to the service's directory:

cd /srv/order

And start the application with gunicorn. We are going to start the application as an nginx
user:

sudo gunicorn -u nginx order.wsgi

Finally, we can browse to the address where the gamestore is deployed, and you should
see the site up and running.



Order Microservice Chapter 8

[ 400 ]

Browsing to the site, you will see the first page. All the products are loading, and the login
and logout sections are also working properly. Here's a screenshot of my system:



Order Microservice Chapter 8

[ 401 ]

If you browse to a view that makes use of the order service, for example, the orders section,
you can verify that everything is working, and if you have placed any orders on the site,
you should see the orders listed here, as shown in the following screenshot:

Summary
We have covered a lot of topics in this chapter; we have built the order service that was
responsible for receiving orders from the web application that we developed in the
previous chapter. The order service also provides other features, such as the ability to
update the status of orders and provide order information using different criteria.

This microservice was an extension of the web application that we developed in the
previous chapter, and in the following chapter, we are going to extend it even further by
adding serverless functions to notify the users of our application when an order is
successfully received and also when the order's status has changed to shipped.



9
Notification Serverless

Application
In this chapter, we are going to explore AWS Lambda Functions and AWS API Gateway.
AWS Lambda enables us to create serverless functions. Serverless doesn't mean that it is
without a server; in reality, it means that these functions don't require the DevOps overhead
that you would have if you were running the application on, for example, an EC2 instance.

Serverless architecture is not the silver bullet or the solution to all the problems, but there
are many advantages, such as pricing, the fact that almost no DevOps is required, and
support for different programming languages.

In the case of Python, tools like Zappa and the microframework for AWS Chalice, which is
also developed by Amazon, make creating and deploying serverless functions incredibly
easy.

In this chapter you will learn how to:

Create a service using Flask framework
Install and configure the AWS CLI
Use the CLI to create S3 buckets and upload files
Install and configure Zappa
Deploy an application using Zappa

So without further ado, let's dive right into it!



Notification Serverless Application Chapter 9

[ 403 ]

Setting up the environment
Let's start by creating the folder in which we will place the application files. First, create a
directory called notifier and go into that directory so we can create the virtual
environment:

mkdir notifier && cd notifier

We create the virtual environment using pipenv:

pipenv --python ~/Installs/Python3.6/bin/python3.6

Remember that if Python 3 is in our path, you can simply call:

pipenv --three

To build this service we are going to use the micro web framework Flask, so let's install that:

pipenv install flask

We are also going to install the requests package, which will be used when sending requests
to the order service:

pipenv install requests

That should be everything we need for now. Next, we are going to see how we can use
AWS Simple Email Service to send emails from our applications.

Setting up the Amazon Web Services CLI
We also need to install the AWS command-line interface, which will save us a lot of time
when deploying serverless functions and also when creating S3 buckets.

The installation is quite simple, as it can be installed via pip, and the AWS CLI has support
for Python 2 and Python 3 and runs on different operating systems, such as Linux, macOS,
and Windows.

Open a terminal and type the command:

pip install awscli --upgrade --user



Notification Serverless Application Chapter 9

[ 404 ]

The upgrade option will tell pip to update all the requirements that are already installed,
and the --user option means that pip will install the AWS CLI in our local directory, so it
won't touch any library that is installed globally on our system. On Linux systems, when
installing a Python package using the --user option, the package will be installed in the
directory .local/bin, so make sure that you have that in your path.

Just to verify that the installation worked properly, type the following command:

aws --version

You should see an output similar to this:

aws-cli/1.14.30 Python/3.6.2 Linux/4.9.0-3-amd64 botocore/1.8.34

Here you can see the AWS CLI version, as well as the operating system version, Python
version, and which version of botocore is currently in use. botocore is the core library
used by the AWS CLI. Also, boto is an SDK for Python, which allows developers to write
software to work with Amazon services like EC2 and S3.

Now we need to configure the CLI, and we will need to have some information at hand.
First, we need the aws_access_key_id and the aws_secret_access_key, as well as your
preferred region and output. The most common value, the output option, is JSON.

To create the access keys, click on the drop-down menu with your username on the top
right hand of the AWS console page, and select My Security Credentials. You will land on
this page:



Notification Serverless Application Chapter 9

[ 405 ]

Here you can configure different account security settings, such as changing the password
or enabling multi-factor authentication, but the one you should choose now is Access keys
(access key ID and secret access key). Then click on Create New Access Key, and a dialog
will be opened with your keys. You will also be given the option to download the keys. I
suggest you download them and keep them in a safe place.

Go here https:// docs. aws. amazon. com/ general/ latest/ gr/ rande. html to see the AWS
regions and endpoints.

Now we can configure the CLI. In the command line, type:

aws configure

You will be asked to provide the access key, the secret access key, the region, and the
default output format.

Configuring a Simple Email Service
Amazon already has a service called Simple Email Service that we can use in order to send
email through our application. We will be running the service in sandbox mode, which
means that we will also be able to send emails to verified email addresses. This can be
changed if you plan to use the service in production, but for the purposes of this book, it
will suffice to just have it running in sandbox mode.

If you plan to have this application running in production and wish to
move out of the Amazon SES sandbox, you can easily open a support case
for increasing the email limit. To send the request, you can go to the SES
home page, and on the left-hand menu, under the section Email Sending,
you will find the link Dedicated IPs. There, you will find more
information and also a link where you can apply to increase your email
limit.

