


Jack Chan

Ray Chung

Jack Huang

Develop a full-stack web application with Python 
and Flask

Python API 
Development 
Fundamentals



Python API Development Fundamentals

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of 
the information presented. However, the information contained in this book is sold 
without warranty, either express or implied. Neither the authors, nor Packt Publishing, 
and its dealers and distributors will be held liable for any damages caused or alleged to 
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Jack Chan, Ray Chung, and Jack Huang

Technical Reviewer: Amritansh

Managing Editor: Aditya Shah

Acquisitions Editors: Kunal Sawant and Anindya Sil

Production Editor: Salma Patel

Editorial Board: Shubhopriya Banerjee, Bharat Botle, Ewan Buckingham, Megan Carlisle, 
Mahesh Dhyani, Manasa Kumar, Alex Mazonowicz, Bridget Neale, Dominic Pereira, 
Shiny Poojary, Abhisekh Rane, Erol Staveley, Ankita Thakur, Nitesh Thakur, and Jonathan 
Wray.

First Published: November 2019

Production Reference: 1211119

ISBN: 978-1-83898-399-4

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK



Table of Contents

Preface   i

Chapter 1: Your First Step   1

Introduction  ....................................................................................................  2

Understanding API  .........................................................................................  2

RESTful API  ......................................................................................................  4

REST Constraints/Principles ................................................................................ 4

HTTP Protocol  .................................................................................................  5

HTTP Methods and CRUD ..............................................................................  5

The JSON Format  ............................................................................................  7

HTTP Status Codes  .........................................................................................  8

Commonly used HTTP Status Codes  .................................................................. 8

Open API  .........................................................................................................  8

The Flask Web Framework  ..........................................................................  10

Building a Simple Recipe Management Application  ................................  10

Virtual Environment  .......................................................................................... 11

Exercise 1: Building Our First Flask Application  ............................................. 12

Exercise 2: Managing Recipes with Flask  ........................................................ 15

Using curl or httpie to Test All the Endpoints  ..........................................  20

Exercise 3: Testing Our API Endpoints with httpie and curl  ......................... 21

Postman  ........................................................................................................  27

The Postman GUI  ............................................................................................... 27

Sending a GET Request  ...................................................................................... 28

Sending a POST Request  ................................................................................... 29

Saving a Request  ................................................................................................ 29



Activity 1: Sending Requests to Our APIs Using Postman  ............................. 30

Exercise 4: Automated Testing Using Postman  .............................................. 30

Activity 2: Implement and Test the delete_recipe Function  ......................... 32

Summary  .......................................................................................................  33

Chapter 2: Starting to Build Our Project   35

Introduction  ..................................................................................................  36

What is Flask-RESTful?  .................................................................................  36

Using Flask-RESTful to Develop  
Our Recipe-Sharing Platform, "Smilecook" ..................................................... 36

Virtual Environment  ....................................................................................  37

Exercise 5: Creating a Development Project in PyCharm  ............................. 38

Creating a Recipe Model  .............................................................................  40

Exercise 6: Creating the Recipe Model  ............................................................ 41

Resourceful Routing  .......................................................................................... 42

Exercise 7: Defining an API Endpoint for the Recipe Model  ......................... 43

Exercise 8: Defining the Recipe Resource  ....................................................... 45

Exercise 9: Publishing and Unpublishing the Recipes  ................................... 46

Configuring Endpoints  .................................................................................  48

Exercise 10: Creating the Main Application File  ............................................. 48

Making HTTP Requests to the Flask API using curl and httpie  ...............  50

Exercise 11: Testing the Endpoints Using curl and httpie  ............................. 50

Exercise 12: Testing the Auto-Incremented Recipe ID  .................................. 51

Exercise 13: Getting All the Recipes Back  ....................................................... 52

Exercise 14: Testing the Recipe Resources  ..................................................... 53

Exercise 15: Negative Testing  ........................................................................... 55

Exercise 16: Modifying the Recipes  .................................................................. 56

Exercise 17: Getting Back Specific Recipes with a Certain ID  ....................... 57



Activity 3: Testing the APIs Using Postman  .................................................... 58

Activity 4: Implementing the Delete Recipe Function  ................................... 58

Summary  .......................................................................................................  59

Chapter 3: Manipulating a Database with SQLAlchemy   61

Introduction  ..................................................................................................  62

Databases  .....................................................................................................  62

Database Management System  ....................................................................... 62

SQL  .................................................................................................................  63

ORM  ...............................................................................................................  63

Exercise 18: Setting Up a Smilecook Database  ............................................... 64

Defining Our Models  ...................................................................................  67

Exercise 19: Installing Packages and Defining Models   ................................. 69

Exercise 20: Using Flask-Migrate to Build a Database Upgrade Script  ........ 74

Exercise 21: Applying Database Insertion  ....................................................... 79

Activity 5: Creating a User and a Recipe  ......................................................... 81

Password Hashing  .......................................................................................  82

Exercise 22: Implement the User Registration Feature  
and Hash the User's Password  ......................................................................... 82

Exercise 23: Testing the Application in Postman  ........................................... 86

Activity 6: Upgrading and Downgrading a Database  ..................................... 89

Summary  .......................................................................................................  90

Chapter 4: Authentication Services and Security with JWT   93

Introduction  ..................................................................................................  94

JWT  .................................................................................................................  94

Flask-JWT-Extended  .....................................................................................  96

Exercise 24: Implementing a User Login Function  ......................................... 97

Exercise 25: Testing the User Login Function  ..............................................  101



Exercise 26: Creating the me Endpoint  ........................................................  105

Designing the Methods in the Recipe Model  ..........................................  107

Exercise 27: Implementing Access-Controlled  
Recipe Management Functions  .....................................................................  107

Exercise 28: Testing the Recipe Management Functions  ...........................  111

Refresh Tokens  ...........................................................................................  114

Exercise 29: Adding a Refresh Token Function  ...........................................  115

Exercise 30: Obtaining a New Access Token Using a Refresh Token  ........  117

The User Logout Mechanism  ....................................................................  118

Exercise 31: Implementing the Logout Function  ........................................  119

Exercise 32: Testing the Logout Function  ....................................................  121

Activity 7: Implementing Access Control  
on the publish/unpublish Recipe Function  ..................................................  123

Summary  .....................................................................................................  123

Chapter 5: Object Serialization with marshmallow   125

Introduction  ................................................................................................  126

Serialization versus Deserialization  ........................................................  126

marshmallow  ..............................................................................................  127

A Simple Schema  ........................................................................................  127

Field Validation  ................................................................................................  128

Customizing Deserialization Methods ..........................................................  128

UserSchema Design  ...................................................................................  129

Exercise 33: Using marshmallow to Validate the User Data  .....................  130

Exercise 34: Testing the User Endpoint before  
and after Authentication  ...............................................................................  133

RecipeSchema Design  ...............................................................................  135

Exercise 35: Implementing RecipeSchema  ..................................................  136

Exercise 36: Testing the Recipe API  ..............................................................  142



The PATCH Method  ....................................................................................  146

Exercise 37: Using the PATCH Method to Update the Recipe  ....................  146

Searching for Authors and Unpublished Recipes  .......................................  149

Using the webargs Package to Parse the Request Arguments  .................  150

Exercise 38: Implementing Access Control on Recipes  ..............................  150

Exercise 39: Retrieving Recipes from a Specific Author  .............................  154

Activity 8: Serializing the recipe Object Using marshmallow  ....................  158

Summary  .....................................................................................................  159

Chapter 6: Email Confirmation   161

Introduction  ................................................................................................  162

Mailgun  .......................................................................................................  163

Exercise 40: Get Started with Using Mailgun  ...............................................  163

Exercise 41: Using the Mailgun API to Send Out Emails  .............................  166

User Account Activation Workflow  ..........................................................  168

Exercise 42: Generating the Account Activation Token  .............................  169

Exercise 43: Sending Out the User Account Activation Email  ...................  170

Activity 9: Testing the Complete User Registration  
and Activation Workflow  ................................................................................  174

Setting Up Environment Variables  ................................................................  174

Exercise 44: Setting Up Environment Variables in PyCharm  .....................  174

HTML Format Email  ...................................................................................  176

Activity 10: Creating the HTML Format User Account Activation Email  ...  178

Summary  .....................................................................................................  178

Chapter 7: Working with Images   181

Introduction  ................................................................................................  182

Building the User Avatar Function  ...........................................................  182

Exercise 45: Adding the avatar_image Attribute to the User Model  ........  183



Flask-Uploads  .............................................................................................  185

Upload Sets  ......................................................................................................  186

Exercise 46: Implementing the User Avatar Upload Function  ..................  186

Exercise 47: Testing the User Avatar Upload Function Using Postman  ...  191

Image Resizing and Compression  ............................................................  195

Introduction to Pillow  ................................................................................  195

Exercise 48: Implementing Image Compression  
in Our Smilecook Application  ........................................................................  196

Exercise 49: Testing the Image Compression Function  ..............................  199

Activity 11: Implementing the Recipe Cover Image Upload Function  ......  200

Activity 12: Testing the Image Upload Function  ..........................................  200

Summary  .....................................................................................................  201

Chapter 8: Pagination, Searching, and Ordering   203

Introduction  ................................................................................................  204

Pagination  ...................................................................................................  204

Paginated APIs ............................................................................................  205

Exercise 50: Implementing Pagination on the Published  
Recipes Retrieval Function  ............................................................................  206

Exercise 51: Testing the Pagination Functions  ............................................  211

Activity 13: Implementing Pagination on the User-Specific  
Recipe Retrieval API  ........................................................................................  215

Activity 14: Testing Pagination on the User-Specific  
Recipe Retrieval API  ........................................................................................  215

Recipe Searching  ........................................................................................  216

Exercise 52: Implementing the Search Function  .........................................  217

Exercise 53: Testing the Search Function  .....................................................  218

Sorting and Ordering  .................................................................................  219

Exercise 54: Implementing Sorting and Ordering  .......................................  221



Exercise 55: Testing the Sorting and Ordering Feature  .............................  222

Activity 15: Searching for Recipes with Specific Ingredients  .....................  224

Summary  .....................................................................................................  225

Chapter 9: Building More Features   227

Introduction  ................................................................................................  228

Caching  ........................................................................................................  228

Benefit of Caching  ...........................................................................................  229

Flask-Caching  ..............................................................................................  229

Exercise 56: Implementing Caching Functionality  
Using Flask-Caching  ........................................................................................  230

Exercise 57: Testing the Caching Function with Postman  .........................  233

Clearing the Cache when Data Updates  ......................................................  235

Activity 16: Getting Cache Data after Updating Recipe Details  .................  235

Exercise 58: Implementing Cache-Clearing Functionality  ..........................  236

Exercise 59: Verifying the Cache-Clearing Function  ...................................  237

API Rate Limiting  ........................................................................................  240

HTTP Headers and Response Codes  .............................................................  241

Flask-Limiter  ...............................................................................................  241

Exercise 60: Implementing API Rate-Limiting Functionality  ......................  242

Exercise 61: Verifying the Rate-Limit Function  ............................................  244

Exercise 62: Adding a Whitelist  .....................................................................  245

Activity 17: Adding Multiple Rate-Limit Restrictions  ..................................  247

Summary  .....................................................................................................  247

Chapter 10: Deployment   249

Introduction  ................................................................................................  250

Deployment  ................................................................................................  250

Comparing SaaS, PaaS, and IaaS  ..............................................................  251



The Heroku Platform  .................................................................................  252

Configuration Handling in Smilecook  ......................................................  253

Exercise 63: Configuration Handling for the Production  
and Development Environments  ..................................................................  253

Exercise 64: Adding a Staging Configuration Class  .....................................  256

Heroku Application  ....................................................................................  256

Exercise 65: Creating a New Application in Heroku  ...................................  257

Heroku Add-Ons  .........................................................................................  260

Exercise 66: Installing Heroku Postgres  .......................................................  260

Setting Up Environment Variables for the Heroku App  ........................  263

Exercise 67: Setting Up the App Environment Variables ............................  264

Deployment Using Heroku Git  ......................................................................  265

What is Git?  ......................................................................................................  266

What is gitignore?  ...........................................................................................  266

What is Procfile?  ..............................................................................................  266

What is Gunicorn?  ...........................................................................................  266

Exercise 68: Setting Up the Git and the Heroku CLI  ...................................  267

Exercise 69: Checking the Heroku Postgres Tables in pgAdmin  ...............  272

Setting Up Variables in Postman  .............................................................  276

Exercise 70: Setting Up Variables in Postman  .............................................  276

Activity 18: Changing access_token to a Variable in Postman  ..................  278

Setting up the Front-end Interface to Work with  
the Smilecook API  ......................................................................................  279

Summary  .....................................................................................................  282

Appendix   285

Index   349







About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll 
need to get started, and the hardware and software requirements required to complete all of 
the included activities and exercises.

Preface

>



ii | Preface

About the Book
Python is a flexible language that can be used for much more than just script 
development. By knowing how the Python RESTful APIs work, you can build a powerful 
backend for web applications and mobile applications using Python.

You'll take your first steps by building a simple API and learning how the frontend 
web interface can communicate with the backend. You'll also learn how to serialize 
and deserialize objects using the marshmallow library. Then, you'll learn how to 
authenticate and authorize users using Flask-JWT. Apart from all this, you'll also learn 
how to enhance your APIs by adding useful features, such as email, image upload, 
searching, and pagination. You'll wrap up the whole book by deploying the APIs to the 
cloud.

By the end of this book, you'll have the confidence and skill to leverage the power of 
RESTful APIs and Python to build efficient web applications.

About the Authors

Jack Chan started programming at the age of 10. He was an active participant in 
worldwide programming contests at university. Since graduation, he has been working 
in the finance and IT industries for more than 10 years, building systems that analyze 
millions of transactions and positions to spot suspicious activity. He has leveraged 
the powerful analytical Python libraries to perform data analysis and performance 
optimization for a trading system that works at a microsecond level. He has an in-depth 
knowledge of the modern software development life cycle, which uses automated 
testing, continuous integration, and agile methodologies. Among all programming 
languages, he found Python to be the most expressive and powerful. He has created 
courses and taught students all over the world, using Python as the teaching language. 
Inspiring aspiring developers to take on the software engineering career path has 
always been Jack's goal.

Ray Chung is a developer and an instructor. He loves helping students learn to code and 
master software development. He is now self-employed and develops web applications, 
network applications, and chatbots using Python. The first program he sold was a 
network application that helped clients to configure, maintain and test thousands of 
multi-vendor network devices. He's experienced with big projects such as a Marathon's 
online registration system, rental car management systems, and more. He has worked 
extensively with Google App Engine, PostgreSQL, and advanced system architecture 
design. He has been a self-taught developer for many years and knows the most 
efficient ways to learn a new skill.



About the Book | iii

Jack Huang is a programmer with more than 7 years of experience in developing 
web applications in Python, Javascript, and .NET. He is skilled in web frameworks 
such as Flask, Django, and Vue, as well as in PostgreSQL, DynamoDB, MongoDB, 
RabbitMQ, Redis, Elasticsearch, RESTful API design, payment processing, system 
architecture design, database design, and Unix systems. He has written applications 
for an accessories shop platform, an ERP system, a divination web application, a 
podcast platform, a job search service, a blog system, a salon reservation system, an 
e-commerce service, and more. He also has experience in handling large amounts of 
data and optimizing payment processing. He is an expert web application developer 
who loves coding and is constantly following the newest technology.

Learning Objectives

By the end of this book, you will be able to:

• Understand the concept of a RESTful API

• Build a RESTful API using Flask and the Flask-Restful extension

• Manipulate a database using Flask-SQLAlchemy and Flask-Migrate

• Send out plaintext and HTML format emails using the Mailgun API

• Implement a pagination function using Flask-SQLAlchemy

• Use caching to improve API performance and efficiently obtain  
the latest information

• Deploy an application to Heroku and test it using Postman

Audience

This book is ideal for aspiring software developers who have a basic-to-intermediate 
knowledge of Python programming and who want to develop web applications using 
Python. Knowledge of how web applications work will be beneficial, but is not essential.

Approach

This book takes the learning-by-doing approach to explain concepts to you. You'll build 
a real-life web application by implementing each concept that you learn in theory. This 
way, you'll reinforce your new skill.



iv | Preface

Hardware Requirements

For the optimal experience, we recommend the following hardware configuration:

• Processor: Intel Core i5 or equivalent

• Memory: 4 GB RAM (8 GB preferred)

• Storage: 35 GB available space

Software Requirements

We also recommend that you have the following software installed in advance:

• OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Ubuntu 
Linux, or the latest version of OS X

• Browser: Google Chrome/Mozilla Firefox (the latest version)

• Python 3.4+ (the latest version is Python 3.8: from https://python.org)

• Pycharm

• Postman

• Postgres Database

Conventions

Code words in the text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Next, we will work on the create_recipe function, which creates a recipe in memory. 
Use the /recipes route to trigger the create_recipe function and the methods = [POST] 
argument to specify that the route decorator will only respond to POST requests."

New terms and important words are shown in bold. Words that you see on screen, for 
example, in menus or dialog boxes, appear in the text like this: " Then, select Definition 
and set the password. Click Save".

A block of code is set as follows:

    if not recipe:

        return jsonify({'message': 'recipe not found'}), HTTPStatus.NOT_
FOUND



About the Book | v

Installation and Setup

Before we can do awesome things with data, we need to be prepared with the most 
productive environment. In this short section, we will see how to do that.

Installing Python

Go to https://www.python.org/downloads/ and follow the instructions specific to your 
platform.

Installing Pycharm Community Edition

Go to https://www.jetbrains.com/pycharm/download/ and follow the instructions 
specific to your platform.

Installing Postman

Go to https://www.getpostman.com/downloads/ and follow the instructions specific 
to your platform.

Installing Postgres Database

We are going to install Postgres on our local machine:

1. Go to http://www.postgresql.org and click Download for the download page.

2. Select macOS or Windows, depending on your operation system.

3. Under Interactive installer by EnterpriseDB, download the latest version of the 
installer. The installer contains PostgreSQL as well as pgAdmin, which is a graphi-
cal tool for managing and developing your databases.

4. Install Postgres version 11.4. Follow the on-screen instructions to install Postgres 
and set the password.

5. Once you are done with the installation, you will be brought to pgAdmin. Please 
set up a pgAdmin password.

Additional Resources

The code bundle for this book is also hosted on GitHub at https://github.com/
TrainingByPackt/Python-API-Development-Fundamentals. We also have other code 
bundles from our rich catalog of courses and videos available at https://github.com/
PacktPublishing/. Check them out!

https://www.python.org/downloads/
https://www.jetbrains.com/pycharm/download/
https://www.getpostman.com/downloads/
http://www.postgresql.org
https://github.com/TrainingByPackt/Python-API-Development-Fundamentals
https://github.com/TrainingByPackt/Python-API-Development-Fundamentals
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/




Learning Objectives

By the end of this chapter, you will be able to:

• Replicate the concepts of RESTful API 

• Describe the meaning of different HTTP methods and statuses

• Get hands-on experience on PyCharm IDE

• Build a RESTful API and execute CRUD using Flask

• Use JSON messages to communicate with the APIs

• Test API endpoints using Postman and httpie/curl command-line tools

This chapter introduces API and explains the concepts of web services, API and REST.

Your First Step

1



2 | Your First Step

Introduction
We are in the internet era, a world where everything is connected. Data flows 
seamlessly from one place to another. We can get all the information in the world with a 
few clicks on a website. Take Skyscanner as an example, we just need to put in the date 
and location of our trips, and it can find us the cheapest flight in a split second; the hero 
behind the scenes that provides this data is API.

In this chapter, you will learn what a web service, an API, and REST are. We will start by 
teaching the fundamental concepts of APIs. Then we will look at real-life examples of 
how different web services (Google, Facebook, and so on) use the REST API.

Finally, we will develop our first simple Python RESTful API using Python. Python is a 
popular and powerful programming language. Apart from its extensive use in the realm 
of artificial intelligence, it is also widely used in web application development, big data 
analysis, web scraping, and process automation. What makes Python excel in so many 
areas is the extensive number of frameworks available. The frameworks do all the heavy 
lifting jobs and that allows the developers to focus on the actual application design and 
development. 

In this chapter, you will see how data is encoded and communicated between the 
frontend and the backend. You will learn technical details about the JSON format, 
the HTTP protocol, HTTP status codes, and so on. All the development work will be 
verified and tested using Postman and httpie/curl. We will take you through the whole 
process of web application development. Not only will you learn the essential aspects 
of developing a RESTful API, but you will also learn about the thinking process, design, 
development, testing, and even deployment. This is a journey of learning the complete 
software development life cycle. Let's embark on our exciting journey now!

Understanding API
API stands for application programming interface; it is an interface for the website 
(or mobile application) to communicate with the backend logic. Simply put, it is like a 
messenger that takes a request from the users and sends the request to the backend 
system. Once the backend system responds, it will then pass that response to the users. 
A metaphor for this is a waiter/waitress, who can understand different customers' 
orders. They will then act as a middleman between the customers and the chefs in the 
kitchen. 



Understanding API | 3

If you were the boss of the restaurant, the key benefit of having a waiter/waitress here 
between your customer and the kitchen is that the customers will be shielded from 
seeing your business secrets. They don't need to know how the meal is prepared. They 
just need to send an order through the waiter/waitress, and they will get the meal 
they ordered. In this scenario, the waiter acts like the API. The following figure helps 
illustrate the analogy.

Figure 1.1: The waiter acting as the API for the customer

Similarly, in computer science, one of the key benefits of having API is encapsulation. 
We encapsulate the logic so that people outside won't be able to see it. With this 
arrangement, big companies with sensitive information are willing to provide services 
to the world through APIs, confident that their internal information won't be revealed. 
Take Skyscanner again as an example. The company is comfortable with using an API 
to allow customers to book their flights, but at the same time, personal data from other 
customers that are stored in their internal database won't leak. 

An API is also a standard interface that can communicate with different types of 
frontend Terminals, they can be mobile applications or websites. As long as the 
frontend is sending the same request to the API, it will get the same result back. If we go 
back to our metaphor, the waiter/waitress will serve all kinds of customers, regardless 
of their gender, age, language, and so on.

Now, imagine you are a software engineer at Skyscanner who is responsible for 
developing an API. What will your job be? Let me tell you. Your job will be to write a 
program that can take booking requests (date and location) from customers through the 
website, and then look up matching flights in the Skyscanner database and return the 
flight details to the customers. Throughout this book, you will be our API engineering 
intern. We will guide you, step by step, through the process of developing a RESTful API 
project that can serve the users of your system.



4 | Your First Step

RESTful API
REST stands for Representational State Transfer. It was first defined in Dr. Roy 
Fielding's dissertation (Architectural Styles and the Design of Network-Based Software 
Architectures) back in 2000. This dissertation is considered to be the bible in the web 
domain. REST is not a standard or protocol; it is more like a software architectural style. 
Many engineers follow this architectural style to build their applications, such as eBay, 
Facebook, and Google Maps. These web applications serve huge amounts of traffic 
every second, so you can see that REST really is a scalable architecture style. And when 
we say RESTful API, we are referring to an API that conforms to the REST constraints/
principles.

REST Constraints/Principles

There are five important constraints/principles for the REST architecture style:

• Client-server: There is an interface between the client and the server. The client 
and server communicate through this interface and are independent of each 
other. Either side can be replaced as long as the interface stays the same. Requests 
always come from the client-side.

• Stateless: There is no concept of state for a request. Every request is considered 
to be independent and complete. There is no dependence on the previous request 
nor dependence on a session to maintain the connection status.

• Cacheable: Things are cacheable on the server or client-side to improve 
performance. 

• Layered system: There can be multiple layers in the system, and the goal here is 
to hide the actual logic/resources. These layers can perform different functions, 
such as caching and encryption. 

• Uniform interface: The interface stays the same. This helps to decouple the client 
and server logic.



HTTP Protocol | 5

HTTP Protocol
To better understand what REST is and make sure we are implementing the REST 
style, we can simply talk about the HTTP protocol. HTTP is an implementation of the 
REST architecture style. It is short for HyperText Transfer Protocol and is the standard 
protocol used on the worldwide web. We use it every day to browse different websites. 
That's why all the websites we visit are prefixed with http.

In the HTTP protocol, there are different types of  service request methods. Each 
service request method has a special definition that is specific to it. When the frontend 
interface interacts with the backend API through a URL, they need to, at the same time, 
define the HTTP method for this request. Different HTTP methods are like different 
service counters. For example, reading and creating data are completely different 
services, so they should be handled by different service counters, meaning different 
HTTP methods.

• GET: For reading data

• POST: For creating data

• PUT: For updating data by completely replacing data with new content

• PATCH: For updating data, but by partially modifying a few attributes

• DELETE: For deleting data

Simply put, different HTTP methods are like the verbs for REST API. They are used for 
performing different actions on the same set of data.

HTTP Methods and CRUD
We can easily build a RESTful API by leveraging what has already been provided by the 
HTTP protocol. Let's take a look at the HTTP methods that we can use to communicate 
with the server.



6 | Your First Step

In this book, we will build a recipe sharing platform with a RESTful API as the backend. 
This platform will allow users to create and share their own recipes. At the same time, 
users will also be able to read recipes shared by other users. Using this recipe sharing 
platform as an example, to achieve these functionalities, we will need our API to be able 
to perform different actions on the recipes. We can leverage different HTTP methods 
here. For example, we can use the GET method to request http://localhost:5000/
recipes for all the recipes. We can use the POST method to request http://
localhost:5000/recipes to create a new recipe. We can also use the DELETE method to 
request http://localhost:5000/recipes/20 to delete a recipe with ID = 20. Please refer 
to the following table for details.

Figure 1.2: HTTP methods

We can see that asking the backend API to work for us is simple. We can simply use the 
HTTP protocol to communicate our request.

In fact, with this recipe sharing platform, you can see the majority of the actions we 
require will revolve around CREATE, READ, UPDATE, and DELETE. This is generally true 
for all other web applications as well. In the developer community, we call this CRUD in 
short. In a nutshell, CRUD models the life cycle of database record management.

Modeling our web applications this way can help us easily construct a functioning web 
system, as these actions are related to the HTTP methods. Constructing our application 
with this architecture is simple, powerful, and highly readable.

As you can probably imagine, we will need to send information to the backend server. 
For example, you may want to store a recipe in the backend database. You send the 
recipe over HTTP with a pre-agreed format with the backend. A pre-agreed format 
can be understood as a language used to communicate with the waiter/waitress 
in our previous metaphor. In real life, we have different languages, such as English, 
German, Chinese, and so on. We need to speak the right language for the other side to 
understand. In the web API domain, there are two prevalent standards, JSON and XML. 
We will mainly talk about JSON here because it is more readable and widely adopted.



The JSON Format | 7

The JSON Format
JavaScript Object Notation (JSON) is a simple plaintext format that is capable of 
representing complex data structures. We can use this format to represent strings, 
numbers, arrays, and even objects. Once we have the information "JSONified," we can 
use this widely adopted format to communicate with the API.

We are going to show you what a JSON format file looks like. In the following example, 
you will see that we are representing two recipes in JSON format. A JSON document is a 
plaintext document; there is no encryption here. It is so readable that I am sure you can 
already tell (without further explanation) that there are two recipes here, each with an 
ID, name, and description.

Here are a few notes on JSON syntax:

• Arrays are enclosed by []

• Objects can be represented by {}

• Names/values always exist in pairs, and are delimited by ":"

• Strings are enclosed by ""

Following is a sample code file with JSON syntax:

{

  "recipes":[

    {

      "id":1,

      "name":"Egg Salad",

      "description":"Place an egg in a saucepan and..."

    },

    {

      "id":2,

      "name":"Tomato Pasta",

      "description":"Bring a large pot of lightly salted water to a boil..."

    }

  ]

}



8 | Your First Step

HTTP Status Codes
An HTTP status code is a code that is returned in the HTTP protocol. It is usually hidden 
from users, so you probably didn't realize it exists. In fact, every HTTP response from 
the server contains a status code. And as we construct our RESTful API, we need to 
comply with the HTTP protocol. The status code helps the frontend client understand 
the status of their request, that is, whether it is a success or failure. For example, there 
could be a client request about creating a record in the backend database. In that case, 
once the database record has been successfully created, the server should return an 
HTTP status code 201 (Created). If there is an error (such as a syntax error in the JSON 
document), the server should return an HTTP status code 400 (Bad Request) instead.

Commonly used HTTP Status Codes

Let's discuss some commonly used status codes. They are as follows:

• 200 OK means the request has been successful. The request could be a GET, PUT, 
or PATCH.

• 201 Created means the POST request has been successful and a record has been 
created.

• 204 No Content means the DELETE request has been successful.

• 400 Bad Request means there is something wrong with the client request. For 
example, there is a syntax error in the JSON format.

• 401 Unauthorized means the client request is missing authentication details.

• 403 Forbidden means the requested resource is forbidden.

• 404 Not Found means the requested resource doesn't exist.

Open API
Open API is a third-party API that is open to use. There are plenty of them available out 
there. Companies are eager to open their APIs to expand their user base but at the same 
time keep their source code proprietary. These APIs can be accessible by us as well. 
Let's take a look at some of the APIs from Facebook. 



Open API | 9

For example, we can use the HTTP GET method to access https://graph.facebook.com/
{page_id}/feed, which will give us the feeds on the Facebook page with ID = {page_id}. 
We can send an HTTP request using the POST method to https://graph.facebook.com/
{page_id}/feed, and then we can create a post on the Facebook page with ID = {page_
id}.

Note

The Facebook fans page API details can be found at https://developers.facebook.
com/docs/pages/publishing.

Now, let's look at another internet giant, Google. Google also provides some Gmail APIs 
that we can use to manage the email labels in our mailbox. Here is a screenshot from 
the Gmail API documentation:

Figure 1.3: Gmail API documentation

Note

The Gmail Label API is available at https://developers.google.com/gmail/api/v1/
reference/.

https://developers.facebook.com/docs/pages/publishing
https://developers.facebook.com/docs/pages/publishing
https://developers.google.com/gmail/api/v1/reference/
https://developers.google.com/gmail/api/v1/reference/


10 | Your First Step

The Flask Web Framework
Flask is a web framework that we can use to easily build a web application. Web 
applications usually need some core functionalities, such as interacting with client 
requests, routing URLs to resources, rendering web pages, and interacting with 
backend databases. A web application framework such as Flask provides the necessary 
packages, modules that do the heavy lifting. So, as a developer, we only need to focus on 
the actual application logic.

There are, of course, other available web frameworks available on the market. One 
strong competitor of Flask is Django. It is also a Python web framework. The reason why 
we choose Flask in this book is that Flask is minimalistic. It is regarded as a micro-web-
framework that only provides the absolutely essential packages for developers to start 
with. Because of that, it is easy to learn and is great for beginners.

And later, if we want to build further functions, there is a vast number of Flask 
extensions. You will see the power of Flask as we progress in this book.

Building a Simple Recipe Management Application
Let's do some simple exercises to test your knowledge. We are going to build a recipe-
sharing platform throughout this book, and the API is the interface we expose to the 
public. We will first define what functions we want to provide and the corresponding 
URLs. These are the basic functions that we will probably  need:

Figure 1.4: HTTP methods and functions

A typical recipe should have the following attributes

• ID: The unique identifier for the recipe

• Name: The name of the recipe

• Description: The description of the recipe



Building a Simple Recipe Management Application | 11

We are going to build an API that lists all the recipes stored in our system. The API 
will be designed to return different results with different URLs. For example, http://
localhost:5000/recipes is going to give us all the recipes stored in our system, while 
http://localhost:5000/recipes/20 will give us the recipe with ID = 20. Upon successful 
recipe retrieval, we will also see the HTTP status is set to 200 (OK). This indicates that 
our request has been successful.

When we create a new recipe, we use the HTTP POST method to query http://
localhost:5000/recipes with all the necessary parameters to describe our recipe in 
JSON format. The JSON format is simply a key/value pair. If our request is successful, 
the recipe will be created in the backend and will return HTTP status 201 (Created). 
Together with the HTTP status, it will also send the recipe that has just been created in 
JSON format. 

When we update a recipe, we use the HTTP PUT method to send the data to http://
localhost:5000/recipes/20 with all the necessary parameters for the updated recipe in 
JSON format. If our request is successful, the recipe will be updated in the backend and 
it will return HTTP status 200 (OK). Together with the HTTP status, it will also send the 
updated recipe in JSON format. 

When we delete a recipe, we can use the HTTP Delete method to send the data to 
http://localhost:5000/recipes/20. This will remove the recipe with ID = 20.

Now you know where we are heading to, let's roll up our sleeves and get our hands 
dirty!

Virtual Environment

It is always recommended for developers to develop their application inside a virtual 
environment instead of directly on their local environment. 

The reason is that virtual environments are independent application development 
environments. We can create multiple virtual environments on a local machine, and 
these virtual environments can have their own version of Python, their own packages, 
their own environment variables, and so on. These virtual environments won't interfere 
with each other even though they are built on the same local machine. 

In the following exercise, we will create a development project in the PyCharm IDE. We 
will show you how to set up a virtual environment for this project in PyCharm.



12 | Your First Step

Exercise 1: Building Our First Flask Application

We are going to build our first Flask application in this exercise. You will realize how 
simple it is to build an application along the way. PyCharm is a great integrated 
development environment (IDE) with a nice GUI that will make our development 
process easier. We will learn about the workflow of application development, including 
the creation of the application project and installing the necessary Python packages:

1. Create a new project in PyCharm with File > New Project. Name our project 
basic-api. PyCharm will automatically help us to create a virtual environment for 
this new project.

Figure 1.5: Creating a new project

It's a good practice for projects to run on their own assigned independent virtual 
environments, so these projects can run on different packages and they won't 
affect each other.

2. Install the necessary packages in our virtual environment. To do that, we can 
create a file named requirements.txt in our project and type in the following text. 
We want to install Flask (version 1.0.3) and httpie (version 1.0.2):

Flask==1.0.3
httpie==1.0.2



Building a Simple Recipe Management Application | 13

Following screenshot shows the installation of Flask and httpie in requirements.
txt:

Figure 1.6: Installing Flask and httpie in requirements.txt

PyCharm is going to prompt us on the missing package, as shown in the 
screenshot. Clicking on Install requirement will let PyCharm take care of the 
installation for us in the virtual environment. Once the installation is done, we can 
create our first Python file, called app.py.

Note

To install the Python packages, we can also run the pip install -r 
requirements.txt command in Terminal. It will yield the same result.

The Flask package that we are installing is a web micro-framework. It is extremely 
lightweight and allows us to build a web service with just a few lines of code. 



14 | Your First Step

3. Let's type in the following code in app.py, then right-click on the filename of app.
py in the left panel,  and select run app to execute our first web service in Flask:

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello():
    return "Hello World!"

if __name__ == "__main__":
    app.run()

What this does is it first imports the Flask package in app.py, then it instantiates a 
Flask object, and finally, it assigns it to the app variable. We have created the main 
function as the entry point for our startup script. This subsequently brings up the 
Flask web server. After that, we have defined our first API function, hello, which 
returns a "Hello World" response. Using the Flask decorator, we can route the GET 
request URL to this function.

4. Now open the browser and type http://localhost:5000, You will see the string 
Hello World!. No special format, just plaintext. This means your first web service 
passed the test, it works!

Figure 1.7: Browser showing Hello World in plaintext

This is a very good start! Though this web service merely returns the plain text string, 
we can build a lot of stuff on top of that. 

I hope you can see how simple it is to build a web service using Flask; it is literally just 
a few lines of code. In fact, there are more Flask extensions out there that can help 
us build fancy functions. And be patient, we will talk about that in the subsequent 
chapters. For now, let's stay simple and get ourselves familiar with Flask first. 

For production-grade applications, data is usually stored in a database. We haven't 
looked at how to interact with the database yet, so for now, we are going to simply store 
them in memory. Since we are building a recipe sharing platform, we will be creating 
two recipes in our next exercise, and we'll let them live in the memory.



Building a Simple Recipe Management Application | 15

Exercise 2: Managing Recipes with Flask

In this exercise, we are going to work on our recipe management application with Flask. 
We will implement functionality to get recipes, to create recipes, and to update recipes. 
Without further ado, let's get started:

Note

For the complete code, please refer to https://github.com/TrainingByPackt/Python-
API-Development-Fundamentals/tree/master/Lesson01/Exercise02.

1. First, clean up app.py and start everything all over again, import the packages that 
we need for this web service from the preceding code:

from flask import Flask, jsonify, request

The jsonify package here is to convert our Python objects (such as a list) to JSON 
format. It will also change the content type in our HTTP response to application/
json. Simply put, it takes care of the heavy lifting of converting to JSON format for 
us.

2. Then we import the HTTPStatus enum, which includes different HTTP statuses:

from http import HTTPStatus

For instance, we will have HTTPStatus.CREATED (201) and HTTPStatus.NOT_FOUND 
(404).

3. Create an instance of the Flask class

app = Flask(__name__)

4. Define the recipes list. We store two recipes in the list. They are stored in the 
memory

recipes = [
    {
        'id': 1,
        'name': 'Egg Salad',
        'description': 'This is a lovely egg salad recipe.'
    },
    {
        'id': 2, 'name': 'Tomato Pasta',
        'description': 'This is a lovely tomato pasta recipe.'
    }
]

https://github.com/TrainingByPackt/Python-API-Development-Fundamentals/tree/master/Lesson01/Exercise02
https://github.com/TrainingByPackt/Python-API-Development-Fundamentals/tree/master/Lesson01/Exercise02


16 | Your First Step

5. Use the route decorator to tell Flask that the /recipes route will route to the get_
recipes function, and the methods = ['GET'] argument to specify that the route 
decorator will only respond to GET requests:

@app.route('/recipes', methods=['GET'])
def get_recipes():

Note

Please note that if we don't specify methods argument, the default will still be only 
responding to GET requests.

6. After that, use the jsonify function to convert the list of recipes to JSON format 
and respond to the client:

    return jsonify({'data': recipes})

7. After getting a specific recipe, if you only want to retrieve one specific recipe, 
then use the /recipes/<int:recipe_id> route to trigger the get_recipe(recipe_id) 
function.

@app.route('/recipes/<int:recipe_id>', methods=['GET'])

The syntax <int:recipe_id> syntax means the value in the route will be assigned 
to the integer variable id integer variable and can be used in the function. Our 
function get_recipe(recipe_id) function will then loop through the whole 
"recipes" list and locate the recipe that has the id that we are looking for. If that 
recipe exists, then we will return it. 

8. Take a closer look at our get_recipe function. Get the next recipe in the loop by 
using recipe = next((recipe for recipe in recipes if recipe['id'] == recipe_
id), None). Here, the line for recipe in recipes iterates through all the recipes in 
our recipe collection and finds out the recipe with id = recipe_id. Once we have 
found it, we store it in the iterator and retrieve it using the next function. If there 
is no such recipe with that ID, None will be returned:

def get_recipe(recipe_id):
    recipe = next((recipe for recipe in recipes if recipe['id'] == recipe_
id), None)

    if recipe:
        return jsonify(recipe)

    return jsonify({'message': 'recipe not found'}), HTTPStatus.NOT_FOUND



Building a Simple Recipe Management Application | 17

9. Next, we will work on the create_recipe function, which creates a recipe in 
memory. Use the /recipes route to the create_recipe function and the "methods 
= [POST]" argument to specify that the route decorator will only respond to POST 
requests:

@app.route('/recipes', methods=['POST'])

10. After that, use the request.get_json method to get the name and description from 
the client POST request. These two values together with a self-incremented id 
that we generate will be stored in the recipe (dictionary object) and then appended 
to our recipes list. At this point in time, the recipe is created and stored:

def create_recipe():
    data = request.get_json()

    name = data.get('name')
    description = data.get('description')

    recipe = {
        'id': len(recipes) + 1,
        'name': name,
        'description': description
    }

    recipes.append(recipe)

11. Finally, return the recipe that has just been created in JSON format, together with 
an HTTP 201 (CREATED) status. The following code highlights this:

    return jsonify(recipe), HTTPStatus.CREATED 

12. The next part of code is about updating recipes. Again, use the same line of code 
here, recipe = next((recipe for recipe in recipes if recipe['id'] == recipe_
id), None) to get the recipe with a specific ID:

@app.route('/recipes/<int:recipe_id>', methods=['PUT'])
def update_recipe(recipe_id):
    recipe = next((recipe for recipe in recipes if recipe['id'] == recipe_
id), None)



18 | Your First Step

13. The next few lines of code say that if we can't find the recipe, we will return a 
recipe not found message in JSON format, together with a HTTP NOT_FOUND status: 

    if not recipe:
        return jsonify({'message': 'recipe not found'}), HTTPStatus.NOT_
FOUND

14. If we found the recipe, then perform the recipe.update function, and put in the 
new name and description you get from the client request: 

    data = request.get_json()

    recipe.update(
        {
            'name': data.get('name'),
            'description': data.get('description')
        }
    )

15. Finally, we convert the updated recipe to JSON format using the jsonify function 
and return together with a default HTTP status 200 (OK). The following code 
highlights this:

    return jsonify(recipe)

16. The last few lines of code in our program is for starting up the Flask server:

if __name__ == '__main__':
    app.run()

17. Once the code is done, right-click on the app.py file and click run to start the 
application. The Flask server will be started up and our application is ready to be 
tested. The full code looks like this:

from flask import Flask, jsonify, request
from http import HTTPStatus

app = Flask(__name__)

recipes = [
    {
        'id': 1,
        'name': 'Egg Salad',
        'description': 'This is a lovely egg salad recipe.'
    },
    {



Building a Simple Recipe Management Application | 19

        'id': 2, 'name': 'Tomato Pasta',
        'description': 'This is a lovely tomato pasta recipe.'
    }
]

@app.route('/recipes/', methods=['GET'])
def get_recipes():
    return jsonify({'data': recipes})

@app.route('/recipes/<int:recipe_id>', methods=['GET'])
def get_recipe(recipe_id):
    recipe = next((recipe for recipe in recipes if recipe['id'] == recipe_
id), None)

    if recipe:
        return jsonify(recipe)

    return jsonify({'message': 'recipe not found'}), HTTPStatus.NOT_FOUND

@app.route('/recipes', methods=['POST'])
def create_recipe():
    data = request.get_json()

    name = data.get('name')
    description = data.get('description')

    recipe = {
        'id': len(recipes) + 1,
        'name': name,
        'description': description
    }

    recipes.append(recipe)

    return jsonify(recipe), HTTPStatus.CREATED

@app.route('/recipes/<int:recipe_id>', methods=['PUT'])
def update_recipe(recipe_id):
    recipe = next((recipe for recipe in recipes if recipe['id'] == recipe_
id), None)

    if not recipe:



20 | Your First Step

        return jsonify({'message': 'recipe not found'}), HTTPStatus.NOT_
FOUND 

    data = request.get_json()

    recipe.update(
        {
            'name': data.get('name'),
            'description': data.get('description')
        }
    )

    return jsonify(recipe)

if __name__ == '__main__':
    app.run()

The output is shown in the following screenshot:

Figure 1.8: The final Flask server

In the following sections, we will show you how to test your web service using curl/
httpie or Postman.

Using curl or httpie to Test All the Endpoints
In this section, we will go through ways to test the API service endpoints in our recipe 
management application using Command Prompt. Testing is a very important step in 
application development. This is to ensure the functions we developed are working as 
expected. We can use curl or httpie, depending on your personal preference. In the 
subsequent exercise, we will show you both tools. 



Using curl or httpie to Test All the Endpoints | 21

Curl (or cURL) is a command-line tool that can transfer data using URLs. We can use 
this tool to send requests to our API endpoints and examine the response. If you are 
running on macOS, you don't need to install curl. It is pre-installed in the system and 
you can find it in Terminal. You can also run it in the Terminal in PyCharm. However, if 
you are running on Windows, you need to download and install it for free from http://
curl.haxx.se/download.html.

Httpie (aych-tee-tee-pie) is another command-line client that does a similar thing. It 
was built with the goal to improve the communication between the CLI (command-line 
interface) and the web. It is pretty user-friendly. For more details about httpie, please 
refer to https://httpie.org/.

We added httpie==1.0.2 in our requirements.txt previously, so PyCharm should have 
already installed it for us. The main benefit of having httpie is it will beautifully format 
the JSON document, making it more readable. And believe me, that will save us a lot of 
time when we move on to verifying the HTTP response from the server.

Exercise 3: Testing Our API Endpoints with httpie and curl

In this exercise, we are going to use httpie and curl to test our API endpoints. We will 
test the functions of getting all the recipes back from the server, and also creating/
updating the recipes:

1. We will first open the Terminal in PyCharm. It is located at the bottom of the 
application. It will look as shown in the following screenshot:

Figure 1.9: PyCharm Terminal

2. Type in the following httpie command to get the recipes from our API endpoint, 
http://localhost:5000/recipes; we will be using the HTTP GET method here:

http GET localhost:5000/recipes

http://curl.haxx.se/download.html
http://curl.haxx.se/download.html
https://httpie.org/
http://localhost:5000/recipes


22 | Your First Step

3. If you prefer to do it the curl way, use the following command instead. Note that 
we have different parameters here: -i is for showing the header in the response 
and -X is for specifying the HTTP method. We will be using GET here:

curl -i -X GET localhost:5000/recipes 

Note

The http GET and curl-i -X GET commands basically do the same thing, which 
is using the HTTP GET method to send a request to http://localhost:5000/
recipes. If the code that we put in on the server-side is working properly, the 
request will go through the /recipes route and the get_recipes function will be 
invoked. This will then get us all the recipes in JSON format. 

