
WOW! eBook
www.wowebook.org

Mastering Flask Web
Development
Second Edition

Build enterprise-grade, scalable Python web applications

Daniel Gaspar
Jack Stouffer

BIRMINGHAM - MUMBAI

WOW! eBook
www.wowebook.org

Mastering Flask Web Development
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Devanshi Doshi
Content Development Editor: Onkar Wani
Technical Editor: Diksha Wakode
Copy Editor: Safis Editing
Project Coordinator: Sheejal Shah
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Alishon Mendonsa
Production Coordinator: Aparna Bhagat

First published: September 2015
Second Edition: October 2018

Production reference: 1301018

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-540-5

www.packtpub.com

WOW! eBook
www.wowebook.org

http://www.packtpub.com

WOW! eBook
www.wowebook.org

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

WOW! eBook
www.wowebook.org

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Daniel Gaspar is a programmer and DevOps engineer with more than 20 years' experience.
He has worked in a wide range of sectors, including government and finance. He is
currently working at Miniclip (the global leader in digital games). He uses a wide range of
tools in his daily work, but Flask caught his attention because of its excellently designed
API and simplicity. Daniel is an OSS and Python enthusiast, and has developed a widely
used extension/framework named Flask-AppBuilder, used by Airbnb on Superset and
AirFlow.

First, I would like to thank my wife, Susana, and my beautiful children, Mariana and
Pedro, for their amazing support, enthusiasm, and patience. Also, a big thank you to
everyone at Packt Publishing, especially to Onkar Wani, with whom it was a pleasure to
work.

Jack Stouffer is a programmer who has several years of experience in designing web
applications. He switched to Flask two years ago for all his projects. He currently works for
Apollo America in Auburn Hills, Michigan and writes internal business tools and software
using Python, Flask, and JavaScript. Jack is a believer and supporter of open source
technology. When he released his Flask examples with the recommended best practices on
GitHub, it became one of the most popular Flask repositories on the site. Jack has also
worked as a reviewer for Flask Framework Cookbook, Packt.

WOW! eBook
www.wowebook.org

About the reviewer
Damyan Bogoev is based in Bulgaria, where he currently works at Gtmhub as a software
engineer. Prior to Gtmhub, Damyan worked at Telerik.

His background is in developing backend server applications and tools for infrastructure
automation, management, and monitoring.

Damyan is also technical reviewer for the Web API Development with Flask video course.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

WOW! eBook
www.wowebook.org

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started 6
Version control with Git 7

Installing Git 7
Git on Windows 7

Git basics 7
Git branches and flow 11

Python package management with pip 15
Installing the Python package manager on Windows 15
Installing pip Python package manager on macOS X and Linux 16
Pip basics 17

Dependency sandboxing with virtualenv 18
Virtualenv basics 19

Setting up Docker 19
The beginning of our project 20

Simple application 21
Project structure 22
Using Flask's command-line interface 22

Summary 23

Chapter 2: Creating Models with SQLAlchemy 24
Setting up SQLAlchemy 25

Python packages 25
Flask SQLAlchemy 26

Our first model 26
Creating the user table 29

CRUD 30
Creating models 30
Reading models 30

Filtering queries 32
Updating models 34
Deleting models 34

Relationships between models 34
One-to-many relationship 35
Many-to-many relationship 38

Constraints and indexing 40
The convenience of SQLAlchemy sessions 42
Database migrations with Alembic 43
Summary 46

WOW! eBook
www.wowebook.org

Table of Contents

[ii]

Chapter 3: Creating Views with Templates 47
Jinja's syntax 47

Filters 48
The default filter 49
The escape filter 49
The float filter 49
The int filter 49
The join filter 50
The length filter 50
The round filter 50
The safe filter 51
The title filter 51
The tojson filter 51
The truncate filter 52
Custom filters 52

Comments 53
Using if statements 53
Loops 53
Macros 55
Flask-specific variables and functions 55

The config object 56
The request object 56
The session object 56
The url_for() function 56
The get_flashed_messages() function 57

Creating our views 58
The view function 58
Writing the templates and inheritance 60

The base template 61
The child templates 64
Writing the other templates 67

Flask WTForms 68
WTForms basics 69
Custom validations 70
Posting comments 71

Summary 74

Chapter 4: Creating Controllers with Blueprints 75
Sessions and globals 75
Request setup and teardown 76
Error pages 77
Class-based views 78

Method class views 81
Blueprints 81
Summary 84

Chapter 5: Advanced Application Structure 85

WOW! eBook
www.wowebook.org

Table of Contents

[iii]

Modular application 85
Refactoring the code 87

Application factories 89
Summary 91

Chapter 6: Securing Your App 92
Authentication methods 93

Basic authentication 93
Remote-user authentication 94
LDAP authentication 95
Database user model authentication 97
OpenID and OAuth 97

Flask-Login overview 100
Setting up 101
Updating the models 103
Creating the forms 106
Protecting your form from spam 107
Creating views 109

OpenID 114
OAuth 117
Role-based access control (RBAC) 119
Summary 122

Chapter 7: Using NoSQL with Flask 123
Types of NoSQL database 124

Key-value stores 124
Document stores 125
Column family stores 125
Graph databases 128

RDBMS versus NoSQL 129
The strengths of RDBMS databases 129

Data integrity 130
Speed and scale 130
Tools 131

The strengths of NoSQL databases 131
CAP theorem 132
What database to use and when 135

MongoDB in Flask 136
Installing MongoDB 136
Setting up MongoEngine 137
Defining documents 138

Field types 139
Types of documents 141
The meta attribute 141

CRUD 143
Create 143

WOW! eBook
www.wowebook.org

Table of Contents

[iv]

Write safety 144
Read 144

Filtering 146
Update 147
Delete 148

Relationships in NoSQL 148
One-to-many relationships 149
Many-to-many relationships 150

Leveraging the power of NoSQL 151
Summary 156

Chapter 8: Building RESTful APIs 157
What is REST? 157

HTTP 158
REST definition and best practices 160

Setting up a RESTful Flask API 164
JWT authentication 167
Get requests 170

Output formatting 170
Request arguments 173

Post requests 176
Put requests 178
Delete requests 180
Summary 180

Chapter 9: Creating Asynchronous Tasks with Celery 181
What is Celery? 182
Setting up Celery and RabbitMQ 183
Creating tasks in Celery 185
Running Celery tasks 189

Celery workflows 190
Partials 191
Callbacks 191
Group 192
Chain 192
Chord 193
Running tasks periodically 193

Monitoring Celery 195
Web-based monitoring with Flower 196

Creating a reminder app 198
Creating a weekly digest 199
Summary 202

Chapter 10: Useful Flask Extensions 203
Flask CLI 203
Flask Debug Toolbar 206

WOW! eBook
www.wowebook.org

Table of Contents

[v]

Flask Caching 208
Caching views and functions 209
Caching functions with parameters 210
Caching routes with query strings 211
Using Redis as a cache backend 212
Using memcached as a cache backend 213

Flask Assets 214
Flask Admin 216

Creating basic admin pages 218
Creating database admin pages 220
Enhancing administration for the post page 221
Creating file system admin pages 224
Securing Flask Admin 224

Flask-Babel 225
Flask Mail 229
Summary 230

Chapter 11: Building Your Own Extension 231
Creating a YouTube Flask extension 231

Creating a Python package 234
Creating blog posts with videos 236

Modifying the response with Flask extensions 238
Summary 240

Chapter 12: Testing Flask Apps 241
What are unit tests? 241
How does testing work? 242
Unit testing the application 243

Testing the route functions 243
Testing security 247
Testing the REST API 249

User interface testing 250
Test coverage 256
Test-driven development 258
Summary 260

Chapter 13: Deploying Flask Apps 261
Web servers and gateway interfaces 261

Gevent 262
Tornado 263
Nginx and uWSGI 264
Apache and uWSGI 266

Deploying on Heroku 267
Using Heroku Postgres 269
Using Celery on Heroku 269

WOW! eBook
www.wowebook.org

Table of Contents

[vi]

Deploying on Amazon Web Services 271
Using Flask on Amazon Elastic Beanstalk 271
Using Amazon RDS 274
Using Celery with Amazon SQS 275

Using Docker 277
Creating Docker images 278
Docker Compose 281
Deploying Docker containers on AWS 284

CloudFormation Basics 284
Create and update a CloudFormation stack 292

Building and deploying highly available applications readily 294
Building and deploying reliably 294
Creating highly available applications that scale 301
Monitoring and collecting logs 303

Summary 304

Other Books You May Enjoy 305

Index 308

WOW! eBook
www.wowebook.org

Preface
Flask is a microframework with a very well designed API, designed to provide the
minimum amount of functionality that is needed to create web applications. It does what
it's designed to do really well. Unlike other web frameworks, Flask does not have an entire
ecosystem bundled with it, no out-of-the-box features to handle databases, cache, security
or form handling.

The goal of this concept is to allow programmers to design their applications or tools any
way they want, no structure or design is imposed. However, because Flask community is
rather large, you can find a wide range of extensions that will help you leverage Flask with
a huge set of technologies. One of the main focuses of this book is to introduce these
extensions and find out how they can help to avoid reinventing the wheel. The best part
about these extensions is that if you don't need their extra functionalities, you don't need to
include them and your app will remain small.

This book will help you structure your application to easily scale up to any size. Using
packages and a simple and predictable namespace is paramount to keep maintainability
and boost team productivity. This is why the other main focus of this book is how to create
a Model View Controller (MVC) architecture with Flask apps.

Modern applications must go beyond well-structured code. Security, dependency isolation,
environment configuration, development/production parity and ability to scale on load are
factors that must not be neglected. Throughout this book, you will learn how to address
these issues, identify possible risks and think ahead of time.

A large amount of research and a lot of first-hand experience of what can go wrong when
developing and deploying web applications has been poured into this book. I sincerely
hope you will enjoy reading it.

Who this book is for
The ideal target audience for this book is Python developers who want to use Flask and its
advanced features to create enterprise grade and lightweight applications. The book is for
those who have had some exposure of Flask and want of take their skills from introductory
to master level.

WOW! eBook
www.wowebook.org

Preface

[2]

What this book covers
Chapter 1, Getting Started, helps readers set up a Flask environment for development using
the best practices for Python projects. You are given a very basic skeleton Flask app that is
built throughout the book.

Chapter 2, Creating Models with SQLAlchemy, shows how to use the Python database library
SQLAlchemy in conjunction with Flask to create an object-oriented API for your database.

Chapter 3, Creating Views with Templates, shows how to use Flask's templating system, Jinja,
to dynamically create HTML by leveraging your SQLAlchemy models.

Chapter 4, Creating Controllers with Blueprints, covers how to use Flask's blueprints feature
in order to organize your view code while also avoiding repeating yourself.

Chapter 5, Advanced Application Structure, uses the knowledge gained in the last four
chapters, explains how to reorganize the code files in order to create a more maintainable
and testable application structure.

Chapter 6, Securing Your App, explains how to use various Flask extensions in order to add
a login system with permissions-based access to each view.

Chapter 7, Using NoSQL with Flask, shows what a NoSQL database is and how to integrate
one into your application when it allows more powerful features.

Chapter 8, Building RESTful APIs, shows how to provide the data stored in the
application's database to third parties in a secure and easy-to-use manner.

Chapter 9, Creating Asynchronous Tasks with Celery, explains how to move expensive or
time-consuming programs to the background so the application does not slow down.

Chapter 10, Useful Flask Extensions, explains how to leverage popular Flask extensions in
order to make your app faster, add more features, and make debugging easier.

Chapter 11, Building Your Own Extension, teaches you how Flask extensions work and how
to create your own.

Chapter 12, Testing Flask Apps, explains how to add unit tests and user interface tests to
your app for quality assurance and reducing the amount of buggy code.

Chapter 13, Deploying Flask Apps, explains how to take your completed app from
development to being hosted on a live server.

WOW! eBook
www.wowebook.org

Preface

[3]

To get the most out of this book
To get started with this book, all you will need is a text editor of your choice, a web
browser, and Python installed on your machine.
Windows, Mac OS X, and Linux users should all be able to easily follow along with
the content of this book.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/​/​github.​com/
PacktPublishing/​Mastering-​Flask-​Web-​Development-​Second-​Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github.​com/​PacktPublishing/​. Check them out!

WOW! eBook
www.wowebook.org

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Flask-Web-Development-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

from flask import g
....
Set some key with some value on a request context
g.some_key = "some_value"
Get a key
v = g.some_key
Get and remove a key
v = g.pop('some_key', "default_if_not_present")

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

from flask import Flask, render_template
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate

db = SQLAlchemy()
migrate = Migrate()

Any command-line input or output is written as follows:

$ source env/bin/activate
$ pip install -r requirements.txt

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

WOW! eBook
www.wowebook.org

Preface

[5]

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

WOW! eBook
www.wowebook.org

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Getting Started

Over the course of this book, you will be introduced to multiple concepts that will enable
you to build a complete modern web application. You will progress from a "Hello
world" web page to a complete web application that uses databases, caches, asynchronous
task processing, authentication, role-based access, a REST API, and internationalization.
You will learn a comprehensive way of structuring your application so that it can grow
effortlessly. To choose between SQL and NoSQL technologies, you will learn how to use
the most common Flask extensions to help you leverage multiple technologies, from
sending emails to authentication using social media accounts. Toward the end, you will
learn how to write tests, build a modern continuous integration/delivery pipeline with
Docker and Jenkins, deploy your application to multiple cloud services, and know how to
deal with high availability and scaling. We will tackle all of these topics with a simple and
practical approach.

Flask is the Python web framework that we are going to use. It has a very well-designed
API, is very easy to learn, and makes no assumptions whatsoever as to what technology
stack you are going to use, so it won't get in your way. Flask has a micro footprint, but
leverages an extension system that contains hundreds of packages from a very active and
vibrant community.

In this first chapter, you will learn how to set up your development environment and build
your first Flask application. We will be covering the following topics:

Setting up and learning how to use Git, a powerful version control system
Learning pip, the Python management system, and how to create virtual
environments with different setups
Setting up and learning the basic facts about Docker
Building a first simple Flask application

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[7]

Version control with Git
Using Python or any other language requires you to use a version control system. A version
control system is a tool that records changes in files over time. This allows a programmer to
revert to an earlier version of the file and identify bugs more easily. You can test new ideas
without fear of breaking your current code, and your team can work using a predefined
workflow without stepping on each others' toes. Git was developed by Linus Torvalds, the
father of Linux. It's decentralized, light, and has great features that get the job done the
right way.

Installing Git
Installing Git is very simple. Simply go to http://www.git-scm.com/downloads and click
on the operating system (OS) that is being run. A program will begin to download will
walk you through the basic installation process.

Git on Windows
Git was originally solely developed for Unix OSes (for example, Linux and macOS X).
Consequently, using Git on Windows is not seamless. During the installation, the installer
will ask whether you want to install Git alongside the normal Windows Command Prompt.
Do not pick this option. Choose the default option that will install a new type of command
processor on your system named Bash (Bourne-again shell), which is the same command
processor that the Unix systems use. Bash is much more powerful than the default
Windows command line, and this is what we will be using for all the examples in this book.

A good introduction to Bash for beginners can be found at http:/​/
linuxcommand.​org.

Git basics
Git is a very complex tool; only the basics that are needed for this book will be covered in
this section.

WOW! eBook
www.wowebook.org

http://www.git-scm.com/downloads
http://linuxcommand.org
http://linuxcommand.org
http://linuxcommand.org
http://linuxcommand.org
http://linuxcommand.org
http://linuxcommand.org

Getting Started Chapter 1

[8]

To learn more, refer to the Git documentation at
http://www.git-scm.com/doc.

Git does not track your changes automatically. In order for Git to run properly, we have to
give it the following information:

Which folders to track
When to save the state of the code
What to track and what not to track

Before we can do anything, we have to tell Git to initialize a new git repository in our
directory. Run the following code on your Terminal:

$ git init

Git will now start to track changes in our project. As git tracks our files, we can see the
status of our tracked files and any files that are not tracked by typing the following
command:

$ git status

Now we can save our first commit, which is a snapshot of our code at the time that we run
the commit command:

In Bash, comments are marked with a #, just like Python
Add any files that have changes and you wish to save in this
commit
$ git add main.py
Commit the changes, add in your commit message with -m
$ git commit -m "Our first commit"

Now, at any point in the future, we can return to this point in our project. Adding files that
are to be committed is called staging files in Git. Remember that you should only add stage
files if you are ready to commit them. Once the files are staged, any further changes will not
be staged. For an example of more advanced Git usage, add any text to your main.py file
with your text editor and then run the following:

 # To see the changes from the last commit
 $ git diff
 # To see the history of your changes
 $ git log
 # As an example, we will stage main.py
 # and then remove any added files from the stage

WOW! eBook
www.wowebook.org

http://www.git-scm.com/doc

Getting Started Chapter 1

[9]

 $ git add main.py
 $ git status
 $ git reset HEAD main.py
 # After any complicated changes, be sure to run status
 # to make sure everything went well
 $ git status
 # lets delete the changes to main.py, reverting to its state at the
 # last commit # This can only be run on files that aren't staged
 $ git checkout -- main.py

Your terminal should look something like the following:

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[10]

Note that in the preceding example I have modified the main.py file by adding the
comment # Changed to show the git diff command.

One important step to include in every Git repository is a .gitignore file. This file tells
Git what files to ignore. This way you can safely commit and add all your files. The
following are some common files that you can ignore:

Python's byte code files (*.pyc)
Databases (specially for our examples using SQLLite database files) (*.db)
Secrets (never push secrets (password, keys, and so on) to your repositories)
IDE metadata files (.idea)
The Virtualenv directory (env or venv)

Here's a simple example of a gitignore file:

*.pyc
*.pem
*.pub
*.tar.gz
*.zip
*.sql
*.db
secrets.txt
./tmp
./build/*
.idea/*
.idea
env
venv

Now we can safely add all the files to git and commit them:

 $ git add --all
 $ git status
 $ git commit -a -m "Added gitignore and all the projects missing
 files"

The Git system's checkout command is rather advanced for this simple introduction, but it
is used to change the current status of the Git system's HEAD pointer, which refers to the
current location of our code in the history of our project. This will be shown in the next
example.

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[11]

Now, if we wish to see the code in a previous commit, we should first run the following
command:

$ git log
commit cd88be37f12fb596be743ccba7e8283dd567ac05 (HEAD -> master)
Author: Daniel Gaspar
Date: Sun May 6 16:59:46 2018 +0100

Added gitignore and all the projects missing files
commit beb471198369e64a8ee8f6e602acc97250dce3cd
Author: Daniel Gaspar
Date: Fri May 4 19:06:57 2018 +0100

Our first commit

The string of characters next to our commit message, beb4711, is called the hash of our
commit. It is the unique identifier of the commit that we can use to return to the saved
state. Now, to take the project back to the previous state, run the following command:

$ git checkout beb4711

Your Git project is now in a special state where any changes or commits will neither be
saved nor affect any commits that were made after the one you checked out. This state is
just for viewing old code. To return to the normal mode of Git, run the following command:

$ git checkout master

Git branches and flow
Source control branches are an important feature that works great in team projects. A
developer can create a new line of code from a specific point in time, revision, or tag. In this
way, developing new features, creating releases, and making bugfixes or hotfixes can be
done safely and subjected to team revision, and/or automatic integration tools (such as
tests, code coverage, lint tools). A branch can be merged with other branches until it finally
reaches the main line of code, called the master branch.

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[12]

But let's get our hands on a practical exercise. Let's say that we want to develop a new
feature. Our first chapter example displays the traditional "Hello World" message, but we
want it to say "good morning" to the users. First, we create a branch from a special branch
called the feature/good-morning that for now is a copy of the master branch, as shown
in the following code:

Display our branches
$ git branch
* master
Create a branch called feature/good-morning from master
$ git branch feature/good-morning
Display our branches again
$ git branch
 feature/good-morning
* master
Check out the new feature/good-morning branch
$ git checkout feature/good-morning

This could be resumed to the following:

$ git checkout -b feature/good-morning master

Now let's change our code to display good morning to the visitors of a certain URL, along
with their names. To do this, we change main.py, which looks like the following code:

@app.route('/')
def home():
 return '<h1>Hello world</h1>'

We change main.py to the following:

@app.route('/username')
def home():
 return '<h1>Good Morning %s</h1>' % username

Let's look at what we have done:

$ git diff
diff --git a/main.py b/main.py
index 3e0aacc..1a930d9 100755
--- a/main.py
+++ b/main.py
@@ -5,9 +5,9 @@ app = Flask(__name__)
 app.config.from_object(DevConfig)

 # Changed to show the git diff command
-@app.route('/')
-def home():

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[13]

- return '<h1>Hello World!</h1>'
+@app.route('/<username>')
+def home(username):
+ return '<h1>Good Morning %s</h1>' % username

 if __name__ == '__main__':
 app.run()

Looks good. Let's commit, as shown in the following code:

$ git commit -m "Display good morning because its nice"
[feature/good-morning d4f7fb8] Display good morning because its nice
 1 file changed, 3 insertions(+), 3 deletions(-)

Now, if we were working as part of a team, or if our work was open source (or if we just
wanted to back up our work), we should upload (push) our code to a centralized remote
origin. One way of doing this is to push our code to a version control system, such
as Bitbucket or GitHub, and then open a pull request to the master branch. This pull
request will show our changes. As such, it may need approval from other team members,
and many other features that these systems can provide.

One example of a pull request on the Flask project can be found
at https:/​/​github.​com/​pallets/​flask/​pull/​1767.

For our example, let's just merge to the master, as shown in the following code:

Get back to the master branch
$ git checkout master
Switched to branch 'master'
bash-3.2$ git log
commit 139d121d6ecc7508e1017f364e6eb2e4c5f57d83 (HEAD -> master)
Author: Daniel Gaspar
Date: Fri May 4 23:32:42 2018 +0100

 Our first commit
Merge our feature into the master branch
$ git merge feature/good-morning
Updating 139d121..5d44a43
Fast-forward
 main.py | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)
bash-3.2$ git log
commit 5d44a4380200f374c879ec1f7bda055f31243263 (HEAD -> master,
feature/good-morning)
Author: Daniel Gaspar

WOW! eBook
www.wowebook.org

https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767
https://github.com/pallets/flask/pull/1767

Getting Started Chapter 1

[14]

Date: Fri May 4 23:34:06 2018 +0100

Display good morning because its nice

commit 139d121d6ecc7508e1017f364e6eb2e4c5f57d83
Author: Daniel Gaspar <daniel.gaspar@miniclip.com>
Date: Fri May 4 23:32:42 2018 +0100

Our first commit

As you can see from the output, Git uses the fast-forward strategy by default. If we wanted
to keep an extra commit log message that mentions the merge itself, then we could have
used the --no-ff flag on the git merge command. This flag will disable the fast-forward
merging strategy.

For more details, go to https:/​/​git-​scm.​com/​book/​en/​v2/​Git-
Branching-​Basic-​Branching-​and-​Merging.

Now imagine that we regret our change and want to revert the feature that we have just
created back to an earlier version. To do this, we can use the following code:

$ git revert

With Git, you can actually delete your commits, but this is considered a really bad practice.
Note that the revert command did not delete our merge, but created a new commit with
the reverted changes. It's considered a good practice not to rewrite the past.

What was shown is a feature branch simple workflow. With big teams or projects, the use
of more complex workflows is normally adopted to better isolate features, fixes, and
releases, and to keep a stable line of code. This is what is proposed when using the git-flow
process.

Now that we have a version control system, we are ready to cover Python's package
management system.

WOW! eBook
www.wowebook.org

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Getting Started Chapter 1

[15]

Python package management with pip
In Python, programmers can download libraries from other programmers that extend the
functionality of the standard Python library. As you already know from using Flask, a lot of
Python's power comes from its large number of community-created libraries.

However, installing third-party libraries can be a huge pain to do correctly. Say that you
want to install package X. Simple enough: download the ZIP file and run setup.py, right?
Not quite. Package X relies on package Y, which in turn relies on Z and Q. None of this
information was listed on package X's website, but these packages need to be installed for X
to work at all. You then have to find all of the packages one by one and install them, and
then hope that the packages you are installing don't require any extra packages themselves.

In order to automate this process, we use pip, the Python package manager.

Installing the Python package manager on
Windows
If you are using Windows, and your previously installed version of Python is the current
version, then you already have pip! If your Python installation is not the most recent
version, then the easiest thing to do is to simply reinstall it. Download the Python Windows
installer at https://www.python.org/downloads/.

In Windows, the variable that controls which programs are accessible from the command
line is the path. To modify our path to include Python and pip, we have to add
C:\Python27 and C:\Python27\Tools. Edit the Windows path by opening the
Windows menu, right-clicking on Computer, and clicking on Properties. Under Advanced
system settings, click Environment Variables.... Scroll down until you find Path, double-
click on it, and add ;C:\Python27;C:\Python27\Tools to the end.

To make sure that you have modified your path correctly, close and reopen your Terminal
and type the following into the command line:

pip --help

WOW! eBook
www.wowebook.org

https://www.python.org/downloads/

Getting Started Chapter 1

[16]

Pip should have printed its usage message, as shown in the following screenshot:

Installing pip Python package manager on
macOS X and Linux
Some Python installations of Linux do not come with pip, and Mac OS X's installations
doesn't come with pip by default. If you are using Python 2.7, then you may need to install
pip, but pip is already included in Python 3.4, and in later versions. You can check this
using the following:

$ python3 -m pip list

If you need to install it, download the get-pip.py file from https:/​/​bootstrap.​pypa.​io/
get-​pip.​py.

Once you have downloaded it, run it with elevated privileges using the following code:

Download and install pip
$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py

WOW! eBook
www.wowebook.org

https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py

Getting Started Chapter 1

[17]

Once this has been entered, pip will be installed automatically.

Pip basics
We are now going to learn the basic commands for using Python package manager. To
install a package with pip, enter the following code:

$ pip install [package-name]

On Mac and Linux, because you are installing programs outside of the user-owned folders,
you might have to prepend sudo to the install commands. To install Flask, simply run
the following:

$ pip install flask

Once you have done this, all of the requirements that you need for using Flask will be
installed for you.

If you want to remove a package that you are no longer using, run the following:

$ pip uninstall [package-name]

If you wish to explore or find a package, but don't know its exact name, you can use the
search command:

$ pip search [search-term]

Now that we have a couple of packages installed, it is common courtesy in the Python
community to create a list of packages that are required to run the project so that others can
quickly install every necessary package. This also has the added benefit that any new
member of your project will be able to run your code quickly.

This list can be created with pip by running the following command:

$ pip freeze > requirements.txt

What exactly did this command do? The pip freeze command automatically prints out a
list of the installed packages and their versions. For our example, it prints the following:

click==6.7
Flask==0.12.4
itsdangerous==0.24
Jinja2==2.10
MarkupSafe==1.0
Werkzeug==0.14.1

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[18]

The > operator tells Bash to take everything printed by the last command and write it to
this file. If you look in your project directory, you can see a new file named
requirements.txt that contains the output of pip freeze.

To install all the packages from this file, a new project maintainer would have to run this, as
shown in the following code. Normally, this will also be used to deploy the production
environment of your project:

$ pip install -r requirements.txt

The preceding code tells pip to read all the packages listed in requirements.txt and
install them.

Dependency sandboxing with virtualenv
So you have installed all the packages that you want for your new project. Great! But what
happens when we develop a second project some time later that will use newer versions of
the same packages? And what happens when a library that you wish to use depends on a
library that you installed for the first project, but which uses an older version of these
packages? When newer versions of packages contain breaking changes, upgrading them
would require extra development work on an older project that you may not be able to
afford. So in our system, we could have clashing Python packages between projects.

We should also consider automated build environments, such as Jenkins, where we want
to run tests. These builds may run on the same system on which other projects are being
built, so it's essential that during the build jobs we create a contained Python package
environment that is not shared between jobs. This environment is created from the
information in the requirements.txt file that we created earlier. This way, multiple
Python applications can be built and tested on the same system without clashing with each
other.

Thankfully, there is virtualenv, a tool that sandboxes your Python projects. The secret to
virtualenv is in tricking your computer to look for and install packages in the project
directory rather than in the main Python directory, which allows you to keep them
completely separate.

If you're using Python 3—and I recommend that you do, because Python 2 support will end
in 2020—then you don't have to install virtualenv; you can use it just by running it like a
package, as shown in the following code:

Create a python 3 virtualenv
$ python3 -m venv env

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[19]

Now that we have pip, if we need to install virtualenv, then we can just run the
following command:

$ pip install virtualenv

Virtualenv basics
Let's initialize virtualenv for our project, as follows:

$ virtualenv env

The extra env tells virtualenv to store all the packages in a folder named env. Virtualenv
requires you to start it before it will sandbox your project. You can do this using the
following code:

$ source env/bin/activate
Your prompt should now look like
(env) $

The source command tells Bash to run the env/bin/activate script in the context of the
current directory. Let's reinstall Flask in our new sandbox, as follows:

you won't need sudo anymore
(env) $ pip install flask
To return to the global Python
(env) $ deactivate

Setting up Docker
Your development projects normally need more then a web server application layer; you
will most definitely need some kind of database system. You might be using a cache, redis,
workers with Celery, a messaging queuing system, or something else. Normally, all of the
systems that are needed for your application to work are collectively referred to as stack.
One simple way to easily define and quickly spawn all these components is to use Docker
containers. With Docker, you define all of your application components and how to install
and configure them, and you can then share your stack with your team, and send it to
production with the exact same specification.

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[20]

You can download and install Docker from https:/​/​docs.​docker.​com/​install/​.

First, let's create a very simple Dockerfile. This file defines how to set up your application.
Each line will serve as a container layer for very fast rebuilds. A very simple Dockerfile will
look like the following:

FROM python:3.6.5
Set the working directory to /app
WORKDIR /app
Copy local contents into the container
ADD . /app
Install all required dependencies
RUN pip install -r requirements.txt
EXPOSE 5000
CMD ["python", "main.py"]

Next, let's build out first container image. We will tag it as chapter_1 for further ease of
use, as shown in the following code:

$ docker build -t chapter_1 .

Then we will run it, as shown in the following code:

$ docker run -p 5000:5000 chapter_1
List all the running containers
$ docker container list

Docker is easy, but it's a complex tool with lots of options for configuring and deploying
containers. We will look at Docker in more detail in Chapter 13, Deploying Flask Apps.

The beginning of our project
Finally, we can get to our first Flask project. In order to build a complex project at the end
of this book, we will need a simple Flask project to start us off.

WOW! eBook
www.wowebook.org

https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/

Getting Started Chapter 1

[21]

Simple application
Flask is very powerful, but will most definitely not get in your way. You can use it to create
a simple web application using a single file. Our aim is to create a project that is structured
in a way that it can scale and be easy to understand. For now, we will create a config file
first. In the file named config.py, add the following:

class Config(object):
 pass

class ProdConfig(Config):
 pass

class DevConfig(Config):
 DEBUG = True

Now, in another file named main.py, add the following:

from flask import Flask
from config import DevConfig

app = Flask(__name__)
app.config.from_object(DevConfig)

@app.route('/')
def home():
 return '<h1>Hello World!</h1>'

if __name__ == '__main__':
 app.run()

For anyone who is familiar with the base Flask API, this program is very basic. It will
simply show Hello World! on the browser if we navigate to http://127.0.0.1:5000.
One point that may be unfamiliar to Flask users is the use of the
phrase config.from_object rather than app.config['DEBUG']. We use from_object
because in future, multiple configurations will be used, and manually changing every
variable when we need to switch between configurations is time consuming.

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[22]

Project structure
We have created a very simple project structure, but can it serve as the base skeleton for
any Python project. In Chapter 5, Advanced Application Structure, we will get our hands on a
more scalable structure, but for now, let's go back to our environment, as shown in the
following code:

Dockerfile # Instructions to configure and run our application on a
container
requirements.txt # All the dependencies needed to run our application
/venv # We will not add this folder to our Git repo, our virtualenv
.gitignore # Instruction for Git to ignore files
main.py # Our main Flask application
config.py # Our configuration file

Remember to commit these changes in Git, as shown in the following code:

The --all flag will tell git to stage all changes you have made
including deletions and new files
$ git add --all
$ git commit -m" ""created the base application"

You will no longer be reminded of when to commit your changes to Git. It
is up to you to develop the habit of committing whenever you reach a
stopping point. It is also assumed that you will be operating inside the
virtual environment, so all command-line prompts will not be prefixed
with (env).

Using Flask's command-line interface
In order to make the next chapters easier for the reader, we will look at how to use the Flask
CLI (using version 0.11 onward). The CLI allows programmers to create commands that act
within the application context of Flask—that is, the state in Flask that allows the
modification of the Flask object. The Flask CLI comes with some default commands to run
the server and a Python shell in the application context.

Let's take a look at the Flask CLI and how to initialize it. First, we must tell it how to
discover our application using the following code:

$ export FLASK_APP=main.py

WOW! eBook
www.wowebook.org

Getting Started Chapter 1

[23]

Then, we will use the Flask CLI to run our application using the following code:

$ flask run

Now, let's enter the shell on the application context and see how to get all the defined URL
routes, using the following code:

$ flask shell
Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 03:03:55)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
App: main [debug]
Instance: /chapter_1/instance
>>> app.url_map
Map([<Rule '/' (OPTIONS, GET, HEAD) -> home>,
 <Rule '/static/<filename>' (OPTIONS, GET, HEAD) -> static>])

As you can see, we already have two routes defined: the / where we display the "Hello
World" sentence and the static default route created by Flask. Some other useful
information shows where Flask thinks our templates and static folders are, as shown in the
following code:

>>> app.static_folder
/chapter_1/static'
>>> app.template_folder
'templates'

Flask CLI, uses the click library from the creator of Flask itself. It was designed to be
easily extensible so that the Flask extensions can extend it and implement new commands
that are available when you use them. We should indeed extend it—it makes it more useful
to extend it ourselves. This is the right way to create management commands for our
applications. Think about commands that you can use to migrate database schemas, create
users, prune data, and so on.

Summary
Now that we have set up our development environment, we can move on to implementing
advanced application features in Flask. Before we can do anything visual, we need content
to display. This content will be kept on a database. In the next chapter, you will be
introduced to working with databases in Flask, and you will learn how master them.

WOW! eBook
www.wowebook.org

2
Creating Models with

SQLAlchemy
As we saw in the last chapter, models are a means of abstracting and providing a common
interface to access data. In most web applications, data is stored and retrieved from a
relational database management system (RDBMS), which is a database that holds data in
a tabular format with rows and columns and is able to implement a relational model with
data across tables. Some examples include MySQL, Postgres, Oracle, and MSSQL.

In order to create models on top of our database, we will use a Python package named
SQLAlchemy. SQLAlchemy is a database API at its lowest level, and performs object
relational mapping at its highest level. An ORM (object relational mapper) is a tool that
allows developers to store and retrieve data using object-oriented approaches and solve
object-relational mismatches—a set of conceptual and technical difficulties that are often
encountered when a relational database management system is being used by a program
that is written in an object-oriented programming language. Relational and object-oriented
models are so different that additional code and functionalities are required to make them
work together efficiently. This creates a virtual object database and converts data between
the large number of types in databases into the mix of types and objects in Python. Also, a
programming language, such as Python, allows you to have different objects that hold
references to each other, and to get and set their attributes. An ORM, such as SQLAlchemy,
helps translate these when inserting them into a traditional database.

In order to tie SQLAlchemy into our application context, we will use Flask SQLAlchemy.
Flask SQLAlchemy is a convenience layer on top of SQLAlchemy that provides useful
defaults and Flask-specific functions. If you are already familiar with SQLAlchemy, then
you are free to use it without Flask SQLAlchemy.

By the end of this chapter, we will have a full database schema of our blogging application,
as well as models that interact with that schema.

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[25]

In this chapter, we'll cover the following topics:

Designing database tables and relationships using SQLAlchemy
Creating, reading, updating, and deleting models
Learning to define model relationships, constraints, and indexes
Creating automatic database migrations

Setting up SQLAlchemy
In order to go through the exercises in this chapter, you will need a running database, if
you do not already have one. If you have never installed a database, or you do not have a
preference, then SQLite is the best option for beginners, or if you want to quickly bootstrap
a proof of concept.

SQLite is an SQL-embedded database engine that is fast, works without a server, and is
entirely contained in one file. SQLite is also natively supported in Python, so if you choose
to go with SQLite, an SQLite database will be automatically created for you during the
exercise in the Our first model section.

Python packages
Flask SQLAlchemy can be used with multiple database engines, such as ORACLE, MSSQL,
MySQL, PostgreSQL, SQLite, and Sybase, but we need to install additional specific
packages for these engines. Now it is time to bootstrap our project by creating a new virtual
environment for all our application's dependencies. This virtual environment will be used
for our blogging application. Enter the following code:

$ virtualenv env

Then, in requirements.txt, add the following code to install the package:

flask-sqlalchemy

You will also need to install specific packages for your chosen database that will act as the
connector for SQLAlchemy, so add the specific packages for your engine in
requirements.txt, as shown in the following code. SQLite users can skip this step:

 # MySQL
 PyMySQL
 # Postgres
 psycopg2

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[26]

 # MSSQL
 pyodbc
 # Oracle
 cx_Oracle

Finally, activate and install the dependencies using the following code:

$ source env/bin/activate
$ pip install -r requirements.txt

Flask SQLAlchemy
Before we can abstract our data, we need to set up Flask SQLAlchemy. SQLAlchemy
creates its database connection through a special database URI. This is a string that looks
like a URL that contains all the information that SQLAlchemy needs to connect. It takes the
general form of the following code:

databasetype+driver://user:password@host:port/db_name

For each driver that you installed previously, the URI would be as follows:

SQLite connection string/uri is a path to the database file - relative or
absolute.
sqlite:///database.db
MySQL
mysql+pymysql://user:password@ip:port/db_name
Postgres
postgresql+psycopg2://user:password@ip:port/db_name
MSSQL
mssql+pyodbc://user:password@dsn_name
Oracle
oracle+cx_oracle://user:password@ip:port/db_name

In our config.py file, add the URI to the DevConfig file with the following:

class DevConfig(Config):
 debug = True
 SQLALCHEMY_DATABASE_URI = "YOUR URI"

Our first model
You may have noticed that we did not actually create any tables in our database to abstract
from. This is because SQLAlchemy allows us to create either models from tables or tables
from our models. We will look at this after we have created the first model.

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[27]

In our main.py file, SQLAlchemy must first be initialized with our app as follows:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from config import DevConfig

app = Flask(__name__)
app.config.from_object(DevConfig)
db = SQLAlchemy(app)

SQLAlchemy will read our app's configuration and automatically connect to our database.
Let's create a User model to interact with a user table in the main.py file, as follows:

class User(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 username = db.Column(db.String(255))
 password = db.Column(db.String(255))

 def __init__(self, username):
 self.username = username

 def __repr__(self):
 return "<User '{}'>".format(self.username)

What have we accomplished? We now have a model that is based on a user table with three
columns. When we inherit from db.Model, the entire connection and communication with
the database will already be handled for us.

Each class variable that is the db.Column instance represents a column in the database.
There is an optional first argument in the db.Column instance that allows us to specify the
name of the column in the database. Without it, SQLAlchemy will assume that the name of
the variable is the same as the name of the column. Using this, optional variable would look
like the following:

username = db.Column('user_name', db.String(255))

The second argument to db.Column tells SQLAlchemy what type the column should be
treated as. The main types that we will work with in this book are as follows:

db.String

db.Text

db.Integer

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[28]

db.Float

db.Boolean

db.Date

db.DateTime

db.Time

What each type represents is rather simple, as shown in the following list:

The String and Text types take Python strings and translate them to the
varchar and text type columns, respectively.
The Integer and Float types take any Python number and translates it into the
correct type before inserting it into the database.
Boolean takes Python True or False statements and, if the database has a
boolean type, inserts a Boolean into the database. If there is no boolean type in
the database, SQLAlchemy automatically translates between Python Booleans
and a 0 or a 1 in the database.
The Date, DateTime, and Time types use the Python types of the same names
from the datetime native library and translates them into the database.

The String, Integer, and Float types take an extra argument that tells SQLAlchemy the
length limit of our column.

If you wish to truly understand how SQLAlchemy translates your code
into SQL queries, add the following to the DevConfig file,
SQLALCHEMY_ECHO = True.
This will print out the created queries to the Terminal. You may wish to
turn this feature off as you get further along in the book, as dozens of
queries could be printed to the terminal with every page load.

The primary_key argument tells SQLAlchemy that this column has the primary key index
on it. Each SQLAlchemy model requires a primary key to function. All object-relationally
mapped objects are linked to their database rows within the session via an identity map, a
pattern central to the unit of work mechanism implemented in SQLAlchemy. That's why
we need primary keys to be declared in the model.

SQLAlchemy will assume that the name of your table is the lowercase version of your
model class name. However, what if we want our table to be called something other than
user? To tell SQLAlchemy what name to use, add the __tablename__ class variable.

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[29]

This is also how you connect to tables that already exist in your database. Just place the
name of the table in the following string:

class User(db.Model):
 __tablename__ = 'user_table_name'

 id = db.Column(db.Integer(), primary_key=True)
 username = db.Column(db.String(255))
 password = db.Column(db.String(255))

We don't have to include the __init__ or __repr__ functions. If we don't, then
SQLAlchemy will automatically create an __init__ function that accepts the names and
values of your columns as keyword arguments.

Naming a table user using an ORM may lead to problems, since in
MySQL, user is a reserved word. One of the advantages of using an ORM
is that you can easily migrate your engine from SQLite to MySQL and
then to ORACLE, for example. One very easy fix would be to prefix your
schema and use.

Creating the user table
Using SQLAlchemy to do the heavy lifting, we will now create the user table in our
database. Update manage.py to the following:

from main import app, db, User

@app.shell_context_processor
def make_shell_context():
 return dict(app=app, db=db, User=User)

From now on, whenever we create a new model, we will import it and
add it to the returned dict.

This will allow us to work with our models in the Flask shell, because we are injecting. Run
the shell now and use db.create_all() to create all of the tables, as shown in the
following code:

 # Tell Flask where to load our shell context
 $ export FLASK_APP=manage.py
 $ flask shell
 >>> db.create_all()

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[30]

In your database, you should now see a table called users with the columns specified.
Also, if you are using SQLite, you should now see a file named database.db in your file
structure, as shown in the following code:

$ sqlite3 database.db .tables
user

CRUD
In every storage mechanism for data, there are four basic types of functions: create, read,
update, and delete (CRUD). These allow us to perform all the basic ways of manipulating
and viewing the data that is needed for our web apps. To use these functions, we will use
an object in the database named a session. Sessions will be explained later in the chapter,
but for now, think of them as a storage location for all of our changes to the database.

Creating models
To create a new row in your database using our models, add the model to the session and
commit objects. Adding an object to the session marks its changes for saving. Committing is
when the session is saved to the database, as follows:

 >>> user = User(username='fake_name')
 >>> db.session.add(user)
 >>> db.session.commit()

As you can see, adding a new row to our table is simple.

Reading models
After we have added data to our database, data can be queried using Model.query. For
those who use SQLAlchemy, this is shorthand for db.session.query(Model).

For our first example, use all() to get all rows from the user table as a list, as follows:

 >>> users = User.query.all()
 >>> users
 [<User 'fake_name'>]

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[31]

When the number of items in the database increases, this query process becomes slower. In
SQLAlchemy, as in SQL, we have the limit function to specify the total number of rows
we wish to work with:

 >>> users = User.query.limit(10).all()

By default, SQLAlchemy returns the records ordered by their primary keys. To control this,
we have the order_by function, which is given as follows:

 # ascending
 >>> users = User.query.order_by(User.username).all()
 # descending
 >>> users = User.query.order_by(User.username.desc()).all()

To return just one record, we use first() instead of all(), as follows:

>>> user = User.query.first()
>>> user.username
fake_name

To return one model by its primary key, use query.get(), as follows:

>>> user = User.query.get(1)
>>> user.username
fake_name

All these functions are chainable, which means that they can be appended onto each other
to modify the returned result. Those of you who are fluent in JavaScript will find the
following syntax familiar:

>>> users = User.query.order_by(
 User.username.desc()
).limit(10).first()

The first() and all() methods return a value, and therefore end the chain.

There is also a Flask-SQLAlchemy-specific method, called pagination, that can be used
rather than first() or all(). This is a convenient method that is designed to enable the
pagination feature that most websites use while displaying a long list of items. The first
parameter defines which page the query should return to and the second parameter defines
the number of items per page. So, if we passed 1 and 10 as the parameters, the first 10
objects would be returned.

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[32]

If we instead passed 2 and 10, then objects 11–20 would be returned, and so on. The
pagination method is different from the first() and all() methods because it returns a
pagination object rather than a list of models. For example, if we want to get the first 10
items of a fictional Post object for the first page in our blog, we would use the following:

>>> User.query.paginate(1, 10)
<flask_sqlalchemy.Pagination at 0x105118f50>

This object has several useful properties, as follows:

>>> page = User.query.paginate(1, 10)
returns the entities in the page
>>> page.items
[<User 'fake_name'>]
what page does this object represent
>>> page.page
1
How many pages are there
>>> page.pages
1
are there enough models to make the next or previous page
>>> page.has_prev, page.has_next
(False, False)
return the next or previous page pagination object
if one does not exist returns the current page
>>> page.prev(), page.next()
(<flask_sqlalchemy.Pagination at 0x10812da50>,
<flask_sqlalchemy.Pagination at 0x1081985d0>)

Filtering queries
Now we get to the actual power of SQL—that is, filtering results by a set of rules. To get a
list of models that satisfy a set of qualities, we use the query.filter_by filter. The
query.filter_by filter takes named arguments that represent the values we are looking
for in each column in the database. To get a list of all users with a username of fake_name,
we would use the following:

 >>> users = User.query.filter_by(username='fake_name').all()

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[33]

This example is filtering on one value, but multiple values can be passed to the filter_by
filter. Just like our previous functions, filter_by is chainable, as shown in the following
code:

 >>> users = User.query.order_by(User.username.desc())
 .filter_by(username='fake_name')
 .limit(2)
 .all()

The query.filter_by phrase only works if you know the exact values that you are
looking for. This is avoided by passing Python comparison statements to the query with
query.filter, as follows:

 >>> user = User.query.filter(
 User.id > 1
).all()

This is a simple example, but query.filter accepts any Python comparison. With
common Python types, such as integers, strings, and dates, the == operator can be
used for equality comparisons. If you had an integer, float, or date column, an
inequality statement could also be passed with the >, <, <=, and >= operators.

We can also translate complex SQL queries with SQLAlchemy functions. For example, to
use IN, OR, or NOT SQL comparisons, we would use the following:

 >>> from sqlalchemy.sql.expression import not_, or_
 >>> user = User.query.filter(
 User.username.in_(['fake_name']),
 User.password == None
).first()
 # find all of the users with a password
 >>> user = User.query.filter(
 not_(User.password == None)
).first()
 # all of these methods are able to be combined
 >>> user = User.query.filter(
 or_(not_(User.password == None), User.id >= 1)
).first()

In SQLAlchemy, comparisons to None are translated to comparisons to NULL.

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[34]

Updating models
To update the values of models that already exist, apply the update method to a query
object—that is, before you return the models with a method such as first() or all(), as
shown in the following code:

>>> User.query.filter_by(username='fake_name').update({
 'password': 'test'
})
The updated models have already been added to the session
>>> db.session.commit()

Deleting models
If we wish to remove a model from the database, we would use the following code:

>>> user = User.query.filter_by(username='fake_name').first()
>>> db.session.delete(user)
>>> db.session.commit()

Relationships between models
Relationships between models in SQLAlchemy are links between two or more models that
allow models to reference each other automatically. This allows naturally related data, such
as comments on posts, to be easily retrieved from the database with its related data. This is
where the R in RDBMS comes from, and it gives this type of database a large amount of
power.

Let's create our first relation. Our blogging website is going to need some blog posts. Each
blog post is going to be written by one user, so it makes sense to link posts back to the user
who wrote them so that we can easily get all the posts by a user. This is an example of a
one-to-many relationship, as shown in the following code:

SQLite and MySQL/MyISAM engines do not enforce relationship
constraints. This might cause problems if you are using SQLite on your
development environment and a different engine on production (MySQL
with innodb), but you can tell SQLite to enforce foreign key constraints
(with a performance penalty).

@event.listens_for(Engine, "connect")
def set_sqlite_pragma(dbapi_connection, connection_record):
 cursor = dbapi_connection.cursor()

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[35]

 cursor.execute("PRAGMA foreign_keys=ON")
 cursor.close()

One-to-many relationship
Let's add a model to represent the blog posts on our website:

class Post(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 title = db.Column(db.String(255))
 text = db.Column(db.Text())
 publish_date = db.Column(db.DateTime())
 user_id = db.Column(db.Integer(), db.ForeignKey('user.id'))

 def __init__(self, title):
 self.title = title

 def __repr__(self):
 return "<Post '{}'>".format(self.title)

Note the user_id column. Those who are familiar with RDBMSes will know that this
represents a foreign key constraint. A foreign key constraint is a rule in the database that
forces the value of user_id to exist in the id column in the user table. This is a check in the
database to make sure that Post will always refer to an existing user. The parameter to
db.ForeignKey is a string representation of the user ID field. If you have decided to call
your user table with __table_name__, then you must change this string. This string is
used instead of a direct reference with User.id because during initialization of
SQLAlchemy, the User object might not exist yet.

The user_id column itself is not enough to tell SQLAlchemy that we have a relationship.
We must modify our User model as follows:

class User(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 username = db.Column(db.String(255))
 password = db.Column(db.String(255))
 posts = db.relationship(
 'Post',
 backref='user',
 lazy='dynamic'
)

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[36]

The db.relationship function creates an attribute in SQLAlchemy that connects with
db.ForeignKey in our Post model. The first parameter is the name of the class that we are
referencing. We will cover what backref does soon, but what is the lazy parameter? The
lazy parameter controls how SQLAlchemy will load our related objects.
The subquery phrase would load our relations as soon as our Post object is loaded. This
cuts down the number of queries, but will slow down when the number of returned items
grows larger. In contrast, with the dynamic option, the related objects will be loaded upon
access and can be filtered down before returning. This is best if the number of returned
objects is or will become large.

We may now access the User.posts variable that will return a list of all the posts whose
user_id field equals our User.id. Let's try this now in our shell, as follows:

 >>> user = User.query.get(1)
 >>> new_post = Post('Post Title')
 >>> new_post.user_id = user.id
 >>> user.posts
 []
 >>> db.session.add(new_post)
 >>> db.session.commit()
 >>> user.posts
 [<Post 'Post Title'>]

Note that we were not able to access our post from our relationship without committing
our changes to the database.