To get it working, we will need to have two email accounts that we can use. In my case, I
have my own domain. I have also created two email
accounts—donotreply@dfurtado.com, which will be the email that I will use to send
emails, and pythonblueprints@dfurtado.com, which is the email that will receive the
email. A user in an online (video) game store application will use this email address and we
will place a few orders so we can test the notification later on.

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


Notification Serverless Application Chapter 9

[ 406 ]

Registering the emails
So let's start adding the emails. We are going to register donotreply@dfurtado.com first.
Log in to the AWS console and search for Simple Email Service in the search bar. On the
left side, you will see a few options. Under Identity Management, click on Email
Addresses. You will see a screen like this:

As you can see, the list is empty, so let's go ahead and add two emails. Click on Verify a
New Email Address and a dialog will appear where you can enter an email address. Just
enter the email that you wish to use and click on Verify This Email Address button. By
doing this a verification email will be sent to the email address that you specified, and
therein you will find a link for the verification. 

Repeat the same steps for the second email, the one that will receive the messages.

Now, go over to the left side menu again and click on SMTP Settings under Email
Sending.

There you will see all the configurations necessary to send emails, and you will also have to
create SMTP credentials. So click on the button Create My SMTP Credentials, and a new
page will be opened where you can input the IAM username that you wish. In my case, I'm
adding python-blueprints. After you have done that, click the button Create. After the
credentials have been created, you will be presented with a page where you can see the
SMTP username and password. You will have the option to download these credentials if
you like.



Notification Serverless Application Chapter 9

[ 407 ]

Creating an S3 bucket
In order to send a template email to the users, we need to copy our templates to an S3
bucket. We can easily do that through the web, or you can use the AWS CLI that we just
installed. The command to create the S3 bucket in the es-west-2 region is something like:

aws s3api create-bucket \
--bucket python-blueprints \
--region eu-west-2 \
--create-bucket-configuration LocationConstraint=eu-west-2

Here we use the command s3api, which will provide us with different sub-commands to
interact with the AWS S3 service. We call the sub-command create-bucket, which, as the
name suggests, will create a new S3 bucket. To this sub-command, we specify three
arguments. First, --bucket, which specifies the S3 bucket's name, then --region, to
specify which region the bucket will be created - in this case, we are going to create the
bucket in the eu-west-2. Lastly, locations outside the region us-east-1 request the
setting  LocationConstraint so the bucket can be created in the region that we wish.

Implementing the notification service
Now that we have everything set up, and the files that we are going to use as a template to
send emails to the customers of the online (video) game store are in place in the python-
blueprints S3 bucket, it is time to start implementing the notification service.

Let's go ahead and create a file called app.py in the notifier directory, and to start with,
let's add some imports:

import smtplib
from http import HTTPStatus
from smtplib import SMTPAuthenticationError, SMTPRecipientsRefused

from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart

import boto3
from botocore.exceptions import ClientError

from flask import Flask
from flask import request, Response

from jinja2 import Template
import json



Notification Serverless Application Chapter 9

[ 408 ]

First, we import the JSON module so we can serialize and deserialize data. We import
HTTPStatus from the HTTP module so we can use the HTTP status constants when
sending responses back from the service's endpoints.

Then we import the modules that we will need to send emails. We start by importing the
smtplib and also some exceptions that we want to handle.

We also import MIMEText, which will be used to create a MIME object out of the email
content, and the MIMEMultipart that will be used to create the message that we are going
to send.

Next, we import the boto3 package so we can work with the AWS services. There are some
exceptions that we will be handling; in this case, both exceptions are related to the S3
buckets.

Next are some Flask related imports, and last but not least, we import the Jinja2 package
to template our emails.

Continuing working on the app.py file, let's define the constant that will hold the name or
the S3 bucket that we created:

S3_BUCKET_NAME = 'python-blueprints'

Then we create the Flask app:

app = Flask(__name__)

We are also going to add a custom exception called S3Error:

class S3Error(Exception):
    pass

Then we are going to define two helper functions. The first one is to send emails:

def _send_message(message):

    smtp = smtplib.SMTP_SSL('email-smtp.eu-west-1.amazonaws.com',
     465)

    try:
        smtp.login(
            user='DJ********DER*****RGTQ',
            password='Ajf0u*****44N6**ciTY4*****CeQ*****4V')
    except SMTPAuthenticationError:
        return Response('Authentication failed',
                        status=HTTPStatus.UNAUTHORIZED)



Notification Serverless Application Chapter 9

[ 409 ]

    try:
        smtp.sendmail(message['From'], message['To'],
         message.as_string())
    except SMTPRecipientsRefused as e:
        return Response(f'Recipient refused {e}',
                        status=HTTPStatus.INTERNAL_SERVER_ERROR)
    finally:
        smtp.quit()

    return Response('Email sent', status=HTTPStatus.OK)

Here, we define the function _send_message, which gets just one argument, message. We
start this function by creating an object that will encapsulate an SMTP connection. We use
SMTP_SSL because the AWS Simple Email Service required TLS. The first argument is the
SMTP host, which we created at the AWS Simple Email Service, and the second argument is
the port, which will be set as 456 when SMTP connections over SSL are required.

Then we call the login method, passing the username and the password, which can also be
found in the AWS Simple Email Service. In cases where
an SMTPAuthenticationError exception is thrown we send an UNAUTHORIZED response
back to the client.

If logging into the SMTP server is successful, we call the sendmail method, passing the
email that is sending the message, the destination recipient, and the message. We handle
the situation where some of the recipients reject our message, in that we return an
INTERNAL SERVER ERROR response, and then we just quit the connection.

Lastly, we return the OK response stating that the message has been sent successfully.