Take a look at the response we get. The first few lines in the response are the 
header. It has the HTTP status 200 OK and a Content-Length of 175 bytes. The 
Content-Type is application/json and, in the end, we have the response body in 
JSON format:

HTTP/1.0 200 OK
Content-Length: 175
Content-Type: application/json
Date: Mon, 15 Jul 2019 12:40:44 GMT
Server: Werkzeug/0.15.4 Python/3.7.0

{
    "data": [
        {
            "description": "This is a lovely egg salad recipe.",
            "id": 1,
            "name": "Egg Salad"
        },
        {
            "description": "This is a lovely tomato pasta recipe.",
            "id": 2,
            "name": "Tomato Pasta"
        }
    ]
}



Using curl or httpie to Test All the Endpoints | 23

4. After that, let's create a recipe. This time, use the HTTP POST method, as we have 
lots of information that cannot be encoded in the URL. Please take a look at the 
following httpie command:

http POST localhost:5000/recipes name="Cheese Pizza" description="This is 
a lovely cheese pizza"

5. And then following is the curl command. The -H here is to specify the header in 
the request. Put in Content-Type: application/json, as we are going to send over 
the details of the new recipe in JSON format. The -d here is to specify the HTTP 
POST data, which is our new recipe:

curl -i -X POST localhost:5000/recipes -H "Content-Type: application/
json" -d '{"name":"Cheese Pizza", "description":"This is a lovely cheese 
pizza"}'

6. The @app.route('/recipes', methods=['POST']) in the backend to catch this client 
request and invoke the create_recipe function. It will get the recipe details from 
the client request and save it to a list in the application memory. Once the recipe 
is successfully stored in the memory, it will return an HTTP status of 201 CREATED, 
and the new recipe will also be returned in the HTTP response for us to verify:

HTTP/1.0 201 CREATED
Content-Length: 77
Content-Type: application/json
Date: Mon, 15 Jul 2019 14:26:11 GMT
Server: Werkzeug/0.15.4 Python/3.7.0

{
    "description": "This is a lovely cheese pizza",
    "id": 3,
    "name": "Cheese Pizza"
}

7. Now, get all the recipes again to verify if our previous recipe was really created 
successfully. We expect to receive three recipes in the response now:

http GET localhost:5000/recipes 
curl -i -X GET localhost:5000/recipes 



24 | Your First Step

8. Use either one of the preceding commands. They do the same thing, which is to 
trigger the get_recipes function and get us all the recipes currently stored in the 
application memory in JSON format. 

In the following response, we can see that the HTTP header is saying OK, and the 
Content-Length is now slightly longer than our previous response, that is, 252 
bytes. This makes sense because we are expecting to see one more recipe in the 
response. The Content-Type is again application/json, with the body storing the 
recipes in JSON format. Now we can see our new recipe with ID 3:

HTTP/1.0 200 OK
Content-Length: 252
Content-Type: application/json
Date: Tue, 16 Jul 2019 01:55:30 GMT
Server: Werkzeug/0.15.4 Python/3.7.0

{
    "data": [
        {
            "description": "This is a lovely egg salad recipe.",
            "id": 1,
            "name": "Egg Salad"
        },
        {
            "description": "This is a lovely tomato pasta recipe.",
            "id": 2,
            "name": "Tomato Pasta"
        },
        {
            "description": "This is a lovely cheese pizza",
            "id": 3,
            "name": "Cheese Pizza"
        }
    ]
}



Using curl or httpie to Test All the Endpoints | 25

9. Cool! So far, we are in pretty good shape. Now, test our application by trying to 
modify the recipe with ID 3. Use the HTTP PUT method and send over the modified 
name and description of the recipe to localhost:5000/recipes/3:

http PUT localhost:5000/recipes/3 name="Lovely Cheese Pizza" 
description="This is a lovely cheese pizza recipe."

The following is the curl command. Again, -H is to specify the header in the HTTP 
request, and we are setting that to "Content-Type: application/json"; -d is to 
specify that our data should be in JSON format:

curl -i -X PUT localhost:5000/recipes/3 -H "Content-Type: application/
json" -d '{"name":"Lovely Cheese Pizza", "description":"This is a lovely 
cheese pizza recipe."}'

10. If things are working properly, then the client request will be caught by the @app.
route('/recipes/<int:recipe_id>', methods=['PUT']) route. It will then invoke 
the update_recipe(recipe_id) function to look for the recipe with the passed-in 
recipe_id, update it, and return it. Together with the updated recipe in JSON 
format, we will also receive the HTTP status of OK (200):

HTTP/1.0 200 OK
Content-Length: 92
Content-Type: application/json
Date: Tue, 16 Jul 2019 02:04:57 GMT
Server: Werkzeug/0.15.4 Python/3.7.0

{
    "description": "This is a lovely cheese pizza recipe.",
    "id": 3,
    "name": "Lovely Cheese Pizza"
}



26 | Your First Step

11. Alright, all good so far. Now, go on and see if we can get a particular recipe. To do 
this, send a request to localhost:5000/recipes/3 to get the recipe with ID 3, and 
confirm whether our previous update was successful:

http GET localhost:5000/recipes/3

We can also use a curl command:

curl -i -X GET localhost:5000/recipes/3 

12. The application will look for the recipe with the recipe_id and return it in JSON 
format, together with an HTTP status of 200 OK:

HTTP/1.0 200 OK
Content-Length: 92
Content-Type: application/json
Date: Tue, 16 Jul 2019 06:10:49 GMT
Server: Werkzeug/0.15.4 Python/3.7.0

{
    "description": "This is a lovely cheese pizza recipe.",
    "id": 3,
    "name": "Lovely Cheese Pizza"
}

13. Now, what if we try a recipe ID that we know doesn't exist? How will the 
application behave? Test it out with the httpie command as follows:

http GET localhost:5000/recipes/101

Alternatively, use the following curl command, which will do the same thing as in 
the preceding code:

curl -i -X GET localhost:5000/recipes/101 



Postman | 27

14. Similarly, @app.route('/recipes/<int:recipe_id>', methods=['GET']) in the 
application will catch this client request and try to look for the recipe with ID = 
101. The application will return with an HTTP status of 404 and a message: "recipe 
not found" in JSON format:

HTTP/1.0 404 NOT FOUND
Content-Length: 31
Content-Type: application/json
Date: Tue, 16 Jul 2019 06:15:31 GMT
Server: Werkzeug/0.15.4 Python/3.7.0

{
    "message": "recipe not found"
}

If your application passed the test, congratulations! It is a pretty solid implementation. 
You can choose to perform more tests by yourself if you want to.

Postman
A Postman is a handy tool for API testing. It has a user-friendly GUI that we can send 
HTTP requests through. It allows us to send requests with different HTTP methods (that 
is, GET, POST, PUT, and DELETE) and we can check the response from the server. With 
this tool, we can easily test our API by sending a client request and checking the HTTP 
response. We can also save our test cases and group them into different collections.

The Postman GUI

We assume you should have already installed Postman by following the steps in the 
preface. When you open Postman, you should see the screen shown in the following 
screenshot. The left-hand side is a navigation panel for you to navigate through your 
historical or saved requests. In Postman, your requests are going to be organized into 
collections, which is like a folder in the filesystem. You can put relevant saved requests 
in the same collection.



28 | Your First Step

The top panel is for you to compose your request. As you have learned from the 
command-line testing tool, we can have different HTTP verbs (such as GET and PUT). 
We also need to put in an API endpoint to send the request to. For some requests, you 
may also need to pass in additional parameters. These can all be done in Postman.

The bottom panel shows the server response:

Figure 1.10: Postman interface

Sending a GET Request

Sending a GET request is simple; we just need to fill in the target URL:

1. Select GET as our HTTP method in the drop-down list.

2. Enter the request URL (such as http://localhost:5000/API1).

3. Click the Send button.



Postman | 29

Sending a POST Request

Sending a POST request, however, will take a bit more work, because very often, we will 
put extra data in the request. For example, if you want to send some JSON data to an 
API endpoint, you can do the following:

1. Select POST as our HTTP method in the drop-down list.

2. Enter the request URL (such as http://localhost:5000/API2).

3. Select the Body Tab. Also, select the "raw" radio button.

4. Choose "JSON (application/json)" from the right drop-down menu. Put in the 
JSON data to the Body content area:

{
     "key1": "value1",
     "key2": "value2"
}

5. Click the Send button.

Saving a Request

Very often, you will want to save your request for later use. This saving feature in 
Postman is particularly useful during regression testing. To save your request, you 
just need to click the save button, follow the on-screen instructions, and save it in a 
collection. Then you will see your saved request in the left navigation panel. 

Note

You may need to open an account in Postman before you can save the request. 
Please follow the on-screen instructions accordingly.

If you want to learn more about Postman, click on the "Bootcamp" button at the 
bottom of Postman. You will see interactive tutorials showing you how to use 
Postman step-by-step on the screen. 



30 | Your First Step

Activity 1: Sending Requests to Our APIs Using Postman

Now that we have learned how to use Postman, we are going to test our application 
using Postman instead of the curl/httpie command-line testing tools. In this activity, 
we will be using this tool to test the CRUD functions in our web service:

1. Create a request in Postman and get all the recipes.

2. Use a POST request to create a recipe.

3. Create a request to get all the recipes.

4. Send an update request to modify the recipe that we have just created.

5. Send a request to get a specific recipe.

6. Send a request to search for a recipe that doesn't exist.

Note

The solution for this activity can be found on page 286.

If your application passed the test, congratulations! It is a pretty solid implementation.

Exercise 4: Automated Testing Using Postman

In this exercise, we would like to show you how we can use Postman as a powerful 
automatic testing tool. An automatic testing tool allows us to repeatedly send requests 
to the APIs, thus achieve testing automation. Postman allows us to do this. We can save 
historical requests in a collection so that you can reuse the same test cases next time:

1. Hover the cursor over the request; the Save Request button will appear:

Figure 1.11: Saving the request



Postman | 31

2. Click on the Save Request button, and you will see a dialog box popping up, asking 
for more information. Type in Get all recipes for the request name and click on 
Create Collection at the bottom. Then, type in Basic API as the collection name 
and tick to confirm. Click Save to Basic API:

Figure 1.12: Putting in information for saving the request



32 | Your First Step

3. The collection will then be created. Now, save our request to this collection for 
future use. We can also click on the Collections tab to see all the requests in that 
collection:

Figure 1.13: Creating the new collection

Now we have a bunch of saved requests in our collection. Next time, if we make any 
changes in our application, we can rerun these tests to make sure the previously 
developed APIs are still working fine. This is called regression testing in the developer 
community. And Postman is a simple yet powerful tool for us to perform such testing.

Activity 2: Implement and Test the delete_recipe Function

Now we have a basic understanding of how to implement the API. We have coded the 
create and update recipe functions. In this activity, you will implement the delete_
recipe function yourself. 



Summary | 33

You have learned about both the command-line and GUI testing tools. You will test the 
application using these tools after the implementation. This is what you need to do:

1. Implement a delete_recipe function in app.py that can delete a specific recipe. 
Create the API endpoint accordingly.

2. Start the application, make it ready for testing.

3. Use httpie or curl to delete the recipe with ID = 1.

4. Use Postman to delete the recipe with ID = 2.

Note

The solution for this activity can be found on page 291.

Summary
In this chapter, we have built a basic RESTful API using Flask. We did CRUD (Create, 
Read, Update, Delete) operations on our recipes, and through this, you should have 
grasped the concepts and fundamentals of APIs. We have also talked about relevant 
concepts, such as HTTP methods, HTTP status codes, JSON, and routing. We wrapped 
up the chapter by showing you different ways (command prompt, GUI) to test the web 
services that we have built.

After laying a good foundation, in the next chapter, we will continue to develop our 
recipe sharing platform step by step. You will learn the whole process of RESTful API 
development. Just stay with us, the best is yet to come!





Learning Objectives

By the end of this chapter, you will be able to:

• Build a Restful API service efficiently using the Flask-Restful package

• Build an extendable Flask project

• Perform CRUD operations using the model

• Test RESTful APIs using curl, httpie, and Postman

In this chapter, we will start to work on the food recipe-sharing platform and learn how to create 
a RESTful API application.

Starting to Build Our 
Project

2



36 | Starting to Build Our Project

Introduction
Now that we've introduced APIs and learned a bit about HTTP and REST, we will work 
on building an application (the recipe-sharing app known as Smilecook). In this chapter, 
we aim to kick-start the actual project development. This is a recipe-sharing platform in 
which users can create accounts and share their own recipes with other users. As you 
can imagine, it will contain a lot of API endpoints for our users so that they can manage 
their recipes. We will be using the Flask-RESTful package to efficiently develop our 
RESTful API.

This chapter will talk about the CRUD (Create, Read, Update, Delete) of these recipes, 
as well as how to set the publish status of the recipe.

What is Flask-RESTful?
Flask-RESTful is a Flask extension that allows us to quickly develop RESTful APIs. 
Compared to the built-in wrapper, @app.route('/'), which we discussed in the previous 
chapter, Flask-RESTful allows us to maintain and structure the API endpoints in a much 
better and easier way.

In this chapter, we will develop our project using this Flask extension so that you will 
see how we can structure our endpoints.

Using Flask-RESTful to Develop Our Recipe-Sharing Platform, "Smilecook"

In this book, we are going to develop a recipe-sharing platform called Smilecook. 
Beginning with this chapter, we will start adding functions to it. We believe this 
approach will help you learn about the key concepts and skills you will need so that you 
can develop this application and help it reach its full potential, while at the same time 
helping you understand the entire development workflow.

First, we will build the basic CRUD functions of the recipes. The Flask-RESTful package 
allows us to structure our code in a more comprehensive way. We will define certain 
methods in a resource and link them to the endpoints. The flow of a GET request, for 
example, will be for the request to be sent to the endpoints (http://localhost:5000/
recipes), which will then be handled by the GET method we are going to implement in 
the resource. This will result in the recipes being returned to us.



Virtual Environment | 37

Apart from the basic CRUD functions, we will also implement the publish and unpublish 
functions on these recipes. This can be done through the PUT and DELETE methods, 
which can be found in the RecipePublishResource class. We will link these two methods 
to the http://localhost:5000/recipes/1/publish endpoint (for the recipe whose ID = 1). 
For details of our endpoint design, please refer to the following table:

Figure 2.1: Details of our endpoint designs

Virtual Environment
PyCharm will help us create a virtual environment. We want to develop our project in its 
own virtual environment in order to keep it isolated. Due to this, we will have absolute 
control over the versions of the packages that we are going to use.

The best way to learn is through practice. Let's get our hands dirty now!



38 | Starting to Build Our Project

Exercise 5: Creating a Development Project in PyCharm

Before you start developing the Python application, you'll need to create a development 
project in PyCharm. PyCharm manages things using projects. In this exercise, you will 
learn how to create a new development project in PyCharm called Smilecook. You will 
also need to install the necessary packages for this project. Let's get started:

1. Create the project and name it smilecook:

Figure 2.2: Creating a project



Virtual Environment | 39

2. Check the project structure and ensure that the virtual environment has been 
created. Once the module has been created, we will be able to see the project's 
hierarchy on the left-hand side panel. We can see the venv folder under the 
project folder, which was created and activated by PyCharm. Now, when we write 
code under this project, it will be run in the virtual environment:

Figure 2.3: Checking the project structure and ensuring that the virtual  
environment has been created

3. Install the required packages for this chapter. To do this, create a file called 
requirements.txt under our project folder. Type in the following code to specify 
the packages you want to install:

Flask==1.0.3
Flask-RESTful==0.3.7
httpie==1.0.3



40 | Starting to Build Our Project

4. Use the pip command to install these packages. After that, in the Terminal tab, 
at the bottom of Pycharm, use the following pip command to install the packages 
that we specified in the requirements.txt file:

pip install -r requirements.txt

5. You should now see something similar in the following screenshot. Here, we can 
see that the packages are being installed on the virtual environment:

Figure 2.4: Installing the packages on the virtual environment

Congratulations! You have created a PyCharm project for our Smilecook application. 
This is the first step of you embarking on your journey as a developer!

Creating a Recipe Model
As you can imagine, a recipe may have several attributes. To save every detail of these 
attributes, we will model the recipe using a class. This recipe class is going to have 
several essential attributes.

Here is a brief description of the attributes that we will define in the recipe class:

• name: The name of the recipe.

• description: The description of the recipe.

• num_of_servings: The number of servings.

• cook_time: The cooking time required. This is an integer whose units are in 
seconds.

• directions: The directions.

• is_publish: The publish status of the recipe; the default is draft.

In the next exercise, we will show you how to code the recipe class so that it has these 
attributes.



Creating a Recipe Model | 41

Exercise 6: Creating the Recipe Model

In this exercise, we will code the recipe model, step by step. The recipe class will 
contain the attributes that we discussed previously. The code file for this exercise can 
be found in Lesson2/Exercise06/models/recipe.py.

Now, let's create the recipe class:

1. Right-click on the project name, that is, Smilecook, and create a Python Package. 
Name it models:

Figure 2.5: Creating a Python package and naming it models

2. Then, create a file called recipe.py under models and type in the following code:

recipe_list = []

def get_last_id():
    if recipe_list:
        last_recipe = recipe_list[-1]
    else:
        return 1
    return last_recipe.id + 1

Let's pause for a while and examine the code here. First, we define recipe_list = 
[] so that we can store the recipes in the application memory. Then, we define the 
get_last_id function to get the ID of our last recipe. Later, when we create a new 
recipe, we will use this method to evaluate the last ID in recipe_list so that we 
can come up with a new ID for the new recipe. 

3. Define the recipe class using the following code. Type the following code into 
recipe.py, right after the get_last_id function that we implemented:

class Recipe:

    def __init__(self, name, description, num_of_servings, cook_time, 
directions):
        self.id = get_last_id()
        self.name = name
        self.description = description



42 | Starting to Build Our Project

        self.num_of_servings = num_of_servings
        self.cook_time = cook_time
        self.directions = directions
        self.is_publish = False

The Recipe class has the __init__ constructor method, which will take in 
parameters such as name, description, num_of_servings, cook_time, and directions, 
and create the recipe object based on that. The ID is self-incremented and is_
publish is set to false by default. This means that, by default, the recipe will be set 
to draft (not published).

4. In the same Recipe class, define the data method for returning the data as 
a dictionary object. You will recall that, in Python, indentation matters. The 
following code is indented since it is under the Recipe class:

    @property
    def data(self):
        return {
            'id': self.id,
            'name': self.name,
            'description': self.description,
            'num_of_servings': self.num_of_servings,
            'cook_time': self.cook_time,
            'directions': self.directions
        }

Now that we have built the recipe model, we will go ahead and build the API endpoint 
using Flask-RESTful.

Resourceful Routing

The main building blocks in Flask-RESTful are resources. Resources are built on top of 
Flask's pluggable view. The concept of resourceful routing is that we want to structure 
all the client requests around resources. In our recipe-sharing platform, we are going 
to group the CRUD actions on a recipe under RecipeResource. For publish and unpublish 
actions, we will group them under a different RecipePublishResource. This provides a 
clear structure that other developers can follow.

The way in which we can implement these resources is simple: we just need to inherit 
from the flask_restful.Resource class and implement the methods that correspond to 
the HTTP verb inside it.

In the next exercise, we will define three subclasses: one for the collection of recipes, 
one for a single recipe, and one for publishing the recipe. 



Creating a Recipe Model | 43

Exercise 7: Defining an API Endpoint for the Recipe Model

To build an API endpoint, we need to define a class that inherits from flask_restful.
Resource. Then, we can declare the get and post methods inside the class. Let's get 
started:

1. Create a folder called resources under the project and then create a file called 
recipe.py under the resources folder.

Note

The code file for this can be found in the https://github.com/TrainingByPackt/
Python-API-Development-Fundamentals/tree/master/Lesson02/Exercise07/
resources.

2. Import the necessary packages, classes, and functions using the following code:

from flask import request
from flask_restful import Resource
from http import HTTPStatus

from models.recipe import Recipe, recipe_list

3. Right after the preceding code import, create the RecipeListResource class. This 
class has GET and POST methods, which are used to get and create the recipe's 
resources, respectively. We will finish the get method first:

class RecipeListResource(Resource):

    def get(self):

        data = []

        for recipe in recipe_list:
            if recipe.is_publish is True:
                data.append(recipe.data)

        return {'data': data}, HTTPStatus.OK

https://github.com/TrainingByPackt/Python-API-Development-Fundamentals/tree/master/Lesson02/Exercise07/resources
https://github.com/TrainingByPackt/Python-API-Development-Fundamentals/tree/master/Lesson02/Exercise07/resources
https://github.com/TrainingByPackt/Python-API-Development-Fundamentals/tree/master/Lesson02/Exercise07/resources


44 | Starting to Build Our Project

Here, we have created and implemented the RecipeListResource class, which 
inherits from flask-restful.Resource. The get method that we implemented is for, 
getting all the public recipes back. It does this by declaring a data list and getting 
all the recipes with is_publish = true in recipe_list. These recipes are appended 
to our data list and returned to the users.

4. Add the post method. This is used to create the recipe:

    def post(self):
        data = request.get_json()

        recipe = Recipe(name=data['name'],
                        description=data['description'],
                        num_of_servings=data['num_of_servings'],
                        cook_time=data['cook_time'],
                        directions=data['directions'])

        recipe_list.append(recipe)

        return recipe.data, HTTPStatus.CREATED

In this exercise, we have built two methods that handle the GET and POST client 
requests. The following table summarizes the methods that we have built in this 
exercise:

Figure 2.6: Client request methods that we used in this exercise

Note

We have skipped the step to jsonify the object before returning data to the client 
because Flask-RESTful has already done that for us behind the scenes.

The post method that we built in this exercise is for creating a new recipe. It is a 
POST method. It does this by getting the JSON data back from the request using 
request.get_json and then creates the recipe object and stores that in recipe_
list. Finally, it returns the recipe record with an HTTP status code 201 CREATED.



Creating a Recipe Model | 45

Exercise 8: Defining the Recipe Resource

In this exercise, we will define the recipe resource. We are going to use two methods: 
the get method, for getting back a single recipe; and the put method, for updating the 
recipe. Let's get started:

1. Define the RecipeResource resource and implement the get method by using the 
following sample code:

class RecipeResource(Resource):

    def get(self, recipe_id):
        recipe = next((recipe for recipe in recipe_list if recipe.id == 
recipe_id and recipe.is_publish == True), None)

        if recipe is None:
            return {'message': 'recipe not found'}, HTTPStatus.NOT_FOUND

        return recipe.data, HTTPStatus.OK

Similarly, RecipeResource also inherits from flask-restful.Resource. The get 
method we are implementing here is getting back a single recipe. We do that by 
searching for recipe_id in recipe_list. We will only get back those recipes with 
is_publish = true. If no such recipe is found, we will return the message recipe 
not found. Otherwise, we will return the recipe, along with an HTTP status of 200 
OK.

2. Implement the put method with the following code:

    def put(self, recipe_id):
        data = request.get_json()

        recipe = next((recipe for recipe in recipe_list if recipe.id == 
recipe_id), None)

        if recipe is None:
            return {'message': 'recipe not found'}, HTTPStatus.NOT_FOUND

        recipe.name = data['name']
        recipe.description = data['description']
        recipe.num_of_servings = data['num_of_servings']
        recipe.cook_time = data['cook_time']
        recipe.directions = data['directions']

        return recipe.data, HTTPStatus.OK



46 | Starting to Build Our Project

The second method we've implemented here is put. It gets the recipe details from 
the client request using request.get_json and updates the recipe object. Then, it 
returns the HTTP status code 200 OK if everything goes well.

Here, we have built two methods for the recipe resources. The GET and PUT methods 
are used to handle the corresponding client request. The following table shows the 
methods that we have built for the RecipeResource class in this exercise:

Figure 2.7: Methods that we have built for the RecipeResource class

Exercise 9: Publishing and Unpublishing the Recipes

In the previous exercises, we created the recipe resources and their associated 
methods. Now, our Smilecook application can read/write actions on recipes. 
However, at the beginning of this chapter, we said that the recipes can have two 
Statuses (unpublished and published). This allows the user to continue updating their 
unpublished recipes before publishing them to the world. In this exercise, we will define 
the resource for publishing and unpublishing a recipe. Let's get started:

1. Define the RecipePublic resource and implement the put method that will handle 
the HTTP PUT request:

class RecipePublishResource(Resource):

    def put(self, recipe_id):
        recipe = next((recipe for recipe in recipe_list if recipe.id == 
recipe_id), None)

        if recipe is None:
            return {'message': 'recipe not found'}, HTTPStatus.NOT_FOUND

        recipe.is_publish = True

        return {}, HTTPStatus.NO_CONTENT

RecipePublishResource inherits from flask_restful.Resource. The put method will 
locate the recipe with the passed-in recipe_id and update the is_publish status 
to true. Then, it will return HTTPStatus.NO_CONTENT, which shows us that the recipe 
has been published successfully. 



Creating a Recipe Model | 47

2. Implement the delete method, which will handle the HTTP DELETE request:

    def delete(self, recipe_id):
        recipe = next((recipe for recipe in recipe_list if recipe.id == 
recipe_id), None)

        if recipe is None:
            return {'message': 'recipe not found'}, HTTPStatus.NOT_FOUND

        recipe.is_publish = False

        return {}, HTTPStatus.NO_CONTENT

The delete method is the opposite of the put method. Instead of setting is_publish 
to true, it sets it to false in order to unpublish the recipe.

You can also see that we are using these methods in a flexible manner; the put 
method is not necessarily for update, and the delete method is not necessarily for 
removal.

The following table shows all the methods that we have created in this exercise. Now 
that we have all three resources ready (RecipeListResource, RecipeResource, and 
RecipePublishResource), we will discuss endpoint configuration:

Figure 2.8: Methods that we used in this exercise

Note

If the client request is with an HTTP verb that has no corresponding handling 
method in the resource, Flask-RESTful will return the HTTP status code 405 
Method Not Allowed.



48 | Starting to Build Our Project

Configuring Endpoints
Now that we have defined all our resources, we will set up some endpoints so that 
users can send requests to them. These endpoints can be accessed by the users and are 
connected to specific resources. We will be using the add_resource method on the API 
object to specify the URL for these endpoints and route the client HTTP request to our 
resources. 

For example, the api.add_resource(RecipeListResource, '/recipes') syntax is used to 
link the route (relative URL path) to RecipeListResource so that HTTP requests will be 
directed to this resource. Depending on the HTTP verb (for example, GET, and POST), the 
request will be handled by the corresponding methods in the resource accordingly.

Exercise 10: Creating the Main Application File

In this exercise, we will create our app.py file, which will be our main application file. 
We will set up Flask and initialize our flask_restful.API there. Finally, we will set up the 
endpoints so that users can send requests to our backend services. Let's get started:

1. Create the app.py file under the project folder.

2. Import the necessary classes using the following code:

from flask import Flask
from flask_restful import Api

from resources.recipe import RecipeListResource, RecipeResource, 
RecipePublishResource

3. Set up Flask and initialize flask_restful.API with our Flask app:

app = Flask(__name__)
api = Api(app)



Configuring Endpoints | 49

4. Add resource routing by passing in the URL so that it will route to our resources. 
Each resource will have its own HTTP method defined:

api.add_resource(RecipeListResource, '/recipes') 
api.add_resource(RecipeResource, '/recipes/<int:recipe_id>')
api.add_resource(RecipePublishResource, '/recipes/<int:recipe_id>/
publish')

if __name__ == '__main__':
    app.run(port=5000, debug=True)

Note

In RecipeListResource, we have defined the get and post methods. So, when 
there is a GET HTTP request to the "/recipes" URL route, it will invoke the get 
method under RecipeListResource and get back all the published recipes.

In the preceding code, you will notice that we have used <int: recipe_id > in the 
code. It is there as a placeholder for the recipe ID. When a GET HTTP request has 
been sent to the route "/recipes/2" URL, this will invoke the get method under 
RecipeResource with a parameter, that is, recipe_id = 2.

5. Save app.py and right-click on it to run the application. Flask will then start up and 
run on the localhost (127.0.0.1) at port 5000:

Figure 2.9: Flask started and running on localhost

Congratulations! You have completed the API endpoint. Now, let's move on to testing. 
You can either test it in curl/httpie or Postman.



50 | Starting to Build Our Project

Making HTTP Requests to the Flask API using curl and httpie
Now, we are going to use the httpie and curl commands to test our API endpoints. 
We will test the functions for getting all the recipes back from the server and create/
update/delete, publish, and unpublish the recipes. The best way to learn this is to 
complete a hands-on exercise. Let's get started!

Exercise 11: Testing the Endpoints Using curl and httpie

In this exercise, we are going to use the httpie and curl commands to send requests to 
the endpoints so that we can create our first recipe. We want you to get comfortable 
using the httpie and curl command-line testing tool. Let's get started:

1. Open the Terminal in PyCharm and type in the following commands. You can use 
either the httpie or curl command. The following is the httpie command (= is for 
string and :=  is for non-string):

http POST localhost:5000/recipes name="Cheese Pizza" description="This is 
a lovely cheese pizza" num_of_servings:=2 cook_time:=30 directions="This 
is how you make it"

The following is the curl command. The -H argument is used to specify the header 
in the client request. We will set Content-Type: application/json as the header 
here. The -d argument is used for HTTP POST data, that is, the recipe in JSON 
format:

curl -i -X POST localhost:5000/recipes -H "Content-Type: application/json" 
-d '{"name":"Cheese Pizza", "description":"This is a lovely cheese pizza", 
"num_of_servings":2, "cook_time":30, "directions":"This is how you make 
it" }'

2. Examine the response, you should see the following. Carefully examine it, it should 
be the same recipe as the one that was used in our request in Step 1:

HTTP/1.0 201 CREATED
Content-Type: application/json
Content-Length: 188
Server: Werkzeug/0.16.0 Python/3.7.0
Date: Sun, 03 Nov 2019 03:19:00 GMT

{
    "id": 1,
    "name": "Cheese Pizza",
    "description": "This is a lovely cheese pizza",



Making HTTP Requests to the Flask API using curl and httpie | 51

    "num_of_servings": 2,
    "cook_time": 30,
    "directions": "This is how you make it"
}

Note

Once the client request has been sent to the server using the HTTP POST method, 
the post method in RecipeResource will pick up the request and save the recipe 
in the request to the application memory. The new recipe will be appended in 
recipe_list. Once everything is done, it will return HTTP 201 CREATED and the 
newly created recipe in JSON format.

We have successfully created our first recipe on the platform. This recipe is stored on 
the server-side and we already have the API to retrieve it. Let's continue by creating our 
second recipe and retrieving all our recipes in one go.

Exercise 12: Testing the Auto-Incremented Recipe ID

Now that we have implemented the auto-incremented ID in our Smilecook application, 
let's see how it works in practice. In this exercise, we will create the second recipe using 
the httpie and curl commands. Note that the ID is auto- incremented for our second 
recipe. Let's get started:

1. Create a second recipe and note that the ID is automatically incremented. Send 
the following client request using httpie:

http POST localhost:5000/recipes name="Tomato Pasta" description="This 
is a lovely tomato pasta recipe" num_of_servings:=3 cook_time:=20 
directions="This is how you make it"

Alternatively, send the request using curl. Again, the -H argument is used to specify 
the header in the client request. We will set "Content-Type: application/json" as 
the header here. The -d argument is used for HTTP POST data, meaning that the 
recipe is in JSON format:

curl -i -X POST localhost:5000/recipes -H "Content-Type: application/json" 
-d '{"name":"Tomato Pasta", "description":"This is a lovely tomato pasta 
recipe", "num_of_servings":3, "cook_time":20, "directions":"This is how 
you make it"}'



52 | Starting to Build Our Project

2. You should see the following response. Examine it carefully, it should be the same 
recipe as the one that was used in our request in Step 1:

HTTP/1.0 201 CREATED
Content-Type: application/json
Content-Length: 195
Server: Werkzeug/0.16.0 Python/3.7.0
Date: Sun, 03 Nov 2019 03:23:37 GMT
 
{
    "id": 2,
    "name": "Tomato Pasta",
    "description": "This is a lovely tomato pasta recipe",
    "num_of_servings": 3,
    "cook_time": 20,
    "directions": "This is how you make it"
}

Once the preceding client request has been sent to the server using the HTTP POST 
method, the post method in RecipeResource will pick up the request and save the 
recipe in the request to the application memory. The new recipe will be appended 
in recipe_list. This time, the ID will be automatically assigned to 2.

Exercise 13: Getting All the Recipes Back

In this exercise, we will be using the httpie and curl commands to get back all the 
recipes that we have created. We are doing this to ensure that our recipes are there in 
the backend server. Let's get started: 

1. Retrieve all the recipes by sending the following client request using httpie:

http GET localhost:5000/recipes

Alternatively, send the following request using curl. The -i argument is used to 
state that we want to see the response header. -X GET means that we are sending 
the client request using the HTTP GET method:

curl -i -X GET localhost:5000/recipes 



Making HTTP Requests to the Flask API using curl and httpie | 53

2. You should see the following response. Please examine it carefully:

HTTP/1.0 200 OK
Content-Length: 19
Content-Type: application/json
Date: Sun, 03 Nov 2019 03:24:53 GMT
Server: Werkzeug/0.16.0 Python/3.7.0
 
{
    "data": []
}

Once the preceding client request has been sent to the server using the HTTP GET 
method, the get method in RecipeResource will pick up the request and retrieve all 
the published recipes from recipe_list in the application memory.

Note

We should see an empty list in the HTTP response because all the recipes we have 
created in the previous steps are in draft form (not published).

Exercise 14: Testing the Recipe Resources

We have already tested the endpoints we built around the recipe resources. In this 
exercise, we will continue to use the httpie and curl commands to test the recipe 
publishing API. We can test it by sending requests asking to publish our recipes on the 
API endpoint. Let's get started:

1. Modify the publish status of the recipe with ID 1. We can send the following client 
request using the httpie command:

http PUT localhost:5000/recipes/1/publish

Alternatively, we can use the following curl command:

curl -i -X PUT localhost:5000/recipes/1/publish 

Note

Once the preceding client request has been sent to the server using the HTTP PUT 
method, the put method in RecipePublishResource will pick up the request and 
assign recipe_id to be 1. The application will look for the recipe with ID = 1 and 
update its publish status to True.



54 | Starting to Build Our Project

2. You should see the following response. Please examine it carefully:

HTTP/1.0 204 NO CONTENT
Content-Type: application/json
Date: Sun, 03 Nov 2019 03:25:48 GMT
Server: Werkzeug/0.16.0 Python/3.7.0

3. Now, retrieve all the published recipes and examine them. Then, send the 
following client request using httpie:

http GET localhost:5000/recipes

Alternatively, send the following request using curl. The -i argument is used to say 
that we want to see the response header. -X GET means that we are sending the 
client request using the HTTP GET method:

curl -i -X GET localhost:5000/recipes

4. You should see the following response. Please examine it carefully:

HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 276
Server: Werkzeug/0.16.0 Python/3.7.0
Date: Sun, 03 Nov 2019 03:26:43 GMT
 
{
    "data": [
        {
            "id": 1,
            "name": "Cheese Pizza",
            "description": "This is a lovely cheese pizza",
            "num_of_servings": 2,
            "cook_time": 30,
            "directions": "This is how you make it"
        }
    ]
}

Once the preceding client request has been sent to the server using the HTTP GET 
method, the get method in RecipeResource will pick up the request and retrieve 
all the published recipes from recipe_list in the application memory. This time, 
because the recipe with ID 1 has been set to publish, we shall see it in the HTTP 
response.



Making HTTP Requests to the Flask API using curl and httpie | 55

Exercise 15: Negative Testing

In the previous exercise, we successfully published our recipe. This is good because it 
shows us that the APIs that we've developed work. But the whole point of testing is to 
discover potential issues if any. We can perform so-called negative testing here. This is 
the process of deliberately testing the scenario with unwanted input. This exercise is 
going to test a request with an HTTP VERB that has no corresponding method defined 
in the resource. Let's get started:

1. Send the following request to the server-side. This HTTP method has not been 
defined; let's see what happens:

http DELETE localhost:5000/recipes

The following is the curl command, which does the same thing:

curl -i -X DELETE localhost:5000/recipes 

2. You should see the following response. Please examine it carefully:

HTTP/1.0 405 METHOD NOT ALLOWED
Content-Type: application/json
Content-Length: 70
Allow: POST, GET, HEAD, OPTIONS
Server: Werkzeug/0.16.0 Python/3.7.0
Date: Sun, 03 Nov 2019 03:27:37 GMT
 
{
    "message": "The method is not allowed for the requested URL."
}

We should see a response with an HTTP status of 405, which means that the 
method is not allowed for the requested URL. This makes sense because we have 
not defined a delete method in RecipeListResource.

Negative testing is important. We always want our testing to be more complete and 
covers more scenarios.



56 | Starting to Build Our Project

Exercise 16: Modifying the Recipes

In our Smilecook application, authors are allowed to update their recipes. It is like a 
blogging platform, where the authors can take their time to perfect their work, even 
after it has been published. Since we have already built the API, we would like to test it 
using Postman. Let's get started:

1. Use the PUT method to send the request to localhost:5000/recipes/1, along with 
the new recipe details:

http PUT localhost:5000/recipes/1 name="Lovely Cheese Pizza" 
description="This is a lovely cheese pizza recipe" num_of_servings:=3 
cook_time:=60 directions="This is how you make it"

Alternatively, send the following request using curl. The -H argument is used to 
specify the header in the client request. We will set "Content-Type: application/
json" as the header here. The -d argument is used for HTTP POST data, meaning 
that the recipe will be in JSON format:

curl -i -X PUT localhost:5000/recipes/1 -H "Content-Type: application/
json" -d '{"name":"Lovely Cheese Pizza", "description":"This is a 
lovely cheese pizza recipe", "num_of_servings":3, "cook_time":60, 
"directions":"This is how you make it"}'

2. You should see the following response. Please examine it carefully:

HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 202
Server: Werkzeug/0.16.0 Python/3.7.0
Date: Sun, 03 Nov 2019 03:28:57 GMT
 
{
    "id": 1,
    "name": "Lovely Cheese Pizza",
    "description": "This is a lovely cheese pizza recipe",
    "num_of_servings": 3,
    "cook_time": 60,
    "directions": "This is how you make it"
}

Once the preceding client request has been sent to the server using the HTTP 
PUT method, the put method in RecipeResource will pick up the request and assign 
recipe_id to be 1. The application will look for the recipe with id = 1 and update 
its details with those in the client request. The preceding response shows that the 
recipe with ID 1 is modified. 



Making HTTP Requests to the Flask API using curl and httpie | 57

We just finished testing another important feature. You have been doing great. Let's 
keep going!

Exercise 17: Getting Back Specific Recipes with a Certain ID

So far, we have tested getting all the recipes back. But in the real world, a user will want 
to only get the recipes that they want to see. They can do this by using the recipe ID. 
This exercise will show you how to get a particular recipe with a certain ID. Let's get 
started:

1. Send the following client request using httpie:

http GET localhost:5000/recipes/1

Alternatively, use the following curl command, which does the same thing:

curl -i -X GET localhost:5000/recipes/1
You should see the following response. Please examine it carefully:
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 202
Server: Werkzeug/0.16.0 Python/3.7.0
Date: Sun, 03 Nov 2019 03:29:59 GMT
 
{
    "id": 1,
    "name": "Lovely Cheese Pizza",
    "description": "This is a lovely cheese pizza recipe",
    "num_of_servings": 3,
    "cook_time": 60,
    "directions": "This is how you make it"
}

Once the preceding client request has been sent to the server using the HTTP 
GET method, the get method in RecipeResource will pick up the request and assign 
recipe_id to be 1. It will retrieve all the published recipes from recipe_list in the 
application memory with an HTTP status of HTTP 200.

We have just tested our Smilecook application and confirmed that it can give us back 
the recipe we want. 



58 | Starting to Build Our Project

Activity 3: Testing the APIs Using Postman

We added quite a few functions in the previous exercise. Now, we need to make sure 
that they work properly before we move on and develop other functions. In this activity, 
instead of using httpie/curl, we will be testing our API using Postman. Please follow 
these high-level steps:

1. Create the first recipe using Postman.

2. Create the second recipe using Postman.

3. Retrieve all the recipes using Postman.

4. Set the recipes to published using Postman.

5. Retrieve all the recipes using Postman again.

6. Modify the recipe using Postman.

7. Get a specific recipe back using Postman.

Note

The solution to this activity can be found on page 293.

Activity 4: Implementing the Delete Recipe Function

In this activity, you will implement the delete recipe function in the Smilecook 
application yourself. Do this by adding a delete function to RecipeResource, similar 
to what we did in the previous exercises. Then, we will follow the standard software 
development life cycle flow, which is used to test our implementation, using Postman. 
Follow these steps to complete this activity:

1. Add the delete function to RecipeResource.

2. Start up the Flask server for testing.

3. Create the first recipe using Postman.

4. Delete the recipe using Postman.

Note

The solution to this activity can be found on page 299.



Summary | 59

Summary
In this chapter, we built the RESTful API using the Flask-RESTful package. By doing 
this, you have seen how simple and easy it is to perform such tasks. We are building 
our project in a structural manner, which allows us to easily extend the project in the 
subsequent chapters. In this chapter, we created the models and resources folder; 
we will be developing more models and resources later in this book. So far, our food 
recipe-sharing platform, Smilecook, is capable of performing CRUD, as well as setting 
the publish status of the recipe. We have also tested the application to make sure it is 
working properly. Finally, you started to realize the power of Postman, which greatly 
automates the whole testing process. In the next chapter, we will learn about how to 
perform data validation.





Learning Objectives

By the end of this chapter, you will be able to:

• Use the pgAdmin tool to manage a database

• Manipulate a database using SQLAlchemy

• Create database tables using Flask-Migrate

• Persist data into a database

• Hash confidential password data

This chapter covers using SQLAlchemy to access a database, including building a model, 
encrypting the password, ensuring each email is unique, and then saving the recipe data in the 
database.

Manipulating a 
Database with 

SQLAlchemy

3



62 | Manipulating a Database with SQLAlchemy

Introduction
In the previous chapter, we were only storing our data in application memory. While it 
is easy to code that way, the data will be gone once the server restarts. That is obviously 
not ideal because we would expect the data to be persisted even after a server restart 
or application migration and suchlike. Therefore, in this chapter, we will talk about 
persisting data in a database. We will begin by installing the Postgres database on our 
local machine. Then, we will create a database using pgAdmin and interact with it using 
the ORM (Object Relational Mapping) package, SQLAlchemy. ORM allows us to interact 
with a database by means of an object instead of an SQL query. After that, we will 
define the user and recipe models, link them up, and use Flask-Migrate to create the 
corresponding tables in the database. Once that part is complete, we will go through 
exercises to understand the utilization of SQLAlchemy in the Python console. Lastly, we 
will add the resource for users so that new users can be created through an API.

Databases
You have probably heard of the term database before. It is basically a data storage 
system. But why do we need a system to store data? Why can't we just store everything 
in a text file and save that in the folder system? Apparently, a database does more 
than just storing data. It classifies and organizes data and helps to store it with less 
redundancy. It also makes data easier to maintain, making it more it secure and 
consistent. A database is usually managed by a database management system (DBMS)

Database Management System

A DBMS is an application that maneuvers and manages a database. It facilitates 
communication between the users and the database. Users can create, use, and 
maintain the database using this application.

A DBMS is crucial for data security and integrity. Popular database software and DBMSs 
include PostgreSQL, MySQL, Microsoft SQL Server, MariaDB, and Oracle Database. 
Most DBMSs use structured query language (SQL) to insert and extract data. 

In this book, we will be using PostgreSQL as our backend database system. And we will 
also use pgAdmin, which is a tool for managing PostgreSQL. PostgreSQL is a powerful, 
open-source object-relational database management system with a 15-year history. It is 
well recognized as a result of its stability and data integrity. 



SQL | 63

SQL
SQL is a language that was specifically invented to manage and maneuver data. It can be 
classified further into the following types:

• Data Query Language (DQL) for extracting data. With the syntax like SELECT 
column1, column2 FROM table WHERE conditions, it can query against the table and 
extracts data (column1, column2) that satisfies a certain condition.

• Data Manipulation Language (DML) for manipulating data. It includes statements 
such as INSERT, UPDATE, and DELETE.

• Data Control Language (DCL) for controlling data access.

Although we have introduced a number of different languages here, the good thing is 
that we don't need to learn all of them. In fact, we are not going to query our database 
using SQL. We will just need to code in Python, and the ORM package will convert our 
Python code to SQL behind the scenes. It's a whole lot easier to work with databases 
nowadays.

ORM
Object Relational Mapping (ORM) is a programming technique that allows the 
developer to map objects in the programming language to the data model in a database. 
There is no longer any need to use SQL to interact with a database. The benefit of this 
is that developers can code in their own programming language and it will work on 
different types of databases.

The mapping works along the following lines:

• Class in Python = the table schema in the database

• Attributes in a class = fields in the table schema

• Objects = rows of data in the table

SQLAlchemy is the most popular ORM in the Python community. Next, let's delves 
further by attempting to create a database.



64 | Manipulating a Database with SQLAlchemy

Exercise 18: Setting Up a Smilecook Database

Most applications nowadays require a database to store and manage data. Our 
application, Smilecook, is no exception. It is a recipe-sharing platform and is open to 
the public. Obviously, it will have to store the user data and recipe data. In this exercise, 
we will create the database administrator and set up the database for our Smilecook 
application:

1. To start with, we will create a role. A role is simply a concept that PostgreSQL uses 
to manage access. We can consider that as a user here. Right-click on PostgreSQL 
11 under Servers, select Create, and then Login/Group Role…:

Figure 3.1: Selecting Login/Group Role…

2. Fill in the login name, which will be used later for connecting to the database:

Figure 3.2: Filling in the login name



ORM | 65

3. Then, select Definition and set the password. Click Save:

Figure 3.3: Setting the password



66 | Manipulating a Database with SQLAlchemy

4. Now, go to Privileges, and select Yes for Can login?. This will allow us to log in to 
the database using this account:

Figure 3.4: Logging in to the database using the account created

5. Right-click on Databases, and create a database from there:

Figure 3.5: Creating the database



Defining Our Models | 67

6. Name the database smilecook, and set the role that we have just created to Owner. 
Click Save:

Figure 3.6: Naming the database and setting the role

Now we have created the Smilecook database, but it is empty at the moment. In the 
next exercise, we will use Flask-SQLAlchemy and Flask-Migrate to create our database 
tables. You will notice that there is no SQL query involved.

Defining Our Models
Before we go into the implementation, we need to first define and understand the fields 
that we will be working with. We will cover two essential models: User and Recipe. 
Models are like schemas in the database. A model is a class and can be instantiated. It 
contains attributes that correspond to fields in database schemas.



68 | Manipulating a Database with SQLAlchemy

The user model

The user model will be mapped to the user table in the database. The fields and 
methods we defined for our user model are as follows:

• id: The identity of a user.

• username: The username of the user. The maximum length allowed is 80 characters. 
It can't be null and is a unique field.