The backref parameter gives us the ability to access and set our User class via
Post.user. This is given by the following code:

 >>> second_post = Post('Second Title')
 >>> second_post.user = user
 >>> db.session.add(second_post)
 >>> db.session.commit()
 >>> user.posts
 [<Post 'Post Title'>, <Post 'Second Title'>]

Because user.posts is a list, we could have also added our Post model to the list to save
it automatically, as follows:

 >>> second_post = Post('Second Title')
 >>> user.posts.append(second_post)
 >>> db.session.add(user)
 >>> db.session.commit()
 >>> user.posts
 [<Post 'Post Title'>, <Post 'Second Title'>]

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[37]

With the backref option as dynamic, we can treat our relation column as a query as well
as a list, as follows:

 >>> user.posts
 [<Post 'Post Title'>, <Post 'Second Title'>]
 >>> user.posts.order_by(Post.publish_date.desc()).all()
 [<Post 'Second Title'>, <Post 'Post Title'>]

Before we move on to our next relationship type, let's add another model for user
comments with a one-to-many relationship, which will be used in the book later on. We can
do this using the following code:

class Post(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 title = db.Column(db.String(255))
 text = db.Column(db.Text())
 publish_date = db.Column(db.DateTime())
 comments = db.relationship(
 'Comment',
 backref='post',
 lazy='dynamic'
)
 user_id = db.Column(db.Integer(), db.ForeignKey('user.id'))
 def __init__(self, title):
 self.title = title
 def __repr__(self):
 return "<Post '{}'>".format(self.title)

Note the __repr__ method signature in the preceding code. This is a built-in function in
Python that is used to return the string representation of the object. Next is the Comment
model, as shown in the following code:

class Comment(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 name = db.Column(db.String(255))
 text = db.Column(db.Text())
 date = db.Column(db.DateTime())
 post_id = db.Column(db.Integer(), db.ForeignKey('post.id'))
 def __repr__(self):
 return "<Comment '{}'>".format(self.text[:15])

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[38]

Many-to-many relationship
What if we have two models that can reference each other, but each model needs to
reference more than one of each type? In our example, our blog posts will need tags in
order for our users to easily group similar posts. Each tag can refer to many posts, but each
post can have multiple tags. This type of relationship is called a many-to-many
relationship. Consider the following example:

tags = db.Table('post_tags',
 db.Column('post_id', db.Integer, db.ForeignKey('post.id')),
 db.Column('tag_id', db.Integer, db.ForeignKey('tag.id'))
)

class Post(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 title = db.Column(db.String(255))
 text = db.Column(db.Text())
 publish_date = db.Column(db.DateTime())
 comments = db.relationship(
 'Comment',
 backref='post',
 lazy='dynamic'
)
 user_id = db.Column(db.Integer(), db.ForeignKey('user.id'))
 tags = db.relationship(
 'Tag',
 secondary=tags,
 backref=db.backref('posts', lazy='dynamic')
)

 def __init__(self, title):
 self.title = title
 def __repr__(self):
 return "<Post '{}'>".format(self.title)

class Tag(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 title = db.Column(db.String(255))
 def __init__(self, title):
 self.title = title
 def __repr__(self):
 return "<Tag '{}'>".format(self.title)

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[39]

The db.Table object is a lower-level access to the database than the abstraction of
db.Model. The db.Model object rests on top of db.Table and provides a representation of
specific rows in the table. The db.Table object is used because there is no need to access
the individual rows of the table.

The tags variable is used to represent the post_tags table, which contains two rows: one
that represents an ID of a post, and another that represents the ID of a tag. To illustrate how
this works, let's look at an example. Say that the table had the following data:

post_id tag_id
1 1
1 3
2 3
2 4
2 5
3 1
3 2

SQLAlchemy would translate this to the following:

A post with an ID of 1 has the tags with the IDs of 1 and 3
A post with an ID of 2 has the tags with the IDs of 3, 4, and 5
A post with an ID of 3 has the tags with the IDs of 1 and 2

You may describe this data as easily as tags being related to posts.

Before the db.relationship function sets up our relationship, this time it has the
secondary parameter. The secondary parameter tells SQLAlchemy that this relationship is
stored in the tags table, as shown in the following code:

 >>> post_one = Post.query.filter_by(title='Post Title').first()
 >>> post_two = Post.query.filter_by(title='Second Title').first()
 >>> tag_one = Tag('Python')
 >>> tag_two = Tag('SQLAlchemy')
 >>> tag_three = Tag('Flask')
 >>> post_one.tags = [tag_two]
 >>> post_two.tags = [tag_one, tag_two, tag_three]
 >>> tag_two.posts
 [<Post 'Post Title'>, <Post 'Second Title'>]
 >>> db.session.add(post_one)
 >>> db.session.add(post_two)
 >>> db.session.commit()

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[40]

As given in the one-to-many relationship, the main relationship column is just a list, the
main difference being that the backref option is now also a list. Because it's a list, we may
add posts to tags from the tag object, as follows:

 >>> tag_one.posts.append(post_one)
 [<Post 'Post Title'>, <Post 'Second Title'>]
 >>> post_one.tags
 [<Tag 'SQLAlchemy'>, <Tag 'Python'>]
 >>> db.session.add(tag_one)
 >>> db.session.commit()

Constraints and indexing
Using constraints is considered a good practice. This way, you can restrict the domain of a
certain model attribute and ensure data integrity and quality. There are many types of
constraints that you can use; primary key and foreign key constraints were already covered
in the previous sections. The other kinds of constraints that are supported by SQLAlchemy
are shown in the following list:

Not NULL (ensures that a certain attribute contains data)
UNIQUE (ensures that a certain attribute value is always unique in the database
table, which contains the model data)
DEFAULT (sets a default value for the attribute when no values were provided)
CHECK (used to specify range of values)

Using SQLAlchemy, you can ensure that your data's domain restrictions are explicit and all
in the same place, not spread across your application code.

Let's improve our models by setting some constraints on the data. First, we should not
accept NULL values for usernames on the user model, and ensure that a username is
always unique. We do this using the following code:

...
class User(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 username = db.Column(db.String(255), nullable=False, unique=True)
...

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[41]

The same principle applies to the rest of our models: A Post must always have a title, a
Comment is always made by someone, and a Tag always has a title, and this title value is
unique. We put these constraints in place using the following code:

...
class Post(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 title = db.Column(db.String(255), nullable=False)
...
class Comment(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 name = db.Column(db.String(255), nullable=False)
...
class Tag(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 title = db.Column(db.String(255), nullable=True, unique=True)
...

Default values are really nice; they ensure data quality, and make your code shorter. We
can let SQLAlchemy handle the date timestamp of when a comment or post was made
using the following code:

class Comment(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
...
 date = db.Column(db.DateTime(), default=datetime.datetime.now)
...

class Post(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
...
 publish_date = db.Column(db.DateTime(), default=datetime.datetime.now)

Note how SQLAlchemy handles the default definitions. This is a powerful feature. We are
passing a reference to a Python function, so we can use any Python function we want as
long as no parameters are required (except for partials). This function will be called upon
the creation of a record or an update, and its return value is used for the column's value. Of
course, SQLAlchemy also supports simple scalar values on default definitions.

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[42]

RDBMS indexes are used to improve query performance, yet you should be careful about
using them as this comes at a cost of additional writes on INSERT, UPDATE, and DELETE
functions, as well as an increase in storage. Careful index choice and configuration is out of
the scope of this book, but take into account the fact that an index is used to reduce the
O(N) lookup on certain table columns that may be frequently used, or that are in tables
with a huge number of rows where a linear lookup is simply not possible in production.
Index query performance can go from logarithmic to O(1). This is possible at a cost of
additional writes and checks.

An example of creating an index using Flask SQLAlchemy, can be seen in the following
code:

...
class User(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 username = db.Column(db.String(255), nullable=False, index=True,
unique=True)
...

The following code shows an example of using an index for multiple columns:

db.Index('idx_col_example', User.username, User.password)

The convenience of SQLAlchemy sessions
Now you understand the power of SQLAlchemy and what the SQLAlchemy session object
is, and why web apps should never be made without them. As stated before, the session
can be simply described as an object that tracks the changes in our models and commits
them to the database when we tell it to. However, there is a bit more to it than this.

First, the session is also the handler for transactions. Transactions are sets of changes that
are flushed to the database on commit. Transactions provide a lot of hidden functionality.
For example, transactions automatically determine which objects are to be saved first when
objects have relations. You might have noted this when we were saving tags in the previous
section. When we added tags to the posts, the session automatically knew to save the tags
first despite the fact that we did not add them to be committed. If we are working with raw
SQL queries and a database connection, we will have to keep track of which rows are
related to which other rows to avoid saving a foreign key reference to an object that does
not exist.

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[43]

Transactions also automatically mark data as stale when changes to an object are saved to
the database. The next time we access the object, a query is made to the database to update
the data, but all of this happens behind the scenes. If we are not using SQLAlchemy, we
will also need to manually track which rows need to be updated. If we want to be resource
efficient, we only need to query and update those rows.

Second, the session makes it impossible for there to be two different references to the same
row in the database. This is accomplished by ensuring that all queries go through the
session (Model.query is actually db.session.query(Model)), and if the row has already
been queried in this transaction, that the pointer to that object will be returned and not a
new object. If this check did not exist, two objects that represent the same row could be
saved to the database with different changes. This creates subtle bugs that might not be
caught instantly.

Keep in mind that Flask SQLAlchemy creates a new session for every request and discards
any changes that were not committed at the end of the request, so always remember to save
your work.

For an in-depth look at sessions, the creator of SQLAlchemy, Mike Bayer,
gave a talk at PyCon Canada 2012. Refer to The SQLAlchemy Session - In
Depth, at https://www.youtube.com/watch?v=PKAdehPHOMo.

Database migrations with Alembic
The functionality of web apps changes all the time, and with every new functionality, we
need to change the structure of our database. Whether it's adding or dropping new
columns or creating new tables, our models will change throughout the life cycle of our
app. However, problems quickly arise when the database changes often. When moving our
changes from development to production, how can you be sure that you carried over every
change without manually comparing each model and its corresponding table? Let's say that
you want to go back into your Git history to see whether an earlier version of your app had
the same bug that you are now encountering in production. How will you change your
database back to the correct schema without a lot of extra work?

WOW! eBook
www.wowebook.org

https://www.youtube.com/watch?v=PKAdehPHOMo

Creating Models with SQLAlchemy Chapter 2

[44]

As programmers, we hate extra work. Thankfully, there is a tool called Alembic, which
automatically creates and tracks database migrations from the changes in our SQLAlchemy
models. Database migrations are records of all the changes of our schema. Alembic allows
us to upgrade or downgrade our database to a specific saved version. Upgrading or
downgrading by several versions will execute all the files between the two selected
versions. The best thing about Alembic is that its history files are only Python files. When
we create our first migration, we can see how simple the Alembic syntax is.

Alembic does not capture every possible change—for example, it does not
record changes on the SQL indexes. After every migration, the reader is
encouraged to review the migration file and make any necessary
corrections.

We won't work directly with Alembic. Instead, we will use Flask-Migrate, which is an
extension created specifically for SQLAlchemy, and which works with the Flask CLI. You
will find it in the requirements.txt file, as shown in the following code:

Flask-Migrate

To get started, we don't need to add anything to our manage.py file since Flask-
Migrate already extends the Flask CLI with its own CLI options, as shown in the following
code:

from main import app, db, User, Post, Tag, migrate

@app.shell_context_processor
def make_shell_context():
 return dict(app=app, db=db, User=User, Post=Post, Tag=Tag,
migrate=migrate)

And on our main.py:

import datetime

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate
from config import DevConfig

app = Flask(__name__)
app.config.from_object(DevConfig)

db = SQLAlchemy(app)
migrate = Migrate(app, db)

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[45]

To initialize the Migrate object with our app and our SQLAlchemy instance, run the
following code:

 # Tell Flask where is our app
 $ export FLASK_APP=main.py
 $ flask db

To start tracking our changes, we use the init command, as follows:

 $ flask db init

This will create a new folder in our directory named migrations that will hold all of our
history. Now we start with our first migration, as shown in the following code:

 $ flask db migrate -m"initial migration"

This command will cause Alembic to scan our SQLAlchemy object and find all the tables
and columns that did not exist before this commit. As this is our first commit, the migration
file will be rather long. Be sure to specify the migration message with -m, as it's the easiest
way to identify what each migration is doing. Each migration file is stored in the
migrations/versions/ folder.

To apply the migration to your database and change your schema, run the following code:

$ flask db upgrade

If we want to check out all the SQLAlchemy generated DDL code, then we use the
following code:

$ flask db upgrade --sql

To return to the previous version, find the version number with the history command
and pass it to the downgrade command, as follows:

$ flask db history
<base> -> 7ded34bc4fb (head), initial migration
$ flask db downgrade 7ded34bc4fb

Like Git, a hash marks each migration. This is the main functionality of Alembic, but it is
only surface level. Try to align your migrations with your Git commits in order to make it
easier to downgrade or upgrade when reverting commits.

In the code for this book, you will find in each chapter an initialization script that will
create a Python virtual environment, install all declared dependencies, and initialize the
database. Take a look at the init.sh Bash script.

WOW! eBook
www.wowebook.org

Creating Models with SQLAlchemy Chapter 2

[46]

Summary
Now that we have mastered data control, we may move on to displaying our data in our
application. The next chapter, Chapter 3, Creating Views with Templates, will dynamically
cover creating HTML based on our models and adding models from our web interface.

WOW! eBook
www.wowebook.org

3
Creating Views with Templates

Now that we have our data in an easily accessible format, displaying the information in a
web page becomes much easier. In this chapter, we will learn how to do the following:

Use the included templating language for Flask, Jinja, to dynamically create
HTML for our SQLAlchemy models
Use Jinja's methods to automate the creation of HTML and modify data for
presentation inside a template
Automatically create and validate HTML forms with Jinja

Jinja's syntax
Jinja is a templating language written in Python. A templating language is a simple format
that is designed to help automate the creation of documents. In any templating language,
variables passed to the template replace predefined elements in the template. In Jinja,
variable substitutions are defined by {{ }}. The {{ }} syntax is called a variable block.
There are also control blocks defined by {% %} that declare language functions, such as
loops or if statements. For example, when the Post model from Chapter 2, Creating
Models with SQLAlchemy, is passed to it, we get the following Jinja code:

<h1>{{ post.title }}</h1>

This produces the following:

<h1>First Post</h1>

The variables displayed in a Jinja template can be any Python type or object as long as they
can be converted into a string via the Python function str(). For example, a dictionary or a
list passed to a template can have its attributes displayed via the following code:

{{ your_dict['key'] }}
{{ your_list[0] }}

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[48]

Many programmers prefer to use JavaScript to template and dynamically create their
HTML documents to take the HTML rendering load off the server. This will not be covered
in this chapter as it is an advanced JavaScript topic. However, many JavaScript templating
engines use the {{ }} syntax as well. If you choose to combine Jinja and your JavaScript
templates that are defined in your HTML files, then wrap the JavaScript templates in the
raw control block to tell Jinja to ignore them, as follows:

{% raw %}
<script id="template" type="text/x-handlebars-template">
 <h1>{{title}}</h1>
 <div class="body">
 {{body}}
 </div>
</script>
{% endraw %}

Filters
It's a common mistake to believe that Jinja and Python's syntax are the same because of
their similarity. However, there is a lot of difference between the two. As you will see in
this section, normal Python functions do not really exist. Instead, in Jinja, variables can be
passed to built-in functions that modify the variables for display purposes. These functions,
called filters, are called in the variable block with the pipe character, |, as shown in the
following code:

{{ variable | filter_name(*args) }}

Otherwise, if no arguments are passed to the filter, the parentheses can be omitted as
follows:

{{ variable | filter_name }}

Filters called control blocks can also be applied to blocks of text, as follows:

{% filter filter_name %}
 A bunch of text
{% endfilter %}

There are many filters in Jinja; this book will cover only the most useful filters. For the sake
of brevity, in each example, the output of each filter will be listed directly beneath the filter
itself.

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[49]

For a full list of all the default filters in Jinja, visit
http://jinja.pocoo.org/docs/dev/templates/#list-of-builtin-filte

rs.

The default filter
If the passed variable is None, then replace it with a default value as follows:

{{ post.date | default('2015-01-01') }}
2015-01-01

If you wish to replace the variable with the default value, and if the variable evaluates to
False, then pass True to the optional second parameter, as follows:

{{ '' | default('An empty string', True) }}
An empty string

The escape filter
If the passed variable is a string of HTML, then the &, <, >, ', and " characters will be
printed as HTML escape sequences:

{{ "<h1>Title</h1>" | escape }}
<h1>Title</h1>

The float filter
The float filter converts the passed value to a floating point number with the Python
float() function as follows:

{{ 75 | float }}
75.0

The int filter
The int filter converts the passed value to an integer with the Python int() function as
follows:

{{ 75.7 | int }}
75

WOW! eBook
www.wowebook.org

http://jinja.pocoo.org/docs/dev/templates/#list-of-builtin-filters
http://jinja.pocoo.org/docs/dev/templates/#list-of-builtin-filters

Creating Views with Templates Chapter 3

[50]

The join filter
The join filter joins elements of a list with a string, and works in exactly the same way as
the list method of the same name. It is given as follows:

{{ ['Python', 'SQLAlchemy'] | join(',') }}
Python, SQLAlchemy

The length filter
The length filter fills the same role as the Python len() function. It is used as follows:

Tag Count: {{ post.tags | length }}
Tag Count: 2

The round filter
The round filter rounds off a float to the specified precision, as follows:

{{ 3.141592653589793238462 | round(1) }}
3.1

You can also specify how you want the number to be rounded off, as shown in the
following code:

{{ 4.7 | round(1, "common") }}
5
{{ 4.2 | round(1, "common") }}
4
{{ 4.7 | round(1, "floor") }}
4
{{ 4.2 | round(1, "ceil") }}
5

The common option rounds such figures in the same way that a person would: Any number
at or above 0.5 is rounded up, and any number lower than 0.5 is rounded down. The floor
option always rounds the number down and the ceil option always rounds up, regardless
of the decimal value.

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[51]

The safe filter
If you try to insert HTML into your page from a variable—for example, when you wish to
display a blog post—Jinja will automatically try to add HTML escape sequences to the
output. Look at the following example:

{{ "<h1>Post Title</h1>" }}
<h1>Post Title</h1>

This is a necessary security feature. When an application has inputs that allow users to
submit arbitrary text, it creates a vulnerability that a malicious user can use to input HTML
code. For example, if a user were to submit a script tag as a comment and Jinja didn't have
this feature, the script would be executed on all the browsers that visited the page.

However, we still need a way to display HTML that we know is safe to show, such as the
HTML of our blog posts. We can achieve this using the safe filter as follows:

{{ "<h1>Post Title</h1>" | safe }}
<h1>Post Title</h1>

The title filter
The title filter enables us to capitalize a string using the title case format as follows:

{{ "post title" | title }}
Post Title

The tojson filter
We use the tojson filter to pass the variable to the Python json.dumps function, as shown
in the following code. Remember that your passed object must be serializable by the json
module:

{{ {'key': False, 'key2': None, 'key3': 45} | tojson }}
{key: false, key2: null, key3: 45}

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[52]

This feature is most commonly used to pass SQLAlchemy models to JavaScript MVC
frameworks upon the loading of the page load than waiting for an AJAX request. If you use
tojson in this way, remember to pass the result to the safe filter as well to make sure that
you don't get HTML escape sequences in your JavaScript. Here is an example with
a collection of models from Backbone.js, a popular JavaScript MVC framework:

var collection = new PostCollection({{ posts | tojson | safe }});

The truncate filter
The truncate filter takes a long string, returns a string cutoff at the specified length in
characters, and appends an ellipsis, as shown in the following code:

{{ "A Longer Post Body Than We Want" | truncate(10) }}
A Longer...

By default, any words that are cut in the middle are discarded. To disable this, pass True as
an extra parameter as follows:

{{ "A Longer Post Body Than We Want" | truncate(10, True) }}
A Longer P...

Custom filters
Adding your own filter into Jinja is as simple as writing a Python function. To understand
custom filters, we will look at an example. Our simple filter will count the number of
occurrences of a substring in a string and return this figure. Look at the following call:

{{ variable | count_substring("string") }}

We need to write a new Python function with the following signature, where the first
argument is the piped variable:

def count_substring(variable, sub_string)

We can define our filter as the following:

@app.template_filter
def count_substring(string, sub_string): return string.count(sub_string)

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[53]

To add this function to the list of available filters on Jinja2, we have to register it and add it
to the filters dictionary of the jinja_env object in our main.py file. To do this, we can
simply use a decorator that will handle this procedure for us—@app.template_filter.

Comments
Comments in the template are defined by {# #}, as shown in the following code. They will
be ignored by Jinja, and will not be in the returned HTML code:

{# Note to the maintainers of this code #}

Using if statements
Using if statements in Jinja is similar to using them in Python. Anything that returns, or is,
a Boolean determines the flow of the code, as shown in the following code:

{%if user.is_logged_in() %}
 Logout
{% else %}
 Login
{% endif %}

Filters can also be used in if statements, as follows:

{% if comments | length > 0 %}
 There are {{ comments | length }} comments
{% else %}
 There are no comments
{% endif %}

Loops
We can use loops in Jinja to iterate over any list or generator function, as follows:

{% for post in posts %}
 <div>
 <h1>{{ post.title }}</h1>
 <p>{{ post.text | safe }}</p>
 </div>
{% endfor %}

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[54]

Loops and if statements can be combined to mimic the break functionality in Python
loops. In this example, the loop will only use the post if post.text is not None:

{% for post in posts if post.text %}
 <div>
 <h1>{{ post.title }}</h1>
 <p>{{ post.text | safe }}</p>
 </div>
{% endfor %}

Inside the loop, you have access to a special variable called loop, which gives you access to
information about the for loop. For example, if we want to know the current index of the
current loop to emulate the enumerate function in Python, we can use the index variable of
the loop variable as follows:

{% for post in posts %}
 {{ loop.index }}. {{ post.title }}
{% endfor %}

This will produce the following output:

1. Post Title
2. Second Post

All the variables and functions that the loop object exposes are listed in the following table:

Variable Description
loop.index The current iteration of the loop (1 indexed)
loop.index0 The current iteration of the loop (0 indexed)
loop.revindex The number of iterations from the end of the loop (1 indexed)
loop.revindex0 The number of iterations from the end of the loop (0 indexed)
loop.first True if the current item is first in the iterator
loop.last True if the current item is last in the iterator
loop.length The number of items in the iterator

loop.cycle
The helper function to cycle between the items in the iterator (this is
explained later)

loop.depth
Indicates how deep in a recursive loop the loop currently is (starts at
level 1)

loop.depth0
Indicates how deep in a recursive loop the loop currently is (starts at
level 0)

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[55]

The cycle function is a function that goes through an iterator one item at a time in every
loop. We can use the previous example to demonstrate, as shown in the following code:

{% for post in posts %}
 {{ loop.cycle('odd', 'even') }} {{ post.title }}
{% endfor %}

This will output the following:

odd Post Title
even Second Post

Macros
A macro is best understood as a function in Jinja that returns a template or HTML string.
This is used to avoid reproducing code that is repeated over and over again and reduce it to
one function call. For example, the following is a macro to add a Bootstrap CSS input and a
label to your template:

{% macro input(name, label, value='', type='text') %}
 <div class="form-group">
 <label for"{{ name }}">{{ label }}</label>
 <input type="{{ type }}" name="{{ name }}"
 value="{{ value | escape }}" class="form-control">
 </div>
{% endmacro %}

Now, to quickly add an input to a form in any template, call your macro using the
following:

{{ input('name', 'Name') }}

This will output the following:

<div class="form-group">
 <label for"name">Name</label>
 <input type="text" name="name" value="" class="form-control">
</div>

Flask-specific variables and functions
Flask makes several functions and objects available to you by default in your template.

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[56]

The config object
Flask makes the current config object available in templates as follows:

{{ config.SQLALCHEMY_DATABASE_URI }}
sqlite:///database.db

The request object
The Flask request object refers to the current request:

{{ request.url }}
http://127.0.0.1/

The session object
The Flask session object is as follows:

{{ session.new }}
True

The url_for() function
The url_for function returns the URL of a route by giving the route function name as a
parameter, as shown in the following code. This allows URLs to be changed without
worrying about where links will break:

{{ url_for('home') }}
/

Here, home is the name of a function that is registered as an endpoint on Flask, and the
relative URL root associated with it, so on our main.py, we must define a function to deal
with the HTTP request and register it on Flask using the decorator app.route(rule,
**options), as shown in the following code:

@app.route('/')
def home():
...

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[57]

If we had a route that had positional arguments in the URL, we pass them as kwargs. They
will be filled in for us in the resultant URL as follows:

{{ url_for('post', post_id=1) }}
/post/1

With the respective function that we use to handle the request, we restrict this method to
handle only GET and POST HTTP requests, as follows:

@app.route('/post/<int:post_id>', methods=('GET', 'POST'))
def post(post_id):
...

The get_flashed_messages() function
The get_flashed_messages() function returns a list of all the messages passed through
the flash() function in Flask. The flash function is a simple function that queues
messages—which consist of Python tuples of (category, message) phrases—for
the get_flashed_messages function to consume, as shown in the following code:

{% with messages = get_flashed_messages(with_categories=true) %}
 {% if messages %}
 {% for category, message in messages %}
 <div class="alert alert-{{ category }} alert-dismissible"
 role="alert">
 <button type="button" class="close" data-dismiss="alert" aria-
 label="Close">×</button>
 {{ message }}
 </div>
 {% endfor %}
 {% endif %}
{% endwith %}

Proper feedback to the user is very important, and Flask makes it very simple to
implement—for example, when handling a new post entry, we want to let the user know
that his/her post was saved correctly. The flash() function accepts three different
categories: info, error, and warning. Refer to the following code snippet:

@app.route('/post/<int:post_id>', methods=('GET', 'POST'))
def post(post_id):
...
 db.session.commit()
 flash("New post added.", 'info')
...

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[58]

Creating our views
To get started, we need to create a new folder named templates in our project directory.
This folder will store all of our Jinja files, which are just HTML files with Jinja syntax mixed
in. Our first template will be our home page, which will be a list of the first 10 posts with
summaries. There will also be a view for a post that will just show the post content, the
comments on the page, links to the author's user page, and links to tag pages. There will
also be user and tag pages that show all the posts that have been made by a user and all the
posts with a specific tag. Each page will also have a sidebar showing the five most recent
posts and the top five most used tags.

The view function
Because each page will have the same sidebar information, we can break that into a
separate function to simplify our code. In the main.py file, add the following code:

from sqlalchemy import func
...
def sidebar_data():
 recent = Post.query.order_by(
 Post.publish_date.desc()
).limit(5).all()
 top_tags = db.session.query(
 Tag, func.count(tags.c.post_id).label('total')
).join(
 tags
).group_by(Tag).order_by('total DESC').limit(5).all()

 return recent, top_tags

The most recent posts query is straightforward, but the most popular tags query looks
somewhat familiar, but a little odd. This is a bit outside the scope of this book, but using the
SQLAlchemy func library to return a count on a group by query, we are able to order our
tags by the most used tags. The func function is explained in detail at
http://docs.sqlalchemy.org/en/rel_1_0/core/sqlelement.html#sqlalchemy.sql.expre

ssion.func.

The home page function in main.py will need all the posts ordered by their publish date in
a pagination object and the sidebar information, as follows:

from flask import Flask, render_template
...
@app.route('/')

WOW! eBook
www.wowebook.org

http://docs.sqlalchemy.org/en/latest/core/functions.html#module-sqlalchemy.sql.expression
http://docs.sqlalchemy.org/en/latest/core/functions.html#module-sqlalchemy.sql.expression

Creating Views with Templates Chapter 3

[59]

@app.route('/<int:page>')
def home(page=1):
 posts = Post.query.order_by(Post.publish_date.desc()).paginate(page,
app.config['POSTS_PER_PAGE'], False)
 recent, top_tags = sidebar_data()

 return render_template(
 'home.html',
 posts=posts,
 recent=recent,
 top_tags=top_tags
)

Note that using the app.config['POSTS_PER_PAGE'] phrase gives us the option to
configure it without having to change code, which is nice. It's a candidate config key for the
main Config class, and let all environments inherit its value.

Here, we finally see how Flask and Jinja tie together. The Flask function render_template
takes the name of a file in the folder templates and passes all the kwargs to the template
as variables. Also, our home function now has multiple routes to handle pagination, and
will default to the first page if there is nothing after the slash.

Now that you have all the information that you need to write view functions, let's define
the first view functions that we need:

GET /post/<POST_ID> to render a specific post by its ID. This also renders all
recent posts and tags.
GET /posts_by_tag/<TAG_NAME> to render all posts by a specific tag name.
This also renders all recent posts and tags.
GET /posts_by_user/<USER_NAME> to render all posts authored by a specific
user. This also renders all recent posts and tags.

This translates to the following view functions:

@app.route('/post/<int:post_id>')
def post(post_id)
....

@app.route('/posts_by_tag/<string:tag_name>')
def posts_by_tag(tag_name):
...

@app.route('/posts_by_user/<string:username>')
def posts_by_user(username):
...

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[60]

In Flask SQLAlchemy, there are two convenience functions that return HTTP 404 in the
case of a nonexistent entry in the database, get_or_404 and first_or_404, so on our get
post by ID, as shown in the following code:

@app.route('/post/<int:post_id>')
def post(post_id)
 post = Post.query.get_or_404(post_id)

All posts made by a user can be returned using the following code:

@app.route('/posts_by_user/<string:username>')
def posts_by_user(username):
 user = User.query.filter_by(username=username).first_or_404()
 posts = user.posts.order_by(Post.publish_date.desc()).all()
 recent, top_tags = sidebar_data()

 return render_template(
 'user.html',
 user=user,
 posts=posts,
 recent=recent,
 top_tags=top_tags
)

However, this doesn't check the posts_by_tag function in the main.py file (see the
provided code for this chapter). After all of your views are written, the only thing left to do
is to write the templates.

Writing the templates and inheritance
Because this book does not focus on interface design, we will use the CSS library Bootstrap
and avoid writing custom CSS. If you have never used it before, Bootstrap is a set of default
CSS rules that make your website work well across all browsers and platforms, from
desktop to mobile. Bootstrap has tools that allow you to easily control the layout of your
website.

We will be downloading Bootstrap, JQuery, and Font Awesome directly from their CDN
upon page load, but any extra assets you may need should be included in a project
directory named static. It's common practice to use static/css for CSS, static/js for
JavaScript, static/img for images, and static/fonts for fonts. One of the best ways to
use Bootstrap is to download its sass files and use sass to customize it.

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[61]

For the official documentation about SASS and Bootstrap, visit https:/​/
getbootstrap.​com/​docs/​4.​0/​getting-​started/​theming/​.

Because every route will have a template assigned to it, each template will need the
requisite HTML boilerplate code with our metainformation, style sheets, common
JavaScript libraries, and so on. To keep our templates DRY (don't repeat yourself), we will
use one of the most powerful features of Jinja, template inheritance. Template inheritance
is when a child template can import a base template as a starting point and only replace
marked sections in the base. You can also include full sections of Jinja templates from other
files; this will allow you to set some rigid default sections.

The base template
We need to outline the base layout for our site, split it into sections, and give each section a
specific purpose. The following diagram is an abstract description of the layout:

WOW! eBook
www.wowebook.org

https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/
https://getbootstrap.com/docs/4.0/getting-started/theming/

Creating Views with Templates Chapter 3

[62]

Some of these sections will always get rendered, and you don't want to repeat them on each
template. Some possible options for these sections are the navigation bar, header, messages,
and footer.

We will use the following include and block structure to maintain our DRY principal and
implement the layout:

Include navbar: Jinja2 template: navbar.html—Renders a navigation bar.
Block head: The header with the name of the site. Already includes
the head.html Jinja2 template.
Include messages: Jinja2 template: messages.html—Renders alerts for the
users with different categories.
Block body:

Block left body: Normally, templates will override this block.
Block right body: This will display the most recent posts and tags.

Block footer: Jinja2 template: footer.html.

Note how the fixed sections, the ones that will almost always get rendered, already include
templates even when inside blocks. The base template will handle these by default. If for
some reason you want to override these, you just have to implement/inherit their block on
the rendered template. For example, say that you want to render a whole body section on a
certain page, taking the space of the right body section that displays the most recent posts
and tags. A good candidate for this will be the login page.

To start our base template, we need a basic HTML skeleton and the Jinja2 block structure
that we previously outlined (see the highlighted code in the following snippet):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1">
 <title>{% block title %}Blog{% endblock %}</title>
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.
css"
integrity="sha384-9gVQ4dYFwwWSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiu1FwO5qRGv
FXOdJZ4" crossorigin="anonymous">
 <link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.0.10/css/all.css"
integrity="sha384-
+d0P83n9kaQMCwj8F4RJB66tzIwOKmrdb46+porD/OvrJ+37WqIM7UoBtwHO6Nlg"

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[63]

crossorigin="anonymous">
</head>
<body>
{% include 'navbar.html' %}
<div class="container">
 <div class="row row-lg-4">
 <div class="col">
 {% block head %}
 {% include 'head.html' %}
 {% endblock %}
 </div>
 </div>
 {% include 'messages.html' %}
 {% block body %}
 <div class="row">
 <div class="col-lg-9">
 {% block leftbody %}
 {% endblock %}
 </div>
 <div class="col-lg-3 rounded">
 {% block rightbody %}
 {% include 'rightbody.html' %}
 {% endblock %}
 </div>
 </div>
 {% endblock %}
 {% include 'footer.html' %}
</div>
</body>
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.0/umd/popper.min
.js" integrity="sha384-
cs/chFZiN24E4KMATLdqdvsezGxaGsi4hLGOzlXwp5UZB1LY//20VyM2taTB4QvJ"
crossorigin="anonymous"></script>
<script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/js/bootstrap.min.js
" integrity="sha384-
uefMccjFJAIv6A+rW+L4AHf99KvxDjWSu1z9VI8SKNVmz4sk7buKt/6v9KI65qnm"
crossorigin="anonymous"></script> </body>
</html>

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[64]

This is the base.html template in the provided code in your templates directory. First,
we include the Bootstrap and Font Awesome CSS, then implement the HTML body section,
and finally include all the necessary JavaScript libraries.

The child templates
Now that we have outlined the base layout, we need to implement all the child pages that
will extend the base. Take a look at the way we are implementing the home page and
inherit/override the left body block, as shown in the following code:

{% extends "base.html" %}
{% import 'macros.html' as macros %}
{% block title %}Home{% endblock %}
{% block leftbody %}
{{ macros.render_posts(posts) }}
{{ macros.render_pagination(posts, 'home') }}
{% endblock %}

Surprisingly simple, this template extends the base template has expected, and then
overrides the title and leftbody block sections. Inside, the leftbody uses two macros
to render the posts and their pagination. The macros help us to reuse Jinja2 code and use it
like functions, and also to hide some complexity.

The render_posts macro is in the macros.html that was imported at the top of the file.
We use macros more or less like modules in Python, as shown in the following code:

{% macro render_posts(posts, pagination=True) %}
...
{% for post in _posts %}
<div >
 <h1>
 <a class="text-dark" href="{{ url_for('post', post_id=post.id)
}}">{{ post.title }}
 </h1>
</div>
<div class="row">
 <div class="col">
 {{ post.text | truncate(500) | safe }}
 Read More
 </div>
</div>
{% endfor %}
{% endmacro %}

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[65]

The macro iterates on each post, and on each post.title, there is a link to the Flask
endpoint post with its respective post ID. As explained, we always use url_for to
generate the right URL that references Flask's endpoints.

We are using this macro three times on the templates: to render all posts, all posts by a
certain tag, and all posts by a certain user.

The tag.html template renders all posts by a certain tag, as shown in the following code:

{% extends "base.html" %}
{% import 'macros.html' as macros %}

{% block title %}{{ tag.title }}{% endblock %}
{% block leftbody %}
<div class="row">
 <div class="col bg-light">
 <h1 class="text-center">Posts With Tag {{ tag.title }}</h1>
 </div>
</div>
{{ macros.render_posts(posts, pagination=False) }}

{% endblock %}

If you look at the user.html template in the preceding code, you'll see that they are almost
identical. These templates are called by the Flask endpoint
functions posts_by_tag and posts_by_user. When rendering the templates, they pass
arguments for the tag/user object and a list of posts, as we saw before.

Let's check out how the blog site looks now. In the command line, call init.sh to build a
Python virtualenv, and then migrate/create our database and insert some fake data, as
follows:

$./init.sh
....
$ source venv/bin/activate
$ export FLASK_APP=main.py; flask run

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[66]

Open http://127.0.0.1:5000/ in your browser. You should see the following:

The init.sh phrase calls the test_data.py, which inserts fake data into the database.
This Python module uses the faker library to generate data for user names and post text
and tags (using color names).

For more details regarding faker, you can go to http:/​/​faker.
readthedocs.​io/​en/​master/​.

The following code is an example taken from test_data.py that inserts users into the
database and returns a list of user objects that is reused to insert posts:

import logging
from main import db
from main import User, Post, Tag
from faker import Faker
...

def generate_users(n):
 users = list()
 for i in range(n):
 user = User()

WOW! eBook
www.wowebook.org

http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/
http://faker.readthedocs.io/en/master/

Creating Views with Templates Chapter 3

[67]

 user.username = faker.name()
 user.password = "password"
 try:
 db.session.add(user)
 db.session.commit()
 users.append(user)
 except Exception as e:
 log.error("Fail to add user %s: %s" % (str(user), e))
 db.session.rollback()
 return users

The template folder contains the following templates that are rendered using the
aforementioned hierarchy:

base.html: Extended by all the other templates
footer.html: Included by base.html
head.html: Included by base.html
messages.html: Included by base.html
navbar.html: Included by base.html
rightbody.html: Included by base.html
home.html: Rendered by the home Flask endpoint function
post.html: Rendered by the post Flask endpoint function
tag.html: Rendered by the posts_by_tag endpoint function
user.html: Rendered by the posts_by_user endpoint function

Writing the other templates
Now that you know the ins and outs of inheritance, and you know which data is going to
go to which template, you can have a clear idea of how to structure your web application to
easily scale and maintain the same look and feel on every page. There is one final bit of
functionality to add in this chapter—the ability for readers to add comments. For this, we
will be using web forms.

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[68]

Flask WTForms
Adding forms to your application seems to be an easy task, but when you start coding the
server-side code, the task of validating user input grows bigger and bigger as the form
becomes more complex. Security is paramount, as the data is from an untrustworthy
source, and is going to be entered into the database. WTForms is a library that handles
server form validation for you by checking input against common form types. Flask
WTForms is a Flask extension that is built on top of WTForms that adds features, such as
Jinja HTML rendering, and protects you against attacks, such as SQL injection and cross-
site request forgery. This extension is already installed in your virtualenv, because it's
declared in the requirements.txt file.

Protecting yourself against SQL injection and cross-site request forgery is
extremely important, as these are the most common forms of attacks that
your website will receive. To learn more about these attacks, visit
https://en.wikipedia.org/wiki/SQL_injection and
https://en.wikipedia.org/wiki/Cross-site_request_forgery for
information on SQL injection and cross-site request forgery, respectively.

To have Flask WTForms' security measures working properly, we will need a secret key. A
secret key is a random string of characters that will be used to cryptographically sign
anything that needs to be tested for its authenticity. This cannot be just any string; it must
be randomized and be of a certain length so that brute-force or dictionary attacks won't be
able to crack it in any viable amount of time. To generate a random string, enter a Python
session and enter the following:

$ python
>>> import os
>>> os.urandom(24)
'\xa8\xcc\xeaP+\xb3\xe8|\xad\xdb\xea\xd0\xd4\xe8\xac\xee\xfaW\x072@O3'

You should generate a different secret key for each environment. Just copy the output
from os.urandom and paste it into each environment config class, as follows:

class ProdConfig(object):
 SECRET_KEY = 'Your secret key here'
....

class DevConfig(object):
 SECRET_KEY = 'The other secret key here'
....

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/Cross-site_request_forgery

Creating Views with Templates Chapter 3

[69]

WTForms basics
There are three main parts of WTForms—forms, fields, and validators. Fields are
representations of input fields and perform rudimentary type checking, and validators are
functions that are attached to fields that make sure that the data submitted in the form is
within our constraints. The form is a class that contains fields and validators, and validates
itself on a POST request. Let's see this in action to get a better idea. In the main.py file, add
the following:

from flask_wtf import FlaskForm as Form
from wtforms import StringField, TextAreaField
from wtforms.validators import DataRequired, Length
...
class CommentForm(Form):
 name = StringField(
 'Name',
 validators=[DataRequired(), Length(max=255)]
)
 text = TextAreaField(u'Comment', validators=[DataRequired()])

Here, we have a class that inherits from Flask WTForm's Form object and defines inputs
with class variables that equal WTForm fields. The fields take an optional
parameter, validators, which is a list of WTForm validators that will be applied to our
data. The most commonly used fields are as follows:

fields.DateField and fields.DateTimeField: Represents a Python date or
datetime object and takes an optional parameter format that takes a stftime
format string to translate the data.
fields.IntegerField: This attempts to coerce passed data to an integer and is
rendered in the template as a number input.
fields.FloatField: This attempts to coerce passed data to a float and is
rendered in the template as a number input.
fields.RadioField: This represents a set of radio inputs and takes a
choices parameter , which is a list of tuples that act as the displayed value and
the returned value.
fields.SelectField: Along with SelectMultipleField, this represents a
set of radio inputs. It takes a choices parameter, which is a list of tuples that act
as the displayed and returned values.
fields.StringField: This represents a normal text input, and will attempt to
coerce the returned data to a string.

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[70]

For a full list of validators and fields, visit the WTForms documentation at
http://wtforms.readthedocs.org.

The most common validators are as follows:

validators.DataRequired()

validators.Email()

validators.Length(min=-1, max=-1)

validators.NumberRange(min=None, max=None)

validators.Optional()

validators.Regexp(regex)

validators.URL()

Each of these validations follows the Pythonic naming scheme. Therefore, it is rather
straightforward as to what they do. All validators take an optional parameter called
message, which is the error message that will be returned if the validator fails. If a message
is not set, it uses the library defaults.

Custom validations
Writing a custom validation function is very simple. All that is required is to write a
function that takes the form object and the field object as parameters and raises a
WTForm. A ValidationError is raised if the data does not pass the test. Here is an
example of a custom email validator:

import re
import wtforms
def custom_email(form, field):
 if not re.match(r"[^@]+@[^@]+.[^@]+", field.data):
 raise wtforms.ValidationError('Field must be a valid email
 address.')

To use this function, just add it to the list of validators for your field.

WOW! eBook
www.wowebook.org

http://wtforms.readthedocs.org

Creating Views with Templates Chapter 3

[71]

Posting comments
Now that we have our comment form and we understand how to build it, we need to add it
to the start of our post view, as follows:

@app.route('/post/<int:post_id>', methods=('GET', 'POST'))
def post(post_id):
 form = CommentForm()
 if form.validate_on_submit():
 new_comment = Comment()
 new_comment.name = form.name.data
 new_comment.text = form.text.data
 new_comment.post_id = post_id
 try:
 db.session.add(new_comment)
 db.session.commit()
 except Exception as e:
 flash('Error adding your comment: %s' % str(e), 'error')
 db.session.rollback()
 else:
 flash('Comment added', 'info')
 return redirect(url_for('post', post_id=post_id))

 post = Post.query.get_or_404(post_id)
 tags = post.tags
 comments = post.comments.order_by(Comment.date.desc()).all()
 recent, top_tags = sidebar_data()

 return render_template(
 'post.html',
 post=post,
 tags=tags,
 comments=comments,
 recent=recent,
 top_tags=top_tags,
 form=form
)

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[72]

First, we add the POST method to the list of our view's allowed methods. Then, a new
instance of our form object is created. The validate_on_submit() method then checks
whether the Flask request is a POST request. If it is a POST request, it sends the request form
data to the form object. If the data is validated, then validate_on_submit() returns True
and adds the data to the form object. We then take the data from each field, populate a new
comment, and add it to the database. Note how we don't need to fill in the comment data,
because we have set a default value for it in the SQLAlchemy model definition—in this
case, the datatime.now function that is going to be evaluated upon the object creation.

It is also important to ensure that we wrap all our database calls with a try/except block,
and in the case of an error, roll back the session transaction and send proper feedback to the
users.

Note the final redirect Flask call to the same endpoint, this time with an HTTP GET. This
means that after a user inserts a new comment, the same page is rendered again with a
clean form and shows the newly added comment.

If the form does not validate, or if we are handling an HTTP GET, we fetch the Post object
from the database by post_id, collect all the related comments, and finally get all the
necessary side-bar data.

The template itself is divided into three main sections. The first renders the post, the second
displays the form where the user can submit a new comment about the post, and the third
is where we render all the comments related to the post. Let's focus on the third section, as
shown in the following code:

<div class="p-4 shadow-sm">
 <div class="row">
 <div class="col">
 <h4>New Comment:</h4>
 </div>
 </div>
 <div class="row">
 <div class="col">
 <form method="POST" action="{{ url_for('post',
 post_id=post.id) }}">
 {{ form.hidden_tag() }}
 <div class="form-group">
 {{ form.name.label }}
 {% if form.name.errors %}
 {% for e in form.name.errors %}
 <p class="help-block">{{ e }}</p>
 {% endfor %}
 {% endif %}
 {{ form.name(class_='form-control') }}

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[73]

 </div>
 <div class="form-group">
 {{ form.text.label }}
 {% if form.text.errors %}
 {% for e in form.text.errors %}
 <p class="help-block">{{ e }}</p>
 {% endfor %}
 {% endif %}
 {{ form.text(class_='form-control') }}
 </div>
 <input class="btn btn-primary" type="submit" value="Add
 Comment">
 </form>
 </div>
 </div>
</div>

There are several new things happening here. First, we declare an HTML form section and
make it submit (using HTTP POST) to our post Flask endpoint function with the current
post ID.

Next, the form.hidden_tag() method adds an anticross-site request forgery measure
automatically.

Then, when calling field.label, an HTML label will automatically be created for our
input. This can be customized when we define our WTForm FlaskForm class; if not,
WTForm will pretty print the field name.

Next, we check for any errors using field.errors, and if there are any, we will iterate all
of them and render the form validation message to the user. Finally, calling the field itself
as a method will render the HTML code of that field.

WOW! eBook
www.wowebook.org

Creating Views with Templates Chapter 3

[74]

This third section of the template will display the following:

One challenge for the reader is to make a macro that takes a form object and an endpoint to
send the POST request to and autogenerates HTML for the entire form tag. Refer to the
WTForms documentation if you get stuck. It's tricky, but not too difficult.

Summary
Now, after only two chapters, you already have a fully functional blog. This is where a lot
of books on web development technologies would end. However, there are still 10 more
chapters to go to turn your utilitarian blog into something that a user would actually use
for their website.

In the next chapter, we will focus on structuring Flask apps to accommodate long-term
development and larger scale projects.

WOW! eBook
www.wowebook.org

4
Creating Controllers with

Blueprints
The final piece of the Model View Controller (MVC) equation is controllers. We have
already seen the basic usage of the view functions in our main.py file. Now, the more
complex and powerful versions will be introduced, and we will turn our disparate view
functions into cohesive wholes. We will also discuss the internals of how Flask handles the
lifetime of an HTTP request and advanced ways to define Flask views.

Sessions and globals
Sessions are the way Flask will store information across requests; to do this, Flask will use
signed cookies using the previously set SECRET_KEY config to apply the HMAC-SHA1
default cryptographic method. So, a user can read their session cookie but can't modify it.
Flask also sets a default session lifetime that defaults to 31 days to prevent relay attacks;
this can be changed by using the configuration
key's PERMANENT_SESSION_LIFETIME config key.

Security is paramount in today's modern web applications; read Flask's
documentation carefully, where various attacks methods are
covered: http:/​/​flask.​pocoo.​org/​docs/​security/​.

WOW! eBook
www.wowebook.org

http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/
http://flask.pocoo.org/docs/security/

Creating Controllers with Blueprints Chapter 4

[76]

A Flask session object is a special kind of Python dictionary, but you can use it much like a
plain Python dictionary, as follows:

from flask import session
...
session['page_loads'] = session.get('page_loads', 0) + 1
...

Global is a thread-safe namespace store to keep data during a request's context. At the
beginning of each request, a new global object is created, and at the end of the request the
object is destroyed. It's the right place to keep a User object or any data that needs to be
shared across views, templates, or Python functions that are called within the request
context. This is done without the need to pass around any data.

The use of g (global) is very simple, to set a key on a request context:

from flask import g
....
Set some key with some value on a request context
g.some_key = "some_value"
Get a key
v = g.some_key
Get and remove a key
v = g.pop('some_key', "default_if_not_present")

Request setup and teardown
When your WSGI (Web Server Gateway Interface) handles a request, Flask creates a
request context object that contains all the information about the request itself. This object is
pushed into a stack that contains other important information, such as the
Flask app , g, session, and flash messages.

The request object is available to any function, view, or template that is currently
processing the request; this happens without the need to pass around the request object
itself. request contains information such as HTTP headers, URI arguments, URL path,
WSGI environment, and whatnot.

For more detailed information on the Flask request object, see: http:/​/
flask.​pocoo.​org/​docs/​api/​#incoming-​request-​data.

WOW! eBook
www.wowebook.org

http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data
http://flask.pocoo.org/docs/api/#incoming-request-data

Creating Controllers with Blueprints Chapter 4

[77]

We can easily add more information to the request context by implementing our own hooks
on request creation. To achieve this, we can use Flask's decorator
function, @app.before_request, and the g object. The
@app.before_request function is executed every time, before a new request is made. For
example, the following code keeps a global counter for the number of page loads:

import random
from flask import session, g

@app.before_request
def before_request():
 session['page_loads'] = session.get('page_loads', 0) + 1
 g.random_key = random.randrange(1, 10)

Multiple functions can be decorated with @app.before_request, and they all will be
executed before the requested view function is executed. There also exists a
decorator, @app.teardown_request, which is called after the end of every request.

Initialize the example code provided for this chapter and watch how the data
for g, session, and request changes. Also, note the csrf_token set by WTForm to
secure our forms.

Error pages
Displaying a browser's default error pages to the end user is jarring as the user loses all
context of your app, and they must hit the back button to return to your site. To display
your own templates when an error is returned with the Flask abort() function, use the
errorhandler decorator function:

@app.errorhandler(404)
def page_not_found(error):
 return render_template('404.html'), 404

errorhandler is also useful to translate internal server errors and HTTP 500 codes into
user-friendly error pages. The app.errorhandler() function may take either one or many
HTTP status codes to define which code it will act on. The returning of a tuple instead of
just an HTML string allows you to define the HTTP status code of the Response object. By
default, this is set to 200. The recommend method is covered in Chapter 6, Securing Your
App.

WOW! eBook
www.wowebook.org

Creating Controllers with Blueprints Chapter 4

[78]

Class-based views
In most Flask apps, views are handled by functions. However, when many views share
common functionality or there are pieces of your code that could be broken out into
separate functions, it would be useful to implement our views as classes to take advantage
of inheritance.