Now, we create a helper function to load the template file from the S3 bucket and return a
rendered template for us:

def _prepare_template(template_name, context_data):

    s3_client = boto3.client('s3')

    try:
        file = s3_client.get_object(Bucket=S3_BUCKET_NAME,
        Key=template_name)
    except ClientError as ex:
        error = ex.response.get('Error')
        error_code = error.get('Code')

        if error_code == 'NoSuchBucket':
            raise S3Error(



Notification Serverless Application Chapter 9

[ 410 ]

             f'The bucket {S3_BUCKET_NAME} does not exist') from ex
        elif error_code == 'NoSuchKey':
            raise S3Error((f'Could not find the file "
               {template_name}" '
               f'in the S3 bucket {S3_BUCKET_NAME}')) from ex
        else:
            raise ex

    content = file['Body'].read().decode('utf-8')
    template = Template(content)

    return template.render(context_data)

Here we define the function _prepare_template and we take two
arguments; template_name, which is the file name that we stored in the S3 bucket, and
context_data, which is a dictionary containing the data that we are going to render in the
template.

First, we create an S3 client, then we use the get_object method to pass the bucket name
and the Key. We set the bucket keyword argument to S3_BUCKET_NAME, which we defined
at the top of this file with the value of python-blueprints. The Key keyword argument is
the name of the file; we set it to the value that we specified in the argument
template_name.

Next, we access the key Body in the object returned from the S3 bucket, and call the method
read. This will return a string with the file contents. Then, we create a Jinja2 Template
object passing the contents of the template's file, and finally, we call the render method
passing the context_data.

Now, let's implement the endpoint that will be called to send a confirmation email to the
customer whose order we receive:

@app.route("/notify/order-received/", methods=['POST'])
def notify_order_received():
    data = json.loads(request.data)

    order_items = data.get('items')

    customer = data.get('order_customer')
    customer_email = customer.get('email')
    customer_name = customer.get('name')

    order_id = data.get('id')
    total_purchased = data.get('total')



Notification Serverless Application Chapter 9

[ 411 ]

    message = MIMEMultipart('alternative')

    context = {
        'order_items': order_items,
        'customer_name': customer_name,
        'order_id': order_id,
        'total_purchased': total_purchased
    }

    try:
        email_content = _prepare_template(
            'order_received_template.html',
            context
        )
    except S3Error as ex:
        return Response(str(ex),
       status=HTTPStatus.INTERNAL_SERVER_ERROR)

    message.attach(MIMEText(email_content, 'html'))

    message['Subject'] = f'ORDER: #{order_id} - Thanks for your
    order!'
    message['From'] = 'donotreply@dfurtado.com'
    message['To'] = customer_email

    return _send_message(message)

So here, define a function called notify_order_received, which we decorate with the
@app.route to define the route and the methods that are allowed when calling this
endpoint. The route is defined as /notify/order-received/ and the methods keyword
argument takes a list with the allowed HTTP methods. In this case, we want to allow only
POST requests.

We start this function by getting all the data that has been passed in the request. In Flask
applications this data can be accessed on request.data; we use the json.loads method
to pass request.data as an argument, so it will deserialize the JSON objects into a Python
object. Then we get the items, which are a list with all the items included in the order, and
we get the value of the attribute order_customer so we can get the customer's email and
the customer's name.

After that, we get the order ID, which can be accessed via the property id, and lastly, we
get the total purchase value that is in the property total of the data that has been sent to
this endpoint.



Notification Serverless Application Chapter 9

[ 412 ]

Then we create an instance of MIMEMultiPart that passes as an argument alternative,
which means that we will create a message with the MIME type set to multipart/alternative.
After that, we configure a context that will be passed to the email template, and we use the
_prepare_template function to pass the template that we want to render and the context
with the data that will be displayed in the email. The value of the rendered template will be
stored in the variable email_content.

Lastly, we do the final setup for our email message; we attach the rendered template to the
message, we set subject, sender, and destinations, and we call the _send_message function
to send the message.

Next, we are going to add the endpoint that will notify the users when their order has
changed status to Shipping:

@app.route("/notify/order-shipped/", methods=['POST'])
def notify_order_shipped():
    data = json.loads(request.data)

    customer = data.get('order_customer')

    customer_email = customer.get('email')
    customer_name = customer.get('name')

    order_id = data.get('id')

    message = MIMEMultipart('alternative')

    try:
        email_content = _prepare_template(
            'order_shipped_template.html',
            {'customer_name': customer_name}
        )
    except S3Error as ex:
        return Response(ex,
status=HTTPStatus.INTERNAL_SERVER_ERROR)

    message.attach(MIMEText(email_content, 'html'))

    message['Subject'] = f'Order ID #{order_id} has been shipped'
    message['From'] = 'donotreply@dfurtado.com'
    message['To'] = customer_email

    return _send_message(message)



Notification Serverless Application Chapter 9

[ 413 ]

Here we define a function called notify_order_shipped and decorate it with the
@app.route decorator, passing two arguments and the route, which is set to
/notify/order-shipped/, and define that the method that is going to be accepted in this
endpoint is the POST method.

We start by getting the data that has been passed in the request - basically the same as the
previous function, the notify_order_received. We also create an instance of
MIMEMultipart, setting the MIME type to multipart/alternative. Next, we use the
_prepare_template function to load the template and render using the context that we
are passing in the second argument; in this case, we are passing only the customer's name.

Then we attach the template to the message and do the final set up, setting the subject, the
send, and the destination. Finally, we call _send_message to send the message.