• email: The user's email. The maximum length allowed is 200. It can't be blank and 
is a unique field.

• password: The user's password. The maximum length allowed is 200.

• is_active: This is to indicate whether the account is activated by email. It is a 
Boolean field with a default value of False.

• recipes: This doesn't create a field in the database table. This is just to define the 
relationship with the recipe model. So, subsequently, we can get all recipes using 
user.recipes.

• created_at: The creation time of the user.

• updated_at: The last update time of the user.

We are also going to define three methods in the user model:

• get_by_username: This method is used for searching the user by username.

• get_by_email: This method is used for searching the user by email.

• save: This is to persist the data to the database.

The recipe model

The recipe model will be mapped to the user table in the database. The fields we 
defined for our recipe model are as follows:

• id: The identity of a recipe.

• name: The name of the recipe. The maximum length allowed is 100 characters. It 
can't be null.

• description: The description of the recipe. The maximum length allowed is 200. 

• num_of_servings: The number of servings. This needs to be an integer.



Defining Our Models | 69

• cook_time: The cooking time in minutes. This field only accepts an integer. 

• directions: The directions of the recipe. This can have a maximum length of 1,000.

• is_publish: This is to indicate whether the recipe has been published. It is set to 
False by default.

• created_at: The creation time of the recipe.

• updated_at: The last update time of the recipe.

With the model designs in our mind, we are now ready to use these models in our next 
exercise. Before that, let's also just briefly understand some of the key packages that we 
will be using. These are as follows:

• Flask-SQLAlchemy: This is a very popular ORM package that allows us to access 
objects rather than database tables for data. With ORM, we do not need to rely on 
SQL anymore.

• Flask-Migrate: This is a package for database migration; it works on top of Alembic.

• Psycopg2-binary: This is the adapter for the Postgres database.

• Passlib: This is a password hashing library for Python.

Exercise 19: Installing Packages and Defining Models 

This exercise is designed to install the necessary packages and define the user and 
recipe models. The user and recipe models are going to be Python classes; there will 
not be any SQL coding in this exercise. We want to show you how we can interact with 
the database by simply coding in Python: 

1. We will add the required packages in the requirements.txt file. If you remember, 
by putting the package name and version in requirements.txt, we can install them 
in the Python virtual environment by using a single pip command:

Flask-SQLAlchemy==2.4.0
Flask-Migrate==2.5.2
psycopg2-binary==2.8.3
passlib==1.7.1



70 | Manipulating a Database with SQLAlchemy

2. We can run the following pip install command to install the necessary packages:

pip install -r requirements.txt

The installation result will be shown onscreen:

Installing collected packages: SQLAlchemy, Flask-SQLAlchemy, alembic, 
Flask-Migrate, psycopg2-binary, passlib
  Running setup.py install for SQLAlchemy ... done
  Running setup.py install for alembic ... done
Successfully installed Flask-Migrate-2.5.2 Flask-SQLAlchemy-2.4.0 
SQLAlchemy-1.3.6 alembic-1.0.11 passlib-1.7.1 psycopg2-binary-2.8.3

3. Create a Config.py file and type in the following code:

class Config:
    DEBUG = True

    SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://{your_name}:{your_
password}@localhost/{db_name}
    SQLALCHEMY_TRACK_MODIFICATIONS = False

We can set DEBUG = True here for debugging purposes. As regards SQLALCHEMY_
DATABASE_URI, this is the path of the database. Please replace the username and 
password with the one we created for the Role in pgAdmin. Also, replace the 
database name as well.

4. Now, create extensions.py under the Smilecook project and type in the following 
code:

from flask_sqlalchemy import SQLAlchemy

db = SQLAlchemy()

5. Create user.py under the folder models and type in the following code:

from extensions import db

class User(db.Model):
    __tablename__ = 'user'

    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), nullable=False, unique=True)
    email = db.Column(db.String(200), nullable=False, unique=True)
    password = db.Column(db.String(200))



Defining Our Models | 71

    is_active = db.Column(db.Boolean(), default=False)
    created_at = db.Column(db.DateTime(), nullable=False, server_
default=db.func.now())
    updated_at = db.Column(db.DateTime(), nullable=False, server_
default=db.func.now(), onupdate=db.func.now())

    recipes = db.relationship('Recipe', backref='user')

    @classmethod
    def get_by_username(cls, username):
        return cls.query.filter_by(username=username).first()

    @classmethod
    def get_by_email(cls, email):
        return cls.query.filter_by(email=email).first()
    
    def save(self):
        db.session.add(self)
        db.session.commit()

6. Replace  recipe.py with the following code. We are adding the import db statement 
here and have also modified the Recipe class. The code related to recipe_list is 
still valid here, so we are retaining that part of the code: 

from extensions import db

recipe_list = []

def get_last_id():
    if recipe_list:
        last_recipe = recipe_list[-1]
    else:
        return 1
    return last_recipe.id + 1

class Recipe(db.Model):
    __tablename__ = 'recipe'

    id = db.Column(db.Integer, primary_key=True)



72 | Manipulating a Database with SQLAlchemy

    name = db.Column(db.String(100), nullable=False)
    description = db.Column(db.String(200))
    num_of_servings = db.Column(db.Integer)
    cook_time = db.Column(db.Integer)
    directions = db.Column(db.String(1000))
    is_publish = db.Column(db.Boolean(), default=False)
    created_at = db.Column(db.DateTime(), nullable=False, server_
default=db.func.now())
    updated_at = db.Column(db.DateTime(), nullable=False, server_
default=db.func.now(), onupdate=db.func.now())

    user_id = db.Column(db.Integer(), db.ForeignKey("user.id"))

7. Now, rewrite app.py with the following code. We are structuring our code in a 
more proper way, making it more readable and maintainable. First, import the 
required packages at the beginning of the code file. 

Note

You're also importing the user model because SQLAlchemy needs the user model 
to create the corresponding table in the database.

For the recipe model, we don't need to include this here because that has already 
been done in resources.recipe, and we are already importing resources.recipe 
here: 

from flask import Flask
from flask_migrate import Migrate
from flask_restful import Api

from config import Config
from extensions import db
from models.user import User
from resources.recipe import RecipeListResource, RecipeResource, 
RecipePublishResource



Defining Our Models | 73

8. Use the create_app() function to create the Flask app. This will invoke register_
extensions(app) to initialize SQLAlchemy and set up Flask-Migrate. It will then 
invoke register_resources(app) to set up resource routing:

def create_app():
    app = Flask(__name__)
    app.config.from_object(Config)

    register_extensions(app)
    register_resources(app)

    return app

def register_extensions(app):
    db.init_app(app)
    migrate = Migrate(app, db)

def register_resources(app):
    api = Api(app)

    api.add_resource(RecipeListResource, '/recipes')
    api.add_resource(RecipeResource, '/recipes/<int:recipe_id>')
    api.add_resource(RecipePublishResource, '/recipes/<int:recipe_id>/
publish')

9. Finally, use app = create_app() to create the Flask app, and use app.run() to start 
the application:

if __name__ == '__main__':
    app = create_app()
    app.run()



74 | Manipulating a Database with SQLAlchemy

10. Save app.py and right-click on it to run the application. Flask will then be started 
up and run on the localhost (127.0.0.1) on port 5000:

Figure 3.7: Flask started on localhost

We have successfully installed the necessary ORM-related packages, and defined the 
user and recipe models. Having first installed the packages, we ran the installation in 
our virtual environment. We created config.py, extensions.py, and user.py files and 
replaced app.py. Finally, we restructured our Flask app and saw how well it runs.

Exercise 20: Using Flask-Migrate to Build a Database Upgrade Script

Having successfully understood how to work with our two main models, user and 
recipe, we have now built the perfect foundation. The next step is execution. We will 
use Flask-Migrate to build a script to create the user and recipe tables:

1. Use the following command in the Terminal to initialize our database. This will 
create a migration repository: 

flask db init

You should see the following onscreen:

Creating directory /Python-API-Development-Fundamentals/smilecook/
migrations ... done
Creating directory /Python-API-Development-Fundamentals/smilecook/
migrations/versions ... done
Generating /Python-API-Development-Fundamentals/smilecook/migrations/
script.py.mako ... done
Generating /Python-API-Development-Fundamentals/smilecook/migrations/env.
py ... done
Generating /Python-API-Development-Fundamentals/smilecook/migrations/
README ... done



Defining Our Models | 75

Generating /Python-API-Development-Fundamentals/smilecook/migrations/
alembic.ini ... done
Please edit configuration/connection/logging settings in '/Python-API-
Development-
Fundamentals/smilecook/migrations/alembic.ini' before proceeding.

You should now see the following new files in PyCharm:

Figure 3.8: New folders in PyCharm

2. Now, run the flask db migrate command to create the database and tables. There 
is no need for us to use SQL here:

flask db migrate

Flask-Migrate detected two objects (user and recipe) and created two 
corresponding tables for them: 

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.autogenerate.compare] Detected added table 'user'
INFO  [alembic.autogenerate.compare] Detected added table 'recipe'
  Generating /Python-API-Development-Fundamentals/smilecook/migrations/
versions/a6d248ab7b23_.py ... done



76 | Manipulating a Database with SQLAlchemy

3. Now, please check /migrations/versions/a6d248ab7b23_.py under the versions 
folder. This file is created by Flask-Migrate. Note that you may get a different 
revision ID here. Please review the file before you run the flask db upgrade 
command. That's because, sometimes, it may not detect every change you make to 
your models:

"""empty message

Revision ID: a6d248ab7b23
Revises: 
Create Date: 2019-07-22 16:10:41.644737

"""
from alembic import op
import sqlalchemy as sa

# revision identifiers, used by Alembic.
revision = 'a6d248ab7b23'
down_revision = None
branch_labels = None
depends_on = None

def upgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.create_table('user',
    sa.Column('id', sa.Integer(), nullable=False),
    sa.Column('username', sa.String(length=80), nullable=False),
    sa.Column('email', sa.String(length=200), nullable=False),
    sa.Column('password', sa.String(), nullable=True),
    sa.Column('is_active', sa.Boolean(), nullable=True),
    sa.Column('created_at', sa.DateTime(), server_default=sa.
text('now()'), nullable=False),
    sa.Column('updated_at', sa.DateTime(), server_default=sa.
text('now()'), nullable=False),
    sa.PrimaryKeyConstraint('id'),
    sa.UniqueConstraint('email')
    )
    op.create_table('recipe',
    sa.Column('id', sa.Integer(), nullable=False),
    sa.Column('name', sa.String(length=100), nullable=False),



Defining Our Models | 77

    sa.Column('description', sa.String(length=500), nullable=True),
    sa.Column('num_of_servings', sa.Integer(), nullable=True),
    sa.Column('cook_time', sa.Integer(), nullable=True),
    sa.Column('directions', sa.String(), nullable=True),
    sa.Column('is_publish', sa.Boolean(), nullable=True),
    sa.Column('created_at', sa.DateTime(), server_default=sa.
text('now()'), nullable=False),
    sa.Column('updated_at', sa.DateTime(), server_default=sa.
text('now()'), nullable=False),
    sa.Column('user_id', sa.Integer(), nullable=True),
    sa.ForeignKeyConstraint(['user_id'], ['user.id'], ),
    sa.PrimaryKeyConstraint('id')
    )
    # ### end Alembic commands ###

def downgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.drop_table('recipe')
    op.drop_table('user')
    # ### end Alembic commands ###

There are two functions in this autogenerated file; one is upgraded, and this is 
to add the new recipe and user to the table, while the other one is downgraded, 
which is to go back to the previous version.

4. We will then execute the flask db upgrade command, which will upgrade our 
database to conform with the latest specification in our models:

flask db upgrade

This command will invoke upgrade() to upgrade the database:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.runtime.migration] Running upgrade  -> a6d248ab7b23, empty 
message

Note

In the future, whenever we need to upgrade the database, we can just call flask 
db migrate and flask db upgrade. 



78 | Manipulating a Database with SQLAlchemy

5. Check the database tables in pgAdmin. Now, we can see whether the tables have 
been created in the database. Go to smilecook >> Schemas >> Tables to verify:

Figure 3.9: Checking the database tables

If you see the recipe and user tables in our Smilecook database, this means you have 
successfully created them in Python without any SQL. Isn't that cool?!

Next, we will try our hand at database insertion. Let's look at the following exercise.



Defining Our Models | 79

Exercise 21: Applying Database Insertion

This exercise is designed for us to test database insertion. We will first create a user, 
and then create two recipes under that user:

1. Import modules in the Python console. Open the Python console at the bottom of 
PyCharm and type in the following code to import the necessary classes:

from app import *
from models.user import User
from models.recipe import Recipe
app = create_app()

2. Create our first user object and save that to the database by typing in the following 
code in the Python console:

user = User(username='jack', email='jack@gmail.com', password='WkQa')
db.session.add(user)
db.session.commit()

3. Now, check the user details. Please note that the ID of the user has already been 
assigned to 1:

>>>user.username
'jack'
>>>user.id
1
>>>user.email
'jack@gmail.com'

4. Since the user is persisted in the database, we will verify that there:

Figure 3.10: Verifying the user in the database



80 | Manipulating a Database with SQLAlchemy

5. We can see a record there in the user table:

6. 

Figure 3.11: Record in the user table

7. Next, we will create two recipes using the following code. One thing to note is 
that the user_id attribute of the recipe is set to user.id. This is to indicate that the 
recipe was created by the user Jack:

pizza = Recipe(name='Cheese Pizza', description='This is a lovely cheese 
pizza recipe', num_of_servings=2, cook_time=30, directions='This is how 
you make it', user_id=user.id)
db.session.add(pizza)
db.session.commit()

pasta = Recipe(name='Tomato Pasta', description='This is a lovely tomato 
pasta recipe', num_of_servings=3, cook_time=20, directions='This is how 
you make it', user_id=user.id)
db.session.add(pasta)
db.session.commit()

8. We will then check whether the two recipes have been created in the database:

Figure 3.12: Checking whether the two recipes have been created

9. We will search for the user with the username jack in the database and get all the 
recipes created by that user in their object attribute, recipes:

>>> user = User.query.filter_by(username='jack').first()
>>> user.recipes

We will get a list of two recipes:

[<Recipe 1>, <Recipe 2>]



Defining Our Models | 81

10. We can display the details of the recipes using the for loop. We get the recipe 
name using recipe.name, while we get the user's name using recipe.user.username:

>>> for recipe in user.recipes:
    print('{} recipe made by {} can serve {} people.'.format(recipe.name, 
recipe.user.username, recipe.num_of_servings))

You should see the following result on the screen:

Cheese Pizza recipe made by jack can serve 2 people.
Tomato Pasta recipe made by jack can serve 3 people.

You have just learned how to command your application using the Python console. 
You have just created the user and recipe models and saved them in the database. 
The entire process is SQL-free, as you can see. Let's do an activity to reinforce your 
knowledge.

Activity 5: Creating a User and a Recipe

In this activity, we will test our APIs by running a few more test cases. We want to 
create a new user, Peter, and create two recipes under him in the database. Let's see if 
you know how to write the code for that in the Python interactive console:

1. Import the User and Recipe classes and create the Flask app using the Python 
console.

2. Create a new user, Peter.

3. Create two recipes and assign Peter as the author.

Note

The solution for this activity can be found on page 302.

If you can see that the data has successfully been created in the database, 
congratulations – you already know how to use Python console to interact with the 
database! Next, we will implement a user registration feature.



82 | Manipulating a Database with SQLAlchemy

Password Hashing
Hashing is a one-way mathematical function. It requires little computing power to 
convert a plaintext string to its hash value (hashes). However, it will require a huge 
amount of computing power to retrieve the original string from the hash value (it's 
almost impossible). Therefore, we call it a one-way function:

Figure 3.13: Workings of the hash function

With this property, a hash function is perfect for a hashing password. We will 
hash the user's password into hashes before we save it to the database so that it 
is unrecognizable and irreversible. And next time, when the user logs in, what the 
platform does is to convert the input the password to its hash value, and then compare 
that with the hash value stored in the database. That way, we can perform a password 
comparison without leaking the sensitive password information to others.

Exercise 22: Implement the User Registration Feature and Hash the User's 

Password

In this exercise, we will work on the user registration feature. We will also implement 
two functions for hashing the user's password: 

1. Create utils.py under the application project folder and type in the following 
code. The code is to hash the password. We do not want to store plaintext 
passwords in our database on account of security concerns. Therefore, we will use 
the passlib modules for hashing. We defined two methods here:

from passlib.hash import pbkdf2_sha256

def hash_password(password):



Password Hashing | 83

    return pbkdf2_sha256.hash(password)

def check_password(password, hashed):
    return pbkdf2_sha256.verify(password, hashed)

The hash_password(password) function is for password hashing and check_
password(password, hashed) is for user authentication. It hashes the user-input 
password and compares that with the one we saved in the database.

2. Create user.py in the resources folder, and then type in the following code. 
We will first import the necessary modules and implement the Post method in 
UserListResource:

from flask import request
from flask_restful import Resource
from http import HTTPStatus

from utils import hash_password
from models.user import User

class UserListResource(Resource):
    def post(self):
        json_data = request.get_json()

        username = json_data.get('username')
        email = json_data.get('email')
        non_hash_password = json_data.get('password')

When there is a client request hitting http://localhost/users with the HTTP POST 
method, the application will get the JSON formatted data in the request. There 
should be a username, email, and password. 



84 | Manipulating a Database with SQLAlchemy

3. Check whether the user already exists in the database by means of User.get_
by_user(username). If such an entry is found, that means the user has already 
registered and we will simply return an error message. We will also perform the 
same check on email as well:

        if User.get_by_username(username):
            return {'message': 'username already used'}, HTTPStatus.BAD_
REQUEST

        if User.get_by_email(email):
            return {'message': 'email already used'}, HTTPStatus.BAD_
REQUEST

4. Once all the validations are passed, go ahead and create the user in the database. 
The password will be hashed, and the user object will be created. The user object 
will then be saved to the database using user.save(). Finally, the user details are 
returned in JSON format, with an HTTP status code of 201:

    password = hash_password(non_hash_password)

        user = User(
            username=username,
            email=email,
            password=password
        )

        user.save()

        data = {
            'id': user.id,
            'username': user.username,
            'email': user.email
        }

        return data, HTTPStatus.CREATED



Password Hashing | 85

5. Add user resource routing to app.py:

from extensions import db

from resources.user import UserListResource
from resources.recipe import RecipeListResource, RecipeResource, 
RecipePublishResource

def register_resources(app):
    api = Api(app)

    api.add_resource(UserListResource, '/users')
    api.add_resource(RecipeListResource, '/recipes')

Replace from models.user import User in app.py with from resources.user import 
UserListResource. The user model is already imported in resources.user, so there 
is no need to reimport that again. Please add api.add_resource(UserListResource, 
'/users') to the code as well.

Run the application. Flask will then be started up and run on localhost (127.0.0.1) 
on port 5000: 

Figure 3.14: Flask started on localhost



86 | Manipulating a Database with SQLAlchemy

So, we have just finished the password hashing exercise. From now on, whenever 
there is a new user registered in our Smilecook application, their password will 
be hashed and stored safely in the database. Let's test and see whether that is the 
case in our next exercise. 

Note

The reason why we are not discussing the recipe resource here is that there will be 
an author ID in the recipe. The author ID will be a foreign key that links to the user 
model. We will talk about the user login function in our next chapter. Only after 
that can we get the user ID and finish the recipe resource.

Exercise 23: Testing the Application in Postman

In this exercise, we are going to test the application in Postman. We will first register 
a user account and make sure the user data is stored in the database. We also need 
to verify that the password is hashed. Having created a user, now let's test our API 
endpoint here:

1. Click on the Collections tab in Postman.

2. Create a new collection, and name it User.

3. Create a new request, UserList, under that collection. You can do this by clicking 
on the ... next to the User collection. 

4. Edit the UserList request, and then set the HTTP method to POST.

5. Type in http://localhost:5000/users in the URL field.

6. Go to the Body Tab, select raw as the datatype, and then select JSON 
(application/json) as the data format.

7. Insert the following user details and then save.:

{
    "username": "jack",
    "email": "jack@gmail.com",
    "password": "WkQa"
}



Password Hashing | 87

8. Click Send. The result can be seen in the following screenshot:

Figure 3.15: Creating a user with an existing username

You will then see the following data returned; the HTTP status is 400 BAD 
REQUEST. We can also see the error message in the Body field showing that the 
username has been registered.

9. Create another user with the details shown in the following code:

{
    "username": "ray",
    "email": "ray@gmail.com",
    "password": "WkQa"
}



88 | Manipulating a Database with SQLAlchemy

The result can be seen in the following screenshot:

Figure 3.16: Creating another user

Now, the second account has been successfully created.

10. Check the data in the database as follows:

Figure 3.17: Checking the data in the database

Now, we can see a new user record created in the database table. And you can see 
that the password is hashed.

By doing this testing exercise, we can be assured that our user registration 
workflow is functioning well. And, most importantly, user passwords are kept as 
the hash value in the database. That is a much safer way to store a password, as 
even the database administrator can't see it.



Password Hashing | 89

Activity 6: Upgrading and Downgrading a Database

1. In this activity, we will upgrade and downgrade our database to simulate a 
scenario where we need to add an attribute under the user class, but later we 
change our mind and need to remove it. The following are the high-level steps that 
we need to perform in order to complete this activity:

2. Add a new attribute to the user class. This attribute should be called bio and will 
be a string that represents information about the user.

3. Run the flask db migrate command to create the database and tables.

4. Now, check /migrations/versions/6971bd62ec60_.py under the versions folder. 
This file is created by Flask-Migrate.

5. Execute the flask db upgrade command to upgrade our database to conform with 
the latest specification in our models.

6. Check whether the new field is created in the database. 

7. Run the downgrade command to remove the new field.

8. Check whether the field has been removed.

Note

The solution for this activity can be found on page 303.

If you see that the new field has been removed, that means you have successfully 
downgraded the database in Python without writing any SQL. And don't forget to 
delete the user model's bio attribute in models/user.py, also delete the script that we 
created which is a6d248ab7b23.py in migrations/versions folder. You have just learned a 
very useful skill that you will probably need frequently in the future. One tip for you is 
that you should back up your database prior to any database schema update. This is to 
ensure the data won't get lost.



90 | Manipulating a Database with SQLAlchemy

Summary
In this chapter, we built the Postgres database locally and learned how to use the 
pgAdmin tool to manage it. Then, through the SQLAlchemy module, we developed an 
object library to manipulate the database. This is much easier than using SQL syntax 
directly. And, as long as we define the relationship between models, we can easily get 
the information we want. This results in higher code readability, fewer lines of code, and 
the elimination of repetitive SQL. We then use Flask-Migrate to build all the data tables. 
Then, when we migrate the database in the future, we simply need two commands – 
flask db migrate and flask db upgrade; it's simple and easy. Although Flask-Migrate 
can help us to set up and migrate a database more easily, in a production environment, 
performing this kind of migration still requires extra due diligence. We should always 
back up the database to safeguard our precious data.

During development, we should frequently test our code to make sure it is behaving as 
expected. We shouldn't wait till the end to perform big-bang testing. We can unit test 
our functions and API endpoints, once they are complete. Using the Python console to 
perform this kind of simple test is recommended. Iteratively testing our application can 
also foster the best programming practice. This forces us to think about how we can 
structure our code in an elegant manner and avoid technical debt accumulation.

Finally, we created an API for user registration. In the next chapter, we will work on 
user login and recipe creation for authenticated users.







Learning Objectives

By the end of this chapter, you will be able to:

• Apply your knowledge of JWT

• Create an access token using Flask-JWT-Extended

• Develop a membership login system

• Implement an access control system (authentication and permissions)

• Work with a refresh token

• Restrict access using a blacklist

This chapter covers how to develop a user login/logout function using JWT.

Authentication 
Services and Security 

with JWT

4



94 | Authentication Services and Security with JWT

Introduction
In the previous chapter, we completed the database setup and configuration and linked 
the database to the code using ORM. We then implemented the user registration API on 
top of that. This chapter is divided into four parts. The first part is about authenticating 
the user and allowing them to log in to their own private profile page. The second 
part completes the recipe sharing system, allowing users to publish or unpublish their 
recipes. The third part shows how to refresh the security token and implement the 
logout feature. And finally, we will talk about how we can use the blacklist function to 
force the user to log out. 

User authentication is important in modern systems, especially if they are deployed on 
the internet. Thousands of users visit the same website, using the same web application. 
Without user authentication and access control, everything would be shared. Look 
at your Facebook/Instagram account – there are also user authentication and access 
controls implemented in the system. Only you can log in to your account and manage 
your posts and photos. For our Smilecook application, we will need the same feature. 

We will start by discussing JWT.

JWT
JWT is used for user authentication and is passed between the user and the server. The 
full definition of the acronym is JSON Web Token. The way they work is to encode the 
user identity and sign it digitally, making it an unforgeable token that identifies the user, 
and the application can later control access for the user based on their identity. 

A JWT is a string composed of the header, payload, and signature. Those three parts are 
separated by a .. Here is an example:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1NjQ5ODI5OTcs 
Im5iZiI6MTU2NDk4Mjk5NywianRpIjoiMGIzOTVlODQtNjFjMy00NjM3LTkwMzYtZjgyZDgy 
YTllNzc5IiwiZXhwIjoxNTY0OTgzODk3LCJpZGVudGl0eSI6MywiZnJlc2giOmZhbHNlLCJ 
0eXBlIjoiYWNjZXNzIn0.t6F3cnAmbUXY_PwLnnBkKD3Z6aJNvIDQ6khMJWj9xZM

The header of the JWT contains the encryption type, "alg": "HS256", and the 
encryption algorithm, "typ": "JWT". We can see this clearly if we base64 decode the 
header string:

>>> import base64

>>> header = 'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9'

>>> base64.b64decode(header)

b'{"typ":"JWT","alg":"HS256"}'



JWT | 95

The content of the payload part is arbitrary. It can be anything the developer likes. We 
can put in it the user ID, nickname, and so on. When the application server receives this 
token, it can base64 decode it and obtain the information inside. One important thing to 
note is that this information is not encrypted, therefore it is not recommended to store 
credit card details or passwords here:

>>> import base64

>>> payload = 'eyJpYXQiOjE1NjQ5ODI5OTcsIm5iZiI6MTU2NDk4Mjk5NywianRpI 
joiMGIzOTVlODQtNjFjMy00NjM3LTkwMzYtZjgyZDgyYTllNzc5IiwiZXhwIjoxNTY0 
OTgzODk3LCJpZGVudGl0eSI6MywiZnJlc2giOmZhbHNlLCJ0eXBlIjoiYWNjZXNzIn0'

>>> base64.b64decode(payload + '==')

b'{"iat":1564982997,"nbf":1564982997,"jti":"0b395e84-61c3-4637-9036-f82d82a9
e779","exp":1564983897,"identity":3,"fresh":false,"type":"access"}'

The secret part here is a signature created by the HS256 algorithm. The algorithm is 
encrypting the encoded header and payload data with a secret key that is known by the 
application server only. While anyone can modify the JWT content, that would result in 
a different signature, thus the data integrity is protected. 

We can make use of the free service at https://jwt.io/ to have a better view of the 
structure and content in the JWT token:

Figure 4.1: The JWT website

https://jwt.io/


96 | Authentication Services and Security with JWT

With a simple structure, header.payload.secret, we have a JWT, which will be used in 
this project for user authentication. Based on the user's identity, we can then apply 
access controls or other kinds of logic.

Flask-JWT-Extended
Flask-JWT-Extended is a user authentication package that provides the create_access_
token function for making new access JWTs. It also provides the jwt_required decorator 
for protecting the API endpoints (for checking whether users have logged in). Also, 
the get_jwt_identity() function is provided to get the identity of a JWT in a protected 
endpoint. This allows us to know who the authenticated users are. This is an extremely 
useful package for user authentication.

Before we dive into the coming exercise, let's first discuss two very important key 
configurations that we will be using. They are as follows:

• SECRET_KEY: This is the key for encrypting the message and generating the 
signature. We recommend that you use a complex string.

• JWT_ERROR_MESSAGE_KEY: This is the key for the error message whenever 
there is an error. The default value is msg, but we are setting that to the message 
here.

We will work on the user login function together in the next exercise. You will learn 
how user login works and how we can tell who the authenticated user is.

Note

For more information on Flask-JWT-Extended, you can refer to this link: https://
flask-jwt-extended.readthedocs.io/en/latest/options.html.

https://flask-jwt-extended.readthedocs.io/en/latest/options.html
https://flask-jwt-extended.readthedocs.io/en/latest/options.html


Flask-JWT-Extended | 97

Exercise 24: Implementing a User Login Function

In this exercise, we will build the user login function. We will use the Flask-JWT-
Extended package. Through this exercise, you will learn how we can generate JWTs 
in Flask. Users will enter their credentials in http://localhost:5000/token and they 
will get a token. They can then use that token to access http://localhost:5000/users/
{username} and check their personal information registered in the system. If they don't 
have the token, they will only see their own ID and username. This is the access control 
function of our Smilecook application:

1. Install the Flask-JWT-Extended package by adding the following lines in 
requirements.txt:

Flask-JWT-Extended==3.20.0

2. Run the following command to install all of the necessary packages:

pip install -r requirements.txt

You should see the following installation result on the screen:

Installing collected packages: PyJWT, Flask-JWT-Extended
  Running setup.py install for Flask-JWT-Extended ... done
Successfully installed Flask-JWT-Extended-3.20.0 PyJWT-1.7.1

3. Configure Flask-JWT-Extended by adding the following settings to the Config class 
in the config.py file:

SECRET_KEY = 'super-secret-key'
JWT_ERROR_MESSAGE_KEY = 'message'

4. Put the following code in extension.py:

from flask_jwt_extended import JWTManager

jwt = JWTManager()

Here, we are trying to create an instance of Flask-JWT-Extended. We first import 
the JWTManager class from flask_jwt_extended, then we instantiate a Flask-JWT-
Extended instance by calling JWTManager(), and assign it to the jwt variable.



98 | Authentication Services and Security with JWT

5. Type the following code in app.py:

from extensions import db, jwt

def register_extensions(app):
    db.init_app(app)
    migrate = Migrate(app, db)
    jwt.init_app(app)

We first imported jwt from extensions, and then we initialized jwt with jwt.init_
app(app) in register_extensions(app).

6. Now we will create the resource for the login. We will first create the token.py 
file in the resources folder and type in the following code. We first import all the 
necessary modules, functions, and classes:

from http import HTTPStatus
from flask import request
from flask_restful import Resource
from flask_jwt_extended import create_access_token

from utils import check_password
from models.user import User

7. Then, define a class called TokenResource. This class inherits from flask_restful.
Resource:

class TokenResource(Resource):

8. Inside the class, we create a post method. When a user logs in, this method will be 
invoked and it will take the email and password from the client JSON request. It will 
use the get_by_email method to verify the correctness of the user's credentials:

    def post(self):

        json_data = request.get_json()
        email = json_data.get('email')
        password = json_data.get('password')

        user = User.get_by_email(email=email)

        if not user or not check_password(password, user.password):



Flask-JWT-Extended | 99

            return {'message': 'email or password is incorrect'}, 
HTTPStatus.UNAUTHORIZED

        access_token = create_access_token(identity=user.id)

        return {'access_token': access_token}, HTTPStatus.OK

If they are invalid, the method will stop there and return 401 UNAUTHORIZED, 
with an email message saying email or password is incorrect. Otherwise, it will 
create an access token with the user id as the identity to the user.

Note

The way the check_password function works is by hashing the password the client 
passes in and comparing that hash value with the one stored in the database, 
using the pbkdf2_sha256.verify(password, hashed) function. There is no 
plaintext password comparison here.

9. We will then create a new resource, which is for getting user details. If the user is 
not authenticated, they can only see their ID and username. Otherwise, they will 
see their personal email as well. We can add the following code to resources/user.
py.

We first import the necessary modules, functions, and classes:

from flask_jwt_extended import jwt_optional, get_jwt_identity

10. Then, we define a UserResource class that inherits from flask_restful.Resource:

class UserResource(Resource):

11. In this class, we define a get method and wrap it with a jwt_optional decorator. 
This implies that the endpoint is accessible regardless of the procession of the 
token:

    @jwt_optional
    def get(self, username):



100 | Authentication Services and Security with JWT

12. We then perform a similar routine to the previous step and check whether the 
username can be found in the database:

        
        user = User.get_by_username(username=username)
        
        if user is None:
            return {'message': 'user not found'}, HTTPStatus.NOT_FOUND

13. If it is found in the database, we will further check whether it matches the identity 
of the user ID in the JWT:

        current_user = get_jwt_identity()

14. Depending on the result in the previous step, we apply access control and output 
different information:

        if current_user == user.id:
            data = {
                'id': user.id,
                'username': user.username,
                'email': user.email,
            }

        else:
            data = {
                'id': user.id,
                'username': user.username,
            }

        return data, HTTPStatus.OK

15. Finally, we will import the resources we created in the previous steps and add 
them to the api in app.py:

from resources.user import UserListResource, UserResource
from resources.token import TokenResource

def register_resources(app):
    api = Api(app)

  api.add_resource(UserListResource, '/users')
    api.add_resource(UserResource, '/users/<string:username>')

    api.add_resource(TokenResource, '/token')



Flask-JWT-Extended | 101

16. Right-click on it to run the application. Flask will then be started up and run on 
localhost (127.0.0.1) at port 5000:

Figure 4.2: Run the application to start and run Flask on localhost

So, we have completed the user login function. This will allow users to visit the access-
controlled APIs after login. Let's test it in our next exercise!

Exercise 25: Testing the User Login Function

In this exercise, we will test the login function and verify the user information stored 
in the database. We will also test that the user information obtained from the http://
localhost:5000/users/{username} API is different before and after user login:

1. The first thing to do is to create a user. Click on the Collections tab and choose 
POST UserList.

2. Select the Body tab, select the raw radio button, and choose JSON (application/
json) from the drop-down list. Put in the following user details (JSON format) in 
the Body field:

{
    "username": "james",
    "email": "james@gmail.com",
    "password": "WkQad19"
}



102 | Authentication Services and Security with JWT

3. Click Send to register. The result is shown in the following screenshot:

Figure 4.3: Creating a user

You will then see the response. The HTTP status is 201 CREATED, meaning that 
the user registration has been successful. And we can see the user details in 
the response body. "id": 3 here means that the user is the third successfully 
registered user.

4. We will then try to check the user information without logging in. Let's see what 
information we can get. Click on the Collections tab, create a new request with 
the name User, and save it under the User folder.

5. Edit the request and put http://localhost:5000/users/james in the URL field. Save 
the request so that it can be reused later.

6. Click Send to get the user details. The result is shown in the following screenshot:

Figure 4.4: Checking the user information without logging in



Flask-JWT-Extended | 103

You will then see the response. The HTTP Status is 200 OK, meaning the request 
has been successful. We can see the ID and username in the response body. 
However, we can't see the email address here because it is private information and 
is only visible to the authenticated user. 

7. Now, log in through the API. Click on the Collections tab. Create a new folder 
called Token and create a new request called Token inside it.

8. Edit the request, change the method to POST, and put http://localhost:5000/
token in the URL field.

9. Click the Body tab, check the raw radio button, and select JSON (application/
json) in the drop-down menu. Type in the following JSON content in the Body field 
and click Save:

{
    "email": "james@gmail.com",
    "password": "WkQad19"
}

10. Click Send to log in. The result is shown in the following screenshot:

Figure 4.5: Checking the user information after creating tokens

You will then see the response. The HTTP status code 200 means the login has 
been successful. We can see the access token in the response body. We will rely on 
this token to show that the user has logged in.



104 | Authentication Services and Security with JWT

11. Now check the user information again after we have logged in. Click the 
Collections tab and select the GET User request. 

12. Select the Headers tab, select Authorization in the KEY field, type Bearer {token} 
in the VALUE field, where the token is what we obtained in step 10.

13. Click Send to get the user details. The result is shown in the following screenshot:

Figure 4.6: Checking the user information after logging in

You will then see the response, the HTTP status code 200 means the request 
is successful. And in the response body, we can see information including id, 
username, and email.

In this exercise, we can see how access control really works. We can see the difference 
in the HTTP response before and after the user is authenticated. This is very important 
for our Smilecook application because we want to protect our users' privacy. There is 
information that only certain authenticated users can see.



Flask-JWT-Extended | 105

Exercise 26: Creating the me Endpoint

In this exercise, we will create a special endpoint, /users/me. That will allow us to get 
the authenticated user information back by using access_token. We will first create a 
new resource class under the user model. There will be a get method in it, and we will 
finally associate this with the new API endpoint:

1.  Add the get_by_id method in models/user.py. For convenience's sake, we will use 
this method to get the user object by ID:

@classmethod 
def get_by_id(cls, id):         
        return cls.query.filter_by(id=id).first() 

2. In resources/user.py, import jwt_required and create a MeResource class:

from flask_jwt_extended import jwt_optional, get_jwt_identity, jwt_required

class MeResource(Resource):

    @jwt_required
    def get(self):

        user = User.get_by_id(id=get_jwt_identity())

        data = {
                'id': user.id,
                'username': user.username,
                'email': user.email,
        }

        return data, HTTPStatus.OK

The get method here will get the user information by the ID in the JWT. 



106 | Authentication Services and Security with JWT

3. In app.py, import the MeResource class. Add the /me endpoint:

from resources.user import UserListResource, UserResource, MeResource

api.add_resource(MeResource, '/me')

4. Right-click on it to run the application. Flask will then be started up and run on 
localhost (127.0.0.1) at port 5000:

Figure 4.7: Run the application to start and run the Flask on localhost

5. Now check the user information again after we have logged in using the users/me 
endpoint. Click on the Collections tab and create a new request called Me in the 
User folder.

6. Put http://localhost:5000/me in the URL field. 

7. Select the Headers tab, select Authorization in the KEY field and type in Bearer 
{token} in the VALUE field, where the token is what we obtained in the previous 
exercise.

8. Click Send to get the user details. The result is shown in the following screenshot: 

Figure 4.8: Checking the user information after we have logged in



Designing the Methods in the Recipe Model | 107

This new API endpoint allows us to get the authenticated user information just by using 
the access token. This means that whenever the user is in the authenticated state, we 
can get their information. Now that we have pretty much figured out the users, let's 
work on the recipes.

Designing the Methods in the Recipe Model
Now, we have finished the user registration and login feature, we will work on the 
recipe management features of our Smilecook application. That will need a few 
methods in the Recipe class to do the work. In our design, we will have the following five 
methods:

• data: This is used to return the data in a dictionary format.

• get_all_published: This method gets all the published recipes.

• get_by_id: This method gets the recipes by ID.

• save: This method persists data to the database.

• delete: This method deletes data from the database.

These five methods cover pretty much all the necessary recipe management functions. 
In the next exercise, we will work on implementing these methods in our Smilecook 
application.

Exercise 27: Implementing Access-Controlled Recipe Management Functions

The aim of this exercise is to implement different recipe management functions on our 
platform so that users can manage their own recipes in our Smilecook application. We 
will also have to modify RecipeListResource and RecipeResource to restrict access to 
certain methods there:

1. In models/recipe.py, add the data, get_all_published, get_by_id, save, and delete 
methods to the Recipe class:

    def data(self):
        return {
            'id': self.id,
            'name': self.name,
            'description': self.description,
            'num_of_servings': self.num_of_servings,
            'cook_time': self.cook_time,
            'directions': self.directions,
            'user_id': self.user_id
        }



108 | Authentication Services and Security with JWT

    @classmethod
    def get_all_published(cls):
        return cls.query.filter_by(is_publish=True).all()

    @classmethod
    def get_by_id(cls, recipe_id):
        return cls.query.filter_by(id=recipe_id).first()

    def save(self):
        db.session.add(self)
        db.session.commit()

    def delete(self):
        db.session.delete(self)
        db.session.commit()

2. Delete the following code in models/recipe.py:

recipe_list = []
  
def get_last_id():
    if recipe_list:
        last_recipe = recipe_list[-1]
    else:
        return 1
    return last_recipe.id + 1

3. In resources/recipe.py, import get_jwt_identity, jwt_required, and jwt_optional:

from flask_jwt_extended import get_jwt_identity, jwt_required, jwt_optional

4. Remove import recipe_list

from models.recipe import Recipe

5. We will then modify the get method in the RecipeListResource class. We will get 
all the published recipes by triggering Recipe.get_all_published().Then, in the 
for loop, it iterates through the recipe list, converts each recipe into a dictionary 
object, and returns the dictionary list:

class RecipeListResource(Resource):

    def get(self):

        recipes = Recipe.get_all_published()



Designing the Methods in the Recipe Model | 109

        data = []

        for recipe in recipes:
            data.append(recipe.data())

         return {'data': data}, HTTPStatus.OK

6. We then continue to modify the post method in the RecipeListResource class. The 
@jwt_required decorator here says that the method can only be invoked after the 
user has logged in. Inside the method, it gets all the recipe details from the client 
requests and saves them in the database. Finally, it will return the data with an 
HTTP status code of 201 CREATED:

    @jwt_required
    def post(self):

        json_data = request.get_json()
        current_user = get_jwt_identity()
        recipe = Recipe(name= json_data['name'],
                        description= json_data['description'],
                        num_of_servings= json_data['num_of_servings'],
                        cook_time= json_data['cook_time'],
                        directions= json_data['directions'],
                        user_id=current_user)

        recipe.save()

        return recipe.data(), HTTPStatus.CREATED

7. We will modify the get method in RecipeResource to get a specific recipe. The @
jwt_optional decorator specifies that the JWT is optional. Inside the method, we 
use Recipe.get_by_id(recipe_id=recipe_id) to get the recipe. If the specific recipe 
is not found, we will return 404 NOT_FOUND. If it is found, we will then change 
the user who owns the recipe and the status. There is access control here, so it 
will return 403 FORBIDDEN or 200 OK depending on the situation:

class RecipeResource(Resource):

    @jwt_optional
    def get(self, recipe_id):

        recipe = Recipe.get_by_id(recipe_id=recipe_id)

        if recipe is None:



110 | Authentication Services and Security with JWT

            return {'message': 'Recipe not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if recipe.is_publish == False and recipe.user_id != current_user:
            return {'message': 'Access is not allowed'}, HTTPStatus.
FORBIDDEN

        return recipe.data(), HTTPStatus.OK

8. We will modify the put method in RecipeResource to get a specific recipe. This put 
method is to update the recipe details. It will first check whether the recipe exists 
and whether the user has update privileges. If everything is okay, it will go ahead 
to update the recipe details and save it to the database:

    @jwt_required
    def put(self, recipe_id):

        json_data = request.get_json()

        recipe = Recipe.get_by_id(recipe_id=recipe_id)

        if recipe is None:
            return {'message': 'Recipe not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if current_user != recipe.user_id:
            return {'message': 'Access is not allowed'}, HTTPStatus.
FORBIDDEN

        recipe.name = json_data['name']
        recipe.description = json_data['description']
        recipe.num_of_servings = json_data['num_of_servings']
        recipe.cook_time = json_data['cook_time']
        recipe.directions = json_data['directions']

        recipe.save()

        return recipe.data(), HTTPStatus.OK



Designing the Methods in the Recipe Model | 111

9. We will modify the delete method in RecipeResource to get a specific recipe. 
This is for deleting a recipe. The @jwt_required decorator implies that the JWT is 
required. When the user has logged in, they can access this path and delete the 
specified recipe if it exists:

    @jwt_required
    def delete(self, recipe_id):

        recipe = Recipe.get_by_id(recipe_id=recipe_id)

        if recipe is None:
            return {'message': 'Recipe not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if current_user != recipe.user_id:
            return {'message': 'Access is not allowed'}, HTTPStatus.
FORBIDDEN

        recipe.delete()

        return {}, HTTPStatus.NO_CONTENT

So, in this exercise, we have implemented the recipe management functions and added 
access control to the resources. Now, only authorized users are allowed to manage their 
recipes. Let's test whether this is really the case in our next exercise.

Exercise 28: Testing the Recipe Management Functions

The aim of this exercise is to test all the recipe management functions using Postman. 
We registered an account in our previous exercise and logged in. We will use the same 
authenticated user to test adding, updating, and deleting recipes:

1. Create a recipe through our API. Click on the Collections tab and select the POST 
RecipeList request that we created previously.



112 | Authentication Services and Security with JWT

2. Go to the Headers tab, select Authorization in the KEY field and Bearer {token} 
in the VALUE field, where the token is the JWT token we got in our previous 
exercise. The result is shown in the following screenshot:

Figure 4.9: Creating a recipe through the API

3. Go to the Body tab and type in the following recipe details:

{
    "name": "Cheese Pizza",
    "description": "This is a lovely cheese pizza",
    "num_of_servings": 2,
    "cook_time": 30,
    "directions": "This is how you make it"
}

4. Click Send to create a new recipe. The result is shown in the following screenshot:

Figure 4.10: New recipe created



Designing the Methods in the Recipe Model | 113

You will then see the response. The HTTP status code 201 here means the recipe 
is created successfully. And we can see the details in the HTTP response body. 
We can see from the response that the user_id is 3, which is the user ID of the 
currently authenticated user. 

5. Get the recipe with id = 3 in the state that the user has logged in. Click on the 
Collections tab and select the GET recipe request that we created previously.

6. Go to the Headers tab, select Authorization in the KEY field and Bearer {token} in 
the VALUE field, where the token is the JWT token we got in the previous exercise.

7. Click Send to check the recipe. The result is shown in the following screenshot:

Figure 4.11: Recipe with ID 3 after the user is logged in

You will then see the response. We can see the recipe details in the body. That is 
because the user is authenticated.

8. Get the recipe with id = 3 in the state that the user has not logged in. The 
expected result is that we won't be able to see the unpublished recipe. Click on the 
Collections tab and select the GET Recipe request that we created previously.



114 | Authentication Services and Security with JWT

9. Go to the Headers tab and uncheck Authorization, meaning that we are not going 
to put in the JWT token. Click Send to check the recipe. The result is shown in the 
following screenshot:

Figure 4.12: Recipe with ID 3 and the user not logged in

You will then see the response; the HTTP status code is 403 FORBIDDEN. This is 
because the recipe is unpublished and we have implemented access control on 
our API so that only authenticated users can see their own recipes in the draft. 
We see the message Access is not allowed because we have not logged in yet. The 
unpublished recipe is not available to the public.