For example, if we have views that render a template, we could create a generic view class
that keeps our code DRY:

from flask.views import View

class GenericView(View):
 def __init__(self, template):
 self.template = template
 super(GenericView, self).__init__()

 def dispatch_request(self):
 return render_template(self.template)

app.add_url_rule(
 '/', view_func=GenericView.as_view(
 'home', template='home.html'
)
)

The first thing to note about this code is the dispatch_request() function in our view
class. This is the function in our view that acts as the normal view function and returns an
HTML string. The app.add_url_rule() function mimics the app.route() function as it
ties a route to a function call. The first argument defines the route of the function, and the
view_func parameter defines the function that handles the route. The View.as_view()
method is passed to the view_func parameter because it transforms the View class into a
view function. The first argument defines the name of the view function, so functions such
as url_for() can route to it. The remaining parameters are passed to the __init__
function of the View class.

Like the normal view functions, HTTP methods other than GET must be explicitly allowed
for the View class. To allow other methods, a class variable containing the list of named
methods must be added:

class GenericView(View):
 methods = ['GET', 'POST']
 ...
 def dispatch_request(self):
 if request.method == 'GET':

WOW! eBook
www.wowebook.org

Creating Controllers with Blueprints Chapter 4

[79]

 return render_template(self.template)
 elif request.method == 'POST':
 ...

This can be a very powerful approach. Take for example web pages that render tabular lists
from database tables; they are almost identical, so are nice candidates for generic
approaches. Although not a trivial task to carry out, the time you take to implement it can
save you time in the future. An initial skeleton using class-based views could be this:

from flask.views import View

class GenericListView(View):

 def __init__(self, model, list_template='generic_list.html'):
 self.model = model
 self.list_template = list_template
 self.columns = self.model.__mapper__.columns.keys()
 # Call super python3 style
 super(GenericListView, self).__init__()

 def render_template(self, context):
 return render_template(self.list_template, **context)

 def get_objects(self):
 return self.model.query.all()

 def dispatch_request(self):
 context = {'objects': self.get_objects(),
 'columns': self.columns}
 return self.render_template(context)

app.add_url_rule(
 '/generic_posts', view_func=GenericListView.as_view(
 'generic_posts', model=Post)
)

app.add_url_rule(
 '/generic_users', view_func=GenericListView.as_view(
 'generic_users', model=User)
)

app.add_url_rule(
 '/generic_comments', view_func=GenericListView.as_view(
 'generic_comments', model=Comment)
)

WOW! eBook
www.wowebook.org

Creating Controllers with Blueprints Chapter 4

[80]

There are some interesting things to notice. First, in the class constructor we initialize
the columns class property with the SQLAlchemy model columns; we are leveraging the
model introspection ability of SQLAlchemy to be able to implement our generic template.
So, column names are going to be passed to our generic template so that we can properly
render a well formatted tabular list for any model we throw at it.

This is a simple example of how, with a single class view, we handle all list views from all
our models.

This is how the template looks like:

{% extends "base.html" %}
{% block body %}

<div class="table-responsive">
 <table class="table table-bordered table-hover">
 {% for obj in objects %}
 <tr>
 {% for col in columns %}
 <td>
 {{col}} {{ obj[col] }}
 </td>
 {% endfor %}
 </tr>
 {% endfor %}
 </table>
</div>

{% endblock %}

You can access these views by running the example code provided for this chapter, then
directly accessing the declared URLs:

http://localhost:5000/generic_users

http://localhost:5000/generic_posts

http://localhost:5000/generic_comments

You may have noticed that our tabular view is missing the table column headers. As an
exercise, I challenge you to implement it; you can simply render the
provided columns class property, or even better, use a label/column mapping to display
more user-friendly column names.

WOW! eBook
www.wowebook.org

Creating Controllers with Blueprints Chapter 4

[81]

Method class views
Often, when functions handle multiple HTTP methods, the code can become difficult to
read due to large sections of code nested within if statements, as demonstrated in the
following:

@app.route('/user', methods=['GET', 'POST', 'PUT', 'DELETE'])
def users():
 if request.method == 'GET':
 ...
 elif request.method == 'POST':
 ...
 elif request.method == 'PUT':
 ...
 elif request.method == 'DELETE':
 ...

This can be solved with the MethodView class. MethodView allows each method to be
handled by a different class method to separate concerns:

from flask.views import MethodView

class UserView(MethodView):
 def get(self):
 ...
 def post(self):
 ...
 def put(self):
 ...
 def delete(self):
 ...

app.add_url_rule(
 '/user',
 view_func=UserView.as_view('user')
)

Blueprints
In Flask, a blueprint is a method of extending an existing Flask app. They provide a way of
combining groups of views with common functionality and allow developers to break their
app down into different components. In our architecture, the blueprints will act as our
controllers.

WOW! eBook
www.wowebook.org

Creating Controllers with Blueprints Chapter 4

[82]

Views are registered to a blueprint; a separate template and static folder can be defined for
it, and when it has all the desired content in it, it can be registered on the main Flask app to
add the blueprint's content. A blueprint acts much like a Flask app object, but is not
actually a self-contained app. This is how Flask extensions provide view functions. To get
an idea of what blueprints are, here is a very simple example:

from flask import Blueprint
example = Blueprint(
 'example',
 __name__,
 template_folder='templates/example',
 static_folder='static/example',
 url_prefix="/example"
)

@example.route('/')
def home():
 return render_template('home.html')

The blueprint takes two required parameters, the name of the blueprint and the name of the
package, which are used internally in Flask, and passing __name__ to it will suffice.

The other parameters are optional and define where the blueprint will look for files.
Because templates_folder was specified, the blueprint will not look in the default
template folder, and the route will render templates/example/home.html and not
templates/home.html. The url_prefix option automatically adds the provided URI to
the start of every route in the blueprint. So, the URL for the home view is actually
/example/.

The url_for() function will now have to be told which blueprint the requested route is in:

{{ url_for('example.home') }}

Also, the url_for() function will now have to be told whether the view is being rendered
from within the same blueprint:

{{ url_for('.home') }}

WOW! eBook
www.wowebook.org

Creating Controllers with Blueprints Chapter 4

[83]

The url_for() function will also look for static files in the specified static folder as well.

Use this to add the blueprint to our app:

app.register_blueprint(example)

Let's transform our current app to one that uses blueprints. We will first need to define our
blueprint before all of our routes:

blog_blueprint = Blueprint(
 'blog',
 __name__,
 template_folder='templates/blog',
 url_prefix="/blog"
)

Now, because the templates folder was defined, we need to move all of our templates
into a subfolder of the templates folder named blog. Next, all of our routes need to have
@app.route changed to @blog_blueprint.route, and any class view assignments now
need to be registered to blog_blueprint. Remember that the url_for() function calls in
the templates will also have to be changed to have a period prepended to then to indicate
that the route is in the same blueprint.

At the end of the file, right before the if__name__ == '__main__': statement, add the
following:

app.register_blueprint(blog_blueprint)

Now, all of our content is back in the app, which is registered under the blueprint. Because
our base app no longer has any views, let's add a redirect on the base URL:

@app.route('/')
def index():
 return redirect(url_for('blog.home'))

Why blog and not blog_blueprint? Because blog is the name of the blueprint and the
name is what Flask uses internally for routing. blog_blueprint is the name of the
variable in the Python file.

WOW! eBook
www.wowebook.org

Creating Controllers with Blueprints Chapter 4

[84]

Summary
In this chapter, we have introduced you to some powerful features of Flask; we have seen
how to use sessions to store user data across requests and globals for keeping data during
the request context. We have introduced you to the concept of request context and started
showing you some new features that will enable us to scale our applications easily to any
size, using Blueprints and Method Class views.

We now have our app working inside a blueprint, but what does this give us? Let's say that
we wanted to add a photo sharing function to our site, we would be able to group all the
view functions into one blueprint with its own templates, static folder, and URL prefix
without any fear of disrupting the functionality of the rest of the site.

In the next chapter, blueprints will be made even more powerful by separating them into
different files after upgrading our file and code structure.

WOW! eBook
www.wowebook.org

5
Advanced Application Structure

Our application has gone from a very simple example to an extendable foundation on
which powerful features can easily be built. However, having our application entirely
reside in one file needlessly clutters our code. This is one of the advantages of Flask; you
can write a small REST service or web application on a single file, or a full-blown enterprise
application. The framework won't get in your way and won't impose any project layout.

To make the application code clearer and more comprehensible, we will transform the
entire code into a Python module and each feature into a module by itself. This modular
approach enables you to scale easily and in a predictable way, so new features will have an
obvious place and structure. In this chapter, you will learn the best practices for the
following:

Creating a modular application that easily scales
Application factory pattern

Modular application
Currently, your folder structure should look like the following (take a look at the
code provided for the previous chapter):

./
 config.py
 database.db
 main.py
 manage.py
 env/
 migrations/
 versions/
 templates/
 blog/

WOW! eBook
www.wowebook.org

Advanced Application Structure Chapter 5

[86]

To convert our code into a more modular application, our files will be structured as follows:

./
 manage.py
 main.py
 config.py
 database.db
 webapp/
 __init__.py
 blog/
 __init__.py
 controllers.py
 forms.py
 models.py
 main/
 __init__.py
 controllers.py
 templates/
 blog/
 migrations/
 versions/

The first change to make is to create a folder in your application that will hold the module.
In this example, it will be called webapp.

Next, for each module in our application, we will create a respective Python module. If the
module is a classic web application using web templates and forms, we would create the
following files:

./<MODULE_NAME>
 __init__.py -> Declare a python module
 controllers.py -> where our blueprint definition and views are
 models.py -> The module database models definitions
 forms.py -> All the module's web Forms

The idea is to have separation of concerns, so each module will contain all the necessary
views (declared and contained inside a Flask blueprint), web forms, and modules. This
modular structure will translate into predictable namespaces for URIs, templates, and
Python modules. Continuing to reason with an abstract approach, each module will have
the following:

Python module (folder with __init__.py) using its name: MODULE_NAME. Inside
the module is a controllers Python module that declares a blueprint named
<MODULE_NAME>_blueprint attached to a URL, prefix /<MODULE_NAME>.

Template folder inside templates named <MODULE_NAME>.

WOW! eBook
www.wowebook.org

Advanced Application Structure Chapter 5

[87]

This pattern will make the code very predictable to other team members, and very easy to
change and extend. If you want to create a brand new feature, just create a new module
using the proposed structure, and all team members will immediately guess the new
feature's URI namespace, where all views are declared, and where the database
models are defined for this feature. If some bug is identified, you can easily identify where
to look for it, and have a much more restricted code base to worry about.

Refactoring the code
At first, it looks like a lot has changed but you will see that, taking into account the
previously explained structure, the changes are simple and natural.

First, we have moved our SQLAlchemy code to the models.py file inside the blog
module folder. We just want to move the model definitions, not any database
initialization code. All initialization code will be kept in the main application
module, webapp, inside __init__.py. The import section and database-related object
creation appear as follows:

from flask import Flask, render_template
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate

db = SQLAlchemy()
migrate = Migrate()

def page_not_found(error):
 return render_template('404.html'), 404

def create_app(config):
...

The main application module will be responsible for creating the Flask application (factory
pattern, explained in the next section) and initializing SQLAlchemy.

The blog/models.py file will import the initialized db object:

from .. import db

...
class User(db.Model):
...
class Post(db.Model):
...

WOW! eBook
www.wowebook.org

Advanced Application Structure Chapter 5

[88]

class Comment(db.Model):
...
class Tag(db.Model):
...

Next, the CommentForm object, along with all the WTForms imports, should be moved to
the blog/forms.py file. The forms.py file will hold all the WTForms objects related to the
blog feature.

The forms.py file should look like this:

from flask_wtf import Form
from wtforms import StringField, TextAreaField
from wtforms.validators import DataRequired, Length

class CommentForm(Form):
 ...

The blog_blueprint object, all its routes, and the sidebar_data data function need to be
moved to the blog/controllers.py file in the controllers folder.

The blog/controllers.py file should now look like this:

from sqlalchemy import func
from flask import render_template, Blueprint, flash, redirect, url_for
from .models import db, Post, Tag, Comment, User, tags
from .forms import CommentForm

blog_blueprint = Blueprint(
 'blog',
 __name__,
 template_folder='../templates/blog',
 url_prefix="/blog"
)

def sidebar_data():
...

So, whenever a new feature is needed that is big enough to be a candidate for an
application module, a new Python module (folder with an __init__.py file) with the
name of the feature is needed with the previously described files. We will be breaking
down the application code into logical groups.

WOW! eBook
www.wowebook.org

Advanced Application Structure Chapter 5

[89]

Then, we need to import the new feature blueprint into the main __init__.py file and
register it in Flask:

from .blog.controllers import blog_blueprint
from .main.controllers import main_blueprint

...
app.register_blueprint(main_blueprint)
app.register_blueprint(blog_blueprint)

Application factories
Now that we are using blueprints in a modular manner, there is another improvement we
can make to our abstraction, which creates a factory for our application. The concept of a
factory comes from the object-oriented programming (OOP) world, and it simply means a
function or an object that creates another object. Our application factory will take one of our
config objects, which we created at the beginning of the book, and return a Flask
application object.

The object factory design was popularized by the now famous book,
Design Patterns: Elements of Reusable Object-Oriented Software, by the Gang
of Four. To learn more about these design patterns and how they can help
simplify a project's code, look at
https://en.wikipedia.org/wiki/Structural_pattern.

Creating a factory function for our application object has several benefits. First, it allows the
context of the environment to change the configuration of the application. When your
server creates the application object to serve, it can take into account any changes in the
server that are necessary, and change the configuration object given to the app accordingly.
Second, it makes testing much easier because it allows differently configured applications
to be tested quickly. Third, multiple instances of the same application using the same
configuration can be created very easily. This is useful for situations where web traffic is
balanced across several different servers.

Now that the benefits of application factories are clear, let's modify our __init__.py file
to implement one:

from flask import Flask, render_template
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate

db = SQLAlchemy()
migrate = Migrate()

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Structural_pattern

Advanced Application Structure Chapter 5

[90]

def page_not_found(error):
 return render_template('404.html'), 404

def create_app(object_name):
 from .blog.controllers import blog_blueprint
 from .main.controllers import main_blueprint

 app = Flask(__name__)
 app.config.from_object(object_name)

 db.init_app(app)
 migrate.init_app(app, db)
 app.register_blueprint(main_blueprint)
 app.register_blueprint(blog_blueprint)
 app.register_error_handler(404, page_not_found)
 return app

The change to the file is very simple: we contained our code in a function that takes a
config object and returns an application object. To start our application using the right
configuration from an environment variable, we need to change main.py:

import os
from webapp import create_app

env = os.environ.get('WEBAPP_ENV', 'dev')
app = create_app('config.%sConfig' % env.capitalize())

if __name__ == '__main__':
 app.run()

We also need to modify our manage.py file in order to work with the create_app
function as follows:

import os
from webapp import db, migrate, create_app
from webapp.blog.models import User, Post, Tag

env = os.environ.get('WEBAPP_ENV', 'dev')
app = create_app('config.%sConfig' % env.capitalize())

@app.shell_context_processor
def make_shell_context():
 return dict(app=app, db=db, User=User, Post=Post, Tag=Tag,
migrate=migrate)

WOW! eBook
www.wowebook.org

Advanced Application Structure Chapter 5

[91]

When we created our configuration objects, it was mentioned that the environment that the
application is running in could change the configuration of the application. This code has a
very simple example of that functionality, where an environment variable is loaded and
determines which config object to give to the create_app function. Environment
variables are dynamic name values that are part of a process environment. These
environments can be shared by multiple processes, system-wide, user-wide, or for a single
process. They can be set in Bash with the following syntax:

 $ export WEBAPP_ENV="dev"

Use this to read a variable:

 $ echo $WEBAPP_ENV
 dev

You can also delete the variable easily, as follows:

 $ unset $WEBAPP_ENV
 $ echo $WEBAPP_ENV

On your production server, you would set WEBAPP_ENV to prod. The true power of this
setup will become clearer once you deploy to production in Chapter 13, Deploying Flask
Apps, and when we get to Chapter 12, Testing Flask Apps, which covers testing our project.

Summary
We have transformed our application into a much more manageable and scalable structure,
which will save us a lot of headaches as we move further through the book and add more
advanced features. In the next chapter, we will add a login and registration system to our
application, and other features to make our site more secure.

WOW! eBook
www.wowebook.org

6
Securing Your App

We have a mostly functioning blog app, but it is missing some crucial features, such as a
user login, registration function, and the ability to add and edit posts from the browser. The
user authentication functionality can be achieved in many different ways, so each of the
following sections in this chapter will demonstrate a mutually exclusive method to create a
login functionality. Each authentication method can have different levels of security, or
may be adequate for different kinds of applications, ranging from web exposed to
enterprise back office.

In this chapter, we will explore the following topics:

A brief overview of various authentication methods: basic authentication, remote
user, LDAP, database authentication, and OpenID and Oauth
How to leverage Flask login (database/cookie authentication)
How to implement role-based access control (RBAC) to distinguish functionality
and implement granular access to normal blog users

If you haven't already, download the provided code and use the init.sh script to create a
virtualenv, database schema, and test data. The test data will create three users, all with
their passwords set to password. The users will each have the following permissions
respectively:

user_default with minimal permissions
user_poster with author permissions
admin with admin permissions

Let's first explore some very simple authentication methods.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[93]

Authentication methods
An authentication method is a process of confirming an identity. In the case of an
application, a user is given a username and a secret security token (password) and uses
them to verify their identity on the application itself. There are several authentication
methods and types, used for different types of applications (such as API, web exposed,
intranet, and government). We will be covering the most used type of
authentication—single factor.

Basic authentication
As the name suggests, basic authentication is a very simple authentication method
implemented by the HTTP protocol itself. It is part of the RFC7617. To use it, we can
configure our web servers (IIS, Apache, and NGINX) to implement it, or we can implement
it ourselves.

For details on how to configure NGINX for basic authentication, go
to https:/​/​docs.​nginx.​com/​nginx/​admin-​guide/​security-​controls/
configuring-​http-​basic-​authentication/​.

The basic authentication protocol goes through the following general steps:

The user requests a protected resource from the server.1.
The server responds with 401 (unauthorized) and the HTTP header WWW-2.
Authenticate: Basic realm="Login required".
The browser will display a basic authentication login window for the user to3.
send a username/password back to the server.
The username and password provided by the user will be sent to the server on4.
the HTTP header with the form Authorization:
Basic <Username>:<Password>. The username:password will be base64-
encoded.

Flask will make it easy for us to implement this protocol, since it will automatically decode
the base64 authorization from the HTTP header and place the username and password has
properties of the Request.authorization object, as shown in the following code:

def authenticate(username, password):
 return username == 'admin' and password == 'password'

@app.route('/basic-auth-page')

WOW! eBook
www.wowebook.org

https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-http-basic-authentication/

Securing Your App Chapter 6

[94]

def basic_auth_page():
 auth = request.authorization
 if not auth or not authenticate(auth.username, auth.password)
 return Response('Login with username/password', 401, {'WWW-
Authenticate': 'Basic realm="Login Required"'})
 return render_template('some_page.html')

This type of authentication is very simple, but not very secure. The username and password
will be sent to the server on every request, so make sure that you always use HTTPS to
properly encrypt their transmission over the wire. Additionally, as you may have already
noticed in the code flow of the preceding example, the authentication method will be
invoked on every request, so it is not very efficient. Yet this can be a good option for the
internal use of a very simple back-office application, or for rapidly protecting a proof-of-
concept application.

Remote-user authentication
We can, with some intranet setups, use single sign-on authentication methods, where the
web servers do all the heavy lifting related with security. This can be done using IIS
integrated windows authentication or Apache mod_auth_sspi, Apache Samba, or others.
The setup is beyond the scope of this book.

You can check out some examples of how to set up this kind of
authentication with Apache Samba at https:/​/​wiki.​samba.​org/​index.
php/​Authenticating_​Apache_​against_​Active_​Directory.

With this kind of authentication method, the web server will pass the already authenticated
username as an environment key to the WSGI (web server gateway interface), so we just
have to fetch it using the following:

 username = request.environ.get('REMOTE_USER')

For our blog application, we could just check whether the user exists on the database, so no
password database field is needed. This authentication method can be considered secure if
it is properly set up on the server, and can be very convenient on intranet setups since the
user, if already authenticated on the domain (for example, Active Directory) will no longer
need to fill his/her login/password again (using Kerberos GSSAPI, or Windows SSPI, for
example).

WOW! eBook
www.wowebook.org

https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory
https://wiki.samba.org/index.php/Authenticating_Apache_against_Active_Directory

Securing Your App Chapter 6

[95]

LDAP authentication
LDAP (lightweight directory access protocol) is an open standard described currently by
RFC4511. Its purpose is to implement a distributed information directory over the IP. This
directory can contain different types of information normally related to users, groups, and
devices. It has a fixed schema describing each object's attributes, but this schema can be
changed using LDIF.

Active Directory is Microsoft's implementation of LDAP. You can take a
look at the base-implemented user attributes that are available at http:/​/
www.​kouti.​com/​tables/​userattributes.​htm.

An entry (for example, the user) on the directory is identified by a distinguished name
(DN). For example, take a look at the following code:

CN=user1,OU=Marketing,DC=example,DC=com

The DC phrase is the domain component, and it identifies the domain where the user is (an
LDAP directory can have trees of domains and subdomains). In our example, the domain is
example.com. The phrase OU refers to the organizational unit where the user is, and CN is
its common name.

The LDAP implements various operations, such as adding users, searching, deleting and so
on. For authentication purposes only, we are interested on the Bind and Search
operations.

To use the LDAP, we will need to install python-ldap, so let's do that first using the
following code:

$ pip install python-ldap

The two most commonly used LDAP services nowadays are OpenLDAP (open and free)
and Microsoft Active Directory (commercial). Their implementation differs a bit, mainly
regarding their user attributes. The following code is an example of Active Directory. First,
we need to define some configuration keys to connect to and authenticate with the service:

import ldap

LDAP_SERVER="ldap://example.com:389"
ROOT_DN="dc=example,dc=com"
SERVICE_USER="ServiceAccount"
SERVICE_PASSWORD="SOME_PASSWORD"
UID_FIELD_NAME="userPrincipalName" # specific for AD
USER_DOMAIN="example.com"

WOW! eBook
www.wowebook.org

http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm
http://www.kouti.com/tables/userattributes.htm

Securing Your App Chapter 6

[96]

Note that we are using nonencrypted communication between our application server and
the LDAP server; we can turn encryption on by using digital certificates and using LDAPS
on our LDAP_SERVER configuration key.

If we were to integrate LDAP authentication with our blog application, these values would
be good candidates for our configuration on config.py.

Next, we will connect to and authenticate with the service as follows:

con = ldap.initialize(LDAP_SERVER)
con.set_option(ldap.OPT_REFERRALS, 0)
con.bind_s(SERVICE_USER, SERVICE_PASSWORD)

The OPT_REFERRALS is a specific workaround for MSFT AD. Take a look
at the FAQ for python-ldap for more detailed information at https:/​/
www.​python-​ldap.​org/​en/​latest/​faq.​html.

Now that we have an authenticated connection, we will search for our user to fetch its
username, as shown in the following code. In Active Directory, we could bind directly
using the user's username and password, yet that method would fail in OpenLDAP. This
way, we are following the standard method that will work on both systems:

username = username + '@' + USER_DOMAIN
filter_str = "%s=%s" % (UID_FIELD_NAME, username)
user = con.search_s(ROOT_DN,
 ldap.SCOPE_SUBTREE,
 filter_str,
 ["givenName","sn","mail"])

A complete authentication function for LDAP could be as follows:

def ldap_auth(username, password):
 con = ldap.initialize(LDAP_SERVER)
 con.set_option(ldap.OPT_REFERRALS, 0)
 username = username + '@' + USER_DOMAIN
 con.bind_s(SERVICE_USER, SERVICE_PASSWORD)
 filter_str = "%s=%s" % (UID_FIELD_NAME, username)
 user = con.search_s(ROOT_DN,
 ldap.SCOPE_SUBTREE,
 filter_str,
 ["givenName","sn","mail"])
 if user:
 print("LDAP got User {0}".format(user))
 # username = DN from search
 username = user[0][0]
 try:

WOW! eBook
www.wowebook.org

https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html
https://www.python-ldap.org/en/latest/faq.html

Securing Your App Chapter 6

[97]

 con.bind_s(username, password)
 return True
 except ldap.INVALID_CREDENTIALS:
 return False
 else:
 return False

Finally, with the LDAP username we make a final bind to authenticate our user (the
highlighted code).

Database user model authentication
Database authentication is widely used for internet-faced applications. If properly
implemented, it can be considered a secure method. It has the advantages of being simple
to add new users, and having no dependency on any external services. Security roles,
groups, fine-grained access permissions, and extra user attributes are also all kept on the
database. These can be easily changed without any external dependencies, and maintained
within the scope change of the application.

This authentication method consists of checking the username and password submitted by
a user against the stored attributes in our database's user model. But until now, our users
had their passwords stored as plain text in the database. This is a major security flaw. If any
malicious user were to gain access to the data in the database, they could log in to any
account. The fallout of such a breach not be limited to our site. Large numbers of people on
the internet use a common password for many sites. If an attacker had access to an email
and password combination, it is very likely that this information could be used to log in to
a Facebook account, or even a bank account.

To protect our user passwords, they will be encrypted with a one-way encryption method
called a hashing algorithm. A one-way encryption means that after the information is
encrypted, the original information cannot be regained from the result. However, given the
same data, the hashing algorithm will always produce the same result. The data given to
the hashing algorithm can be anything from a text file to a movie file. In this case, the data
is just a string of characters. With this functionality, our passwords can be stored
as hashes (data that has been hashed). Then, when a user enters their password in the login
or registration page, the text entered for the password will be sent through the same
hashing algorithm, and the stored hash and the entered hash will be verified.

This is one of the authentication methods we will use; further implementation details are
described later in this chapter.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[98]

OpenID and OAuth
Integrating alternative login and registration options into your site becomes more
important as time goes on. Every month, there is another announcement that passwords
have been stolen from a popular website. Implementing the following login options means
that our site's database never stores a password for that user. Verification is handled by a
large brand-named company that the user already places their trust in. By using social
logins, the amount of trust a user has to place in the website they are using is much higher.
Your login process also becomes much shorter for the user, decreasing the barrier to entry
to your app.

Socially authenticated users act as normal users, and unlike the password-based login
methods, they can all be used in tandem.

OpenID is an open-standard authentication protocol that allows users on one site to be
authenticated by any third-party site that implements the protocol, which are
called identity providers. An OpenID login is represented as a URL from one of the
identity providers, typically the profile page of the website. The users that wish to use this
authentication method need to be already registered on at least one of the OpenID
providers.

To see a full list of sites that use OpenID, and to learn how to use each
one, go to https://openid.net/get-an-openid/.

During the process of authentication, the user is redirected to the OpenID provider, where
the user can authenticate—typically using a username/password, but it can be any other
method—and is asked if they trust the party (our application). If the user trusts our
application and authenticates successfully, then the user is redirected back with a
document holding some requested user information (such as the username or email). A
final request is made to check whether the data really came from the provider.

OAuth is not an authentication method—it is an access-delegation method. It was mainly
designed to enable third-party applications to interact with the OAuth providers
(Facebook, Twitter, and so on). With it, we can design an application to interact with a
user's Facebook account, performing actions such as posting on his behalf, sending
notifications, retrieving their friends list, and so on.

To start using OAuth, we first need to register our application on the OAuth provider and
use its consumer key and secret token.

WOW! eBook
www.wowebook.org

https://openid.net/get-an-openid/

Securing Your App Chapter 6

[99]

For Facebook, we need to register our application at http://developers.facebook.com.
Once you create a new app, look for the panel that lists your app's ID and secret key, as
shown in the following screenshot:

 To create a Twitter app and receive your keys, go to https://apps.twitter.com/. Please
do so, since we are going to use these keys, tokens and configuration information to set up
our blog application for OAuth pseudoauthentication.

The OAuth process is as follows:

The application requests access to a user's resources from the OAuth provider.1.
The user is redirected and authorizes the requested access.2.
The application receives an authorization grant, and requests an access token by3.
providing its own credentials (key and token) as well as the received grant.
The application receives the access token (this will serve as our authentication4.
method) and can be further used to interact with the provider API on behalf of
our user.

For a view of the complete OAuth process, go to https:/​/​flask-​dance.
readthedocs.​io/​en/​latest/​how-​oauth-​works.​html#oauth-​2.

Since we will be using both methods in our application, you will find the implementation
details in the following chapters.

WOW! eBook
www.wowebook.org

http://developers.facebook.com
https://apps.twitter.com/
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2
https://flask-dance.readthedocs.io/en/latest/how-oauth-works.html#oauth-2

Securing Your App Chapter 6

[100]

Flask-Login overview
Flask-Login is a popular Flask extension for handling the process of logging users in and
out, properly handling cookie sessions, and even using basic authentication with HTTP
headers. It will set up callbacks for user loading, header authentication, logging in, logging
out, unauthorized events, and so on.

To start using Flask-Login, we first need to declare it as a dependency on
our requirements.txt, as shown in the following code:

...
Flask-Login
...

Then, we need to update our Python virtual environment as follows:

$ source venv/bin/activate
$ pip install -r requirements.txt

If you have executed the provided init.sh script, then there is no need
to update the virtualenv. All the required dependencies for this chapter
are already installed.

To use the session and login flow implemented by Flask-Login, we will need to do the
following:

Change the user model and implement the following functions:
is_authenticated: This checks whether the current user is
authenticated
is_active: This checks whether a user is active
is_anonymous: This supports anonymous accesses to our blog
get_id: This fetches the user ID

Initialize and configure the login manager object, declaring the following:
Where our login view is (URL)
The type of session
The login message (flashed login message)
The special user class for anonymous users
Register and implement a function to load our authenticated user
A function that returns a user object by its ID

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[101]

Flask-Login is agnostic as to our authentication method, so the authentication system itself
needs be implemented.

Setting up
To implement the user authentication system, we will develop a new module in our
application by following the rules that were previously proposed in Chapter 5, Advanced
Application Structure. Our application structure will be as follows:

./
 config.py
 manage.py
 main.py
 config.py
 database.db
 webapp/
 __init__.py
 blog/
 __init__.py
 controllers.py
 forms.py
 models.py
 auth/
 __init__.py
 controllers.py
 models.py
 forms.py
 main/
 __init__.py
 controllers.py
 templates/
 blog/
 auth/
 migrations/
 versions/

To keep the principle of separation of concerns in our approach to our module's design, we
will make a simple change to the way we register each module blueprint. This is a nice
thing to have, and it's necessity is more evident now because in this chapter, we will be
using lots of new extensions to implement security, and we have to initialize them, register
event methods, and configure them. All of these security bootstrapping procedures are best
kept in the authentication module itself. To achieve this, we will create a new method in
each __init__.py file for each module. Let's take a look at how this is done in our blog
and authentication modules:

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[102]

First, let's look at the code in the blog/__init__.py file:

def create_module(app, **kwargs):
 from .controllers import blog_blueprint
 app.register_blueprint(blog_blueprint)

In the authentication module, we will handle the Flask-Login configuration and
initialization as previously described. The main Flask-Login object is
the LoginManager object.

Let's look at the code in the auth/__init__.py file:

from flask_login import LoginManager

login_manager = LoginManager()
login_manager.login_view = "auth.login" login_manager.session_protection =
"strong" login_manager.login_message = "Please login to access this page"
login_manager.login_message_category = "info"

@login_manager.user_loader
def load_user(userid):
 from models import User
 return User.query.get(userid)

def create_module(app, **kwargs):
 ...
 login_manager.init_app(app)
 from .controllers import auth_blueprint
 app.register_blueprint(auth_blueprint)
 ...

The preceding configuration values define which view should be treated as the login page,
and what the message should be to the user after a successful login. Setting the
session_protection option to strong better protects against malicious users tampering
with their cookies. When a tampered cookie is identified, the session object for that user is
deleted and the user is forced to log back in.

The load_user function takes an ID and returns the User object. When a cookie is
validated, Flask-Login will use our function to fetch the user into the current session.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[103]

Finally, in the create_app method itself, we just have to call the create_module on each
module, as follows:

...

def create_app(object_name):
...
 app = Flask(__name__)
 app.config.from_object(object_name)

 db.init_app(app)
 migrate.init_app(app, db)

 from .auth import create_module as auth_create_module
 from .blog import create_module as blog_create_module
 from .main import create_module as main_create_module
 auth_create_module(app)
 blog_create_module(app)
 main_create_module(app)

 return app

To implement an authentication system, we need a lot of setup code. To run any type of
authentication, our app will need the following elements:

The user models will need proper password hashing
It will need to implement a system to keep a secure user session context
A login form and a registration form will be needed to validate user input
A login view and a registration view (and templates for each) will be needed

Updating the models
There are many hashing algorithms, most of which are not secure because they are easy to
brute force. With brute-force attacks, hackers continuously try sending data through a
hashing algorithm until something matches. To best protect the user passwords, bcrypt will
be our hashing algorithm of choice. Bcrypt is purposely designed to be inefficient and slow
(milliseconds rather than microseconds) for the computer to process, thereby making it
harder to brute force. To add bcrypt to our project, the package flask-bcrypt will need to be
installed and added as a dependency on our requirements.txt, as follows:

...
flask-bcrypt
...

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[104]

The flask-bcrypt package will have to be initialized. This is done in the auth
module, auth/__init__.py, as shown in the following code:

...
from flask.ext.bcrypt import Bcrypt
bcrypt = Bcrypt()
...
def create_module(app, **kwargs):
 bcrypt.init_app(app)
 login_managet.init_app(app)

 from .controllers import auth_blueprint
 app.register_blueprint(auth_blueprint)
 ...

Bcrypt is now ready to use. To have our User object use bcrypt, we will add two methods
that set the password and check whether a string matches the stored hash, as follows:

from . import bcrypt

class User(db.Model):
 ...
 def set_password(self, password):
 self.password = bcrypt.generate_password_hash(password)

 def check_password(self, password):
 return bcrypt.check_password_hash(self.password, password)
...

Now, our User models can store passwords securely. We also need to implement the Flask-
Login methods previously described for the session and authentication flow. For this, we
first need to define our anonymous user object.

On the auth/__init__.py, enter the following:

from flask_login import AnonymousUserMixin

class BlogAnonymous(AnonymousUserMixin):
 def __init__(self):
 self.username = 'Guest'

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[105]

Then add our is_authenticated property to the user model in auth/models.py, as
shown in the following code. If the current user is not anonymous, then it is authenticated:

class User(db.model):
...
 @property
 def is_authenticated(self):
 if isinstance(self, AnonymousUserMixin):
 return False
 else:
 return True

Then we add the is_active property; we will not be using it, but it checks whether the
user has gone through some sort of activation process, such as an email confirmation.
Otherwise, it allows site administrators to ban a user without deleting their data. To
implement this, we will create a new Boolean property on our user model schema
definition, as follows:

class User(db.model):
...
 @property
 def is_active(self):
 return True

Finally, we add the following is_active property and get_id method, which are pretty
self explanatory:

class User(db.model):
...
 @property
 def is_anonymous(self):
 if isinstance(self, AnonymousUserMixin):
 return True
 else:
 return False

 def get_id(self):
 return unicode(self.id)

Next, our login process needs to use these methods to create new users and check
passwords, and check whether a user is authenticated.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[106]

Creating the forms
Three forms are required: a login form, a registration form, and a form for our post creation
page. The login form will have username and password fields.

The following is the code for the auth/forms.py file:

from wtforms import (
 StringField,
 TextAreaField,
 PasswordField,
 BooleanField
)
from wtforms.validators import DataRequired, Length, EqualTo, URL
class LoginForm(Form):
 username = StringField('Username', [
 DataRequired(), Length(max=255)
])
 password = PasswordField('Password', [DataRequired()])

 def validate(self):
 check_validate = super(LoginForm, self).validate()
 # if our validators do not pass
 if not check_validate:
 return False
 # Does our user exist
 user = User.query.filter_by(
 username=self.username.data
).first()
 if not user:
 self.username.errors.append(
 'Invalid username or password'
)
 return False
 # Do the passwords match
 if not self.user.check_password(self.password.data):
 self.username.errors.append(
 'Invalid username or password'
)
 return False
 return True

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[107]

Along with the normal validations, our LoginForm method will also check whether the
username that was passed exists, and will use the check_password() method to check the
hashes. This is done by overriding the validate() method called on the form POST
requests. Here, we will first check whether the user exists on the database, and if it exists,
check whether the encrypted passwords match (which will result in a successful login).

Protecting your form from spam
The registration form will have a username field, a password field with a confirmation
field, and a special field named a reCAPTCHA field. A CAPTCHA is a special field on a web
form that checks whether the person who is entering data into the form is actually a person,
or an automated program that is spamming your site. The reCAPTCHA field is simply one
implementation of a CAPTCHA field. The reCAPTCHA method has been integrated into
WTForms, as it is the most popular implementation on the web.

To use reCAPTCHA, you will need a reCAPTCHA login from
https://www.google.com/recaptcha/intro/index.html. As reCAPTCHA is a Google
product, you can log in with your Google account.

Once you log in, it will ask you to add a site. In this case, any name will do, but the domain
field must have localhost as an entry. Once you deploy your site, your domain must also
be added to this list.

Now that you have added a site, dropdowns with instructions on server and client
integration will appear. The given script tag will need to be added to the templates of our
login and registration views when we create them. What WTForms needs from this page
are the keys, as shown in the following screenshot:

Remember to never show these keys to the public. As these keys are only registered to
localhost, they can be shown here without any problem.

WOW! eBook
www.wowebook.org

https://www.google.com/recaptcha/intro/index.html

Securing Your App Chapter 6

[108]

Add these keys to the config object in the config.py file so that WTForms can access
them as follows:

class Config(object):
 SECRET_KEY =
'736670cb10a600b695a55839ca3a5aa54a7d7356cdef815d2ad6e19a2031182b'
 RECAPTCHA_PUBLIC_KEY = "6LdKkQQTAAAAAEH0GFj7NLg5tGicaoOus7G9Q5Uw"
 RECAPTCHA_PRIVATE_KEY = '6LdKkQQTAAAAAMYroksPTJ7pWhobYb88fTAcxcYn'

The following code is our registration form in auth/forms.py:

class RegisterForm(Form):
 username = StringField('Username', [
 DataRequired(),
 Length(max=255)
])
 password = PasswordField('Password', [
 DataRequired(),
 Length(min=8)
])
 confirm = PasswordField('Confirm Password', [
 DataRequired(),
 EqualTo('password')
])
 recaptcha = RecaptchaField()
 def validate(self):
 check_validate = super(RegisterForm, self).validate()
 # if our validators do not pass
 if not check_validate:
 return False
 user = User.query.filter_by(
 username=self.username.data
).first()
 # Is the username already being used
 if user:
 self.username.errors.append(
 "User with that name already exists"
)
 return False
 return True

Note how we are preventing a user from registering itself twice by overriding
the validate method. This is the right way to add extra form validation logic, as we
previously explained.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[109]

The post creation form will just contain a text input for the title and a text area input for the
post content. So the blog/forms.py will contain the following:

class PostForm(Form):
 title = StringField('Title', [
 DataRequired(),
 Length(max=255)
])
 text = TextAreaField('Content', [DataRequired()])

Creating views
The login and registration views will create our form objects and pass them to the
templates. After the LoginForm validates the user's credentials, we will use Flask-Login to
actually log the user in.

In the auth/controllers.py controller, we will find the login view, as shown in the
following code:

...
from flask_login import login_user, logout_user
...

@auth_blueprint.route('/login', methods=['GET', 'POST'])
@oid.loginhandler
def login():
 form = LoginForm()
 ...
 if form.validate_on_submit():
 user = User.query.filter_by(username=form.username.data).one()
 login_user(user, remember=form.remember.data)
 ...
 flash("You have been logged in.", category="success")
 return redirect(url_for('main.index'))

 ...
 return render_template('login.html', form=form,
openid_form=openid_form)

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[110]

The logout view is very simple, and will redirect the user to the main index page, as
follows:

@auth_blueprint.route('/logout', methods=['GET', 'POST'])
def logout():
 logout_user()
 flash("You have been logged out.", category="success")
 return redirect(url_for('main.index'))

The register view is used to register database users only, and will redirect users to the
login page so that they can immediately log in, as follows:

@auth_blueprint.route('/register', methods=['GET', 'POST'])
def register():
 form = RegisterForm()
 if form.validate_on_submit():
 new_user = User()
 new_user.username = form.username.data
 new_user.set_password(form.username.data)
 db.session.add(new_user)
 db.session.commit()
 flash(
 "Your user has been created, please login.",
 category="success"
)
 return redirect(url_for('.login'))
 return render_template('register.html', form=form)

Your login page should now resemble the following screenshot:

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[111]

Your registration page should look like the following screenshot:

Now we need to create the post creation and editing page so that something can be secured.
The two pages will need to transform the text area field into a WYSIWYG (short for what
you see is what you get) editor to handle wrapping the post text in HTML. In the
blog/controllers.py controller, you will find the following view to add new posts:

...
from flask_login import login_required, current_user
from .forms import CommentForm, PostForm
...
@blog_blueprint.route('/new', methods=['GET', 'POST'])
@login_required
def new_post():
 form = PostForm()
 if form.validate_on_submit():
 new_post = Post()
 new_post.user_id = current_user.id
 new_post.title = form.title.data
 new_post.text = form.text.data

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[112]

 db.session.add(new_post)
 db.session.commit()
 flash("Post added", info)
 return redirect(url_for('blog.post', post_id=new_post.id)
return render_template('new.html', form=form)

We are protecting our view using the Flask-Login decorator @login_required to ensure
that only authenticated users can submit new posts. Next, using the proxy
method current_user, we fetch the currently logged user ID so that the post is associated
with the user.

The new.html template will need a JavaScript file for the WYSIWYG editor; CKEditor is
very simple to install and use. Now, our new.html file can be created as follows. Name
it templates/blog/new.html:

{% extends "base.html" %}
{% block title %}Post Creation{% endblock %}
{% block body %}
<div class="p-4 shadow-sm">
 <div class="row">
 <div class="col">
 <h1>Create a New Post</h1>
 </div>
 </div>

<div class="row">
 <form method="POST" action="{{ url_for('.new_post') }}">
 {{ form.hidden_tag() }}
 <div class="form-group">
 {{ form.title.label }}
 {% if form.title.errors %}
 {% for e in form.title.errors %}
 <p class="help-block">{{ e }}</p>
 {% endfor %}
 {% endif %}
 {{ form.title(class_='form-control') }}
 </div>
 <div class="form-group">
 {{ form.text.label }}
 {% if form.text.errors %}
 {% for e in form.text.errors %}
 <p class="help-block">{{ e }}</p>
 {% endfor %}
 {% endif %}
 {{ form.text(id="editor", class_='form-control') }}
 </div>
 <input class="btn btn-primary" type="submit" value="Submit">

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[113]

 </form>
</div>
</div>
{% endblock %}

{% block js %}
<script src="//cdn.ckeditor.com/4.4.7/standard/ckeditor.js">
</script>
<script>
 CKEDITOR.replace('editor');
</script>
{% endblock %}

This is all that is needed to have the user's input stored as HTML in the database. Because
we passed the safe filter in our post template, the HTML code appears correctly on our
post pages. The edit.html template is similar to the new.html template. The only
difference is the form opening tag, shown in the following code:

<form method="POST" action="{{ url_for('.edit_post', id=post.id)
 }}">
...
</form>

The post.html template will need a button for authors to link them to the edit page, as
shown in the following code:

<div class="row">
 <div class="col-lg-6">
 <p>Written By <a href="{{ url_for('.user',
 username=post.user.username) }}">{{ post.user.username
 }} on {{ post.publish_date }}</p>
 </div>
 ...
 {% if current_user == post.user_id %}
 <div class="row">
 <div class="col-lg-2">
 <a href="{{ url_for('.edit_post', id=post.id) }}" class="btn
 btn-primary">Edit
 </div>
 {% endif %}
</div>

Once again, we are using the current_user proxy to fetch the currently logged-in user,
this time on a Jinja2 template, so that we only show the Edit button to the user that
previously create the blog post.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[114]

Finally, we should add an entry to create new posts in the main navigation bar. We should
also take a look at how the login, logout, and register options are enabled and disabled.
In templates/navbar.html, enter the following:

{% if current_user.is_authenticated %}
<li class="nav-item">

 <i class="fa fa-fw fa-sign-out"></i>Logout

{% else %}
<li class="nav-item">

 <i class="fa fa-fw fa-sign-in"></i>Login

<li class="nav-item">

 <i class="fa fa-fw fa-sign-in"></i>Register

{% endif %}

OpenID
To integrate OpenID authentication with our application, we are going to use a new Flask
extension named Flask-OpenID, implemented by the Flask creator itself. As always, the
extension needs to be added to the requirements.txt file, as follows:

...
Flask-OpenID
...

Our app will also need a couple of things to implement OpenID:

A new form object
The form validation in the login and registration pages
A callback after the form submission to log the user in or create a new user

In the auth/__init__.py file, the OpenID object can be initialized as follows:

...
from flask_openid import OpenID
...
oid = OpenID()

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[115]

In the create_module function, the oid object is registered to the app object, as follows:

def create_module(app, **kwargs):
 ...
 oid.init_app(app)
 ...

The new form object will only need the URL of the OpenID provider. In auth/forms.py,
enter the following:

from wtforms.validators import DataRequired, Length, EqualTo, URL
class OpenIDForm(Form):
 openid = StringField('OpenID URL', [DataRequired(), URL()])

In the login and registration views, OpenIDForm() will be initialized, and if the data is
valid, a login request will be sent. In auth/views.py, enter the following:

...

@auth_blueprint.route('/login', methods=['GET', 'POST'])
@oid.loginhandler
def login():
 form = LoginForm()
 openid_form = OpenIDForm()
 if openid_form.validate_on_submit():
 return oid.try_login(
 openid_form.openid.data,
 ask_for=['nickname', 'email'],
 ask_for_optional=['fullname']
)
 if form.validate_on_submit():
 flash("You have been logged in.", category="success")
 return redirect(url_for('blog.home'))
 openid_errors = oid.fetch_error()
 if openid_errors:
 flash(openid_errors, category="danger")
 return render_template(
 'login.html',
 form=form,
 openid_form=openid_form
)

@main_blueprint.route('/register', methods=['GET', 'POST'])
@oid.loginhandler
def register():
 form = RegisterForm()
 openid_form = OpenIDForm()
 if openid_form.validate_on_submit():

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[116]

 return oid.try_login(
 openid_form.openid.data,
 ask_for=['nickname', 'email'],
 ask_for_optional=['fullname']
)
 if form.validate_on_submit():
 new_user = User(form.username.data)
 new_user.set_password(form.password.data)
 db.session.add(new_user)
 db.session.commit()
 flash(
 "Your user has been created, please login.",
 category="success"
)
 return redirect(url_for('.login'))
 openid_errors = oid.fetch_error()
 if openid_errors:
 flash(openid_errors, category="danger")
 return render_template(
 'register.html',
 form=form,
 openid_form=openid_form
)

Both the views have the new decorator @oid.loginhandler, which tells Flask-OpenID to
listen for authentication information coming back from the provider. With OpenID, logging
in and registering are the same. It is possible to create a user from the login form and to log
in from the registration form. The same field appears on both pages to avoid confusing the
user.

To handle the user creation and login, a new function in the auth/__init__.py file is
needed, as shown in the following code:

@oid.after_login
def create_or_login(resp):
 from models import db, User
 username = resp.fullname or resp.nickname or resp.email
 if not username:
 flash('Invalid login. Please try again.', 'danger')
 return redirect(url_for('main.login'))
 user = User.query.filter_by(username=username).first()
 # if the user does not exist create it
 if user is None:
 user = User(username)
 db.session.add(user)

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[117]

 db.session.commit()
 login_user(user)
 return redirect(url_for('main.index'))

This function is called after every successful response from the provider. If the login is
successful and a user object does not exist for the identity, then this function creates a new
User object. If one already exists, the upcoming authentication methods will log the user in.
OpenID does not require all possible information to be returned, so it is possible that not a
full name, but only an email address will be returned. This is why the username can be the
nickname, full name, or email address. The db and User object are imported inside the
function to avoid cyclical imports from the models.py file that is importing the bcrypt
object.

OAuth
To log in with Facebook and Twitter, the OAuth protocol is used as previously described.
Our app will not use OAuth directly; instead, another Flask extension will be used, named
Flask Dance. In the requirements.txt, enter the following:

...
flask-dance
...

As previously described, the OAuth protocol needs a previously created application in each
provider's developer page. After our application is created, we will have a key and secret
token for each provider. For now, we are going to keep these credentials on the
configuration file as is. Later, we will be using environment variables to handle them. So, in
the configuration file config.py, add the following:

...
class Config(object):
 ...
 TWITTER_API_KEY = "XXX"
 TWITTER_API_SECRET = "XXXX"
 FACEBOOK_CLIENT_ID = "YYYY"
 FACEBOOK_CLIENT_SECRET = "YYYY"

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[118]

Now we are ready to initialize and configure our OAuth extension. Flask-Dance will help
us create a new Flask blueprint for each provider we want to add. Once again,
auth/__init__.py is the place where we configure all our authentication extensions, as
follows:

...
from flask_dance.contrib.twitter import make_twitter_blueprint, twitter
from flask_dance.contrib.facebook import make_facebook_blueprint, facebook
...
def create_module(app, **kwargs):
...
 twitter_blueprint = make_twitter_blueprint(
 api_key=app.config.get("TWITTER_API_KEY"),
 api_secret=app.config.get("TWITTER_API_SECRET"),
)
 app.register_blueprint(twitter_blueprint, url_prefix="/auth/login")

 facebook_blueprint = make_facebook_blueprint(
 client_id=app.config.get("FACEBOOK_CLIENT_ID"),
 client_secret=app.config.get("FACEBOOK_CLIENT_SECRET"),
)
 app.register_blueprint(facebook_blueprint, url_prefix="auth/login"
...

Flask-Dance will create the following routes for us:

/auth/login/twitter/authorized: Here, the user is redirected after
authorization is successful on Twitter
/auth/login/twitter: This is the initial login view for Twitter OAuth
/auth/login/facebook/authorized

/auth/login/facebook

After a successful login/authorization is accomplished, we need to log the user in on Flask-
Login; if the user does not exist on the database, add them. To do this, we register for the
authorized signal event. Enter the following in auth/__init__.py:

...
from flask_dance.consumer import oauth_authorized
...
@oauth_authorized.connect
def logged_in(blueprint, token):
 from .models import db, User
 if blueprint.name == 'twitter':
 username = session.get('screen_name')
 elif blueprint.name == 'facebook':
 resp = facebook.get("/me")

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[119]

 username = resp.json()['name']
 user = User.query.filter_by(username=username).first()
 if not user:
 user = User()
 user.username = username
 db.session.add(user)
 db.session.commit()

 login_user(user)
 flash("You have been logged in.", category="success")

The @oauth_authorized is the decorator from Flask-Dance that we use to register our
function to handle the after-authorized signal. This is a generic signal handler for all our
providers, so we need to know what provider are we currently handling. We need to know
this because we need to fetch our username, and each provider is going to expose different
user information in a different way. On Twitter, we will use the screen_name key that has
already been returned by the provider and has already been pushed to our Flask session
object by Flask-Dance. But on Facebook, we need to make a further request to Facebook's
API to fetch the username.