Next, we are going to create two email templates, one that we are going to use when
sending an order confirmation notification to the user and the other for when an order has
been shipped.

Email templates
Now we are going to create the templates that are going to be used when sending the
notification emails to the online (video) game store's customers.

In the application's root directory, create a directory called templates and create a file
called  order_received_template.html, with the contents shown as follows:

<html>
  <head>
  </head>
  <body>
    <h1>Hi, {{customer_name}}!</h1>
    <h3>Thank you so much for your order</h3>
    <p>
      <h3>Order id: {{order_id}}</h3>
    </p>
    <table border="1">
      <thead>
        <tr>
          <th align="left" width="40%">Item</th>
          <th align="left" width="20%">Quantity</th>
          <th align="left" width="20%">Price per unit</th>
        </tr>
      </thead>



Notification Serverless Application Chapter 9

[ 414 ]

      <tbody>
        {% for item in order_items %}
        <tr>
          <td>{{item.name}}</td>
          <td>{{item.quantity}}</td>
          <td>${{item.price_per_unit}}</td>
        </tr>
        {% endfor %}
      </tbody>
    </table>
    <div style="margin-top:20px;">
      <strong>Total: ${{total_purchased}}</strong>
    </div>
  </body>
</html>

Now, let's create another template in the same directory called
order_shipped_template.html, with the contents shown as follows:

<html>
  <head>
  </head>
  <body>
    <h1>Hi, {{customer_name}}!</h1>
    <h3>We just want to let you know that your order is on its way!
    </h3>
  </body>
</html>

If you have read Chapter 7, Online Video Game Store with Django, you should be familiar
with this syntax. The Jinja 2 syntax has a lot of similarities when compared to the Django
template language.

Now we can copy the template to the S3 bucket that we created previously. Open a terminal
and run the following command:

aws s3 cp ./templates s3://python-blueprints --recursive

Perfect! Next, we are going to deploy our project.



Notification Serverless Application Chapter 9

[ 415 ]

Deploying the application with Zappa
Now we have got to a very interesting section of the chapter. We are going to deploy the
Flask app that we created using a tool called Zappa (https:/ /github. com/ Miserlou/
Zappa). Zappa is a tool developed in Python (by Rich Jones, the principal author of Zappa)
that makes it very easy to build and deploy serverless Python applications.

The installation is pretty straightforward. Within the virtual environment that we have been
using to develop this project, you can just run the pipenv command:

pipenv install zappa

After the installation, you can start the configuration. You just need to make sure that you
have a valid AWS account and the AWS credentials file is in place. If you followed this
chapter from the beginning and installed and configured the AWS CLI you should be all
set.

To configure Zappa for our project you can run:

zappa init

You will see the ASCII Zappa logo (very beautiful BTW), and it will start asking some
questions. The first one is:

Your Zappa configuration can support multiple production stages, like
'dev', 'staging', and 'production'.
What do you want to call this environment (default 'dev'):

You can just hit Enter to default to dev. Next, Zappa will ask the name of an AWS S3
bucket: 

Your Zappa deployments will need to be uploaded to a private S3 bucket.
If you don't have a bucket yet, we'll create one for you too.
What do you want call your bucket? (default 'zappa-uc40h2hnc'):

Here you can either specify an existent or create a new one. Then, Zappa will try to detect
the application that we are trying to deploy:

It looks like this is a Flask application.
What's the modular path to your app's function?
This will likely be something like 'your_module.app'.
We discovered: notify-service.app
Where is your app's function? (default 'notify-service.app'):

https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa


Notification Serverless Application Chapter 9

[ 416 ]

As you can see, Zappa automatically found the Flask app defined in the notify-
service.py file. You can just hit Enter to set the default value.

Next, Zappa will ask if you would like to deploy the application globally; we can keep the
default and answer n. Since we are deploying this application in a development
environment, we don't really need to deploy it globally. When your application goes into
production you can evaluate if you need to deploy it globally.

Lastly, the complete configuration will be displayed, and here you have to change the
review and make any modifications if needed. You don't need to be too worried about
saving the configuration or not because the Zappa settings file is just a text file with the
settings in JSON format.  You can just edit the file at any time and change it manually.

If everything went well, you should see a file called zappa_settings.json on the root's
directory of your application, with the contents similar to the content shown as follows:

{
    "dev": {
        "app_function": "notify-service.app",
        "aws_region": "eu-west-2",
        "project_name": "notifier",
        "runtime": "python3.6",
        "s3_bucket": "zappa-43ivixfl0"
    }
}

Here you can see the dev environment settings. The app_function specifies the Flask app
that I created on the notify-service.py file, the aws_region specifies in which region
the application will be deployed - in my case since I'm in Sweden, I chose eu-west-2
(London) which is the closest region to me. The project_name will get by default the name
of the directory where you run the command zappa init. 

Then we have the runtime, which refers to the Python version that you are running with the
application. Since the virtual environment that we created for this project used Python 3,
the value for this property should be a version of Python 3 - in my case, I have installed
3.6.2. Lastly, we have the name of the AWS S3 bucket that Zappa will use to upload the
project files.

Now, let's deploy the application that we just created! On the terminal, simply run the
following command:

zappa deploy dev



Notification Serverless Application Chapter 9

[ 417 ]

Zappa will perform lots of tasks for you, and at the end it will display the URL where the
application has been deployed. In my case I've got:

https://rpa5v43ey1.execute-api.eu-west-2.amazonaws.com/dev

Yours will look slightly different. So, we have defined two endpoints in our Flask
application, /notify/order-received and /notify/order-shipped. These endpoints
can be called with the following URLs:

https://rpa5v43ey1.execute-api.eu-west-2.amazonaws.com/dev/notify/order-rec
eived

https://rpa5v43ey1.execute-api.eu-west-2.amazonaws.com/dev/notify/order-shi
pped

If you want to see more information about the deployment, you can use the Zappa
command: zappa status.