So, we have tested the access control recipe management functions. We can see how 
these can be used in real-world scenarios. Next, we will discuss refresh tokens, which 
are for keeping our users in the logged-in state.

Refresh Tokens
For the sake of security, we often set an expiration time for our tokens (flask-jwt-
extended defaults that to 15 minutes). Because a token will expire, we need a function to 
refresh it without users putting in their credentials again.

Flask-JWT-Extended provides refresh-token-related functions. A refresh token is a 
long-lived token that can be used to generate new access tokens. Please don't mix up 
refresh tokens and access tokens. A refresh token can only be used to obtain a new 
access token; it cannot be used as an access token to access restricted endpoints. For 
example, endpoints that have the jwt_required() or jwt_optional() decorators need an 
access token.



Refresh Tokens | 115

Here's a brief explanation of the refresh-token-related functions in Flask-JWT-
Extended:

• create_access_token: This function creates a new access token.

• create_refresh_token: This function creates a refresh token.

• jwt_refresh_token_required: This is a decorator specifying that the refresh token 
is required.

• get_jwt_identity: This function gets the user that holds the current access token.

You will learn more about these functions in the next exercise. We will also add a fresh 
attribute to our token. This fresh attribute will only be set to True when users get the 
token by putting in their credentials. When they simply refresh the token, they will 
get a token with fresh = false. The reason for a refresh token is that we would like to 
avoid users having to put their credentials in again and again. However, for some critical 
functions, for example, changing passwords, we will still require them to have a fresh 
token.

Exercise 29: Adding a Refresh Token Function

In this exercise, we will be adding a refresh token feature to our Smilecook application 
so that when the user's access token expires, they can use the refresh token to obtain a 
new access token:

1. In resources/token.py, import the necessary functions from flask_jwt_extended:

from flask_jwt_extended import (
    create_access_token,
    create_refresh_token,
    jwt_refresh_token_required,
    get_jwt_identity
)

2. Modify the post method under TokenResource to generate a token and a refresh_
token for the user:

    def post(self):
        data = request.get_json()
        email = data.get('email')
        password = data.get('password')
        user = User.get_by_email(email=email)
        if not user or not check_password(password, user.password):
            return {'message': 'username or password is incorrect'}, 
HTTPStatus.UNAUTHORIZED



116 | Authentication Services and Security with JWT

        access_token = create_access_token(identity=user.id, fresh=True)
        refresh_token = create_refresh_token(identity=user.id)
        return {'access_token': access_token, 'refresh_token': refresh_
token}, HTTPStatus.OK

We pass in the fresh=True parameter to the create_access_token function. We 
then invoke the create_refresh_token function to generate a refresh token.

3. Add the RefreshResource class to token.py. Please add the following code:

class RefreshResource(Resource):

    @jwt_refresh_token_required
    def post(self):
        current_user = get_jwt_identity()

        access_token = create_access_token(identity=current_user, 
fresh=False)

        return {access_token: access_token}, HTTPStatus.OK

The @jwt_refresh_token_required decorator specifies that this endpoint will 
require a refresh token. In this method, we are generating a token for the user 
with fresh=false.

4. Finally, add the route for RefreshResource:

from resources.token import TokenResource, RefreshResource

def register_resources(app):

    api.add_resource(RefreshResource, '/refresh')

5. Save app.py and right-click on it to run the application. Flask will then be started 
up and run on localhost (127.0.0.1) at port 5000:

Figure 4.13: Run the application to start and run Flask on localhost



Refresh Tokens | 117

Congratulations! We have just added the refresh token function. Let's move on to the 
testing part.

Exercise 30: Obtaining a New Access Token Using a Refresh Token

In this exercise, we will be using Postman to log in to the user account and get the 
access token and refresh token. Later on, we will obtain a new access token by using 
the refresh token. This is to simulate a real-life scenario in which we want to keep the 
user logged in:

1. We will test logging first. Click on the Collections tab. Select the POST Token 
request that we created previously.

2. Check the raw radio button and select JSON (application/json) from the drop-
down menu.

3. Add the following JSON content in the Body field:

{
    "email": "james@gmail.com",
    "password": "WkQad19"
}

4. Click Send to login to the account. The result is shown in the following screenshot:

Figure 4.14: Testing the login

We can see that the HTTP status code is 200 OK, meaning the login has been 
successful. We can also see the access token and refresh token in the body.



118 | Authentication Services and Security with JWT

5. Next, we will get the access token by using the refresh token. Click on the 
Collections tab. Create a new request, name it Refresh, and save it in the Token 
folder.

6. Select this new request and choose POST as the method. Put http://
localhost:5000/refresh in the URL field. 

7. Go to the Headers tab and select Authorization in the KEY field and Bearer 
{token} in the VALUE field, where the token is the JWT we got in step 4.

8. Click Send to refresh the token. The result is shown in the following screenshot:

Figure 4.15: Accessing the token using the refresh token

We can see HTTP status 200 OK, which means the request has been successful. 
And we can see the new access token in the response body. If the access token 
expires in the future, we can use a refresh token to obtain a new access token.

The User Logout Mechanism
The Flask-JWT-Extended package supports the logout function. The way it works is 
to put the token into a blacklist when the user is logged out. A blacklist is basically a 
blocklist; it is an access control mechanism. Things (for example, emails, tokens, IDs, 
and so on) on the list will be denied access. With the blacklist in place, the application 
can use token_in_blacklist_loader to verify whether the user has logged out or not:



The User Logout Mechanism | 119

Figure 4.16: The user logout mechanism using a blacklist

In the next exercise, we want you to try implementing this logout function. It will test 
your understanding of the login and logout flow.

Exercise 31: Implementing the Logout Function

In this exercise, we will implement the logout function. We will first declare a black_
list to store all the logged-out access tokens. Later, when the user wants to visit the 
access-controlled API endpoints, we will first check whether the access token is still 
valid using the blacklist:

1. Import get_raw_jwt. In resources/token.py, we will import jwt_required and get_
raw_jwt from flask_jwt_extended:

from flask_jwt_extended import (
    create_access_token,
    create_refresh_token,
    jwt_refresh_token_required,
    get_jwt_identity,
    jwt_required,
    get_raw_jwt
)

2. In resources/token.py, assign set() to black_list:

black_list = set()



120 | Authentication Services and Security with JWT

3. Create the RevokeResource class and define the post method. We will apply the @
jwt_required decorator here to control the access to this endpoint. In this method, 
we get the token using get_raw_jwt()['jti'] and put it in the blacklist:

class RevokeResource(Resource):

    @jwt_required
    def post(self):
        jti = get_raw_jwt()['jti']

        black_list.add(jti)

         return {'message': 'Successfully logged out'}, HTTPStatus.OK

4. We will then add the following code in config.py. As you can tell, we are enabling 
the blacklist feature and also telling the application to check both the access and 
refresh token:

class Config:
    JWT_BLACKLIST_ENABLED = True
    JWT_BLACKLIST_TOKEN_CHECKS = ['access', 'refresh']

5. We will then import RevokeResource and black_list in app.py:

from resources.token import TokenResource, RefreshResource, 
RevokeResource, black_list

6. Then, inside register_extensions(app), we will add the following lines of code. 
This is to check whether the token is on the blacklist:

def register_extensions(app):
    db.app = app
    db.init_app(app)
    migrate = Migrate(app, db)
    jwt.init_app(app)

    @jwt.token_in_blacklist_loader
    def check_if_token_in_blacklist(decrypted_token):
        jti = decrypted_token['jti']
        return jti in black_list



The User Logout Mechanism | 121

7. Finally, add the route in register_resources:

def register_resources(app):

    api.add_resource(TokenResource, '/token')
    api.add_resource(RefreshResource, '/refresh')
    api.add_resource(RevokeResource, '/revoke')

8. Save app.py and right-click on it to run the application. Flask will then be started 
up and run on localhost (127.0.0.1) at port 5000:

Figure 4.17: Run the application to start Flask

Once the server is started, that means we are ready to test our refresh token API.

Exercise 32: Testing the Logout Function

In this exercise, we are going to test the logout function that we have just implemented 
in the previous exercise. Once we have logged out, we will try accessing an access-
controlled endpoint and make sure we no longer have access to it:

1. We will log out from our application. Click on the Collections tab and create a new 
request, name it Revoke, and save it in the Token folder.

2. Select this new request and choose POST as the method. Put http://
localhost:5000/revoke in the URL field.

3. Go to the Headers tab. Select Authorization in the KEY field and Bearer {token} 
in the VALUE field, where the token is the JWT we got in the previous exercise.



122 | Authentication Services and Security with JWT

4. Click Send to log out. The result is shown in the following screenshot:

Figure 4.18: Logging out from the application

You will then see the response, HTTP status 200 OK, meaning that the user has 
logged out successfully. Besides this, we can also see the message saying that the 
user has successfully logged out.

5. Log out again and see what happens. Click Send again, and you will then see the 
following response:

Figure 4.19: Logging out again

We can see HTTP status 401 UNAUTHORIZED, meaning the user doesn't have 
access to this endpoint because the original access token has already been placed 
on the blacklist. In the response body, we can see the message Token has been 
revoked, meaning the user has successfully logged out.



Summary | 123

Activity 7: Implementing Access Control on the publish/unpublish Recipe 

Function

In this activity, we will implement access control on the publish/unpublish recipe API 
endpoint so that only authenticated users can publish/unpublish their own recipe. 
Follow these steps to complete the activity:

1. Modify the put method in RecipePublishResource to restrict access to 
authenticated users.

2. Modify the delete method in RecipePublishResource.

3. Log in to the user account and get the access token.

4. Publish the recipe with id = 3 in the state that the user has logged in.

5. Unpublish a recipe id = 3 in the state that the user has logged in

Note

The solution for this activity can be found on page 307.

If you got everything right, congratulations! That means you have added access 
control to the publish and unpublish recipe function. Now, recipes are protected in the 
Smilecook application. Only the authors of the recipes can manage their own recipes 
now.

Summary
In this chapter, we learned how to use Flask-JWT-Extended for access control. This is 
an important and fundamental feature that almost all online platforms will require. At 
the end of the chapter, we touched on the topic of maintaining the liveliness of a token. 
This is advanced but applicable knowledge that you will use in developing real-life 
RESTful APIs. In the next chapter, we will start to talk about data verification.





Learning Objectives

By the end of this chapter, you will be able to:

• Create a schema for serialization/deserialization

• Validate the data in a client request

• Perform data filtering before displaying the data to the client

• Use the HTTP PATCH method to partially update data

This chapter covers serialization and deserialization, as well as data filtering and validation with 
marshmallow.

Object Serialization 
with marshmallow

5



126 | Object Serialization with marshmallow

Introduction
In this era of information explosion, the correctness of data is crucially important. We 
need to ensure that the data passed in by the client is in the format we expect. For 
example, we expect the cooking time variable to be a data type integer with a value of 
30, but the client could pass in a string data type, with value = "thirty minutes". They 
mean the same thing, and both are understandable to human beings but the system 
won't be able to interpret them. In this chapter, we will learn about data validation, 
making sure the system only takes valid data. The marshmallow package not only helps 
us to verify the client's data but also to verify the data that we send back. This ensures 
data integrity in both directions, which will greatly improve the quality of the system. 

In this chapter, we will focus on doing three essential things: first, we will modify the 
User class and add in the API verification. This is mainly to show the basic functions of 
marshmallow. We'll then modify the Recipe class, add a custom authentication method, 
and optimize the code. Finally, a new feature will be added, which allows us to query 
all the recipes of a specific user and filter the recipes with different publish statuses by 
the visibility parameter. With this in mind, let's move on to the first topic: Serialization 
versus Deserialization.

Serialization versus Deserialization

Figure 5.1: Serialization versus deserialization

An object is something that lives in the application memory. We can invoke its method 
or access its attributes in our application. However, when we want to transfer or store 
an object, we will have to convert it into a storable or transferrable format, and that 
format will be a stream of bytes. It can then be stored in a text file, in a database, or 
be transmitted over the internet. The process of converting an object to a stream of 
bytes is called serialization. This stream of bytes persists the state of the object so that 
it can be recreated later. The recreation of the object from a stream of bytes is called 
deserialization. 



marshmallow | 127

Serialization/deserialization is an essential part of RESTful API development. During 
actual development, the data validation related to business logic will often be included 
in the serialization and deserialization implementation processes as well.

marshmallow
marshmallow itself is an excellent package for serialization and deserialization in 
Python, as well as providing validation features. It allows developers to define schemas, 
which can be used to represent a field in various ways (required and validation), and 
automatically perform validation during deserialization. We will start by implementing 
a data validation function in this chapter. We will implement it using the marshmallow 
package to ensure that the information the user entered is correct. We will work with 
you through various exercises and activities to test serialization and deserialization 
afterward with Postman.

A Simple Schema
We will be using the Schema class from marshmallow to specify the fields for the objects 
that we want to serialize/deserialize. Without knowing the schema of the objects and 
how we want to serialize the fields, we can't perform serialization or deserialization. In 
the following example, you can see we have a simple SimpleSchema class, which extends 
marshmallow.Schema, and there are two fields defined there, id and username:

from marshmallow import Schema, fields

class SimpleSchema(Schema):

    id = fields.Int() 

    username = fields.String()

The data type of the fields are defined using the marshmallow fields. From the preceding 
example, the id field is an integer, while the username field is a string. There are 
a number of different data types in marshmallow, including Str, Int, Bool, Float, 
DateTime, Email, Nested, and so on.

With the schema specified, we can start doing object serialization and deserialization. 
We can serialize objects in our application and return them in the HTTP response. Or, 
the other way round, we can take in a request from users and deserialize that into an 
object so that it can be used in our application.



128 | Object Serialization with marshmallow

Field Validation

We can also add field-level validation during serialization/deserialization. Again, this 
can be done in the schema definition. For example, if we want to specify a field as 
mandatory, we can add in the required=True argument. Using the same SimpleSchema 
example, we can specify the username field as mandatory as follows:

class SimpleSchema(Schema):

    id = fields.Int() 

    username = fields.String(required=True)

If this SimpleSchema is used to deserialize the JSON request from the user and the 
username field is not filled in there, there will be an error message, Validation errors, 
and the HTTP status code will be 400 Bad Request:

{

    "message": "Validation errors",

    "errors": {

        "username": [

            "Missing data for the required field."

        ]

    }

}

Now we will learn how to customize deserialization methods.

Customizing Deserialization Methods

We can also customize the way we want to deserialize certain fields. We can do so by 
using Method fields in marshmallow. A Method field receives an optional deserialize 
argument, which defines how the field should be deserialized.

From the following SimpleSchema example, we can define a custom method to 
deserialize the password field. We just need to pass in the deserialize='load_password' 
argument. It will invoke the load_password method to deserialize the password field:

class SimpleSchema(Schema):

    id = fields.Int() 

    username = fields.String(required=True)



UserSchema Design | 129

    password = fields.Method(required=True, deserialize='load_password')

    def load_password(self, value): 

        return hash_password(value)

In the next section, we will learn how to use the UserSchema design.

UserSchema Design
Now we have learned why we need to use Schema and how we can define a schema, we 
will start to work on that in our Smilecook application. In the case of user registration, 
we will expect the user to fill in their information on a web form, and then send the 
details in JSON format to the server. Our Smilecook application will then deserialize it to 
be a User object, which can be worked on in our application. 

We will, therefore, need to define a UserSchema class to specify the expected attributes 
in the JSON request coming from the frontend. We will need the following fields: 

• id: Use fields.Int() to represent an integer. In addition, dump_only=True means 
that this property is only available for serialization, not deserialization. This is 
because id is autogenerated, not passed in by the user. 

• username: Use fields.String() to represent a string and apply required=True to 
indicate that this property is mandatory. When the client sends JSON data without 
the username, there will be a validation error.

• email: Use fields.Email() to indicate that email format is needed, and apply 
required=True to indicate that this property is mandatory. 

• password:fields.Method() is a Method field. The Method field here receives an 
optional deserialize argument, which defines how the field should be deserialized. 
We use deserialize='load_password' to indicate that the load_password(self, 
value) method will be invoked when using load() deserialization. Please note 
that this load_password(self, value) method will only be invoked during load() 
deserialization. 

• created_at:fields.DateTime() represents the time format, and dump_only=True 
means that this property will only be available in serialization.

• updated_at:fields.DateTime() represents the time format, and dump_only=True 
means that this property will only be available in serialization.

In our next exercise, we will install the marshmallow package in our Smilecook project. 
Then, we will define the UserSchema and use it in UserListResource and UserResource.



130 | Object Serialization with marshmallow

Exercise 33: Using marshmallow to Validate the User Data

Firstly, we will perform data verification using marshmallow. We will install the 
marshmallow package and build UserSchema, and then use it in UserListResource to 
transmit the User object: 

1. We will first install the marshmallow package. Please enter the following in 
requirements.txt:

marshmallow==2.19.5

2. Run the pip install command:

pip install -r requirements.txt

You should see the result that follows:

Installing collected packages: marshmallow
Successfully installed marshmallow-2.19.5

3. Create a folder under the Smilecook project and name it schemas. We will store all 
our schema files here.

4. Create a user.py file under that and enter the following code. Use a schema to 
define the basic structure of the content of our expected client request. The 
following code creates UserSchema to define the attributes we will receive in the 
client request:

from marshmallow import Schema, fields

from utils import hash_password

class UserSchema(Schema):
    class Meta:
        ordered = True

    id = fields.Int(dump_only=True)
    username = fields.String(required=True)
    email = fields.Email(required=True)
    password = fields.Method(required=True, deserialize='load_password')

    created_at = fields.DateTime(dump_only=True)
    updated_at = fields.DateTime(dump_only=True)

    def load_password(self, value):
        return hash_password(value)



UserSchema Design | 131

Before defining UserSchema, we need to first import Schema and fields from 
marshmallow. All self-defined marshmallow schemas must inherit marshmallow.
Schema. Then, we import hash_password, and we define four attributes: id, username, 
email, and password in UserSchema.

5. Add the following code in resources/user.py. We will first import the UserSchema 
class from the previous step and instantiate two UserSchema objects here. One of 
them is for use in public, and we can see that the email is excluded: 

from schemas.user import UserSchema

user_schema = UserSchema()
user_public_schema = UserSchema(exclude=('email', ))

For our user resource, when the authenticated user accesses its users/<username> 
endpoint, they can get id, username, and email. But if they are not authenticated or 
are accessing other people's /users/<username> endpoint, the email address will be 
hidden. 

6. We will then modify UserListResource to the following to validate the data in the 
user's request:

class UserListResource(Resource):
    def post(self):
        json_data = request.get_json()

        data, errors = user_schema.load(data=json_data)

        if errors:
            return {'message': 'Validation errors', 'errors': errors}, 
HTTPStatus.BAD_REQUEST

7. In the same UserListResource.post, we will proceed if there is no error. It will 
then check whether username and email exist, and if everything is fine, we will use 
User(**data) to create a user instance, the **data will give us keyword arguments 
for the User class, then we use user.save() to store things in the database:

        if User.get_by_username(data.get('username')):
            return {'message': 'username already used'}, HTTPStatus.BAD_
REQUEST

        if User.get_by_email(data.get('email')):
            return {'message': 'email already used'}, HTTPStatus.BAD_
REQUEST



132 | Object Serialization with marshmallow

        user = User(**data)
        user.save()

8. Finally, also in UsersLitResource.post, we use user_schema.dump(user).data to 
return the successfully registered user data. It will contain id, username, created_
at, updated_at, and email:

        return user_schema.dump(user).data, HTTPStatus.CREATED

9. Next, we will modify UserResource. We will see the difference between with and 
without filtering email using user_schema and user_public_schema here:

class UserResource(Resource):

    @jwt_optional
    def get(self, username):

        user = User.get_by_username(username=username)

        if user is None:
            return {'message': 'user not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if current_user == user.id:
            data = user_schema.dump(user).data

        else:
            data = user_public_schema.dump(user).data

        return data, HTTPStatus.OK

When a user sends a request to /users/<username/, we will get their username. If 
a user can't be found, we will get 404 Not Found error. If the user is found, we will 
check whether this user is the one currently logged in. If so, the user information 
will be serialized using user_schema.dump(user).data, which contains all the 
information. Otherwise, user_public_schema.dump(user).data will be used, which 
excludes the email information. Finally, it returns data with the HTTP status code 
200 OK.



UserSchema Design | 133

10. Next, we will modify MeResource. It will be serialized using user_schema.dump(user).
data, which contains all the information of the user:

class MeResource(Resource):

    @ jwt_required
    def get(self): 
         user = User.get_by_id(id=get_jwt_identity())
         return user_schema.dump(user).data, HTTPStatus.OK

11. Save app.py and right-click on it to run the application. Flask will then be started 
up and run on the localhost (127.0.0.1) at port 5000:

Figure 5.2: Run the application and then run Flask on the localhost

So, we have finished adding marshmallow to the picture. From now onward, when we 
transfer the User object between the frontend and backend, it will first be serialized/
deserialized. In the process, we can leverage the data validation functions provided by 
marshmallow to make our API endpoints even more secure.

Exercise 34: Testing the User Endpoint before and after Authentication

We implemented different user schemas in the previous exercise one for private 
viewing and one for public viewing. In this exercise, we are going to test whether they 
work as expected. We will check the data in the HTTP response and verify whether we 
get different user information before and after authentication. We want to hide the 
user's email address from the public, to protect user privacy.

We will do the whole test using Postman. Let's get started!

1. Check the user details before the user has logged in. We shouldn't see the user's 
email address in the result. Click on the Collections tab.

2. Select the GET User request.

3. Enter http://localhost:5000/users/james in the URL field. You can replace the 
username James with any username that is appropriate.



134 | Object Serialization with marshmallow

4. Click Send to check the user details for James. The result is shown in the following 
screenshot:

Figure 5.3: Checking the user details for James

You will then see the return response. We can see that the HTTP status code 
is 200 OK, meaning we successfully get back user details. And in the response 
body, we can see the user details for James. We can see the username, created_at, 
updated_at, and id, but not the email address.

5. Now, let's login using Postman. Select the POST Token request. Click Send to log 
in. The result is shown in the following screenshot:

6. 

Figure 5.4: Log in and select the POST Token request

You will then see the response body for the access token and the refresh token.



RecipeSchema Design | 135

7. Check the user details after the user has logged in. You should see the user's email 
address in the result. Click on the Collections tab. Choose to GET User. Select the 
Headers tab.

8. Enter Authorization in the KEY field and Bearer {token} in the VALUE field, where 
the token is the JWT token we got in step 5.

9. Click Send to check the user details for James. The result is shown in the following 
screenshot:

Figure 5.5: Checking the details after the user has logged in

You will then see the return response. In the response body, we can see the user details 
for James. We can see all his information, including his email address.

So, by using the exclude parameter in the user schema, we can easily exclude certain 
sensitive fields from showing up in the HTTP response. Apart from the exclude 
parameter, marshmallow also has the include parameter, which you can explore more 
yourself if you are interested.

RecipeSchema Design
So, we have done the serialization/deserialization for the User object. Now we are going 
to design the schema for the Recipe object. In the case of the Recipe update, we will 
expect the user to fill in updated recipe details on a web form, and then send the details 
in JSON format to the server. Our Smilecook application will then deserialize it to be a 
Recipe object, which can be worked on in our application.



136 | Object Serialization with marshmallow

RecipeSchema should inherit marshmallow.Schema and contains the following attributes:

• id: Use fields.Int() to represent an integer, and apply dump_only=True to specify 
that this property is only available for serialization.

• name: Use fields.String() to represent a string and apply required=True to 
indicate that this attribute is required. 

• description: Use fields.String() to represent a string.

• num_of_servings: Use fields.Int() to represent an integer.

• cook_time: Use fields.Int() to represent an integer.

• directions: Use fields.String() to represent a string.

• is_publish: Use fields.Boolean() to represent a Boolean, and apply dump_
only=True to specify that this attribute is only available for serialization.

• author: This attribute is used to display the author of the recipe. 

• created_at: Use fields.DateTime to represent the format of the time, and dump_
only=True means that this attribute is only available for serialization.

• updated_at: Use fields.DateTime to represent the format of the time, and dump_
only=True means that this attribute is only available for serialization.

Exercise 35: Implementing RecipeSchema

Now we have the RecipeSchema design in mind. In this exercise, we will learn more about 
marshmallow by implementing RecipeSchema. Not only can we just validate the data type 
of fields, but we can also build our own validation function. Let's get started:

1. First, we import schema, fields, post_dump, validate, validates, and 
ValidationError and create the recipe schema by entering the following code in 
schemas/recipe.py:

from marshmallow import Schema, fields, post_dump, validate, validates, 
ValidationError

class RecipeSchema(Schema):
    class Meta:
        ordered = True

    id = fields.Integer(dump_only=True)
    name = fields.String(required=True, validate=[validate.
Length(max=100)])



RecipeSchema Design | 137

    description = fields.String(validate=[validate.Length(max=200)])

    directions = fields.String(validate=[validate.Length(max=1000)])
    is_publish = fields.Boolean(dump_only=True)

    created_at = fields.DateTime(dump_only=True)
    updated_at = fields.DateTime(dump_only=True)

We can perform additional validation for a field by passing in the validate 
argument. We use validate.Length(max=100) to limit the maximum length of this 
attribute to 100. When it exceeds 100, it will trigger a validation error. This can 
prevent users from passing in an extremely long string, which will create a burden 
on our database. Using the validation function from marshmallow, that can be 
easily prevented. 

2. Then, we define the validate_num_of_servings(n) method in RecipeSchema, which 
is a customized validation function. This will validate that this attribute has a 
minimum of 1 and cannot be greater than 50. If its value doesn't fall within this 
range, it will raise an error message:

def validate_num_of_servings(n):
    if n < 1:
        raise ValidationError('Number of servings must be greater than 
0.')
    if n > 50:
        raise ValidationError('Number of servings must not be greater than 
50.')

3. Next, add the num_of_servings attribute in RecipeSchema. Use validate=validate_
num_of_servings to link to our custom function, which will verify the number of 
servings of this recipe:

num_of_servings = fields.Integer(validate=validate_num_of_servings)

4. There is another way for us to add a customized validation method. We can add 
the cooktime attribute in RecipeSchema:

cook_time = fields.Integer()



138 | Object Serialization with marshmallow

5. Then, in RecipeSchema, use the @validates('cook_time') decorator to define 
the validation method. When validating the cook_time property, it will call the 
validate_cook_time method to specify that the cooking time should be between 1 
minute and 300 minutes:

    @validates('cook_time')
    def validate_cook_time(self, value):
        if value < 1:
            raise ValidationError('Cook time must be greater than 0.')
        if value > 300:
            raise ValidationError('Cook time must not be greater than 
300.')

6. On top of the schemas/recipe.py file, import UserSchema from marshmallow, 
because we will display the author information for the recipe together when 
displaying the recipe information:

from schemas.user import UserSchema

7. Then, in RecipeSchema, define the attribute author. We use fields.Nested to link 
this attribute to an external object, which is UserSchema in this case:

author = fields.Nested(UserSchema, attribute='user', dump_only=True, 
only=['id', 'username'])

To avoid any confusion, this attribute is named author in the JSON response, but 
the original attribute name is the user. In addition, dump_only=True means that this 
attribute is only available for serialization. Finally, add only=['id', ' username'] to 
specify that we will only show the user's ID and username.

8. In addition, we add the @post_dump(pass_many=True) decorator so that further 
processing can be done when the recipe is serialized. The code is as follows:

    @post_dump(pass_many=True)
    def wrap(self, data, many, **kwargs):
        if many:
            return {'data': data}
        return data

In the case of returning only one recipe, it will be simply returned in a JSON 
string. But when we are returning multiple recipes, we will store the recipes in a 
list and return them using the {'data': data} format in JSON. This format will be 
beneficial for us when we develop the pagination feature.



RecipeSchema Design | 139

9. The code in schemas/recipe.py should now look like the following – please review 
it:

from marshmallow import Schema, fields, post_dump, validate, validates, 
ValidationError

from schemas.user import UserSchema

def validate_num_of_servings(n):
    if n < 1:
        raise ValidationError('Number of servings must be greater than 
0.')
    if n > 50:
        raise ValidationError('Number of servings must not be greater than 
50.')

class RecipeSchema(Schema):
    class Meta:
        ordered = True

    id = fields.Integer(dump_only=True)
    name = fields.String(required=True, validate=[validate.
Length(max=100)])
    description = fields.String(validate=[validate.Length(max=200)])
    num_of_servings = fields.Integer(validate=validate_num_of_servings)
    cook_time = fields.Integer()
    directions = fields.String(validate=[validate.Length(max=1000)])
    is_publish = fields.Boolean(dump_only=True)

    author = fields.Nested(UserSchema, attribute='user', dump_only=True, 
only=['id', 'username'])

    created_at = fields.DateTime(dump_only=True)
    updated_at = fields.DateTime(dump_only=True)

    @post_dump(pass_many=True)
    def wrap(self, data, many, **kwargs):
        if many:
            return {'data': data}
        return data

    @validates('cook_time')



140 | Object Serialization with marshmallow

    def validate_cook_time(self, value):
        if value < 1:
            raise ValidationError('Cook time must be greater than 0.')
        if value > 300:
            raise ValidationError('Cook time must not be greater than 
300.'

Once we have completed the recipe schema, we can start to use it in the related 
resources.

10. We will then modify resources/recipe.py as follows:

from schemas.recipe import RecipeSchema

recipe_schema = RecipeSchema()
recipe_list_schema = RecipeSchema(many=True)

We first import RecipeSchema from schemas.recipe,then define the recipe_schema 
variable and recipe_list_schema; they are for storing single and multiple recipes.

11. Modify the RecipeListResource get method to return all the published recipes back 
to the client by using the recipe_list_schema.dump(recipes).data method:

class RecipeListResource(Resource):

    def get(self):

        recipes = Recipe.get_all_published()

        return recipe_list_schema.dump(recipes).data, HTTPStatus.OK

12. Modify the RecipeListResource post method to use the recipe schema:

    @jwt_required
    def post(self):

        json_data = request.get_json()

        current_user = get_jwt_identity()

        data, errors = recipe_schema.load(data=json_data)

        if errors:



RecipeSchema Design | 141

            return {'message': "Validation errors", 'errors': errors}, 
HTTPStatus.BAD_REQUEST

        recipe = Recipe(**data)
        recipe.user_id = current_user
        recipe.save()

        return recipe_schema.dump(recipe).data, HTTPStatus.CREATED

After receiving the JSON data, the data is verified by recipe_schema.
load(data=json_data). If there is an error, it will return HTTP status code 400 Bad 
Request with an error message. 

If the validation is passed, Recipe(**data) will be used to create a recipe object, 
then specify it as the currently logged-in user's ID via recipe.user_id = current_
user. The recipe will then be saved to the repository via recipe.save(), and finally, 
converted to JSON using recipe_schema.dump(recipe).data to the client, with a 
HTTP status code 201 CREATED message.

13. Because the rendering of our data has been done through marshmallow, we don't 
need the data method in the recipe, so we can delete the data method in model/
recipe.py. That is, delete the following code from the file:

    def data(self):
        return {
            'id': self.id,
            'name': self.name,
            'description': self.description,
            'num_of_servings': self.num_of_servings,
            'cook_time': self.cook_time,
            'directions': self.directions,
            'user_id': self.user_id
        }



142 | Object Serialization with marshmallow

14. Now we have finished the implementation. Right-click on it to run the application. 
Flask will then be started up and run on the localhost (127.0.0.1) at port 5000:

Figure 5.6: Run the application and then Flask on the localhost

So, we have just completed the work on RecipeSchema, as well as modifying the API 
endpoints to transmit the object using the serialization/deserialization approach. In the 
next exercise, we will test whether our implementation works.

Exercise 36: Testing the Recipe API

To test whether the serialization/deserialization of the object works, we will again need 
to test it in Postman. This exercise is to test creating and getting all our recipe details 
using Postman.

1. First, log in to the account. Our previous token was only valid for 15 minutes. If 
it expires, we need to log in again via /token or reacquire the token using the 
Refresh Token. Click on the Collections tab.

2. Select the POST Token request.

3. Click Send to log in. The result is shown in the following screenshot:

Figure 5.7: Log in to the account and select the POST Token request



RecipeSchema Design | 143

You will then see the return response, HTTP Status is 200 OK, meaning the login 
was successful, and we will see the access token in the response body. This access 
token will be used in later steps. 

4. Next, we will create a new recipe. Click on the Collections tab. Choose POST 
RecipeList. 

5. Select the Headers tab. Enter Authorization in the KEY field and Bearer {token} in 
the VALUE field, where the token is the JWT token we got in our previous step.

6. Select the Body tab. Fill in the recipe details as follows:

{
    "name": "Blueberry Smoothie",
    "description": "This is a lovely Blueberry Smoothie",
    "num_of_servings": 2,
    "cook_time": 10,
    "directions": "This is how you make it"
}

7. Click Send to create a new recipe. The result is shown in the following screenshot:

Figure 5.8: Creating a new recipe



144 | Object Serialization with marshmallow

You will then see the return response, HTTP Status is 201 CREATED, meaning the 
new recipe has been created successfully. In the response body, we can see the 
recipe details. We can also see the author's details shown in a nested format.

8. Then, we will publish the recipe with id = 4. Click on the Collections tab. Choose 
the PUT RecipePublish request. Enter http://localhost:5000/recipes/4/publish 
in Enter request URL.

9. Select the Headers tab. Enter Authorization in the KEY field and Bearer {token} 
in the VALUE field, where the token is the JWT token we got in the previous step. 
Click Send to publish the recipe with id = 4. The result is shown in the following 
screenshot:

Figure 5.9: Publish the recipe with ID 4

You will then see the return response, HTTP Status is 204 NO CONTENT, meaning 
it is published successfully. You will see no content in the body.



RecipeSchema Design | 145

10. Then, we will get all the recipes back. Select the GET RecipeList request. Click 
Send to get all the recipes back. The result is shown in the following screenshot:

Figure 5.10: Getting all the recipes back by selecting the GET RecipeList request

You will then see the return response, HTTP Status is 200 OK, meaning we have 
successfully retrieved all the recipe details. In the response body, we can see that there 
is a list of data, which contains all the published recipes.

So, we have successfully implemented and tested the serialization (creating the recipe) 
and deserialization (retrieving the recipe) on the recipe-related API endpoints. We are 
making good progress here!



146 | Object Serialization with marshmallow

The PATCH Method
We have been using the PUT HTTP method all along for data updates. However, the 
actual usage of the PUT method is to Replace (Create or Update). For example, PUT /
items/1 means to replace everything in /items/1. If this item already exists, it will be 
replaced. Otherwise, it will create a new item. PUT must contain all attribute data for 
items/1.

This doesn't seem to work very well in all cases. If you just want to update only one 
of the attributes of items/1, you need to retransmit all the attributes of items/1 to the 
server, which is not efficient at all. So, there is a new HTTP method: PATCH. The PATCH 
method was invented to do a partial update. With this method, we need to pass in only 
the attributes that need to be modified to the server.

Exercise 37: Using the PATCH Method to Update the Recipe

In this exercise, we will change the recipe update method from PUT to PATCH. We will 
also use the serialization/deserialization approach to transmit the recipes. Finally, we 
will test our changes in Postman, to make sure things work as expected. The aim of this 
exercise is to reduce the bandwidth and server processing resources when we update 
the recipe data: 

1. Create the patch method in RecipeListResource. We will first use request.
get_json() to get the JSON recipe details sent by the client, and then use recipe_
schema.load(data=json_data, partial=('name',)) to validate the data format. We 
are using partial=('name',) because the original name is a required field in the 
schema. When the client only wants to update a single attribute, using partial 
allows us to specify that the Name attribute is optional, so no error will occur even 
though we are not passing in this attribute:

   @jwt_required
    def patch(self, recipe_id):

        json_data = request.get_json()

        data, errors = recipe_schema.load(data=json_data, 
partial=('name',))



The PATCH Method | 147

2. Then, in the same patch method, we will check whether there is an error message. 
If any, it will return the HTTP Status Code 400 Bad Request error message. If 
the validation passes, then check whether the user has permission to update this 
recipe. If not, HTTP status code Forbidden 403 will be returned:

        if errors:
            return {'message': 'Validation errors', 'errors': errors}, 
HTTPStatus.BAD_REQUEST

        recipe = Recipe.get_by_id(recipe_id=recipe_id)

        if recipe is None:
            return {'message': 'Recipe not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if current_user != recipe.user_id:
            return {'message': 'Access is not allowed'}, HTTPStatus.
FORBIDDEN

3. We continue to work on the same patch method. recipe.name = data.get('name') 
or recipe.name means it will try to get the name of the key value of the data. If 
this value exists, it will be used. Otherwise, recipe.name will stay the same. This is 
basically how we do the update:

        recipe.name = data.get('name') or recipe.name
        recipe.description = data.get('description') or recipe.description
        recipe.num_of_servings = data.get('num_of_servings') or recipe.
num_of_servings
        recipe.cook_time = data.get('cook_time') or recipe.cook_time
        recipe.directions = data.get('directions') or recipe.directions

4. In the same patch method, we use the save method to save everything to the 
database and return the recipe data in JSON format:

        recipe.save()

        return recipe_schema.dump(recipe).data, HTTPStatus.OK



148 | Object Serialization with marshmallow

5. Now we have the new patch method ready. Right-click on it to run the application. 
Flask will then be started up and run on the localhost (127.0.0.1) at port 5000: 

Figure 5.11: Run the application and then run Flask on the localhost

Next, we are going to update the recipe with id = 4. We will update only two 
fields:  num_of_servings, and cook_time.

6. Click on the Collections tab. Choose the PUT Recipe request. Change the HTTP 
method from PUT to PATCH.

7. Select the Headers tab. Enter Authorization in the KEY field and Bearer {token} in 
the VALUE field, where the token is the JWT token we got in our previous exercise. 

8. Select the Body tab. Type the following in the Body field:

{
    "num_of_servings": 4,
    "cook_time": 20
}



The PATCH Method | 149

Click Send to update the recipe. The result is shown in the following screenshot:

Figure 5.12: Updating the recipe

You will then see the return response HTTP Status is 200 OK, meaning the update 
was successful. In the body is the recipe details, and we can see that only num_of_
servings and cook_time is updated. We can also see the updated_at timestamp has been 
automatically updated as well.

Searching for Authors and Unpublished Recipes

On the Smilecook platform, there will be many different foodies from around the world 
(here, we call them authors) to share their recipes. Among these outstanding authors, 
we will definitely have a favorite author, and we will definitely want to learn all of their 
recipes. Therefore, we have added a new endpoint (or function), which is to list the 
recipes of a specific author. This endpoint not only lists all the recipes published by a 
particular gourmet but can also allow the author to search all of their own published/
unpublished recipes.



150 | Object Serialization with marshmallow

Using the webargs Package to Parse the Request Arguments

The request arguments, also known as the query string, are the arguments that we can 
pass in through the URL. For example, in the URL http://localhost/testing?abc=123, 
abc=123 is the request argument.

webargs is a package for parsing request arguments. We will create a new endpoint, GET 
http://localhost:5000/user/{username}/recipes, to get all the published recipes from a 
particular author. For this endpoint, we will pass in the visibility request argument. The 
visibility request argument can have a value of public, private, or all. The default 
value is public. If it is private or all, the user needs to be authenticated first.

If you want to get only the unpublished recipes, you can add the request argument 
visibility=private. So, the URL will look like this: http://localhost:5000/user/
{username}/recipes?visibility=private. The webargs package provides functions to 
parse this visibility=private argument in the URL, and then our Smilecook application 
will know this request is asking for private information in the recipe. Our Smilecook 
application will then determine whether the authenticated user is the author. If they 
are, it will return all the unpublished recipes. Otherwise, there is no permission for the 
user to see the unpublished recipes.

Exercise 38: Implementing Access Control on Recipes

In this exercise, we are going to implement access control on recipes. So, only 
authenticated users will be able to see all of their own recipes, including unpublished 
ones. The user will pass in the visibility mode by using the request argument. We use 
webargs to parse the visibility mode and return published, unpublished, or all recipes 
accordingly:

1. Create the get_all_by_user method in the Recipe class in models/recipe.py:

    @classmethod
    def get_all_by_user(cls, user_id, visibility='public'):
        if visibility == 'public':
            return cls.query.filter_by(user_id=user_id, is_publish=True).
all()

        elif visibility == 'private':
            return cls.query.filter_by(user_id=user_id, is_publish=False).
all()

        else:
            return cls.query.filter_by(user_id=user_id).all()



The PATCH Method | 151

This method needs to take in user_id and visibility. If the visibility is not 
defined, the default will be public. If the visibility is public, it will get all the 
recipes by user_id and is_publish=True. If the visibility is private, it will search for 
the recipe with is_publish=False. If the visibility is not public or private, it will get 
all the recipes of this user. 

2. We will install the webargs package, which is a package for interpreting and 
verifying HTTP arguments (for example, visibility). Please add the following 
package in requirements.txt:

webargs==5.4.0

3. Install the package using the following command:

pip install -r requirements.txt

You should see a result like the following:

Installing collected packages: webargs
Successfully installed webargs-5.4.0

4. Import the necessary modules, functions, and classes in resources/user.py:

from flask import request
from flask_restful import Resource
from flask_jwt_extended import get_jwt_identity, jwt_required, jwt_optional
from http import HTTPStatus

from webargs import fields
from webargs.flaskparser import use_kwargs

from models.recipe import Recipe
from models.user import User

from schemas.recipe import RecipeSchema
from schemas.user import UserSchema

First, import webargs.fields and webargs.flaskparser.use_kwargs, then we will 
need to use the recipe data, so we also need to import the recipe model and 
schema.

5. Then, we will declare the recipe_list_schema variable. Use RecipeSchema with the 
many=True parameter. This is to show that we will have multiple recipes:

recipe_list_schema = RecipeSchema(many=True)



152 | Object Serialization with marshmallow

6. We will then create the UserRecipeListResource class. This resource is mainly for 
getting the recipes under a specific user. Please refer to the following code:

class UserRecipeListResource(Resource):

    @jwt_optional
    @use_kwargs('visibility': fields.Str(missing='public')})
    def get(self, username, visibility):

First, define @jwt_optional to mean that this endpoint can be accessed 
without a user being logged in. Then, use @use_kwargs({'visibility': fields.
Str(missing='public')}) to specify that we expect to receive the parameters 
of visibility here. If the parameter is absent, the default will be public. 
The visibility parameter will then be passed into def get(self, username, 
visibility). 

7. We will implement access control in UserRecipeListResource.get. If the username 
(the author of the recipe) is the currently authenticated user, then they can see all 
the recipes, including the private ones. Otherwise, they can only see the published 
recipes: 

def get(self, username, visibility):

        user = User.get_by_username(username=username)

        if user is None:
            return {'message': 'User not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if current_user == user.id and visibility in ['all', 'private']:
            pass
        else:
            visibility = 'public'

        recipes = Recipe.get_all_by_user(user_id=user.id, 
visibility=visibility)

        return recipe_list_schema.dump(recipes).data, HTTPStatus.OK



The PATCH Method | 153

The user is then obtained by User.get_by_username(username=username). If the user 
cannot be found, will return a HTTP status code 404 NOT FOUND. Otherwise, 
get the current user's ID using get_jwt_identity() and save it to the current_user 
variable.

Based on the user and their permission, we will display a different set of recipes. 
After the recipe is obtained, recipe_list_schema.dump(recipes).data is used to 
convert the recipes into JSON format and return to the client with HTTP Status 
Code is 200 OK.

8. Then, import UserRecipeListResource in app.py:

from resources.user import UserListResource, UserResource, MeResource, 
UserRecipeListResource

9. Finally, we add the following endpoint:

api.add_resource(UserListResource, '/users')
api.add_resource(UserResource, '/users/<string:username>')
api.add_resource(UserRecipeListResource, '/users/<string:username>/
recipes')

10. Now, we have finished the implementation. Right-click on it to run the application. 
Flask will then be started up and run on the localhost (127.0.0.1) at port 5000: 

Figure 5.13: Run Flask on the localhost

Now we have learned how to use webargs to parse request arguments and have applied 
that to our Smilecook application. Next, as usual, we want to test and make sure that it 
works.



154 | Object Serialization with marshmallow

Exercise 39: Retrieving Recipes from a Specific Author

This exercise is to test what we implemented in our last exercise. We will make sure 
the API is parsing the visibility mode that the user passes in and returns different sets 
of recipes accordingly. We will use a specific user (James) for testing. We will see that 
before and after authentication, the user will be able to see different sets of recipes: 

1. We will get all the published recipes for a particular user before they have logged 
in. First, click on the Collections tab.

2. Add a new request under the User folder. Set the Request Name to UserRecipeList 
and save.

3. Select the newly created GET UserRecipeList request. Enter http://
localhost:5000/users/james/recipes in the URL field (change the username if 
necessary).

4. Click Send to check all the published recipes under this particular user (James 
here). The result is shown in the following screenshot:

Figure 5.14: Get all the published recipes for a user before they have logged in

You will then see the return response. The HTTP status code 200 OK here 
indicates that the request has succeeded and, in the body, we can see one 
published recipe under this author.



The PATCH Method | 155

5. Similar to the previous step, we will see whether we can get all the recipes under 
a particular user before the user has logged in – it shouldn't be allowed. Select the 
Params tab. Set KEY to visibility. Set VALUE to all. Click Send to check all the 
recipes under this particular user. The result is shown in the following screenshot:

Figure 5.15: Check all the recipes under a particular user

You will then see the return response. The HTTP status code 200 OK here 
indicates that the request has succeeded, and in the body again, though we are 
asking for all recipes, we can only see one published recipe under this author 
because the user hasn't logged in.



156 | Object Serialization with marshmallow

6. Log in and click on the Collections tab. Select the POST Token request. Click 
Send to check all the recipes under this particular user. The result is shown in the 
following screenshot:

Figure 5.16: Select the POST Token request and send the request

You will then see the return response. The HTTP status code 200 OK here 
indicates that the request has succeeded, and in the body, we can get the access 
token and refresh token that we will use in the next step.

7. Select the GET UserRecipeList request. Select the Headers tab. Enter 
Authorization in the Key field and Bearer {token} in the Value field, where the 
token is the JWT token we got in our previous step. Click Send to query. The 
result is shown in the following screenshot:



The PATCH Method | 157

Figure 5.17: Use the JWT token and send to query

You will then see the return response. The HTTP status code 200 OK here 
indicates that the request has succeeded. In the response body, we can get all the 
recipes under this user, including the unpublished ones.