During development, you will probably not use HTTPS. This will trigger
an error when using OAuth2. To get around this, you have to tell
oauthlib to accept insecure connections. In the command line, enter $
export OAUTHLIB_INSECURE_TRANSPORT=1.

Finally, in the register and login templates, we have the following links to start the login
process:

<h2 class="text-center">Register/Login With Facebook</h2>
Login

<h2 class="text-center">Register/Login With Twitter</h2>
Login

Role-based access control (RBAC)
To implement a simple role-based access control system, we need to create a new database
entity Role model that will need a many-to-many relationship for our User model so that a
user can have multiple roles.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[120]

With our code from Chapter 2, Creating Models with SQLAlchemy, adding a many-to-many
relationship to the User object is easy, as shown in the following code:

roles = db.Table(
 'role_users',
 db.Column('user_id', db.Integer, db.ForeignKey('user.id')),
 db.Column('role_id', db.Integer, db.ForeignKey('role.id'))
)

class User(db.Model):
 ...
 roles = db.relationship(
 'Role',
 secondary=roles,
 backref=db.backref('users', lazy='dynamic')
)

 def __init__(self, username=""):
 default = Role.query.filter_by(name="default").one()
 self.roles.append(default)
 self.username = username

 ...
 def has_role(self, name):
 for role in self.roles:
 if role.name == name:
 return True
 return False
...
class Role(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 name = db.Column(db.String(80), unique=True)
 description = db.Column(db.String(255))

 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return '<Role {}>'.format(self.name)

Also, when a user is created, a default role is always inserted into it. Note
the has_role method that will help us easily check whether a user has a certain role; this
will be useful for templates.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[121]

Our test data Python script has already populated the Role model with admin, poster, and
default.

Next, we will need a decorator function to enable RBAC in our views. Python's decorator
functions are very useful, and security is certainly a context where they can be welcome.
Without them, we would have to write the same code over and over again (violating
the DRY principal). We need a decorator function that receives an argument—on our case,
the role name—and then checks whether the user has the required role. It returns HTTP
403 if they do not. This is enabled using the following code:

import functools
...
def has_role(name):
 def real_decorator(f):
 def wraps(*args, **kwargs):
 if current_user.has_role(name):
 return f(*args, **kwargs)
 else:
 abort(403)
 return functools.update_wrapper(wraps, f)
 return real_decorator

The functools.update_wrapper is needed so that the decorated function returns the
function definition instead of the wrapper definition; without it, we would lose the routing
definition from Flask.

Now, we are ready to protect our new post view and edit view. Since only a user with the
poster role can access them, this is now very simple using the has_access decorator.

Look at the auth/__init__.py file:

...
from ..auth import has_role
...
@blog_blueprint.route('/new, methods=['GET', 'POST'])
@login_required
@has_role('poster')
def new_post(id):
 ...

We can also add a user check to the view, to ensure that only a user that has created a post
can actually edit it. We have already disabled the edit option, but a user can always access
the view by typing the URL directly in the browser.

WOW! eBook
www.wowebook.org

Securing Your App Chapter 6

[122]

Go to the file named blog/controllers.py:

@blog_blueprint.route('/edit/<int:id>', methods=['GET', 'POST'])
@login_required
@has_role('poster')
def edit_post(id):
 post = Post.query.get_or_404(id)
 # We want admins to be able to edit any post
 if current_user.id == post.user.id:
 form = PostForm()
 if form.validate_on_submit():
 post.title = form.title.data
 post.text = form.text.data
 post.publish_date = datetime.datetime.now()
 db.session.add(post)
 db.session.commit()
 return redirect(url_for('.post', post_id=post.id))
 form.title.data = post.title
 form.text.data = post.text
 return render_template('edit.html', form=form, post=post)
 abort(403)

Also, in the navigation bar, we want to show the New Post option only to the users that
have the poster role.

Summary
Our users now have secure logins, multiple login and registration options, and explicit
access permissions. Our app has everything that is needed to be a fully fledged blog app. In
the next chapter, we will stop following this example application in order to introduce a
technology named NoSQL.

WOW! eBook
www.wowebook.org

7
Using NoSQL with Flask

A NoSQL (short for Not Only SQL) database is any non-relational data store. It usually
focuses on speed and scalability. NoSQL has been taking the web development world by
storm for the past seven years. Huge companies, such as Netflix and Google, have
announced that they are moving many of their services to NoSQL databases, and many
smaller companies have followed their example.

This chapter will deviate from the rest of the book in that it will not mostly focus on Flask.
The focus on the database design might seem odd in a book about Flask, but choosing the
correct database for your application is arguably the most important decision that you can
make while designing your technology stack. In the vast majority of web applications, the
database is the bottleneck, so the database you pick will determine the overall speed of
your app. A study conducted by Amazon showed that even a 100 ms delay caused a one
percent reduction in sales, so speed should always be one of the main concerns of a web
developer. There is also an abundance of horror stories in the programmer community of
web developers involving developers choosing a popular NoSQL database and then not
really understanding what the database requires in terms of administration. This leads to
large amounts of data loss and crashes, which in turn means the loss of customers. All in
all, it's no exaggeration to say that your choice of database for your application can be the
difference between your app succeeding and failing.

In this chapter, we will illustrate the strengths and weaknesses of NoSQL databases by
examining each type of NoSQL database and the differences between NoSQL and
traditional databases.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[124]

Types of NoSQL database
NoSQL is a blanket term used to describe nontraditional methods of storing data in a
database. The vast majority of NoSQL databases are not relational—unlike RDBMS—which
means that they normally cannot perform operations such as JOIN. There are a number of
other features that distinguish an SQL database from a NoSQL database. With a NoSQL
database, we have the ability to not impose a fixed schema—for example, a collection on
MongoDB can hold different fields, and so they can accept any kind of document. With
NoSQL you can (and should) take advantage of denormalization, making a tradeoff
between storage and speed.

Modern NoSQL databases include key-value stores, document stores, column family stores,
and graph databases.

Key-value stores
A key-value NoSQL database acts much like a dictionary in Python. A single value is
associated with one key and is accessed via that key. Also, like a Python dictionary, most
key-value databases have the same read speed regardless of how many entries there are.
Advanced programmers would know this as O(1) reads. In some key-value stores, only one
key can be retrieved at a time, rather than multiple rows in traditional SQL databases. In
most key-value stores, the content of the value is not queryable, but the keys are. Values are
just binary blobs: they can be literally anything, from a string to a movie file. However,
some key-value stores give default types, such as strings, lists, sets, and dictionaries, while
still giving the option of adding binary data.

Because of their simplicity, key-value stores are typically very fast. However, their
simplicity makes them unsuitable as the main database for most applications. As such,
most key-value store use cases involve storing simple objects that need to expire after a
certain amount of time. Two common examples of this pattern are storing users' session
data and shopping cart data. Also, key-value stores are commonly used as caches for the
application or for other databases. For example, results from a commonly run, or CPU-
intensive, query or function are stored with the query or function name as a key. The
application will check the cache in the key-value store before running the query on the
database, thereby decreasing page load times and stress on the database. An example of
this functionality will be shown in Chapter 10, Useful Flask Extensions.

The most popular key–value stores are Redis, Riak, and Amazon DynamoDB.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[125]

Document stores
Document store is one of the most popular NoSQL database types, and is typically used to
replace RDBMSes. Databases store data in collections of key-value pairs called documents.
These documents are schemaless, meaning that no document follows the structure of any
other document. Also, extra keys may be appended to each document after its creation.
Document stores can store data in JSON, BSON, and XML. For example, the following are
two different post objects stored in JSON:

{
 "title": "First Post",
 "text": "Lorem ipsum...",
 "date": "2015-01-20",
 "user_id": 45
},
{
 "title": "Second Post",
 "text": "Lorem ipsum...",
 "date": "2015-01-20",
 "user_id": 45,
 "comments": [
 {
 "name": "Anonymous",
 "text": "I love this post."
 }
]
}

Note that the first document has no comments array. As stated before, documents are
schemaless, so this format is perfectly valid. The lack of a schema also means that there are
no type checks at the database level. There is nothing in the database to stop an integer
from being entered into the title field of a post. Schemaless data is the most powerful
feature of document stores and attracts many developers to adopt it for their apps.
However, it can also be considered very dangerous, as there is one less check to stop faulty
or malformed data from getting into your database.

Some document stores collect similar objects into collections of documents to make
querying objects easier. However, in some document stores, all objects are queried at once.
Document stores store the metadata of each object, which allows all of the values in each
document to be queried and return matching documents.

The most popular document stores are MongoDB, CouchDB, and Couchbase.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[126]

Column family stores
Column family stores, also known as wide column stores, have many things in common
with both key-value stores and document stores. Column family stores are the fastest type
of NoSQL database because they are designed for large applications. Their main advantage
is their ability to handle terabytes of data and still have very fast read and write speeds by
distributing the data across several servers in an intelligent way.

Column family stores are also the hardest to understand, due in part to the vernacular of
column family stores, as they use many of the same terms as RDBMSes, but with wildly
different meanings. In order to clearly understand what a column family store is, let's jump
straight into an example. Let's create a simple user-to-posts association in a typical column
family store.

First, we need a user table. In column family stores, data is stored and accessed via a unique
key, such as a key-value store, but the content consists of unstructured columns, such as a
document store. Consider the following user table:

Key Jack John

Column Full Name Bio Location Full Name Bio

Value Jack Stouffer
This is my
about me

Michigan, USA John Doe
This is my
about me

Note that each key holds columns, which are key-value pairs as well. Also, it is not
necessary for each key to have the same number or type of columns. Each key can store
hundreds of unique columns, or they can all have the same number of columns to make
application development easier. This is in contrast to key-value stores, which can hold any
type of data with each key. This is also slightly different than document stores, which can
store types, such as arrays and dictionaries, in each document. Now let's create our posts
table:

Key Post/1 Post/2

Column Title Date Text Title Date Text

Value Hello
World

2015-01-01
Post
text...

Still Here 2015-02-01
Post
text...

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[127]

There are several things to understand about column family stores before we continue.
Firstly, in column family stores, data can only be selected via a single key or key range;
there is no way to query the contents of the columns. To get around this, many
programmers use an external search tool with their database—such as Elasticsearch—that
stores the contents of columns in a searchable format (Lucene's inverted indexes) and
returns matching keys to be queried on the database. This limitation is why proper schema
design is so crucial in column family stores, and must be carefully thought through before
storing any data.

Secondly, data cannot be ordered by the content of the columns. Data can only be ordered
by key, which is why the keys to the posts are integers. This allows the posts to be returned
in the order in which they were entered. This is not a requirement for the user table because
there is no need to sequentially order users.

Thirdly, there are no JOIN operators, and we cannot query for a column that would hold a
user key. With our current schema, there is no way to associate a post with a user. To create
this functionality, we need a third table that holds the user to post associations, as follows:

Key Jack

Column Posts Posts/1 Post/1

Value Posts/2 Post/2

This is slightly different from the other tables we have seen so far. The Posts column is
named a super column, which is a column that holds other columns. In this table, a super
column is associated with our user key, which is holding an association of the position of a
post to one post. Clever readers might ask why we wouldn't just store this association in
our user table, much like how the problem would be solved in document stores. This is
because regular columns and super columns cannot be held in the same table. You must
choose one at the creation of each table.

To get a list of all the posts by a user, we would first have to query the post association
table with our user key, use the returned list of associations to get all of the keys in the
posts' table, and query the post table with the keys.

If that query seems like a roundabout process to you, that's because it is, and it is made that
way by design. The limiting nature of a column family store is what allows it to be so fast
and handle so much data. Removing features such as searching by value and column name
gives column family stores the ability to handle hundreds of terabytes of data. It's not an
exaggeration to say that SQLite is a more complex database for the programmer than a
typical column family store.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[128]

For this reason, most Flask developers should steer clear of column family stores as they
add complexity to applications that isn't necessary. Unless your application is going to
handle millions of reads and writes a second, using a column family store is like pounding
in a nail with an atomic bomb.

The most popular column family stores are BigTable, Cassandra, and HBase.

Graph databases
Designed to describe and then query relationships, graph databases are like document
stores, but have mechanisms to create and describe links between two nodes.

A node is like an instance of an object, usually a collection of key-value pairs or a JSON
document. Nodes can be given labels to mark them as part of a category—for example, a
user or a group. After your nodes have been defined, an arbitrary number of one-way
relationships between the nodes, named links, can be created with their own attributes. For
example, if our data had two user nodes and each of the two users knew each other, we
would define two knows links between them to describe that relationship, as shown in the
following diagram. This would allow you to query all the people that know one user or all
the people that a user knows:

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[129]

Graph stores also allow you to query by the link's attributes. This allows you to easily
create otherwise complex queries, such as a search for all of the users that one user marked
as known in October 2001. Graph stores can follow links from node to node to create even
more complex queries. If this example dataset had more groups, we can query for groups
that people we know have joined but that we haven't joined. Otherwise, we can query for
people who are in the same groups as a user, but who the user doesn't know. Queries in a
graph store can also follow a large number of links to answer complex questions, such as
"which restaurants in New York that serve burgers and have a three-star rating or higher
have my friends liked?"

The most common use case for a graph database is to build a recommendation engine. For
example, say that we had a graph store that is filled with our friend data from a social
networking site. Using this data, we could build a mutual friend finder by querying for
users that have been marked as friends by more than two of our friends.

It is very rare for a graph database to be used as the primary data store of an application.
Most uses of graph stores have each node acting as a representation of a piece of data in
their main database by storing its unique identifier and a small amount of other identifying
information.

The most popular graph stores are Neo4j and InfoGrid.

RDBMS versus NoSQL
NoSQL is a tool, and like any tool there are specific use cases where it excels and there are
use cases where some other tool would be a better fit. No one would use a screwdriver to
pound in a nail; it's possible, but using a hammer would make the job easier. One large
problem with NoSQL databases is that people adopt them when an RDBMS would solve
the problem just as well, or better.

To understand which tool should be used when, we must understand the strengths and
weaknesses of both systems.

The strengths of RDBMS databases
One of the biggest strengths of RDBMSes is their maturity. The technology behind
RDBMSes has existed for over 40 years and is based on the solid theory of relational algebra
and relational calculus. Because of their maturity, they have a long, proven track record
across many different industries of handling data in a safe and secure way.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[130]

Data integrity
Integrity is also one of the biggest selling points of RDBMSes. RDBMSes have several
methods in place to ensure that the data entered into a database will not only be correct, but
that data loss will be practically nonexistent. These methods combine to form what is
known as ACID (short for atomicity, consistency, isolation, and durability). ACID is a set
of rules for transactions that guarantee that the transaction is handled safely.

The principle of atomicity requires that each transaction is all or nothing. If one part of the
transaction fails, the entire transaction fails. This is much like the following quote from The
Zen of Python:

"Errors should never pass silently. Unless explicitly silenced."

If there is a problem with the data that has been changed or entered, the transaction should
not keep operating because the proceeding operations most likely require that the previous
operations were successful.

The principle of consistency requires that any data that the transaction modifies or adds
follows the rules of each table. Such rules include type checks, user-defined
constraints—such as foreign keys—cascade rules, and triggers. If any of the rules are broken,
then according to the atomicity rule, the transaction will be thrown out.

The principle of isolation requires that if the database runs transactions concurrently to
speed up writes, then the outcome of the transactions would be the same as if they were
run serially. This is mostly a rule for database programmers, and is not something that web
developers need to worry about.

Finally, the principle of durability requires that once a transaction is accepted, the data
must never be lost, barring a hard drive failure after the transaction is accepted. If the
database crashes or loses power, then the durability principle requires that any data written
before the problem occurred should still be present when the server is backed up. This
essentially means that all transactions must be written to the disk once they are accepted.

Speed and scale
A common misconception is that the ACID principle makes RDBMSes slow and unable to
scale. This is only half true—it is completely possible for an RDBMS to scale. For example,
an Oracle database configured by a professional database administrator can handle tens of
thousands of complex queries a second. Huge companies, such as Facebook, Twitter,
Tumblr, and Yahoo!, are using MySQL to great effect, and PostgreSQL is emerging as a
favorite of many programmers because of its speed advantage over MySQL.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[131]

Tools
When evaluating a programming language, the strongest points for or against adopting it
are the size and activity of its community. A larger and more active community means
more help if you get stuck and more open source tools available for you to use in your
projects.

It's no different with databases. RDBMSes, such as MySQL and PostgreSQL, have official
libraries for almost every language that is used in commercial environments and unofficial
libraries for everything else. Tools, such as Excel, can easily download the latest data from
one of these databases and allow the user to treat it like it was any other dataset. Several
free desktop GUIs exist for each database, and some are officially supported by the
databases' corporate sponsor.

The strengths of NoSQL databases
The main reason that many people use NoSQL databases is its speed advantage over
traditional databases. Out of the box, many NoSQL databases can outperform RDBMSes.
However, a well-tuned and properly scaled SQL database with read slaves can outperform
NoSQL databases. Many NoSQL databases, especially document stores, sacrifice
consistency for availability. This means that they can handle many concurrent reads and
writes, but those writes may be in conflict with one another. Yet, this is not straightforward,
as you will soon see when we look at the CAP theorem.

The second feature that pulls people to NoSQL is its ability to handle unformatted data.
Storing data in XML or JSON allows an arbitrary structure to each document. Applications
that store user-designed data have benefited greatly from the adoption of NoSQL. For
example, a video game that allows players to submit their custom levels to some central
repository can now store the data in a queryable format rather than in a binary blob.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[132]

The third feature that draws people to NoSQL is the ease of creating a cluster of databases
working in tandem. Not having JOIN operators or only accessing values via keys makes
splitting the data across servers a rather trivial task when compared with RDBMSes. This is
due to the fact that JOIN operators require a scan of the entire table, even if it is split across
many different servers. The JOIN operators become even slower when documents or keys
can be assigned to a server by an algorithm as simple as the starting character of its unique
identifier—for example, everything that starts with the letters A–H is sent to server 1, I–P to
server 2, and Q–Z to server 3. This makes looking up the location of data for a connected
client very fast.

Next, we will briefly explain the CAP theorem, to give you some background on the
underlying problems behind database-distributed systems.

CAP theorem
The CAP theorem stands for consistency, availability, and partition tolerance, and states
that it's not possible for a distributed system to guarantee all three, so a trade-off must be
made.

The following list shows exactly what each of these guarantees means on a distributed
system:

Consistency: Guarantees that each node on a cluster returns the most recent
write and preserves linear consistency
Availability: Every non failing node is able to respond to a request with a non
error response
Partition tolerance: The system continues to operate despite network
outages/delays

The theorem states that in case of a network partition, a distributed system has to choose
between consistency or availability, so in the case of a network partition, systems must fall
into two main categories, CP and AP.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[133]

A simple visualization of such a distributed system would be two instances serving many
clients concurrently on distinct data centers. One client sends: write the key-value a:0 to
server1. Then server1 sends a:0 to server2, server2 sends an acknowledgement back to
server1 which then sends an acknowledgement back to the client. This is shown in the
following diagram:

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[134]

Imagine that a network partition occurs and this prevents server1 from communicating
with server2. Meanwhile, client1 requests that server1 changes a:0 to a:1. If the system aims
for consistency, then it would reject the transaction since it can't send the write to server2
and server2 would deny any transactions since it could serve dirty reads, and we are
aiming for consistency. This relationship is shown in the following diagram:

If we want to aim for availability, we must relax consistency. In today's database RDBMS or
NoSQL, systems are not 100% CP or AP, but they can be configured to be more or less
relaxed as to their consistency and availability to a certain degree.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[135]

Although not 100% correct, MongoDB aims for consistency and partition tolerance.
MongoDB in a cluster architecture uses a single-master setup, which means that a single
node can accept writes. It avoids a single point of failure (SPOF) by having the ability to
switch if the majority of the other nodes lose contact with their current master. This
increases availability by lowering consistency for the following reasons:

If you use a single node, then reads and writes to the same system on MongoDB
will make it a very consistent system, but if you use multiple instances for reads
with asynchronous replication, then the entire system will eventually become
consistent
When the old master node recovers, it will rejoin the cluster as a slave node, and
all the dirty writes it might have will be rolled back

What database to use and when
So, each database has different uses. It was stated at the beginning of the section that the
main problem when programmers choose a NoSQL database for their technology stack is
that they choose it when an RDBMS would work just as well. This is born out of some
common misconceptions. Firstly, people try to use a relational mindset and data model and
think that they will work just as well in a NoSQL database. People usually come to this
misunderstanding because the marketing on the various websites of NoSQL databases is
misleading, and encourages users to drop their current database without considering
whether a non-relational model will work for their project.

Secondly, people believe that you must use only one data store for your application. Many
applications can benefit from using more than one data store. Take a Facebook clone as an
example. It could use MySQL for holding user data, Redis to store session data, a document
store to hold the data for the quizzes and surveys that people share with each other, and a
graph database to implement a feature for finding friends.

If an application feature needs very fast writes, and write safety is not a primary concern,
then you should use a document store database. If you need to store and query schemaless
data, then you should use a document store database.

If an application feature needs to store something that deletes itself after a specified time, or
if the data does not need to be searched, then you should use a key-value store.

If an application feature involves finding or describing complex relationships between two
or more sets of data, then you should use a graph store.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[136]

If an application feature needs guaranteed write safety, or if it needs each entry to fit into a
specified schema, different sets of data in the database to be compared using JOIN
operators, or constraints on the entered data, then you should use an RDBMS.

MongoDB in Flask
MongoDB is far and away the most popular NoSQL database. MongoDB is also the best-
supported NoSQL database for Flask and Python in general. Therefore, our examples will
focus on MongoDB.

MongoDB is a document storage NoSQL database. Documents are stored in collections,
which allow the grouping of similar documents, but no similarities between documents are
necessary to store a document in a collection. Documents are defined in a JSON superset
named BSON (short for Binary JSON). BSON allows JSON to be stored in binary format
rather than in string format, saving a lot of space. BSON also distinguishes between several
different ways of storing numbers, such as 32-bit integers and doubles.

To understand the basics of MongoDB, we will use Flask-MongoEngine to cover the same
functionality of Flask-SQLAlchemy in the previous chapters. Remember that these are just
examples. There is no benefit of refactoring our current code to use MongoDB because
MongoDB cannot offer any new functionality for our use case. New functionality with
MongoDB will be shown in the next section.

Installing MongoDB
To install MongoDB, go to https://www.mongodb.org/downloads and select your OS from
the tabs under the heading Download MongoDB. Every OS that has a supported version
has installation instructions listed next to the download button of the installer.

To run MongoDB, go to Bash and run the following:

$ mongod

This will run a server for as long as the window is open.

Using Docker, you can easily launch a MongoDB server without needing to install anything
else on your computer.

WOW! eBook
www.wowebook.org

https://www.mongodb.org/downloads

Using NoSQL with Flask Chapter 7

[137]

To start a MongoDB server on Docker, enter the following:

$docker run -d -p 27017:27017 mongo:3.2.20-jessie
$docker container list
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4c6706af399b mongo:3.2.20-jessie "docker-entrypoint.s…" About a minute ago
Up About a minute 0.0.0.0:27017->27017/tcp silly_ardinghelli

Setting up MongoEngine
 If you're following the example code provided with this book (which you can find
at https:/​/​github.​com/​PacktPublishing/​Hands-​On-​Web-​Development-​with-​Flask),
then all you need to do is create a new Python virtual environment and install all the
necessary dependencies. You will notice the provided init.sh and requirements.txt.
Inside the init.sh, we have all the necessary commands to get us set up, as shown in the
following code:

if [! -d "venv"]; then
 virtualenv venv
fi
source venv/bin/activate
pip install -r requirements.txt

And, of course, our requirements.txt contains the following necessary packages:

Flask
Flask-MongoEngine

In the __init__.py file, a mongo object will be created that represents our database, as
shown in the following code:

from flask_mongoengine import MongoEngine

mongo = MongoEngine

def create_app(object_name):
...
 mongo.init_app(app)
...

WOW! eBook
www.wowebook.org

https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Flask

Using NoSQL with Flask Chapter 7

[138]

Before our app will run, our DevConfig object in config.py needs to set up the
parameters of the mongo connection:

MONGODB_SETTINGS = {
 'db': 'local',
 'host': 'localhost',
 'port': 27017
}

These are the defaults for a brand new MongoDB installation.

Defining documents
MongoEngine is an ORM that is based around Python's object system, and is specifically
designed for MongoDB. Unfortunately, there is no SQLAlchemy-style wrapper that
supports all NoSQL drivers. In RDBMSes, the implementations of SQL are so similar that
creating a universal interface is possible. However, the underlying implementations of each
document store are different enough that the task of creating a similar interface would be
more trouble than it is worth.

Each collection in your Mongo database is represented by a class that inherits from
mongo.Document, as shown in the following code:

class Post(mongo.Document):
 title = mongo.StringField(required=True)
 text = mongo.StringField()
 publish_date = mongo.DateTimeField(default=datetime.datetime.now())
 def __repr__(self):
 return "<Post '{}'>".format(self.title)

Each class variable is a representation of a key belonging to a document, which is
represented in this example of a Post class. The class variable name is used as the key in
the document.

Unlike SQLAlchemy, there is no need to define a primary key. A unique ID will be
generated for you under the id attribute. The preceding code would generate a BSON
document that would resemble the following:

{
 "_id": "55366ede8b84eb00232da905",
 "title": "Post 0",
 "text": "<p>Lorem ipsum dolor...",
 "publish_date": {"$date": 1425255876037}
}

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[139]

Field types
There are a large number of fields, and each represents a distinct category of data in
Mongo. Unlike the underlying database, each field provides a type check before the
document is allowed to be saved or altered. The most-used fields are as follows:

BooleanField

DateTimeField

DictField

DynamicField

EmbeddedDocumentField

FloatField

IntField

ListField

ObjectIdField

ReferenceField

StringField

For a full list of fields and detailed documentation, go to the
MongoEngine website at http://docs.mongoengine.org.

The majority of these are named after the Python type they accept and work in the same
way as the SQLAlchemy types. However, there are some new types that have no
counterpart in SQLAlchemy. Let's take a look at them in detail:

DynamicField is a field that can hold any type of value and performs no type
checks on values.
DictField can store any Python dictionary that can be serialized by
json.dumps().
ReferenceField simply stores the unique ID of a document, and when queried,
MongoEngine will return the referenced document.
EmbeddedDocumentField stores the passed document in the parent document,
so there is no need for a second query.
ListField represents a list of fields of a specific type. This is typically used to
store a list of references to other documents or a list of embedded documents to
create a one-to-many relationship. If a list of unknown types is needed,
then DynamicField can be used.

WOW! eBook
www.wowebook.org

http://docs.mongoengine.org

Using NoSQL with Flask Chapter 7

[140]

Each field type takes some common arguments, as shown in the following code:

Field(
 primary_key=None
 db_field=None,
 required=False,
 default=None,
 unique=False,
 unique_with=None,
 choices=None
)

The primary_key argument specifies that you do not want MongoEngine to
autogenerate a unique key, but the value of the field should be used as the ID.
The value of this field will now be accessible from both the id attribute and the
name of the field.
db_field defines what the key will be named in each document. If it is not set, it
will default to the name of the class variable.
If required is defined as True, then that key must be present in the document.
Otherwise, the key does not have to exist for documents of that type. When a
class is defined, the nonexistent key is queried, and it will return None.
default specifies the value that this field will be given if no value is defined.
If unique is set to True, then MongoEngine checks to make sure that no other
documents in the collection will have the same value for this field:

When passed a list of field names, unique_with will make sure
that—when taken in combination—the values of all the fields will
be unique for each document. This is much like multicolumn
UNIQUE indexes in RDBMSes.

Finally, when given a list, the choices option limits the allowable values for that
field to the elements in the list.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[141]

Types of documents
MongoEngine's method to define documents allows either flexibility or rigidity on a
collection-by-collection basis. Inheriting from mongo.Document means that only the keys
defined in the class can be saved to the database. Those keys defined in the class can be
empty, but everything else will be ignored. On the other hand, if your class inherits
mongo.DynamicDocument, then any extra fields that are set will be treated as
DynamicField and will be saved with the document, as follows:

class Post(mongo.DynamicDocument):
 title = mongo.StringField(required=True, unique=True)
 text = mongo.StringField()
 ...

To show the extreme case (which is not recommended), the following class is perfectly
valid; it has no required fields and allows any fields to be set:

class Post(mongo.DynamicDocument):
 pass

The last type of document is EmbeddedDocument. A EmbeddedDocument is simply a
document that is passed to EmbeddedDocumentField and is stored as is in the document,
as follows:

class Comment(mongo.EmbeddedDocument):
 name = mongo.StringField(required=True)
 text = mongo.StringField(required=True)
 date = mongo.DateTimeField(default=datetime.datetime.now())

Why use EmbeddedDocumentField over DictField when they seem to perform the same
function? The end result of using each is the same. However, an embedded document
defines a structure for the data, while DictField can be anything. To understand this
better, think of it this way: Document is to DynamicDocument what EmbeddedDocument is
to DictField.

The meta attribute
Using the meta class variable, many attributes of a document can be manually set. If you
are working with an existing set of data and want to connect your classes to the collections,
then set the collection key of the meta dictionary, as follows:

class Post(mongo.Document):
 ...
 meta = {'collection': 'user_posts'}

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[142]

You can also manually set the maximum number of documents in the collection and the
maximum size of each document. In the following example, there can be only 10,000
documents, and each document can't be larger than 2 MB:

class Post(mongo.Document):
 ...
 meta = {
 'collection': 'user_posts',
 'max_documents': 10000,
 'max_size': 2000000
 }

Indexes can also be set through MongoEngine. Indexes can be made single field by using a
string or multifield by using a tuple, as follows:

class Post(mongo.Document):
 ...
 meta = {
 'collection': 'user_posts',
 'max_documents': 10000,
 'max_size': 2000000,
 'indexes': [
 'title',
 ('title', 'user')
]
 }

The default ordering of a collection can be set through the meta variable using the ordering
key, as shown in the following code. When - is prepended, it tells MongoEngine to order
results in descending order of that field. If + is prepended, it tells MongoEngine to order
results in ascending order of that field. This default behavior is overridden if the order_by
function is specified in a query, which will be shown in the CRUD section:

class Post(mongo.Document):
 ...
 meta = {
 'collection': 'user_posts',
 'max_documents': 10000,
 'max_size': 2000000,
 'indexes': [
 'title',
 ('title', 'user')
],
 'ordering': ['-publish_date']
 }

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[143]

The meta variable can also enable inheritance from user-defined documents, which is
disabled by default. The subclass of the original document will be treated as a member of
the parent class and will be stored in the same collection, as follows:

class Post(mongo.Document):
 ...
 meta = {'allow_inheritance': True}

class Announcement(Post):
 ...

CRUD
As stated in Chapter 2, Creating Models with SQLAlchemy, there are four main forms of data
manipulation that any data store must implement. They are the creation of new data, the
reading of existing data, the updating of existing data, and the deletion of data.

Create
To create a new document, just create a new instance of the class and call the save method,
as follows:

>>> post = Post()
>>> post.title = "Post From The Console"
>>> post.text = "Lorem Ipsum..."
>>> post.save()

Otherwise, the values can be passed as keywords in the object creation, as follows:

>>> post = Post(title="Post From Console", text="Lorem Ipsum...")

Unlike SQLAlchemy, MongoEngine does not automatically save related objects that are
stored in ReferenceFields. To save any changes to referenced documents along with the
changes to the current document, pass cascade as True, as shown in the following code:

>>> post.save(cascade=True)

If you wish to insert a document and skip its checks against the defined parameters in the
class definition, then pass validate as False, as shown in the following code:

>>> post.save(validate=False)

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[144]

Remember that these checks exist for a reason. Turn them off only for a
very good reason.

Write safety
By default, MongoDB does not wait for the data to be written to disk before acknowledging
that the write occurred. This means that it is possible for writes that were acknowledged to
have failed, either by hardware failure or some error when the write occurred. To ensure
that the data is written to disk before Mongo confirms the write, use the write_concern
keyword. The write_concern parameter tells Mongo when it should return with an
acknowledgement of the write, as shown in the following code:

will not wait for write and not notify client if there was an error
>>> post.save(write_concern={"w": 0})
default behavior, will not wait for write
>>> post.save(write_concern={"w": 1})
will wait for write
>>> post.save(write_concern={"w": 1, "j": True})

As stated in the RDBMS versus NoSQL section, it's very important that you
understand how the NoSQL database that you are using treats writes. To
learn more about MongoDB's write concern, go to
http://docs.mongodb.org/manual/reference/write-concern/.

Read
The objects attribute is used to access the documents from the database. To read all of the
documents in a collection, use the all method, as follows:

>>> Post.objects.all()
[<Post: "Post From The Console">]

To limit the number of items returned, use the limit method as follows:

only return five items
>>> Post.objects.limit(5).all()

WOW! eBook
www.wowebook.org

http://docs.mongodb.org/manual/reference/write-concern/

Using NoSQL with Flask Chapter 7

[145]

This limit command is slightly different than the SQL version. In SQL, the limit
command can also be used to skip the first results. To replicate this functionality, use the
skip method as follows:

skip the first 5 items and return items 6-10
>>> Post.objects.skip(5).limit(5).all()

By default, MongoDB returns the results in the order of the time of their creation. To
control this, there is the order_by function, which is used as follows:

ascending
>>> Post.objects.order_by("+publish_date").all()
descending
>>> Post.objects.order_by("-publish_date").all()

If you want only the first result from a query, use the first method. If your query returns
nothing, and you expected it to, then use first_or_404 to automatically abort with a 404
error. This acts in exactly the same way as its Flask-SQLAlchemy counterpart, and is
provided by Flask-MongoEngine, as follows:

>>> Post.objects.first()
<Post: "Post From The Console">
>>> Post.objects.first_or_404()
<Post: "Post From The Console">

The same behavior is available for the get method, which expects that the query will only
return one result and will raise an exception otherwise, as follows:

The id value will be different your document
>>> Post.objects(id="5534451d8b84ebf422c2e4c8").get()
<Post: "Post From The Console">
>>> Post.objects(id="5534451d8b84ebf422c2e4c8").get_or_404()
<Post: "Post From The Console">

The paginate method is also present and has the exact same API as its Flask-SQLAlchemy
counterpart, as follows:

>>> page = Post.objects.paginate(1, 10)
>>> page.items()
[<Post: "Post From The Console">]

Also, if your document has a ListField method, then the paginate_field method on
the document object can be used to paginate through the items of the list.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[146]

Filtering
If you know the exact value of the field you wish to filter by, then you can pass its value as
a keyword to the objects method, as follows:

>>> Post.objects(title="Post From The Console").first()
<Post: "Post From The Console">

Unlike SQLAlchemy, we cannot pass truth tests to filter our results. Instead, special
keyword arguments are used to test values. For example, to find all posts published after
January 1 2015, enter the following:

>>> Post.objects(
 publish_date__gt=datetime.datetime(2015, 1, 1)
).all()
[<Post: "Post From The Console">]

The __gt appended to the end of the keyword is called an operator. MongoEngine
supports the following operators:

ne: Not equal to
lt: Less than
lte: Less than or equal to
gt: Greater than
gte: Greater than or equal to
not: Negate an operator—for example, publish_date__not__gt
in: Value is in the list
nin: Value is not in the list
mod: Value % a == b—a and b are passed as (a, b)
all: Every item in the provided list of values is in the field
size: The size of the list
exists: Value for the field exists

MongoEngine also provides the following operators to test string values:

exact: String equals the value
iexact: String equals the value (case-insensitive)
contains: String contains the value
icontains: String contains the value (case-insensitive)

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[147]

startswith: String starts with the value
istartswith: String starts with the value (case-insensitive)
endswith: String ends with the value
iendswith: String ends with the value (case insensitive) Update

These operators can be combined to create the same powerful queries that were created in
the previous sections. For example, to find all of the posts that were created after January 1
2015 don't use the word post in the title. Instead, the body text should start with the word
Lorem and should be ordered by the publish date, starting with the latest one. You can do
this using the following code:

>>> Post.objects(
 title__not__icontains="post",
 text__istartswith="Lorem",
 publish_date__gt=datetime.datetime(2015, 1, 1),
).order_by("-publish_date").all()

However, if there is a complex query that cannot be represented by these tools, then a raw
Mongo query can be passed as well, as follows:

>>> Post.objects(__raw__={"title": "Post From The Console"})

Update
To update objects, the update method is called on the results of a query, as follows:

>>> Post.objects(
 id="5534451d8b84ebf422c2e4c8"
).update(text="Ipsum lorem")

If your query should only return one value, then use update_one to only modify the first
result, as follows:

>>> Post.objects(
 id="5534451d8b84ebf422c2e4c8"
).update_one(text="Ipsum lorem")

Unlike traditional SQL, there are many different ways to change a value in MongoDB.
Operators are used to change the values of a field in the following different ways:

set: Sets a value (same as given earlier)
unset: Deletes a value and removes the key
inc: Increments a value

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[148]

dec: Decrements a value
push: Appends a value to a list
push_all: Appends several values to a list
pop: Removes the first or last element of a list
pull: Removes a value from a list
pull_all: Removes several values from a list
add_to_set: Adds a value to a list only if it's not in the list already

For example, if a Python value needs to be added to a ListField named tags for all Post
documents that have the MongoEngine tag, as follows:

>>> Post.objects(
 tags__in="MongoEngine",
 tags__not__in="Python"
).update(push__tags="Python")

The same write concern parameters to save exist for updates, as shown in the following
code:

>>> Post.objects(
 tags__in="MongoEngine"
).update(push__tags="Python", write_concern={"w": 1, "j": True})

Delete
To delete a document instance, call its delete method as follows:

>>> post = Post.objects(
 id="5534451d8b84ebf422c2e4c8"
).first()
>>> post.delete()

Relationships in NoSQL
Just as we created relationships in SQLAlchemy, we can create relationships between
objects in MongoEngine. Only with MongoEngine, we will be doing so without JOIN
operators.

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[149]

One-to-many relationships
There are two ways to create a one-to-many relationship in MongoEngine. The first method
is to create a relationship between two documents by using ReferenceField to point to
the ID of another object, as follows:

class Post(mongo.Document):
 ...
 user = mongo.ReferenceField(User)

Accessing the property of ReferenceField gives us direct access to the referenced object,
as follows:

>>> user = User.objects.first()
>>> post = Post.objects.first()
>>> post.user = user
>>> post.save()
>>> post.user
<User Jack>

Unlike SQLAlchemy, MongoEngine has no way to access objects that have relationships to
other objects. With SQLAlchemy, a db.relationship variable could be declared, which
allowed a user object to access all of the posts with a matching user_id column. No such
variable exists in MongoEngine.

A solution is to get the user ID for the posts you wish to search for and filter with the user
field. This is the same thing that SQLAlchemy did behind the scenes, but we are doing it
manually, as follows:

>>> user = User.objects.first()
>>> Post.objects(user__id=user.id)

The second way to create a one-to-many relationship is to use EmbeddedDocumentField
with EmbeddedDocument, as follows:

class Post(mongo.Document):
 title = mongo.StringField(required=True)
 text = mongo.StringField()
 publish_date = mongo.DateTimeField(default=datetime.datetime.now())
 user = mongo.ReferenceField(User)
 comments = mongo.ListField(mongo.EmbeddedDocumentField(Comment))

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[150]

Accessing the comments property gives a list of all the embedded documents. To add a
new comment to the post, treat it like a list and append comment documents to it, as
follows:

>>> comment = Comment()
>>> comment.name = "Jack"
>>> comment.text = "I really like this post!"
>>> post.comments.append(comment)
>>> post.save()
>>> post.comments
[<Comment 'I really like this post!'>]

Note that there was no call to a save method on the comment variable. This is because the
comment document is not a real document; it is only an abstraction of DictField. Also,
keep in mind that documents can only be up to 16 MB in size, so be careful how many
EmbeddedDocumentFields are on each document and how many EmbeddedDocuments
each one is holding.

Many-to-many relationships
The concept of a many-to-many relationship does not exist in document store databases.
This is because with ListFields, they become completely irrelevant. To idiomatically
create the tag feature for the Post object, add a list of strings as follows:

class Post(mongo.Document):
 title = mongo.StringField(required=True)
 text = mongo.StringField()
 publish_date = mongo.DateTimeField(default=datetime.datetime.now())
 user = mongo.ReferenceField(User)
 comments = mongo.ListField(mongo.EmbeddedDocumentField(Comment))
 tags = mongo.ListField(mongo.StringField())

Now, when we wish to query for all of the Post objects that have a specific tag or many
tags, all we need is a simple query, as shown in the following code:

>>> Post.objects(tags__in="Python").all()
>>> Post.objects(tags__all=["Python", "MongoEngine"]).all()

For the list of roles on each user object, we use a list of references using the ListField of
ReferenceField(Role), as shown in the highlighted text in the following code:

...
class Role(mongo.Document):
 name = mongo.StringField(max_length=64, required=True, unique=True)
 description = mongo.StringField()

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[151]

...

class User(mongo.Document):
 username = mongo.StringField(required=True)
 password = mongo.StringField()
 roles = mongo.ListField(mongo.ReferenceField(Role))
...

Leveraging the power of NoSQL
To show the unique power of NoSQL, let's add a feature that would be possible with
SQLAlchemy, but which would be much more difficult: different post types, each with their
own custom bodies. This will be much like the functionality of the popular blog platform
Tumblr.

To begin, allow your post type to act as a parent class and remove the text field from the
Post class, as not all posts will have text on them. This is shown in the following code:

class Post(mongo.Document):
 title = mongo.StringField(required=True)
 publish_date = mongo.DateTimeField(default=datetime.datetime.now())
 user = mongo.ReferenceField(Userm)
 comments = mongo.ListField(
 mongo.EmbeddedDocumentField(Commentm)
)
 tags = mongo.ListField(mongo.StringField())
 meta = {
 'allow_inheritance': True
 }

Each post type will inherit from the Post class. Doing so will allow the code to treat any
Post subclass as if it were a post. Our blogging app will have four types of post: a normal
blog post, an image post, a video post, and a quote post. These are shown in the following
code:

class BlogPost(Post):
 text = db.StringField(required=True)
 @property
 def type(self):
 return "blog"

class VideoPost(Post):
 url = db.StringField(required=True)
 @property
 def type(self):

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[152]

 return "video"

class ImagePost(Post):
 image_url = db.StringField(required=True)
 @property
 def type(self):
 return "image"

class QuotePost(Post):
 quote = db.StringField(required=True)
 author = db.StringField(required=True)
 @property
 def type(self):
 return "quote"

Our post-creation page needs to be able to create each of these post types. The PostForm
object in forms.py, which handles post creation, will need to be modified to handle the
new fields first. We will add a selection field that determines the type of post, an author
field for the quote type, an image field to hold a URL, and a video field that will hold the
embedded HTML iframe. The quote and blog post content will both share the text field,
as follows:

class PostForm(Form):
 title = StringField('Title', [
 DataRequired(),
 Length(max=255)
])
 type = SelectField('Post Type', choices=[
 ('blog', 'Blog Post'),
 ('image', 'Image'),
 ('video', 'Video'),
 ('quote', 'Quote')
])
 text = TextAreaField('Content')
 image = StringField('Image URL', [URL(), Length(max=255)])
 video = StringField('Video Code', [Length(max=255)])
 author = StringField('Author', [Length(max=255)])

The new_post view function in the blog/controllers.py controller will also need to be
updated to handle the new post types, as follows:

@blog_blueprint.route('/new', methods=['GET', 'POST'])
@login_required
@poster_permission.require(http_exception=403)
def new_post():
 form = PostForm()
 if form.validate_on_submit():

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[153]

 if form.type.data == "blog":
 new_post = BlogPost()
 new_post.text = form.text.data
 elif form.type.data == "image":
 new_post = ImagePost()
 new_post.image_url = form.image.data
 elif form.type.data == "video":
 new_post = VideoPost()
 new_post.video_object = form.video.data
 elif form.type.data == "quote":
 new_post = QuotePost()
 new_post.text = form.text.data
 new_post.author = form.author.data
 new_post.title = form.title.data
 new_post.user = User.objects(
 username=current_user.username
).one()
 new_post.save()
 return render_template('new.html', form=form)

The new.html file that renders our form object will need to display the new fields that are
added to the form, as follows:

<form method="POST" action="{{ url_for('.new_post') }}">
...
<div class="form-group">
 {{ form.type.label }}
 {% if form.type.errors %}
 {% for e in form.type.errors %}
 <p class="help-block">{{ e }}</p>
 {% endfor %}
 {% endif %}
 {{ form.type(class_='form-control') }}
</div>
...
<div id="image_group" class="form-group">
 {{ form.image.label }}
 {% if form.image.errors %}
 {% for e in form.image.errors %}
 <p class="help-block">{{ e }}</p>
 {% endfor %}
 {% endif %}
 {{ form.image(class_='form-control') }}
</div>
<div id="video_group" class="form-group">
 {{ form.video.label }}
 {% if form.video.errors %}
 {% for e in form.video.errors %}

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[154]

 <p class="help-block">{{ e }}</p>
 {% endfor %}
 {% endif %}
 {{ form.video(class_='form-control') }}
</div>
<div id="author_group" class="form-group">
 {{ form.author.label }}
 {% if form.author.errors %}
 {% for e in form.author.errors %}
 <p class="help-block">{{ e }}</p>
 {% endfor %}
 {% endif %}
 {{ form.author(class_='form-control') }}
</div>
<input class="btn btn-primary" type="submit" value="Submit">
</form>

Now that we have our new inputs, we can add some JavaScript to show and hide the fields
based on the type of post, as follows:

{% block js %}
<script src="//cdn.ckeditor.com/4.4.7/standard/ckeditor.js"></script>
<script>
 CKEDITOR.replace('editor');

 $(function () {
 $("#image_group").hide();
 $("#video_group").hide();
 $("#author_group").hide();

 $("#type").on("change", function () {
 switch ($(this).val()) {
 case "blog":
 $("#text_group").show();
 $("#image_group").hide();
 $("#video_group").hide();
 $("#author_group").hide();
 break;
 case "image":
 $("#text_group").hide();
 $("#image_group").show();
 $("#video_group").hide();
 $("#author_group").hide();
 break;
 case "video":
 $("#text_group").hide();
 $("#image_group").hide();
 $("#video_group").show();

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[155]

 $("#author_group").hide();
 break;
 case "quote":
 $("#text_group").show();
 $("#image_group").hide();
 $("#video_group").hide();
 $("#author_group").show();
 break;
 }
 });
 })
</script>
{% endblock %}

Finally, the post.html file needs to be able to display our post types correctly. We have
the following code:

<div class="col-lg-12">
{{ post.text | safe }}
</div>

All that is needed is to replace this with the following:

<div class="col-lg-12">
 {% if post.type == "blog" %}
 {{ post.text | safe }}
 {% elif post.type == "image" %}

 {% elif post.type == "video" %}
 {{ post.video_object | safe }}
 {% elif post.type == "quote" %}
 <blockquote>
 {{ post.text | safe }}
 </blockquote>
 <p>{{ post.author }}</p>
 {% endif %}
</div>

WOW! eBook
www.wowebook.org

Using NoSQL with Flask Chapter 7

[156]

Summary
In this chapter, the fundamental differences between NoSQL and traditional SQL systems
were laid out. We explored the main types of NoSQL systems and why an application
might need, or not need, to be designed with a NoSQL database. We addressed the CAP
theorem and its implications regarding modern database systems.

Using our app's models as a base, the power of MongoDB and MongoEngine was shown by
demonstrating how simple it was to set up complex relationships and inheritance.

In the next chapter, our blogging application will be extended with a feature designed for
other programmers who wish to use our site to build their own service—that is, RESTful
endpoints.

WOW! eBook
www.wowebook.org

8
Building RESTful APIs

Representational State Transfer (REST) is an architectural style that is used to implement
web services. It was defined by Roy Fielding in his PhD dissertation in 2000. REST aims to
implement a standard for uniform and predefined operations between systems. These
systems can be client browsers, mobile applications, servers running parallel worker
processes—you name it. By using HTTP methods, REST is platform- and programming-
language-agnostic, and decouples the client and the server for easier development. This is
typically used in web single-page applications (SPAs) that need to pull or update user
information on the server. REST is also used to provide outside developers with a common
interface to access user data. For example, Facebook and Twitter use REST in their
application program interface, or API.

You can take a look at Roy Fielding's original dissertation on REST
at https:/​/​www.​ics.​uci.​edu/​~fielding/​pubs/​dissertation/​rest_​arch_
style.​htm.

In this chapter, you will learn about the following topics:

The HTTP protocol: requests, responses, methods, headers, and the URI format
How to build a REST service
How to secure a REST service using JWT

What is REST?
Before getting into the details of REST, and since it is a style for communication between
systems, let's first have a quick dive into the actual protocol that it uses, on which this
whole book is based.

WOW! eBook
www.wowebook.org

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Building RESTful APIs Chapter 8

[158]

HTTP
The Hypertext Transfer Protocol (HTTP) is a request–response protocol that belongs to
layer 7 (the application layer). This layer interacts with the application itself. Some other
protocols that belong to layer 7 are the Simple Mail Transfer protocol (SMTP), Network
File System (NFS), and the File Transfer Protocol (FTP), to name a few.

HTTP was designed to be used by clients (user agents) to request resources from a server.
These resources can be HTML files or any other content, such as JSON, XML, or media files.
These requests for resources are identified by the network using unified resource locators
(URLs).

A URL is a specific type of URI, composed of the following elements:

<scheme>://<authority>/<path>/<query><fragment>

The preceding <authority> part:

<userinfo>@<host>:<port>

The following is an example URL using our application:

http://someserver.com:5000/blog/user/user1?title=sometitle#1

Let's separate out the elements of this:

Scheme HTTP
authority.host someserver.com

authority.port 5000

path blog/user/user1

query title=sometitle

fragment 1

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[159]

Next, we will quickly look at an HTTP request message from a user agent to a server. This
is a GET request from a Mozilla browser, as shown in the highlighted text in the following
code:

GET /blog/user/user1 HTTP/1.1
Host: someserver.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Cookie: cookie1=somevalue; cookie2=othervalue;
session:dsofksdfok439349i3sdkfoskfoskfosdkfo
(blank line)

So an HTTP request is composed of the following:

Request line: Further composed of <Request method> <Request URI>
<HTTP version>

Request header: Contains information about what the client accepts, the user
agent, cookies, and even basic authentication credentials
A blank line: Separates the header from the body section
Request body: Optional

Accepted HTTP request methods are GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS,
TRACE, and PATCH. The REST specification will use them to identify application type
operations.