In the next section, we are going to learn how to restrict access to these endpoints and create
an access key that can be used to make the API calls.

Restricting access to the API's endpoints
Our Flask application has been deployed, and at this point anyone can make a request to
the endpoints that have been configured on the AWS API Gateway. What we want to do is
restrict the access only to requests that contain an access key.

To do that, log into our account on AWS console and on the Services menu search for and
select Amazon API Gateway. Under the API on the left side menu, you will see the
notifier-dev:



Notification Serverless Application Chapter 9

[ 418 ]

Great! Here we are going to define a usage plan. Click on Usage Plans and then click on the
Create button, and you will see a form for creating a new usage plan. Enter the name up-
blueprints, uncheck the checkboxes for Enable throttling and Enable Quota, and click
the Next button.

The next step is to associate an API stage. So far we have only dev, so let's add the stage
dev; click on Add API Stage button, and on the drop-down list select the notifier-dev and
the stage dev. Make sure to click on the check button, the same row as the drop-down
menus, otherwise, the Next button won't be enabled.

After clicking Next you will have to add an API key to the Usage Plan that we just created.
Here you will have two options; add a new one or pick an existing one:

Let's add a new one. Click on the button labeled Create API Key and add to Usage Plan.
The API Key creation dialog will be shown, so just enter the name notifiers-devs and
click save.



Notification Serverless Application Chapter 9

[ 419 ]

Great! Now if you select API Keys on the left side menu, you should see the newly created
API Key on the list. If you selected it, you will be able to see all the details regarding the
key:

Now, on the left side menu, select APIs -> notifier-dev -> Resources, and on the tab
Resources, select the root route /. On the right side panel, you can see the / Methods:



Notification Serverless Application Chapter 9

[ 420 ]

Note that ANY says Authorization None and that API Key is set to Not required. Let's
change that so the API Key is required. On the Resources panel, click on ANY, you should
see now a panel similar to the screenshot shown as follows:



Notification Serverless Application Chapter 9

[ 421 ]

Click on Method Request:

Click on the pen icon next to API Key Required and, on the drop-down menu, select the
value true.

Great! Now, the API calls to the stage dev should be restricted to requests with the API key
notifier-dev in the request's Header.

Lastly, head over to API Keys and click on notifier-keys. On the right side panel, in the API
Key, click on the link show, and the API key will be displayed for you. Copy that key,
because we are going to use it in the next section.

Modifying the order service
Now that we have the notifier application deployed, we have to modify our previous
project, the order microservice, to make use of the notifier application and send
notifications when a new order arrives and when the status of the order changes to shipped.



Notification Serverless Application Chapter 9

[ 422 ]

The first thing we have to do is to include the notifier service API key and its base URL in
the settings.py file in the directory, called order on the order's root directory, and
include the following content at the end of the file:

NOTIFIER_BASEURL =
'https://rpa5v43ey1.execute-api.eu-west-2.amazonaws.com/dev'

NOTIFIER_API_KEY = 'WQk********P7JR2******kI1K*****r'

Replace these values with the corresponding values on your environment. If you don't have
the value for the NOTIFIER_BASEURL, you can obtain it running the following command:

zappa status

The value you want is the API Gateway URL.

Now, we are going to create two files. The first one it is a file
called notification_type.py in the order/main directory. In this file, we will define an
enumeration with the notification types that we want to make available in our service:

from enum import Enum, auto

class NotificationType(Enum):
    ORDER_RECEIVED = auto()
    ORDER_SHIPPED = auto()

Next, we are going to create a file with a helper function that will make the calls to the
notification service. Create a file called notifier.py in the order/main/ directory with
the contents shown as follows:

import requests
import json

from order import settings

from .notification_type import NotificationType

def notify(order, notification_type):
    endpoint = ('notify/order-received/'
                if notification_type is
NotificationType.ORDER_RECEIVED
                else 'notify/order-shipped/')

    header = {
        'X-API-Key': settings.NOTIFIER_API_KEY



Notification Serverless Application Chapter 9

[ 423 ]

    }

    response = requests.post(
        f'{settings.NOTIFIER_BASEURL}/{endpoint}',
        json.dumps(order.data),
        headers=header
    )

    return response

From the top, we included some import statements; we are importing requests to perform
the request to the notifier service, so we import the module json, so we can serialize the data
to be sent to the notifier service. Then we import the settings so we can get hold of the
constants that we defined with the base URL to the notifier service and the API key. Lastly,
we import the notification type enumeration.

The function notify that we defined here takes two arguments, the order and the
notification type, which are the values defined in the enumeration NotificationType.

We start by deciding which endpoint we are going to use, depending on the notification's
type. Then we add an entry X-API-KEY to the request's HEADER with the API key.

After that, we make a POST request that passes a few arguments. The first argument is the
endpoint's URL, the second is the data that we are going to send to the notifier service (we
use the json.dumps function so the data is sent in JSON format), and the third argument is
the dictionary with the header data.

Lastly, when we get the response back we just return it.

Now we need to modify the view that is responsible for handling a POST request to create a
new order, so that it calls the notify function when an order is created in the database. Let's
go ahead and open the file view.py in the order/main directory and add two import
statements:

from .notifier import notify
from .notification_type import NotificationType

The two lines can be added before the first class in the file.