This testing exercise concluded what we have learned about the webargs package, as 
well as testing the new access control functions we added for viewing recipes.



158 | Object Serialization with marshmallow

Activity 8: Serializing the recipe Object Using marshmallow

In this activity, we want you to work on the serialization of the RecipeResource.get 
method. We did serialization for User and RecipeList in previous exercises. Now, it is 
your turn to work on this last one. 

Currently, RecipeResource.get is returning the recipe object using recipe.data(). We 
want you to replace that by serializing the recipe object using marshmallow. The recipe 
object should be converted into JSON format and return to the frontend client-side. To 
do that, you will modify recipe_schema in resources/recipe.py. You are also required to 
test your implementation using Postman at the end.

The following are the steps to perform:

1. Modify the recipe schema, to include all attributes except for email.

2. Modify the get method in RecipeResource to serialize the recipe object into JSON 
format using the recipe schema.

3. Run the application so that Flask will start and run on the localhost.

4. Test the implementation by getting one specific published recipe in Postman.

Note

The solution for the activity can be found on page 312.

After this activity, you should have a good understanding of how to use schema to 
serialize objects. We have the flexibility to specify the attributes that need to be 
serialized, and how they are going to be serialized. Attributes that linked to another 
object can be serialized as well. As you can see from this activity, the author's 
information is included in this recipe response.



Summary | 159

Summary
In this chapter, we have learned a lot of things. The data verification of an API through 
marshmallow is very important. This function should also be constantly updated in the 
production environment to ensure that the information we receive is correct.

In this chapter, we started with the verification of registered members and then talked 
about basic verification methods, such as setting mandatory fields, performing data 
type validation, and so on. Apart from data validation, marshmallow can be used for data 
filtering as well. We can use the exclude parameter to display the user email field. Based 
on what we learned, we then developed customized verifications for our application, 
such as verifying the length of the recipe creation time.

At the end of this chapter, we added the functionality to get all the recipes written 
by our favorite author. Then, we searched for different publish statuses through the 
visibility parameter and applied access control accordingly.





Learning Objectives

By the end of this chapter, you will be able to:

• Send out plaintext and HTML format emails using the Mailgun API

• Create a token for account activation using the itsdangerous package

• Utilize the entire workflow for user registration

• Develop applications using the benefits of environment variables

This chapter covers how to use an email package to develop an email activation feature on the 
food recipe sharing platform for user registration as well as email verification.

Email Confirmation

6



162 | Email Confirmation

Introduction
In the previous chapter, we worked on validating APIs using marshmallow. In this 
chapter, we will add functionality to our application that allows us to send emails to 
users. 

Everyone has their own email address. Some people may even have multiple mailboxes 
for different needs. In order to ensure the correctness of the email addresses entered 
by users when creating an account in our application, we need to verify their email 
address during registration. It is important to get their email address correct, as we may 
need to send emails to users in the future. 

In this chapter, we will implement a function to verify a mailbox, learn how to send a 
message through the third-party Mailgun API, and create a unique token to ensure that 
it is verified by the user. This can be achieved with the itsdangerous package. At the 
end of the chapter, we will make our confidential information (for example, Mailgun API 
Secret Key) more secure by sorting it into environmental variables. So, when we upload 
our project to GitHub or other platforms down the road, this confidential information 
will not be shared in the project. The following is how the new user registration flow 
works:

Figure 6.1: New user registration flow

In our first section, we will introduce you to the Mailgun platform. Without further ado, 
let's get started.



Mailgun | 163

Mailgun
Mailgun is a third-party SMTP (Simple Mail Transfer Protocol) and API sending email 
provider. Through Mailgun, not only can a large number of emails be sent, but the log 
for every email can also be traced. You have 10,000 free quotas per month. That means, 
in the free plan, we can only send, at most, 10,000 emails. This will be enough for our 
learning purposes. 

Mailgun also provides an open RESTful API, which is easy to understand and use. In the 
following exercise, we will register a Mailgun account, and send an email through the 
API.

Exercise 40: Get Started with Using Mailgun

To start with, we need to register an account in Mailgun. As we explained before, 
Mailgun is a third-party platform. We will register a Mailgun account in this exercise. 
Then, we will obtain the necessary setup information to use their email sending service 
API:

1. Visit the Mailgun website at https://www.mailgun.com/. Click Sign Up to register 
an account. The home page will look like the following screenshot:

Figure 6.2: Mailgun home page

Once registration is done, Mailgun will send out a verification email with an 
account activation link.

https://www.mailgun.com/


164 | Email Confirmation

2. Click on the link in the verification email to activate the account, which is shown 
in the following screenshot:

Figure 6.3: Mailgun account activation email

3. Then, we will follow the Mailgun verification process. Enter your phone number to 
get a verification code. Use the code to activate your account. The screen will look 
like this:

Figure 6.4: Verifying the account



Mailgun | 165

4. After your account is activated, log in to your account, then go to the Overview 
screen under Sending. There, you can find the domain name, API key, and base 
URL. This information is required for our subsequent programming work. Mailgun 
also provides sample code for a quick start: 

Figure 6.5: Mailgun dashboard

Now we have opened an account in Mailgun that will allow us to use their service to 
send emails to our users. The API URL and key are for our Smilecook application to 
connect to the Mailgun API. We will show you how to do that very soon. 

Note

Currently, we are using the sandbox domain for testing. You can only send an 
email to your own email address (that is, the email address registered with 
Mailgun). If you want to send emails to other email addresses, you can add 
Authorized Recipients on the right-hand side, and it will send an email to that 
recipient. The recipient needs to accept you sending them email. 

We will go through the process of how to send the first email in the next exercise.



166 | Email Confirmation

Exercise 41: Using the Mailgun API to Send Out Emails

So, we have already registered an account with Mailgun. With that Mailgun account, we 
will be able to use the Mailgun API to send out emails to our users. In this exercise, we'll 
use Mailgun to send out our first test email, programmatically, in our Smilecook project:

1. Import requests and create the MailgunApi class in mailgun.py, under the Smilecook 
project:

import requests
class MailgunApi:

2. In the same MailgunApi class, set the API_URL to https://api.mailgun.net/v3/{}/
messages; this is the API_URL provided by Mailgun:

    API_URL = 'https://api.mailgun.net/v3/{}/messages'

3. In the same MailgunApi class, define the __init__ constructor method for 
instantiating the object: 

    def __init__(self, domain, api_key):
        self.domain = domain
        self.key = api_key
        self.base_url = self.API_URL.format(self.domain)

4. In the same MailgunApi class, define the send_email method for sending out emails 
using the Mailgun API. This method takes in to, subject, text, and html as the input 
parameters and composes the email: 

   def send_email(self, to, subject, text, html=None):

        if not isinstance(to, (list, tuple)):
            to = [to, ]

        data = {
            'from': 'SmileCook <no-reply@{}>'.format(self.domain),
            'to': to,
            'subject': subject,
            'text': text,
            'html': html
        }

        response = requests.post(url=self.base_url,
                                                  auth=('api', self.key),
                                                  data=data)
        return response



Mailgun | 167

5. Use MailgunApi to send the first email. Open the PyCharm Python console and 
first import MailgunApi from mailgun, then create a mailgun object by passing the 
domain name and API key provided by Mailgun in the previous exercise:

>>>from mailgun import MailgunApi
>>>mailgun = MailgunApi(domain='sandbox76165a034aa940feb3ef785819641871.
mailgun.org',
api_key='441acf048aae8d85be1c41774563e001-19f318b0-739d5c30')

6. Then, use the send_mail() method in MailgunApi to send our first email. We can 
pass in the email, subject, and body as parameters. We will get an HTTP status 
code 200 if the mail is sent successfully:

>>>mailgun.send_email(to='smilecook.api@gmail.com',
                               subject='Hello', 
                               text='Testing some Mailgun awesomeness!')
<Response [200]>

Note

Please note that we need to use the same email address registered in Mailgun 
when we opened the account. This is because we haven't added any other email 
addresses to the authorized recipient list yet. So, this email address, registered in 
Mailgun, is the only email address that we can send out an email to now. In this 
case, it is smilecook.api@gmail.com.

7. Check the mailbox of the registered email address. You should receive an email. If 
you can't find it, it could be in your spam folder:

Figure 6.6: Sending an email via Mailgun



168 | Email Confirmation

So, we have just sent out our first email using the third-party Mailgun API. Now we know 
how to add email capability to our application without setting up our own mail server. 
Later on, we will incorporate this email capability into our Smilecook application. We 
are going to use it in our user account activation workflow.

User Account Activation Workflow
We would like to add an account activation step to our recipe sharing platform so that 
when a user registers an account in our system, the account will not be activated by 
default. At this time, a user cannot log in to their account dashboard. It's only after they 
activate their account by clicking on the link in our activation email that they can then 
log in to their account dashboard:

Figure 6.7: User account activation workflow

To build this workflow, we will use the is_active attribute in the user model to 
indicate whether the account is activated (whether the link of the activation email has 
been clicked), then create a method for sending the verification email when the user 
registers and the endpoint can be used to open the account. In order to create a unique 
link, we'll use the itsdangerous package, which will help us to create a unique token that 
will be used in the link for account activation. This package ensures that the email we 
generated is not modified by anyone so that we can verify the user's identity before we 
activate their account.

Note

If you are interested in understanding more about the itsdangerous package, 
please visit https://pythonhosted.org/itsdangerous/.

In the next exercise, we will generate the account activation token.

https://pythonhosted.org/itsdangerous/


User Account Activation Workflow | 169

Exercise 42: Generating the Account Activation Token

As explained previously, we would like to implement a user account activation flow 
in our Smilecook application. This is to make sure the email address provided during 
registration is valid and is owned by the user. In this exercise, we will create a function 
to generate the activation token, as well as another function to verify the token. They 
will then be used later in the account activation flow: 

1. Add the following line of code to requirements.txt:

itsdangerous==1.1.0

2. Install the itsdangerous package using the following command:

pip install -r requirements.txt

You should see the following result returned after the packages are successfully 
installed:

Installing collected packages: itsdangerous
Successfully installed itsdangerous-1.1.0

3. Make sure the secret key is added in config.py; it will be useful when we use the 
itsdangerous package later:

class Config:
    SECRET_KEY = 'super-secret-key'

4. In utils.py, import the URLSafeTimedSerializer module from itsdangerous:

from itsdangerous import URLSafeTimedSerializer
from flask import current_app

5. In utils.py again, define the generate_token function:

def generate_token(email, salt=None):
    serializer = URLSafeTimedSerializer(current_app.config.get('SECRET_
KEY'))
    return serializer.dumps(email, salt=salt)

In the generate_token method, we used the URLSafeTimedSerializer class to create 
a token via email and the current_app.config.get('SECRET_KEY') secret key, which 
is the secret key we set in the config.py settings. This same secret key will be 
used to verify this token in the future. Also, note that the timestamp will be in this 
token, after which we can verify the time this message was created.



170 | Email Confirmation

6. In utils.py again, define the verify_token function:

def verify_token(token, max_age=(30 * 60), salt=None):
    serializer = URLSafeTimedSerializer(current_app.config.get('SECRET_
KEY'))
    try:
        email = serializer.loads(token, max_age=max_age, salt=salt)
    except:
        return False

    return email

The verify_token function will try to extract the email address from the token, 
which will confirm whether the valid period in the token is within 30 minutes (30 * 
60 seconds) through the max_age attribute.

Note

You can see in steps 5 and step 6, that salt is used here to distinguish between 
different tokens. When tokens are created by email, for example, in the scenarios 
of opening an account, resetting the password, and upgrading the account, a 
verification email will be sent. You can use salt='activate-salt', salt='reset-
salt', and salt='upgrade-salt' to distinguish between these scenarios. 

Now we have these two handy functions to generate and verify the activation token, in 
the next exercise, we will use them in the user account activation flow.

Exercise 43: Sending Out the User Account Activation Email

Now, we have the activation token ready from our previous exercise, and we have also 
learned how to use the Mailgun API to send out an email. We are going to combine the 
two in this exercise, placing the activation token in the activation email to complete the 
whole account activation workflow:

1. Import url_for, the MailgunAPI class, and the generate_token and verify_token 
functions into resources/user.py:

from flask import request, url_for

from mailgun import MailgunApi

from utils import generate_token, verify_token



User Account Activation Workflow | 171

2. Create a MailgunApi object by passing in the Mailgun domain name and the API key 
that we got in the previous exercise:

mailgun = MailgunApi(domain='sandbox76165a034aa940feb3ef785819641871.
mailgun.org',
           api_key='441acf048aae8d85be1c41774563e001-19f318b0-739d5c30')

3. Add the following code in the UserListResource class, right after user.save():

        token = generate_token(user.email, salt='activate')
        subject = 'Please confirm your registration.'

We first generate a token using generate_token(user.email, salt='activate'). 
Here, salt='activate' means that the token is mainly used to activate the account. 
The subject of the email is set to Please confirm your registration.

4. Create an activation link and define the email text in the same UserListResource 
class:

        link = url_for('useractivateresource',
                             token=token,
                             _external=True)

        text = 'Hi, Thanks for using SmileCook! Please confirm your 
registration by clicking on the link: {}'.format(link)

We create the activation link using the url_for function. It will require 
UserActivateResource (we will create that in our next step). This endpoint will 
need a token as well. The _external=True parameter is used to convert the default 
relative URL, /users/activate/<string:token>, to an absolute URL, http://
localhost:5000/users/activate/<string:token>:

5. Finally, we use the mailgun.send_email method to send the email in the same 
UserListResource class:

        mailgun.send_email(to=user.email,
                                         subject=subject,
                                         text=text)



172 | Email Confirmation

6. Create a new UserActivateResource class under resources/user.py and define the 
get method in it:

class UserActivateResource(Resource):
    def get(self, token):

        email = verify_token(token, salt='activate')

        if email is False:
            return {'message': 'Invalid token or token expired'}, 
HTTPStatus.BAD_REQUEST

First, this method verifies the token using verify_token(token, salt='activate'). 
The token has a default expiration time of 30 minutes. If the token is valid and not 
expired, we will get the user email and can proceed with the account activation. 
Otherwise, the email will be set to False and we can return an error message, 
Invalid token or token expired, with an HTTP status code 400 Bad Request.

7. Continue to work on the UserActivateResource.get method:

        user = User.get_by_email(email=email)

        if not user:
            return {'message': 'User not found'}, HTTPStatus.NOT_FOUND

        if user.is_active is True:
            return {'message': 'The user account is already activated'}, 
HTTPStatus.BAD_REQUEST

        user.is_active = True

        user.save()

If we have the user's email, we can look up the user object and modify its is_active 
attribute. If the user account is already activated, we will simply return The user 
is already activated. Otherwise, we activate the account and save that. 



User Account Activation Workflow | 173

8. Finally, we will return HTTP status code 204 No Content to indicate that the 
request was handled successfully:

        return {}, HTTPStatus.NO_CONTENT

Note

Usually, in a real-world scenario, the activation link in the email will point to the 
frontend layer of the system. The frontend layer will, in turn, communicate with the 
backend through the API. Therefore, when the frontend receives the HTTP status 
code 204 No Content, it means the account is activated. It can then forward the 
user to the account dashboard. 

9. Then, add the new UserActivateResource class to app.py by using the following 
code. First, import the UserActivateResource class from resources.user, then add 
the route:

from resources.user import UserListResource, UserResource, MeResource, 
UserRecipeListResource, UserActivateResource

    api.add_resource(UserActivateResource, '/users/
activate/<string:token>')

10. Finally, we would like to make sure the user cannot log in to the application before 
their account is activated. We will change the POST method in resources/token.
py. Add the following lines of code right after checking the password to return the 
HTTP status code 403 Forbidden if the user account is not activated:

        if user.is_active is False:
            return {'message': 'The user account is not activated yet'}, 
HTTPStatus.FORBIDDEN

11. Right-click on it to run the application. And we are ready to test the entire user 
registration workflow.

Congratulations! You have completed the development of the entire user registration 
workflow. Our Smilecook application will be able to send out an email with an activation 
link. Users can then click on the activation link to activate their user account.

In the next activity, we would like you to go through the whole flow and test whether it 
works.



174 | Email Confirmation

Activity 9: Testing the Complete User Registration and Activation Workflow

In this activity, we will test the complete user registration and activation workflow:

1. Register a new user through Postman.

2. Log in through the API.

3. Use the link sent to the mailbox to activate the account.

4. Log in again after the account is activated.

Note

The solution for this activity can be found on page 314.

Setting Up Environment Variables

We are going to use environment variables to ensure that our sensitive information, 
such as the secret key, is safe. This ensures that we are not leaking this sensitive and 
confidential information when we share code with others. Environment variables are 
only saved in the local environment and they won't appear in code. That is a usual best 
practice to segregate code from confidential information.

Exercise 44: Setting Up Environment Variables in PyCharm

The environment variable is a key-value pair stored in the local system, which can be 
accessed by our application. In this exercise, we will set the environment variables 
through PyCharm:

1. At the top of the PyCharm interface, select Run and then click Edit Configurations:

Figure 6.8: Select Run and click Edit Configurations



User Account Activation Workflow | 175

2. Click Browse next to Environment Variables. Then click + to add the MAILGUN_
DOMAIN and MAILGUN_API_KEY environment variables. 

Your screen will look as follows:

Figure 6.9: Adding the MAILGUN_DOMAIN and MAILGUN_API_KEY environment variables

Note

For the Python console, to read the environment variables, we can set it under 
Pycharm >> Preferences >> Build, Execution, Deployment >> Console >> Python 
Console.

3. We will then import the os package in resources/user.py and get the value 
in the environment variables using os.environ['MAILGUN_DOMAIN'] and 
os.environ['MAILGUN_API_KEY']:

import os

mailgun = MailgunApi(domain=os.environ.get('MAILGUN_DOMAIN'),
                            api_key=os.environ.get('MAILGUN_API_KEY'))



176 | Email Confirmation

So, this is how you can move the secret API_KEY and other related information out 
from the code. This secret data is now stored in the environment variable and is 
isolated from the code. 

Note

If we get the environment variable using os.environ['KEY']. It will raise a 
'KeyError' if the environment variable is not defined. We can get the value 
using os.environ.get('KEY') or os.getenv('Key'). This will give us None if the 
variable is not defined. If we want to set a default value if the environment variable 
is not defined, we can use this syntax: os.getenv('KEY', default_value).

HTML Format Email
We can add a bit of color to our email by using an HTML format email instead of 
plaintext email. HTML format email is everywhere. I am sure you have seen images in 
emails, or emails with a fancy layout. Those are HTML format emails. Theoretically, to 
send out HTML format email using the Mailgun API, it could be as simple as passing in 
the HTML code as a parameter to the mailgun.send_email method. 

Please refer to the following sample code to send out an HTML format email using 
Mailgun. We can see that we are just adding the new html parameter here: 

mailgun.send_email(to=user.email,

                         subject=subject,

                         text=text, 

                         html='<html><body><h1>Test email</h1></body></
html>')

However, this way of coupling the HTML code with the Python code is cumbersome. If 
we have a fancy layout, the HTML can be pretty long and that's too much to be included 
in the actual Python code. To address this, we can leverage the render_template() 
function in Flask. This is a function that makes use of the Jinja2 template engine. With 
it, we can just place the HTML code in a separate HTML file under a /templates folder in 
the application project. We can then pass in the HTML file, also called a template file, to 
this render_template function to generate the HTML text. 



HTML Format Email | 177

From the following sample code, we can see that, with the render_template function, we 
can simplify the code a lot:

template/sample.html

<html><body><h1>Test email</h1></body></html>

We can then render the HTML with the subject set to Test email using the following 
code:

mailgun.send_email(to=user.email,

                         subject=subject,

                         text=text, 

                         html=render_template('sample.html'))

The sample code here will look for the templates/sample.html file under the application 
project folder and render the HTML code for us. 

The function is named render_template instead of render_html for a reason. The render_
template function does more than just directly outputting the HTML code from the file. 
In fact, we can insert variable in the HTML template file and have the render_template 
function render it. 

For example, we can modify sample.html like this (the {{content}} here is a placeholder):

template/sample.html

<html><body><h1>{{content}}</h1></body></html>

We can then render the HTML with the subject set to test email using the following 
code:

mailgun.send_email(to=user.email,

                         subject=subject,

                         text=text, 

                         html=render_template('sample.html', content='Test 
email'))

In the next activity, we would like you to send out the activation email in HTML format. 



178 | Email Confirmation

Activity 10: Creating the HTML Format User Account Activation Email

We have previously sent out plaintext format emails. In this activity, we will create an 
HTML format email so that it looks more appealing to our users:

1. Put the user's email address into the Mailgun authorized recipient list.

2. Copy an HTML template from the Mailgun website.

3. Add in the activation token in the HTML template.

4. Use the render_template function to render the HTML code and send out the 
activation email using the Mailgun API.

5. Register a new account in Postman and get the account activation email in HTML 
format.

Note

The solution for this activity can be found on page 317.

You have now learned how to send out an email in HTML format. You can design your 
own HTML templates from now on.

Summary
In this chapter, we learned how to use the third-party Mailgun API to send a user 
account activation email. Later, we can send different emails, such as a notification 
email, using the MailgunAPI class. Mailgun not only provides the API for sending mail 
but also provides a backend dashboard for us to track the status of the emails we've 
sent out. It is a very handy service. User account activation is an important step to 
ensure we are onboarding a validated user. Though not every platform performs this 
kind of validation, it reduces the impact of spam and bots onboarding our platform. In 
this chapter, we used the itsdangerous package to create a unique token to confirm the 
ownership of the user's email address. This package contains timestamps so that we can 
verify whether the token has expired or not.

In the next chapter, we will continue to add more features to our Smilecook application. 
We will work with images in our next chapter. I am sure you will learn a lot of practical 
skills there. Let's continue our journey.







Learning Objectives

By the end of this chapter, you will be able to:

• Build a user avatar function

• Develop an image uploading API using Flask-Uploads

• Resize images using an API

• Compress images using Pillow to enhance API performance

In this chapter, we will learn how to perform image uploads so that we can let users post a 
profile picture and recipe cover image to our Smilecook application.

Working with Images

7



182 | Working with Images

Introduction
In the previous chapter, we completed the account opening workflow by activating 
the user accounts via email. In this chapter, we will develop a function so that we can 
upload pictures. These pictures are the user's profile picture and the recipe cover 
images. Aside from uploading images, we will also discuss image compression. Pillow is 
an image processing package that we are going to use to compress images up to 90%. 
This can greatly enhance the performance of our API without compromising on the 
image's quality.

Technically speaking, we will introduce two Python packages, Flask-Uploads and Pillow, 
in this chapter. Flask-Uploads allows us to quickly develop image uploading functions. 
For image compression, we will be using Pillow. It can generate images in our specified 
format and compress them accordingly.

Building the User Avatar Function
In our Smilecook application, there are user profile pages that list user information. 
While this is useful enough, it would be much better if we could allow users to upload 
a profile picture (avatar) to their profile page. This would make the application more 
sociable.

To store the user avatar, we will create a new attribute (avatar_image) in the user model. 
We are not going to store the image directly in this attribute. Instead, we are going to 
store the image on the server, and the new attribute will have the filename of the image. 
Later, when our API gets a client request asking for the image, we will find the filename 
in this attribute and generate the URL to point to the image location and then return 
it to the frontend client-side. The frontend client will then base on the image URL and 
fetch it from the server:

Figure 7.1: Building a user model avatar diagram



Building the User Avatar Function | 183

We are going to create a new endpoint, http://localhost:5000/users/avatar, that will 
take PUT requests. The reason we have designed it to accept PUT requests is that there 
should be only one avatar picture for each user. So, every time there is a client request, 
it should be either replacing an empty image with the new image for the first time, or 
it will be replacing the old image with a new one. This is a replacement action. In this 
case, we should use the HTTP verb, PUT.

Now, let's add the avatar_image attribute in our model. We will have to use Flask-
Migrate to update the underlying database table.

Exercise 45: Adding the avatar_image Attribute to the User Model

In this exercise, we will work on changing the user model. First, we will create 
an additional attribute (avatar_image) in the user model. Then, we will reflect it 
in the database schema and use the Flask-Migrate Python package to create the 
corresponding field in the database table. Finally, we will confirm the change is 
successful by using pgAdmin. Let's get started:

1. Add the avatar_image attribute to the user model. The code file is models/user .py:

avatar_image = db.Column(db.String(100), default=None)

The avatar_image attribute is designed to store the filename of the uploaded 
image. Due to this, it is a string with a length of 100. The default is None.

2. Run the following command to generate the database migration script:

flask db migrate

You will see that a new column called user.avatar_image has been detected:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.autogenerate.compare] Detected added column 'user.avatar_
image'
  Generating /TrainingByPackt/Python-API-Development-Fundamentals/
Lesson07/smilecook/migrations/versions/7aafe51af016_.py ... done



184 | Working with Images

3. Check the content in /migrations/versions/7aafe51af016_.py, which is the 
database migration script that we generated in the previous step:

"""empty message

Revision ID: 7aafe51af016
Revises: 983adee75c9a
Create Date: 2019-09-18 20:54:51.823725

"""
from alembic import op
import sqlalchemy as sa

# revision identifiers, used by Alembic.
revision = '7aafe51af016'
down_revision = '983adee75c9a'
branch_labels = None
depends_on = None

def upgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.add_column('user', sa.Column('avatar_image', sa.String(length=100), 
nullable=True))
    # ### end Alembic commands ###

def downgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.drop_column('user', 'avatar_image')
    # ### end Alembic commands ###

From its content, we can see that two functions have been generated in the script: 
upgrade and downgrade. The upgrade function is used to add the new avatar_image 
column to the database table, while the downgrade function is used to remove the 
avatar_image column so that it can go back to its original state. 

4. Run the following flask db upgrade command to update the database schema:

flask db upgrade

You will see the following output:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.runtime.migration] Running upgrade 983adee75c9a -> 
7aafe51af016, empty message



Flask-Uploads | 185

5. Check the schema change in pgAdmin. Right-click on the user table and choose 
Properties. A new window will appear. Then, click the Columns tab to check the 
columns:

Figure 7.2: Checking all the columns in the Columns tab

Here, we can see the new avatar_image column being added to the user table. Now, 
our Smilecook application is ready to take in the image path of the user avatar.

Flask-Uploads
We will be using the Flask-Uploads package to complete our image upload function. 
This is a very powerful package that simplifies most of the tedious coding for us. By 
simply calling a few methods provided by the package, it allows us to efficiently and 
flexibly develop the file upload function. Flask-Uploads can handle various common 
file types out of the box. What we need to define is the Set that classifies the types of 
uploaded files, such as IMAGES, DOCUMENT, AUDIO, and so on. Then, we simply need to set 
the destination of the uploaded files. 

Let's look at a few basic concepts and functions in Flask-Uploads before we implement 
them.



186 | Working with Images

Upload Sets

Before we upload any files, we need to define the UploadSet. An upload set is a single 
collection of files. Take images as an example; we can define the image upload set as 
follows, where 'images' is the name of the upload set:

image_set = UploadSet('images', IMAGES)

Once you have the image_set, you can use the save method to save the uploaded image 
from the incoming HTTP request, like so:

    image_set.save(image, folder=folder, name=filename)

An upload set's configuration also needs to be stored on an app. We can use the 
configure_uploads function from Flask-Uploads to do that:

configure_uploads(app, image_set)

In addition, you can also use patch_request_class to restrict the maximum upload size 
of the uploaded file. In the next exercise, we will work on the image upload function 
together. The image user is going to upload their avatar picture. We will define the 
destination as static/images/avatars.

Exercise 46: Implementing the User Avatar Upload Function

In this exercise, we will start by installing the Flask-Uploads package to our virtual 
environment. Then, we will do some simple configurations and get to work on the 
image upload function development. By completing this exercise, we will see an image 
URL being returned to the client. Let's get started:

1. Add the following line in requirements.txt:

Flask-Uploads==0.2.1

2. Run the following command to install the Flask-Uploads package in the PyCharm 
console:

pip install -r requirements.txt

You will see the following installation result:

Installing collected packages: Flask-Uploads
Running setup.py install for Flask-Uploads ... done
Successfully installed Flask-Uploads-0.2.1



Flask-Uploads | 187

3. Import UploadSet and IMAGES into extensions.py:

from flask_uploads import UploadSet, IMAGES

4. In the same extensions.py file, define a set called 'images' and an extension called 
IMAGES. This will cover the common image file extensions (.jpg, .jpeg, .png, and so 
on):

image_set = UploadSet('images', IMAGES)

5. Set the image destination in Config.py:

UPLOADED_IMAGES_DEST = 'static/images'

Note

The UPLOADED_IMAGES_DEST attribute name is decided by the name of the upload 
set. Since we set the upload set name to be  'images', the attribute name here 
must be UPLOADED_IMAGES_DEST.

6. Import configure_uploads, patch_request_class, and image_set into app.py:

from flask_uploads import configure_uploads, patch_request_class
from extensions import db, jwt, image_set

7. Using the configure_uploads function that we have just imported, pass in the 
image_set that we want to upload:

configure_uploads(app, image_set)

8. Set the maximum file size allowed for uploads as 10 MB using patch_request_class. 
This step is important because, by default, there is no upload size limit:

patch_request_class(app, 10 * 1024 * 1024)

9. Import the url_for function in schemas/user.py and add the avatar_url attribute 
and dump_avatar_url method under the UserSchema class:

from flask import url_for

class UserSchema(Schema):

    avatar_url = fields.Method(serialize='dump_avatar_url')

    def dump_avatar_url(self, user):



188 | Working with Images

        if user.avatar_image:
            return url_for('static', filename='images/avatars/{}'.
format(user.avatar_image), _external=True)
        else:
            return url_for('static', filename='images/assets/default-
avatar.jpg', _external=True)

The url_for function is used to help generate the URL of the image file. The dump_
avatar_url method is used to return the URL of the user avatar after serialization. 
If no image is being uploaded, we will simply return the URL of the default avatar.

10. Create a folder called assets under static/images and place the default-avatar.
jpg image inside it. This image is going to be our default user avatar:

Figure 7.3: Folder structure after adding the image

Note

You can put any image you like in here. We have also provided a default avatar 
image in our sample code folder. 

11. Import the uuid extension, and image_set into utils.py. You will see how these 
modules/methods are used next:

import uuid

from flask_uploads import extension

from extensions import image_set

12. Add the save_image function to utils.py:

def save_image(image, folder):

    filename = '{}.{}'.format(uuid.uuid4(), extension(image.filename))
    image_set.save(image, folder=folder, name=filename)

    return filename



Flask-Uploads | 189

In the save_image method, we used the uuid function to generate the filename 
for the uploaded image. We got the file extension from the uploaded image using 
the extension function from Flask-Uploads. Then, we saved the image using the 
image_set.save function; the saving destination is static/images. If we pass in 
folder='avatar' as the parameter, the destination will be static/images/avatar.

13. Import the image_set and save_image functions from utils into resources/user.py:

from extensions import image_set

from utils import generate_token, verify_token, save_image

14. Add user_avatar_schema to resources/user.py. This schema is just to show the 
avatar_url:

user_avatar_schema = UserSchema(only=('avatar_url', ))

15. Create the UserAvatarUploadResource class, in resources/user.py, and define the 
put method inside it:

class UserAvatarUploadResource(Resource):

    @jwt_required
    def put(self):

        file = request.files.get('avatar')

        if not file:
            return {'message': 'Not a valid image'}, HTTPStatus.BAD_
REQUEST

        if not image_set.file_allowed(file, file.filename):
            return {'message': 'File type not allowed'}, HTTPStatus.BAD_
REQUEST

        user = User.get_by_id(id=get_jwt_identity())

        if user.avatar_image:
            avatar_path = image_set.path(folder='avatars', filename=user.
avatar_image)
            if os.path.exists(avatar_path):
                os.remove(avatar_path)



190 | Working with Images

The @jwt_required decorator before the put method means that login is required 
before this method is triggered. In the put method, we got the avatar image file 
from request.files. Then, we validated whether the image file exists and whether 
the file extension is permitted. If everything is okay, we will get back the user 
object and check whether an avatar already exists. If so, that will be removed 
before we replace it with our uploaded image.

16. Then, we used save_image to save the uploaded image. Once the image is saved, we 
will get the filename of the image and save it to user.avatar_image. Then, we used 
user.save() to save the update to the database:

        filename = save_image(image=file, folder='avatars')

        user.avatar_image = filename
        user.save()

17. Use user_avatar_schema.dump(user).data to return the image URL and the HTTP 
status code, 200 OK:

        return user_avatar_schema.dump(user).data, HTTPStatus.OK

18. Import the UserAvatarUploadResource class into app.py:

from resources.user import UserListResource, UserResource, MeResource, 
UserRecipeListResource, UserActivateResource, UserAvatarUploadResource

19. Link the resource to the route, that is /users/avatar in app.py:

api.add_resource(UserAvatarUploadResource, '/users/avatar')

We have successfully created the user avatar image upload function in our Smilecook 
application. Now, we can upload an image to the user profile page. In the next exercise, 
we will test that using Postman.



Flask-Uploads | 191

Exercise 47: Testing the User Avatar Upload Function Using Postman

In the previous exercise, we finished developing the avatar uploading function. To make 
sure things are working as expected, we need to test the function from the client-side. 
We will be using Postman to send the client request, which will have the user avatar 
image in it. Let's get started:

1. First, log in to a user account. Now, click on the Collections tab and select the 
POST Token request. Then, click the Send button. The result can be seen in the 
following screenshot:

Figure 7.4: Sending the POST Token request

2. Next, we are going to use the PUT method to upload an avatar. Send an HTTP PUT 
request to the following URL: http://localhost:5000/users/avatar. Click on the 
Collections tab. Right-click on … next to the User folder, and then create a new 
request.

3. Set the Request Name to UserAvatarUpload and save it in the User folder.



192 | Working with Images

4. Select PUT as the HTTP method and type in http://locaohost:5000/users/avatar as 
the request URL.

5. Now, select the Headers tab and put Authorization into the KEY field and Bearer 
{token} into the VALUE field, where the token is the access token we got in the 
previous step.

6. Select the Body tab. Then, select the form-data radio button and put "avatar" as 
the KEY.

7. Select File in the drop-down menu next to Key and select the image file to upload.

8. Now, click the Save button and then the Send button. The result can be seen in 
the following screenshot:

Figure 7.5: Sending a request to upload an avatar

We can see avatar_url in the response, meaning that our image upload request 
was successful.



Flask-Uploads | 193

9. Clicking on avatar_url should bring you to the uploaded image. Check the path, 
static/images/avatars, in PyCharm. You should see the uploaded image there:

Figure 7.6: Checking the uploaded image

10. Send a request to get a user back by their username. Click on the Collections tab 
and select the GET User request.



194 | Working with Images

11. Type http://localhost:5000/users/john into the URL field. You can replace the 
username, that is, John, with any username that is appropriate and then click the 
Send button. The result can be seen in the following screenshot:

Figure 7.7: Checking the user avatar URL

Here, we can see the new avatar URL attribute in the user.

This testing exercise proves that the image upload function is working as expected. We 
can also look up the user by placing the username in the endpoint URL.

Note

You can test two more aspects of the avatar image upload functions. The first 
one is to upload an image that's greater than 10 MB in size. The second is to test 
whether the default avatar image (that is, default-avatar.jpg) will be used for a 
user account that has no uploaded avatar.



Image Resizing and Compression | 195

Image Resizing and Compression
The size of the image will affect the speed of the website. Imagine looking at a picture 
that's 10 MB in size. If there are 10 pictures on one page, this website will be 100 MB in 
size, and so it will take a lot of time to get a page. Due to this, a good practice to reduce 
the size of the image and compress it so that it's around 500 KB in size instead.

In addition, we will also convert the image into JPEG (it has the .JPG file extension). 
JPEG is an image compression technology that can remove unnoticeable, insignificant 
details in an image, thus achieving a smaller file size. Besides, it is often regarded as 
acceptable to have a lower image quality for web use.

In our Smilecook application, we will convert all our uploaded images into JPG format 
and compress them. We will do this through the Pillow package.

Note

We cannot have a transparent image in JPEG format. If we save an image with the 
background removed as a JPEG, the background will become white, instead of 
transparent. The other two commonly used image formats, PNG and GIF. These 
two image formats will support transparency in images.

In our Smilecook application, however, we won't be displaying a transparent image, 
so using JPG images will be good enough here.

Introduction to Pillow
Pillow, previously known as the Python Imaging Library (PIL), is an image processing 
package in Python. The most important class in this package is Image. We can use Image.
open to create an object from an image file. We can then get the image dimension in 
pixels by using the attribute size. We can also find out the color mode of the image by 
using the attribute mode.



196 | Working with Images

Some common color modes you should expect to see include L for black and white, RGB 
for red-green-blue, and CMYK for cyan-magenta-yellow-black:

>>>image = Image.open('default-avatar.jpg')

>>>image.size

(1600, 1066)

>>>image.mode

'RGB'

If we want to change the color mode of the picture to RGB, use the convert function. 
We usually change the color mode to ensure the color accuracy of our images. RGB is 
the most commonly used color mode for computer monitors:

>>>image = image.convert("RGB")

If we want to resize an image so that it has smaller dimensions, we should use the 
thumbnail method. This method can maintain the aspect ratio of the image, and at the 
same time make sure that each side of the image is less than our defined limit.

As an example, the resultant image's sides will be less than 1600 px, while keeping the 
aspect ratio intact:

>>>maxsize = (1600, 1600)

>>>image.thumbnail(maxsize)

When we save our changes using the Pillow package, we can pass in a quality 
parameter. This is done to specify how much JPEG compression we want. The quality 
can range from 1 to 100, with 1 being the worst and 95 being the best. We should avoid 
putting in a value higher than 95 because that means almost no compression. The 
default quality value is 75:

>>>image.save('compressed_image.jpg', optimize=True, quality=85)

Let's complete an exercise in order to implement image compression.

Exercise 48: Implementing Image Compression in Our Smilecook Application

Now that we've learned about the theory and the tools we can use to perform image 
compression, let's apply that to our Smilecook application. We would like to compress 
the user's avatar. We will be using the Pillow package to do this. Let's get started:

1. Add the Pillow package to requirements.txt:

Pillow==6.2.1



Introduction to Pillow | 197

2. Install the Pillow package by running the pip install command, as follows:

pip install -r requirements.txt

You should see the following installation result after running the preceding 
command:

Installing collected packages: Pillow
Successfully installed Pillow-6.2.1

3. Import the necessary package and module into utils.py:

import os

from PIL import Image

4. In utils.py, define the compress_image function, which takes the filename and 
folder as parameters.

First, we will use image_set.path(filename=filename, folder=folder) to get the 
actual image file's location. Then, by using Image.open(file_path), we will create 
the image object from the image file:

def compress_image(filename, folder):

    file_path = image_set.path(filename=filename, folder=folder)

    image = Image.open(file_path)

5. Change the color mode to RGB and resize it so that each side is no bigger than 1600 
px:

    if image.mode != "RGB":
        image = image.convert("RGB")

    if max(image.width, image.height) > 1600:
        maxsize = (1600, 1600)
        image.thumbnail(maxsize, Image.ANTIALIAS)

6. Generate the new filename and path for our compressed image:

    compressed_filename = '{}.jpg'.format(uuid.uuid4())
    compressed_file_path = image_set.path(filename=compressed_filename, 
folder=folder)



198 | Working with Images

7. Save the compressed image with quality = 85:

    image.save(compressed_file_path, optimize=True, quality=85)

8. Use os.stat(file_path) to get the size in bytes. By doing this, we will have the 
original size for a before and after comparison in our testing:

    original_size = os.stat(file_path).st_size
  compressed_size = os.stat(compressed_file_path).st_size
    percentage = round((original_size - compressed_size) / original_size * 
100)

    print("The file size is reduced by {}%, from {} to 
{}.".format(percentage, original_size, compressed_size))

Note

The os.stat method is a Python method that returns basic folder/file information 
(for example, owner ID, group owner ID, and file size).

9. Remove the original image and then return the compressed image filename by 
using the following code:

    os.remove(file_path)

    return compressed_filename

10. Finally, in the save_image function, under utils.py, call the compress_image 
function right after the image is saved:

def save_image(image, folder):

    filename = '{}.{}'.format(uuid.uuid4(), extension(image.filename))
    image_set.save(image, folder=folder, name=filename)

    filename = compress_image(filename=filename, folder=folder)

    return filename

Here, we have created our compress_image function. The function just needs to know 
where the image file is, and it will compress the image for us.

In the next exercise, we will test the image compression function.



Introduction to Pillow | 199

Exercise 49: Testing the Image Compression Function

So far, we have developed an image compression function that can compress the avatar 
that was uploaded by the user. In this exercise, we will test and see how the image 
compression function does. Let's get started:

1. First, we are going to use the PUT method to upload an avatar. We will send an 
HTTP PUT request to the following URL: http://localhost:5000/users/avatar. 
Click on PUT UserAvatarUpload and select the Body tab.

2. Select a large image file to upload and click the Send button. The result can be 
seen in the following screenshot:

Figure 7.8: Uploading an avatar using the PUT method

3. From the application log in PyCharm, we can see that the original size of the 
uploaded image was 7.6 MB; it is reduced to 618 KB after compression:

Figure 7.9: Image size after compression

By doing this, we can see that the image compression function that we implemented 
previously works. Now, the image size has been significantly reduced. In the next 
activity, we will implement the recipe cover image upload function.



200 | Working with Images

Activity 11: Implementing the Recipe Cover Image Upload Function

So far, we have learned how to develop the image upload and compression function. 
In this activity, we are going to work on the recipe cover image upload function for 
the Smilecook application. We want to make our recipe more attractive by providing a 
cover image for it. Similar to the user avatar, only one cover image is allowed per recipe. 
Follow these steps to complete this activity:

1. Add the cover_image attribute to the user model in models/recipe.py.

2. Update the corresponding DB schema using the flask db migrate command.

3. Create the recipe_cover_schema to show the cover_url in the HTTP response.

4. Create the RecipeCoverUploadResource for the recipe cover image upload function.

Note

The solution to this activity can be found on page 323.

Activity 12: Testing the Image Upload Function

In this activity, we are going to test the recipe cover image uploading function. First, we 
will create a new recipe, upload a recipe cover image, and verify whether it has been 
uploaded by fetching the recipe back. Follow these steps to complete this activity:

1. Log in to the Smilecook user account using Postman.

2. Send a client request to our API to create a recipe.

3. Upload the recipe images.

4. Check whether the image is compressed in PyCharm.

5. Check the uploaded image in static/images/recipes.

6. Get the recipe back and confirm that the cover_url attribute is populated.

Note

The solution to this activity can be found on page 328.



Summary | 201

Summary
In this chapter, we have learned how to use Flask-Uploads to upload images for our user 
avatar and recipe cover. Since our maximum uploaded image size is 10 MB, this allows 
users to upload huge images, thereby slowing down the performance of the website. 
To address this performance issue, we introduced the concept of image resizing and 
compression. From here, we worked on developing the function using the Pillow 
package.

Apart from learning about new techniques regarding image manipulation, we also 
revisited things we learned in the previous chapters, such as updating the database 
schema using Flask-Migrate and displaying the URL of the uploaded image during 
deserialization using marshmallow's schema.

We have completed most of the key functionality of our Smilecook recipe sharing 
platform. In the next chapter, we will develop the recipe searching and pagination 
functions.





Learning Objectives

By the end of this chapter, you will be able to:

• Implement the pagination function using Flask-SQLAlchemy

• Serialize the paginated result using marshmallow for the frontend display

• Build the API with search function

• Sort and order the returned records in your own way

• Test all these features using Postman

This chapter covers pagination and how to change the order in which recipes are listed, as well 
as how to add search functionality for recipes and ingredients.

Pagination, Searching, 
and Ordering

8



204 | Pagination, Searching, and Ordering

Introduction
In the previous chapter, we implemented the user avatar and recipe cover image 
upload functions. We worked on the image compression function to improve the 
performance of image loading speed. Once an image has been uploaded, users can 
retrieve the URL of the image through an API.

In this chapter, we will work on paginating recipe data. We will explain why we need to 
perform pagination. This is an important step in optimizing our API. We will also discuss 
some more important functions, including searching and ordering, which I am sure you 
have come across in other online applications.

Pagination
In the testing environment, we may only have a few developers putting recipes on the 
Smilecook platform. There are only a handful of recipes there and performance is never 
a concern. However, in the production environment, that is, after the platform has 
been launched for public use, there could be thousands of users sharing recipes on the 
platform. If you consider social media platforms such as Facebook, then the volume will 
be even bigger.

That's why we need to introduce pagination. Pagination means instead of querying the 
whole population of records from the database, we just query a handful of them. When 
the user wants to see more, they can always go to the next page. For example, when 
you're browsing a shopping site, usually, you will view the items for sale a page at a 
time. Each page may display 40 items, and you have to navigate to subsequent pages to 
view all the items that are available. This is the nature of pagination.

The number of records that are shown per page is limited by the page's size. This way, 
there will be a huge saving in server loading time and data transfer time, and, most 
importantly, it will enhance the user's navigation experience.

The good thing here is that we are using a web framework to build our API. This kind of 
common function has already been thought of. We just need to use Flask-SQLAlchemy 
to help us build a paginated API.



Paginated APIs | 205

Paginated APIs
A paginated API means that when you query the API, only the data records on the 
current page will be returned. It also includes other information, such as the total 
number of records, the total number of pages, links to other pages, and so on. The 
following is a sample response from a paginated API. It is a serialized pagination object, 
so it is in JSON format:

{

    "links": {

        "first": "http://localhost:5000/recipes?per_page=2&page=1",

        "last": "http://localhost:5000/recipes?per_page=2&page=5",

        "prev": "http://localhost:5000/recipes?per_page=2&page=1",

        "next": "http://localhost:5000/recipes?per_page=2&page=3"

    },

    "page": 2,

    "pages": 5,

    "per_page": 2,

    "total": 9,

    "data": [

        {

            "data": "data"

        },

        {

            "data": "data"

        }

    ]

}



206 | Pagination, Searching, and Ordering

Here, you can see the following attributes in the HTTP response:

• first: The link to the first page

• last: The link to the last page

• prev: The link to the previous page

• next: The link to the next page

• page: The current page

• pages: The total number of pages

• per_page: The number of records per page

• total: The total number of records

• data: The actual data records on this page

These attributes are automatically generated by the pagination object in Flask-
SQLAlchemy. We just need to serialize the pagination object using marshmallow so that 
we can return the result in JSON format to the frontend client.