An HTTP response to a request looks like the following:

HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 1330
Server: Werkzeug/0.14.1 Python/2.7.10
Date: Thu, 19 Jul 2018 11:14:16 GMT
{ "author": "user1" ... }

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[160]

It's composed of the following elements:

Status line: The status of the response
Response headers: Contains information about the content type, length, the
server type (in our example, it's Flask's development server itself), date, and
whether it can send set-cookie operations
A blank line
Response body: In our example, this is a JSON response, probably a REST
service response

Status response codes are also very significant to REST. These fall into the following
categories:

Informational: 1XX
Successful: 2XX
Redirection: 3XX
Client error: 4XX
Server error: 5XX

For further details on status response codes, take a look at RFC2616
at https:/​/​www.​w3.​org/​Protocols/​rfc2616/​rfc2616-​sec10.​html.

REST definition and best practices
Before getting into the details of REST, let's look at an example. With a client—in this case, a
web browser—and a server, the client sends a request to the server over HTTP for some
models, as follows:

WOW! eBook
www.wowebook.org

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Building RESTful APIs Chapter 8

[161]

The server will then respond with a document containing all the models, as follows:

The client can then modify the data on the server through a PUT HTTP request, as follows:

Then, the server will respond that it has modified the data. This is a very simplified
example, but it will serve as a backdrop to how REST is defined.

Rather than a strict standard, REST lays out a set of constraints on communications to
define a methodology that can be implemented in many ways. These constraints are born
out of years of trial and error with other communication protocols, such as the Remote
Procedure Call (RPC) or Simple Object Access Protocol (SOAP). These protocols fell by
the wayside because of their strictness, verbosity, and the fact that it is difficult to use them
to create APIs. The issues with these systems were identified, and REST's constraints were
created to keep these issues from happening again.

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[162]

REST provides the following guiding constraints:

Separation of concerns between the client and server: The client and server
should be able to evolve or change independently as long as the API does not
change.
Stateless: Any information that is necessary to handle requests is stored in the
request itself or by the client. An example of the server being stateless is
the session object in Flask. The session object does not store its information on
the server, but stores it on the client in a cookie. The cookie is sent along with
every request for the server to parse and determine whether the necessary data
for the requested resource is stored inside it, rather than the server storing
session information for every user.
Uniform interface: There are many different parts to this constraint, which are as
follows:

The interface is based around resources, which in our case are
models.
Data sent by the server is not the actual data in the server, but a
representation. For example, a JSON abstraction of the data is sent
with each request, rather than the actual database.
The data sent by the server is enough to allow the client to modify
the data on the server. In the preceding example, the IDs that are
passed to the client fill this role.
Every resource provided by the API must be represented and
accessed in the same manner. For example, one resource cannot be
represented in XML and while another is represented in JSON.

Layered system: Load balancers, proxies, caches, and other servers and services
can act between the client and the server, as long as the final result is the same as
if they were not there. This improves performance, scalability, and availability.
Cacheability: Clients can cache responses, so a server must define whether a
response is cacheable or not. This improves performance.

When a system adheres to all these constraints, it is considered to be a RESTful system. The
most common forms of RESTful systems are built of HTTP and JSON. Each resource is
located on its own URL path and is modified with different HTTP request methods.
Generally, this takes the following form:

HTTP
method URL Action

GET http://host/resource Get all the resource representations
GET http://host/resource/1 Get the resource with an ID of 1

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[163]

POST http://host/resource
Create a new resource from the form data in
the POST

PUT http://host/resource/1
Modify the existing data of the resource with
the ID of 1

DELETE http://host/resource/1 Delete the resource with the ID of 1

As an example, a response to the second GET request would look like the following:

HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 1330
Server: Werkzeug/0.14.1 Python/2.7.10
Date: Thu, 19 Jul 2018 11:14:16 GMT

{ "id": 100, "title": "Some blog post title" }

In RESTful APIs, it is also very important that we return the correct HTTP status code with
the response data to notify the clients of what actually happened on the server without the
clients resorting to parsing the returned message. Here is a list of the main HTTP codes that
are used in RESTful APIs, along with their meaning:

HTTP
code Name Meaning

200 OK The default code of HTTP. The request was successful, and
the data was returned.

201 Created The request was successful, and a new resource was created
on the server.

204 No content The request was successful, but the response returned no
content.

400 Bad request
The request was denied because of some perceived client
error—either it was a malformed request or it was missing
the required data.

401 Unauthorized
The request was denied because the client was not
authenticated, and it should be authenticated before
requesting this resource again.

403 Forbidden

The request was denied because the client does not have
permission to access this resource. This is in contrast to the
401 code, which assumes that the user is not authenticated.
The 403 code says the resource is not accessible regardless of
authentication.

404 Not found The requested resource does not exist.

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[164]

405
Method not
allowed

The request was denied because the HTTP method is not
available for the URL.

500
Internal server
error

The web server responds with this status code when it has
encountered an unexpected condition that prevented it from
fulfilling the request from the client.

501 Not implemented

This error is shown when it does not support the
functionality required to process the request. This is the
appropriate response when the server does not recognize the
request method.

502 Bad gateway When the server is acting as a gateway or proxy and receives an invalid
response from the upstream server.

503 Service unavailable Currently unable to handle the request because of temporary
overloading or maintenance of the server.

504 Gateway timeout Did not receive a timely response from the upstream server.

Setting up a RESTful Flask API
In our app, we will create a RESTful interface to the blog post data in our database. The
representations of the data will be sent as JSON. The data will be retrieved and modified
using the general form in the preceding table, but the URI will be /api/posts.

If you haven't already downloaded and accessed the example code given for this chapter
and taken a look at the Flask URL maps for the API, then a simple way of doing this can be
seen in the root directory of the application, as shown in the following code:

$ # Initialise the virtual environment and database with test data
$./init.sh
$ # Activate the python virtual environment
$ source venv/bin/activate
$ export FLASK_APP=main.py
$ echo app.url_map | flask shell | grep api
..
 <Rule '/auth/api' (POST, OPTIONS) -> auth.api>,
 <Rule '/api/post' (HEAD, GET, PUT, POST, OPTIONS, DELETE) -> postapi>,
 <Rule '/api/post/<post_id>' (HEAD, GET, PUT, POST, OPTIONS, DELETE)
 -> postapi>,

We are going to implement an authentication endpoint for the API and the necessary
endpoints to create a CRUD API for the blog posts.

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[165]

We could just use the standard Flask views to create the API, but the Flask extension Flask
Restful makes the task much easier and will help us adhere to a full REST compliance
(RESTful).

To include this new dependency in our application, you can find the following in
the requirements.txt file:

...
Flask-Restful
...

We are going to create a new module for the API. The application structure looks like the
following code:

./
 main.py
 config.py
 ...
 webapp/
 blog/
 main/
 auth/
 api/
 __init__.py
 blog/
 controlers.py
 fields.py
 parsers.py
 templates/
 static/

Once again, the idea is to structure our application so that it can grow easily. This time, for
each application module we add—such as a blog, shared photos, you name it—we create a
new module inside the api/ module itself where all the API logic is defined. A different
approach could be to include the REST API inside each module.

Just like with all the other modules, there is a create_module function on
the api/__init__.py that handles its own initialization for the main factory
function, create_app . The PostApi class will also have its route defined with
the add_resource() method of the Api object.

This can be seen in the provided code file, api/__init__.py, as follows:

from flask_restful import Api
from .blog.controllers import PostApi

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[166]

rest_api = Api()

def create_module(app, **kwargs):
 rest_api.add_resource(
 PostApi,
 '/api/post',
 '/api/post/<int:post_id>',
)
 rest_api.init_app(app)

It can also be seen in the create_app function in __init__.py file, as follows:

...
def create_app(object_name):
...
 from api import create_module as api_create_module
 ...
 api_create_module(app)

 return app

The control logic and views for our Post API are stored in a new folder named api/blog
in the controllers.py file. Inside the controllers.py, we are going to create the API
itself, as follows:

from flask_restful import Resource

class PostApi(Resource):
 ...

In Flask Restful, every REST resource is defined as a class that inherits from the Resource
object. Much like the MethodView object shown in Chapter 4, Creating Controllers with
Blueprints, any class that inherits from the Resource object defines its logic with methods
named after the HTTP methods. For example, when the GET HTTP method hits the
PostApi class, the get method will be executed.

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[167]

JWT authentication
To solve our authentication problems, Flask-Login could be used and the cookie data
from the login could be checked. However, this would require developers who wish to use
our API to have their program login through the web interface. We could also have
developers send their login data with every request, but it's a good design practice to only
send sensitive information when absolutely necessary. Instead, our API will provide
an auth/api endpoint that allows them to send login credentials and get an access token
back.

For the authentication mechanism, we are going to use JSON Web Token (JWT) to create
access tokens for the consumers of our API upon login. A JWT token asserts which user is
logged in, thereby saving the server another call to the database for authentication. This
token has an expiration date encoded inside it that will not allow the token to be used after
it expires. This means that even if the token is stolen by a malicious user, it will only be
useful for a limited amount of time before the client has to reauthenticate. As always, be
sure to use HTTPS to encrypt all your client–server connections.

To leverage this feature, we are going to use another Flask extension—Flask-JWT-extended.
You will find its dependency declared in the requirements.txt file, as follows:

...
flask-jwt-extended
...

The initialization of the extension is going to be made on the auth module.

Look at the following auth/__init__.py file:

from flask_jwt_extended import JWTManager
...
jwt = JWTManager()
...
def create_module(app, **kwargs):
 ...
 jwt.init_app(app)
 ...

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[168]

Next, we use the following helper function to authenticate users that are defined on the
same file:

def authenticate(username, password):
 from .models import User
 user = User.query.filter_by(username=username).first()
 if not user:
 return None
 # Do the passwords match
 if not user.check_password(password):
 return None
 return user

The definition of the login endpoint itself can be found at auth/controllers.py, as
shown in the following code:

@auth_blueprint.route('/api', methods=['POST'])
def api():
 if not request.is_json:
 return jsonify({"msg": "Missing JSON in request"}), 400

 username = request.json.get('username', None)
 password = request.json.get('password', None)
 if not username:
 return jsonify({"msg": "Missing username parameter"}), 400
 if not password:
 return jsonify({"msg": "Missing password parameter"}), 400
 user = authenticate(username, password)
 if not user:
 return jsonify({"msg": "Bad username or password"}), 401
 # Identity can be any data that is json serializable
 access_token = create_access_token(identity=user.id)
 return jsonify(access_token=access_token), 200

First, we verify whether the request includes a JSON body. For this, we use
a request.is_json function from Flask. Next, we extract the username and password
from the JSON body using request.json.get. Then we check the user's credentials using
the previous help function, authenticate. Finally, we return the JWT access token using
the username as our identity.

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[169]

Users of our API will have to pass the token that is received from this resource to any
method that requires user credentials. In order to test this code, a tool named curl will be
used. Curl is a command-line tool included in Bash that allows for the creation and
manipulation of HTTP requests. To test it, use the curl utility to first log in, as shown in
the following code:

$ curl -H "Content-Type: application/json" -d
'{"username":"user1","password":"password"}' http://localhost:5000/auth/api
{
 "access_token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiIyOGZjMDNkOC0xY2MyLTQwZDQtO
DJlMS0xMGQ0Mjc2YTk1ZjciLCJleHAiOjE1MzIwMTg4NDMsImZyZXNoIjpmYWxzZSwiaWF0Ijox
NTMyMDE3OTQzLCJ0eXBlIjoiYWNjZXNzIiwibmJmIjoxNTMyMDE3OTQzLCJpZGVudGl0eSI6InV
zZXIxIn0.Cs-ANWq0I2M2XMrZpQof-_cX0gsKE7U4UG1t1rB0UoY"
}

We then use the -H flag to send the request header stating that the content body is JSON
and the -d flag to send the request body data. Next, we can use the token to access API-
protected resources, as follows:

$ export
ACCESS="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiIyOGZjMDNkOC0xY2MyLT
QwZDQtODJlMS0xMGQ0Mjc2YTk1ZjciLCJleHAiOjE1MzIwMTg4NDMsImZyZXNoIjpmYWxzZSwia
WF0IjoxNTMyMDE3OTQzLCJ0eXBlIjoiYWNjZXNzIiwibmJmIjoxNTMyMDE3OTQzLCJpZGVudGl0
eSI6InVzZXIxIn0.Cs-ANWq0I2M2XMrZpQof-_cX0gsKE7U4UG1t1rB0UoY"
$ curl -H "Authorization: Bearer $ACCESS" http://localhost:5000/api/post

Note how the access token is sent on the request header user Authorization: Bearer
<TOKEN> convention. If we try to access the same resource without any token, we get the
following:

$ curl -v http://localhost:5000/api/post
...
< HTTP/1.0 401 UNAUTHORIZED
...
{
 "msg": "Missing Authorization Header"
}

As expected, we get an HTTP 401 status code. To protect API endpoints, we just have to
use the flask-jwt-extended decorator @jwt_required, and to fetch the username, we
use the get_jwt_identity() function.

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[170]

The flask-jwt-extended decorator provides some extra functionalities,
such as token expiration, the ability to refresh token endpoints, and many
configuration options. You can read more about it at http:/​/​flask-​jwt-
extended.​readthedocs.​io/​en/​latest/​.

Get requests
For some of our GET, PUT, and DELETE requests, our API will need the ID of the post that is
to be modified.

The data to be sent to the client must be a representation of the Post objects in JSON, so
how will our Post objects be translated? Flask Restful provides a way of translating any
object into JSON through the fields object and the marshal_with function decorator.

Output formatting
The output format is defined by creating a dictionary of field objects that represent basic
types. The key of the field defines what attribute the field will try to translate. By passing
the dictionary to the marshal_with decorator, any object that the get method attempts to
return will be first translated using the dictionary. This also works for lists of objects. Let's
look at a simple way of implementing this API endpoint. The following example code takes
pagination into account, but we will show you how this works later.

Look at the following api/blog/controllers.py file:

import datetime

from flask import abort
from flask_restful import Resource, fields, marshal_with
from flask_jwt_extended import jwt_required, get_jwt_identity
from webapp.blog.models import db, Post, Tag
from webapp.auth.models import User
...

post_fields = {
 'id': fields.Integer(),
 'author': fields.String(attribute=lambda x: x.user.username),
 'title': fields.String(),
 'text': HTMLField(),
 'tags': fields.List(fields.Nested(nested_tag_fields)),
 'publish_date': fields.DateTime(dt_format='iso8601')
}

WOW! eBook
www.wowebook.org

http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/
http://flask-jwt-extended.readthedocs.io/en/latest/

Building RESTful APIs Chapter 8

[171]

class PostApi(Resource):
 @marshal_with(post_fields)
 @jwt_required
 def get(self, post_id=None):
 if post_id:
 post = Post.query.get(post_id)
 if not post:
 abort(404)
 return post
 else:
 posts = Post.query.all()
 return posts

While reloading the API in the browser, every Post object will be shown in JSON format.
Note the HTMLField on the fields declaration. The problem is that the API should not
return HTML from the WYSIWYG editor in the post creation form. As stated earlier, the
server should not be concerned with the UI, and the HTML is purely for output
specification. To solve this, we will need a custom field object that strips HTML from the
strings. In a new file in the api/blog/ folder named fields.py, we have the following:

try:
 # Try python3
 from html.parser import HTMLParser
except Exception as e:
 # Nop python2
 from HTMLParser import HTMLParser

from flask_restful import fields

class HTMLStripper(HTMLParser):
 fed = list()

 def __init__(self):
 self.reset()
 self.fed = []

 def handle_data(self, d):
 self.fed.append(d)

 def get_data(self):
 return ''.join(self.fed)

def strip_tags(html):
 s = HTMLStripper()
 s.feed(html)

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[172]

 return s.get_data()

class HTMLField(fields.Raw):
 def format(self, value):
 return strip_tags(str(value))

The exception block is to take into account Python2 and Python3 compatibility, since the
standard library has changed for the HTMLParser module in Python3. We now have a
strip_tags function that will return any string that has been cleaned of HTML tags. A
new field type, called HTMLfield, is defined by inheriting from the fields.Raw class and
sending values through the strip_tags function. If the page is reloaded, all HTML is gone
and only the text will remain.

Flask Restful provides many default fields, as shown in the following list:

fields.String: This converts the value using str().
fields.FormattedString: This passes the formatted string in Python with the
variable name in brackets.
fields.Url: This provides the same functionality as the Flask url_for
function.
fields.DateTime: This converts a Python date or datetime object to a string.
The format keyword argument specifies whether the string should be an
ISO8601 date or an RFC822 date.
fields.Float: This converts the value to a string representation of a float.
fields.Integer: This converts the value to a string representation of an
integer.
fields.Nested: This allows nested objects to be represented by another
dictionary of field objects.
fields.List: Much like the MongoEngine API, this field takes another field
type as an argument and tries to convert a list of values into a JSON list of the
field types.
fields.Boolean: This converts the value to a string representation of a
boolean argument.

There are two more fields that are added to the returned data: the author and the tags. The
comments will be left out because they should be contained under their own resource.

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[173]

The author field uses the attribute keyword argument of the field class. This allows any
attribute of the object to be represented rather than just base-level properties. Because the
many-to-many relationship of the tags returns a list of objects, the same solution cannot be
used with the tags. A list of tag dictionaries can now be returned using the NestedField
type inside a ListField and another dictionary of fields. This has the added benefit of
giving the end users of the API a tag ID so that they can query as easily as if there were a
tag API.

Request arguments
While sending a GET request to the base of the resource, our API currently sends all the
Post objects in the database. This is acceptable if the number of objects is low or the
number of people using the API is low. However, if either increases, the API will put a
large amount of stress on the database. Much like the web interface, the API should be
paginated as well.

In order to achieve this, our API will need to accept a GET query string parameter
called page that specifies which page is to be loaded. Flask Restful provides a method to
grab request data and parse it. If the required arguments aren't there, or the types don't
match, Flask Restful will autocreate a JSON error message. In a new file in the api/blog/
folder named parsers.py, you will find the following code:

...
from flask_restful import reqparse
...
post_get_parser = reqparse.RequestParser()
post_get_parser.add_argument(
 'page',
 type=int,
 location=['args', 'headers'],
 required=False,
)

The following code is what we should have on the PostApi class when the request has no
post ID key:

from .parsers import post_get_parser
...
class PostApi(Resource):
 @marshal_with(post_fields)
 @jwt_required
 def get(self, post_id=None):
 if post_id:

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[174]

 ..
 return post
 else:
 args = post_get_parser.parse_args()
 page = args['page'] or 1
 ...
 posts = Post.query.order_by(
 Post.publish_date.desc()
).paginate(page, current_app.config.get('POSTS_PER_PAGE', 10))
 ...
 return posts.items

In the preceding example, RequestParser looks for the page variable in either the query
string or the request header and returns the page of Post objects from that page. Again, we
are making the page size configurable with the same value as for the web view page
version. We use the current_app Flask proxy to fetch any value from our configuration.

After a parser object is created with RequestParser, arguments can be added using the
add_argument method. The first argument of add_argument is the key of the argument
that is to be parsed, but add_argument also takes a lot of keyword arguments, as shown in
the following list:

action: This is what the parser does with the value after it has been successfully
parsed. The two available options are store and append. The store option
adds the parsed value to the returned dictionary. The append options adds the
parsed value to the end of a list in the dictionary.
case_sensitive: This is a boolean argument to allow or disallow the keys to be
case insensitive.
choices: This is like MongoEngine, a list of the allowed values for the argument.
default: This is the value that is produced if the argument is absent from the
request.
dest: This is the key to add the parsed value to in the returned data.
help: This is a message to return to the user if validation fails.
ignore: This is a boolean argument to allow or disallow failures of the type
conversion.
location: This indicates where to look for the data. The locations available are
as follows:

args to look in the GET query string
headers to look in the HTTP request headers
form to look in the HTTP POST data

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[175]

cookies to look in the HTTP cookies
json to look in any sent JSON
files to look in the POST file data

required: This is a boolean argument to determine whether the argument is
optional.
store_missing: This is a boolean argument to determine whether the default
value should be stored if the argument is not in the request.
type: This is the Python type to convert the passed value.

Using the Flask Restful parser, it is very easy to add new parameters to the API. For
example, let's add a user argument that allows us to search for all posts that have been
made by a user. First, in the api/blog/parsers.py file, we have the following:

post_get_parser = reqparse.RequestParser()
post_get_parser.add_argument('page', type=int, location=['args',
'headers'])
post_get_parser.add_argument('user', type=str, location=['args',
'headers'])

Then, in the api/blog/controllers.py file, we have the following:

class PostApi(Resource):
 @marshal_with(post_fields)
 @jwt_required
 def get(self, post_id=None):
 if post_id:
 ...
 return post
 else:
 args = post_get_parser.parse_args()
 page = args['page'] or 1

 if args['user']:
 user = User.query.filter_by(username=args['user']).first()
 if not user:
 abort(404)

 posts = user.posts.order_by(
 Post.publish_date.desc()
).paginate(page, current_app.config.get('POSTS_PER_PAGE', 10))
 else:
 posts = Post.query.order_by(
 Post.publish_date.desc()
).paginate(page, current_app.config.get('POSTS_PER_PAGE', 10))
 return posts.items

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[176]

When Flask's abort function is called from Resource, Flask Restful will automatically
create an error message to be returned with the status code.

To test the API, we use curl for the sake of simplicity, but feel free to use any other tool
available to interact with HTTP APIs. After requesting an access token from our
authentication endpoint, request post with id=1, as follows:

$ curl -H "Authorization: Bearer $ACCESS"
"http://localhost:5000/api/post/1"

Or you can request all posts as follows:

$ curl -H "Authorization: Bearer $ACCESS" "http://localhost:5000/api/post"

Note that the response only fetches the first page, as intended. Now let's request page two,
as follows:

$ curl -H "Authorization: Bearer $ACCESS"
"http://localhost:5000/api/post?page=2"

Finally, you can request for posts from a certain user as follows:

$ curl -H "Authorization: Bearer $ACCESS"
"http://localhost:5000/api/post?user=user1"

Post requests
The POST methods on REST are used for resource creation, not that this isn't considered an
idempotent method. Using our new knowledge of the Flask Restful parser, we can cover
the POST endpoint. First, we will need a parser that will take a title, the body text, and a list
of tags. In the parser.py file, find the following:

post_post_parser = reqparse.RequestParser()
post_post_parser.add_argument(
 'title',
 type=str,
 required=True,
 help="Title is required",
 location=('json', 'values')
)
post_post_parser.add_argument(
 'text',
 type=str,
 required=True,
 help="Body text is required",

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[177]

 location=('json', 'values')
)
post_post_parser.add_argument(
 'tags',
 type=str,
 action='append',
 location=('json', 'values')
)

Next, we have created a helper function, called add_tags_to_post, to add tags to a post.
If the tags don't exist, it will add them to the database. We will use it on POST and PUT
requests. Nothing new here—just a simple SQLAlchemy helper function to help us keep
our code concise.

Next, the PostApi class will need a post method to handle incoming requests. The post
method will use the given values for the title and body text. Also, if the tags key exists,
then add the tags to the post, which creates new tags if the passed ones do not exist, as
shown in the following code:

import datetime
from .parsers import (
 post_get_parser,
 post_post_parser
)
from webapp.models import db, User, Post, Tag
class PostApi(Resource):
 ...
 @jwt_required
 def post(self, post_id=None):
 args = post_post_parser.parse_args(strict=True)
 new_post = Post(args['title'])
 new_post.user_id = get_jwt_identity()
 new_post.text = args['text']
 if args['tags']:
 add_tags_to_post(post, args['tags'])
 db.session.add(new_post)
 db.session.commit()
 return {'id': new_post.id}, 201

At the return statement, if a tuple is returned, the second argument is treated as the status
code. There is also a third value that acts as extra header values by passing a dictionary.
Also, note the get_jwt_identity that we use to fetch the user ID from the JWT token.
This was set up at the login phase where we used the user ID to set the JWT identity.

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[178]

To pass POST variables, the d flag is used, as follows:

$ curl -X POST -H "Authorization: Bearer $ACCESS" -H "Content-Type:
application/json" -d '{"title":"Text Title", "text":"Some text"}'
"http://localhost:5000/api/post"
{
 "id": 310
}

The ID of the newly created post should be returned. If you go to the browser, you should
see our newly created post, which was made by the user that you used to generate the
authentication token.

Put requests
As listed in the table at the beginning of this chapter, PUT requests are used to change the
values of an existing resource. Like the post method, the first thing that we should do is
create a new parser in parsers.py, as follows:

post_put_parser = reqparse.RequestParser()
post_put_parser.add_argument(
 'title',
 type=str,
 location=('json', 'values')
)
post_put_parser.add_argument(
 'text',
 type=str,
 location=('json', 'values')
)
post_put_parser.add_argument(
 'tags',
 type=str,
 action='append',
 location=('json', 'values')
)

The logic for the put method is very similar to the post method. The main difference is
that each change is optional and any request that does not provide post_id is denied, as
shown in the following code:

...
def add_tags_to_post(post, tags_list):
 for item in tags_list:
 tag = Tag.query.filter_by(title=item).first()

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[179]

 # Add the tag if it exists. If not, make a new tag
 if tag:
 post.tags.append(tag)
 else:
 new_tag = Tag(item)
 post.tags.append(new_tag)
...

 @jwt_required
 def put(self, post_id=None):
 if not post_id:
 abort(400)
 post = Post.query.get(post_id)
 if not post:
 abort(404)
 args = post_put_parser.parse_args(strict=True)
 if get_jwt_identity() != post.user_id:
 abort(403)
 if args['title']:
 post.title = args['title']
 if args['text']:
 post.text = args['text']
 if args['tags']:
 print("Tags %s" % args['tags'])
 add_tags_to_post(post, args['tags'])

 db.session.merge(post)
 db.session.commit()
 return {'id': post.id}, 201

Also note that, just as we did with the controller for web views, we are denying any request
to change a blog post that was not made by the creator of the blog post him or herself.

To test this method, curl can also create PUT requests with the -X flag, as follows:

$ curl -X PUT -H "Authorization: Bearer $ACCESS" -H "Content-Type:
application/json" \
 -d '{"title": "Modified From REST", "text": "this is from REST",
"tags": ["tag1","tag2"]}' \
http://localhost:5000/api/post/5

WOW! eBook
www.wowebook.org

Building RESTful APIs Chapter 8

[180]

Delete requests
Finally, in the following code we have the DELETE request, which is the simplest of the four
supported methods. The main difference with the delete method is that it returns no
content, which is the accepted standard with DELETE requests:

@jwt_required
def delete(self, post_id=None):
 if post_id:
 abort(400)
 post = Post.query.get(post_id)
 if not post:
 abort(404)
 if get_jwt_identity() != post.user_id:
 abort(401)
 db.session.delete(post)
 db.session.commit()
 return "", 204

Again, we can test using the following:

$ curl -X DELETE -H "Authorization: Bearer $ACCESS"
http://localhost:5000/api/post/102

If everything is successfully deleted, you should receive a 204 status code and nothing
should show up.

Before we move on from REST completely, there is one final challenge for you to test your
understanding of Flask Restful. Try to create a comments API that is not only modifiable
from http://localhost:5000/api/comments, but that also allows developers to
modify only those comments on a specific post by using the URL
format http://localhost:5000/api/post/<int:post_id>/comments.

Summary
Our Post API is now a complete feature. If a developer wants, then they can create a
desktop or mobile application using this API, all without using HTML scraping, which is a
very long and tedious process. Giving the developers who wish to use your website as a
platform the ability to do so will increase your site's popularity, as they will essentially give
you free advertising with their app or website.

In the next chapter, we will use the popular program Celery to run programs and tasks
asynchronously with our application.

WOW! eBook
www.wowebook.org

9
Creating Asynchronous Tasks

with Celery
While creating web apps, it is vital to keep the time taken to process a request below or
around 50 ms. On web applications or web services that have a medium to high rate of
requests per second, response time becomes even more paramount. Think of requests such
as a flow of liquid that needs to be handled at least as quickly as its flow rate, or else it will
overflow. Any extra processing on the server that can be avoided, should be avoided.
However, it is quite common to have requirements to operations in a web app that take
longer than a couple of seconds, especially when complex database operations or image
processing are involved.

In building an application that is able to scale horizontally, it should be possible to
decouple all the heavy processing procedures from the web server's layer, and couple them
to a worker's layer that can independently scale itself.

To protect our user experience and site reliability, a task queue named Celery will be used
to move these operations out of the Flask process.

In this chapter, we will cover the following topics:

Using Docker to run RabbitMQ and Redis
Celery and Flask integration
Learning to identify processes that should run outside the web server
Creating and calling several types of tasks from simple asynchronous to complex
workflows
Using Celery as a scheduler with beats

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[182]

What is Celery?
Celery is an asynchronous task queue written in Python. Celery runs multiple tasks, which
are user-defined functions, concurrently, through the Python multiprocessing library.
Celery receives messages that tell it to start a task from a broker, which is usually called a
message queue, as shown in the following diagram:

A message queue is a system specifically designed to send data between producer
processes and consumer processes. Producer processes are any programs that create
messages to be sent to the queue, and consumer processes are any programs that take the
messages out of the queue. Messages sent from a producer are stored in a First In, First Out
(FIFO) queue, where the oldest items are retrieved first. Messages are stored until a
consumer receives the message, after which the message is deleted. Message queues
provide real-time messaging without relying on polling, which means continuously
checking the status of a process. As messages are sent from producers, consumers are
listening on their connection to the message queue for new messages; the consumer is not
constantly contacting the queue. This difference is like the difference between AJAX and
WebSockets, in that AJAX requires constant contact with the server, while WebSockets are
just a continuous bidirectional communication stream.

It is possible to replace the message queue with a traditional database. Celery even comes
with built-in support for SQLAlchemy to allow this. However, using a database as a broker
for Celery is highly discouraged. Using a database in place of a message queue requires the
consumer to constantly poll the database for updates. Also, because Celery uses
multiprocessing for concurrency, the number of connections making lots of reads goes up
quickly. Under medium loads, using a database requires the producer to make lots of
writes to the database at the same time as the consumer is reading.

It is also possible to use a message queue as a broker and a database to store the results of
the tasks. In the preceding diagram, the message queue was used for sending task requests
and task results. However, using a database to store the end result of the task allows the
final product to be stored indefinitely, whereas the message queue will throw out the data
as soon as the producer receives the data, as shown in the following diagram:

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[183]

This database is often a key/value NoSQL store to help handle the load. This is useful if you
plan on doing analytics on previously run tasks, but otherwise it's safer to just stick with
the message queue.

There is even an option to drop the results of tasks entirely, and not have the results
returned at all. This has the downside that the producer has no way of knowing if a task
was successful or not, but often, this is permissible in smaller projects.

For our stack, we will use RabbitMQ as the message broker. RabbitMQ runs on all major
operating systems and is very simple to be set up and run. Celery also supports RabbitMQ
without any extra libraries, and is the recommended message queue in the Celery
documentation.

At the time of writing, there is no way to use RabbitMQ with Celery in
Python 3. You can use Redis, however, instead of RabbitMQ. The only
difference will be the connection strings. For more information, see
http://docs.celeryproject.org/en/latest/getting-started/brokers/

redis.html.

Setting up Celery and RabbitMQ
To install Celery on our virtualenv, we need to add it to our requirements.txt file:

...
Celery
...

WOW! eBook
www.wowebook.org

http://docs.celeryproject.org/en/latest/getting-started/brokers/redis.html
http://docs.celeryproject.org/en/latest/getting-started/brokers/redis.html

Creating Asynchronous Tasks with Celery Chapter 9

[184]

As always, use the provided init.sh script, or use the procedure explained here to create
and install all dependencies on a Python virtual environment.

We will also need a Flask extension to help handle the initialization of Celery:

$ pip install Flask-Celery-Helper

The Flask documentation states that Flask extensions for Celery are unnecessary. However,
getting the Celery server to work with Flask's application context, when your app is
organized with an application factory, is significant. So, we will use Flask-Celery-
Helper to do the heavy lifting.

Next, RabbitMQ needs to be up and running. To do this easily, we will use a Docker
container. Make sure you have Docker installed and properly set up; if not, then check out
Chapter 1, Getting Started, for instructions. First, we will need a very simple Dockerfile:

FROM rabbitmq:3-management

ENV RABBITMQ_ERLANG_COOKIE "SWQOKODSQALRPCLNMEQG"
ENV RABBITMQ_DEFAULT_USER "rabbitmq"
ENV RABBITMQ_DEFAULT_PASS "rabbitmq"
ENV RABBITMQ_DEFAULT_VHOST "/"

This is all it takes to build and run a RabbitMQ Docker image with the management
interface. We are using a Docker Hub image that is available for download at https:/​/​hub.
docker.​com/​_​/​rabbitmq/​. Visit the Hub page for further configuration details.

Next, let's build our image issue the following command:

$ docker build -t blog-rmq .

The -t flag is used to tag our image with a friendly name; in this case, blog-rmq. Then run
the newly created image in the background using the following command:

$ docker run -d -p 15672:15672 -p 5672:5672 blog-rmq

The -d flag is to run the container in the background (daemon). The -p flag is for port
mapping between the container and our host/desktop.

Let's check if it's properly running:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6eb2ab1da516 blog-rmq "docker-entrypoint.s…" 13 minutes ago Up 14 minutes
4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp, 15671/tcp, 25672/tcp,
0.0.0.0:15672->15672/tcp xenodochial_kepler

WOW! eBook
www.wowebook.org

https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/
https://hub.docker.com/_/rabbitmq/

Creating Asynchronous Tasks with Celery Chapter 9

[185]

Let's check out the RabbitMQ management interface. In your browser, navigate
to http://localhost:15672 and log in using the configured credentials set up on the
Dockerfile. In this case, our username is rabbitmq, and our password is also rabbitmq.

If you need more information, RabbitMQ maintains a detailed list of installation and
configuration instructions for each operating system at
https://www.rabbitmq.com/download.html.

After RabbitMQ is installed, go to a Terminal window and run the following command:

$ rabbitmq-server

Creating tasks in Celery
As stated before, Celery tasks are just user-defined functions that perform some operations.
But before any tasks can be written, our Celery object needs to be created. This is the object
that the Celery server will import to handle running and scheduling all of the tasks.

At a bare minimum, Celery needs one configuration variable to run, and that is the
connection to the message broker. The connection is defined the same as the SQLAlchemy
connection; that is, as a URL. The backend, which stores our tasks' results, is also defined as
a URL, as shown in the following code:

class DevConfig(Config):
 DEBUG = True
 SQLALCHEMY_DATABASE_URI = 'sqlite:///../database.db'
 CELERY_BROKER_URL = "amqp://rabbitmq:rabbitmq@localhost//"
 CELERY_RESULT_BACKEND = "amqp://rabbitmq:rabitmq@localhost//"

In the __init__.py file, the Celery class from Flask-Celery-Helper will be initialized:

from flask_celery import Celery
...
celery = Celery()
...
def create_app(object_name):
...
 celery.init_app(app)
...

WOW! eBook
www.wowebook.org

https://www.rabbitmq.com/download.html

Creating Asynchronous Tasks with Celery Chapter 9

[186]

So, in order for our Celery process to work with the database and any other Flask
extensions, it needs to work within our application context. In order to do so, Celery will
need to create a new instance of our application for each process. Like most Celery apps, we
need a Celery factory to create an application instance and register our Celery instance on
it. In a new file, named celery_runner.py, in the top-level directory—the same location
where manage.py resides—we have the following:

import os
from webapp import create_app
from celery import Celery

def make_celery(app):
 celery = Celery(
 app.import_name,
 broker=app.config['CELERY_BROKER_URL'],
 backend=app.config['CELERY_RESULT_BACKEND']
)
 celery.conf.update(app.config)
 TaskBase = celery.Task

 class ContextTask(TaskBase):
 abstract = True

 def __call__(self, *args, **kwargs):
 with app.app_context():
 return TaskBase.__call__(self, *args, **kwargs)

 celery.Task = ContextTask
 return celery

env = os.environ.get('WEBAPP_ENV', 'dev')
flask_app = create_app('config.%sConfig' % env.capitalize())

celery = make_celery(flask_app)

The make_celery function wraps every call to each Celery task in a Python with block.
This makes sure that every call to any Flask extension will work as it is working with our
app. Also, make sure not to name the Flask app instance app, as Celery tries to import any
object named app or celery as the Celery application instance. So naming your Flask
object app will cause Celery to try to use it as a Celery object.

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[187]

Now we can write our first task. It will be a simple task to start with; one that just returns
any string passed to it. We have a new file in the blog module directory, named tasks.py.
In this file, find the following:

from .. import celery

@celery.task()
def log(msg):
 return msg

Now, the final piece of the puzzle is to run the Celery process, which is called a worker, in a
new Terminal window. Again, this is the process that will be listening to our message
broker for commands to start new tasks:

$ celery worker -A celery_runner --loglevel=info

The loglevel flag is there, so you will see the confirmation that a task was received, and
its output was available, in the Terminal window.

Now, we can send commands to our Celery worker. Open a Flask shell session, as follows:

$ export FLASK_APP=main.py
$ flask shell
>>> from webapp.blog.tasks import log
>>> log("Message")
Message
>>> result = log.delay("Message")

The function can be called as if it were any other function, and doing so will execute the
function in the current process. However, calling the delay method on the task will send a
message to the worker process to execute the function with the given arguments.

In the Terminal window that is running the Celery worker, you should see something like
the following:

Task webapp.blog.tasks.log succeeded in 0.0005873600021s: 'Message'

As with any asynchronous task, the ready method can be used to tell if the task has
successfully been completed. If True, the get method can be used to retrieve the result of
the tasks as follows:

>>> result.ready()
True
>>> result.get()
"Message"

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[188]

The get method causes the current process to wait until the ready function returns True to
retrieve the result. So, calling get immediately after calling the task essentially makes the
task synchronous. Because of this, it's rather rare for tasks to actually return a value to the
producer. The vast majority of tasks perform some operation and then exit.

When a task is run on the Celery worker, the state of the task can be accessed via the state
attribute. This allows for a more fine-grained understanding of what the task is currently
doing in the worker process. The available states are as follows:

FAILURE: The task failed, and all of the retries failed as well.
PENDING: The task has not yet been received by the worker.
RECEIVED: The task has been received by the worker, but is not yet processing.
RETRY: The task failed and is waiting to be retried.
REVOKED: The task was stopped.
STARTED: The worker has started processing the task.
SUCCESS: The task was completed successfully.

In Celery, if a task fails, then the task can recall itself with the retry method, as follows:

@celery.task(bind=True)
def task(self, param):
 try:
 some_code
 except Exception, e:
 self.retry(exc=e)

The bind parameter in the decorator function tells Celery to pass a reference to the task
object as the first parameter in the function. Using the self parameter, the retry method
can be called, which will rerun the task with the same parameters. There are several other
parameters that can be passed to the function decorator to change the behavior of the task:

max_retries: This is the maximum number of times the task can be retried
before it is declared as failed.
default_retry_delay: This is the time in seconds to wait before running the
task again. It's a good idea to keep this at around a minute or so if you expect
that the conditions that led to the task failing are transitory; for example, network
errors.

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[189]

rate_limit: This specifies the total number of unique calls to this task that are
allowed to run in a given interval. If the value is an integer, then it represents the
total number of calls that this task that is allowed to run per second. The value
can also be a string in the form of x/m, for x number of tasks per minute, or x/h,
for x number of tasks per hour. For example, passing in 5/m will only allow this
task to be called five times a minute.
time_limit: If this is specified, then the task will be killed if it runs longer than
the specified number of seconds.
ignore_result: If the task's return value isn't used, then don't send it back.

It's a good idea to specify all of these for each task to avoid any chance that a task will not
be run.

Running Celery tasks
The delay method is a shorthand version of the apply_async method, which is called in
this format:

task.apply_async(
 args=[1, 2],
 kwargs={'kwarg1': '1', 'kwarg2': '2'}
)

However, the args keyword can be implicit, as shown here:

apply_async([1, 2], kwargs={'kwarg1': '1', 'kwarg2': '2'})

Calling apply_async allows you to define some extra functionality in the task call that you
cannot specify in the delay method. First, the countdown option specifies the amount of
time in seconds that the worker, upon receiving the task, should wait before running it:

>>> from webapp.blog.tasks import log
>>> log.apply_async(["Message"], countdown=600)

The countdown is not a guarantee that the task will be run after 600 seconds.
The countdown option only says that the task is up for processing after x number of
seconds. If all of the worker processes are busy with the other tasks, then it will not be run
immediately.

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[190]

Another keyword argument that apply_async gives is the eta argument. eta is passed
through a Python datetime object that specifies exactly when the task should be run.
Again, eta is not reliable:

>>> import datetime
>>> from webapp.blog.tasks import log
Run the task one hour from now
>>> eta = datetime.datetime.now() + datetime.timedelta(hours=1)
>>> log.apply_async(["Message"], eta=eta)

Celery workflows
Celery provides many ways to group multiple, dependent tasks together, or to execute
many tasks in parallel. These methods take a large amount of influence from language
features found in functional programming languages. However, to understand how this
works, we first need to understand signatures. Consider the following task:

@celery.task()
def multiply(x, y):
 return x * y

Let's see a signature in action to understand it. Open up a Flask shell and enter the
following:

Export FLASK_APP if you haven't already
$ export FLASK_APP=main.py
$ flask shell
>>> from celery import signature
>>> from webapp.blog.tasks import multiply
Takes the same keyword args as apply_async
>>> signature('webapp.tasks.multiply', args=(4, 4), countdown=10)
webapp.tasks.multiply(4, 4)
same as above
>>> from webapp.blog.tasks import multiply
>>> multiply.subtask((4, 4), countdown=10)
webapp.tasks.multiply(4, 4)
shorthand for above, like delay in that it doesn't take
apply_async's keyword args
>>> multiply.s(4, 4)
webapp.blog.tasks.multiply(4, 4)
>>> multiply.s(4, 4)()
16
>>> multiply.s(4, 4).delay()

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[191]

Calling the signature (sometimes referred to as a subtask) of a task creates a function that
can be passed to the other functions to be executed. Executing the signature, like the third
to last line in the preceding example, executes the function in the current process, and not
in the worker.

Partials
The first application of task signatures is functional programming style partials. Partials are
functions, which originally take many arguments, but an operation is applied to the
original function to return a new function, so the first n arguments are always the same.
Consider the following example, where we have a multiply function that is not a task:

>>> new_multiply = multiply(2)
>>> new_multiply(5)
10
The first function is unaffected
>>> multiply(2, 2)
4

This is a fictional API, but is very close to the Celery version:

>>> partial = multiply.s(4)
>>> partial.delay(4)

The output in the worker window should show 16. Basically, we created a new function,
saved to partial, that will always multiply its input by four.

Callbacks
Once a task is completed, it is very common to run another task, based on the output of the
previous task. To achieve this, the apply_async function has a link method, used as
follows:

>>> multiply.apply_async((4, 4), link=log.s())

The worker output should show that both the multiply task and the log task returned 16.

If you have a function that does not take input, or your callback does not need the result of
the original method, then the task signature must be marked as immutable with the si
method:

>>> multiply.apply_async((4, 4), link=log.si("Message"))

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[192]

Callbacks can be used to solve real-world problems. If we wanted to send a welcome email
every time a task created a new user, then we could produce that effect with the following
call:

>>> create_user.apply_async(("John Doe", password), link=welcome.s())

Partials and callbacks can be combined to produce some powerful effects:

>>> multiply.apply_async((4, 4), link=multiply.s(4))

It's important to note that, if this call were saved and the get method was called on it, the
result would be 16, rather than 64. This is because the get method does not return the
results for callback methods. This will be solved with later methods.

Group
The group function takes a list of signatures and creates a callable function to execute all of
the signatures in parallel, then returns a list of all of the results as follows:

>>> from celery import group
>>> sig = group(multiply.s(i, i+5) for i in range(10))
>>> result = sig.delay()
>>> result.get()
[0, 6, 14, 24, 36, 50, 66, 84, 104, 126]

Chain
The chain function takes task signatures and passes the value of each result to the next
value in the chain, returning one result, as follows:

>>> from celery import chain
>>> sig = chain(multiply.s(10, 10), multiply.s(4), multiply.s(20))
same as above
>>> sig = (multiply.s(10, 10) | multiply.s(4) | multiply.s(20))
>>> result = sig.delay()
>>> result.get()
8000

Chains and partials can be taken a bit further. Chains can be used to create new functions
when using partials, and chains can be nested as follows:

combining partials in chains
>>> func = (multiply.s(10) | multiply.s(2))
>>> result = func.delay(16)
>>> result.get()

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[193]

320
chains can be nested
>>> func = (multiply.s(10) | multiply.s(2) | (multiply.s(4) |
multiply.s(5)))
>>> result = func.delay(16)
>>> result.get()
6400

Chord
The chord function creates a signature that will execute a group of signatures and pass the
final result to a callback:

>>> from celery import chord
>>> sig = chord(
 group(multiply.s(i, i+5) for i in range(10)),
 log.s()
)
>>> result = sig.delay()
>>> result.get()
[0, 6, 14, 24, 36, 50, 66, 84, 104, 126]

Just like the link argument, the callback is not returned with the get method.

Using the chain syntax with a group and a callback automatically creates a chord
signature:

same as above
>>> sig = (group(multiply.s(i, i+5) for i in range(10)) | log.s())
>>> result = sig.delay()
>>> result.get()
[0, 6, 14, 24, 36, 50, 66, 84, 104, 126]

Running tasks periodically
Celery also has the ability to call tasks periodically. For those familiar with *nix operating
systems, this system is a lot like the command-line utility cron, but it has the added benefit
of being defined in our source code rather than on some system file. As such, it will be
much easier to update our code when it is ready for publishing to production—a stage that
we will reach in Chapter 13, Deploying Flask Apps. In addition, all of the tasks are run
within the application context, whereas a Python script called by cron would not be.

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[194]

To add periodic tasks, add the following to the DevConfig configuration object:

import datetime
...
CELERYBEAT_SCHEDULE = {
 'log-every-30-seconds': {
 'task': 'webapp.blog.tasks.log',
 'schedule': datetime.timedelta(seconds=30),
 'args': ("Message",)
 },
}

This configuration variable defines that the log task should be run every 30 seconds,
with the args tuple passed as the parameters. Any timedelta object can be used to define
the interval to run the task on.

To run the periodic tasks, another specialised worker, named a beat worker, is needed. In
another Terminal window, run the following command:

$ celery -A celery_runner beat

If you now watch the Terminal output for the main Celery worker, you should now see a
log event every 30 seconds.

What if your task needs to run on much more specific intervals; say, for example, every
Tuesday in June at 3 am and 5 pm? For very specific intervals, there is the Celery crontab
object.

To illustrate how the crontab object represents intervals, consider the following examples:

>>> from celery.schedules import crontab
Every midnight
>>> crontab(minute=0, hour=0)
Once a 5AM, then 10AM, then 3PM, then 8PM
>>> crontab(minute=0, hour=[5, 10, 15, 20])
Every half hour
>>> crontab(minute='*/30')
Every Monday at even numbered hours and 1AM
>>> crontab(day_of_week=1, hour ='*/2, 1')

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[195]

The object has the following arguments:

minute

hour

day_of_week

day_of_month

month_of_year

Each of these arguments can take various inputs. With plain integers, they operate much
like the timedelta object, but can also take strings and lists. When passed a list, the task
will execute on every moment that is in the list. When passed a string in the form of */x, the
task will execute every moment that the modulo operation returns zero. Also, the two
forms can be combined to form a comma-separated string of integers and divisions.

Monitoring Celery
When our code is pushed to the server, our Celery worker will not be run in the Terminal
window—rather, it will be run as a background task. Because of this, Celery provides many
command-line arguments to monitor the status of your Celery worker and tasks. These
commands take the following form:

$ celery -A celery_runner <command>

The main tasks to view the status of your workers are as follows:

status: This prints the running workers and if they are up.
result: When passed a task ID, this shows the return value and final status of
the task.
purge: Using this, all messages in the broker will be deleted.
inspect active: This lists all active tasks.
inspect scheduled: This lists all tasks that have been scheduled with the eta
argument.
inspect registered: This lists all of the tasks waiting to be processed.
inspect stats: This returns a dictionary full of statics on the currently running
workers and the broker.

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[196]

Web-based monitoring with Flower
Flower is a web-based, real-time management tool for Celery. In Flower, all active, queued,
and completed tasks can be monitored. Flower also provides graphs and statics on how
long each task has been sitting in the queue versus how long its execution took, and the
arguments to each of those tasks.

To install flower, use the pip command, as follows:

$ pip install flower

To run it, just treat flower as a Celery command, as follows:

$ celery flower -A celery_runner --loglevel=info

Now, open your browser to http://localhost:5555. It's best to familiarize yourself with
the interface while tasks are running, so go to the command line and type the following:

>>> export FLASK_APP=manage.py
>>> flask shell
>>> from webapp.blog.tasks import *
>>> from celery import chord, group
>>> sig = chord(group(multiply.s(i, i+5) for i in xrange(10000)),
log.s())
>>> sig.delay()

Your worker process will now start processing 10,000 tasks. Browse around the different
pages while the tasks are running to see how flower interacts with your worker while it's
really churning, as shown here:

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[197]

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[198]

Creating a reminder app
Let's get into some real-world example applications of Celery. Suppose another page on our
site now requires a reminders feature. Users can create reminders that will send an email to
a specified location at a specified time. We will need a model, a task, and a way to call our
task automatically every time a model is created.

Let's start with the following basic SQLAlchemy model:

class Reminder(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 date = db.Column(db.DateTime())
 email = db.Column(db.String())
 text = db.Column(db.Text())
 def __repr__(self):
 return "<Reminder '{}'>".format(self.text[:20])

Now, we need a task that will send an email to the location in the model. In our
blog/tasks.py file, look up the following task:

@celery.task(
 bind=True,
 ignore_result=True,
 default_retry_delay=300,
 max_retries=5
)
def remind(self, pk):
 reminder = Reminder.query.get(pk)
 msg = MIMEText(reminder.text)

 msg['Subject'] = "Your reminder"
 msg['From'] = current_app.config['SMTP_FROM']
 msg['To'] = reminder.email
 try:
 smtp_server = smtplib.SMTP(current_app.config['SMTP_SERVER'])
 smtp_server.starttls()
 smtp_server.login(current_app.config['SMTP_USER'],
 current_app.config['SMTP_PASSWORD'])
 smtp_server.sendmail("", [reminder.email], msg.as_string())
 smtp_server.close()
 return
 except Exception as e:
 self.retry(exc=e)

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[199]

Note that our task takes a primary key, rather than a model. This is a hedge against a race
condition, as a passed model could be stale by the time the worker finally gets around to
processing it. You will also have to replace the placeholder emails and login details with
your own login info.

How do we have our task called when the user creates a reminder model? We will use an
SQLAlchemy feature, named events. SQLAlchemy allows us to register callbacks on our
models that will be called when specific changes are made to our models. Our task will use
the after_insert event, which is called after new data is entered into the database,
whether the model is brand new or being updated.

We need a callback in blog/tasks.py:

def on_reminder_save(mapper, connect, self):
 remind.apply_async(args=(self.id,), eta=self.date)

Now, in blog/__init__.py, we will register our callback on our model:

from sqlalchemy import event
from .models import db, Reminder
from .tasks import on_reminder_save

def create_module(app, **kwargs):
 event.listen(Reminder, 'after_insert', on_reminder_save)
 from .controllers import blog_blueprint
 app.register_blueprint(blog_blueprint)

Now, every time a model is saved, a task is registered that will send an email to our user.