Perfect, now we need to change the method post in the CreateOrderView class. Before the
first return statement in that method, where we return a 201 (CREATED) response, include
the code shown as follows:

 notify(OrderSerializer(order),
        NotificationType.ORDER_RECEIVED)



Notification Serverless Application Chapter 9

[ 424 ]

So here we call the notify function, passing the serialized order using the
OrderSerializer on the first argument, and the notification type - in this case, we want to
send an ORDER_RECEIVED notification.

We will allow the user of the order service application to update the order using the Django
Admin. There, they will be able to, for example, update an order's status, so we need to
implement some code that will handle data changes made by users using the Django
Admin.

To do this, we need to create a ModelAdmin class inside of the admin.py file in the
order/main directory. First, we add some import statements:

from .notifier import notify
from .notification_type import NotificationType
from .serializers import OrderSerializer
from .status import Status

Then we add the following class:

class OrderAdmin(admin.ModelAdmin):

    def save_model(self, request, obj, form, change):
        order_current_status = Status(obj.status)
        status_changed = 'status' in form.changed_data

        if (status_changed and order_current_status is
           Status.Shipping):
            notify(OrderSerializer(obj),
            NotificationType.ORDER_SHIPPED)

        super(OrderAdmin, self).save_model(request, obj, form,
        change)

Here, we create a class called OrderAdmin that inherits from the admin.ModelAdmin, and
we override the method save_model so we have the chance to perform some actions before
the data is saved. First, we get the order current status, then we check if the field status is
between the list of fields that have been changed.

The if statement checks if the status field has changed, and if the current status of the order
equals to Status.Shipping then we call the notify function, passing the serialized order
object and the notification type NotificationType.ORDER_SHIPPED.



Notification Serverless Application Chapter 9

[ 425 ]

Lastly, we call the save_model method on the super class to save the object.

The last piece of this puzzle is to replace this:

admin.site.register(Order)

Instead, put this:

admin.site.register(Order, OrderAdmin)

This will register the admin model OrderAdmin for the Order model. Now, when the user
saves the order in the Django admin UI, it will call the save_model in the OrderAdmin
class.

Testing all the pieces together
Now that we have the notifier application deployed and we have also made all the
necessary modifications to the order service, it is time to test if all the applications are
working together.

Open a terminal, change to the directory where you have implemented the online (video)
game store, and execute the following command to start up the Django development server:

python manage.py runserver

This command will start the Django development server running on the default port 8000.

Now let's start the order microservice. Open another terminal window, change to the
directory where you implemented the order microserver, and run the following command:

python manage.py runserver 127.0.0.1:8001

Now we can browse to http://127.0.0.1:8000, log in to the application and add some
items to the cart:



Notification Serverless Application Chapter 9

[ 426 ]

As you can see, I added three items and the total amount of this order is $32.75. Click on the
button SEND ORDER, and you should get a notification on the page that the order has
been sent.

Great! Working as expected so far. Now we check the user's email, to verify if the
notification service actually sent the order confirmation email.



Notification Serverless Application Chapter 9

[ 427 ]

Fair enough, the user just got the email:

Note that the sender and the destination recipients are the emails that I registered in the
AWS Simple Email Service.

So now let's log in to the order service's Django admin and change the status for the same
order to verify that the confirmation email that the order has been shipped will be sent to
the user. Remember that the email will only be sent if the order has changed its status field
to shipped.



Notification Serverless Application Chapter 9

[ 428 ]

Browse to http://localhost:8001/admin/ and log in with the administrator
credentials. You will see a page with the menu shown as follows:

Click on Orders and then select the order that we just submitted:

On the drop-down menu Status, change the value to Shipping and click the button SAVE. 



Notification Serverless Application Chapter 9

[ 429 ]

Now, if we verify the order customer's email again we should have got another email
confirming that the order has been shipped:

Summary
In this chapter, you have learned a bit more about serverless functions architecture, how to
build a notification service using the web framework Flask, and how to deploy the final
application to AWS Lambda using the great project Zappa.

Then, you learned how to install, configure, and use the AWS CLI tool, and used it to
upload files to an AWS S3 bucket.

We also learned how to integrate the web application that we developed in Chapter
7, Online Video Game Store with Django, and the order microservice that we developed in
Chapter 8, Order Microservice, with the serverless notification application.



Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Python Microservices Development
Tarek Ziadé

ISBN: 978-1-78588-111-4

Explore what microservices are and how to design them
Use Python 3, Flask, Tox, and other tools to build your services using best
practices
Learn how to use a TDD approach
Discover how to document your microservices
Configure and package your code in the best way
Interact with other services
Secure, monitor, and scale your services
Deploy your services in Docker containers, CoreOS, and Amazon Web Services

https://www.packtpub.com/web-development/python-microservices-development


Other Books You May Enjoy

[ 431 ]

Cloud Native Python
Manish Sethi

ISBN: 978-1-78712-931-3

Get to know “the way of the cloud”, including why developing good cloud
software is fundamentally about mindset and discipline
Know what microservices are and how to design them
Create reactive applications in the cloud with third-party messaging providers
Build massive-scale, user-friendly GUIs with React and Flux
Secure cloud-based web applications: the do’s, don’ts, and options
Plan cloud apps that support continuous delivery and deployment

https://www.packtpub.com/application-development/cloud-native-python


Other Books You May Enjoy

[ 432 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

A
Alembic
   reference  234
Amazon Web Services CLI
   setting up  403
AMQP (Advanced Message Queuing Protocol) 