Exercise 50: Implementing Pagination on the Published Recipes Retrieval 

Function

Now that we've discussed the importance of pagination, we want to add this 
functionality to our Smilecook platform. We'll begin to work on that in this exercise. 
Let's get started:

1. Create pagination.py in the schema folder and import the necessary modules and 
functions:

from flask import request
from marshmallow import Schema, fields
from urllib.parse import urlencode

2. Create the PaginationSchema class:

class PaginationSchema(Schema):

    class Meta:
        ordered = True



Paginated APIs | 207

    links = fields.Method(serialize='get_pagination_links')

    page = fields.Integer(dump_only=True)
    pages = fields.Integer(dump_only=True)

    per_page = fields.Integer(dump_only=True)
    total = fields.Integer(dump_only=True)

In this step, we can see that PaginationSchema inherits from marshmallow.
Schema. PaginationSchema is used to serialize the pagination object from Flask-
SQLAlchemy. The links attribute is a custom field, which means that we can 
specify how we are going to serialize it. The get_pagination_links function will be 
created in step 4.

Note

We've explained the other attributes here already. These attributes are required in 
the HTTP response, and so we need to add them to the schema.

We can have a different key name in the final JSON response. For example, if we 
want to show total_count as the key name instead of total, we can use the 
attribute parameter like this: total_count = fields.Integer(dump_only=True, 
attribute='total').

3. Add the following get_url method to PaginationSchema:

    @staticmethod
    def get_url(page):

        query_args = request.args.to_dict()
        query_args['page'] = page

        return '{}?{}'.format(request.base_url, urlencode(query_args))



208 | Pagination, Searching, and Ordering

The PaginationSchema.get_url method is used to generate the URL of the page 
based on the page number. It is taking in the page number parameter and adding 
that to the request argument's dictionary. Finally, it encodes and returns the new 
URL, including the page number, as an argument. 

Note

An example of this is if request.base_url is http://localhost:5000/recipes, 
and urlencode (query_args) is giving us per_page=2&page=1. The format 
function will stitch them together and return the new URL, that is, http://
localhost:5000/recipes?per_page=2&page=1.

4. Add the get_pagination_links method to PaginationSchema:

    def get_pagination_links(self, paginated_objects):

        pagination_links = {
            'first': self.get_url(page=1),
            'last': self.get_url(page=paginated_objects.pages)
        }

        if paginated_objects.has_prev:
            pagination_links['prev'] = self.get_url(page=paginated_
objects.prev_num)

        if paginated_objects.has_next:
            pagination_links['next'] = self.get_url(page=paginated_
objects.next_num)

        return pagination_links

The PaginationSchema.get_pagination_links method is used to generate URL links 
to different pages. It gets the page's information from paginated_objects and relies 
on the get_url method we built in step 3 to generate the links.

5. Next, import PaginationSchema in schemas/recipe.py:

from schemas.pagination import PaginationSchema



Paginated APIs | 209

6. Delete the following code in schemas/recipe.py:

    @post_dump(pass_many=True)
    def wrap(self, data, many, **kwargs):
        if many:
            return {'data': data}
        return data

This part of the code has been removed because we are building a pagination 
function. We no longer need to wrap multiple data records with the data key.

7. Define RecipePaginationSchema, which inherits from PaginationSchema in schema/
pagination.py:

class RecipePaginationSchema(PaginationSchema):
    data = fields.Nested(RecipeSchema, attribute='items', many=True)

As you may recall, the attribute name in the final JSON response will be data here, 
because that is how it has been defined in RecipePaginationSchema. attribute = 
'items' means that it is getting the source data from the items to attribute in the 
pagination objects.

8. Now, import acs and desc from sqlalchemy into model/recipe.py and modify the 
get_all_published method:

from sqlalchemy import asc, desc

    @classmethod
    def get_all_published(cls, page, per_page):

        return cls.query.filter_by(is_publish=True).order_by(desc(cls.
created_at)).paginate(page=page, per_page=per_page)

The get_all_published method we built here is used to leverage the paginate 
method from Flask-SQLAlchemy. We will filter and order the records, then 
the paginate method takes the page and per_page parameters and generates a 
pagination object.

9. Import fields, use_kwargs and RecipePaginationSchema into resources/recipe.py:

from webargs import fields
from webargs.flaskparser import use_kwargs
from schemas.recipe import RecipeSchema, RecipePaginationSchema



210 | Pagination, Searching, and Ordering

10. Declare the recipe_pagination_schema attribute in resources/recipe.py in order to 
serialize the paginated recipes:

recipe_pagination_schema = RecipePaginationSchema()

11. Modify the RecipeListResource.get method in resources/recipe.py in order to 
return the paginated recipes:

class RecipeListResource(Resource):

        @use_kwargs({'page': fields.Int(missing=1),
                           'per_page': fields.Int(missing=20)})
    def get(self, page, per_page):

        paginated_recipes = Recipe.get_all_published(page, per_page)

        return recipe_pagination_schema.dump(paginated_recipes).data, 
HTTPStatus.OK

Here, we have added the @user_kwargs decorator to the RecipeListResource. 
get method. The default value for the page parameter is 1, while the default value 
for the per_page parameter is 20. This means that if nothing is passed in, we will be 
getting the first page with the first 20 recipe records.

Then, we pass these two parameters into the get_all_published method to get the 
pagination object back. Finally, the paginated recipes will be serialized and returned to 
the frontend client.

Here, we have successfully implemented the pagination function and displayed the 
result. In the next exercise, we will test the pagination functions.



Paginated APIs | 211

Exercise 51: Testing the Pagination Functions

In this exercise, we will test the pagination functions that we have just built. We will 
be creating eight recipes in our Smilecook application, and we will publish all of them. 
Then, we will simulate a user scenario in which we will get back all the recipes, page by 
page. Let's get started:

1. Click on the Collections tab.

2. Then, select the POST Token request and Send a request. This is to login to a user 
account. The result is shown in the following screenshot:

Figure 8.1: Sending the POST Token request

3. Create eight recipes by running the following httpie command in the PyCham 
console. The {token} placeholder should be replaced with the access token we 
obtained in step 2:

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Vegetable Paella" description="This is a lovely vegetable paella" 
num_of_servings=5 cook_time=60 directions="This is how you make it"

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Minestrone Soup" description="This is a lovely minestrone soup" num_
of_servings=4 cook_time=60 directions="This is how you make it"

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Thai Red Curry" description="This is a lovely thai red curry" 



212 | Pagination, Searching, and Ordering

num_of_servings=4 cook_time=40 directions="This is how you make it"

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Coconut Fried Rice" description="This is a lovely coconut fried 
rice" num_of_servings=2 cook_time=30 directions="This is how you make it"

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Vegetable Fried Rice" description="This is a lovely vegetable fried 
rice" num_of_servings=2 cook_time=30 directions="This is how you make it"

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Burrito Bowls" description="This is a lovely coconut fried rice" 
num_of_servings=5 cook_time=60 directions="This is how you make it"

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Fresh Huevos Rancheros" description="This is a lovely fresh huevos 
rancheros" num_of_servings=4 cook_time=40 directions="This is how you make 
it"

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Bean Enchiladas" description="This is a lovely coconut fried rice" 
num_of_servings=4 cook_time=60 directions="This is how you make it"

Note

You can also create the recipes one by one using Postman. We are using the 
httpie command here because it's faster.

4. Publish all eight recipes using the following httpie command. Replace the {token} 
placeholder with the access token. Make sure that the recipe IDs in the URLs are 
referring to the recipes we created in the previous step:

http PUT localhost:5000/recipes/6/publish "Authorization: Bearer {token}"
http PUT localhost:5000/recipes/7/publish "Authorization: Bearer {token}"
http PUT localhost:5000/recipes/8/publish "Authorization: Bearer {token}"
http PUT localhost:5000/recipes/9/publish "Authorization: Bearer {token}"
http PUT localhost:5000/recipes/10/publish "Authorization: Bearer {token}"
http PUT localhost:5000/recipes/11/publish "Authorization: Bearer {token}"
http PUT localhost:5000/recipes/12/publish "Authorization: Bearer {token}"
http PUT localhost:5000/recipes/13/publish "Authorization: Bearer {token}"



Paginated APIs | 213

Now we have created and published eight recipes. Next, we will get the recipes 
back page by page with a page size of two recipes.

5. Click on GET RecipeList and select the Params tab. Then, put a key-value pair 
(per_page, 2) into Query Params and Send the request. The result is shown in the 
following screenshot:

Figure 8.2: Adding the key-value pair to Query Params and sending the request

In the details of the recipe, we can see that there are links with the URLs of the 
first, last, and next pages. We can't see prev here because we are on the first 
page. There is a total of five pages, and we have two records per page. You can also 
see the sorted recipe details in the HTTP response.



214 | Pagination, Searching, and Ordering

6. Next, let's test whether the links in the recipes are working properly. We just 
need to click on the next URL link, which will open a new tab in Postman with 
the request URL populated (http://localhost:5000/recipes?per_page=2&page=2). 
Then, we just need to click on Send to send the request. The result is shown in the 
following screenshot:

Figure 8.3: Testing the links in the recipes

Here, we can see that there are links to the first, last, next, and prev pages. We 
can also see that we are currently on page 2. All the recipe data is there as well.

We have successfully created our pagination function. Now, I will leave it to your 
capable hands to test it.

The benefit of pagination is that you are able to segregate thousands of records into 
pages. Data is retrieved in a page by page manner, and that will reduce the server's 
workload. But what if the user is setting a page size of, say, 100,000? How can we 
prevent a user from exploiting the system loophole? What we can do is pass the max_
per_page parameter for pagination. That will limit the maximum page size the user 
can set. If the user is setting a page size bigger than the maximum page size, then the 
maximum page size will be used.



Paginated APIs | 215

Activity 13: Implementing Pagination on the User-Specific Recipe Retrieval API

We implemented and tested the pagination function on our all published recipe 
retrieval APIs in the previous exercise. In this activity, we will work on the pagination 
function in the user-specific recipe retrieval API. The corresponding API can be found 
in UserRecipeListResource, which is used to get the recipes from a specific author. 
Follow these steps to complete this activity:

1. Modify the get_all_by_user method in model/recipe.py.

2. Import RecipePaginationSchema into resources/user.py.

3. Declare the recipe_pagination_schema attribute in resources/user.py.

4. Modify the UserRecipeListResource.get method in resources/user.py.

5. Add the @user_kwargs decorator for UserRecipeListResource.get. It takes a few 
parameters, including page, per_page, and visibility.

Note

The solution to this activity can be found on page 332.

Now, you should have completed the pagination function for the user recipe. Let's 
follow the same routine and test the function in the next activity.

Activity 14: Testing Pagination on the User-Specific Recipe Retrieval API

In this activity, we will test the user recipe pagination function that we just built. We 
published eight recipes in the previous exercise. We will use them here as our test 
subjects. We are going to create a request in Postman and test whether we can get 
them back, page by page. Follow these steps to complete this activity:

1. Get all the recipes by the author from the previous exercise using Postman, page 
by page, with a page size of two.

2. Click the next URL in the links to query for the next two records.

Note

The solution to this activity can be found on page 334.



216 | Pagination, Searching, and Ordering

Recipe Searching
In the previous exercises, we implemented the pagination function and also saw the 
benefits of using it. This can greatly reduce the number of recipes that are going back to 
users in one go. From the user's perspective, they can browse through different pages 
to look for the recipe they want. 

A better way for the user to look for a recipe is by searching. The search function is an 
essential function on the internet. Look at the search giant Google; their search engine 
brings in huge amounts of revenue. Of course, we are not going to implement anything 
of the scale of Google in our Smilecook application. We will be just doing a simple text 
matching search here.

In the next exercise, we will implement the search function in our Smilecook platform. 
We will build a recipe searching API that allows the client to provide a q parameter to 
search for specific recipes by name or recipe description. This can be done by using 
the LIKE comparison operator. The LIKE operator works by matching the search string 
with the target string. We can use % in the search string as a wildcard. If it's not a exact 
match here it is more like a SIMILAR TO matching. So, the %Chicken% search string will 
match with the Hainanese Chicken Rice string.

Perhaps a better choice of comparison operator would be ILIKE. LIKE is case-sensitive, 
while ILIKE is case-insensitive. For example, we can't match Thai Red Curry with 
%curry% using the LIKE operator. You can see that C is uppercase here. However, if we 
use ILIKE, it will match perfectly fine. 

Take a look at the following table to see how the comparison operator works:

Figure 8.4: Comparison operators

In our Smilecook platform, we don't want our search to be that strict. The search should 
be case-insensitive. Now, let's see how we can add this function to our Smilecook 
platform.



Recipe Searching | 217

Exercise 52: Implementing the Search Function

Having learned about the recipe searching concept, we want to implement this as a 
function in our Smilecook platform. To do this, we will be adding a q parameter that will 
pass the search string into the API. Then, we will use the search string to look for the 
recipes we require. Let's get started:

1. Import or_ from sqlalchemy into models/recipe.py:

from sqlalchemy import asc, desc, or_

2. Modify the Recipe.get_all_published method in models/recipe.py so that it gets 
all the published recipes that satisfy the search criteria:

  @classmethod
    def get_all_published(cls, q, page, per_page):

        keyword = '%{keyword}%'.format(keyword=q)

        return cls.query.filter(or_(cls.name.ilike(keyword),
                cls.description.ilike(keyword)),
                cls.is_publish.is_(True)).\
                order_by(desc(cls.created_at)).paginate(page=page, per_
page=per_page)

The preceding code is used to assign the search pattern to the variable keyword. 
Then, it searches the name and description fields by this keyword.

3. Modify RecipeListResource in resources/recipe.py:

class RecipeListResource(Resource):
    @use_kwargs({'q': fields.Str(missing='),
                                   'page': fields.Int(missing=1),
                                   'per_page': fields.Int(missing=20)})
    def get(self, q, page, per_page):

        paginated_recipes = Recipe.get_all_published(q, page, per_page)

        return recipe_pagination_schema.dump(paginated_recipes).data, 
HTTPStatus.OK

We added the q parameter to the user_kwargs decorator and the get function. The 
default for this q value is an empty string. The q parameter will also be passed into 
the get_all_published function.

Now we are done with the search function. Next, we are going to test this function.



218 | Pagination, Searching, and Ordering

Exercise 53: Testing the Search Function

In this exercise, we will be testing the search function that we have just built. We 
will test by searching for recipes that contain the fried rice string in the name or 
description. Let's get started:

1. Click on the RecipeList request and select the Params tab.

2. Insert the first key-value pair (q, fried rice).

3. Insert the second key-value pair (per_page, 2).

4. Send the request. The result is shown in the following screenshot:

Figure 8.5: Searching for recipes that contain the "fried rice" string in the name or description

Here, we can see four fried rice recipe records, divided into two pages.

5. Next, test whether the links in the recipes are still working properly. We just 
need to click on the next URL link, which will open a new tab in Postman with 
the request URL populated (http://localhost:5000/recipes?q=fried+rice&per_
page=2&page=2). Then, we just need to click on Send to send the request. The result 
is shown in the following screenshot:



Sorting and Ordering | 219

Figure 8.6: Testing whether the links in the recipes are working

From the result, we can that we are now on page 2. The recipe records are also 
sorted by creation time. The latest recipe is placed on the top.

So far, we have created the pagination and searching functions. This is a great 
achievement, but we are not done yet. We need to continue enhancing our Smilecook 
application. Without further ado, let's move on.

Sorting and Ordering
Sorting is another important feature that helps user navigation. Again, when we build 
any application, we need to keep the user experience in mind. Our application could 
eventually store millions of recipes, so we need to provide an easy way for our users to 
navigate the recipes and find the recipe they want.

Previously, the recipes that we sent back were sorted by time by default. Let's 
implement some other sorting criteria in our Smilecook application. We can still keep 
the default sorting criteria such as time, but we want to allow the user to define the 
searching criteria they want; for example, they can specify that they want the recipes 
to be sorted by cooking time. This is a possibility as the user may want to cook a quick 
meal, which means they will only be interested in recipes with short cooking times.



220 | Pagination, Searching, and Ordering

For our Smilecook application, sorting and ordering can be done by adding the sort and 
order parameters. We can put the sorting criteria (for example, created_at, cook_time, 
or num_of_servings) into the sort parameter, and we can use created_at as the default. 
The order parameter is used to specify whether it is asc (ascending order) or desc 
(descending order). We can put desc as the default.

In terms of the syntax, if we want our SQLAlchemy query result to be sorted in 
ascending order, we can do the following:

Import asc        

    

sort_logic_asc = asc(getattr(cls, sort))

cls.query.filter(cls.is_publish=True).order_by(sort_logic_asc)

If we want it to be sorted in descending order, we can just use desc:

Import desc        

    

sort_logic_desc = desc(getattr(cls, sort))

cls.query.filter(cls.is_publish=True).order_by(sort_logic_desc)

Note

Instead of cls.is_published=True, you can also use the SQLAlchemy column 
operator, that is, cls.is_published.is_(True). You will get the same result.

In the next exercise, we will implement the sorting and ordering functions in our 
Smilecook platform. This will make our application more user-friendly.



Sorting and Ordering | 221

Exercise 54: Implementing Sorting and Ordering

In this exercise, we will implement the sorting and ordering functions in our Smilecook 
platform. We will be adding the sort and order parameters to the get all published 
recipes API so that users can perform sorting and ordering on the published recipes. 
Let's get started:

1. In resources/recipe.py, use the use_kwargs method in the decorator to add two 
parameters (sort, order) to the RecipeListResource.get method. Set the default 
values for these two parameters to created_at and desc, respectively:

@use_kwargs({'q': fields.Str(missing='),
                        'page': fields.Int(missing=1),
                        'per_page': fields.Int(missing=20),
                        'sort': fields.Str(missing='created_at'),
                        'order': fields.Str(missing='desc')})
def get(self, q, page, per_page, sort, order):

2. Restrict the sort parameter to accept only the created_at, cook_time, and num_of_
servings values. If other values are passed in, then we'll default to created_at:

        if sort not in ['created_at', 'cook_time', 'num_of_servings']:
            sort = 'created_at'

3. Restrict the order parameter to accept only the asc and desc values. If other values 
are passed in, then we'll default to desc:

        if order not in ['asc', 'desc']:
            order = 'desc'

4. Pass the sort and order parameters into the get_all_published function:

        paginated_recipes = Recipe.get_all_published(q, page, per_page, 
sort, order)



222 | Pagination, Searching, and Ordering

5. Modify the get_all_published method in models/recipe.py so that it looks as 
follows. It takes in two additional parameters, that is, sort and order, to define the 
logic:

    @classmethod
    def get_all_published(cls, q, page, per_page, sort, order):

        keyword = '%{keyword}%'.format(keyword=q)

        if order == 'asc':
            sort_logic = asc(getattr(cls, sort))
        else:
            sort_logic = desc(getattr(cls, sort))

        return cls.query.filter(or_(cls.name.ilike(keyword),
                                    cls.description.ilike(keyword)),
                                cls.is_publish.is_(True)).\
            order_by(sort_logic).paginate(page=page, per_page=per_page)

Here, we have created the sorting and ordering functions. Not many changes were 
made to the code. Next, we are going to test our implementation using Postman.

Exercise 55: Testing the Sorting and Ordering Feature

In the previous exercise, we created customized ordering functions. Users should be 
able to order the recipe records in our Smilecook platform by their specified column, 
and in either ascending or descending order. In this exercise, we will test whether that 
is really the case. We will pass the sort and order parameters into Postman and verify 
them. Let's get started:

1. We will send a request to get all the recipe records back. Then, sort the data by 
cook_time in ascending order. First, click on the RecipeList request and select the 
Params tab.

2. Insert the first key-value pair (sort, cook_time).

3. Insert the second key-value pair (order, desc).



Sorting and Ordering | 223

4. Send the request. The result is shown in the following screenshot:

Figure 8.7: Sending a request to get all the recipe records back

From the preceding search result, we can see that the recipe's cook_time is sorted 
in ascending order. The first recipe's cook_time is 20 minutes, whereas the second 
one is 30 minutes.

5. Send a request to get all the recipe records back. Then, sort the data by num_of_
servings in descending order. Click on RecipeList and select the Params tab.

6. Insert the first key-value pair (sort, num_of_servings).

7. Insert the second key-value pair (order, desc).



224 | Pagination, Searching, and Ordering

8. Send the request. The result is shown in the following screenshot:

Figure 8.8: Sending a request and sorting the data by num_of_servings in descending order

9. From the preceding search result, we can see that the recipe's num_of_servings 
has been sorted in descending order. The first recipe's num_of_servings is for five 
people, whereas the second one is for four people.

Now, you have finished developing and testing all the functions you have learned about 
in this chapter. Next, we will complete an activity to ensure you have the flexibility to 
use what we have learned so far.

Activity 15: Searching for Recipes with Specific Ingredients

In this activity, we will search the recipes using a specific attribute. We will add a new 
ingredients attribute and then pass in parameters to search through the recipe. Follow 
these steps to complete this activity:

1. Add the ingredients attribute to the Recipe model.

2. Run Flask-Migrate to update the database.



Summary | 225

3. Add the ingredients attribute to RecipeSchema.

4. Modify the RecipeResource.patch method to support the ingredients attribute 
update.

5. Modify the Recipe.get_all_published method so that you can search through the 
ingredients.

6. Create two recipes with the ingredients attribute and publish them.

7. Search for the recipes using the ingredients attribute.

Note

The solution to this activity can be found on page 336.

Congratulations! You have completed this activity. Now, please work on the assessments 
to test your understanding of this chapter.

Summary
We have implemented a lot of great features in this chapter that allows users to find the 
recipe information they want in a simple and efficient manner. The pagination function 
we implemented allows the user to quickly find out how many recipes there are in total 
and navigate them page by page. It also saves the server's resources as it doesn't need 
to render thousands of recipes in one go. 

The search function is another time-saving feature. Users can now look for the recipes 
they want by performing a simple search. We have also completed the sorting and 
ordering functions in the Smilecook application, which provide a better browsing 
experience for users. 

So far, we have created almost all of the user functions we need. Our Smilecook 
platform development is nearing its end. In the next chapter, we will work on internal 
system optimization, such as HTTP caching and rate-limiting.





Learning Objectives

By the end of this chapter, you will be able to:

• Use caching to improve API performance and efficiently get the latest information

• Add the cache function to the Smilecook application using the Flask-Caching package

• Implement rate-limiting functionality to an API

• Use IP address to perform rate limiting

In this chapter, we will cover caching to improve performance and get accustomed to using the 
rate-limiting function.

Building More 
Features

9



228 | Building More Features

Introduction
We added pagination, searching, and ordering functions to our Smilecook application in 
our last chapter so that users can navigate to their recipes much easier. This also helps 
to reduce the server burden and improve performance. We have explained how making 
our APIs snappy is important in today's world.

In this chapter, we will be further improving our API performance from another 
aspect. We will be adding in the cache function, which will temporarily save data to the 
application memory. This will allow us to save the time required to query the database 
every time. This can greatly improve API performance and reduce server burden. 
There is a Flask extension package, Flask-Caching, that can help us in implementing 
the caching function. We will first talk about the theory behind caching, and through 
practical exercises, we show you how to implement this function in our Smilecook 
application.

Besides caching, we will implement a rate-limiting function. That will prevent certain 
high-usage users from jeopardizing the whole system by limiting their usage. Ensuring 
fair usage of our APIs is crucial to guarantee service quality. We will be using a Flask 
extension package, Flask-Limiter, for that.

These two caching and rate-limiting functions are very common and powerful in real-
world scenarios. Let's learn about how they work.

Caching
Caching means storing data in a temporary space (a cache) so that it can be retrieved 
faster in subsequent requests. The temporary space can be application memory, server 
hard disk space, or something else. The whole purpose of caching is to lighten the 
workload by avoiding any heavy processes for querying the data again. For example, 
in our Smilecook application, if we reckon that the recipes from a popular author will 
always get queried by the users, we can cache these recipes. So, the next time that 
users ask for these recipes, we can just send back the recipes in the cache instead of 
querying against our database. You can see caching everywhere. Almost all applications 
have caching implemented nowadays. Even in our local browsers, we save website 
results on the local hard disk to achieve faster access next time.

For server-level caching, most of the time, the cache is stored in the same web server as 
the application. But technically speaking, it can be stored in another server as well, such 
as Redis (Remote Dictionary Server) or Memcached (a high-performance distributed 
cached memory). They are all in-memory data storage systems that allow key-value 
storage as well as storing data. For simple applications and easy implementation, we can 
also use a single global dictionary as a cache (simple cache).



Flask-Caching | 229

Benefit of Caching

Through caching, not only can we reduce the volume of data to be transferred, but 
we can also improve the overall performance. This is done by reducing the bandwidth 
required, reducing the server loading time, and more. Take our Smilecook application as 
an example: if we have a low traffic, caching may not be a lot of help, because the cache 
will pretty much expire before the next query comes in. But imagine that we have high 
traffic, say, 10,000 requests per minute, coming in asking for recipes. If these recipes 
are all cached and the cache has not expired, we will be able to simply return the 
recipes in the cache to the client frontend. In this scenario, we would be saving 10,000 
database queries, which could be a substantial cost-saving measure.

Flask-Caching
Flask-Caching is a Flask extension package that allows us easily implement caching 
functionality. You can imagine a cache as a dictionary object that contains key-value 
pairs. The key here is used to specify the resource to cache, whereas the value is used to 
store the actual data to be cached. Take the resource for retrieving all the recipes as an 
example. The flow contains the following stages:

1. Request the get /recipes resource.

2. Use the key to search for the existing cache (Flask-Caching will be 
using request.path and hashed_args to be the key value, for example, 
recipesbcd8b0c2eb1fce714eab6cef0d771acc).

3. If the recipes were previously cached, return the cached data.

4. If no cache for these recipes exists, follow the standard flow to get the recipes 
from the database.

5. Save the result (the recipe data) in the cache.

6. Return the recipe data.



230 | Building More Features

The process is better illustrated through the following figure:

Figure 9.1: Flask-Caching process flow chart

By following this flow, you can see that data that is cached can be served before we 
query against the database.

I hope you have a better understanding of the theory behind caching. Let's roll up our 
sleeves and work on bringing this feature and our Smilecook application together, 
through the coming exercises.

Exercise 56: Implementing Caching Functionality Using Flask-Caching

In this exercise, we will be installing the Flask-Caching package. Then, we will 
implement the cache function in RecipeListResource. We will also add two decorators, @
app.before_request and @app.after_request, to print application logs for easier testing:

1. Add the Flask-Caching package and version in requirements.txt:

Flask-Caching==1.7.2

2. Run the pip command to install the package:

pip install -r requirements.txt

Once we have run the install command, we should see the following result:

Installing collected packages: Flask-Caching
Successfully installed Flask-Caching-1.7.2



Flask-Caching | 231

3. Import Cache in extensions.py and instantiate it:

from flask_caching import Cache

cache = Cache()

4. Import cache from extensions in app.py:

from extensions import db, jwt, image_set, cache

5. In app.py, put in cache.init_app(app) under the register_extensions function. 
Pass in the app object to initialize the caching function:

def register_extensions(app):
    db.app = app
    db.init_app(app)
    migrate = Migrate(app, db)
    jwt.init_app(app)
    configure_uploads(app, image_set)
    patch_request_class(app, 10 * 1024 * 1024)
    cache.init_app(app)

6. Add the caching-related configuration in config.py:

CACHE_TYPE = 'simple' 
CACHE_DEFAULT_TIMEOUT = 10 * 60

The default CACHE_TYPE is Null, meaning there is no cache. Here, we set CACHE_TYPE 
as simple, which means we are going to use the SimpleCache strategy. The default 
expiration time is 10 * 60 seconds, which is 10 minutes.

7. Import cache from extensions in resources/recipe.py:

from extensions import image_set, cache

8. In resources/recipe.py, put the cache decorator in the get method of 
RecipeListResource:

class RecipeListResource(Resource):

    @use_kwargs({'q': fields.Str(missing=''),
                                'page': fields.Int(missing=1),
                                'per_page': fields.Int(missing=20),
                                'sort': fields.Str(missing='created_at'),
                                'order': fields.Str(missing='desc')})
    @cache.cached(timeout=60, query_string=True)
    def get(self, q, page, per_page, sort, order):



232 | Building More Features

We are setting the cache expiration time (timeout) to be 60 seconds here. query_
string = True means it allows the passing in of arguments.

9. For testing, print a line of Querying database in the RecipeListResource.get 
method:

    def get(self, q, page, per_page, sort, order):
        print('Querying database...')

10. For testing, in app.py, add in the following decorator definition at the bottom of 
the register_extensions(app) function:

@app.before_request
    def before_request():
        print('\n==================== BEFORE REQUEST 
====================\n')
        print(cache.cache._cache.keys())
        print('\n======================================================
=\n')

    @app.after_request
    def after_request(response):
        print('\n==================== AFTER REQUEST 
====================\n')
        print(cache.cache._cache.keys())
        print('\n======================================================
=\n')
        return response

We have already completed our first caching function on RecipeListResource. That 
should reduce the frequency of having to get recipes from the database. Let's test it out 
in our next exercise to make sure it works.



Flask-Caching | 233

Exercise 57: Testing the Caching Function with Postman

In this exercise, we will be using Postman to test the caching function. And we will 
verify whether it works or not in the PyCharm console:

1. First, get all the recipe details back. Click on GET RecipeList.

2. Then, send the request. The result is shown in the following screenshot:

Figure 9.2: Getting all recipe details



234 | Building More Features

3. Check the application log in the PyCharm console.

Figure 9.3: Checking the application log

In the console, we can see that before the request, the cache is empty. After the 
database query, the data is cached and returned to the frontend client.

4. Get all the recipe details back again one more time and check the result in the 
PyCharm console:

Figure 9.4: Getting all the recipe details again

Because this is the second time that we are requesting the data, we get it from the 
cache rather than the database; the previous result was cached. We can see from the 
PyCharm console that the result was cached and no query to the database was fired.



Flask-Caching | 235

So, we have completed the implementation and testing of the caching function here. 
Since we are just caching one record here, the performance gain may not be obvious. 
But imagine we were getting thousands of requests of the same kind in a short period of 
time; this caching functionality can greatly reduce the workload of our database.

Note

If we want to see the data in the cache, we can use this line of code: print(cache.
cache._cache.items()), to check the key-value stored there. There we can see 
that the value in the cache is the JSON data that we return to the client frontend.

Clearing the Cache when Data Updates

When data is updated, the data that was cached before becomes stale immediately. For 
example, if the cover image of a recipe is updated, the old cover image is removed. But 
in the cache, there would still be the URL of the old cover image, which would no longer 
work. Therefore, we need a mechanism for clearing the old cache and storing the URL 
of the new cover image to our cache instead.

Activity 16: Getting Cache Data after Updating Recipe Details

When we get all the recipe details, they will be stored in the cache and can be used 
directly in the next request. In this activity, we will check to see what will happen when 
we try to get recipe details after updating the recipe data:

1. First, get all the recipe details back.

2. Update one of the recipe details.

3. Get all the recipe details back again and check the recipe details.

Note

The solution for this activity can be found on page 340.

In our next exercise, we shall find all the resources that are involved in updating data. 
We shall add a step to clear the cache after data is updated.



236 | Building More Features

Exercise 58: Implementing Cache-Clearing Functionality

In this exercise, we will try to clear the cache when recipe data is updated. There are 
quite a few resources involved here. We shall tackle them one by one:

1. Import cache from extensions in utils.py:

from extensions import image_set, cache

2. Create a new function under utils.py that is for clearing the cache. The function 
should clear the cache with a specific prefix:

def clear_cache(key_prefix):

    keys = [key for key in cache.cache._cache.keys() if key.
startswith(key_prefix)]
    cache.delete_many(*keys)

Here, the code is to use the for loop for key in cache.cache._cache.keys() to 
iterate all the keys in the cache. If the key is prefixed with the passed-in prefix, 
it will be placed on the keys list. Then, we will be using the cache.delete_many 
method to clear the cache. The single star, *, in the preceding code, is for 
unpacking the list into positional arguments.

3. Import the clear_cache function in resources/recipe.py:

from utils import clear_cache

4. Invoke clear_cache('/recipes') in the resources that update recipe data. In 
the RecipeResource.patch, RecipeResource.delete, RecipePublishResource.put, 
RecipePublishResource.delete, and RecipeCoverUploadResource.put methods, add 
in clear_cache('/recipes') before return:

clear_cache('/recipes')

So, here, if done properly, the old cache data will be cleared when the data is 
updated. Next time, when this updated data is requested, it will be stored in the 
cache again.

5. Import the generate_token, verify_token, save_image, clear_cache function in 
resources/user.py:

from utils import generate_token, verify_token, save_image, clear_cache



Flask-Caching | 237

6. Invoke clear_cache('/recipes') in UserAvatarUploadResource.put to clear the 
cache when data is updated:

clear_cache('/recipes')

When the user updates their avatar image, that will change the avatar_url 
attribute. Therefore, we will need to clear the stale cache there as well.

After this exercise, I believe that you will have a much better understanding of how 
the whole flow of caching works. We build the caching function here to improve 
performance, but at the same time, we want to make sure that the cache is refreshed to 
ensure data quality.

Exercise 59: Verifying the Cache-Clearing Function

In our previous exercise, we added the step to clear the cache to the resources that are 
involved in data updates. In this activity, we will verify the cache-clearing function that 
we have implemented. We can test it by updating the data and seeing whether the API 
returns the updated data:

1. Get all the recipe data back. Click on RecipeList and send the request. The result 
is shown in the following screenshot:

Figure 9.5: Get all the recipe data back and send the request



238 | Building More Features

2. Check the PyCharm console for the application log:

Figure 9.6: Checking the PyCharm console for the application log

We can see that the cache is empty before the request. Then, after querying the 
database, the new data is cached.

3. Log in to your account. Click on the Collections tab and select the POST Token 
request.

4. Send the request. The result is shown in the following screenshot:

Figure 9.7: Selecting the POST Token request and sending the request



Flask-Caching | 239

5. Modify a recipe record using the PATCH method. First, select the PATCH Recipe 
request. Now, select the Headers tab and modify Bearer {token}; the token should 
be the access token.

6. Select the Body tab and modify num_of_servings to 10 and cook_time to 100. Please 
check the following:

{ 
    "num_of_servings": 10, 
    "cook_time": 100 
} 

7. Send the request. The result is shown in the following screenshot:

Figure 9.8: Modifying the recipe record using the PATCH method



240 | Building More Features

8. Check the PyCharm console for the application log:

Figure 9.9: Checking the application log

We can see that the cache is there before the request. But after the recipe record is 
updated, the cache becomes stale and is removed. 

So, in this exercise, we have completed the testing of the cache-clearing function. This 
will ensure that we are getting the latest data.

Note

The printing of the application log is for testing only. Before we go on, we need to 
comment on the print command in before_request and after_request. We can 
do that by using command + / on a Mac, or Ctrl + / on a Windows machine.

API Rate Limiting
When we provide an API service, we need to ensure fair usage for every user so that 
the system resources are effectively and fairly serving all. We want to make sure that 
the majority of users are getting good server performance; therefore, we need to apply 
restrictions. By limiting a small number of high-traffic users, we can make sure that the 
majority of users are satisfied.

The way to do that is to set a limit per user. For example, we can limit the number of 
requests per user to be no more than 100 per second. This number will be enough for 
the normal usage of our API. If there is any particular case where a user is firing 100+ 
requests per second, the excess requests will not be handled. This is to reserve system 
resources (such as CPU processing and bandwidth resources) for other users.



Flask-Limiter | 241

To achieve this, we introduce the concept of rate-limiting. By limiting the "rate" of our 
API service per user, we guarantee that the majority of our users are able to enjoy the 
service performance they deserve.

HTTP Headers and Response Codes

We can use HTTP headers to display rate limit information. The following attributes in 
the HTTP headers can tell us the number of requests (the rate) allowed, the remaining 
quota, and when the limit will be reset:

• X-RateLimit-Limit: Shows the rate limit of this API endpoint

• X-RateLimit-Remaining: Shows the number of remaining requests allowed before 
the next reset

• X-RateLimit-Reset: When the rate limit will be reset (in UTC epoch time)

• Retry-After: The number of seconds before the next reset

When a user starts to violate the rate limit, the API will return the HTTP status code 429 
Too Many Requests, with the error message in the response body:

{ 

    "errors": "Too Many Requests" 

}

To implement this rate limit function, we can use the Flask extension package Flask-
Limiter. The Flask-Limiter package can help us easily add the rate limit function to our 
APIs.

Flask-Limiter
Flask-Limiter is a Flask extension package that can let us easily add rate-limiting 
functionality to an endpoint. Apart from limiting the rate, it can also put the rate limit 
information in the HTTP header by using the RATELIMIT_HEADERS_ENABLED configuration. 
We, therefore, don't need to code the HTTP header information ourselves. Besides that, 
it also supports a configurable backend for storage with current implementations for 
Redis, in-memory, Memcached, and others.

We can even set multiple limits; we just need to delimit them using a delimiter. For 
example, we can set the limit to be 100 requests per minute and 1000 requests per hour, 
at the same time.



242 | Building More Features

Use the following syntax to set up the rate limit for our API endpoint:

[count] [per|/] [n (optional)] [second|minute|hour|day|month|year]

Here are some examples:

100 per minute

100/minute

100/minute;1000/hour;5000/day

Now we understand how rate limits work. We will work on a practical exercise together 
to add this useful functionality to our Smilecook application.

Exercise 60: Implementing API Rate-Limiting Functionality

In this exercise, we will implement API rate-limiting functionality using Flask-
Limiter. We will install and set Flask-Limiter, and then add the limit in rate-limit to 
RecipeListResource:

1. Add Flask-Limiter version 1.0.1 to requirements.txt:

Flask-Limiter==1.0.1

2. Install the package using the pip install command:

pip install -r requirements.txt

You should be seeing the following installation result:

Installing collected packages: limits, Flask-Limiter
  Running setup.py install for limits ... done
  Running setup.py install for Flask-Limiter ... done
Successfully installed Flask-Limiter-1.0.1 limits-1.3

3. Import Limiter and get_remote_address in extensions.py and instantiate a limiter 
object:

from flask_limiter import Limiter
from flask_limiter.util import get_remote_address

limiter = Limiter(key_func=get_remote_address)

The get_remote_address function will return the IP address for the current request. 
If the IP address is not found, it will return 127.0.0.1, which means the localhost. 
Here, our strategy is to limit the rate per IP address.



Flask-Limiter | 243

4. In app.py, import limiter from extensions:

from extensions import db, jwt, image_set, cache, limiter

5. In app.py, initialize the limiter object under register_extensions. Pass in the app 
object to the limiter.init_app method:

    limiter.init_app(app)

6. In config.py, set RATELIMIT_HEADERS_ENABLED to True:

RATELIMIT_HEADERS_ENABLED = True

This will allow Flask-Limiter to put in rate limit-related information in the HTTP 
header, including X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-
Reset, and Retry-After.

7. In resources/recipe.py, import limiter from extensions:

from extensions import image_set, cache,  limiter

8. In RecipeListResource, put the limiter.limit function in the decorators attribute:

class RecipeListResource(Resource):
    decorators = [limiter.limit('2 per minute', methods=['GET'], error_
message='Too Many Requests')]

We are setting the number of requests to be only two per minute. The HTTP 
method is GET and the error message is Too Many Requests.

9. Click Run to start the Flask application; then, we are ready to test it:

Figure 9.10: Start the Flask application and then test it

Now that this exercise is complete, our API has rate-limiting functionality. In the 
next exercise, we have to test our rate limit function.



244 | Building More Features

Exercise 61: Verifying the Rate-Limit Function

In the last exercise, we set the API for getting all recipe details, which can only be 
obtained twice per minute. So, in this exercise, we will see whether the result is what 
we expected:

1. Get all the recipe data back. Click on GET RecipeList and send the request.

2. Select the Header tab in Response. The result is shown in the following 
screenshot:

Figure 9.11: Getting all the recipe data back and sending the request

In the HTTP response, we can see that the rate limit for this endpoint is 2, while 
we only have one remaining request quota. And the limit is going to be reset 60 
seconds later.

3. Get all the recipe data back again and send the request twice more.



Flask-Limiter | 245

4. Select the Body in the HTTP response. The result is shown in the following 
screenshot:

Figure 9.12: Getting all the recipe data back again and sending the request twice

We can see that at the third request, we will receive the error HTTP status code 
429 TOO MANY REQUESTS. That means the rate limit is working.

In this exercise, we have completed the rate limit function. By restricting a small 
number of abusive users, we ensure that the majority of users can enjoy high servicing 
performance.

Exercise 62: Adding a Whitelist

We want to ease the rate limit for our developers, the testers of the API, because they 
may indeed need to fire frequent requests to the APIs for testing. What should we do 
in this case? In this exercise, we shall see how we can use Flask-Limiter to satisfy this 
requirement.

We would like to set up an IP whitelist that can allow certain IP addresses to use the API 
without any rate limit:

1. In app.py, import request:

from flask import Flask, request

2. In app.py, use the @limiter.request_filter decorator and set up the whitelist 
function. Put 127.0.0.1 (localhost) in the whitelist:

    @limiter.request_filter
    def ip_whitelist():
        return request.remote_addr == '127.0.0.1'



246 | Building More Features

3. Run app.py:

Figure 9.13: Running the app.py file

4. Test the application by firing a GET all recipe request, and check the HTTP header 
for the rate limit. Click on GET RecipeList and send the request. Select the Header 
tab in Response. The result is shown in the following screenshot:

Figure 9.14: Checking the HTTP header for rate limit

We can see that the rate-limit restriction is gone. In this exercise, you have seen that 
the rate-limiting function can be flexible. It can be enacted or withdrawn depending on 
different situations.



Summary | 247

Activity 17: Adding Multiple Rate-Limit Restrictions

In this activity, we are going to add multiple rate-limit restrictions to the same 
resource. But remember, we added a whitelist to the previous exercise. We need to 
comment out that code, so we can test it:

1. In UserRecipeListResource, add the rate limit. The limit is 3 times per minute, 30 
times per hour, and 300 times a day.

2. Comment out the whitelist code.

3. Test the rate limit function using Postman.

Note

The solution for this activity can be found on page 343.

Congratulations! Now that you have completed this activity, you know how to flexibly 
use the rate-limiting function.

Summary
In this chapter, we have learned about and implemented caching and rate-limiting 
functions in our Smilecook API. Such functions make our APIs even more efficient. Our 
Smilecook application is saving the cache in application memory, though, which means 
the cache will be gone after a server reboot. To address this, we can work with Redis or 
Memcached in the future, which can persist the cache even after a server reboot. They 
also support sharing the cache with multiple servers. This is something we encourage 
you to explore outside of this book. The most important thing at the moment is for 
you to learn all the fundamental concepts covered in this book. So, later, if you want to 
extend to more advanced implementation, it shouldn't be too hard for you.

In the next and final chapter, we will build the Smilecook frontend client for you to 
work with the backend API. Through this frontend client, we will understand the whole 
picture better. You will see how the frontend and backend interact. Finally, we will 
deploy the whole application to the Heroku cloud platform, which means our Smilecook 
application will be used by everybody.





Learning Objectives

By the end of this chapter, you will be able to:

• Explain the application deployment process to the cloud

• Explain the difference between SaaS, PaaS, and IaaS

• Set up different configurations between development and production environments

• Set up the Heroku cloud platform

• Install and configure Heroku Postgres

• Use the Heroku command-line interface (Heroku CLI) to deploy an application

• Set up the Postman environment variable

In this chapter, we are going to deploy our application to Heroku and test it using Postman.

Deployment

10



250 | Deployment

Introduction
In the previous chapter, we added the cache and rate limit functions to our Smilecook 
applications. These last two functions are very useful, especially when we are dealing 
with huge volumes of traffic. Caching and rate-limiting can improve response speeds 
and can also raise the security level.

In this chapter, we will discuss how we can deploy our application to a cloud server. 
Deploying an application is like publishing a book or releasing a movie. It is like 
releasing our application on the market. Nowadays, a lot of cloud services provide free 
usage quotas. They allow developers to deploy their application to their cloud platform 
for free provided the resource usage is below a certain threshold. For our Smilecook 
application, what we need to do is simply make a few minor changes to the code and 
some configuration files. Everything else will be handled by the cloud platform. You will 
see how simple this is very soon.

We will first make minor modifications to the application code to segregate the 
production and development environment configurations. Then, we will talk about 
the Heroku cloud service platform, on which we are going to deploy the Smilecook 
application. We will walk you through the account registration, configuration, and 
deployment processes in the Heroku cloud service platform.

Once the deployment is done, we will use Postman to test the APIs directly in the 
production environment. Isn't that exciting?! Without further ado, let's get started.

Deployment
What is deployment for? The API application we wrote earlier just runs the code on the 
local machine. Using one of the ports on the local machine, we can send the request 
from the client to the local server. This is good for development purpose. We can 
quickly test and adjust our application in a development environment. However, our 
local machine is not intended to be a server; others can't access it. And they cannot 
send HTTP requests to APIs hosted on our local machine.

If we want to open this API service to external users, we need to host it on a server. The 
server should be connected to the internet, with a domain and URL that allow others to 
access it.

Moving an application from a local machine to a server that runs on the internet is 
called deployment. This will involve work such as environment setting, dependent 
package installation, and building a web server.



Comparing SaaS, PaaS, and IaaS | 251

Comparing SaaS, PaaS, and IaaS
In the past, it was expensive to set up your own web server. There are lots of 
considerations, including network connectivity, storage, server configuration, and OS 
setup. Nowadays, cloud computing services are here to provide all the infrastructure 
services, which lowers costs significantly, especially for individual developers and small- 
and medium-sized companies. There are three main categories of cloud computing 
services out there. These are Software as a Service (SaaS), Platform as a Service (PaaS), 
and Infrastructure as a Service (IaaS). There are pros and cons for each, and these will 
be discussed in this section.