Creating a weekly digest
Say our blog has a lot of people who don't use RSS, and prefer mailing lists. We need some
way to create a list of new posts at the end of every week to increase our site's traffic. To
solve this problem, we will create a digest task that will be called by a beat worker at 10 am,
every Saturday.

First, in blog/tasks.py, let's create our task as follows:

@celery.task(
 bind=True,
 ignore_result=True,
 default_retry_delay=300,
 max_retries=5

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[200]

)
def digest(self):
 # find the start and end of this week
 year, week = datetime.datetime.now().isocalendar()[0:2]
 date = datetime.date(year, 1, 1)
 if (date.weekday() > 3):
 date = date + datetime.timedelta(7 - date.weekday())
 else:
 date = date - datetime.timedelta(date.weekday())
 delta = datetime.timedelta(days=(week - 1) * 7)
 start, end = date + delta, date + delta +
 datetime.timedelta(days=6)

 posts = Post.query.filter(
 Post.publish_date >= start,
 Post.publish_date <= end
).all()

 if (len(posts) == 0):
 return

 msg = MIMEText(render_template("digest.html", posts=posts), 'html')

 msg['Subject'] = "Weekly Digest"
 msg['From'] = current_app.config['SMTP_FROM']

 try:
 smtp_server = smtplib.SMTP(current_app.config['SMTP_SERVER'])
 smtp_server.starttls()
 smtp_server.login(current_app.config['SMTP_USER'],
 current_app.config['SMTP_PASSWORD'])
 smtp_server.sendmail("", [""], msg.as_string())
 smtp_server.close()

 return
 except Exception as e:
 self.retry(exc=e)

We will also need to add a periodic schedule to our configuration object in config.py to
manage our task:

from celery.schedules import crontab
...
CELERYBEAT_SCHEDULE = { 'weekly-digest': { 'task': 'blog.tasks.digest',
'schedule': crontab(day_of_week=6, hour='10') }, }

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[201]

We also need to configure our SMTP server so that we are able to send emails. This can be
done using Gmail or your corporate email credentials. Add your chosen account
information to the configuration object in config.py :

...
SMTP_SERVER = "smtp.gmail.com"
SMTP_USER = "sometestemail@gmail.com"
SMTP_PASSWORD = "password"
SMTP_FROM = "from@flask.com"
...

Finally, we need our email template. Unfortunately, HTML in email clients is terribly
outdated. Every single email client has different rendering bugs and quirks, and the only
way to find them is to open your email in all the clients. Many email clients don't even
support CSS, and those that do support a very small amount of selectors and attributes. In
order to compensate, we have to use the web development methods of 10 years ago; that is,
designing tables with inline styles. Here is our digest.html file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=UTF-8" />
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0"/>
 <title>Weekly Digest</title>
 </head>
 <body>
 <table align="center"
 border="0"
 cellpadding="0"
 cellspacing="0"
 width="500px">
 <tr>
 <td style="font-size: 32px;
 font-family: Helvetica, sans-serif;
 color: #444;
 text-align: center;
 line-height: 1.65">
 Weekly Digest
 </td>
 </tr>
 {% for post in posts %}
 <tr>
 <td style="font-size: 24px;
 font-family: sans-serif;

WOW! eBook
www.wowebook.org

Creating Asynchronous Tasks with Celery Chapter 9

[202]

 color: #444;
 text-align: center;
 line-height: 1.65">
 {{ post.title }}
 </td>
 </tr>
 <tr>
 <td style="font-size: 14px;
 font-family: serif;
 color: #444;
 line-height:1.65">
 {{ post.text | truncate(500) | safe }}
 </td>
 </tr>
 <tr>
 <td style="font-size: 12px;
 font-family: serif;
 color: blue;
 margin-bottom: 20px">
 Read
 More
 </td>
 </tr>
 {% endfor %}
 </table>
 </body>
</html>

Now, at the end of every week, our digest task will be called, and will send an email to all
the users present in our mailing list.

Summary
Celery is a very powerful task queue that allows programmers to defer the processing of
slower tasks to another process. Now that you understand how to move complex tasks out
of the Flask process, we will take a look at a collection of Flask extensions that simplify
some common tasks seen in Flask apps.

In the next chapter, you will learn how to leverage some great community-built Flask
extensions to improve performance, debug, and even quickly create an administration back
office.

WOW! eBook
www.wowebook.org

10
Useful Flask Extensions

As we have seen throughout this book, Flask is designed to be as small as possible, while
still giving you the flexibility and tools needed to create web applications. However, there
are a lot of features that are common to many web applications, which means that many
applications will require code that does the same task for each web application. To solve
this problem, and avoid reinventing the wheel, people have created extensions for Flask,
and we have seen many Flask extensions already throughout the book. This chapter will
focus on some of the more useful Flask extensions that don't have enough content to
separate them out into their own chapter, but will save you a lot of time and frustration.

In this chapter, you will learn how to do the following:

Developing a debug toolbar, with great backend performance metrics
Page cache using Redis or memcached
Creating an administration back office, with CRUD functionality for all your
models
Enabling internationalization (i18n), and translating your site into multiple
languages
Sending emails easily

Flask CLI
In Chapter 1, Getting Started, we introduced some basic features and learned how to use
Flask CLI. Now, we are going to see how to make good use of this feature.

In Flask CLI, you can create custom commands to be run within the application context.
Flask CLI itself uses Click,which is a library developed by the creator of Flask to create
command-line tools with complex arguments early.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[204]

For further details on Click, take a look at the documentation, available
at http:/​/​click.​pocoo.​org.

Our goal is to create a set of commands to help us manage and deploy our Flask app. The
first problem to tackle is where and how we are going to create these command-line
functions. Since our CLI is an application global utility, we are going to place it
in webapp/cli.py:

import logging
import click
from .auth.models import User, db

log = logging.getLogger(__name__)

def register(app):
 @app.cli.command('create-user')
 @click.argument('username')
 @click.argument('password')
 def create_user(username, password):
 user= User()
 user.username = username
 user.set_password(password)
 try:
 db.session.add(user)
 db.session.commit()
 click.echo('User {0} Added.'.format(username))
 except Exception as e:
 log.error("Fail to add new user: %s Error: %s"
 % (username, e))
 db.session.rollback()
...

We are going to develop all of our functions inside the register function, so that we don't
have to import our Flask app from the main module. Doing so would result in a circular
dependency import. Next, take note of the following decorators we use:

 @app.cli.command registers that our function has a new command-line
command; if no argument is passed, then Click will assume the function's name.
@click.argument adds a command-line argument; in our case, for username
and password (needed to create the user credentials). Arguments are positional
command-line options.

WOW! eBook
www.wowebook.org

http://click.pocoo.org
http://click.pocoo.org
http://click.pocoo.org
http://click.pocoo.org
http://click.pocoo.org
http://click.pocoo.org
http://click.pocoo.org
http://click.pocoo.org
http://click.pocoo.org

Useful Flask Extensions Chapter 10

[205]

We register all of our command-line functions in main.py. Note the highlighted text in the
following snippet, where we call the previously created register method:

import os
from webapp import create_app
from webapp.cli import register

env = os.environ.get('WEBAPP_ENV', 'dev')
app = create_app('config.%sConfig' % env.capitalize())
register(app)

if __name__ == '__main__':
 app.run()

From the CLI, let's try our newly created command as follows:

First we need to export our FLASK_APP env var
$ export FLASK_APP=main.py
$ flask create-user user10 password
User user10 Added.
$ flask run
 * Serving Flask app "main"
2018-08-12 20:25:43,031:INFO:werkzeug: * Running on http://127.0.0.1:5000/
(Press CTRL+C to quit)

Next, you can go to your web browser and log in to our blog using the newly created
user10 credentials.

The provided code also includes a list-users command, but its implementation should
be straightforward for you by now, without any additional explanation here. Let's focus on
a simple and handy function to show all of our app's routes:

@app.cli.command('list-routes')
def list_routes():
 for url in app.url_map.iter_rules():
 click.echo("%s %s %s" % (url.rule, url.methods, url.endpoint))

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[206]

The list-routes command lists all of the routes registered on the app object, and the
URL tied to that route. This is very useful while debugging Flask extensions, as it makes it
trivial to see whether or not the registration of its blueprints is working.

Flask Debug Toolbar
Flask Debug Toolbar is a Flask extension that aids development by adding debugging
tools into the web view of your application. It gives you information on things such as the
bottlenecks of your view rendering code, and how many SQLAlchemy queries it took to
render the view.

As always, we will use pip to install Flask Debug Toolbar and add it to
our requirements.txt file:

$ source venv/bin/activate
(venv) $ pip install -r requirements

Next, we need to add Flask Debug Toolbar to the webapp/__init__.py file. As we will be
modifying this file a lot in this chapter, here is the start of the file so far, along with the code
to initialize Flask Debug Toolbar:

...
from flask_debugtoolbar import DebugToolbarExtension

...
debug_toolbar = DebugToolbarExtension()
...
def create_app(config):
...
 debug_toolbar.init_app(app)
...

This is all that is needed to get Flask Debug Toolbar up and running. If the DEBUG variable
in your app's config is set to true, the toolbar will appear. If DEBUG is not set to true, the
toolbar will not be injected into the page:

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[207]

On the right-hand side of the screen, you will see the toolbar. Each section is a link that will
display a table of values on the page. To get a list of all the functions that were called in
order to render the view, click the checkbox next to Profiler to enable it, then reload the
page and click on Profiler. This view easily allows you to quickly diagnose which parts of
your apps are the slowest, or are called the most.

By default, Flask Debug Toolbar intercepts HTTP 302 redirect requests. To disable this,
add the following to your configuration:

class DevConfig(Config):
 DEBUG = True
 DEBUG_TB_INTERCEPT_REDIRECTS = False

Also, if you are using Flask-MongoEngine, you can view all of the queries that were made
to render the page, by overriding which panels are rendered and adding MongoEngine's
custom panel as follows:

class DevConfig(Config):
 DEBUG = True
 DEBUG_TB_PANELS = [
 'flask_debugtoolbar.panels.versions.VersionDebugPanel',
 'flask_debugtoolbar.panels.timer.TimerDebugPanel',
 'flask_debugtoolbar.panels.headers.HeaderDebugPanel',
 'flask_debugtoolbar.panels.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[208]

 request_vars.RequestVarsDebugPanel',
 'flask_debugtoolbar.panels.config_vars.
 ConfigVarsDebugPanel ',
 'flask_debugtoolbar.panels.template.
 TemplateDebugPanel', 'flask_debugtoolbar.panels.
 logger.LoggingPanel', 'flask_debugtoolbar.panels.
 route_list.RouteListDebugPanel'
 'flask_debugtoolbar.panels.profiler.
 ProfilerDebugPanel', 'flask_mongoengine.panels.
 MongoDebugPanel'
]
 DEBUG_TB_INTERCEPT_REDIRECTS = False

This will add a panel to the toolbar that is very similar to the default SQLAlchemy one.

Flask Caching
In Chapter 7, Using NoSQL with Flask, we learned that page load time is one of the most
important factors that will determine the success or failure of your web app. Despite the
facts that our pages do not change very often, and that new posts will not be made very
often, we still render the template and query the database every single time the page is
asked for by our users' browsers.

Flask Caching solves this problem by allowing us to store the results of our view functions
and return the stored results, rather than render the template again. First, we need to install
Flask Caching on our virtual environment. This was already done when running
the init.sh bash script. The init.sh script will first install all the declared dependencies
in requirements.txt:

...
Flask-Caching
...

Next, initialize it in webapp/__init__.py as follows:

from flask_caching import Cache
...
cache = Cache()
...
def create_app(config):
...
 cache.init_app(app)
...

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[209]

Before we can start caching our views, we need to tell Flask Cache how we want to store
the results of our new functions:

class DevConfig(Config):

 CACHE_TYPE = 'simple'

The simple option tells Flask Cache to store the results in memory in a Python dictionary,
which, for the vast majority of Flask apps, is adequate. We'll cover more types of cache
backends later in this section.

Caching views and functions
In order to cache the results of a view function, simply add a decorator to any function:

...
from .. import cache
...

@blog_blueprint.route('/')
@blog_blueprint.route('/<int:page>')
@cache.cached(timeout=60)
def home(page=1):
 posts =
 Post.query.order_by(Post.publish_date.desc()).paginate(page,
 current_app.config['POSTS_PER_PAGE'], False)
 recent, top_tags = sidebar_data()

 return render_template(
 'home.html',
 posts=posts,
 recent=recent,
 top_tags=top_tags
)

The timeout parameter specifies how many seconds the cached result should last, before
the function should again be run and stored. To confirm that the view is actually being
cached, check the SQLAlchemy section of the Debug toolbar. Also, we can see the impact
that caching has on page load times, by activating the profiler and comparing the times for
before and after. On the author's top-of-the-range laptop, the main blog page takes 34 ms to
render, mainly due to the eight different queries that are made to the database. But, after
the cache is activated, this decreases to 0.08 ms. That's a 462.5 percent increase in speed!

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[210]

View functions are not the only thing that can be cached. To cache any Python function,
simply add a similar decorator to the function definition, as follows:

@cache.cached(timeout=7200, key_prefix='sidebar_data')
def sidebar_data():
 recent = Post.query.order_by(
 Post.publish_date.desc()
).limit(5).all()

 top_tags = db.session.query(
 Tag, func.count(tags.c.post_id).label('total')
).join(
 tags
).group_by(
 Tag
).order_by('total DESC').limit(5).all()

 return recent, top_tags

The key_prefix keyword argument is necessary in order for Flask Caching to properly
store the results of non-view functions. This needs to be unique for every function cached,
or the results of the functions will override each other. Also, note that the timeout for this
function is set to two hours, rather than the 60 seconds, as in the previous examples. This is
because the results for this function are less likely to change than the view functions, and if
the data is stale, it is not as big of an issue as it would be for the view functions.

Caching functions with parameters
However, the normal cache decorator does not take function parameters into account. If we
cached a function that took parameters with the normal cache decorator, it would return
the same result for every parameter set. In order to fix this, we use the memoize function:

...
from .. import db, cache
...

class User(db.Model):
...
 @cache.memoize(60)
 def has_role(self, name):
 for role in self.roles:
 if role.name == name:
 return True
 return False

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[211]

Memoize stores the parameters passed to the function as well as the result. In the preceding
example, memoize is being used to store the result of the verify_auth_token method,
which is called many times, and queries the database every single time. This method can
safely memoized, because it returns the same result every time if the same token is passed
to it. The only exception to this rule is if the user object gets deleted during the 60 seconds
that the function is stored, but this is very unlikely.

Be careful not to memoize or cache functions that rely on either globally-scoped variables,
or on constantly changing data. This can lead to some very subtle bugs, and in the worst
case, data race. The best candidates for memoization are what are referred to as pure
functions. Pure functions are functions that will produce the same result when the same
parameters are passed to it. It does not matter how many times the function is run. Pure
functions also don't have any side effects, which means that they do not change globally
scoped variables. This also means that pure functions cannot do any I/O operations. While
the verify_auth_token function is not pure, because it does database I/O, this is okay,
because, as was stated before, it is very unlikely that the underlying data will change.

While we are developing the application, we do not want the view functions to be cached,
because results will be changing all the time. To fix this, set the CACHE_TYPE variable to
null and, in the production configuration, set the CACHE_TYPE variable to simple, so when
the app is deployed, everything works as expected:

class ProdConfig(Config):

 CACHE_TYPE = 'simple'

class DevConfig(Config):

 CACHE_TYPE = 'null'

Caching routes with query strings
Some routes, such as our home and post routes, take the parameters through the URL and
return content specific to those parameters. We run into a problem if routes like these are
cached, as the first rendering of the route will be returned for all requests, regardless of the
URL parameters. The solution to this is rather simple. The key_prefix keyword argument
in the cache method can be either a string or a function, which will be executed to
dynamically generate a key.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[212]

This means that a function can be created to create, in turn, a key that is tied to the URL
parameters, so that each request only returns a cached page if that specific combination of
parameters was called before. In the blog/controllers.py file, find the following
function:

def make_cache_key(*args, **kwargs):
 path = request.path
 args = str(hash(frozenset(request.args.items())))
 messages = str(hash(frozenset(get_flashed_messages())))
 return (path + args + messages).encode('utf-8')

We use this function to create a cache key, using a mixture of URL paths, arguments, and
Flask messages. This will prevent messages from not being shown when a user logs out.
We will be using this type of cache key generation on the home view and show post by ID.

Now, each individual post page will be cached for 10 minutes.

Using Redis as a cache backend
If the amount of view functions, or the number of unique parameters, passed to your
cached functions becomes too large for memory, you can use a different backend for the
cache. As was mentioned in Chapter 7, Using NoSQL with Flask, Redis can be used as a
backend for the cache. To implement that functionality, all that needs to be done is to add
the following configuration variables to the ProdConfig class, as follows:

class ProdConfig(Config):
 ...
 CACHE_TYPE = 'redis'
 CACHE_REDIS_HOST = 'localhost'
 CACHE_REDIS_PORT = '6379'
 CACHE_REDIS_PASSWORD = 'password'
 CACHE_REDIS_DB = '0'

If you replace the values of the variables with your own data, Flask Cache will
automatically create a connection to your redis database and use it to store the results of
the functions. All that is needed is to install the Python redis library. This is already
installed after issuing the init.sh script, which we did to set up the work environment for
this chapter. You will find the library in requirements.txt:

...
redis
...

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[213]

If you want to test your Redis cache, we have prepared a Docker composer file that
includes RabbitMQ and Redis. To launch it, just issue the following on the CLI:

Start dockers for RMQ and Redis in the background
$ docker-compose up -d
Creating rabbitmq ... done
Creating redis ... done
Check the currently active containers
$ docker container list
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
3266cbdee1d7 redis "docker-entrypoint.s…" 43 seconds ago Up 58 seconds
0.0.0.0:6379->6379/tcp redis
64a99718442c rabbitmq:3-management "docker-entrypoint.s…" 43 seconds ago Up
58 seconds 4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp, 15671/tcp,
25672/tcp, 0.0.0.0:15672->15672/tcp rabbitmq

Remember to test your application using the production configuration as follows:

$ export WEBAPP_ENV=prod
$ export FLASK_APP=main.py
$ flask run

Using memcached as a cache backend
Just like the Redis backend, the memcached backend provides an alternative way of storing
results, should the storage constraints become too limiting. In contrast to Redis, memcached
is designed to cache objects for later use and reduce load on the database. Both Redis and
memcached serve the same purpose, and choosing one over the other comes down to
personal preference. To use memcached, we need to install its Python library with the
following command:

$ pip install memcache

The process of connecting to your memcached server is handled in the configuration object,
just like the Redis setup:

class ProdConfig(Config):
 ...
 CACHE_TYPE = 'memcached'
 CACHE_KEY_PREFIX = 'flask_cache'
 CACHE_MEMCACHED_SERVERS = ['localhost:11211']

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[214]

Flask Assets
Another bottleneck in web applications is the amount of HTTP requests required to
download the CSS and JavaScript libraries for the page. The extra files can only be
downloaded after HTML for the page has been loaded and parsed. To combat this, many
modern browsers download many of these libraries at once, but there is a limit to how
many simultaneous requests the browser can make.

Several things can be done on the server to reduce the amount of time spent downloading
these files. The main technique that developers use to solve this is to concatenate all of the
JavaScript libraries into one file, and all of the CSS libraries into another, while removing all
of the whitespace and carriage returns from the resulting files (also known as minification).
This reduces the overhead of multiple HTTP requests, and can reduce file's size by up to 30
percent. Another technique is to tell the browser to cache the files locally, with specialized
HTTP headers, so the file is only loaded again once it changes. These can be tedious to do
manually, because they need to be done after every deployment to the server.

Thankfully, Flask Assets implements all the discussed techniques. Flask Assets works by
giving it a list of files and a way to concatenate them, and then adding a special control
block into your templates, in place of the normal link and script tags. Flask Assets will then
add in a link or a script tag that links to the new generated file. To get started, Flask
Assets needs to be installed. We also need to install cssmin and jsmin—you can find these
dependencies in requirements.txt.

Now, the collections of files to be concatenated, named bundles, need to be created. In
ewebapp/__init__.py, we have the following:

...
from flask_assets import Environment, Bundle
...
assets_env = Environment()

main_css = Bundle(
 'css/bootstrap.css',
 filters='cssmin',
 output='css/common.css'
)

main_js = Bundle(
 'js/jquery.js',
 'js/bootstrap.js',
 filters='jsmin',
 output='js/common.js'
)

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[215]

Each Bundle object takes an infinite number of files as positional arguments to define the
files to be bundled, a keyword argument filters to define the filters to send the files
through, and an output that defines the filename in the static folder to which the result
will be saved.

The filters keyword can be a single value or a list. To get the full list of
available filters, including automatic Less and CSS compilers, see the docs
at http://webassets.readthedocs.org/en/latest/.

While it's true that, because our site is light on styles, the CSS bundle only has one file in it,
it's still a good idea to put the file in a bundle for two reasons. Firstly, while we are in
development, we can use the un-minified versions of the libraries, which makes debugging
easier. When the app is deployed to production, the libraries are automatically minified.
Secondly, these libraries will be sent to the browser with the cache headers, when linking
them normally in HTML would not.

Before Flask Assets can be tested, three more changes need to be made. First, in the
init.py format, the extension and bundles need to be registered:

from .extensions import (
 bcrypt,
 oid,
 login_manager,
 principals,
 rest_api,
 celery,
 debug_toolbar,
 cache,
 assets_env,
 main_js,
 main_css
)

def create_app(object_name):
 ...
 assets_env.init_app(app)

 assets_env.register("main_js", main_js)
 assets_env.register("main_css", main_css)

Next, the DevConfig class needs an extra variable to tell Flask Assets not to compile the
libraries while in development:

class DevConfig(Config):
 DEBUG = True

WOW! eBook
www.wowebook.org

http://webassets.readthedocs.org/en/latest/

Useful Flask Extensions Chapter 10

[216]

 DEBUG_TB_INTERCEPT_REDIRECTS = False
 ASSETS_DEBUG = True

Finally, the link and script tags in both of the base.html files need to be replaced with the
control block from Flask Assets. We have the following in the files already:

<link rel="stylesheet"
 href=https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/css/bootst
 rap.min.css>

Replace the preceding snippet with the following:

{% assets "main_css" %}
<link rel="stylesheet" type="text/css" href="{{ ASSET_URL }}"
 />
{% endassets %}

Likewise, find the following in the base.html files:

<script
 src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery
 .min.js"></script><script
 src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/js/bootstr
 ap.min.js"></script>

Again, replace the preceding code with the following:

{% assets "main_js" %}
<script src="{{ ASSET_URL }}"></script>
{% endassets %}

Now, if you reload the page, all of the CSS and JavaScript will be handled by Flask Assets.

Flask Admin
In Chapter 6, Securing Your App, we created an interface to allow users to create and edit
blog posts without having to use the CLI. This was adequate to demonstrate the security
measures presented in the chapter, but there is still no way for posts to be deleted, or to
assign tags to posts, using the interface. We also do not have a way to delete or edit
comments that is hidden from regular users. What our app needs is a fully featured
administrator interface, in the same vein as the WordPress interface. This is such a common
requirement for apps that a Flask extension, called Flask Admin, was produced to help
developers create administrator interfaces easily. Once more, we can find Flask Admin on
the list of dependencies in requirements.txt.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[217]

Since we are going to create a full administrator interface, with forms, views and templates,
Flask Admin is a good candidate for a new module on our application. First, take a look at
our new application structure:

./
 webapp/
 admin/
 __init__.py
 forms.py
 controllers.py
 api/
 auth/
 blog/
 templates/
 admin/
 ...
 auth/
 blog/
 ...
 ...

As usual, we need to create the create_module function in
our webapp/admin/__init__.py file:

...
from flask_admin import Admin
...
admin = Admin()

def create_module(app, **kwargs):
 admin.init_app(app)

Then, call the create_module function in the main webapp/__init__.py file:

def create_app(object_name):
 ...
 from .admin import create_module as admin_create_module
 ...
 admin_create_module(app)

Flask Admin works by registering view classes on the admin object that define one or more
routes. Flask Admin has three main types of views: ModelView, FileAdmin, and
BaseView. Next, we are going to see how to use these views and customize them.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[218]

Finally, we add a navigation bar option to the admin interface, and only render it to the
users that have the admin role. So, in the templates/navbar.html file, insert the
following:

{% if current_user.is_authenticated and current_user.has_role('admin') %}
<li class="nav-item">

 Admin(current)

{% endif %}

Creating basic admin pages
The BaseView class allows normal Flask pages to be added to your admin interface. This is
normally the least used type of view in Flask Admin setups, but if you wish to include
something like custom reporting with JavaScript charting libraries, you can do it with a
base view alone. As expected, we are going to define our views in
the admin/controllers.py file:

from flask.ext.admin import BaseView, expose

class CustomView(BaseView):
 @expose('/')
 @login_required
 @has_role('admin')
 def index(self):
 return self.render('admin/custom.html')

 @expose('/second_page')
 @login_required
 @has_role('admin')
 def second_page(self):
 return self.render('admin/second_page.html')

In a subclass of BaseView, multiple views can be registered at once, if they are defined
together. Keep in mind, however, that each subclass of BaseView requires at least one
exposed method on the / path. Also, methods other than the method within the / path will
not be in the navigation of the administrator interface, and will have to be linked to the
other pages in the class. The expose and self.render functions work exactly the same as
their counterparts in the normal Flask API.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[219]

To have your templates inherit the default styles of Flask Admin, we create a new folder in
the templates directory, named admin, containing a file named custom.html, and add the
following Jinja code:

{% extends 'admin/master.html' %}
{% block body %}
 This is the custom view!
 Link
{% endblock %}

To view this template, an instance of CustomView needs to be registered on the admin
object. This will be done in the create_module function, following the same structure and
logic as for the API module:

...
from .controllers import CustomView
...
def create_module(object_name):
 ,,,
 admin.add_view(CustomView(name='Custom'))

The name keyword argument specifies that the label, used in the navigation bar on the top
of the admin interface, should read Custom. After you have registered CustomView to the
admin object, your admin interface should now have a second link in the navigation bar, as
shown in the following screenshot:

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[220]

Creating database admin pages
The main power of Flask Admin comes from the fact that you can automatically create
administrator pages for your data by giving Flask Admin your SQLAlchemy or
MongoEngine models. Creating these pages is very easy; in admin.py, you just need to
write the following code:

from flask_admin.contrib.sqla import ModelView
or, if you use MongoEngine
from flask_admin.contrib.mongoengine import ModelView

class CustomModelView(ModelView):
 pass

Then, in admin/__init__.py, register the database session object and the class with the
model you wish to use, as follows:

from flask_admin import Admin
from .controllers import CustomView, CustomModelView
from webapp.blog.models import db, Reminder, Post, Comment, Tag
from webapp.auth.models import User, Role

admin = Admin()
def create_module(app, **kwargs):
 admin.init_app(app)
 admin.add_view(CustomView(name='Custom'))
 models = [User, Role, Comment, Tag, Reminder]

 for model in models:
 admin.add_view(CustomModelView(model, db.session,
 category='models'))
...

The category keyword tells Flask Admin to put all of the views with the same category
value into the same drop-down menu on the navigation bar. If you go to the browser now,
you will see a new drop-down menu labeled Models, with links to the admin pages of all
of the tables in the database, as follows:

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[221]

The generated interface for each model provides a lot of functionality. New posts can be
created, and the existing posts can be deleted in bulk. All of the fields can be set from this
interface, including the relationship fields, which are implemented as searchable drop-
down menus. The date and datetime fields even have custom JavaScript inputs with
drop-down calendar menus. Overall, this is a huge improvement to the hand-created
interface that was created in Chapter 6, Securing Your App.

Enhancing administration for the post page
While this interface is a huge step up in quality, there are some features missing. We no
longer have the WYSIWYG editor that was available in the original interface, but this page
can be improved by enabling some of the more powerful Flask Admin features.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[222]

To add the WYSIWYG editor back into the post creation page, we will need a new
WTForms field, as Flask Admin constructs its forms with Flask WTF. We will also need to
override the textarea field in the post edit and creation page with this new field type.
The first thing that needs to be done is to create the new field type in admin/forms.py by
using the textarea field as a base, as follows:

from wtforms import (
 widgets,
 TextAreaField
)

class CKTextAreaWidget(widgets.TextArea):
 def __call__(self, field, **kwargs):
 kwargs.setdefault('class_', 'ckeditor')
 return super(CKTextAreaWidget, self).__call__(field,
 **kwargs)

class CKTextAreaField(TextAreaField):
 widget = CKTextAreaWidget()

In this code, we created a new field type, CKTextAreaField, that adds a widget to the
textarea. All that the widget does is adds a class to the HTML tag. Now, to add this field
to the Post admin page, the Post will need its own ModelView:

from webapp.forms import CKTextAreaField

class PostView(CustomModelView):
 form_overrides = dict(text=CKTextAreaField)
 column_searchable_list = ('text', 'title')
 column_filters = ('publish_date',)

 create_template = 'admin/post_edit.html'
 edit_template = 'admin/post_edit.html'

There are several new things in this code. First, the form_overrides class variable tells
Flask Admin to override the field type of the name text with this new field type. The
column_searchable_list function defines which columns are searchable via text.
Adding this will allow Flask Admin to include a search field on the overview page, with
which we can search the values of the defined fields. Next, the column_filters class
variable tells Flask Admin to create a filters interface on the overview page of this
model. The filters interface allows columns that are not text to be filtered down by
adding conditions to the shown rows. An example that could be implemented with the
preceding code is to create a filter that shows all rows with publish_date values greater
than January 1, 2015.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[223]

Finally, the create_template and edit_template class variables allow you to define
custom templates for Flask Admin to use. For the custom template that we will be using,
we need to create a new file, post_edit.html, in the admin folder. In this template, we
will include the same JavaScript library that was used in Chapter 6, Securing Your App, as
shown here:

{% extends 'admin/model/edit.html' %}
{% block tail %}
 {{ super() }}
 <script
 src="//cdn.ckeditor.com/4.4.7/standard/ckeditor.js">
 </script>
{% endblock %}

Finally, to add our newly created customized view to Flask-Admin, we need to add it to the
create_module function in the admin/__init__.py file:

def create_module(app, **kwargs):
 ...
 admin.add_view(PostView(Post, db.session, category='Models'))
 ...

The tail block of the inherited template is located at the end of the file. Once the template is
created, your post edit and creation page should look like this:

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[224]

Creating file system admin pages
Another common function that most admin interfaces cover is being able to access the
server's file system from the web. Thankfully, Flask Admin includes this feature with the
FileAdmin class:

class CustomFileAdmin(FileAdmin):
 pass

Now, just import the new class into your admin/__init__.py file, and pass in the path
that you wish to be accessible from the web:

admin.add_view(CustomFileAdmin(app.static_folder,'/static/',name='Static
Files'))

Securing Flask Admin
Currently, the entire admin interface is accessible to the world—let's fix that. The routes in
the CustomView can be secured just like any other route, as follows:

class CustomView(BaseView):
 @expose('/')
 @login_required
 @has_role('admin')
 def index(self):
 return self.render('admin/custom.html')

 @expose('/second_page')
 @login_required
 @has_role('admin')
 def second_page(self):
 return self.render('admin/second_page.html')

To secure the ModeView and FileAdmin subclasses, they need to have a method named
is_accessible defined, which either returns true or false:

class CustomModelView(ModelView):
 def is_accessible(self):
 return current_user.is_authenticated and
 current_user.has_role('admin')

class CustomFileAdmin(FileAdmin):
 def is_accessible(self):
 return current_user.is_authenticated and
 current_user.has_role('admin')

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[225]

Because we set up our authentication correctly in Chapter 6, Securing Your App, this task
was trivial.

Flask-Babel
In this section, we will explore a way to enable internationalization for our blog. This is an
essential feature for building global websites with multi-language support. We will be
using the Flask-Babel extension, again created by the author of Flask. As always, we will
make sure this dependency exists in our requirements.txt:

...
Flask-Babel
...

Flask-Babel uses the Babel Python library for i18 and localization, and adds some utilities
and Flask integration. To use Flask-Babel, first we need to configure Babel in
the babel/babel.cfg file:

[python: webapp/**.py]
[jinja2: webapp/templates/**.html]
encoding = utf-8
extensions=jinja2.ext.autoescape,jinja2.ext.with_

We configure Babel to look for text to translate in Python files in the webapp directory only,
and to extract text from Jinja2 templates in the webapp/templates directory.

Then, we need to create a translations directory on webapp/translations, where all the
translations for our supported languages will be.

Babel comes with a command-line utility, named pybabel. We will use it to set up all the
languages that our blog will support, in addition to triggering an extract process, updating,
and compiling. First, to create a new language, enter the following command:

$ pybabel init -i ./babel/messages.pot -d ./webapp/translations -l pt

Portuguese, or pt, is already initialized in the provided support code, but you could try
creating a new language. Just change pt to some other language. After this, you can
check webapp/translations, and should see that Babel has created a new directory with
our language code. This directory contains a messages.po file, where we are going to
write the translations necessary for the extracted text, and a messages.mo compiled
version of the messages.po file.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[226]

Next, to trigger Babel to search for text to be translated on our application, use this
command:

$ pybabel extract -v -F ./babel/babel.cfg -o ./babel/messages.pot .

 This will update the messages.pot main file with all the text that needs to be translated.
Then, we tell Babel to update all the messages.po files for all the supported languages
with the following command:

$ pybabel update -i ./babel/messages.pot -d webapp/translations

Now, the messages.po files will contain something like this:

Portuguese translations for PROJECT.
Copyright (C) 2018 ORGANIZATION
This file is distributed under the same license as the PROJECT project.
FIRST AUTHOR <EMAIL@ADDRESS>, 2018.
#
msgid ""
msgstr ""
"Project-Id-Version: PROJECT VERSION\n"
...

#: webapp/templates/head.html:5
msgid "Welcome to this Blog"
msgstr ""

#: webapp/templates/macros.html:57
msgid "Read More"
msgstr ""

...

Here, the translator will need to update msgstr with the translated text from msgid.
English to some target language. After this is done, we will tell Babel to compile
the messages.po files and generate updated messages.mo files with the following
command:

$ pybabel compile -d ./webapp/translations

How does Babel identify which text to translate on our application? Simple—Jinja2 is
already prepared for Babel, so on our templates, we just have to enter the following:

<h1>{{_('Some text to translate')}}</h1>

_('text') is an alias for the gettext function, and will return a translation for the string
if one exists, and ngettext for text that can become plural.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[227]

For Flask integration, we are going to create a new module named webapp/babel. This is
where we will initialize the extension. To do this, add the following to
the babel/__init__.py file:

from flask import has_request_context, session
from flask_babel import Babel

babel = Babel()
...
def create_module(app, **kwargs):
 babel.init_app(app)
 from .controllers import babel_blueprint
 app.register_blueprint(babel_blueprint)

Then, we need to define a function that returns the current locale code to Flask-Babel. The
best place to add it is in the babel/__init__.py file:

...
@babel.localeselector
def get_locale():
 if has_request_context():
 locale = session.get('locale')
 if locale:
 return locale
 session['locale'] = 'en'
 return session['locale']
...

We will use the session to hold the currently selected locale, and if none exists, we'll fall
back to English. Our function is decorated with @babel.localeselector to register our
function on Flask-Babel.

Next, we need to define an endpoint that can be called to switch the current selected
language. This endpoint will set the session locale to the new language and redirect to the
home page. Do this by adding the following code to the babel/controllers.py file:

from flask import Blueprint, session, redirect, url_for

babel_blueprint = Blueprint(
 'babel',
 __name__,
 url_prefix="/babel"
)

@babel_blueprint.route('/<string:locale>')
def index(locale):

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[228]

 session['locale'] = locale
 return redirect(url_for('blog.home'))

Finally, we will create a way for our users to change the current language. This will be done
on the navigation bar. To do this, add the following to the templates/navbar.html file:

...
<ul class="navbar-nav ml-auto">
 <li class="nav-item dropdown">
 <a class="nav-link dropdown-toggle" href="#"
 id="navbarDropdown" role="button" data-toggle="dropdown">
 Lang

 <div class="dropdown-menu">
 <a class="dropdown-item" href="{{url_for('babel.index',
 locale='en')}}">en
 <a class="dropdown-item" href="{{url_for('babel.index',
 locale='pt')}}">pt
 </div>

...

The new navigation bar options will send us to our Babel index endpoint with the selected
language. Any new languages that we want to support should be added here. Finally, we
just have to call Babel's create_module function on our main __init__.py file:

def create_app():
...
 from babel import create_module as babel_create_module
...
 babel_create_module(app)

And that's it. We now have all the necessary configurations in place to support any
language on our blog application.

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[229]

Flask Mail
The final Flask extension that this chapter will cover is Flask Mail, which allows you to
connect and configure your SMTP client from Flask's configuration. Flask Mail will also
help to simplify application testing in Chapter 12, Testing Flask Apps. The first step is to
install Flask Mail with pip. You should already have done this in this chapter, in
our init.sh script, so let's check our dependencies file for the following to make sure:

...
Flask-Mail
...

flask_mail will connect to our SMTP server of choice by reading the configuration
variables in our app object, so we need to add those values to our config object:

class DevConfig(Config):

 MAIL_SERVER = 'localhost'
 MAIL_PORT = 25
 MAIL_USERNAME = 'username'
 MAIL_PASSWORD = 'password'

Finally, the mail object is initialized on the app object in _init_.py:

...
from flask_mail import Mail
...
mail = Mail()

def create_app(object_name):
...
 mail.init_app(app)
...

To see how Flask Mail can simplify our emailing code, consider the following—this code
snippet is the Remind task that we created in Chapter 9, Creating Asynchronous Tasks with
Celery, but uses Flask Mail instead of the standard library SMTP module:

from flask_mail import Message
from .. import celery, mail

@celery.task(
 bind=True,
 ignore_result=True,
 default_retry_delay=300,
 max_retries=5

WOW! eBook
www.wowebook.org

Useful Flask Extensions Chapter 10

[230]

)
def remind(self, pk):
 logs.info("Remind worker %d" % pk)
 reminder = Reminder.query.get(pk)
 msg = Message(body="Text %s" % str(reminder.text),
 recipients=[reminder.email], subject="Your reminder")
 try:
 mail.send(msg)
 logs.info("Email sent to %s" % reminder.email)
 return
 except Exception as e:
 logs.error(e)
 self.retry(exc=e)

Summary
The tasks in this chapter have allowed us to grow the functionality of our app significantly.
We now have a fully featured administrator interface, a useful debugging tool in the
browser, two tools that greatly speed up page load times, and a utility to make sending
emails less of a headache.

As was stated at the start of this chapter, Flask is bare-bones, and allows you to pick and
choose the functionality that you want. Therefore, it is important to keep in mind that it is
not necessary to include all of these extensions in your app. If you are the only content
creator working on your app, the CLI might be all you need, because adding in these
features takes up development time (and maintenance time, when they inevitably break).
This warning is given at the end of the chapter, because one of the main reasons many Flask
apps become unwieldy is because they include so many extensions, that testing and
maintaining all of them becomes a very large task.

In the next chapter, you will learn the internals of how an extension works, and how to
create your own extension.

WOW! eBook
www.wowebook.org

11
Building Your Own Extension

From the first chapter of this book, we have been adding Flask extensions to our app in
order to add new features and to save us from spending lots of time reinventing the wheel.
Up to this point, it has been unknown how these Flask extensions worked.

In this chapter, we'll learn about the following topics:

How to create two simple Flask extensions in order to better understand Flask
internals and allow you to extend Flask with your own functionality
How to extend Jinja
How to create a Python package, ready to be published to PyPI

Creating a YouTube Flask extension
To begin, the first extension we are going to create is a simple extension that allows the
embedding of YouTube videos in Jinja templates using the following tag:

{{ youtube(video_id) }}

The video_id object is the code after v in any YouTube URL. For example, in the URL
https://www.youtube.com/watch?v=_OBlgSz8sSM, the video_id object
is _OBlgSz8sSM.

For now, the code for this extension resides in __init__.py. However, this is only for
development and debugging purposes. When the code is ready to be shared, it is moved
into its own project directory.

WOW! eBook
www.wowebook.org

Building Your Own Extension Chapter 11

[232]

The first thing that any Flask extension needs is the object that will be initialized on the app.
This object will handle adding its Blueprint object to the app and registering the youtube
function on Jinja:

from flask import Blueprint

class Youtube(object):
 def __init__(self, app=None, **kwargs):
 if app:
 self.init_app(app)

 def init_app(self, app):
 self.register_blueprint(app)
 app.add_template_global(youtube)

 def register_blueprint(self, app):
 module = Blueprint(
 "youtube",
 __name__,
 url_prefix='youtube',
 template_folder="templates"
)
 app.register_blueprint(module)
 return module

So far, the only thing this code does is initialize an empty blueprint on the app object.

Notice the code marked with bold. In the YouTube class, we have to register the function to
Jinja in the init_app method. We can now use the youtube Jinja function on our
templates.

The next piece of code needed is a representation of a video. The following is a class that
handles the parameters from the Jinja function and renders HTML to display in the
template:

from flask import render_template, Blueprint, Markup

class Video(object):
 def __init__(self, video_id, cls="youtube"):
 self.video_id = video_id
 self.cls = cls

 @property
 def html(self):
 return Markup(render_template('youtube/video.html', video=self))

WOW! eBook
www.wowebook.org

Building Your Own Extension Chapter 11

[233]

This object is created from the youtube function in the template, and any arguments
passed in the template are given to this object to render the HTML. There is also a new
object in this code, Markup, which was not used before. The Markup class is Flask's way of
automatically escaping HTML, or marking it as safe to include in the template. If we just
returned HTML, Jinja would auto escape it because it does not know whether it is safe or
not. This is Flask's way of protecting your site from cross-site scripting attacks.

The next step is to create the function that will be registered in Jinja:

def youtube(*args, **kwargs):
 video = Video(*args, **kwargs)
 return video.html

Finally, we have to create the HTML that will add the video to the page. In a new folder
named youtube in the templates directory, create a new HTML file named video.html
and add the following code to it:

<iframe
 class="{{ video.cls }}"
 width="560"
 height="315"
 src="https://www.youtube.com/embed/{{ video.video_id }}"
 frameborder="0"
 allowfullscreen>
</iframe>

This is all the code that's needed to embed YouTube videos in your templates. Let's test this
out now. In __init__.py, initialize the Youtube class below the Youtube class definition:

youtube = Youtube()

In __init__.py, use the youtube_ext variable, which contains the initialized class, and
use the init_app method we created to register it on the app:

def create_app(object_name):
 ...
 youtube.init_app(app)

Now, as a simple example, add the youtube function to the top of the blog home page on
templates/blog/home.html:

{% extends "base.html" %}
{% import 'macros.html' as macros %}
{% block title %}Home{% endblock %}
{% block leftbody %}

{{ youtube("_OBlgSz8sSM") }}

WOW! eBook
www.wowebook.org

Building Your Own Extension Chapter 11

[234]

{{ macros.render_posts(posts) }}
{{ macros.render_pagination(posts, 'blog.home') }}
{% endblock %}

This will have the following result:

Creating a Python package
In order to make our new Flask extension available to others, we have to create an
installable Python package from the code we have written so far. To begin, we need a new
project directory outside of our current application directory. We will need two things: a
setup.py file, which we will fill in later, and a folder named flask_youtube. In the
flask_youtube directory, we will have an __init__.py file, which contains all the code
that we wrote for our extension. This includes the Youtube and the Video Python classes.

Also, inside the flask_youtube directory, we will need a templates directory, which
holds the youtube directory that we put in our app's templates directory.

WOW! eBook
www.wowebook.org

Building Your Own Extension Chapter 11

[235]

In order to turn this code into a Python package, we use the library named setuptools.
Now, setuptools is a Python package that allows developers to easily create installable
packages for their code. setuptools bundles code so that pip and easy_install can
automatically install them, and will even upload your package to the Python Package
Index (PyPI).

All the packages that we have been installed from pip have come from
PyPI. To see all the available packages, go to
https://pypi.python.org/pypi.

All you need to do to get this functionality is fill out the setup.py file:

from setuptools import setup, find_packages

setup(
 name='Flask-YouTube',
 version='0.4',
 license='MIT',
 description='Flask extension to allow easy
 embedding of YouTube videos',
 author='Jack Stouffer',
 author_email='example@gmail.com',
 platforms='any',
 install_requires=['Flask'],
 packages=find_packages(),
 include_package_data=True,
 package_data = {
 'templates': ['*']
 },
 zip_safe=False,
 classifiers=[
 'Development Status :: 5 - Production/Stable',
 'Environment :: Web Environment',
 'Intended Audience :: Developers',
 'License :: OSI Approved :: BSD License',
 'Operating System :: OS Independent',
 'Programming Language :: Python',
 'Topic :: Software Development :: Libraries :: Python Modules'
]
)

This code uses the setup function from setuptools to find your source code and make
sure that the machine that is installing your code has the required packages. Most of the
attributes are rather self-explanatory, except the package attribute, which uses the
find_packages function from setuptools.

WOW! eBook
www.wowebook.org

https://pypi.python.org/pypi

Building Your Own Extension Chapter 11

[236]

The package attribute finds which parts of the source code are part of the package to be
released. We use the find_packages method to automatically find which parts of the code
to include. This is based on some sane defaults, such as looking for directories with
__init__.py files and excluding common file extensions.

We must also declare a manifest file that the setuptools will use to know how to create
our package. This includes rules for cleaning up files, and what folders that are not Python
modules to include:

MANIFEST.in

prune *.pyc
recursive-include flask_youtube/templates *

Although it is not mandatory, this setup also contains metadata about the author and the
license, which would be included on the PyPI page if we were to upload this there. There is
a lot more customization available in the setup function, so I encourage you to read the
documentation at http://pythonhosted.org/setuptools/.

You can now install this package on your machine by running the following commands:

$ python setup.py build
$ python setup.py install

This installs your code into your Python packages directory, or if you're using
virtualenv, it installs it to the local packages directory. Then, you can import your place
on package via the following code:

from flask_youtube import Youtube

Creating blog posts with videos
We are now going to extend our blog so that users can include videos on their posts. This is
a nice feature and is useful for showing how to create a new feature that includes database
schema change and migration, as well as giving a review on Jinja2 and WTForms.

First, we need to add a new column named youtube_id (on the following highlighted
code) to our Post SQLAlchemy model on the blog/models.py file:

...
class Post(db.Model):
 id = db.Column(db.Integer(), primary_key=True)
 title = db.Column(db.String(255), nullable=False)
 text = db.Column(db.Text(), nullable=False)

WOW! eBook
www.wowebook.org

http://pythonhosted.org/setuptools/

Building Your Own Extension Chapter 11

[237]

 publish_date = db.Column(db.DateTime(),
 default=datetime.datetime.now)
 user_id = db.Column(db.Integer(), db.ForeignKey('user.id'))
 youtube_id = db.Column(db.String(20))
 comments = db.relationship('Comment', backref='post',
 lazy='dynamic')
 tags = db.relationship('Tag', secondary=tags,
 backref=db.backref('posts', lazy='dynamic'))
...

Now we are able to store our user's YouTube ID to go along with their posts. Next we need
to include our new field on the Post form. So, in the blog/forms.py file, we add the
following:

class PostForm(Form):
 title = StringField('Title', [DataRequired(),Length(max=255)])
 youtube_id = StringField('Youtube video id', [Length(max=255)])
 text = TextAreaField('Content', [DataRequired()])

Now we need to change the edit and new_post controllers:

blog/controllers.py:

...
def new_post():
 form = PostForm()
 if form.validate_on_submit():
 new_post = Post()
 ...
 new_post.youtube_id = form.youtube_id.data
 ...
 db.session.add(new_post)
...

We are setting the Post.youtube_id SQLAlchemy model attribute to the
form youtube_id field, and for the edit method, we have the same thing when the forms
have been submitted (POST HTTP method), and it's the other way around when the form is
shown:

blog/controllers.py:

...
def edit_post(id):
 post = Post.query.get_or_404(id)
 # We want admins to be able to edit any post
 if current_user.id == post.user.id:
 form = PostForm()

WOW! eBook
www.wowebook.org

Building Your Own Extension Chapter 11

[238]

 if form.validate_on_submit():
 ...
 post.youtube_id = form.youtube_id.data
 ...
 db.session.add(post)
 db.session.commit()
 return redirect(url_for('.post', post_id=post.id))
 form.title.data = post.title
 form.youtube_id.data = post.youtube_id
 form.text.data = post.text
 return render_template('edit.html', form=form, post=post)
 abort(403)
...

Finally, we just have to include this new field on our Jinja2 templates. On our
templates/blog/post.html, we render this field if it exists on the database:

{% if post.youtube_id %}
<div class="row">
 <div class="col">
 {{ youtube(post.youtube_id) | safe }}
 </div>
</div>
{% endif %}

To finish, we change our new post and edit the post templates. Just look for the change in
the provided code.

Modifying the response with Flask
extensions
So, we have created an extension that adds new functionality to our templates. But how
would we create an extension that modifies the behavior of our app at the request level? To
demonstrate this, let's create an extension that modifies all the responses from Flask by
compressing the contents of the response. This is a common practice in web development in
order to speed up page load times, as compressing objects with a method such as gzip is
very fast and relatively cheap, CPU-wise. Normally, this would be handled at the server
level. So, unless you wish to host your app with only Python code, which is possible and
will be covered in Chapter 13, Deploying Flask Apps, this extension really doesn't have
much use in the real world.

WOW! eBook
www.wowebook.org

Building Your Own Extension Chapter 11

[239]

To achieve this, we will use the gzip module in the Python standard library to compress
the contents after each request is processed. We will also have to add special HTTP headers
into the response in order for the browser to know that the content is compressed. We will
also need to check in the HTTP request headers whether the browser can accept gzipped
content.

Just as before, our content will initially reside in the __init__.py file:

from flask import request
from gzip import GzipFile
from io import BytesIO
...
class GZip(object):
 def __init__(self, app=None):
 self.app = app
 if app is not None:
 self.init_app(app)
 def init_app(self, app):
 app.after_request(self.after_request)
 def after_request(self, response):
 encoding = request.headers.get('Accept-Encoding', '')
 if 'gzip' not in encoding or
 not response.status_code in (200, 201):
 return response
 response.direct_passthrough = False
 contents = BytesIO()
 with GzipFile(
 mode='wb',
 compresslevel=5,
 fileobj=contents) as gzip_file:
 gzip_file.write(response.get_data())
 response.set_data(bytes(contents.getvalue()))
 response.headers['Content-Encoding'] = 'gzip'
 response.headers['Content-Length'] = response.content_length
 return response
flask_gzip = GZip()

Just as with the previous extension, our initializer for the compressed object accommodates
both the normal Flask setup and the application factory setup. In the after_request
method, instead of registering a blueprint, we register a new function on the after-
request event so that our extension can compress the results.