187

API wrapper
   creating  161, 164
API's endpoints
   access, restricting  417, 421
ArgumentParser
   user's input, getting with  20, 21, 23, 24, 26
AWS
   deploying  395
   order service, deploying  398
   settings.py file, modifying  397

B
Bcrypt
   reference  239
   using  239

C
cancel order function
   testing  356
client-side dependencies
   installing  289, 292
command line parser
   creating  167, 172, 173, 175
   currency enumeration, creating  172
currency enumeration
   basic validation  177
customer's completed orders
   obtaining  359

customer's incomplete orders
   obtaining  358

D
database helper class
   adding  164, 167
database
   passwords, storing  238
Django project
   creating  277, 280
   main app, creating  284, 289
Docker
   reference  186
duplicate users
   handling  244

E
email
   prepending, to messages  267, 270
Exchange Rates and Currency Conversion Tool
   entry point, adding  179
   environment, creating  158
   environment, setting up  154, 157, 160
   testing  182, 183

F
Flask application
   application routes, creating  126, 127, 128, 131
   creating  125
Flask server
   creating  251, 253, 255

G
game data model
   creating  312, 316
   list and details page, creating  317, 320, 325



[ 434 ]

   list games views, adding  326
   price list data model, creating  316
game online store integration
   improvements  387
   improving  392
   testing  394
get all orders function
   testing  357

H
HTTP entrypoints
   exposing  194, 195

L
login views
   adding  293
   using  298
login/logout forms
   testing  300, 302
logout views
   adding  293
   using  298

M
messages
   storing  197
model's managers
   creating  347, 349, 352
MongoDB
   installation, on macOS  161
   installation, on Windows  161

N
Nameko Dependency Providers
   about  199
   Redis Dependency Provider, adding  200
   reference  200
Nameko microservice
   call, making  193
   creating  191, 192
   integration testing  196
   unit-testing  193
Nameko
   about  187

   AMQP, using  188
   Python requirements, installing  189
   RabbitMQ  188
   reference  193
   RPCs  187
new users
   creating  303
   views, creating  306, 312
notification serverless application
   deploying, with Zappa  415
   environment, setting up  403
   testing  425, 428
notification service
   email templates  413
   implementing  407, 410, 413
NPM (Node Package Manager)  273
NVM
   reference  276

O
online video game store
   development environment, setting up  274, 275
   Node.js, installing  276
order microservice
   environment, setting  344
   environment, setting up  343
order model serializer
   creating  364, 367, 369
order service
   modifying  421, 425
orders
   by period, obtaining  360
   by status, obtaining  359
   next status, setting  361
   status, setting  363

P
parser, weather application
   creating  27
   five and ten days weather forecast, getting  37,

38, 43
   helper methods, adding  30, 31, 32
   today's weather forecast, getting  29
   today's weather forecast, implementing  32, 34,



[ 435 ]

35, 36
   weekend weather forecast, getting  43, 46, 47
passwords
   storing, Bcrypt used  239
   storing, in database  238
pgAdmin
   reference  235
PhantomJS  10
player, Spotify
   creating  85, 86
   DataManager class, creating  95, 96, 97, 99
   menu panel, creating  92, 93, 94
   menu panel, implementing  89, 90, 91
   menus, adding for albums and track selection  88,

89

   music, listening to  99, 100, 103, 106
Postgres dependency
   creating  228
   Postgres Docker container, starting  228
   user dependency, creating  230
   user model, creating  229
project structure, Django
   exploring  281
   package directory  283
   SQLite, exploring  282
Pyenv
   reference  189
Python Redis client
   installing  198

R
RabbitMQ  188
RabbitMQ container
   starting  189
Redis Dependency Provider
   client, designing  200
   Dependency Provider, creating  201
   Message Service, creating  202
   summarizing  203
Redis
   about  197
   container, starting  197
   reference  268
   using  198
remote-control application, with Spotify

   environment, setting up  49, 50
RPC (Remote Procedure Calls)  187

S
S3 bucket
   creating  407
service models
   creating  345, 347
service URLs
   setting up  376, 380, 383, 387
services
   splitting  249, 251
shopping cart model
   creating  328
   form, creating  331
   items, adding  337, 340
   view, creating  334
Simple Email Service
   configuring  405
   emails, registering  406
Single Responsibility Principle  187
Spotify app
   about  48
   configuration file reader, implementing  58, 59
   configuration file, creating  56, 57
   creating  52, 53, 55
   player, creating  85
SQLAlchemy
   reference  230

T
TempMessenger
   goals  186, 227
   requirements  186, 227
test files
   creating  355
test
   creating  354
Twitter voting application
   building  132, 133, 134, 135, 136, 137
   code, enhancing  137, 138, 140, 141, 143, 145,

146, 147, 148, 151
Twitter
   about  112



   application, creating  116, 118
   authentication, performing  123, 124
   configuration file, adding  119, 120, 121, 123
   environment, setting up  113, 114, 116

U
user authentication
   password, authenticating  247
   users, retrieving from database  246
user passwords
   handling  241, 243
users
   authenticating  246
   creating  232
   service, creating  232, 238

V
views
   adding  372
   creating  370
virtualenv
   installation link  190

W
weather application, core functionality
   model, creating  12, 14, 17, 19

   parsers, loading dynamically  10, 11, 12
weather application
   ArgumentParser, users input getting with  20, 22,