IaaS: Users do not need to purchase their own servers, software, network devices, and 
so on. These infrastructures are provided as a service, and users do not need to care 
about setup and maintenance. They still have the ability to configure these services, 
such as installing software and setting up firewall. Example of IaaS include AWS EC2 
and Google Compute Engine (GCE).

Compared with the past, this IaaS model can greatly reduce the hardware and network 
setup costs, and all other costs relating to space and resources surrounding that. 
Individual developers, or small- and medium-sized companies often do not need that 
many system resources. This model, therefore, allows them to rent the infrastructure as 
a service; they just need to pay for the resources that they need.

• Pros: Developers have much more flexibility. IaaS provides the necessary 
computing resources for applications to run on. Developers can easily request 
additional resources, or trim down resources, according to the needs of the 
application. This is easily customizable. 

• Cons: Developers need to spend time learning how to configure the cloud platform 
according to their needs.



252 | Deployment

PaaS: PaaS is somewhere between SaaS and IaaS. There is no need for users to manage 
and maintain infrastructures. Service providers already package all these infrastructure 
and related services together as a platform and rent them out as a service to users. 
Users do not need to worry about the backend setup required, nor aspects such as 
extending the number of servers and load balancing. Users (developers) just need to 
focus on their development and deploy their work accordingly to the cloud platform. 
Example of PaaS include Heroku, Windows  
Azure, and AWS Elastic Beanstalk.

• Pros: Reduced setup time. By leveraging the services provided by the platform, 
developers can zero in on development.

• Cons: There could be an unnecessary charge incurred. Compared to IaaS, PaaS 
is less flexible in the sense that you have less control over the infrastructure 
setup and configuration. As the whole platform is packaged as a service, some 
unused packaged resources could go to waste. In this case, the charge could be 
comparatively higher than IaaS.

SaaS: SaaS basically refers to web applications available on the internet. Users are not 
required to maintain the software. The software is provided as a service. A very typical 
example is Gmail. Example of SaaS include Dropbox, Salesforce, and Slack.

• Pros: The cost is low as we don't need to care about hardware purchases and other 
setup costs. If a user has a specific requirement that can be addressed by this 
service, SaaS could be the easiest and most effective solution.

• Cons: Since the vast amount of user data will be stored in the cloud platform, 
there could be some concerns regarding data security. Also, we need to consider 
service availability once the application is deployed.

As individual developers, we need a stable and scalable server for us to deploy 
our application. PaaS is the best option here. It provides the computing platform 
for applications to run on, and developers do not need to worry about hardware 
maintenance since service providers take care of all of this. Hence, it is a time and cost-
saving solution for developers. Developers can focus on developing good software.

The Heroku Platform
Heroku is a popular PaaS. We can deploy our APIs there so that they can be accessed 
by anyone in the world. And it doesn't just support Python, but also other programming 
languages, including Ruby and Go.



Configuration Handling in Smilecook | 253

Heroku provides a free plan for developers to deploy and test their applications there. 
Certainly, they do have paid plans as well, and with many more powerful functions 
that can make our APIs more secure and efficient. Later on, if you need these powerful 
features and system resources for your application, you can consider that. But right 
now, for teaching purposes, a free plan is good enough.

Note

Apart from Heroku, there are other cloud service providers. Some of the market 
leaders in cloud services are Amazon Web Services (AWS), Google Cloud 
Platform (GCP), IBM Cloud, Microsoft Azure, and Rackspace Cloud.

Configuration Handling in Smilecook
Most applications require multiple configurations; at least one is required for a 
production server, and one for development use. There will be differences between 
them, such as the debug mode, secret key, and database URL. We can use a default 
configuration that is always loaded, and a separate configuration for the production 
server and development environment to inherit the default configuration depending 
on the environment. For environment-specific configurations, we will create two new 
classes – DevelopmentConfig and ProductionConfig.

Exercise 63: Configuration Handling for the Production and Development 

Environments

In this exercise, we will segregate our application configurations between the 
development and production environments. For configurations such as DEBUG, we will 
require different values for the two environments. The same goes for the database URL 
as well. We are therefore going to create two sets of configurations, DevelopmentConfig 
and ProductionConfig. The former is for development and system enhancement in a 
development environment, while the latter is to be run in the production environment. 
Perform the following steps to complete the exercise:

1. First, in config.py, add a default configuration that will be used in all 
environments:

import os
class Config:
    DEBUG = False
 
    SQLALCHEMY_TRACK_MODIFICATIONS = False
 



254 | Deployment

    JWT_ERROR_MESSAGE_KEY = 'message'
 
    JWT_BLACKLIST_ENABLED = True
    JWT_BLACKLIST_TOKEN_CHECKS = ['access', 'refresh']
 
    UPLOADED_IMAGES_DEST = 'static/images'
 
    CACHE_TYPE = 'simple'
    CACHE_DEFAULT_TIMEOUT = 10 * 60
 
    RATELIMIT_HEADERS_ENABLED = True

2. Add DevelopmentConfig after the Config class:

class DevelopmentConfig(Config):
    DEBUG = True

    SECRET_KEY = 'super-secret-key'

    SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://your_name:your_
password@localhost:5432/smilecook'

The new DevelopmentConfig class extends the parent Config class. The DEBUG value 
is set to True. That will allow us to see the error messages while we are developing.

3. Add ProductionConfig after the Development Config class:

class ProductionConfig(Config):

    SECRET_KEY = os.environ.get('SECRET_KEY')

    SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL')

The ProductionConfig class here also extends the parent Config class. Similar to 
the DevelopmentConfig class, we have SECRET_KEY and SQLALCHEMY_DATABASE_URI 
set here. In the production environment, these values are obtained from the 
environment variables. We will teach you how to set these on a cloud platform 
later.

4. In app.py, import os:

import os



Configuration Handling in Smilecook | 255

5.  In app.py, make the following change to get the configurations dynamically:

def create_app():

    env = os.environ.get('ENV', 'Development')

    if env == 'Production':
        config_str = 'config.ProductionConfig'
    else:
        config_str = 'config.DevelopmentConfig'

    app = Flask(__name__)
    app.config.from_object(config_str)

    ...
    
    return app

The ENV environment variable will be obtained via os.environ.get. If it is 
Production, the production environment configuration will be used. In addition, 
the development environment configuration will be used.

6. Right-click on PyCharm and run the application. Because we haven't set up 
the ENV environment variable in the local machine, Flask will pick up config.
DevelopmentConfig and execute it. We can see from the output that Debug mode: 
on:

 

Figure 10.1: Running an application in the development environment

So, we have separated the configurations between the production and development 
environments. In the future, if there are common configurations shared among the two 
environments, we will put them in the Config class. Otherwise, they should be placed 
under the corresponding DevelopmentConfig or ProductionConfig class.



256 | Deployment

Exercise 64: Adding a Staging Configuration Class

In order to facilitate internal testing, in this exercise, we need to add a StagingConfig 
class. This configuration will extend the common Config class. The staging environment 
will not be much different from production, because it is mainly designed to imitate the 
production environment for testing. And we will obtain the secret key and database URI 
from the environment variables:

1. In config.py, create a StagingConfig class that extends Config:

class StagingConfig(Config):

    SECRET_KEY = os.environ.get('SECRET_KEY')

    SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL')

2. In app.py, modify the conditional statements for StagingConfig:

    if env == 'Production':
        config_str = 'config.ProductionConfig'
    elif env == 'Staging':
        config_str = 'config.StagingConfig'
    else:
        config_str = 'config.DevelopmentConfig'

Hence, we have set up the configuration for the staging environment. But it is not 
completed yet, since the environment variables will need to be obtained from the cloud 
server. Next, we will start to work on the cloud platform, Heroku.

Heroku Application
Before we deploy to Heroku (the cloud platform), we will first create an account and set 
up the environment there. We will create a new Heroku application. Then, we will need 
to install the Postgres database on Heroku. The installation process can be done within 
the Heroku platform; everything is integrated. Finally, we set up the virtual environment 
variables, such as the database URL and the secret key. Once all these precursors are 
completed, we will then start the deployment process.



Heroku Application | 257

Exercise 65: Creating a New Application in Heroku

In this exercise, we will first register a Heroku account. Then, we will create a new app 
on it. Heroku provides a nice user interface with an easy-to-follow setup flow. We just 
need to click a few buttons and that's it. As Heroku is a PaaS, we don't need to manage 
any hardware nor set up the OS. These are all taken care of by Heroku: 

1. Visit the Heroku website, https://www.heroku.com/, and click Sign up: 

Figure 10.2: Visiting the Heroku website

https://www.heroku.com/


258 | Deployment

2. Once the signup process is complete, click Log in and access the dashboard. Click 
Create new app to create a new application in Heroku:

Figure 10.3: Logging in and accessing the Heroku dashboard

3. Type in the app name, and then select the server region (right now, the only 
options are the United States and Europe; please select the one that is closer to 
your target users). Then, click Create app to continue:

Figure 10.4: Typing in the app name and selecting the server region

Note

The app name will be used in the application URL provided by Heroku, for 
example, https://{app_name}.herokuapp.com/. Users can then access our APIs 
using this URL.



Heroku Application | 259

After the application is created, we can see the app administration screen, along 
the lines of the following:

Figure 10.5: Heroku app administration screen

The app administration screen provides information for us to understand the 
application status:

Overview: For us to see the cost incurred or other collaborators' activities

Resources: For managing add-ons and the Procfile setting

Deploy: For choosing the deployment method

Metrics: For showing the metrics of the app

Activity: For tracking user activity

Access: For managing collaborator access

Settings: Includes environment variable configurations, buildpack settings, and 
other advanced features

Note

At the heart of the Heroku platform is the ability to run the applications using 
the lightweight container Dynos. Containerization is a standard way to package 
your application's code, configuration, and dependencies into a single object. 
Containerization can reduce the burden on the managing hardware, virtual 
machine, or environment setup, and so on. 



260 | Deployment

Once the application has been created, we will install the Postgres repository in Heroku 
and we will install it directly via Heroku add-ons.

Heroku Add-Ons
Heroku has a rich add-ons library. Add-ons are like plugins, which provide tools and 
services for developing, extending, and operating your apps, including data stores, 
monitoring, logging, analytics, and security. For our Smilecook application, we will use 
Heroku Postgres from Heroku, which is a reliable and powerful database as a service 
based on PostgreSQL. The starter tier is free and offers a 10,000-row limit and provides 
an expected uptime of 99.5%. This is suitable for developing hobby applications.

Exercise 66: Installing Heroku Postgres

In this exercise, we will install Heroku Postgres. It is more convenient to install Postgres 
from Heroku, compared to installing it from the Postgres official website. We only need 
to go to the Data Stores category in Heroku add-ons and then select Heroku Postgres 
directly to install. Heroku provides a backend management interface so that we can see 
the database status at a glance:

1. Switch to the Resources tab in Heroku, and then right-click on the Find more 
add-ons button:

Figure 10.6: Switching to the Resources tab in Heroku



Heroku Add-Ons | 261

2. In the Add-ons page, click on Data Stores and select Heroku Postgres:

Figure 10.7: Add-ons page in Heroku

3. Then, click on Install Heroku Postgres to install the add-on in our cloud server:

Figure 10.8: Installing the Heroku Postgres add-on



262 | Deployment

4. Select the default, Hobby Dev - Free Plan. This plan is free. In App to provision 
to, put in the app name we used in the previous exercise, and then click Provision 
add-on:

 

Figure 10.9: Selecting the Heroku Postgres add-on plan

5. Once that is done, we can check whether Heroku Postgres is installed on the 
Add-ons page:

Figure 10.10: Checking that Heroku Postgres is installed



Setting Up Environment Variables for the Heroku App | 263

6. Then, click on Heroku Postgres add-on to enter the management page:

Figure 10.11: Heroku Postgres management page

The Overview allows us to check the database status, utilization rate, and so on. 
Durability allows us to manage data security and backup. Settings stores the 
database credentials and other advanced settings. Data clips allow you to query 
the database data using the SQL command online. You can export or share the 
result there.

As you can see, it is pretty straightforward to install Postgres on Heroku; it just takes 
a few steps. Next, we will work on setting up the environment variables in the cloud 
platform. 

Setting Up Environment Variables for the Heroku App
We previously modified config.py and added ProductionConfig there. Now we have to 
add the environment variables in Heroku, including the secret key and database URL. In 
addition to these, let's not forget the Mailgun API key and the Mailgun domain as well. 
We will set up all of these together in the next exercise.



264 | Deployment

Exercise 67: Setting Up the App Environment Variables

In this exercise, we will set up the environment variables in the production 
environment. Fortunately, because we are using Heroku Postgres, the database URL 
environment variable has already been set up for us. We only need to set ENV, SECRET_
KEY, MAILGUN KEY, and DOMAIN. Then, once the setting is complete, after the Deploy code 
is completed, the application will read the newly added environment variables in App 
config:

1. Generate the secret key using the following two lines of code in the Python 
console in PyCharm:

>>>import os
>>>os.urandom(24)

Note

A secret key should be as random as possible. There are a lot of random 
generators out there that we can leverage. But perhaps the easiest way to do so is 
to generate that in the Python console in PyCharm. 

2. Go to the Settings tab and set up the ENV, MAILGUN_API_KEY, MAILGUN_
DOMAIN, and SECRET_KEY environment variables as the following:

Figure 10.12: Setting up environment variables in Heroku



Setting Up Environment Variables for the Heroku App | 265

Now that we have finished the necessary preparatory setup in Heroku, we will go 
straight to the deployment process.

Deployment Using Heroku Git

Heroku provides a guideline on how we can deploy our application. The guide can 
be found in the Deploy tab. It is mainly divided into three parts. They are Install the 
Heroku CLI, Create a new Git repository, and Deploy your application. The details are 
as follows:

Figure 10.13: Deployment using the Heroku Git guideline

There are three parts to the guideline in the Deploy tab:

Install the Heroku CLI

• heroku login – For logging into Heroku using the Heroku CLI tool provided.

Create a new Git repository

• cd my-project/ – Change directory to the my-project folder.

• git init – Initialize git, which is a version control system. We will discuss this 
soon.

• heroku git:remote -a smilecook – Add the app (Smilecook) repository to the 
remote repository list of the local Git.



266 | Deployment

Deploy your application

• git add . – To add all files and folders to the current directory and subfolder to 
Git.

• git commit -am "make it better" – Commit a change and insert the commit 
message to make it better.

• git push heroku master – This will upload the local repository content to the 
remote repository, which is the repository in Heroku. Once it is pushed, Heroku 
will run the app start-up procedure.

Before we start deploying our application, there are still a few bits of terminology that 
require explanation.

What is Git?

Git is a distributed version control system. A version control system is mainly a system 
that can keep track of every version of your source code. Any changes in the source 
code will be recorded in the system. It allows developers to easily restore the previous 
version. No manual backup is required.

Git also supports collaboration and other advanced features. If you are interested, you 
can go to the official Git website to learn more about it: https://git-scm.com.

What is gitignore?

gitignore is a file that contains a list of files and folders that Git should ignore. Files 
and folders in this list will not be stored in Git. Usually, we will include the environment 
configs, logs, and so on in this list. 

What is Procfile?

Procfile is a file that will be executed during the app start-up process in Heroku. 
Developers will put in the commands they want Heroku to run during the app start-up 
process. Usually, we will put the setup scripts and server start-up scripts here.

What is Gunicorn?

Gunicorn is a Python WSGI HTTP server that is compatible with various web 
applications. It can be used as an interface between web servers and web applications. 
Gunicorn can communicate with multiple web servers or start multiple web 
applications. It is a powerful and fast HTTP server.

Now that we have learned about the deployment flow as well as some key concepts and 
terminology, we will work on the deployment together in our next exercise.

https://git-scm.com


Setting Up Environment Variables for the Heroku App | 267

Exercise 68: Setting Up the Git and the Heroku CLI

In this exercise, we will deploy our Smilecook application to the production 
environment. We will download and install the Heroku CLI and Git first so that we can 
run the deployment command in the local machine. Then, we will add the gitignore file 
to ensure that some files will not be uploaded to Heroku. Finally, we will add main.py 
and Procfile to the root directory of the project and then deploy it to Heroku:

1. Install the Heroku CLI from https://devcenter.heroku.com/articles/heroku-cli. 
Pick the version for your OS and download it:

Figure 10.14: Installing the Heroku CLI

https://devcenter.heroku.com/articles/heroku-cli


268 | Deployment

2. If you haven't installed Git, please install it from https://git-scm.com/:

Figure 10.15: Installing Git

3. At the bottom of PyCharm, open the terminal. Run the git --version command to 
confirm that Git has installed successfully:

$ git --version
 git version 2.19.1 // You may see a different value inside the brackets 
depending on your OS

4. Right-click to create a .gitignore file in the project. This file will contain a list of 
files or folders that we don't want to be added to Git:

static/images/avatars/*
static/images/recipes/*
.idea/
venv/

static/images/avatars/* – We do not want to include all the testing images 
that we created in the previous chapters to be uploaded to the production 
environment.

static/images/recipes/* – We do not want to include all the testing images 
that we created in the previous chapters to be uploaded to the production 
environment.

https://git-scm.com/


Setting Up Environment Variables for the Heroku App | 269

.idea/ – This is the IDE project-specific settings folder. We don't need it in 
production.

venv/ – This is the virtual environment.

5. Log in to your Heroku account:

$ heroku login

6. Then, type in the following git init command to initialize Git. This is to add 
version control to our project:

$ git init

7. Add the Heroku repository to the Git remote repository (please replace your-
heroku-app with the name of your Heroku app).

$ heroku git:remote -a your-heroku-app

Note

Before adding in the remote repository, all our changes can only be committed to 
the local repository.

8. In requirements.txt, add in the gunicorn package, which is going to be our HTTP 
server:

gunicorn==19.9.0

9. Create main.py under the project root folder. This will be executed by Gunicorn to 
start up our web application: 

from app import create_app

app = create_app()

10. Right-click to create a file under the project root folder. Name it Procfile without 
an extension and then insert the following two commands:

release: flask db upgrade
web: gunicorn main:app

This Procfile file is for Heroku to run during the app start-up process. The first 
line is to ask Heroku to run flask db upgrade after every deployment. This is 
designed to ensure that our database schema is always up to date.



270 | Deployment

The second line is to have Heroku recognize it as the task that starts the 
webserver.

11. Run git add . in the Python console under PyCharm. This will add our source 
code to Git, for version control and deployment:

$ git add .

12. Run the git commit command to commit our source code. The -a parameter tells 
Git to stage files that have been modified or deleted. The -m parameter is for 
incorporating the commit message: 

$ git commit -am "first commit"

13. Deploy the application by using git push to push the source code to the Heroku 
repository:

$ git push heroku master

Heroku will automatically set up the environment. We can see the following 
output:

Figure 10.16: Deploying the application to Heroku

Note

During the deployment process, if we want to know more about what's happening 
behind the scenes, we can check the application logs by clicking the More button 
in the top right-hand corner, and then clicking VIEW logs.



Setting Up Environment Variables for the Heroku App | 271

Figure 10.17: Deploying the application to Heroku

From the preceding log, we can see that after the database is upgraded, it will run 
Gunicorn. And finally, you can see the message State changed from starting to up.

We have successfully deployed our Smilecook application to Heroku, which means it is 
ready to serve the public. Later, we will test it using Postman.

Note

In the future, when there is a new version, we only need to use three commands 
to redeploy the application. First, use git add . to add our source code to Git, 
and then use git commit -am "make it better". Lastly, use git push heroku 
master to push the source code to Heroku.



272 | Deployment

Exercise 69: Checking the Heroku Postgres Tables in pgAdmin

In the last exercise, we completed deployment. We will now need to check whether 
the tables have been created in the database. So, in this exercise, we are going to use 
pgAdmin to connect to Heroku Postgres:

1. Get the credentials of the database in Heroku Postgres, go to Add-ons > Settings, 
then click View Credentials, and you will see the following screen:

Figure 10.18: Getting the credentials of the database in Heroku Postgres

2. Right-click on Servers and then create a new server in pgAdmin:

Figure 10.19: Creating a new server in pgAdmin



Setting Up Environment Variables for the Heroku App | 273

3. In the General tab, name the server Heroku:

Figure 10.20: Entering the name for the server in the General tab



274 | Deployment

4. In the Connection tab, enter the credentials, including the Host name/address, 
Port, Maintenance database, Username, and Password, and then click Save:

Figure 10.21: Adding credentials to the Connection tab



Setting Up Environment Variables for the Heroku App | 275

5. Now, check the database tables in pgAdmin. Go to Heroku >> Databases >> (your 
database name) >> Schemas >> Public >> Tables to verify this:

Figure 10.22: Checking the database tables in pgAdmin

Now we can see whether the tables have been created in the database. If you can see 
that the tables have been created successfully, we can continue to the next step, which 
is using Postman to test our APIs.



276 | Deployment

Setting Up Variables in Postman
We have successfully deployed our project to Heroku. Now you can test them in 
Postman using all the saved requests that we set up before. However, the requests we 
have saved previously in Postman are all running against localhost. Instead of changing 
the URL bit by bit to the production URL, we can leverage the variables in Postman. We 
can set up a url variable and assign the production URL to it in Postman, then replace 
the URL with {{url}} from the saved request. Postman will then substitute {{url}} with 
the production URL for us dynamically.

Exercise 70: Setting Up Variables in Postman

In this exercise, we will set up variables in Postman so that we can dynamically 
incorporate the appropriate value depending on the environment. We will set up 
the URL as a variable so that when we are testing in the development environment, 
we simply need to change the URL variable to http://localhost:5000. And if we are 
testing in a production environment, we can change that to https://your_heroku_app.
herokuapp.com: 

1. Click Manage environments in the top right-hand corner of Postman. Then, click 
Add, and insert Smilecook as the environment name. Then, create a url variable 
with the value https://your_heroku_app.herokuapp.com. If the current value is not 
set, it will automatically assume the initial value. Please replace your_heroku_app 
with the name of your Heroku app, and then click Update:

Figure 10.23: Adding an environment variable in Postman



Setting Up Variables in Postman | 277

2. Once it is added, verify the variable by clicking on the eye icon in the top right-
hand corner:

Figure 10.24: Verifying the environment variable in Postman

3. In the UserList request, update the URL to {{url}}/users and then click Send to 
register a user account. You should see the following output (Postman will then 
dynamically replace the placeholder to be https://your_heroku_app.herokuapp.
com/users when the request is sent):

Figure 10.25: Using an environment variable in the URL



278 | Deployment

Postman is a very powerful testing tool. It can even allow us to effectively test our 
API endpoints on different environments. In the future, if you want to test other API 
endpoints in the production environment, you just need to change the URL in the 
previously saved requests. In the next activity, we will test your knowledge of this.

Activity 18: Changing access_token to a Variable in Postman

In the previous exercise, you learned how to change a URL to a variable. In this activity, 
we would like you to do the same for access_token:

1. Get an access token by using the previously saved POST Token request.

2. Add access_token as a variable in Postman.

3. Test a Smilecook API endpoint that requires the access token.

Note

The solution to this activity can be found on page 345.

That's great. When you are done with this activity, that means that you have already 
deployed and tested the Smilecook API in production. This is the final activity in the 
book and we are glad that you made it to this point!

Now, we will setup the Smilecook frontend website, which will work with the APIs that 
you have just developed. 



Setting up the Front-end Interface to Work with the Smilecook API | 279

Setting up the Front-end Interface to Work with the Smilecook API
Please download the smilecook-vuejs folder, which contains the frontend website 
source code, from https://github.com/TrainingByPackt/Python-API-Development-
Fundamentals/tree/master/Lesson10/Frontend:

1. Create a new app in the Heroku platform, which is for deploying our frontend web 
interface: 

Figure 10.26: Creating a new app in the Heroku platform

2. Once the app is created, we go to the Settings tab and then Config Vars. Here, 
we are going to set up an environment variable, which will be used to store the 
backend API URL:

Figure 10.27: Setting up an environment variable

https://github.com/TrainingByPackt/Python-API-Development-Fundamentals/tree/master/Lesson10/Frontend
https://github.com/TrainingByPackt/Python-API-Development-Fundamentals/tree/master/Lesson10/Frontend


280 | Deployment

3. Set the variable name to be VUE_APP_API_URL, and insert the backend Smilecook API 
URL here.

4. Open the smilecook-vuejs project in PyCharm.

5. In the PyCharm console, type in the following command to log in to the Heroku 
CLI:

$ heroku login

6. Then, initialize git and add the Heroku repository to the git:remote repository:

$ git init
$ heroku git:remote -a your_heroku_app_name

7. Then, add the source code to git, commit, and push them to Heroku.

$ git add .
$ git commit -am "make it better"
$ git push heroku master

8. When deployment is complete, you should see the following message on screen:

remote: -----> Compressing...
remote:        Done: 30M
remote: -----> Launching...
remote:        Released v1
remote:        https://your_heroku_app_name.herokuapp.com/ deployed to 
Heroku
remote: 
remote: Verifying deploy... done.
To https://git.heroku.com/your_heroku_app_name.git
   59c4f7f..57c0642  master -> master



Setting up the Front-end Interface to Work with the Smilecook API | 281

9. Type https://your_heroku_app_name.herokuapp.com/ in the browser; we can see 
that the frontend interface has been set up successfully:

Figure 10.28: Successful frontend setup

Now, you can interact with the Smilecook API using this frontend website interface.



282 | Deployment

Summary
In this chapter, we successfully deployed the Smilecook API to the Heroku cloud 
server. The deployment process is simple as we are leveraging the service provided by 
Heroku. We do not need to worry about purchasing hardware, setting up the server OS, 
connecting the server to the internet, and so on. Everything is provided by Heroku. A 
cloud platform service can quickly help developers to deploy their applications/APIs to 
the internet. This easy deployment process allows developers to focus on development 
and not the infrastructure/platform setup. And once the API is deployed, millions of 
users on the internet can connect to the API through their client-side app.

Of course, Heroku is just one of the many cloud services available out there. As to which 
cloud service should be chosen, you should consider important factors such as cost, 
additional services provided, and the scale of our application. We do not limit you to a 
particular platform. In fact, we hope that this book is a starting point for your journey 
as a professional developer. With the fundamental knowledge that you have learned, 
you should be able to explore and further develop new skills and use new tools to build 
more advanced APIs.

Congratulations! We have completed the whole book. Not only have you learned what 
an API is, but you have also developed and deployed a real-life API service, Smilecook, 
yourself. Throughout the entire book, you have learned about setting up a development 
environment, building an API, interacting with a database, object serialization, security 
tokens, interacting with third-party APIs, caching, and finally deployment. We have 
covered many different topics horizontally, and we have also explored each topic 
in-depth vertically. Apart from learning the theory, you have also practiced actual 
coding in the exercises and activities. You also tested your work thoroughly.

Your next steps should involve continuing to learn by working on development projects. 
The most important thing is to have hands-on development experience, together with 
an inquiring mind. Look for a better solution whenever you encounter a problem. You 
should not be satisfied with just getting things done. Instead, you should aim at doing 
things right. That's what will take you to the next level.

We hope you enjoyed the learning journey with us. Thank you!







About

This section is included to assist the students to perform the activities in the book.  
It includes detailed steps that are to be performed by the students to achieve the objectives of 
the activities.

Appendix

>



286 | Appendix

Chapter 01: Your First Step

Activity 1: Sending Requests to Our APIs Using Postman

Solution

1. First, we will get all of the recipes. Select GET as our HTTP method in the drop-down 
list.

2. Enter the request URL http://localhost:5000/recipes.

3. Click the Send button. The result can be seen in the following screenshot:

Figure 1.14: Getting all the recipes

In the HTTP response, you will see the HTTP status 200 OK in the top-right 
corner of the response panel. That means the request has been successful. The 
time next to it shows 7ms, which is the time spent on the request. And the size 
of the response, including the header and body, is 322 bytes. The details of the 
recipes, in JSON format, are shown in the Body panel. 

4. Next, we are going to use the POST method to create a recipe. We will send an 
HTTP POST request to http://localhost:5000/recipes.

5. Create a new tab next to the Get Request Tab by clicking on the + button. Select 
POST as the HTTP method. Type in http://localhost:5000/recipes as the request 
URL.



Chapter 01: Your First Step | 287

6. Select the Body Tab. Also, select the raw radio button.

7. Choose JSON (application/json) in the right drop-down menu. Type the following 
data in JSON format in the Body content area. Click the Send button:

{
     "name": "Cheese Pizza",
     "description": "This is a lovely cheese pizza"
}

The result can be seen in the following screenshot:

Figure 1.15: Creating a recipe

You should see the following information in the HTTP response in the Postman 
interface, Status 201 OK, meaning the creation has been successful and we can 
see our new recipe in JSON format. You will also notice that the ID assigned to the 
recipe is 3.

8. Now, get all the recipes from the server application again. We want to see if we 
have three recipes there now. In the history panel, select our previous request that 
gets all recipes, clicks on it, and resends.



288 | Appendix

In response, we can see that there are three recipes. They are shown in the 
following screenshot:

Figure 1.16: Getting all the recipes from the server application

9. Then, modify the recipe that we have just created. To do this, create a new tab 
next to the Get Request Tab by clicking on the + button. Select PUT as the HTTP 
method.

10. Type in http://localhost:5000/recipes/3 as the request URL.

11. Select the Body Tab and then select the raw radio button.

12. Choose JSON (application/json) in the right drop-down menu. Type the following 
data in JSON format in the Body content area. Click Send:

{
"name": "Lovely Cheese Pizza",
"description": "This is a lovely cheese pizza recipe."
}



Chapter 01: Your First Step | 289

The result is shown in the following screenshot:

Figure 1.17: Modifying the recipe

In the HTTP response, you will see the 200 OK HTTP status, meaning the 
update has been successful. You can also see the time spent on the request in 
milliseconds. You should also see the size of the response (header and body). The 
content of the response is in JSON format. We can see our updated recipe here in 
JSON format. 

13. Next, we will see if we can look for a recipe using its ID. We only want to see the 
recipe with ID 3 in the response. To do this, create a new tab next to the Get 
Request Tab by clicking on the + button.

14. Select GET as the HTTP method. Type in http://localhost:5000/recipes/3 as the 
request URL.



290 | Appendix

15. Click Send. The result is shown in the following screenshot:

Figure 1.18: Looking for the recipe with ID

We can see in the response that only the recipe with ID 3 is returned. It has the 
modified details that we just set as well.

16. When we search for a recipe that doesn't exist, we will see the following response, 
with a message recipe not found. Search by using the http://localhost:5000/
recipes/101 endpoint. The result is shown in the following screenshot:

Figure 1.19: Response showing "recipe not found"



Chapter 01: Your First Step | 291

Activity 2: Implement and Test the delete_recipe Function

Solution

1. The delete_recipe function removes a recipe from the memory. Use recipe = 
next((recipe for recipe in recipes if recipe['id'] == recipe_id), None) to 
get the recipe with the specific ID:

@app.route('/recipes/<int:recipe_id>', methods=['DELETE'])
def delete_recipe(recipe_id):
    recipe = next((recipe for recipe in recipes if recipe['id'] == recipe_
id), None)

    if not recipe:
        return jsonify({'message': 'recipe not found'}), HTTPStatus.NOT_
FOUND

    recipes.remove(recipe)

    return '', HTTPStatus.NO_CONTENT

2. Similar to the update_recipe function shown in earlier, if you can't find the recipe, 
then return "recipe not found" together with HTTP status NOT_FOUND. Otherwise, 
we will go ahead and remove the recipe with the given ID from our recipe collec-
tion with HTTP status  204 No Content

3. Once the code is done, right-click on the app.py file and click run to start the 
application. The Flask server will start up, and our application is ready to be 
tested.

4. Use httpie or curl to delete the recipe with ID = 1:

http DELETE localhost:5000/recipes/1

Following is the curl version of the command which does the same thing.

curl -i -X DELETE localhost:5000/recipes/1



292 | Appendix

The @app.route('/recipes/<int:recipe_id>', methods=['DELETE']) route will 
catch the client request and invoke the delete_recipe(recipe_id) function. The 
function will look for recipes with the recipe_id ID and, if it finds one, it will delete 
it. In response, we can see that the deletion has been successful. And we see that 
the HTTP status is 204 NO CONTENT:

HTTP/1.0 204 NO CONTENT
Content-Type: text/html; charset=utf-8
Date: Fri, 06 Sep 2019 05:57:50 GMT
Server: Werkzeug/0.15.6 Python/3.7.0

5. Lastly, use Postman to delete the recipe with ID = 2. For that, create a new tab 
next to the Get Request Tab by clicking on the + button.

6. Select DELETE as the HTTP method. Type in http://localhost:5000/recipes/2 as 
the request URL.

7. Click Send. The result is shown in the following screenshot:

Figure 1.20: Deleting the recipe

And then we can see the response with the HTTP status 204 NO CONTENT. That means 
the recipe was successfully removed.



Chapter 02: Starting to Build Our Project | 293

Chapter 02: Starting to Build Our Project

Activity 3: Testing the APIs Using Postman

Solution

1. First, build a client request that asks for a new recipe. Then, make use of the 
collection function in Postman to make the testing more efficient. 

2. Click on the Collection tab and then create a new collection by clicking on +.

3. Type in Smilecook as the name and click Create.

4. Right-click on ... next to Smilecook, create a new folder under Smilecook, and type 
Recipe in the name field.

5. Right-click on Recipe to create a new request. Then, set the name to RecipeList 
and save it under the Recipe collection.

6. Select POST in the drop-down list as the HTTP method and type http://local-
host:5000/recipes in the request URL field.

7. Now, go to the Body tab and select raw. Then, choose JSON (application/json) in 
the drop-down menu and type the following code into the body field:

{
    "name": "Cheese Pizza",
    "description": "This is a lovely cheese pizza",
    "num_of_servings": 2,
    "cook_time": 30,
    "directions": "This is how you make it" 
}



294 | Appendix

8. Save and send the recipe. The result is shown in the following screenshot:

Figure 2.10: Creating our first recipe by sending the details in JSON format

In the HTTP response, you will see the HTTP status 201 Created, meaning that the 
request was successful, and, in the body, you should see the same recipe that we 
just created. The ID of the recipe should be 1.

9. Create the second recipe by sending over a client request. Next, we will create our 
second recipe by sending the following details in JSON format:

{ 
    "name": "Tomato Pasta",
    "description": "This is a lovely tomato pasta recipe",
    "num_of_servings": 3,
    "cook_time": 20,
    "directions": "This is how you make it" 
}



Chapter 02: Starting to Build Our Project | 295

10. Click Send. The result is shown in the following screenshot:

Figure 2.11: Creating our second recipe by sending the details in JSON format

In the HTTP response, you will see the HTTP status 201 Created, meaning that the 
request was successful, and, in the body, you should see the same recipe that we 
just created. The ID of the recipe should be 2.

So far, we have created two recipes. Let's retrieve these recipes using Postman and 
confirm whether the two recipes are in the application memory.

11. Create a new request under the Recipe folder, name it RecipeList, and then save 
it.

12. Select the RecipeList that we just created (the one with the HTTP method set to 
GET).



296 | Appendix

13. Type http://localhost:5000/recipes in the request URL. Then, click Save and 
send the request. The result is shown in the following screenshot:

Figure 2.12: Retrieving all the recipes using Postman and confirming whether they are in the applica-
tion's memory

In the HTTP response, you will see the HTTP status 200 OK, meaning that the 
request was successful, and, in the body, you should see no data because the two 
recipes that we have created haven't been set to published yet. Now, we know 
that we can only retrieve published recipes. Let's set the recipe with ID = 1 to 
published.

14. Create a new request under the Recipe folder, and name it RecipePublish, and 
then save it.

15. Click on the RecipePublish request that we just created (the one with the HTTP 
method set to GET).

16. Select PUT as the HTTP method in the drop-down list and type http://local-
host:5000/recipes/1/publish in the request URL. Then, click Save and send the 
request. The result is shown in the following screenshot:

Figure 2.13: Retrieving the published recipe



Chapter 02: Starting to Build Our Project | 297

In the HTTP response, you will see the HTTP status 204 NO CONTENT, meaning 
that the request has been successfully published and that no data has been 
returned in the response body.

17. Retrieve all the recipes using Postman again. Select RecipeList (GET) from the left-
hand panel and send the request. The result is shown in the following screenshot:

Figure 2.14: Retrieving all the recipes using Postman

In the HTTP response, you will see the HTTP status 200 OK, meaning that the 
request was successful. The body should contain a published recipe. It should be 
the same recipe that we set to published previously.

We will modify the recipe with ID 1 by using the PUT method to send the modified 
recipe data to the URL route, that is, localhost:5000/recipes/1.

18. Create a new request under the Recipe folder, set the Request Name to Recipe, 
and save it. Then, change the HTTP method to PUT and type http://local-
host:5000/recipes/1 in the request URL.



298 | Appendix

19. Now, go to the Body tab and select raw, choose JSON (application/json) from the 
drop-down menu, and insert the following code into the body field. This is the 
modified recipe:

{
    "name": "Lovely Cheese Pizza",
    "description": "This is a lovely cheese pizza recipe",
    "num_of_servings": 3,
    "cook_time": 60,
    "directions": "This is how you make it"
}

20. Save and send it. The result is shown in the following screenshot:

Figure 2.15: Modifying the recipe with ID 1

In the HTTP response, you will see the HTTP status 200 OK, meaning that the 
modification was successful. The body should contain the updated details of 
recipe 1 in JSON format. We will retrieve the recipe with ID 1.

21. Create a new request under the Recipe folder, set the Request Name to Recipe, 
and save it. Then, change the HTTP method to GET and type http://local-
host:5000/recipes/1 in the request URL.



Chapter 02: Starting to Build Our Project | 299

22. Save and send it. The result is shown in the following screenshot:

Figure 2.16: Retrieving the recipe with ID 1

In the HTTP response, you will see the HTTP status 200 OK, meaning that the request is 
successful. The body should contain the details of recipe 1 in JSON format.

Activity 4: Implementing the Delete Recipe Function

Solution

1. Add the delete function to RecipeResource. Implement the delete method by 
following the sample code:

    def delete(self, recipe_id):
        recipe = next((recipe for recipe in recipe_list if recipe.id == 
recipe_id), None)

        if recipe is None:
            return {'message': 'recipe not found'}, HTTPStatus.NOT_FOUND

        recipe_list.remove(recipe)

        return {}, HTTPStatus.NO_CONTENT

The third method we built here has been deleted. We do this by locating the recipe 
with the respective recipe ID and then remove it from the recipe list. Finally, we 
return the HTTP status 204 NO CONTENT.



300 | Appendix

2. Right-click on the app.py file and click run to start the application. The Flask 
server will start up and our application will be ready for testing. Now, create 
the first recipe using Postman. We will build a client request that asks for a new 
recipe.

3. First, select the RecipeList POST request. Now, send the request by clicking the 
Send button, as shown in the following screenshot:

Figure 2.17: Creating the first recipe using Postman

4. Now, we will delete a recipe using Postman. To do that, delete the recipe with ID 1.

5. Create a new request under the Recipe folder. Then, set the Request Name to 
Recipe and save it.

6. Change the HTTP method to DELETE and type http://localhost:5000/recipes/1 
in the request URL. Then, save and send the request. The result is shown in the 
following screenshot:



Chapter 02: Starting to Build Our Project | 301

Figure 2.18: Deleting a recipe using Postman

In the HTTP response, you will see the HTTP status 204 NO CONTENT, meaning 
that the delete is successful with empty body content. The following table shows 
the methods that we have built for the RecipeResource class in this activity:

Figure 2.19: The method that we built for the RecipeResource class



302 | Appendix

Chapter 03: Manipulating a Database with SQLAlchemy

Activity 5: Creating a User and a Recipe

Solution

1. Open the Python console at the bottom of PyCharm and type in the following code 
to import the necessary modules and classes:

from app import *
from models.user import User
from models.recipe import Recipe
app = create_app()

2. Create a user object and save that to the database by typing in the following code 
in the Python console:

user = User(username='peter', email='peter@gmail.com', password='WkQa')
db.session.add(user)
db.session.commit()

3. Next, we will create two recipes using the following code. One thing to note is the 
fact that the user_id attribute of the recipe is set to user.id. This is to indicate 
that the recipe was created by the user Peter:

carbonara = Recipe(name='Carbonara', description='This is a lovely 
carbonara recipe', num_of_servings=4, cook_time=50, directions='This is 
how you make it', user_id=user.id)
db.session.add(carbonara)
db.session.commit()

risotto = Recipe(name='Risotto', description='This is a lovely risotto 
recipe', num_of_servings=5, cook_time=40, directions='This is how you make 
it', user_id=user.id)
db.session.add(risotto)
db.session.commit()

4. We can see a new record there in the user table:

Figure 3.18: New record in the user table



Chapter 03: Manipulating a Database with SQLAlchemy | 303

5. We will then check whether the two recipes have been created in the database

:

Figure 3.19: Checking whether the two recipes have been created

Activity 6: Upgrading and Downgrading a Database

Solution

1. Add a new attribute to the user class:

bio= db.Column(db.String())

2. Now, run the flask db migrate command to create the database and tables:

flask db migrate

Flask-Migrate detected the new column and created a script for that:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.ddl.postgresql] Detected sequence named 'user_id_seq' as 
owned by integer column 'user(id)', assuming SERIAL and omitting
INFO  [alembic.ddl.postgresql] Detected sequence named 'recipe_id_seq' as 
owned by integer column 'recipe(id)', assuming SERIAL and omitting
INFO  [alembic.autogenerate.compare] Detected added column 'user.bio'
  Generating /Python-API-Development-Fundamentals/smilecook/migrations/
versions/6971bd62ec60_.py ... done

3. Now, check /migrations/versions/6971bd62ec60_.py under the versions folder. 
This file is created by Flask-Migrate. Note that you may get a different revision ID 
here. Please review the file before you run the flask db upgrade command. That's 
because, sometimes, it may not detect every change you make to your models:

"""empty message
 
Revision ID: 6971bd62ec60
Revises: 1b69a78087e5
Create Date: 2019-10-08 12:11:47.370082
 
"""
from alembic import op
import sqlalchemy as sa
 
 



304 | Appendix

# revision identifiers, used by Alembic.
revision = '6971bd62ec60'
down_revision = '1b69a78087e5'
branch_labels = None
depends_on = None
 
 
def upgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.add_column('user', sa.Column('bio', sa.String(), nullable=True))
    # ### end Alembic commands ###
 
 
def downgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.drop_column('user', 'bio')
    # ### end Alembic commands ###

There are two functions in this autogenerated file; one is upgraded, and this is to 
add the new recipe and user to the table, while the other is downgraded, which is 
to go back to the previous version.

4. We will then execute the flask db upgrade command, which will upgrade our 
database to conform with the latest specification in our models:

flask db upgrade

This command will invoke upgrade() to upgrade the database:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.runtime.migration] Running upgrade a6d248ab7b23 -> 
6971bd62ec60, empty message



Chapter 03: Manipulating a Database with SQLAlchemy | 305

5. Check whether the new field is created in the database. Go to smilecook >> 
Schemas >> Tables >> user >> Properties to verify:

Figure 3.20: Checking whether the new field has been created in the database

Run the downgrade command to remove the new field:
flask db downgrade

This command will invoke downgrade() to downgrade the database:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.runtime.migration] Running downgrade 6971bd62ec60 -> 
a6d248ab7b23, empty message



306 | Appendix

Check whether the field has been removed. Go to smilecook → Schemas → Tables → 
user → Properties to verify:

Figure 3.21: Checking whether the field has been removed from the database



Chapter 04: Authenticated Services and Security with JWTs | 307

Chapter 04: Authenticated Services and Security with JWTs

Activity 7: Implementing Access Control on the publish/unpublish Recipe 

Function

Solution

1. Modify the put method in RecipePublishResource to restrict access to only authen-
ticated users. In resources/token.py, add the @jwt_required decorator on top of 
the RecipePublishResource.put method. Use the get_jwt_identity() function to 
identify whether the authenticated user is the owner of the recipe:

    @jwt_required
    def put(self, recipe_id):

        recipe = Recipe.get_by_id(recipe_id=recipe_id)

        if recipe is None:
            return {'message': 'Recipe not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if current_user != recipe.user_id:
            return {'message': 'Access is not allowed'}, HTTPStatus.
FORBIDDEN

        recipe.is_publish = True
        recipe.save()

        return {}, HTTPStatus.NO_CONTENT

This is to publish the recipe. Only users who have logged in can publish their 
own recipes. The method will perform various checks to make sure the user 
has published privileges. It will return 204 NO_CONTENT once the recipe is 
published.



308 | Appendix

2. Modify the delete method in RecipePublishResource. Only an authenticated user 
can unpublish the recipe:

@jwt_required    
def delete(self, recipe_id):

        recipe = Recipe.get_by_id(recipe_id=recipe_id)

        if recipe is None:
            return {'message': 'Recipe not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if current_user != recipe.user_id:
            return {'message': 'Access is not allowed'}, HTTPStatus.
FORBIDDEN

        recipe.is_publish = False
        recipe.save()

        return {}, HTTPStatus.NO_CONTENT

This unpublishes the recipe. Similar to the previous code, only a user who has 
logged in can unpublish their own recipe. It will return the status code 204 NO_
CONTENT once the recipe is published.

3. Log in to the user account and get the access token. Select the POST token 
request that we created previously. 

4. Check the raw radio button and select JSON (application/json) from the drop-
down menu. Type in the following JSON content in the Body field:

{
    "email": "james@gmail.com",
    "password": "WkQad19"
}



Chapter 04: Authenticated Services and Security with JWTs | 309

5. Click Send to log in to the account. The result is shown in the following screen-
shot:

Figure 4.20: Log in to the user account

You will see the HTTP status code 200 OK, meaning the login is successful. And 
we can see the access token and refresh token in the response body.

6. Publish the recipe with id = 3 in the state that the user has logged in. Select PUT 
RecipePublish.

7. Go to the Headers tab and put Authorization in the KEY field and Bearer {token} 
in the VALUE field, where token is the JWT token we got in our previous step.

8. Click Send to publish the recipe. The result is shown in the following screenshot:

Figure 4.21: Publishing the recipe



310 | Appendix

You will then see the response, the HTTP status code 204 meaning the recipe has 
been published successfully.

Finally, try to get all published recipes. Select GET RecipeList request, then click 
Send to get all published recipe details. The result is shown in the following 
screenshot:

Figure 4.22: Retrieving all published recipes

You will then see the response, the HTTP status code 200 meaning the request 
is successfully, and you can see there is one published recipe that we created is 
returned.