WOW! eBook
www.wowebook.org

Building Your Own Extension Chapter 11

[240]

The after_request method is where the real logic of the extension comes into play. First,
it checks whether the browser accepts gzip encoding by looking at the Accept-Encoding
value in the request header. If the browser does not accept gzip, or the browser did not
return a successful response, the function just returns the content and makes no
modifications to the content. However, if the browser does except our content and the
response was successful, then the content will be compressed. We use another standard
library class named BytesIO, which allows file streams to be written and stored in
memory, rather than being stored in an intermediate file. This is necessary because the
GzipFile object expects to write to a file object.

After the data is compressed, we set the response object data to the results of the
compression and set the necessary HTTP header values in the response as well. Finally, the
gzip content is returned to the browser, and the browser then decompresses the content,
significantly speeding up the page load times.

In order to test the functionality in your browser, you have to disable Flask Debug Toolbar
because, at the time of writing, there is a bug in its code where it expects all responses to be
encoded in UTF-8.

If you reload the page, nothing should look different. However, if you use the developer
tools in the browser of your choice and inspect the responses, you will see that they are
compressed.

Summary
Now that we have looked at two different examples of different types of Flask extensions,
you should have a very clear understanding of how most of the Flask extensions that we
used work. Using the knowledge that you have now, you should be able to add any extra
functionality to Flask that you need for your specific application.

In the next chapter, we are going to look at how to add testing to our application to take out
the guesswork of whether the changes we made to the code have broken any of the
functionality of our application.

WOW! eBook
www.wowebook.org

12
Testing Flask Apps

Throughout the book, every time that we've made a modification to our application's code,
we've had to manually load the affected web pages into our browser to test if the code was
working correctly. As the application grows, this process becomes more and more tedious,
especially if you change something that is low-level and used everywhere, such as
SQLAlchemy model code.

In order to automate the process of verifying that our code works the way we want it to, we
will use a built-in feature of Python that allows us to write tests, normally named unit tests
or integration tests, which are checked against our application's code.

In this chapter, you will learn how to do the following:

Writing simple tests with Python's unitest library
Testing security, and validating logins and role based access
Writing a test for a REST API
Testing your user interface
Measuring test coverage

What are unit tests?
Testing a program is very simple. All it involves is developing code that will run particular
pieces of your program and specifying what you expect the results to be, and then
comparing it to what the results from the piece of the program actually are. If the results are
the same, the test passes. If the results are different, the test fails. Typically, these tests are
run upon Pull Request creation on your CI server, so all the reviewers of the PR can
immediately check if the requested change breaks something or not.

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[242]

In program testing, there are three main types of tests. Unit tests are tests that verify the
correctness of individual pieces of code, such as functions. Second is integration testing,
which tests the correctness of various units of programs working in tandem. The last type
of testing is end-to-end testing, which tests the correctness of the whole system at once,
rather than individual pieces. Many other types of testing exist, some of which include load
tests, security tests, and recovery tests.

In this chapter, we will be using unit testing and end-to-end testing in order to verify that
our code is working as planned.

This brings us to some of the first rules of code testing: make sure your tests can actually
fail, write simple test functions that test only one thing, and make your test code easy to
read and write.

How does testing work?
Let's start with a very simple Python function for us to test:

def square(x):
 return x * x

In order to verify the correctness of this code, we pass a value, and will test if the result of
the function is what we expect. For example, we could give it an input of 5, and would
expect the result to be 25.

To illustrate the concept, we can manually test this function in the command line using the
assert statement. The assert statement in Python simply says that if the conditional
statement after the assert keyword returns False, then it will throw an exception as
follows:

 $ python
 >>> def square(x):
 ... return x * x
 >>> assert square(5) == 25
 >>> assert square(7) == 49
 >>> assert square(10) == 100
 >>> assert square(10) == 0
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 AssertionError

Using these assert statements, we verified that the square function was working as
intended.

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[243]

Unit testing the application
Unit testing in Python works by combining assert statements into their own functions
inside a class. This collection of testing functions inside the class is called a test case. Each
function inside the test case should test only one thing, which is the main idea behind unit
testing. Testing only one thing in your unit tests forces you to verify each piece of code
individually, and not gloss over any of the functionality of your code. If you write your unit
tests correctly, you will end up with lots and lots of them. While this may seem overly
verbose, it will save you from headaches further down the road.

In this configuration, we will use SQLLite in the memory engine database, which allows us
to guarantee that the tests will not interfere with our actual database. Also, the
configuration disables WTForms' CSRF checks, to allow us to submit forms from the tests
without the CSRF token:

class TestConfig(Config):

 DEBUG = True
 DEBUG_TB_ENABLED = False
 SQLALCHEMY_DATABASE_URI = 'sqlite:///:memory:'
 SQLALCHEMY_TRACK_MODIFICATIONS = False
 CACHE_TYPE = 'null'
 WTF_CSRF_ENABLED = False

 CELERY_BROKER_URL = "amqp://guest:guest@localhost:5672//"
 CELERY_BACKEND_URL = "amqp://guest:guest@localhost:5672//"

 MAIL_SERVER = 'localhost'
 MAIL_PORT = 25
 MAIL_USERNAME = 'username'
 MAIL_PASSWORD = 'password'

Testing the route functions
Let's build our first test case. In this test case, we will be testing if the route functions
successfully return a response when we access its URL. In a new directory named tests, at
the root of the project directory, create a new file named test_urls.py, which will hold
all of the unit tests for the routes. Each test case should have its own file, and each test case
should focus on one area of the code that you are testing.

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[244]

In test_urls.py, let's start creating what the built-in Python unittest library needs. The
code will use the unittest library from Python in order to run all the tests that we create
in the test case:

import unittest

class TestURLs(unittest.TestCase):
 pass

if __name__ == '__main__':
 unittest.main()

Let's see what happens when this code is run. We will use the unittest library's ability to
automatically find our test cases to run the tests. The pattern that the unittest library
looks for is test*.py:

$ python -m unittest discover

Ran 0 tests in 0.000s
OK

Because there are no tests in the test case, the test case passed successfully.

The test script was run from the parent directory of the script, and not in
the test folder itself. This is to allow imports of the application code inside
the test scripts.

In order to test the URLs, we need to have a way to query the application's routes without
actually running a server, so our requests are returned. Flask provides a way of accessing
routes in tests, called the test client. The test client gives methods to create HTTP requests on
our routes, without having to actually run the application with app.run().

We will need the test client object for each of the tests in this test case, but adding in code to
each unittest to create the test client doesn't make much sense when we have the setUp
method. The setUp method is run before each unit test, and can attach variables to itself in
order for the test method to access them. In our setUp method, we need to create the
application object with our TestConfig object and create the test client.

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[245]

Also, there are three bugs that we need to work around. The first two are in the Flask
Admin and Flask Restful extensions, which do not remove the Blueprint objects stored
internally when the application object they are applied to is destroyed. Third, Flask
SQLAlchemy's initializer doesn't correctly add the application object while outside the
webapp directory:

class TestURLs(unittest.TestCase):

 def setUp(self):
 admin._views = []
 rest_api.resources = []

 app = create_app('config.TestConfig')
 self.client = app.test_client()
 db.app = app
 db.create_all()

All of the bugs listed here existed at the time of writing, but may no
longer exist when you read this chapter.

Along with the setUp method, there is also the tearDown method, which is run every time
a unit test ends. The tearDown method's goal is to destroy any objects, created in the setUp
method, that cannot automatically be deleted or closed. In our case, we will use the
tearDown method to close and remove our database sessions, as follows:

class TestURLs(unittest.TestCase):
 def setUp(self):
 ...

 def tearDown(self):
 db.session.remove()

Now we can create our first unit test. The first test will test whether accessing the root of
our application returns a 302 redirect code to the blog home page, as follows:

class TestURLs(unittest.TestCase):
 def setUp(self):
 ...

 def tearDown(self):
 ...

 def test_root_redirect(self):
 """ Tests if the root URL gives a 302 """

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[246]

 result = self.client.get('/')
 assert result.status_code == 302
 assert "/blog/" in result.headers['Location']

Each unit test must start with the word test to tell the unittest library that the function
is a unit test, and not just some utility function inside the test case class.

Now, if we run the tests again, we can see its progress and how it passes the checks:

 $ python -m unittest discover
 .

 Ran 1 tests in 0.128s
 OK

The best way to write tests is to ask yourself what you are looking for ahead of time, write
the assert statements, and write the code needed to execute those asserts. This forces you
to ask what you are really testing, before you actually start writing the test. It's also the
practice to write a Python doc string for each unit test, as it will be printed with the name of
the test whenever the test fails. After you write 50 or more tests, this can be very helpful to
know exactly what the test is for.

Rather than using the built-in assert keyword from Python, we can use some of the
methods provided by the unittest library. These methods provide specialized error
messages and debug information when the assert statements inside these functions fail.

The following is a list of all of the special assert statements given by the unittest library
and what they do:

assertEqual(x, y): Asserts that x == y
assertNotEqual(x, y): Asserts that x != y
assertTrue(x): Asserts that x is True
assertFalse(x): Asserts that x is False
assertIs(x, y): Asserts that x is y
assertIsNot(x, y): Asserts that x is not y
assertIsNone(x): Asserts that x is None
assertIsNotNone(x): Asserts that x is not None
assertIn(x, y): Asserts that y contains x
assertNotIn(x, y): Asserts that x is not in y
assertIsInstance(x, y): Asserts that isinstance(x, y)
assertNotIsInstance(x, y): Asserts not isinstance(x, y)

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[247]

If we wanted to test the return value of a normal page, the unit test would look like this:

class TestURLs(unittest.TestCase):
 def setUp(self):
 ...

 def tearDown(self):
 ...

 def test_root_redirect(self):
 ...

 def test_blog_home(self):
 """ Tests if the blog home page returns successfully """
 result = self.client.get('/blog/')
 self.assertEqual(result.status_code, 200)

Remember that the preceding code only tests if the URLs give returns successfully. The
content of the return data is not a part of these tests.

Testing security
Testing security is obviously very important—if you expose your application to the web,
you can be sure that your security will be heavily tested, and not for the right reasons. All
of your secured endpoints will be tested and exploited if not correctly secured. First of all,
we should test our login and logout processes.

If we wanted to test submitting a form, such as the login form, we can use the post method
of the test client. Let's create a test_login method to see if the login form works correctly:

class TestURLs(unittest.TestCase):
....

 def _insert_user(self, username, password, role_name):
 test_role = Role(role_name)
 db.session.add(test_role)
 db.session.commit()

 test_user = User(username)
 test_user.set_password(password)
 db.session.add(test_user)
 db.session.commit()

 def test_login(self):
 """ Tests if the login form works correctly """

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[248]

 result = self.client.post('/auth/login', data=dict(
 username='test',
 password="test"
), follow_redirects=True)

 self.assertEqual(result.status_code, 200)
 self.assertIn('You have been logged in', result.data)
...

The additional check for the string in the return data exists because the return code is not
affected by the validity of the entered data. The post method will work for testing any of
the form objects we have created throughout the book.

Now, let's create a failed login attempt:

def test_failed_login(self):
 self._insert_user('test', 'test', 'default')
 result = self.client.post('/auth/login', data=dict(
 username='test',
 password="badpassword"
), follow_redirects=True)

 self.assertEqual(result.status_code, 200)
 self.assertIn('Invalid username or password', result.data)
 result = self.client.get('/blog/new')
 self.assertEqual(result.status_code, 302)

In the preceding snippet, we make sure that a login attempt with failed credentials does not
give the user a successful login, and in the same test, we also make sure that a failed login
will not give the user sufficient access to add a new blog post. This may seem trivial, and it
is easy to implement, but as previously stated, you should make each test simple, and only
test one thing with each test, but aim to cover all your features and possibilities.

Another example of an important test covers unauthorized access from a logged-in user:

def test_unauthorized_access_to_admin(self):
 self._insert_user('test', 'test', 'default')
 result = self.client.post('/auth/login', data=dict(
 username='test',
 password="test"
), follow_redirects=True)
 result = self.client.get('/admin/customview/')
 self.assertEqual(result.status_code, 403)

Here, we make sure that a low-privileged user does not have access to an high privilege
area of our application: the admin interface.

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[249]

Testing the REST API
Still in the context of security, we will now learn how to test our REST API. Remember that
we have implemented JWT security, so for each request, we need to use a previously
acquired access token.

JWT authentication tests should look like this:

def test_api_jwt_login(self):
 self._insert_user('test', 'test', 'default')
 headers = {'content-type': 'application/json'}
 result = self.client.post('/auth/api', headers=headers,
data='{"username":"test","password":"test"}')
 self.assertEqual(result.status_code, 200)

def test_api_jwt_failed_login(self):
 self._insert_user('test', 'test', 'default')
 headers = {'content-type': 'application/json'}
 result = self.client.post('/auth/api', headers=headers,
data='{"username":"test","password":"test123"}')
 self.assertEqual(result.status_code, 401)

Some important details to note here include the way we set our HTTP header to JSON, and
how we pass the JSON payload on the HTTP POST method—this will happen on all our
REST API tests.

Next, let's see how to develop a test for the new post REST API. /api/post is the endpoint
for blog posts, and the POST HTTP method is the method for adding a new post to the Blog
application. Revisit Chapter 8, Building RESTful APIs if this is not clear.

def test_api_new_post(self):
 self._insert_user('test', 'test', 'default')
 headers = {'content-type': 'application/json'}
 result = self.client.post('/auth/api', headers=headers,
data='{"username":"test","password":"test"}')
 access_token = json.loads(result.data)['access_token']
 headers['Authorization'] = "Bearer %s" % access_token
 result = self.client.post('api/post', headers=headers,
data='{"title":"Text Title","text":"Changed"}')
 self.assertEqual(result.status_code, 201)

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[250]

Once again, this is a simple test to develop—notice the way that we request an access token
from our authentication JWT API using the /auth/api endpoint, and how we use it to
make the call to /api/post. has expected the access token is used to construct the HTTP
authorization header using the form Authorization: Bearer <ACCESS_TOKEN>. This
can be a bit cumbersome to repeat on each API test, so make sure to write a helper function
to keep your code "DRY"—that is, "Don't Repeat Yourself".

Now that you understand the mechanics of unit testing, you can use unit testing in order to
test all the parts of your application. This can include testing all the routes in the
application; testing any utility function that we have made, such as sidebar_data; and
testing all possible combinations of roles and access protected pages.

If your application's code has a feature, no matter how small, you should have a test for it.
Why? Because whatever can go wrong, will go wrong. If the validity of your application's
code relies entirely on manual testing, then something is going to get overlooked as your
app grows. When something gets overlooked, then broken code is deployed to live servers,
which annoys your users.

User interface testing
In order to test the high level of our application's code and to create system tests, we will
write tests that work with browsers, and verify that the UI code is functioning properly.
Using a tool called Selenium, we will create Python code that hooks into a browser and
controls it purely from code. This works by finding elements on the screen, and then
performing actions on those elements through Selenium. Click on it or input keystrokes.
Also, Selenium allows you to perform checks on the page content by giving you access to
the elements' content, such as their attributes and inner text. For more advanced checks,
Selenium even has an interface which can run arbitrary JavaScript on the page. If the
JavaScript returns a value, it is automatically converted into a Python type.

Before we touch the code, Selenium needs to be installed. Make sure you have your
virtualenv activated, and that Selenium is included in the requirements.txt file:

...
selenium
...

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[251]

To begin with the code, our UI tests need a file of their own in the tests directory, named
test_ui.py. Because system tests do not test one specific thing, the best way to write user
interface tests is to think of the test as going through a typical user's flow. Before you write
the test itself, write down the specific steps that our fake user is going to simulate:

import unittest

class TestURLs(unittest.TestCase):
 def setUp(self):
 pass

 def tearDown(self):
 pass

 def test_add_new_post(self):
 """ Tests if the new post page saves a Post object to the
 database

 1. Log the user in
 2. Go to the new_post page
 3. Fill out the fields and submit the form
 4. Go to the blog home page and verify that the post
 is on the page
 """
 pass

Now that we know exactly what our test is going to do, let's start adding in the Selenium
code. In the setUp and tearDown methods, we need code to start up a web browser that
will Selenium control, and then close it when the test is over:

import unittest
from selenium import webdriver

class TestURLs(unittest.TestCase):
 def setUp(self):
 self.driver = webdriver.Chrome()

 def tearDown(self):
 self.driver.close()

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[252]

This code spawns a new Firefox window with Selenium controlling it. For this to work, of
course, you need Firefox installed on your computer. Selenium does have support for other
browsers, but using others requires an extra program in order for it to work correctly.
Firefox thus has the best support out of all the browsers.

Before we write the code for the test, let's explore the Selenium API as follows:

 $ python
 >>> from selenium import webdriver
 >>> driver = webdriver.Chrome()
 # load the Google homepage
 >>> driver.get("http://www.google.com")
 # find a element by its class
 >>> search_field = driver.find_element_by_class_name("gsfi")
 # find a element by its name
 >>> search_field = driver.find_element_by_name("q")
 # find an element by its id
 >>> search_field = driver.find_element_by_id("lst-ib")
 # find an element with JavaScript
 >>> search_field = driver.execute_script(
 "return document.querySelector('#lst-ib')"
)
 # search for flask
 >>> search_field.send_keys("flask")
 >>> search_button = driver.find_element_by_name("btnK")
 >>> search_button.click()

These are the main functions from Selenium that we will be using, but there are many other
ways to find and interact with elements on the web page.

For the full list of available features, refer to the Selenium-Python
documentation at http://selenium-python.readthedocs.org.

WOW! eBook
www.wowebook.org

http://selenium-python.readthedocs.org

Testing Flask Apps Chapter 12

[253]

There are two gotchas in Selenium that need to be kept in mind while writing your tests, or
you will run into very odd bugs that are almost impossible to debug from their error
messages:

Selenium is designed to work as if there is an actual person controlling the
browser. This means that, if an element cannot be seen on the page, Selenium
cannot interact with it. For example, if an element covers another element that
you wish to click on—say, a modal window is in front of a button—then the
button cannot be pushed. If the element's CSS has its display set to none, or its
visibility set to hidden, the results will be the same.
All of the variables that point toward elements on the screen are stored as
pointers to those elements in the browser, meaning they are not stored in
Python's memory. If the page changes without using the get method, such as
when a link is clicked and a new element pointer is created, then the test will
crash. This happens because the driver will continuously be looking for the
elements on the previous page, and not finding them on the new one. The get
method of the driver clears out all those references.

In the preceding tests, we used the test client in order to simulate a request to the
application object. However, because we are now using something that needs to directly
interface with the application through a web browser, we need an actual server to be
running. This server needs to be run in a separate Terminal window before the user
interface tests are run, so that the latter have something to request. To do this, we need a
separate Python file in order to run the server with our test configuration, as well as
needing to set up some models for our UI tests to use. At the root of the project directory, in
a new file named run_test_server.py, add the following:

from webapp import create_app
from webapp.models import db, User, Role

app = create_app('config.TestConfig')

db.app = app
db.create_all()

default = Role("default")
poster = Role("poster")
db.session.add(default)
db.session.add(poster)
db.session.commit()

test_user = User("test")
test_user.set_password("test")
test_user.roles.append(poster)

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[254]

db.session.add(test_user)
db.session.commit()

app.run()

Now that we have both the test server script and some knowledge of Selenium's API, we
can finally write the code for our test:

import time
import unittest
from selenium import webdriver

class TestURLs(unittest.TestCase):
 def setUp(self):
 self.driver = webdriver.Chrome()

 def tearDown(self):
 self.driver.close()

 def test_add_new_post(self):
 """ Tests if the new post page saves a Post object to the
 database

 1. Log the user in
 2. Go to the new_post page
 3. Fill out the fields and submit the form
 4. Go to the blog home page and verify that the post is
 on the page
 """
 # login
 self.driver.get("http://localhost:5000/auth/login")

 username_field = self.driver.find_element_by_name("username")
 username_field.send_keys("test")

 password_field = self.driver.find_element_by_name("password")
 password_field.send_keys("test")

 login_button = self.driver.find_element_by_id("login_button")
 login_button.click()

 # fill out the form
 self.driver.get("http://localhost:5000/blog/new")

 title_field = self.driver.find_element_by_name("title")
 title_field.send_keys("Test Title")

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[255]

 #Locate the CKEditor iframe
 time.sleep(3)
 basic_page_body_xpath = "//div[contains(@id,
'cke_1_contents')]/iframe"
 ckeditor_frame =
self.driver.find_element_by_xpath(basic_page_body_xpath)

 #Switch to iframe
 self.driver.switch_to.frame(ckeditor_frame)
 editor_body = self.driver.find_element_by_xpath("//body")
 editor_body.send_keys("Test content")
 self.driver.switch_to.default_content()

 post_button = self.driver.find_element_by_class_name("btn-primary")
 post_button.click()

 # verify the post was created
 self.driver.get("http://localhost:5000/blog")
 self.assertIn("Test Title", self.driver.page_source)
 self.assertIn("Test content", self.driver.page_source)

if __name__ == "__main__":
 unittest.main()

Most of this test uses the methods that we introduced earlier. However, there is a new
method in this test, named switch_to. The switch_to method is the context of the driver
that allows the selection of elements inside an iframe element. Normally, it's impossible
for the parent window to select any elements inside an iframe element using JavaScript,
but because we are directly interfacing with the browser itself, we can access an iframe
element's contents. We need to switch contacts like these, because the WYSIWYG editor
inside the post creation page uses iframe in order to create itself. After we are done with
selecting elements within the iframe, we need to switch back to the parent context using
the parent_frame method.

You now have the tools that you need to completely test both your server code and your
user interface code. For the rest of the chapter, we will focus on tools and methodologies, in
order to make your testing even more effective in ensuring your application's correctness.

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[256]

Test coverage
Now that our tests have been written, we have to know whether our code is sufficiently
tested. The concept of test coverage, also known as code coverage, was invented to solve
this issue. In any project, the test coverage represents what percentage of the code in the
project was executed when the tests were run, and which lines were never run. This gives
an idea of what parts of the project aren't being tested by our unit tests. To add coverage
reports to our project, install the coverage library with pip, and make sure it's included in
the requirements.txt:

 (venv)$ pip install coverage

The coverage library can be run as a command-line program that will run your test suite,
and take its measurements while the tests are running:

 $ coverage run --source webapp --branch -m unittest discover

The --source flag tells coverage to only report on the test coverage for the files in the
webapp directory. If that weren't included, the percentages for all the libraries used in the
app would be included as well. By default, if any code in an if statement is executed, the
entire if statement is said to have executed. The --branch flag tells coverage to disable
this, and measure everything.

After coverage runs our tests and takes its measurements, we can see a report of its
findings in two ways. The first is to see a printout of each file's coverage percentage on the
command line:

$ coverage report
...
You will get a full detailed report of your test coverage, breakdown by
python file name coverage, and with the line numbers missed by your test
...

TOTAL 729 312 118 10 56%

The second way to see the report is to use the HTML generating ability of coverage to see
a detailed breakdown of each file in the browser, using the following command:

 $ coverage html

The preceding command creates a directory named htmlcov. When the index.html file is
opened in the browser, each file name can be clicked on to reveal the breakdown of which
lines were run, and which were not, during the tests:

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[257]

In the preceding screenshot, the blog/controllers.py file was opened, and the coverage
report clearly shows that the post route was never executed. However, this also gives some
false negatives. As the user interface tests are not testing code that is being run by the
coverage program, it doesn't count toward our coverage report. In order to fix this, just to
make sure that you have tests in your test cases for each individual function that would
have been tested in the user interface tests.

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[258]

In most projects, the percentage to aim for is around 90% code coverage. It's very rare that a
project will have 100% of its code testable, and this possibility decreases as the size of the
project increases.

Test-driven development
Now that we have our tests written, how can they be integrated into the development
process? Currently, we are using our tests in order to ensure code correctness after we
create a feature. But, what if we flipped the order and used tests in order to create correct
code from the beginning? This is what test-driven development (TDD) advocates.

TDD follows a simple loop to write the code of a new feature in your application:

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[259]

In a project that uses TDD, the first thing that you write, before any of the code that controls
what you are actually building, is the tests. What this forces the programmers on the project
to do is to plan out the project's scope, design, and requirements before writing any code.
While designing APIs, it also forces the programmer to design the interface (or contract) of
the API from a consumer's perspective, rather than design the interface after all the
backend code has been written.

In TDD, tests are designed to fail the first time that you run them. There is a saying in TDD,
that if your tests don't fail the first time that you run them, you're not really testing
anything. What this means is that you are most likely testing to the tested unit's function,
rather than how it should function while writing tests after the fact.

After your tests fail the first time, you then continuously write code until all the tests pass.
This process is repeated for each new feature.

Once all of the original tests pass and the code is refactored, TDD tells you to stop writing
code. By only writing code until the tests pass, TDD also enforces the You Aren't Going To
Need It (YAGNI) philosophy, which states that programmers should only implement what
they actually need, rather than what they perceive they will need. A huge amount of
wasted effort is made during development when programmers try to preemptively add
functionality when no-one needed it.

TDD also promotes the idea of Keep It Simple, Stupid (KISS), which dictates that
simplicity should be a design goal from the beginning. TDD promotes KISS because it
requires small, testable units of code that can be separated from each other and don't rely
on a shared global state.

Also, in projects that follow TDD, there is an always-current documentation throughout the
tests. One of the axioms of programming is that with any sufficiently large program, the
documentation will always be out of date. This is because the documentation is one of the
last things on the mind of the programmer when they are changing the code. However,
with tests, there are clear examples of each piece of functionality in the project (if the project
has a large code coverage percentage). The tests are updated all the time, and therefore,
show good examples of how the functions and API of the program should work.

Now that you understand Flask's functionality and how to write tests for Flask, the next
project that you create in Flask can be made entirely with TDD.

WOW! eBook
www.wowebook.org

Testing Flask Apps Chapter 12

[260]

Summary
Now that you understand testing and what it can do for your application, you can create
applications that are guaranteed to be less bug-ridden. You will spend less time fixing bugs,
and more time adding features that are requested by your users.

As a final challenge to the reader, before moving onto the next chapter, try to get your code
coverage over 95%.

In the next chapter, we will finish the book by going over the ways by which you can
deploy your application into a production environment on a server.

WOW! eBook
www.wowebook.org

13
Deploying Flask Apps

Now that we have reached the last chapter of the book, and have a fully functioning web
app made in Flask, the final step in our development cycle is to make the app available for
the world. There are many different approaches for hosting your Flask app, each of them
with its own pros and cons. This chapter will cover the best solutions and guide you
through situations in which you should choose one over the other.

In this chapter, we will cover the following:

A brief introduction to the most commonly used web servers and gateway
interfaces
How to deploy on various cloud services
How to build Docker images
How to describe services using Docker compose
How to describe your infrastructure using AWS CloudFormation (IaC)
How to set up and work with a CI/CD system to easily build, test, review, and
deploy our application

Web servers and gateway interfaces
In this section, we will make a quick introduction to the most commonly used web servers
and Web Server Gateway Interfaces (WSGI), and their differences and configuration. A
WSGI is an application-agnostic layer between the web server and the python application
itself.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[262]

Gevent
The simplest option to get a web server up and running is to use a Python library, named
gevent, to host your application. Gevent is a Python library that adds an alternative way
of doing concurrent programming,called co-routines, outside of the Python threading
library. Gevent has an interface to run WSGI applications that is both simple and has good
performance. A simple gevent server can easily handle hundreds of concurrent users,
which is 99% more than the users of websites on the internet will ever have. The downside
to this option is that its simplicity means a lack of configuration options. There is no way,
for example, to add rate limiting to the server, or to add HTTPS traffic. This deployment
option is purely for sites that you don't expect to receive a huge amount of traffic.
Remember YAGNI: only upgrade to a different web server if you really need to.

Co-routines are a bit outside of the scope of this book, but a good
explanation can be found at https://en.wikipedia.org/wiki/Coroutine.

To install gevent, we will use pip with the following command:

 $ pip install gevent

In the root of the project directory, in a new file named gserver.py, add the following:

 from gevent.wsgi import WSGIServer
 from webapp import create_app
 app = create_app('webapp.config.ProdConfig')
 server = WSGIServer(('', 80), app)
 server.serve_forever()

To run the server with supervisor, just change the command value to the following:

 [program:webapp]
 command=python gserver.py
 directory=/home/deploy/webapp
 user=deploy

Now when you deploy, gevent will automatically be installed for you by running your
requirements.txt on every deployment; that is, if you are properly pip freezing after
every new dependency is added.

WOW! eBook
www.wowebook.org

https://en.wikipedia.org/wiki/Coroutine

Deploying Flask Apps Chapter 13

[263]

Tornado
Tornado is another very simple way to deploy WSGI apps purely with Python. Tornado is
a web server that is designed to handle thousands of simultaneous connections. If your
application needs real-time data, Tornado also supports WebSockets for continuous, long-
lived connections to the server.

Do not use Tornado in production on a Windows server. The Windows
version of Tornado is not only slower—it is also considered beta-stage
quality software.

To use Tornado with our application, we will use Tornado's WSGIContainer in order to
wrap the application object to make it Tornado-compatible. Then, Tornado will start to
listen on port 80 for requests until the process is terminated. In a new file, named
tserver.py, add the following:

 from tornado.wsgi import WSGIContainer
 from tornado.httpserver import HTTPServer
 from tornado.ioloop import IOLoop
 from webapp import create_app
 app = WSGIContainer(create_app("webapp.config.ProdConfig"))
 http_server = HTTPServer(app)
 http_server.listen(80)
 IOLoop.instance().start()

To run the Tornado with supervisor privileges, just change the command value to the
following:

 [program:webapp]
 command=python tserver.py
 directory=/home/deploy/webapp
 user=deploy

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[264]

Nginx and uWSGI
If you need better performance or more options for customization, the most popular way to
deploy a Python web application is to use a Nginx web server as a frontend for the WSGI-
based uWSGI server by using a reverse proxy. A reverse proxy is a program in networks that
retrieves contents for a client from a server, as if it returned from the proxy itself. This
process is shown in the following diagram:

Nginx and uWSGI are used like this, because this way, we get the power of the Nginx
frontend, while having the customization of uWSGI.

Nginx is a very powerful web server that became popular by providing the best
combination of speed and customization. Nginx is consistently faster than other web
severs, such as Apache's httpd, and has native support for WSGI applications. It achieves
this speed thanks to the developers taking several good architecture decisions, as well
as not going to try to cover a large amount of use cases, as Apache does. The latter point
here was a decision taken early on in development of Nginx. Having a smaller feature set
makes it much easier to maintain and optimize the code. From a programmer's perspective,
it is also much easier to configure Nginx, as there is no giant default configuration file
(httpd.conf) that can be overridden with .htaccess files in each of your project
directories.

uWSGI is a web server that supports several different types of server interfaces, including
WSGI. uWSGI handles the severing of the application content, as well as things such as the
load balancing of traffic across several different processes and threads.

To install uWSGI, we will use a pip command, as follows:

 $ pip install uwsgi

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[265]

In order to run our application, uWSGI needs a file with an accessible WSGI application. In
a file named wsgi.py in the top level of the project directory.

To test uWSGI, we can run it from the command-line interface (CLI) with the following
commands:

 $ uwsgi --socket 127.0.0.1:8080
 --wsgi-file wsgi.py
 --callable app
 --processes 4
 --threads 2

If you are running this on your server, you should be able to access port 8080 and see your
app (if you don't have a firewall, that is).

What this command does is load the app object from the wsgi.py file, and make it
accessible from localhost on port 8080. It also spawns four different processes with two
threads each, which are automatically load balanced by a master process. This amount of
processes is overkill for the vast majority of websites. To start off, use a single process with
two threads and scale up from there.

Instead of adding all of the configuration options on the CLI, we can create a text file to
hold our configuration, which gives us the same benefits for configuration that were listed
in the Gevent section, about supervisor. In the root of the project directory, create a file
named uwsgi.ini and add the following code:

 [uwsgi]
 socket = 127.0.0.1:8080
 wsgi-file = wsgi.py
 callable = app
 processes = 4
 threads = 2

uWSGI supports hundreds of configuration options, as well as several
official and unofficial plugins. To leverage the full power of uWSGI, you
can explore the documentation at http://uwsgi-docs.readthedocs.org/.

Let's now run the server from supervisor:

 [program:webapp]
 command=uwsgi uwsgi.ini
 directory=/home/deploy/webapp
 user=deploy

WOW! eBook
www.wowebook.org

http://uwsgi-docs.readthedocs.org/

Deploying Flask Apps Chapter 13

[266]

Because we are installing Nginx from the OS's package manager, the OS will handle the
running of Nginx for us.

At the time of writing, the Nginx version in the official Debian package
manager is several years old. To install the most recent version, follow the
instructions available at http://wiki.nginx.org/Install.

Next, we need to create an Nginx configuration file, and then, when we push the code, we
need to copy the configuration file to the /etc/nginx/sites-available/ directory. In
the root of the project directory, create a new file named nginx.conf, and add the
following:

server {
 listen 80;
 server_name your_domain_name;

 location / {
 include uwsgi_params;
 uwsgi_pass 127.0.0.1:8080;
 }
 location /static {
 alias /home/deploy/webapp/webapp/static;
 }
}

What this configuration file does is tells Nginx to listen for incoming requests on port 80,
and forwards all requests to the WSGI application that is listening on port 8080. Also, it
makes an exception for any requests for static files, and instead sends those requests
directly to the file system. Bypassing uWSGI for static files gives a great boost to
performance, as Nginx is really good at serving static files quickly.

Apache and uWSGI
Using Apache httpd with uWSGI mostly requires the same setup. First off, we need an
Apache configuration file, so let's create a new file, named apache.conf, in the root of our
project directory, and add the following code:

<VirtualHost *:80>
 <Location />
 ProxyPass / uwsgi://127.0.0.1:8080/
 </Location>
</VirtualHost>

WOW! eBook
www.wowebook.org

http://wiki.nginx.org/Install
http://wiki.nginx.org/Install

Deploying Flask Apps Chapter 13

[267]

This file simply tells Apache to pass all requests on port 80 to the uWSGI web server
listening on port 8080. However, this functionality requires an extra Apache plugin from
uWSGI, named mod-proxy-uwsgi.

Next, we will cover several solutions for deploying our application on Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS) utilities. You will learn how to create
several types of environments and make our example Blog application available to the
world.

Deploying on Heroku
Heroku is the first of the Platform as a Service (PaaS) providers that this chapter will
cover. PaaS is a service given to web developers that allows them to host their websites on a
platform that is controlled and maintained by someone else. At the cost of some freedom,
you gain assurances that your website will automatically scale with the number of users
your site has, with no extra work on your part. Using PaaS utilities may, however, tend to
be more expensive than running your own servers.

Heroku is a PaaS utility that aims to provide ease of use to web developers by hooking into
already existing tools, and not requiring any large changes in the app. Heroku works by
reading a file named Procfile, which contains commands that your Heroku dyno
(basically a virtual machine sitting on a server) will run. Before we begin, you will need a
Heroku account. If you wish to just experiment, there is a free account available.

In the root of the directory, in a new file named Procfile, we have the following:

web: uwsgi heroku-uwsgi.ini

This tells Heroku that we have a process named web, which will run the uWSGI command
and pass the uwsgi.ini file. Heroku also needs a file named runtime.txt, which will tell
Heroku what Python runtime you wish to use—at the time of writing, the latest Python
release is 3.7.0:

python-3.7.0

Next, make sure that uwsgi is present in the requirements.txt file.

Finally, we need to make some modifications to the uwsgi.ini file that we made earlier:

 [uwsgi]
 http-socket = :$(PORT)
 die-on-term = true
 wsgi-file = wsgi.py

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[268]

 callable = app
 processes = 4
 threads = 2

We set the port on which uWSGI listens to the environment variable port, because Heroku
does not directly expose the dyno to the internet. Instead, it has a very complicated load
balancer and reverse proxy system, so we need to have uWSGI listening on the port that
Heroku needs us to listen on. Also, we set die-on-term to true, so that uWSGI listens for a
signal termination event from the OS correctly.

To work with Heroku's command-line tools, we first need to install them, which can be
done from https://toolbelt.heroku.com.

Next, you need to log in to your account:

$ heroku login

We can test our setup to make sure that it will work on Heroku before we deploy it, by
using the foreman command:

$ foreman start web

The foreman command simulates the same production environment that Heroku uses to
run our app. To create the dyno, which will run the application on Heroku's servers, we
will use the create command. Then, we can push Heroku to the remote branch on our
Git repository to have Heroku servers automatically pull down our changes:

$ heroku create
$ git push heroku master

If everything went well, you should now have a working application on your new Heroku
dyno. You can open a new tab to your new web application with the following command:

$ heroku open

To see the app in action in a Heroku deployment, visit
https://mastering-flask.herokuapp.com/.

WOW! eBook
www.wowebook.org

https://toolbelt.heroku.com
https://mastering-flask.herokuapp.com/

Deploying Flask Apps Chapter 13

[269]

Using Heroku Postgres
Maintaining a database properly is a full-time job. Thankfully, we can use one of Heroku's
built-in features in order to automate this process for us. Heroku Postgres offers a database
that is maintained and hosted entirely by Heroku. Because we are using SQLAlchemy,
using Heroku Postgres is trivial. In your dyno's dashboard, there is a link to your Heroku
Postgres information. By clicking on it, you will be taken to a page similar to the following
screenshot:

By clicking on the URL field, you will be given an SQLAlchemy URL, which you can
copy directly to your production configuration object.

Using Celery on Heroku
We have our production web server and database set up, but we still need to set up Celery.
Using one of Heroku's many plugins, we can host a RabbitMQ instance in the cloud, while
running the Celery worker on the dyno. The first step is to tell Heroku to run your Celery
worker in Procfile:

web: uwsgi heroku-uwsgi.ini celery: celery worker -A celery_runner

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[270]

Next, to install the Heroku RabbitMQ plugin with the free plan (the lemur plan), use the
following command:

$ heroku addons:create cloudamqp:lemur

To get the full list of Heroku add-ons, go to
https://elements.heroku.com/addons.

At the same location on the dashboard where Heroku Postgres was listed, you will now
find CloudAMQP:

Clicking on CloudAMQP will also give you a screen with a URL, which you can copy and
paste into your production configuration:

WOW! eBook
www.wowebook.org

https://elements.heroku.com/addons

Deploying Flask Apps Chapter 13

[271]

Deploying on Amazon Web Services
Amazon Web Services (AWS) is a collection of services maintained by Amazon, and built
on top of the same infrastructure that runs Amazon.com. To deploy our Flask code, we will
be using Amazon Elastic Beanstalk in this section, while the database will be hosted on
Amazon's Relational Database Service (RDS), and our messaging queue for Celery will be
hosted on Amazon's Simple Queue Service (SQS).

Using Flask on Amazon Elastic Beanstalk
Elastic Beanstalk is a platform for web applications that offers many powerful features for
developers, so they don't have to worry about maintaining servers. For example, your
Elastic Beanstalk application will automatically scale by utilizing more and more servers as
the number of people using your app at once grows. For Python apps, Elastic Beanstalk
uses Apache, in combination with mod_wsgi, to connect to WSGI applications—if your
deployment is simple with mid-to-low load, there is no extra configuration needed.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[272]

Before we begin, you will need an Amazon.com account to log in to the console. Next, you
need to install awscli and configure it with your credentials—you must generate an AWS
access key and secret: go to the AWS console, choose IAM service, choose your user, then
choose the Security Credentials tab, and click on the Create access key. Next, we need to
install awsebcli to manage Elastic Beanstalk from the CLI:

$ pip install awsebcli --upgrade --user

Next, from the root directory of our project, we are going to configure the CLI and create a
new Elastic Beanstalk application:

$ eb init

Enter Application Name
(default is "Chapter-13"): myblog
Application myblog has been created.

It appears you are using Python. Is this correct?
(Y/n): Y

Select a platform version.
1) Python 3.6
2) Python 3.4
3) Python 3.4 (Preconfigured - Docker)
4) Python 2.7
5) Python
(default is 1): 1
Cannot setup CodeCommit because there is no Source Control setup,
continuing with initialization
Do you want to set up SSH for your instances?
(Y/n): Y

Select a keypair.
1) aws-sshkey
2) [Create new KeyPair]
(default is 1): 1

Elastic Beanstalk looks for a file named application.py in your project directory, and it
expects to find a WSGI application, named application, in that file:

import os
from webapp import create_app
from webapp.cli import register

env = os.environ.get('WEBAPP_ENV', 'dev')
application = create_app('config.%sConfig' % env.capitalize())
register(application)

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[273]

Next, we are going to create a development environment. Each Elastic Beanstalk
application can contain one or many environments. But as things currently stand, our
application will fail—we need to tell Elastic Beanstalk how to install Flask-YouTube on
Python's virtual environment and initialize the database. To do this, we need to extend the
default setup.

In the root directory, we need a directory named .ebextensions. This is where we create
a lot of extra configuration and setup scripts. In .ebextensions, we create two shell
scripts that will run in the post-deploy phase. So, in
the .ebextensions/10_post_deploy.config file, add the following code:

files:
"/opt/elasticbeanstalk/hooks/appdeploy/post/01_install_flask_youtube.sh":
 mode: "000755"
 owner: root
 group: root
 content: |
 #!/usr/bin/env bash

 cd /opt/python/current/app
 . /opt/python/current/env
 source /opt/python/run/venv/bin/activate
 sh install_flask_youtube.sh

 "/opt/elasticbeanstalk/hooks/appdeploy/post/02_migrate_database.sh":
 mode: "000755"
 owner: root
 group: root
 content: |
 #!/usr/bin/env bash
...

Using YAML notation here, we tell Elastic Beanstalk to create two shell scripts to install
Flask-YouTube and create or migrate the database. The location of these files is
special—/opt/elasticbeanstalk/hooks/appdeploy/post is where we can drop
scripts to be executed after deploying. These scripts are executed in alphabetic order. Also,
take note of the following locations:

/opt/python/current/app: This is the deploy location of the application.
/opt/python/current/env: This is a file containing defined environment
variables on Elastic Beanstalk.
/opt/python/run/venv: This is python's virtualenv, and is where Elastic
Beanstalk installed all our defined dependencies.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[274]

Now, for our environment creation, run the following commands:

$ eb create myblog-dev
$ # Setup this environment variable
$ eb setenv WEBAPP_ENV=Dev

Finally, after the environment has finished provisioning the infrastructure and deployment,
we can check out our application using the following command:

$ eb open

To deploy new versions of our application, we just have to run this command:

$ eb deploy

Note that our development environment uses SQLite, so the database is on a file on the web
server itself. On each deployment or instance recreation, this database is recreated.

Using Amazon RDS
Amazon RDS is a database-hosting platform in the cloud that automatically manages
several things, such as recovery on node failure, scheduled backups, and master/slave
setups.

To use RDS, go to the Services tab on the AWS console and click on Relational Database
Service.

Now, create and configure a new database—make sure that on the Publicly
accessible option, you choose No. Choose the same VPC as the instances, and register your
admin credentials carefully. Now, wait a few minutes for the instance creation. After that,
choose your instance, go to the details configuration, and find the field for the endpoint—it
should look something like myblog.c7pdwgffmbqdm.eu-
central-1.rds.amazonaws.com. Our production configuration uses system
environment variables to set up the database URI, so we have to configure Elastic Beanstalk
to set the DB_URI environment variable.

To use these environment variables, we need to change our blog's config.py file to use the
actual OS environment variables, as follows:

class ProdConfig(Config):
 SQLALCHEMY_TRACK_MODIFICATIONS = False
 SQLALCHEMY_DATABASE_URI = os.environ.get('DB_URI', '')

 CELERY_BROKER_URL = os.environ.get('CELERY_BROKER_URL', '')

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[275]

 CELERY_RESULT_BACKEND = os.environ.get('CELERY_BROKER_URL', '')

 CACHE_TYPE = 'redis'
 CACHE_REDIS_HOST = os.environ.get('REDIS_HOST', '')
 CACHE_REDIS_PORT = '6379'
 CACHE_REDIS_PASSWORD = ''
 CACHE_REDIS_DB = '0'

Make sure your instances can connect to the database. If you chose the security group
default options and RDS creation, then the wizard will have created a security group for
you (the default name is 'rds-launch-wizard'). On EC2, edit this security group and open
port 3306 to your instances' VPC CIDR.

In .ebextensions, take a look at the 01_env.config—this is where we set our
environment variables:

option_settings:
 aws:elasticbeanstalk:application:environment:
 WEBAPP_ENV: Prod
 DB_URI: mysql://admin:password@myblog.c4pdwhkmbyqm.eu-
central-1.rds.amazonaws.com:3306/myblog
 CELERY_BROKER_URL: sqs://sqs.us-east-1.amazonaws.com/arn:aws:sqs:eu-
central-1:633393569065:myblog-sqs/myblog-sqs

Finally, let's create the production environment with the following command:

$ eb create myblog-prod

Using Celery with Amazon SQS
In order to use Celery on AWS, we need to have our Elastic Beanstalk instance run our
Celery worker in the background, as well as set up an SQS messaging queue. For Celery to
support SQS, it needs to install a helper library from pip. Once more, verify that our
requirements.txt file contains the boto3 package. Elastic Beanstalk will look at this file
and create a virtual environment from it.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[276]

Setting up a new messaging queue on SQS is very easy. Go to the Services tab and click on
Simple Queue Service in the applications tab, then click on Create New Queue. After a
very short configuration screen, you should see a screen much like the following:

Next, we have to give our instances access to the newly created SQS. The easiest way to do
this is editing the Elastic Beanstalk default instance profile (this is not recommended,
however—you should create a separate instance profile and associate all your instances
with it using .ebextensions option settings). The default IAM instance profile is
named aws-elasticbeanstalk-ec2-role. Go to IAM service, then roles, then choose the
aws-elasticbeanstalk-ec2-role role. Next, click on Add inline policy and follow the
wizard to give access to the newly created SQS.

Now we have to change our CELERY_BROKER_URL to the new URL, which takes the
following format:

$ eb setenv CELERY_BROKER_URL=sqs://sqs.us-
east-1.amazonaws.com/arn:aws:sqs:us-east-1:<AWS_ACCOUNT_ID>:myblog-
sqs/myblog-sqs

Change the AWS_ACCOUNT_ID value to your AWS account ID.

Finally, we need to tell Elastic Beanstalk to run a Celery worker in the background. Once
more, we can do this in .ebextensions. Create a file named 11_celery_start.config,
and insert the following code into it:

commands:
 celery_start:
 command: |
 #!/usr/bin/env bash
 cd /opt/python/current/app
 . /opt/python/current/env
 source /opt/python/run/venv/bin/activate
 celery multi start worker1 -A celery_runner

WOW! eBook
www.wowebook.org

https://console.aws.amazon.com/iam/home#/roles/aws-elasticbeanstalk-ec2-role
https://console.aws.amazon.com/iam/home#/roles/aws-elasticbeanstalk-ec2-role

Deploying Flask Apps Chapter 13

[277]

Note that this kind of Celery worker deployment lives on the web server (which is not
recommended), and will also scale along with the web servers in line with demand. A
better option would be to explore the worker feature from Elastic Beanstalk, but this would
imply a complete rework of the feature, and we'd suffer from subsequent vendor lock-in.

Using Docker
Docker is a container-based technology created in 2013 by Docker, Inc. Container
technology is not new, and has been around for some time on Unix OS, with chroot created
in 1982, Solaris Zones in 2004, and WPAR available on AIX or OS400 systems (although
WPAR is more of a virtualization technology than a container). Later, two important
features were integrated on Linux: namespaces, which isolate OS function names,
and cgroups, a collection of processes that are bound by configuration and resource limits.
These new features gave birth to Linux containers, so why use Docker?

Mainly, because Docker made configuration definitions simple. Using a very easy-to-write
Dockerfile, you can describe how to provision your container and create a new image with
it. Each Dockerfile line will create a new FS layer using UnionFS, which makes changes
very quick to apply, and it's equally easy to roll back and forward between changes. Also
Docker, Inc. created an open image repository, where you can find quality images of almost
any Linux software available . We have already used some of these for Redis and
RabbitMQ in Chapter 9, Creating Asynchronous Tasks with Celery.

Docker has gained enormous traction and hype. Some of its best features are the following:

Solving dependency issues from the OS: Since we are packing a thin OS with
your container image, it is safe to assume that what runs on your laptop will run
on production as well.
Containers are very light, and users are able to run multiple containers on the
same VM or hardware host, which can reduce operations costs and increase
efficiency.
Containers bootstrap very quickly, enabling your infrastructure to scale equally
quickly, if, for example, you needed to address an increase in workload.
Developers can easily share their application with other developers using
containers.
Docker supports DevOps principles: developers and operations can and should
work together on the image and architecture definition, using Dockerfile or
Docker Compose.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[278]

If we consider the differences in features on offer from Docker containers versus VMs, let's
remember that containers share the same kernel and normally run a single process, while
VMs run a fully featured guest OS:

This architecture makes containers very lightweight and quick to spawn.

Creating Docker images
Throughout the previous chapters, our Blog application has grown from a simple three-tier
architecture to a multi-tier one. We now need to address a web server, database, cache
system, and queue. We are going to define each of these layers as Docker containers.

First, let's begin with our web server and Flask application. For this, we will be using an
Nginx frontend, and a WSGI, called uWSGI, for the backend.

A Dockerfile is a text file that contains special instructions with which we use to specify our
Docker image and how it should be run. The build process is going to execute the
commands one by one, creating a new layer on each one. Some of the most used Dockerfile
commands include the following:

FROM: Specifies the base image that our new image is based upon. We can start
from a really thin OS, such as Alpine, or directly from an RabbitMQ image.
EXPOSE: Informs Docker that the container listens on a specified network
port/protocol.
ENV: Sets environment variables.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[279]

WORKDIR: Establishes the base directory for the Dockerfile.
RUN: Runs bash Linux commands on a new layer. This is normally used to install
additional packages.
COPY: Copies files or directories from local filesystem to the Docker image.
CMD: There can be only one instance of CMD. It specifies how the container
should be run.
ENTRYPOINT: This has the same objective as CMD, but is a script in Docker.

For a full reference of Dockerfile commands, check out the documentation
at https:/​/​docs.​docker.​com/​engine/​reference/​builder/​#usage.

Our directory structure for Docker deploy is going to be the following:

/
 deploy/
 docker/
 docker-compose.yml -> Compose file
 ecs-docker-compose.yml -> Specific compose file for AWS ECS
 Dockerfile_frontend -> Dockerfile for the frontends
 Dockerfile_worker -> Dockerfile for the workers
 prod.env -> Production environment variables
 worker_entrypoing.sh -> entrypoint for the celery worker
 supervisor_worker.sh -> Supervisor conf file for the celery worker
 uwsgi.ini -> Conf. file for uWSGI

The images we are going to create will be used with Docker Compose (more on this later in
this chapter), so they will not work on a standalone basis. If you don't want to use Docker
Compose, very few modification are needed for the images to work—you just have to
change the prod.env file.