23, 25, 26
   core functionality  10
   data, fetching from weather website  19, 20
   environment, setting up  8, 10
   parser, creating  27, 28, 29
web API, Spotify
   application, authorizing with authorization code

flow  71, 73, 75
   authenticating with  63
   authorization code flow, implementing  68, 69, 70
   client credentials flow, implementing  64, 65, 66,

67, 68
   querying  77, 78, 81, 83, 85
web sessions
   about  256
   sign-up page, creating  256, 258, 260, 262
   users, logging in  264, 266
   users, logging out  263, 264

Z
Zappa
   reference  415
   used, for deploying notification serverless

application  415


	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Packt Upsell
	Table of Contents
	Preface
	Chapter 1: Implementing the Weather Application
	Setting up the environment
	Core functionality
	Loading parsers dynamically
	Creating the application's model
	Fetching data from the weather website

	Getting the user's input with ArgumentParser
	Creating the parser
	Getting today's weather forecast
	Adding helper methods
	Implementing today's weather forecast

	Getting five- and ten-day weather forecasts
	Getting the weekend weather forecast

	Summary

	Chapter 2: Creating a Remote-Control Application with Spotify
	Setting up the environment
	Creating a Spotify app
	The application's configuration
	Creating a configuration file
	Implementing a configuration file reader

	Authenticating with Spotify's web API
	Implementing the client credentials flow
	Implementing the authorization code flow
	Authorizing our application with authorization code flow

	Querying Spotify's web API
	Creating the player
	Adding menus for albums and track selection
	Implementing the menu panel
	Creating the DataManager class
	Time to listen to music!

	Summary

	Chapter 3: Casting Votes on Twitter
	Setting up the environment
	Creating a Twitter application
	Adding the configuration file
	Performing authentication
	Creating the Flask application
	Creating the application routes


	Building the Twitter voting application
	Enhancing our code

	Summary

	Chapter 4: Exchange Rates and the Currency Conversion Tool
	Setting up the environment
	Creating the API wrapper
	Adding the database helper class
	Creating the command line parser
	Creating the currency enumeration
	Creating the command line parser
	Basic validation


	Adding the application's entry point
	Testing our application
	Summary

	Chapter 5: Building a Web Messenger with Microservices
	TempMessenger Goals
	Requirements
	What is Nameko?
	RPCs
	How Nameko uses AMQP
	RabbitMQ
	Starting a RabbitMQ container

	Installing Python requirements

	Creating your first Nameko microservice
	Making a call to our service

	Unit-testing a Nameko microservice
	Exposing HTTP entrypoints
	Integration testing Nameko microservices
	Storing messages
	An introduction to Redis
	Starting a Redis container
	Installing the Python Redis client
	Using Redis


	Nameko Dependency Providers
	Adding a Redis Dependency Provider
	Designing the Client
	Creating the Dependency Provider
	Creating our Message Service
	Putting it all together


	Saving messages
	Adding a save message method to our Redis client
	Adding a save message RPC

	Retrieving all messages
	Adding a get all messages method to our Redis client
	Adding a get all messages RPC
	Putting it all together

	Displaying messages in the web browser
	Adding a Jinja2 Dependency Provider
	Creating the template renderer

	Creating our homepage template
	Creating the Dependency Provider
	Making a HTML response
	Putting it all together

	Sending messages via POST requests
	Adding a send messages POST request
	Adding an AJAX POST request in jQuery

	Expiring messages in Redis
	Sorting messages
	Browser polling for messages
	Polling with JavaScript

	Summary

	Chapter 6: Extending TempMessenger with a User Authentication Microservice
	TempMessenger goals
	Requirements
	Creating a Postgres dependency
	Starting a Postgres Docker container
	Creating the user model
	Creating the user dependency

	Creating users
	Creating the User Service

	Securely storing passwords in the database
	Using Bcrypt
	Hashing our user passwords
	Handling duplicate users

	Authenticating users
	Retrieving users from the database
	Authenticating a user's password

	Splitting out the services
	Creating a Flask server
	Web sessions
	Creating a sign-up page
	Logging users out
	Logging users in

	Prepending the email to our messages
	Summary

	Chapter 7: Online Video Game Store with Django
	Setting up the development environment
	Installing Node.js

	Creating a new Django project
	Exploring the Django project's structure
	Diving into the SQLite
	Looking at the project's package directory

	Creating the project's main app
	Installing client-side dependencies
	Adding login and logout views
	Testing the login/logout forms

	Creating new users
	Creating the views of the user creation

	Creating the game data model
	Creating the price list data model
	Creating the game list and details page
	Adding list games views

	Creating the shopping cart model
	Creating the shopping cart form
	Creating the shopping cart view
	Adding items to the cart

	Summary

	Chapter 8: Order Microservice
	Setting up the environment
	Creating the service models
	Creating the model's managers
	Learning to test
	Creating the test files
	Testing the cancel order function 
	Testing the get all orders function
	Getting customer's incomplete orders
	Getting customer's completed orders
	Getting orders by status
	Getting orders by period
	Setting the order's next status
	Setting the order's status

	Creating the order model serializer
	Creating the views
	Adding views

	Setting up the service URLs
	Integration with the game online store
	Testing the integration

	Deploying to AWS
	Modifying the settings.py file
	Deploying the order service

	Summary

	Chapter 9: Notification Serverless Application
	Setting up the environment
	Setting up the Amazon Web Services CLI
	Configuring a Simple Email Service
	Registering the emails

	Creating an S3 bucket
	Implementing the notification service
	Email templates

	Deploying the application with Zappa
	Restricting access to the API's endpoints
	Modifying the order service
	Testing all the pieces together
	Summary

	Other Books You May Enjoy
	Index