9. Unpublish the recipe with id = 3 in the state that the user has logged in. Create a 
new request under the Recipe folder, and name it RecipePublish, and then save it.

10. Click on the RecipePublish request that we just created (the one with the HTTP 
method set to GET).

11. Select DELETE as the HTTP method in the dropdown list and type in http://
localhost:5000/recipes/3/publish in the request URL.

12. Go to the Headers tab and put Authorization in the KEY field and Bearer {token} 
in the VALUE field, where token is the JWT token we got in step 5.



Chapter 04: Authenticated Services and Security with JWTs | 311

13. Save and Send the request to unpublish. The result is shown in the following 
screenshot:

Figure 4.23: Unpublishing the recipe



312 | Appendix

Chapter 05: Validating APIs Using marshmallow

Activity 8: Serializing the recipe Object Using marshmallow

Solution

1. Modify the recipe schema to include all attributes except for email. In schemas/
recipe.py, modify only=['id', 'username'] to exclude=('email', ). This way, 
we will be showing everything except for the user's email address. Besides, if we 
have a new attribute for the recipe object in the future (for example, a user avatar 
URL), we won't need to modify the schema again because it will show everything: 

     author = fields.Nested(UserSchema, attribute='user', dump_only=True, 
exclude=('email', ))

2. Modify the get method in RecipeResource to serialize the recipe object into JSON 
format using the recipe schema:

        return recipe_schema.dump(recipe).data, HTTPStatus.OK

This is mainly to modify the code to use recipe_schema.dump(recipe).data to 
return the recipe details by using the recipe schema.

3. Right-click on it to run the application. Flask will then be started up and run on 
the localhost (127.0.0.1) at port 5000:

Figure 5.18: Run Flask on the localhost



Chapter 05: Validating APIs Using marshmallow | 313

4. Test the implementation by getting one specific published recipe in Postman. 
Select the GET Recipe request. Enter http://localhost:5000/recipes/4 in Enter 
request URL. Click Send to get specific recipe details. The result is shown in the 
following screenshot:

Figure 5.19: Select the GET Recipe request and send the request

You will then see the return response. The HTTP status code 200 OK here 
indicates that the request has succeeded. In the response body, we can get the 
recipe details with ID 4, and as you can see, you can also see the user's registration 
time, which is created_at.



314 | Appendix

Chapter 06: Email Confirmations

Activity 9: Testing the Complete User Registration and Activation Workflow

Solution

1. We will first register a new user through Postman. Click on the Collections tab 
and choose the POST UserList request.

2. Select the Body tab and then select the raw radio button and choose JSON (appli-
cation/json) from the drop-down list.

3. Put in the following user details (in JSON format) in the Body field. Change the 
username and password to the appropriate one:

{
    "username": "john",
    "email": "smilecook.api@gmail.com",
    "password": "Kwq2z5"
}

4. Send the request. You should see the following output:

Figure 6.10: Registering a user through Postman

You should see the new user details (ID = 4) in the response, with HTTP status 201 
OK. That means the new user was created successfully in the backend. 

5. Log in through the API and click on the Collections tab. Then, select the POST 
Token request we created before.



Chapter 06: Email Confirmations | 315

6. Now, click on the Body tab. Check the raw radio button and select JSON(applica-
tion/json) from the drop-down menu.

7. Type in the following JSON content (email and password) in the Body field:

{
    "email": "smilecook.api@gmail.com",
    "password": "Kwq2z5"
}

8. Send the request. You should see the following output:

Figure 6.11: Sending the request using JSON

You should get a message saying the user account is not activated yet, with HTTP 
status 403 Forbidden. This is expected behavior because our application would 
require the user to activate the account first. 

9. Please check your mailbox for the activation email. There should be a link there 
for you to activate the user's account. Click on that link to activate the account. It 
should look as follows:

Figure 6.12: Activation mail



316 | Appendix

10. Log in again after the account is activated. Click on the Collections tab.

11. Select the POST Token request that we created earlier and send the request. You'll 
see the following:

Figure 6.13: After activating the account, select the POST Token request

You should see the access token and the refresh token in the response, with HTTP 
status 200 OK. That means the login was successful.



Chapter 06: Email Confirmations | 317

Activity 10: Creating the HTML Format User Account Activation Email

Solution

1. Click Sending >> Overview on the Mailgun dashboard, then add the email of our 
new user to the authorized recipient list on the right. Mailgun will then send a 
confirmation email to that email address:

Figure 6.14: Sending a confirmation email to our new user

Note

Since we are using the sandbox version of Mailgun, there is a limitation on send-
ing out emails to external email addresses. These emails have to be added to the 
authorized recipient list first.



318 | Appendix

2. Check the mailbox of the new user, and click I Agree. This will be as shown in the 
following screenshot:

Figure 6.15: The mailbox of a new user with an email from Mailgun

3. On the confirmation page, click yes to activate the account. The screen will appear 
as follows:

Figure 6.16: Activation complete message



Chapter 06: Email Confirmations | 319

4. HTML template code is provided by Mailgun out of the box. We can find it under 
Sending > Templates. There, click Create Message Template and select Action 
template. We will find a template for a confirmation email and preview it:

 

Figure 6.17: Previewing the confirm email address template

5. Then, create a templates folder under our project. We will put all the HTML 
templates in this folder going forward. Inside the templates folder, create a 
subfolder, email, for email-related HTML templates.



320 | Appendix

6. Now, create a template file, confirmation.html, and paste the sample HTML code 
from Mailgun in step 4. Take a look at the sample HTML code from Mailgun that 
follows:

Figure 6.18: Sample HTML code from Mailgun

Note

Please note that we need to change the http://www.mailgun.com link to {{link}}. 
This placeholder will be replaced programmatically with the account activation link.

7. Import the render_template function from Flask by entering the following line of 
code in resources/user.py:

from flask import request, url_for, render_template

8. In the POST method under UserListResource, we will pass in the HTML code as 
a parameter to the send_mail method. The HTML code can be rendered using the 
render_template function. You can see that the link = link parameter here is to 
replace the {{link}} placeholder in the HTML template with the actual account 
validation link:

mailgun.send_email(to=user.email,
                                 subject=subject,
                                 text=text,
                                 html=render_template('email/confirmation.
html', link=link))

http://www.mailgun.com


Chapter 06: Email Confirmations | 321

9. Register a new account using Postman:

{
    "username": "emily",
    "email": "smilecook.user@gmail.com",
    "password": "Wqb6g2"
}

Note

Please note that the email address was validated in Mailgun beforehand. 

The output will be as follows:

Figure 6.19: Registering a new account using Postman



322 | Appendix

10. The account activation email will then be received in HTML format. The output is 
shown in the following screenshot:

Figure 6.20: Account confirmation email



Chapter 07: Working with Images | 323

Chapter 07: Working with Images

Activity 11: Implementing the Recipe Cover Image Upload Function

Solution

1. Add the cover_image attribute to the User model in models/recipe.py:

cover_image = db.Column(db.String(100), default=None)

The cover_image attribute will contain the image filename as a string, with a 
maximum length of 100 characters.

2. Use the flask db migrate command to generate a database table update script:

flask db migrate

You will see that a new column, 'recipe.cover_image', has been detected:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.autogenerate.compare] Detected added column 'recipe.cover_
image'
  Generating /TrainingByPackt/Python-API-Development-Fundamentals/
Lesson07/smilecook/migrations/versions/91c7dc71b826_.py ... done

3. Check the script at /migrations/versions/xxxxxxxxxx_.py:

"""empty message

Revision ID: 91c7dc71b826
Revises: 7aafe51af016
Create Date: 2019-09-22 12:06:36.061632

"""
from alembic import op
import sqlalchemy as sa



324 | Appendix

# revision identifiers, used by Alembic.
revision = '91c7dc71b826'
down_revision = '7aafe51af016'
branch_labels = None
depends_on = None

def upgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.add_column('recipe', sa.Column('cover_image', 
sa.String(length=100), nullable=True))
    # ### end Alembic commands ###

def downgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.drop_column('recipe', 'cover_image')
    # ### end Alembic commands ###

From its content, we can see that two functions have been generated in the script. 
The upgrade function is used to add the new cover_image column to the database 
table, while the downgrade function is used to remove the cover_image column so 
that it goes back to its original state.

4. Run the flask db upgrade command to update the database and reflect the change 
in the User model:

flask db upgrade

After running the preceding command, we should see the following output:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.runtime.migration] Running upgrade 7aafe51af016 -> 
91c7dc71b826, empty message



Chapter 07: Working with Images | 325

5. Check the new cover_image column in pgAdmin:

Figure 7.10: The cover_image column in pgAdmin

This confirms that the new cover_image column has been added to the recipe 
table.

6. In schemas/recipe.py, import the url_for package and add the cover_url attribute 
and the dump_cover_url method:

from flask import url_for

    cover_url = fields.Method(serialize='dump_cover_url')

    def dump_cover_url(self, recipe):
        if recipe.cover_image:
            return url_for('static', filename='images/recipes/{}'.
format(recipe.cover_image), _external=True)
        else:
            return url_for('static', filename='images/assets/default-
recipe-cover.jpg', _external=True)



326 | Appendix

Add the default-recipe-cover.jpg image to static/images:

Figure 7.11: Folder structure after adding default-recipe-cover.jpg

7. In resources/recipe.py, add the import os, image_set, and save_image functions:

import os

from extensions import image_set

from utils import save_image
In resources/recipe.py, add recipe_cover_schema, which just shows the 
cover_url column:
recipe_cover_schema = RecipeSchema(only=('cover_url', ))

8. In resources/recipe.py, add the RecipeCoverUpload resource to upload the recipe 
cover to the recipes folder:

    class RecipeCoverUploadResource(Resource):

        @jwt_required
        def put(self, recipe_id):

            file = request.files.get('cover')

            if not file:
                return {'message': 'Not a valid image'}, HTTPStatus.BAD_
REQUEST

            if not image_set.file_allowed(file, file.filename):
                return {'message': 'File type not allowed'}, HTTPStatus.
BAD_REQUEST

The @jwt_required decorator before the PUT method states that the method can 
only be called after the user logs in. In the PUT method, we are trying to get the 
cover image file in request.files. Then, we are trying to verify whether it exists 
and whether the file extension is permitted.



Chapter 07: Working with Images | 327

9. After that, we retrieved the recipe object using recipe_id. First, we check whether 
a user has the right to modify the recipe. If the user has the right to, we will go 
ahead and modify the cover image of the recipe:

            recipe = Recipe.get_by_id(recipe_id=recipe_id)

            if recipe is None:
                return {'message': 'Recipe not found'}, HTTPStatus.NOT_
FOUND

            current_user = get_jwt_identity()

            if current_user != recipe.user_id:
                return {'message': 'Access is not allowed'}, HTTPStatus.
FORBIDDEN

            if recipe.cover_image:
                cover_path = image_set.path(folder='recipes', 
filename=recipe.cover_image)
                if os.path.exists(cover_path):
                    os.remove(cover_path)

10. Then, we use the save_image function to save the uploaded image and set the 
recipe.cover_image = filename. Finally, we save the recipe using recipe.save() 
and return the image URL with an HTTP status code of 200:

            filename = save_image(image=file, folder='recipes')

            recipe.cover_image = filename
            recipe.save()

            return recipe_cover_schema.dump(recipe).data, HTTPStatus.OK

11. In app.py, import RecipeCoverUploadResource:

from resources.recipe import RecipeListResource, RecipeResource, 
RecipePublishResource, RecipeCoverUploadResource

12. In app.py, link RecipeCoverUploadResource to the route, that is, /recipes/<int:rec-
ipe_id>/cover:

api.add_resource(RecipeCoverUploadResource, '/recipes/<int:recipe_id>/
cover')

Now, we have created the function for uploading the recipe cover image. Let's move on 
and test it.



328 | Appendix

Activity 12: Testing the Image Upload Function

Solution

1. Log in to the user account using Postman. Click on the Collections tab and select 
the POST Token request. Then, click the Send button. The result can be seen in 
the following screenshot:

Figure 7.12: Sending a POST Token request

2. Send a client request to our API to create a recipe and click on the Collections tab.

3. Select the POST RecipeList request and put Authorization in the KEY field 
and Bearer {token} in the VALUE field, where the token is the access token we 
retrieved in the previous step. Then, click the Send button. The result can be seen 
in the following screenshot:



Chapter 07: Working with Images | 329

Figure 7.13: Sending a client request to our API to create a recipe

4. Upload the recipe images. Click on the Collections tab and right-click on ... next to 
the Recipe folder to create a new request.

5. Set the Request Name to RecipeCoverUpload and save it in the Recipe folder.

6. Select PUT as the HTTP method and type in http://localhost:5000/recipes/<rec-
ipe_id>/cover as the request URL (replace <recipe_id> with the recipe ID we got 
from the previous step).



330 | Appendix

7. Select the Headers tab and put Authorization in the KEY field and Bearer {token} 
in the VALUE field, where the token is the access token we retrieved in the previ-
ous step.

8. Select the Body tab. Then, select the form-data radio button and type cover into 
KEY.

9. Choose File in the drop-down menu next to KEY and select the image file to 
upload.

10. Click the Save button and then the Send button. The result can be seen in the 
following screenshot:

Figure 7.14: Uploading a recipe image

11. Check whether the image has been compressed in PyCharm. We can see from the 
application log in PyCharm that the file size has been reduced by 97%:

Figure 7.15: Checking whether the images are compressed in PyCharm



Chapter 07: Working with Images | 331

12. Check the uploaded image in static/images/recipes:

Figure 7.16: Checking the uploaded image in the path

13. Get the recipe back and confirm that the cover_url attribute is populated. Now, 
click on the Collections tab and select the GET Recipe request. Then, type http://
localhost:5000/recipes/5 into the URL field. You may replace the recipe ID, that 
is, 5, with any ID that is appropriate. Then, click the Send button. The result can 
be seen in the following screenshot:

Figure 7.17: Getting the recipe back and confirming that the cover_url attribute is populated

Congratulations! We have tested the recipe cover image upload function. It works great!



332 | Appendix

Chapter 08: Pagination, Searching, and Ordering

Activity 13: Implementing Pagination on the User-Specific Recipe Retrieval API

Solution

1. Modify the code in the get_all_by_user method under models/recipe.py, as 
follows:

    @classmethod
    def get_all_by_user(cls, user_id, page, per_page, 
visibility='public'):

        query = cls.query.filter_by(user_id=user_id)

        if visibility == 'public':
            query = cls.query.filter_by(user_id=user_id, is_publish=True)
        elif visibility == 'private':
            query = cls.query.filter_by(user_id=user_id, is_publish=False)

        return query.order_by(desc(cls.created_at)).paginate(page=page, 
per_page=per_page)

2. Import RecipePaginationSchema into resources/user.py:

from schemas.recipe import RecipeSchema, RecipePaginationSchema

3. Declare the recipe_pagination_schema attribute in resources/user.py:

recipe_pagination_schema = RecipePaginationSchema()

4. Here, we've added the @user_kwargs decorator to UserRecipeListResource.get. It 
takes a few parameters, including page, per_page, and visibility:

class UserRecipeListResource(Resource):

    @jwt_optional
    @use_kwargs({'page': fields.Int(missing=1),
                 'per_page': fields.Int(missing=10),
                 'visibility': fields.Str(missing='public')})



Chapter 08: Pagination, Searching, and Ordering | 333

5. Modify the UserRecipeListResource.get method in resources/user.py:

    def get(self, username, page, per_page, visibility):

        user = User.get_by_username(username=username)

        if user is None:
            return {'message': 'User not found'}, HTTPStatus.NOT_FOUND

        current_user = get_jwt_identity()

        if current_user == user.id and visibility in ['all', 'private']:
            pass
        else:
            visibility = 'public'

        paginated_recipes = Recipe.get_all_by_user(user_id=user.id, 
page=page, per_page=per_page, visibility=visibility)

        return recipe_pagination_schema.dump(paginated_recipes).data, 
HTTPStatus.OK

The Recipe.get_all_by_user method gets the paginated recipes by a particular 
author, and then lets recipe_pagination_schema serialize the paginated object and 
return it.



334 | Appendix

Activity 14: Testing Pagination on the User-Specific Recipe Retrieval API

Solution

1. Get all the recipes under John using Postman, page by page, with a page size of 
two. First, click on the UserRecipeList request.

2. Type http://localhost:5000/{username}/recipes into the Request URL. The {user-
name} here should be the same as the one we inserted in the previous exercise. In 
our case, it will be john.

3. Select the Params tab and put in the key-value pair (per_page, 2).

4. Send the request. The result is shown in the following screenshot:

Figure 8.9: Getting all the recipes under John using Postman

In the details of the recipe, we can see that there are links with the URLs of the 
first, last, and next pages. We can't see the prev page here because we are on 
the first page. There is a total of four pages, and we have two records per page. We 
can also see the sorted recipe details in the HTTP response.



Chapter 08: Pagination, Searching, and Ordering | 335

5. Click the next URL in links to query for the next two records in Postman with 
the request URL populated (http://localhost:5000/users/john/recipes?per_
page=2&page=2). Then, we just need to click on Send to send the request. The result 
is shown in the following screenshot:

Figure 8.10: Querying for the next two records in Postman with the request URL populated

From the result, we can see that there are links to the first, last, next, and prev 
pages. We can also see that we are currently on page two. All the recipe data is 
there as well.



336 | Appendix

Activity 15: Searching for Recipes with Specific Ingredients

Solution

1. First, in models/recipe.py, add the ingredients attribute to the Recipe model:

    ingredients = db.Column(db.String(1000))

2. Run the following command to generate a database migration script:

flask db migrate

You will see that a new column called recipe.ingredients has been detected:

INFO  [alembic.autogenerate.compare] Detected added column 'recipe.
ingredients'
  Generating /TrainingByPackt/Python-API-Development-Fundamentals/
smilecook/migrations/versions/0876058ed87e_.py ... done

3. Check the content in /migrations/versions/0876058ed87e_.py, which is the data-
base migration script that was generated in the previous step:

"""empty message
 
Revision ID: 0876058ed87e
Revises: 91c7dc71b826
Create Date: 2019-10-24 15:05:10.936752
 
"""
from alembic import op
import sqlalchemy as sa
 
# revision identifiers, used by Alembic.
revision = '0876058ed87e'
down_revision = '91c7dc71b826'
branch_labels = None
depends_on = None
 
def upgrade():
    # ### commands auto generated by Alembic - please adjust! ###
    op.add_column('recipe', sa.Column('ingredients', 
sa.String(length=1000), nullable=True))
    # ### end Alembic commands ###
 



Chapter 08: Pagination, Searching, and Ordering | 337

def downgrade():
    # ### commands auto-generated by Alembic - please adjust! ###
    op.drop_column('recipe', 'ingredients')
    # ### end Alembic commands ###

Here, we can see that two functions have been generated in the script. The 
upgrade function is used to add the new column, ingredients, to the recipe table, 
whereas the downgrade function is used to remove the ingredients column so that 
it goes back to its original state.

4. Run the following flask db upgrade command to update the database schema:

flask db upgrade

You will see the following output:

INFO  [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
INFO  [alembic.runtime.migration] Running upgrade 91c7dc71b826 -> 
0876058ed87e, empty message

5. In schemas/recipe.py, add the ingredients attribute to RecipeSchema:

        ingredients = fields.String(validate=[validate.Length(max=1000)])

6. Modify the RecipeResource.patch method in resources/recipe.py to be able to 
update ingredients:

recipe.ingredients = data.get('ingredients') or recipe.ingredients

7. Modify the Recipe.get_all_published method in models/recipe.py so that it gets 
all the published recipes that it can through the ingredients:

return cls.query.filter(or_(cls.name.ilike(keyword),
                   cls.description.ilike(keyword),
                   cls.ingredients.ilike(keyword)),
                 cls.is_publish.is_(True)).\
  order_by(sort_logic).paginate(page=page, per_page=per_page)



338 | Appendix

8. Right-click on it to run the application. Flask will then start up and run on local-
host (127.0.0.1) at port 5000:

Figure 8.11: Running Flask on the localhost

9. Log in to a user account and create two recipes by running the following httpie 
command in the PyCharm console. The {token} placeholder should be replaced 
with the access token:

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Sweet Potato Casserole" description="This is a lovely Sweet Potato 
Casserole" num_of_servings=12 cook_time=60 ingredients="4 cups sweet 
potato, 1/2 cup white sugar, 2 eggs, 1/2 cup milk" directions="This is how 
you make it"

http POST localhost:5000/recipes "Authorization: Bearer {token}" 
name="Pesto Pizza" description="This is a lovely Pesto Pizza" num_of_
servings=6 cook_time=20 ingredients="1 pre-baked pizza crust, 1/2 cup 
pesto, 1 ripe tomato" directions="This is how you make it"

10. Publish these two recipes by using the following httpie command:

http PUT localhost:5000/recipes/14/publish "Authorization: Bearer {token}"
http PUT localhost:5000/recipes/15/publish "Authorization: Bearer {token}"



Chapter 08: Pagination, Searching, and Ordering | 339

11. Search for recipes that contain the eggs string in the name, description, or ingre-
dients. Click on the RecipeList request and select the Params tab. Then, insert 
the first key-value pair (q, eggs) and send the request. The result is shown in the 
following screenshot:

Figure 8.12: Searching for the eggs ingredient by sending a request

From the preceding search result, we can see that there is a recipe with eggs in 
the ingredients.



340 | Appendix

Chapter 09: Building More Features

Activity 16: Getting Cache Data after Updating Recipe Details

Solution

1. Get all the recipe data back, click on RecipeList and send the request. The result is 
shown in the following screenshot:

Figure 9.15: Get the recipe data back and send the request



Chapter 09: Building More Features | 341

2. Log in to your account, click on the Collections tab and select the POST Token 
request. Then, send the request. The result is shown in the following screenshot:

Figure 9.16: Select the POST Token request and send it

3. Modify a recipe record using the PATCH method. First, select the PATCH Recipe 
request.

4. Now select the Headers tab and modify Bearer {token}; the token should be the 
access token.

5. Select the Body tab and modify num_of_servings to 5, and cook_time to 50:

{ 
    "num_of_servings": 5, 
    "cook_time": 50 
} 



342 | Appendix

6. Send the request. The result is shown in the following screenshot:

Figure 9.17: Modifying a recipe record using the PATCH method

7. Get all the recipe data back again, click on RecipeList.



Chapter 09: Building More Features | 343

8. Send the request. The result is shown in the following screenshot:

Figure 9.18: Get all the recipe data back again

We can see that when we get all the recipe details again, the details are not updated, 
which will cause the user to see the wrong information.

Activity 17: Adding Multiple Rate-Limit Restrictions

Solution

1. In resources/user.py, import limiter from extensions:

from extensions import image_set, limiter

2. In UserRecipeListResource, put the limiter.limit function in the decorators 
attribute:

class UserRecipeListResource (Resource):
    decorators = [limiter.limit('3/minute;30/hour;300/day', 
methods=['GET'], error_message='Too Many Requests')]

3. Comment out the whitelist in app.py:

#  @limiter.request_filter
#   def ip_whitelist():
#      return request.remote_addr == '127.0.0.1'



344 | Appendix

In PyCharm, to comment out a line of code, if you are using Mac, you can use 
Command + /, and if you are using Windows, you can use Ctrl + /.

4. When we are done, click Run to start the Flask application; then, we are ready to 
test it:

Figure 9.19: Starting the Flask application

5. Get all the recipes for a user and check the rate limit information in the response 
header. First, click on UserRecipeList and send the request.

6. Then, select the Header tab in Response. The result is shown in the following 
screenshot:

Figure 9.20: Checking the rate limit information in the response header

In the HTTP response, we can see that the rate limit for this endpoint is three, 
while we only have two remaining request quotas. The limit is going to be reset in 
60 seconds.



Chapter 10: Deployment | 345

Chapter 10: Deployment

Activity 18: Changing access_token to a Variable in Postman

Solution

1. Perform user login and get the access token. Use the POST Token request to get 
the access token. You should see the following output:

Figure 10.29: Performing user login to get an access token



346 | Appendix

2. Click Manage environments in the top right-hand corner in Postman. Create the 
access_token variable. The value is the access token we obtained in the previous 
step. Then, click Update:

Figure 10.30: Adding more environment variables in Postman



Chapter 10: Deployment | 347

3. Select the GET User request. In the Headers tab, change the Authorization value 
to Bearer {{access_token}}, which is the environment variable we added in the 
previous step, and then send the request. You should see the following output:

Figure 10.31: Using more environment variables in Postman





About

All major keywords used in this book are captured alphabetically in this section. Each one is 
accompanied by the page number of where they appear.

Index

>



A
access: 9, 61, 63-64, 

69, 93-100, 103-105, 
107, 109-111, 114-123, 
126, 134, 143, 147, 150, 
152, 156-157, 159, 192, 
211-212, 228, 239, 250, 
254, 258-259, 278

activate: 164, 168, 171-174
adapter:69
add-on: 261-263
alembic: 69-70, 

75-77, 183-184
algorithm: 94-95
analogy:3
append: 17, 19, 43-44, 109
arrays:7
assets:188
attribute: 80, 89, 115, 

136-139, 146, 168, 
170, 172, 182-183, 
187, 194-195, 200, 
207, 209-210, 215, 
224-225, 237, 243

authorized: 111, 
165, 167, 178

authors: 56, 123, 149
automated:30
avatar: 181-194, 196, 

199-201, 204, 237

B
backref:71
bandwidth: 146, 229, 240
basic-api:12
beanstalk:252
blacklist: 93-94, 

118-120, 122, 254
blocklist:118
boolean: 68, 71-72, 

76-77, 136-137, 139
bootcamp:29
bottom: 21, 28-29, 31, 

40, 79, 232, 268
brackets:268
browsing: 204, 225
buildpack:259
built-in:36
button: 28-31, 101, 

103, 117, 191-192, 
194, 199, 260, 270

C
cacheable:4
caching: 4, 225, 227-233, 

235, 237, 247, 250, 282
categories:251
classifies: 62, 185
clicking: 13, 86, 168, 

171, 193, 270, 277
column: 63, 70-72, 76-77, 

183-185, 220, 222
command: 13, 20-23, 

25-26, 33, 40, 50, 53, 
55, 57, 69-70, 74-77, 
81, 89, 97, 130, 151, 169, 
183-184, 186, 197, 200, 
211-212, 230, 240, 242, 
263, 267-270, 280

commit: 71, 79-80, 108, 
266, 270-271, 280

computing: 82, 251-252
config: 70, 72-74, 97, 120, 

169-170, 187, 231, 243, 
253-256, 263-264, 279

console: 62, 79, 81, 90, 167, 
175, 186, 211, 233-234, 
238, 240, 264, 270, 280

control: 37, 63, 93-94, 
97, 100, 104, 109, 111, 
114, 118, 120, 123, 150, 

152, 157, 159, 252, 
265-266, 269-270

create: 6, 9, 11-13, 15, 17, 
19, 23, 30-33, 35-39, 
41-44, 48, 50-51, 58, 
61-64, 66-68, 70, 
72-76, 79-84, 86-87, 
89, 93, 96-99, 101-103, 
105-106, 111-112, 115-116, 
118-121, 125, 130-131, 
136-137, 141, 143, 146, 
150, 152, 161-162, 
166-169, 171-172, 178, 
182-184, 188-189, 191, 
195, 197, 200, 206, 
211-212, 215, 225, 236, 
253, 255-258, 265, 
268-269, 272, 276, 279

D
database: 3, 6, 8, 14, 61-64, 

66-70, 72, 74-75, 77-84, 
86, 88-90, 94, 99-101, 
107, 109-110, 126, 
131, 137, 147, 183-184, 
190, 201, 204, 224, 
228-230, 232, 234-235, 
238, 253-254, 256, 
260, 263-264, 269, 
271-272, 274-275, 282

datatype:86
declaring:44
decode: 94-95
decorator: 14, 16-17, 96, 

99, 109, 111, 115-116, 
120, 138, 190, 210, 215, 
217, 221, 231-232, 245

decouple:4
decrypted:120
delete: 5-6, 8, 11, 27, 

32-33, 36-37, 47, 50, 



55, 58, 63, 89, 107-108, 
111, 123, 141, 209, 236

develop: 2, 11, 33, 36-37, 
58, 93, 138, 161, 181-182, 
185, 200-201, 282

dimension:195
directory: 74, 265-267
domain: 4, 6, 165-167, 

171, 175, 250, 263-264
downgrade: 77, 89, 184
download: 21, 267, 279
dropbox:252
drop-down: 28-29, 

101, 103, 117, 192
durability:263

E
encode:94
encrypted:95
endpoint: 21, 28-29, 33, 

37, 42-43, 47, 49, 53, 
86, 96, 99, 105-107, 
116, 120-123, 131, 133, 
149-150, 152-153, 
168, 171, 183, 194, 
241-242, 244, 278

excluded:131
excludes:132
execution: 74, 175
extended: 97-99, 105, 

108, 115, 119, 151
extending: 252, 260

F
filesystem:27
filtering: 125, 132, 159
firewall:251
firing: 240, 246
foreignkey:72
framework: 10, 204

frontend: 2-3, 5, 8, 129, 
133, 158, 173, 182, 203, 
206, 210, 229, 234-235, 
247, 278-279, 281

function: 14, 16-18, 22-25, 
32-33, 41, 58, 73, 82-83, 
86, 93-94, 96-97, 99, 
101, 114-119, 121, 123, 
127, 136-137, 149, 159, 
162, 169-171, 176-178, 
181-182, 184-191, 194, 
196-201, 203-204, 
206-210, 214-218, 221, 
225, 227-228, 230-233, 
235-237, 240-247

H
hardware: 251-252, 

257, 259, 282
heroku: 247, 249-250, 

252-253, 256-267, 
269-273, 275-277, 
279-282

herokuapp: 258, 
276-277, 280-281

heroku-cli:267
httpie: 1-2, 12-13, 20-21, 

23, 26, 30, 33, 35, 39, 
49-54, 57-58, 211-212

httpstatus: 15-20, 43-47, 
83-84, 98-100, 105, 
109-111, 115-116, 120, 
131-133, 140-141, 
147, 151-152, 172-173, 
189-190, 210, 217

I
imported: 85, 98, 187
integer: 16, 40, 68-72, 

76-77, 126-127, 129, 

136-137, 139, 207
invalid: 99, 172
invented: 63, 146
invoke: 23, 25, 49, 73, 77, 

116, 126, 128, 236-237

J
javascript:7
jsonify: 15-20, 44
jwtmanager:97

K
key-value: 174, 213, 218, 

222-223, 228-229, 235
keyword: 131, 217, 222
kwargs: 138-139, 

151-152, 209-210, 
215, 217, 221, 231

L
library: 69, 90, 195, 260
limiter: 242-243, 245
localhost: 6, 11, 14, 21-23, 

25-26, 28-29, 36-37, 
49-57, 70, 74, 83, 85-86, 
97, 101-103, 106, 116, 
118, 121, 133, 142, 144, 
148, 150, 153-154, 158, 
171, 183, 191, 194, 199, 
205, 208, 211-212, 214, 
218, 242, 245, 254, 276

M
machine: 11, 62, 240, 

250, 255, 259, 267
mailbox: 9, 162, 167, 174
mailgun: 161-168, 170-171, 

175-178, 263-264



mapping: 62-63
meresource: 105-106, 

133, 153, 173, 190
methods: 1, 5-6, 10, 16-17, 

19, 23, 25, 27, 33, 36-37, 
42-49, 68, 82, 107, 128, 
159, 185, 188, 236, 243

metrics:259
migration: 62, 69, 74-75, 

77, 90, 183-184
models: 6, 41, 43, 59, 

62, 67, 69-70, 72, 
74, 76-77, 79, 81, 83, 
85, 89-90, 98, 105, 
107-108, 150-151, 
183, 200, 217, 222

O
object: 7, 14, 17, 42, 44, 

46, 48, 62-63, 73, 
79-80, 84, 90, 105, 
108, 125-127, 129-130, 
133, 135, 138, 141-142, 
158, 166-167, 171-172, 
190, 195, 197, 205-207, 
209-210, 229, 231, 
242-243, 255, 259, 282

objectives: 1, 35, 61, 
93, 125, 161, 181, 
203, 227, 249

operators:216
optimize: 126, 196, 198

P
package: 13-15, 35-36, 

41, 59, 62-63, 69, 
96-97, 118, 126-127, 
129-130, 150-151, 
157, 161-162, 168-169, 
175, 178, 182-183, 

185-186, 195-197, 201, 
227-230, 241-242, 
250, 252, 259, 269

paginate: 209, 217, 222
parameter: 49, 116, 126, 

135, 151-152, 159, 
171, 176, 189, 196, 
207-208, 210, 214, 
216-217, 220-221, 270

parsing: 150, 154
password: 61, 65, 

68-70, 76, 79, 82-84, 
86-88, 98-99, 101, 
103, 115, 117, 128-131, 
170, 173, 254, 274

pgadmin: 61-62, 70, 78, 
90, 183, 185, 272, 275

pillow: 181-182, 
195-197, 201

pixels:195
platform: 6, 10, 14, 33, 

35-36, 42, 51, 56, 59, 
64, 82, 107, 149, 161-163, 
168, 178, 201, 204, 206, 
216-217, 220-222, 225, 
247, 249-254, 256, 
259, 263, 279, 282

postgres: 62, 69, 90, 249, 
256, 260-264, 272

postman: 1-2, 20, 27-30, 
32-33, 35, 49, 56, 
58-59, 86, 111, 117, 
127, 133-134, 142, 146, 
158, 174, 178, 190-191, 
200, 203, 212, 214-215, 
218, 222, 233, 247, 
249-250, 271, 275-278

prefix:236
procfile: 259, 266-267, 269
prompt: 13, 20, 33
properties:185
property: 42, 82, 

129, 136, 138
public: 10, 44, 64, 114, 

131-133, 150-152, 
204, 271, 275

publish: 36-37, 40, 42-47, 
49-50, 53-54, 59, 
69, 72-73, 77, 94, 108, 
110, 123, 126, 136-137, 
139, 144, 150-151, 
159, 209, 211-212, 
217, 220, 222, 225

pycharm: 1, 11-13, 21, 
37-40, 50, 75, 79, 
167, 174-175, 186, 193, 
199-200, 233-234, 
238, 240, 255, 264, 
268, 270, 280

python: 2, 10-13, 15, 22-27, 
38, 41-42, 50, 52-57, 
62-63, 69, 78-79, 81, 
89-90, 127, 167, 175-176, 
182-183, 195, 198, 
252, 264, 266, 270

R
rackspace:253
rate-limit: 242, 

244, 246-247
recipe: 6, 10-11, 14-20, 

22-27, 30, 32-33, 36-37, 
40-59, 61-62, 64, 
67-69, 71-81, 85-86, 
90, 94, 107-114, 123, 
126, 135-155, 158-159, 
161, 168, 181-182, 
199-201, 204, 208-210, 
212-219, 221-225, 
229, 231, 233-237, 
239-240, 243-246

redeploy:271
register: 73, 85-86, 98, 



100, 102, 116, 120-121, 
163, 174, 178, 231-232, 
243, 257, 277

relational: 62-63
repetitive:90
resetting:170
restful: 1-6, 8, 33, 

35-36, 42-43, 46, 48, 
59, 72, 83, 98-99, 
123, 127, 151, 163

retransmit:146
retrieval: 11, 206, 215
revoke:121
routine: 100, 215
runtime: 75, 77, 183-184

S
safeguard:90
satisfy: 217, 245
schema: 63, 89, 125, 

127-133, 135-136, 
139-141, 146-147, 
151-153, 158, 183-185, 
187, 189-190, 200-201, 
206-207, 209-210, 
215, 217, 269

security: 62, 82, 
93-94, 114, 250, 252, 
260, 263, 282

segregate: 174, 214, 
250, 253

select: 14, 28-29, 63-66, 
86, 101, 103-104, 106, 
111-113, 117-118, 121, 
133-135, 142-145, 148, 
154-156, 174, 191-193, 
199, 211, 213, 218, 
222-223, 238-239, 
244-246, 258, 260-262

serialize: 127, 158, 187, 
203, 206-207, 210

servers: 64, 247, 
251-252, 266, 272

several:40
skyscanner: 2-3
smilecook: 36, 38, 

40-41, 46, 51, 56-59, 
64, 67, 70, 74-75, 78, 
86, 94, 97, 104, 107, 
115, 123, 129-130, 135, 
149-150, 153, 165-169, 
171, 173, 178, 181-183, 
185, 190, 195-196, 
200-201, 204, 206, 211, 
216-217, 219-222, 225, 
227-230, 242, 247, 250, 
253-254, 260, 265, 
267, 271, 276, 278-282

smoothie:143
sqlalchemy: 61-63, 70, 

72-73, 76, 90, 184, 209, 
217, 220, 253-254, 256

sql-free:81
statements: 63, 256
status: 2, 4, 8, 11, 17-18, 

22-23, 25-27, 33, 36, 
40, 44-47, 53, 55, 57, 
59, 84, 87, 102-104, 109, 
113-114, 117-118, 122, 128, 
132, 134, 141, 143-145, 
147, 149, 153-157, 167, 
172-173, 178, 190, 241, 
245, 259-260, 263

strategy: 231, 242
subclasses:42
syntax: 7-8, 16, 48, 63, 

90, 176, 220, 242

T
technology:195
tedious:185
telling:120

terminal: 13, 21, 40, 
50, 74, 268

testing: 2, 20-21, 27-30, 
32-33, 49-51, 53, 55, 
57-59, 86, 88, 90, 101, 
111, 117, 121, 133, 142, 
150, 154, 157, 165, 167, 
174, 191, 194, 198-200, 
204, 211, 214-215, 
218-219, 222, 224, 230, 
232-233, 235, 240, 245, 
256, 268, 276, 278

transmit: 130, 142, 146
trigger: 16, 24, 137

U
uniform:4
upgrade: 74, 76-77, 

89-90, 184, 269
userschema: 129-131, 

138-139, 151, 187, 189

V
validate: 125, 130-131, 

136-140, 146
verify: 23, 78-79, 83, 86, 

98-99, 101, 118, 126, 
133, 137, 162, 168-170, 
172, 178, 189, 200, 222, 
233, 236-237, 275, 277

versions: 37, 74-76, 
89, 183-184

W
workflow: 12, 36, 88, 161, 

168, 170, 173-174, 182
wrapped:33


	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Your First Step
	Introduction
	Understanding API
	RESTful API
	REST Constraints/Principles

	HTTP Protocol
	HTTP Methods and CRUD
	The JSON Format
	HTTP Status Codes
	Commonly used HTTP Status Codes

	Open API
	The Flask Web Framework
	Building a Simple Recipe Management Application
	Virtual Environment
	Exercise 1: Building Our First Flask Application
	Exercise 2: Managing Recipes with Flask

	Using curl or httpie to Test All the Endpoints
	Exercise 3: Testing Our API Endpoints with httpie and curl

	Postman
	The Postman GUI
	Sending a GET Request
	Sending a POST Request
	Saving a Request
	Activity 1: Sending Requests to Our APIs Using Postman
	Exercise 4: Automated Testing Using Postman
	Activity 2: Implement and Test the delete_recipe Function

	Summary

	Chapter 2: Starting to Build Our Project
	Introduction
	What is Flask-RESTful?
	Using Flask-RESTful to Develop Our Recipe-Sharing Platform, "Smilecook"

	Virtual Environment
	Exercise 5: Creating a Development Project in PyCharm

	Creating a Recipe Model
	Exercise 6: Creating the Recipe Model
	Resourceful Routing
	Exercise 7: Defining an API Endpoint for the Recipe Model
	Exercise 8: Defining the Recipe Resource
	Exercise 9: Publishing and Unpublishing the Recipes

	Configuring Endpoints
	Exercise 10: Creating the Main Application File

	Making HTTP Requests to the Flask API using curl and httpie
	Exercise 11: Testing the Endpoints Using curl and httpie
	Exercise 12: Testing the Auto-Incremented Recipe ID
	Exercise 13: Getting All the Recipes Back
	Exercise 14: Testing the Recipe Resources
	Exercise 15: Negative Testing
	Exercise 16: Modifying the Recipes
	Exercise 17: Getting Back Specific Recipes with a Certain ID
	Activity 3: Testing the APIs Using Postman
	Activity 4: Implementing the Delete Recipe Function

	Summary

	Chapter 3: Manipulating a Database with SQLAlchemy
	Introduction
	Databases
	Database Management System

	SQL
	ORM
	Exercise 18: Setting Up a Smilecook Database

	Defining Our Models
	Exercise 19: Installing Packages and Defining Models 
	Exercise 20: Using Flask-Migrate to Build a Database Upgrade Script
	Exercise 21: Applying Database Insertion
	Activity 5: Creating a User and a Recipe

	Password Hashing
	Exercise 22: Implement the User Registration Feature and Hash the User's Password
	Exercise 23: Testing the Application in Postman
	Activity 6: Upgrading and Downgrading a Database

	Summary

	Chapter 4: Authentication Services and Security with JWT
	Introduction
	JWT
	Flask-JWT-Extended
	Exercise 24: Implementing a User Login Function
	Exercise 25: Testing the User Login Function
	Exercise 26: Creating the me Endpoint

	Designing the Methods in the Recipe Model
	Exercise 27: Implementing Access-Controlled Recipe Management Functions
	Exercise 28: Testing the Recipe Management Functions

	Refresh Tokens
	Exercise 29: Adding a Refresh Token Function
	Exercise 30: Obtaining a New Access Token Using a Refresh Token

	The User Logout Mechanism
	Exercise 31: Implementing the Logout Function
	Exercise 32: Testing the Logout Function
	Activity 7: Implementing Access Control on the publish/unpublish Recipe Function

	Summary

	Chapter 5: Object Serialization with marshmallow
	Introduction
	Serialization versus Deserialization
	marshmallow
	A Simple Schema
	Field Validation
	Customizing Deserialization Methods

	UserSchema Design
	Exercise 33: Using marshmallow to Validate the User Data
	Exercise 34: Testing the User Endpoint before and after Authentication

	RecipeSchema Design
	Exercise 35: Implementing RecipeSchema
	Exercise 36: Testing the Recipe API

	The PATCH Method
	Exercise 37: Using the PATCH Method to Update the Recipe
	Searching for Authors and Unpublished Recipes
	Using the webargs Package to Parse the Request Arguments
	Exercise 38: Implementing Access Control on Recipes
	Exercise 39: Retrieving Recipes from a Specific Author
	Activity 8: Serializing the recipe Object Using marshmallow

	Summary

	Chapter 6: Email Confirmation
	Introduction
	Mailgun
	Exercise 40: Get Started with Using Mailgun
	Exercise 41: Using the Mailgun API to Send Out Emails

	User Account Activation Workflow
	Exercise 42: Generating the Account Activation Token
	Exercise 43: Sending Out the User Account Activation Email
	Activity 9: Testing the Complete User Registration and Activation Workflow
	Setting Up Environment Variables
	Exercise 44: Setting Up Environment Variables in PyCharm

	HTML Format Email
	Activity 10: Creating the HTML Format User Account Activation Email

	Summary

	Chapter 7: Working with Images
	Introduction
	Building the User Avatar Function
	Exercise 45: Adding the avatar_image Attribute to the User Model

	Flask-Uploads
	Upload Sets
	Exercise 46: Implementing the User Avatar Upload Function
	Exercise 47: Testing the User Avatar Upload Function Using Postman

	Image Resizing and Compression
	Introduction to Pillow
	Exercise 48: Implementing Image Compression in Our Smilecook Application
	Exercise 49: Testing the Image Compression Function
	Activity 11: Implementing the Recipe Cover Image Upload Function
	Activity 12: Testing the Image Upload Function

	Summary

	Chapter 8: Pagination, Searching, and Ordering
	Introduction
	Pagination
	Paginated APIs
	Exercise 50: Implementing Pagination on the Published Recipes Retrieval Function
	Exercise 51: Testing the Pagination Functions
	Activity 13: Implementing Pagination on the User-Specific Recipe Retrieval API
	Activity 14: Testing Pagination on the User-Specific Recipe Retrieval API

	Recipe Searching
	Exercise 52: Implementing the Search Function
	Exercise 53: Testing the Search Function

	Sorting and Ordering
	Exercise 54: Implementing Sorting and Ordering
	Exercise 55: Testing the Sorting and Ordering Feature
	Activity 15: Searching for Recipes with Specific Ingredients

	Summary

	Chapter 9: Building More Features
	Introduction
	Caching
	Benefit of Caching

	Flask-Caching
	Exercise 56: Implementing Caching Functionality Using Flask-Caching
	Exercise 57: Testing the Caching Function with Postman
	Clearing the Cache when Data Updates
	Activity 16: Getting Cache Data after Updating Recipe Details
	Exercise 58: Implementing Cache-Clearing Functionality
	Exercise 59: Verifying the Cache-Clearing Function

	API Rate Limiting
	HTTP Headers and Response Codes

	Flask-Limiter
	Exercise 60: Implementing API Rate-Limiting Functionality
	Exercise 61: Verifying the Rate-Limit Function
	Exercise 62: Adding a Whitelist
	Activity 17: Adding Multiple Rate-Limit Restrictions

	Summary

	Chapter 10: Deployment
	Introduction
	Deployment
	Comparing SaaS, PaaS, and IaaS
	The Heroku Platform
	Configuration Handling in Smilecook
	Exercise 63: Configuration Handling for the Production and Development Environments
	Exercise 64: Adding a Staging Configuration Class

	Heroku Application
	Exercise 65: Creating a New Application in Heroku

	Heroku Add-Ons
	Exercise 66: Installing Heroku Postgres

	Setting Up Environment Variables for the Heroku App
	Exercise 67: Setting Up the App Environment Variables
	Deployment Using Heroku Git
	What is Git?
	What is gitignore?
	What is Procfile?
	What is Gunicorn?
	Exercise 68: Setting Up the Git and the Heroku CLI
	Exercise 69: Checking the Heroku Postgres Tables in pgAdmin

	Setting Up Variables in Postman
	Exercise 70: Setting Up Variables in Postman
	Activity 18: Changing access_token to a Variable in Postman

	Setting up the Front-end Interface to Work with the Smilecook API
	Summary

	Appendix
	Index