First, let's create a Dockerfile for our web server. We will use a previous image that already
contains NGINX and uWSGI, saving us the work to install and configure them.
Our Dockerfile_frontend is the Dockerfile containing the definition for creating
frontend images:

FROM tiangolo/uwsgi-nginx:python3.6

Create and set directory where the code will live
RUN mkdir /srv/app
WORKDIR /srv/app

Copy our code

WOW! eBook
www.wowebook.org

https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage

Deploying Flask Apps Chapter 13

[280]

COPY . .
Install all python packages required
RUN pip install -r requirements.txt
RUN sh install_flask_youtube.sh

Setup NGINX and uWSGI
COPY ./deploy/uwsgi.ini /etc/uwsgi/uwsgi.ini
ENV NGINX_WORKER_OPEN_FILES 2048
ENV NGINX_WORKER_CONNECTIONS 2048
ENV LISTEN_PORT 80

EXPOSE 80

First, in the preceding snippet, we base our image on uwsgi-nginx:python3.6, which
means we are going to use Python 3.6. Next, we create and set the directory where our
application will live—this will be in /srv/app. Then we copy all our local content (myblog
code) to the image itself using the COPY . .. Next, we copy the configuration file for our
WSGI, finally configuring the number of workers that NGINX will use. At the end, we
inform Docker that this image will be listening on port 80, using EXPOSE 80.

Next, let's take a look at our Celery worker Dockerfile:

FROM ubuntu
RUN apt-get update && \
 apt-get install -y supervisor python3-pip python3-dev libmysqlclient-
dev mysql-client
RUN mkdir /srv/app
WORKDIR /srv/app
COPY . .
RUN pip3 install -r requirements.txt
RUN sh install_flask_youtube.sh

COPY ./deploy/supervisor_worker.conf
/etc/supervisor/conf.d/celery_worker.conf
COPY ./deploy/docker/worker_entrypoint.sh .
ENTRYPOINT ["sh", "./worker_entrypoint.sh"]

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[281]

This time, our base image is going to be Ubuntu (in particular, a really thin Ubuntu version
for Docker). We are going to use the supervisor Python package to monitor and launch our
Celery process, so if Celery crashes for some reason, supervisor will restart it. So, at the OS
level, we are installing the supervisor, Python 3, and MySQL client packages. Take a look at
the worker_entrypoint.sh shell script in the preceding code block, where we are doing
some interesting things:

We are waiting for MySQL to become available. When using Docker Compose,
we can define the order that each task (that is, each Docker container) is
launched, but we don't have a way to know if the service is already available.
Next, we use the Flask CLI and Alembic to create or migrate our database.
Finally, we insert test data to our database (simply because it's nice to have for
the readers), so that when you launch the app, it's in a workable state with some
fake post data already present.

To build and create our images, execute the following Docker commands on the shell in the
root directory of our project:

$ docker build -f deploy/docker/Dockerfile_frontend -t myblog:latest .

This will create an image named myblog with the tag latest. As part of production best
practices, you should tag your images with your project version, also using a git tag. This
way, we can always be sure what code is in which images; for example, what changed
between myblog:1.0 and myblog:1.1.

Finally, create the Celery worker image with the following command:

$ docker build -f deploy/docker/Dockerfile_worker -t myblog_worker:latest .

Now that we have our custom images created, we are ready to go to the next section, where
we are going define our of all infrastructure and link the containers to each other.

Docker Compose
Docker Compose is a tool for defining our multi-layer application. This is where we define
all the services needed to run our application, configure them, and link them together.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[282]

Docker Compose is based on YAML files, which is where all the definition happens, so let's
dive right into it and take a look at the deploy/docker/docker-compose.yaml file:

version: '3'
services:
 db:
 image: mysql:5.7
 env_file:
 - prod.env
 rmq:
 image: rabbitmq:3-management
 env_file:
 - prod.env
 ports:
 - 15672:15672
 redis:
 image: redis
 worker:
 image: myblog_worker:latest
 depends_on:
 - db
 - rmq
 env_file:
 - prod.env
 frontend:
 image: myblog
 depends_on:
 - db
 - rmq
 env_file:
 - prod.env
 restart: always
 ports:
 - 80:80

In Docker Compose, we have defined the following services:

mysql: This is based on the Docker Hub community image for MySQL 5.7. All
the custom configuration happens with environment variables, as defined in
the prod.env file.
rmq: Rabbit MQ is based on the Docker Hub community image, customized by
us to create user credentials, cookies, and VHOST. This will install the
management interface as well, which can be accessed on
http://localhost:15672.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[283]

redis: This is the Redis service for our cache.
worker: This uses our previously built myblog_worker Docker image.
frontend: This uses our previously built myblog_worker Docker image.

This is a very simple composer definition. Note depends_on, where we define which
services depend on other services. So, for example, our frontend service is going to depend
on the database and Rabbit MQ. The ports key is a list of exposed ports; in this case, the
frontend port 80 is going to be exposed by the Docker host on port 80 also. This way, we
can access our application on the Docker host IP port 80, or by using a load balancer in
front of the Docker hosts. On your machine with Docker already installed, you can access
the application on http://localhost.

The use of the prod.env file is important, because this way, we can define
different configurations for different environments and still use the same compose file.
Using the same compose file across environments obeys another Twelve-Factor App rule
about making the infrastructure components the same across all environments.

Let's take a look at the prod.env file:

WEBAPP_ENV=Prod
DB_HOST=db
DB_URI=mysql://myblog:password@db:3306/myblog
CELERY_BROKER_URL=amqp://rabbitmq:rabbitmq@rmq//
REDIS_HOST=redis
MYSQL_ROOT_PASSWORD=rootpassword
MYSQL_DATABASE=myblog
MYSQL_USER=myblog
MYSQL_PASSWORD=password
RABBITMQ_ERLANG_COOKIE=SWQOKODSQALRPCLNMEQG
RABBITMQ_DEFAULT_USER=rabbitmq
RABBITMQ_DEFAULT_PASS=rabbitmq
RABBITMQ_DEFAULT_VHOST=/

This file environment variables will set actual OS-level environment variables so that it's
simple to use them on the configuration file for our application. This will comply with
another of the Twelve-Factor App rules from https://12factor.net/.

At the top, we set our application environment for production configuration
using WEBAPP_ENV=Prod.

The MYSQL_* variables is where we configure the MySQL 5.7 container. We set the root
password and an initial database to create (if necessary) a user and password for this
database.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[284]

It's important to note that the REDIS_HOST , DB_URI, CELERY_BROKER_URL variables are
using the actual host names that each container will use to communicate with the other
containers. By default, these are the service names, which makes everything pretty simple.
So, the frontend container accesses the database using the db network hostname.

Finally, let's start our application:

$ docker-compose -f deploy/docker/docker-compose.yml up

Wait for all the containers to start up, then open your browser and go to
http://localhost.

Deploying Docker containers on AWS
To deploy on AWS, we are going to use the Amazon Elastic Container Service (ECS). ECS
is a service that provides a scalable cluster for Docker, without the need to install any
software to orchestrate your containers. It's based on AWS Auto Scaling Groups (ASG),
which scale instances up or down with Docker installed. This scaling is triggered by
monitoring metrics, such as CPU usage or network load. ECS also migrates all containers
from an instance that, for some reason, terminates, or gets its service impaired. ECS thus
acts as a cluster. After this, the ASG will spawn a new instance to replace the faulty one.

CloudFormation Basics
AWS provides many services, each of which has many configuration options. You also
need to wire these services up. To effectively and reliably create, configure, update, or
destroy these services, we are going to show you how to use an IaC (Infrastructure as
code) technology from AWS, called CloudFormation. CloudFormation is not a complex
technology, but follows the extension of all AWS services and configuration options. The
details and operation of CloudFormation could be subject to a book on its own.

CloudFormation is an extended data structure that you write using JSON or YAML. I say
extended, because it's possible to use references, functions, and conditions. A
CloudFormation file is composed of the following sections:

AWSTemplateFormatVersion: "version date"
Description: "Some description about the stack"
Parameters: Input parameters to configure the stack
Metadata: Aditional data about the template, also useful to group
parameters on the UI
Mappings: Data mappings definitions
Conditions: Setup conditions to setup resources or configuration

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[285]

Transform: Mainly used for AWS serverless
Resources: Resource definitions, this is the only required section
Output: Section to output data, you can use it return the DNS name to
access the created application

Let's take a quick look at the provided CloudFormation file
in ./deploy/docker/cfn_myblog.yml. We are going to follow all the CloudFormation
sections, one be one. First, let's examine the Parameters section:

...
Parameters:
 ApplicationName:
 Description: The application name
 Type: String
 Default: ecs001
 Environment:
 Description: Application environment that will use the Stack
 Type: String
 Default: prod
 AllowedValues:
 - dev
 - stg
 - prod
 InstanceType:
 Description: Which instance type should we use to build the ECS
cluster?
 Type: String
 Default: t2.medium
...

Without going into much detail, in this file, an input parameter is defined by a name, and
may contain a description, a type, a default value, and rules for accepted values. All these
values will be referenced later when configuring our infrastructure. These values are going
to be filled when deploying or updating the CloudFormation stack.

Next, look at the Mappings section:

...
Mappings:
 AWSRegionToAMI:
 us-east-2:
 AMI: ami-b86a5ddd
 us-east-1:
 AMI: ami-a7a242da
 us-west-2:
 AMI: ami-92e06fea
...

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[286]

This is simply a convenient data structure for mapping AWS regions into AMIs. An AMI is
a base OS image that we are using for our Docker VMs. Each AMI has a different
identification in each region, so we need to map them out to make our stack deployable on
any AWS region. On our case, we will be using Amazon ECS-optimized Linux.

Now, let's consider the Metadata section:

...
Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 - Label:
 default: System Information (Tags)
 Parameters:
 - Environment
 - ApplicationName
 - Label:
 default: Networking
 Parameters:
 - VPC
 - Subnets
...

Here, we are declaring an Interface to group our parameters. This is just to make the
parameters display in a nicer way to whomever is going to deploy the stack. Remember
that the parameters section is a dictionary, and that dictionary keys have no order.

The main, and more important section is Resources. We are not going to go into full detail
on this, rather, we'll just quickly highlight the main infrastructure resources we are going to
create and how they are wired. First, for the database, we are going to use another AWS
service, called RDS, and create a MySQL server:

Resources:
...
DB:
 Type: AWS::RDS::DBInstance
 Properties:
 AllocatedStorage: "30"
 DBInstanceClass: "db.t2.medium"
 Engine: "MariaDB"
 EngineVersion: "10.2.11"
 MasterUsername: !Ref DBUsername
 MasterUserPassword: !Ref DBPassword
 DBSubnetGroupName: !Ref DBSubnetGroup
 VPCSecurityGroups:
 - Ref: DBSecurityGroup

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[287]

Each resource has a type. For RDS, this is AWS::RDS:DBInstance. Each type has its own
specific set of properties. Also, notice how !Ref declares values that are references from
other resources or parameters. DBUsername and DBPassword are parameters,
but DBSubnetGroup and DBSecurityGroup are resources created by CloudFormation to
set up the network ACL and subnet placement for our database.

The ECS cluster resource declaration is as follows:

ECSCluster:
 Type: "AWS::ECS::Cluster"
 Properties:
 ClusterName: !Sub ${Environment}-${ApplicationName}

ECSAutoScalingGroup:
 Type: AWS::AutoScaling::AutoScalingGroup
 Properties:
...

ECSLaunchConfiguration:
 Type: AWS::AutoScaling::LaunchConfiguration
 Properties:
...

ECSRole:
 Type: AWS::IAM::Role
 Properties:
...
ECSInstanceProfile:
 Type: AWS::IAM::InstanceProfile
 Properties:
...
ECSServiceRole:
 Type: AWS::IAM::Role
 Properties:
...

All these definitions belong to the ECS cluster. This cluster can be used to provision many
different applications, so it would make sense to declare these definitions on a separate
CloudFormation file, or use nested stacks. To simplify the deployment, we will use a single
file to create our application. First, we create the ECS cluster, and set its name to be a
concatenation with the Environment and ApplicationName parameters. This is done
using the !Sub CloudFormation function.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[288]

Next, we declare the Auto Scaling Group (ASG) for our cluster, and set up the way AWS is
going to provision each instance that belongs to this ASG. These are
the ECSAutoScalingGroup and ECSLaunchConfiguration resources. Finally,
ECSRole, ECSInstanceProfile, and ECSServiceRole are used to set up the security
permissions needed for the ECS cluster to fetch Docker images, work with AWS load
balancers (ELB), S3, and so on. These permissions are the standard used by AWS as an
example, and can be most certainly be downgraded.

Now, for our application, we are going to define ECS services and ECS task definitions. A
task definition is where we define one or more container definitions that reference the
Docker image to use, along with environment variables. Then, the ECS service references
an ECS task definition, and may tie it up with a load balancer and set up deployment
configuration options, such as performance limits and auto scaling options (yes, the ECS
cluster can scale up or down on load shifts, but our containers may scale up or down
independently as well):

FrontEndTask:
 DependsOn: WorkerTask
 Type: "AWS::ECS::TaskDefinition"
 Properties:
 ContainerDefinitions:
 -
 Name: "frontend"
 Image: !Ref DockerFrontEndImageArn
 Cpu: "10"
 Memory: "500"
 PortMappings:
 -
 ContainerPort: "80"
 HostPort: "80"
 Environment:
 -
 Name: "WEBAPP_ENV"
 Value: !Ref Environment
 -
 Name: "CELERY_BROKER_URL"
 Value: !Sub
"amqp://${RMQUsername}:${RMQPassword}@${ELBRMQ.DNSName}:5672//"
 -
 Name: "DB_URI"
 Value: !Sub
"mysql://${DBUsername}:${DBPassword}@${DB.Endpoint.Address}:3306/myblog"
 -
 Name: "REDIS_HOST"
 Value: !Sub ${ELBRedis.DNSName}

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[289]

This is the task definition for our frontend containers. You may notice that this is the
CloudFormation version of the Docker Compose service that we've already seen. We
declare a name for our container, Name: "frontend", that will later be referenced in the
load balancers. Next, the image: !Ref DockerFrontEndImageArn is a reference to an
input parameter. This will allow us to easily deploy new versions of our blog application.
The port mappings for Docker are declared in PortMappings. This is a list of key values,
repeating the keys for ContainerPort and HostPort. The environment is, once again, a
list of key values, and here we make the "wiring" for DB, RMQ, and Redis from other
resources we are creating. For example, here is how we use DB_URI:

-
 Name: "DB_URI"
 Value: !Sub
"mysql://${DBUsername}:${DBPassword}@${DB.Endpoint.Address}:3306/myblog"

This Value is where we construct the URI for the database, using our already
known !Sub function and a reference for DBUsername and DBPassword.
The DB.Endpoint.Address is how we can reference the DNS name that AWS created for
our newly created MySQL server.

In the service definition, we tie our container to an AWS Elastic Load Balancer, and make
some deployment configuration:

MyBlogFrontendService:
 Type: "AWS::ECS::Service"
 Properties:
 Cluster: !Ref ECSCluster
 DeploymentConfiguration:
 MaximumPercent: 200
 MinimumHealthyPercent: 50
 DesiredCount: 2
 TaskDefinition: !Ref FrontEndTask
 LoadBalancers:
 -
 ContainerName: 'frontend'
 ContainerPort: 80
 LoadBalancerName: !Ref ELBFrontEnd
 DependsOn:
 - ECSServiceRole
 - FrontEndTask

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[290]

First, we declare that this service will run on our newly created ECS cluster,
using Cluster: !Ref ECSCluster. Then, using
the DeploymentConfiguration and DesiredCount, we say that this service will start
with two containers (for high availability) and allow it to scale up and down between 4 and
1. This obeys the following formulas:

The maximum number of containers = DesiredCount * (MaximumPercent / 100)
The minimum number of containers = DesiredCount * (MinimumPercent / 100)

So, applying the formulas to our case gives us the following:

4 = 2 * (200/100)
1 = 2 * (50/100)

With TaskDefinition: !RefFrontEndTask, we say that this service uses our previous
frontend task definition. And finally, with the LoadBalancers key property, we tie our
service with a load balancer. This means that our two newly created containers will evenly
receive requests from the users, and new containers will automatically be registered on the
load balancer as they are created, as well.

Finally, let's look at the load balancer definition:

ELBFrontEnd:
 Type: AWS::ElasticLoadBalancing::LoadBalancer
 Properties:
 SecurityGroups:
 - Fn::GetAtt:
 - ELBFrontEndSecurityGroup
 - GroupId
 Subnets:
 Ref: Subnets
 Scheme: internet-facing
 CrossZone: true
 Listeners:
 - LoadBalancerPort: '80'
 InstancePort: '80'
 Protocol: HTTP
 InstanceProtocol: HTTP
 HealthCheck:
 Target: TCP:80
 HealthyThreshold: '2'
 UnhealthyThreshold: '3'
 Interval: '10'
 Timeout: '5'

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[291]

This is an AWS classic ELB definition, where we associate the ELB with a network security
group, which serves more or less like a firewall. This is done with
the SecurityGroups key property. Next, we define in which subnets the ELB is going to
serve. Each subnet is created in a different AWS availability zone, each of which represent a
data center in an AWS region (each region contains two or more data centers, or availability
zones). Then, we define that this ELB is going to be exposed to the internet using Scheme:
internet-facing. For Listeners, we say that port 80 of the ELB is mapped to port 80 of
the Docker host. And finally, we define a health check for the service, and the period for
which this will occur.

Check out more details on ELB CloudFormation definitions at https:/​/
docs.​aws.​amazon.​com/​AWSCloudFormation/​latest/​UserGuide/​aws-
properties-​ec2-​elb.​html.

We further create the following resources in
the ./deploy/docker/cfn_myblog.yml YAML file provided by CloudFormation:

Several security groups for ELBs and Docker hosts
Task definition and the respective service for our myblog Celery workers
Task definition and the respective service for our RabbitMQ container
Task definition and the respective service for our Redis container
Load balancer for the Redis container
Load balancer for RabbitMQ

Using a load balancer for RabbitMQ is a cheap way to get service discovery
functionality—it's strange to balance load on a single instance, but if the Docker host,
located where our RabbitMQ is, crashes for some reason, then the RabbitMQ container is
going to be created on another Docker host, and the application needs to be able to find
it dynamically.

WOW! eBook
www.wowebook.org

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html

Deploying Flask Apps Chapter 13

[292]

Create and update a CloudFormation stack
We can create and deploy our CloudFormation stack using the console or the CLI. To create
it using the console, choose the AWS CloudFormation service, and then click on the Create
Stack button. You will see the following form:

Choose the Upload a template to Amazon S3 option, then choose the
deploy/docker/cfn_myblog.yaml file from the provided code, and click Next. Now, we
need to fill the stack parameters as follows:

Stack Name: Provide a name to identify this stack; use whatever you want.
Environment: Choose the environment of this stack for production, staging, and
development.
ApplicationName: Here, use whatever you want to identify the ECS cluster.
VPC: Choose an AWS VPC.
Subnets: From the drop-down menu, choose all the subnets that belong to the
VPC (if you have public and private subnets, choose only public subnets,
remember that the ELB's are internet facing).
ClusterSize: This is the ECS cluster size; leave the default setting of 2 here.
InstanceType: This is the AWS instance type for the Docker hosts.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[293]

KeyName: This is the AWS key pair, and needs to be one that we
created previously. We can use the private key to SSH to the Docker hosts.
DockerFrontEndImageArn: This is the ARN of the ECR repository to which we
uploaded our Docker image for the frontend.
DockerWorkerImageArn: This is the ARN of the ECR repository to which we
uploaded our Docker image for the worker.
DBUsername, DBPassword, RMQUsername, and RMQPassword: These are all
the credentials for the database and RabbitMQ; choose whatever values you
want.

After filing all the parameters, click Next. An Options form is presented—just click
Next again. A review page is presented with our parameters and possible stack changes.
Here, we need to check the I acknowledge that AWS CloudFormation might create IAM
resources with custom names. option, and click Create. The creation of all the resources is
going to take a few minutes—wait for the CREATE_COMPLETED state. To check out our
application, just go to the Output tab and click on the URL.

Now, let's see how easily we can develop and deploy a code change. First, make a simple
code change. For example, in the webapp/templates/head.html file, find the following
line:

...
<h1>My
Blog</h1>
...

Now, change the preceding line to the following:

...
<h1>My Blog
v2</h1>
...

Then create a new Docker image, and tag it with v2, as shown here:

$ docker build -f deploy/docker/Dockerfile_frontend -t myblog:v2 .

Next, push this image to AWS ECR using the following command:

$ ecs-cli push myblog:v2

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[294]

Then, go to AWS console and choose our previously created stack. On Actions, choose
Update Stack. On the first form, choose Use current template. Then, in the input
parameters, we need to change DockerFrontEndImageArn—update it with the new tag,
and postfix it with :v2. The new ARN should look something like
this: XXXXXXXX.dkr.ecr.eu-central-1.amazonaws.com/myblog:v2. Then, click Next,
and on the Options forms click Next again. On the preview form, notice how, in the
Preview your Changes section, the updater identifies exactly what needs to be updated. In
this case, FrontEndTask and MyBlogFrontendService are selected for updates, so let's
update them. While we wait for the UPDATE_COMPLETE state, just keep using the
application—notice how no downtime occurs. After one to two minutes. notice how our
Blog displays the main title as My Blog v2.

In the next section, we will see how to integrate this approach with a modern CI/CD system
to build, run tests, check code quality, and deploy on different environments.

Building and deploying highly available
applications readily
Whether our web app is on the cloud or in a data center, we should aim for reliability.
Reliability can impact the user is various ways, either by downtime, data loss, application
error, response time degradation, or even on user deploy delay. Next, we are going to cover
some aspects to help you think about architecture and reliability, to help you plan ahead to
handle issues, such as failures or increased load. First of all, we will cover the necessary
steps for you to deploy rapidly and, of course, reliably.

Building and deploying reliably
With today's demanding markets, we need to build and deploy easily and quickly. But the
speed of our deployment must also deliver reliability. One of the steps needed to achieve
this is to use automation via scripts, or with CI/CD tools.

To help us set up the entire process, we should use a CI/CD tool, such as Jenkins, Bamboo,
TeamCity, or Travis. First, what exactly is CI/CD?

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[295]

CI stands for Continuous Integration, and is the process defined for integrating software
changes, made by many developers, into a main repository—and, of course, doing so
quickly and reliably. Let's enumerate what we need, from bottom to top:

First, it is imperative to use a source control and versioning system, such as Git,
along with a well established and internally defined branching model, such
as GitFlow. This will give us a clear view of code changes, along with the ability
to accept and test them, at either feature or hotfix level. This will also make it
easy to rollback to a previous version.
Before approving any merges proposed by pull requests, make sure to set up
automated triggering of tests and reviewing of code. Pull-request reviewers can
then make more informed decisions before approving a merge. Failed tests are
certainly a warning sign that we want to see before merging code that will end
up on production. Fail fast, and don't be afraid to fail often.

As was said previously, we have several tools to automate this process. One easy way to do
this is to use GitHub with Travis and landscape.io. You can freely create an account on all
three of them and try them out. After this, just create the following two files on your
repository.

Create a .travis.yml file, which should contain the following:

language: python
python:
 - "3.6"
 - "3.3"
 - "2.7"
install:
 - "pip install --upgrade"
 - "pip -V"
 - "pip install -r requirements.txt"
 - "pip install coveralls"
script:
 - coverage run --source webapp --branch -m unittest discover
after_success:
 coveralls

This is all we need to have automated tests running on every commit. Also, our tests will
run independently using Python versions 3.6, 3.3, and 2.7. GitHub and Travis integration
will also give us the result of these tests on every pull request.

For code quality control, landscape.io is very easy to use with GitHub (other tools include
flake8, Sonarqube, and Codacy, for example).

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[296]

To set up landscape.io, we just have to create the following .landscape.yml file at the
root of our project:

ignore-paths:
 - migrations
 - deploy
 - babel

Further automation can be achieved by merging every branch automatically to the develop
branch, for example, but we need a third tool to automate this process on GitHub.

CD stands for Continuous Delivery, and is based on reduced cycles of development and
the actual delivery of changes. This must be done quickly and reliably, and rollback should
always be accounted for. To help us define and execute this process, we can use
Jenkins/Blue Ocean pipelines.

Using Jenkins pipelines, we can define the entire pipeline process, from build to
deployment. This process is defined using a Jenkinsfile at the root of our project. First,
let's create and start our Jenkins CI server from the CLI, as follows:

docker run \
 --rm \
 -u root \
 -p 8080:8080 \
 -v jenkins-data:/var/jenkins_home \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v "$HOME":/home \
 jenkinsci/blueocean

On start, the Docker output will show the following:

...
INFO: Pre-instantiating singletons in
org.springframework.beans.factory.support.DefaultListableBeanFactory@340c82
8a: defining beans [filter,legacy]; root of factory hierarchy
Sep 16, 2018 11:39:39 AM jenkins.install.SetupWizard init
INFO:

Jenkins initial setup is required. An admin user has been created and a
password generated.
Please use the following password to proceed to installation:

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[297]

476c3b81f2gf4n30a7f9325568dec9f7

This may also be found at: /var/jenkins_home/secrets/initialAdminPassword

Copy the password from your output and open Jenkins in your browser by going
to http://localhost:8080. On startup, Jenkins will ask for a one-time password—paste
in the password provided by the Docker output. Next, Jenkins will ask you for some initial
configuration. This consists of creating an Admin user, and installing plugins (for our
example, you can simply accept the suggested plugins).

To set up an automated approach to build and deploy our Docker images to AWS ECR, we
need an extra plugin called Amazon ECR. To install this plugin, go to Manage Jenkins,
then choose Manage Plugins, and click on the Available Tab for a list of available and not-
yet-installed plugins. From this list, choose the Amazon ECR plugin, and finally click on
the Install without restart option.

Next, we must configure a set of credentials, so that Jenkins can authenticate on AWS and
push our newly built Docker images. For this, on the left-hand menu, choose Credentials,
then choose Jenkins credential scope and Global credentials. Now, on the left-hand panel,
choose Add credentials and fill the form with the following info:

Kind: AWS Credentials
Scope: Global
ID: ecr-credentials
Description: ecr-credentials
Access Key ID: Use the AWS Access Key ID that you already created in the
previous section for pushing your Docker images
Secret Access key: Use the AWS Secret Access Key that you already created in
the previous section for pushing your Docker images

For security reasons, it's better to choose the IAM role approach.
However, for the sake of simplicity, we are using AWS keys here. If you
still want to use AWS keys, remember to never use your personal keys on
automation processes—instead, create a specific user for the process with
contained and managed privileges.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[298]

Now we are ready to create our first CI/CD pipeline. Follow these steps:

On the main page, choose the Create new Jobs link1.
On the input box for "nter an item name, write myblog2.
Choose the Multibranch pipeline option. Then click Ok3.

On the Jobs configuration, you need to fill in the following fields:

Branch Sources: Create new Jenkins' credentials for your GitHub account, or set
up using your own credentials from your private Git repository. Then, choose
the GitHub repository for this book, or use your private repository URL.
Then, for now, remove all behaviors except "Discover branches", as shown here:

On the "Build Configuration" job section, change the "Script Path"
to Chapter-13/Jenkinsfile if you're using this book's GitHub repository. This is
required because the repository is organised by chapters, and the Jenkinsfile is not at
the root of the repository.

This is all it takes, because the heavy lifting is done using the Jenkinsfile pipeline
definition. Let's take a look at this file:

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[299]

pipeline {
 agent any

 parameters {
 string(description: 'Your AWS ECR URL: http://<AWS ACCOUNT
NUMBER>.dkr.ecr.<REGION>.amazonaws.com', name: 'ecrURL')
 }

 environment {
 CHAPTER = 'Chapter-13'
 ECRURL = "${params.ecrURL}"
 ECRCRED = 'ecr:eu-central-1:ecr-credentials'
 }
...

The Jenkins pipeline definition gives you a huge amount of configuration
options. We can even use Groovy scripts embedded in it. Please take a
look at the documentation for more details, available at https:/​/​jenkins.
io/​doc/​book/​pipeline/​jenkinsfile/​.

On the pipeline main section, we have created a manual parameter for you to fill out the
AWS ECR URL to which the images should be pushed. This section also configures some
necessary environment variable to make our stages more dynamic.

Next, let's take a look at the pipeline stages section:

....
stages {
 stage('Build') {
 steps {
 echo "Building"
 checkout scm
 }
 }
 stage('Style') {
 agent {
 docker 'python:3'
 }

 steps {
 sh '''
 #!/bin/bash

 cd "${CHAPTER}"
 python -m pip install -r requirements.txt
 cd Flask-YouTube
 python setup.py build

WOW! eBook
www.wowebook.org

https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/

Deploying Flask Apps Chapter 13

[300]

 python setup.py install
 cd ..
 python -m pip install flake8
 flake8 --max-line-length 120 webapp
 '''
 }
 }
...

The stages section will hold all the stages necessary to build, test, check, and deploy our
application. The build declared with stage('Build') just executes a checkout of our
repository using checkout scm.

In the Style stage, we will check the code style using flake8. We are assuming that a critical
style problem is enough to make the pipeline fail, and never deploy the application. To run
it, we tell Jenkins to run a Docker container with Python 3 by using the docker
'python:3' command, and inside, we install all the necessary dependencies and run
flake8 against our code.

Next you will find a Test stage, which very similar to the Style stage. Notice that we can
easily define tests for Python 3 and 2.7 using specific Docker containers to run it.

The Docker build stage is as follows:

stage('Build docker images') {
 agent any
 steps {
 echo 'Creating new images...'
 script {
 def frontend = docker.build("myblog:${env.BUILD_ID}", "-f
${CHAPTER}/deploy/docker/Dockerfile_frontend ${CHAPTER}")
 def worker = docker.build("myblog_worker:${env.BUILD_ID}", "-f
${CHAPTER}/deploy/docker/Dockerfile_worker ${CHAPTER}")
 }
 }
}

In this stage, we use Groovy to build our images for the frontend and Celery workers. The
images will be produced and tagged with the Jenkins build identification, which we can use
as an env.BUILD_ID environment variable.

In the final stage, we push the newly created images to the AWS ECR Docker image
repository as follows:

stage('Publish Docker Image') {
 agent any

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[301]

 steps {
 echo 'Publishing new images...'
 script {
 docker.withRegistry(ECRURL, ECRCRED)
 {
 docker.image("myblog:${env.BUILD_ID}").push()
 docker.image("myblog_worker:${env.BUILD_ID}").push()
 }
 }
 }
}

Finally, to run our job, choose the "myblog" job, then "master," and on the left panel, choose
"Build with parameters." Fill in your AWS ECR URL (this URL takes the
form http://<ACCOUNT_NUMBER>.dkr.ecr.<REGION>.amazonaws.com), and then click
Build. After the build is done, we just have to update our CloudFormation with the newly
created Docker images.

A great final stage would be to update the previously deployed CloudFormation, scripting
the process with what we've already tested in this book, in the previous Create and Update a
CloudFormation Stack section. For this, we could use the "pipeline: AWS steps" plugin.

Creating highly available applications that scale
High availability (HA) and scalability is an ever more important subject. It should be taken
into consideration from the development phase, all the way up to the release stage.
Monolithic architectures, where all the features and services that comprise your application
can't be separated or are installed on one single instance, will not resist failure, and won't
scale either. Vertical scaling will only go so far, and in case of failure, will increase recovery
times, as well as the impact on the user. This is an important and complex subject and, as
you may have guessed, there is no single solution to solve it.

To think about HA, we have to be pessimistic. Remember—failure can't be eliminated, but
failure points can be identified, and recovery plans should be put in place so that downtime
takes seconds or minutes, instead of hours or even days.

First, let's think about all the components that our Blog application has, and identify the
stateless ones:

Frontend: Webserver and uWSGI – stateless
Celery workers: Celery – stateless
Message queue: RabbitMQ or AWS SQS – state

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[302]

Cache: Redis – state
Database: SQL or NoSQL – state

Our first goal is to identify all the Single Points of Failure (SPOF) in our application, and
try to eliminate them. For this, we have to think about redundancy:

Frontend: This is a stateless service that receives direct requests from the users.
We can balance these requests using a load balancer, and by always having at
least two instances. If one fails, the other immediately starts receiving all the
load. Looks good? Maybe, but can a single instance support all the load? Huge
response times are a failure too, so think about it—maybe you need at least three
instances. Next, can your load balancer fail too? This is not a problem when
using some sort of cloud-based load balancer, such as AWS ELB or ALB, but if
you aren't using these, then set up redundancy on this layer as well.
Celery workers: Workers are stateless, and a complete failure does not have an
immediate impact on users. You can have at least one instance, as long as
recovery is done automatically, or failure can be easily identified and a failed
instance can rapidly be replaced with a new one.
Message queue: If using AWS SQS or CloudMQ, failure is already accounted for.
If not, a clustered RabbitMQ can be an option, or you can make sure that message
loss is an option, and that RabbitMQ replacement is automatic, or can at least be
rapidly executed.
Cache: Make sure you have more then one memcached instance (using cluster
key sharding), or your application can gracefully account for failure. Remember
that a memcached replacement comes with a cold cache, which can have a huge
impact on the database, depending on your load.
Database: Make sure you have an SQL or NoSQL slave/cluster in place, ready to
replace writes from the failed master.

Layers that contain state are more problematic, and a small failure (seconds or
milliseconds) may be inevitable. Hot standbys or cold standbys should be accounted for.
It's very useful to test system failures of all your services while load testing. Redundancy is
like a software feature—if not tested, it's probably broken.

Scaling can be verified with load tests. It's a very good idea to include it somewhere along
the way in your production pipeline release. Locust is an excellent Python tool to
implement highly configurable load tests that can scale to any load level you want. These
kinds of tests are a great opportunity to verify your high availability setup. Take down
instances while simulating your expected load, and load test until you break your stack.
This way you will know your limits—knowing what will break first before it breaks on
production will help you test performance tuning.

WOW! eBook
www.wowebook.org

Deploying Flask Apps Chapter 13

[303]

Locust python package documentation is available at https:/​/​docs.
locust.​io/​en/​stable/​.

Scaling using cloud infrastructure, such as AWS, Azure, and GCP, is all about automation.
You need to set up your instances automatically, so that monitoring metrics can
automatically trigger the creation of new VMs or Dockers containers.

Finally, please make sure you backup your database periodically. The delta time between
backups is a point of possible data loss, so identify it and report back. Also, it's very
important to restore your production backups—again, if not tested, then they're probably
broken.

Monitoring and collecting logs
Monitor all your systems and components, collect OS level metrics, and produce
application metrics. You have great tools for doing this, including DataDog; NewRelic; a
combination of StatsD, Graphana, InfluxDB, and Prometheus; and ELK.

Set up alarms on failures based on metric thresholds. It's very important not to go
overboard on the amount of alarms you create—make sure that a critical alarm really
implies that the system is down or severely impaired. Set up time charts so that you can
identify issues or upscale necessities early.

Collect logs from OS, applications, and cloud services. Parsing, structuring, and adding
metadata to your logs enriches your data, and enables proper log aggregation, filtering, and
charting. Being able to easily filter all of your logs relative to a specific user, IP, or country is
a step forward.

Log collection has become more critical on the cloudc and even more so on containers,
because they are short-lived and break your applications down into microservices, so that
by the time something happens, your logs may no longer exist, or you may have to
manually go through dozens, if not thousands, of log files to find out what was and is
happening. This is increasingly becoming impossible to do. There are many good solutions
out there, however: you can use ELK (ElasticSearch, logstash, and Kibana) or EFK
(ElasticSearch, Fluentd, and Kibana) stacks, Sumo logic, or DataDog.

WOW! eBook
www.wowebook.org

https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/
https://docs.locust.io/en/stable/

Deploying Flask Apps Chapter 13

[304]

Summary
As this chapter explained, there are many different options for hosting your application,
each with their own pros and cons. Deciding on one depends on the amount of time and
money you are willing to spend, as well as the total number of users you expect.

Now, we have reached the conclusion of the book. I hope that this book was helpful in
building your understanding of Flask, and how it can be used to create applications of any
degree of complexity with both ease and simple maintainability.

Web application development is a fast paced area that touches different technologies and
concepts. Don't stop here—keep improving your Python skills, read about UX design,
improve your knowledge on CSS and HTML, master SQL and query performance, and
develop a single page application using Flask and Javascript. Each chapter of this book is an
invitation for further knowledge.

WOW! eBook
www.wowebook.org

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Python Testing Cookbook - Second Edition
Greg L. Turnquist

ISBN: 9781787122529

Run test cases from the command line with increased verbosity
Write a Nose extension to pick tests based on regular expressions
Create testable documentation using doctest
Use Selenium to test the Web User Interface
Write a testable story with Voidspace Mock and Nose
Configure TeamCity to run Python tests on commit
Update project-level scripts to provide coverage reports

WOW! eBook
www.wowebook.org

https://www.packtpub.com/application-development/python-testing-cookbook-second-edition

Other Books You May Enjoy

[306]

Building Django 2.0 Web Applications
Tom Aratyn

ISBN: 9781787286214

Build new projects from scratch using Django 2.0
Provide full-text searching using ElasticSearch and Django 2.0
Learn Django 2.0 security best practices and how they're applied
Deploy a full Django 2.0 app almost anywhere with mod_wsgi
Deploy a full Django 2.0 app to AWS's PaaS Elastic Beanstalk
Deploy a full Django 2.0 app with Docker
Deploy a full Django 2.0 app with NGINX and uWSGI

WOW! eBook
www.wowebook.org

https://www.packtpub.com/web-development/building-django-20-web-applications

Other Books You May Enjoy

[307]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

WOW! eBook
www.wowebook.org

Index

-
-pip.py file
 download link 16

A
AJAX 182
Alembic
 used, for database migrations 43, 45
Amazon Elastic Beanstalk
 Flask, using on 271, 274
Amazon Elastic Container Service (ECS) 284
Amazon RDS
 using 274
Amazon SQS
 Celery, using 275
Amazon Web Services
 deploying on 271
application factories 89, 91
atomicity, consistency, isolation, and durability

(ACID) 130
authentication methods
 about 93
 database user model authentication 97
 LDAP authentication 95
 OAuth 98
 OpenID 98
 remote-user authentication 94
Auto Scaling Group (ASG) 288
AWS
 Docker containers, deploying 284

B
Bash (Bourne-again shell)
 reference 7
Binary JSON (BSON) 136
Bitbucket 13

blueprint 81, 83
Bootstrap
 reference 60
brute force 103

C
callbacks 192
CAP theorem
 availability 132
 consistency 132
 partition tolerance 132
Celery workflows
 about 190
 callbacks 191
 chain function 192
 chord function 193
 group 192
 partials 191
 tasks, periodic execution 193
Celery
 about 182, 183
 monitoring 195
 setting up 183
 tasks, creating 185, 188
 tasks, executing 189
 using, on Heroku 269
 using, with Amazon SQS 275
 web-based monitoring, Flower used 196
 workflows 190
class-based views
 about 78, 80
 method class views 81
Click
 reference 203
CloudFormation 284, 288, 291
CloudFormation stack
 creating 292

WOW! eBook
www.wowebook.org

[309]

 updating 292
co-routine
 reference 262
code coverage 256, 258
column family stores
 about 126
 BigTable 128
 Cassandra 128
 HBase 128
command-line interface (CLI) 265
constraints 40
consumer processes 182
Continuous Delivery (CD) 296
Continuous Integration (CI) 295
control blocks 47
create, read, update, and delete (CRUD) 30
cross-site request forgery
 reference 68
CRUD
 document, creating 143
 document, deleting 148
 documents, reading 144
 filtering option 146
 objects, updating 147
 write safety feature 144

D
database migrations
 Alembic, using 44, 45
DELETE request 180
dependency sandboxing
 virtualenv, using 18
distinguished name (DN) 95
Docker Compose 281, 284
Docker containers
 CloudFormation 284
 deploying, on AWS 284
Docker
 cgroups 277
 features 277
 images, creating 278
 installation link 20
 namespaces 277
 setting up 19
 using 277

Dockerfile commands
 reference 279
document stores NoSQL database
 Couchbase 125
 CouchDB 125
 MongoDB 125
documents, MongoDB
 defining 138
 field types 139
 meta attribute 142
 types 141
DRY (don't repeat yourself) 61

E
ELB CloudFormation
 reference 291
end-to-end testing 242
error pages 77

F
features, RDBMS databases
 about 129
 data integrity 130
 speed and scale 130
 tools 131
File Transfer Protocol (FTP) 158
filters, Jinja
 about 48
 custom filters 52
 default filter 49
 escape filter 49
 float filter 49
 int filter 49
 join filter 50
 length filter 50
 round filter 50
 safe filter 51
 title filter 51
 tojson filter 51
 truncate filter 52
First In, First Out (FIFO) 182
Flask Admin
 about 216
 basic admin pages, creating 218
 database admin pages, creating 220

WOW! eBook
www.wowebook.org

[310]

 file system admin pages, creating 224
 Flask Admin, securing 224
 post page administration, enhancing 221
Flask Assets 214, 216
Flask Caching
 about 208
 functions, caching with parameters 210
 memcached, using as cache backend 213
 Redis, using as cache backend 212
 views and functions, caching 209
Flask CLI 203
Flask Dance 117
Flask Debug Toolbar 206, 208
Flask Mail 229
Flask project
 about 20
 simple application 21
 structure 22
Flask request object
 reference 77
Flask SQLAlchemy 24, 26
Flask-Babel 225, 228
flask-jwt-extended decorator
 reference 169
Flask-Login
 form, protecting form spam 107
 forms, creating 106
 models, updating 103
 overview 100
 setting up 101, 102
 views, creating 109, 112, 113
Flask-Migrate 44
Flask-MongoEngine 136
Flask-specific variables and function
 about 55
 config object 56
 get_flashed_messages() function 57
 request object 56
 session object 56
 url_for() function 56
Flask
 about 6
 Amazon Elastic Beanstalk 274
 command-line interface, using 22
 MongoDB 136

 using, on Amazon Elastic Beanstalk 271
Flower
 used, for web-based monitoring of Celery 196
foreign key constraint 35
func function
 reference 58

G
GET requests
 about 170
 output, formatting 170
 request arguments 173, 176
Git
 about 7, 11
 branches 12
 download link 7
 flow 12
 installation, on Windows 7
 installing 7
 reference 7
 used, for version control 7
GitFlow 295
Github 13
global 76
graph databases
 about 128
 InfoGrid 129
 Neo4j 129

H
hash 11
Heroku CLI
 reference 268
Heroku Postgres
 using 269
Heroku
 Celery, using 269
 deploying 267
 deployment reference 268
 reference 270
highly available (HA) applications
 building 294
 deploying 294, 295, 301
 logs, collecting 303
 logs, monitoring 303

WOW! eBook
www.wowebook.org

[311]

 with scalability feature, creating 301

I
IaC (Infrastructure as code) 284
identity providers 98
IIS integrated windows authentication 94
indexing 40
Infrastructure as a Service (IaaS) 267
integration testing 242

J
Jenkins 18
Jenkins pipeline
 reference 299
Jinja2 53
Jinja
 comments 53
 filters 48
 Flask-specific variables and functions 55
 if statements, using 53
 loops 53
 macros 55
 syntax 47
JSON Web Token (JWT)
 authentication 167, 169

K
Keep It Simple, Stupid (KISS) 259
key-value NoSQL database
 Amazon DynamoDB 124
 Redis 124
 Riak 124

L
LDAP (lightweight directory access protocol) 95
LDAP services
 Microsoft Active Directory 95
 OpenLDAP 95
links 128
Locust python package
 reference 302
loops 47

M
many-to-many relationship 38, 39
message queue 182
minification 214
Model View Controller (MVC) 75
model, creating
 about 26
 user table, creating 29
models
 creating 30
 detecting 34
 queries, filtering 32
 reading 30
 relationships 34
 updating 34
modular application
 about 85
 code, refactoring 87, 88
MongoDB
 about 136
 CRUD 143
 documents, defining 138
 executing 136
 installation link 136
 MongoEngine, setting up 137
MongoEngine
 setting up 137

N
Network File System (NFS) 158
NGINX configuration
 reference 93
Nginx
 about 264
 installation link 266
node 128
NoSQL
 leveraging 151, 155
 relationships 148
Not Only SQL (NoSQL) database
 about 123
 column family stores 126
 document stores 125
 graph databases 128

WOW! eBook
www.wowebook.org

[312]

 key-value stores 124
 strengths 131
 types 124
 using 135

O
OAuth 98, 117, 119
OAuth process
 reference 99
object relational mapping 24
object-oriented programming (OOP) 89
one-to-many relationship 35
OpenID authentication
 integrating, with application 114, 117
ORM (object relational mapper) 24

P
pagination 31
partials 191
pip Python package manager
 installing, on Linux 16
 installing, on Mac OS X 16
pip
 about 17
 used, for python package management 15
Platform as a Service (PaaS) 267
post creation page
 forms, creating 106
POST requests 176
primary key index 28
producer processes 182
pull request
 reference 13
pure functions 211
PUT requests 178
Python Package Index (PyPI)
 reference 234
Python package
 managing, with pip 15
Python Windows installer
 download link 15

R
RabbitMQ Docker image
 reference 184

RabbitMQ
 download link 185
 reference 183
 setting up 183
RDBMS 129
reCAPTCHA login
 reference 107
relational database management system (RDBMS)

24

Relational Database Service (RDS) 271
relationships, model
 about 34
 many-to-many relationship 38
 one-to-many relationship 35
relationships, NoSQL
 about 148
 many-to-many relationships 150
 one-to-many relationships 149
reminder app
 creating 198
Remote Procedure Call (RPC) 161
remote-user authentication
 reference 94
Representational State Transfer (REST)
 about 157
 best practices 160
 definition 160
 guiding constraints 162
 Hypertext Transfer Protocol (HTTP) 158
request
 setup 76
REST API
 testing 249
 unit testing 249
RESTful Flask API
 setting up 164
role-based access control (RBAC) 92, 119, 121
route functions
 unit testing 243

S
SASS
 reference 60
secret key 68
security

WOW! eBook
www.wowebook.org

[313]

 reference 76
sessions 75
Simple Mail Transfer protocol (SMTP) 158
Simple Object Access Protocol (SOAP) 161
Simple Queue Service (SQS) 271
Single Points of Failure (SPOF)
 cache 302
 Celery workers 302
 database 302
 frontend 302
 message queue 302
SQL injection
 reference 68
SQLAlchemy
 about 24
 Python packages 25
 sessions 42
 setting up 25
SQLite 25
stack 19
status response codes
 reference 160
subtask 191

T
tasks
 creating, in Celery 185, 188
teardown 77
template inheritance
 about 61
 base template 61
 child templates 64, 67
 other templates, writing 67
templating language 47
test case 243
test coverage 256
test-driven development (TDD) 258, 259
Tornado 263
transactions 42
Twitter app
 reference 99

U
unit testing
 of application 243

 of route functions 243
 of security 247
unit tests
 about 241
 working 242
user interface testing 250, 255
uWSGI
 about 264
 and Apache 266
 Nginx 264
 reference 265

V
variable 47
view function 58
views
 creating 58
virtualenv
 about 19
 used for dependency sandboxing 18

W
Web Server Gateway Interfaces (WSGI)
 about 76, 261
 Gevent 262
 Nginx 264
 Tornado 263
WebSockets 182
weekly digest
 creating 199, 202
what you see is what you get (WYSIWYG) 111
wide column stores 126
Windows
 Python package manager, installing 15
worker 187
WTForms
 about 68
 comments, posting 71, 74
 custom validations 70
 fields 69
 forms 69
 reference 69
 validators 69

WOW! eBook
www.wowebook.org

Y
You Aren't Going To Need It (YAGNI) 259
YouTube Flask extension

 blog posts, creating with videos 236
 creating 231, 233
 Python package, creating 234
 used, for modifying response 238, 240

WOW! eBook
www.wowebook.org

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Version control with Git
	Installing Git
	Git on Windows

	Git basics
	Git branches and flow

	Python package management with pip
	Installing the Python package manager on Windows
	Installing pip Python package manager on macOS X and Linux
	Pip basics

	Dependency sandboxing with virtualenv
	Virtualenv basics

	Setting up Docker
	The beginning of our project
	Simple application
	Project structure
	Using Flask's command-line interface

	Summary

	Chapter 2: Creating Models with SQLAlchemy
	Setting up SQLAlchemy
	Python packages
	Flask SQLAlchemy

	Our first model
	Creating the user table

	CRUD
	Creating models
	Reading models
	Filtering queries

	Updating models
	Deleting models

	Relationships between models
	One-to-many relationship
	Many-to-many relationship

	Constraints and indexing
	The convenience of SQLAlchemy sessions
	Database migrations with Alembic
	Summary

	Chapter 3: Creating Views with Templates
	Jinja's syntax
	Filters
	The default filter
	The escape filter
	The float filter
	The int filter
	The join filter
	The length filter
	The round filter
	The safe filter
	The title filter
	The tojson filter
	The truncate filter
	Custom filters

	Comments
	Using if statements
	Loops
	Macros
	Flask-specific variables and functions
	The config object
	The request object
	The session object
	The url_for() function
	The get_flashed_messages() function

	Creating our views
	The view function
	Writing the templates and inheritance
	The base template
	The child templates
	Writing the other templates

	Flask WTForms
	WTForms basics
	Custom validations
	Posting comments

	Summary

	Chapter 4: Creating Controllers with Blueprints
	Sessions and globals
	Request setup and teardown
	Error pages
	Class-based views
	Method class views

	Blueprints
	Summary

	Chapter 5: Advanced Application Structure
	Modular application
	Refactoring the code

	Application factories
	Summary

	Chapter 6: Securing Your App
	Authentication methods
	Basic authentication
	Remote-user authentication
	LDAP authentication
	Database user model authentication
	OpenID and OAuth

	Flask-Login overview
	Setting up
	Updating the models
	Creating the forms
	Protecting your form from spam
	Creating views

	OpenID
	OAuth
	Role-based access control (RBAC)
	Summary

	Chapter 7: Using NoSQL with Flask
	Types of NoSQL database
	Key-value stores
	Document stores
	Column family stores
	Graph databases

	RDBMS versus NoSQL
	The strengths of RDBMS databases
	Data integrity
	Speed and scale
	Tools

	The strengths of NoSQL databases
	CAP theorem
	What database to use and when

	MongoDB in Flask
	Installing MongoDB
	Setting up MongoEngine
	Defining documents
	Field types
	Types of documents
	The meta attribute

	CRUD
	Create
	Write safety

	Read
	Filtering

	Update
	Delete

	Relationships in NoSQL
	One-to-many relationships
	Many-to-many relationships

	Leveraging the power of NoSQL
	Summary

	Chapter 8: Building RESTful APIs
	What is REST?
	HTTP
	REST definition and best practices

	Setting up a RESTful Flask API
	JWT authentication
	Get requests
	Output formatting
	Request arguments

	Post requests
	Put requests
	Delete requests
	Summary

	Chapter 9: Creating Asynchronous Tasks with Celery
	What is Celery?
	Setting up Celery and RabbitMQ
	Creating tasks in Celery
	Running Celery tasks
	Celery workflows
	Partials
	Callbacks
	Group
	Chain
	Chord
	Running tasks periodically

	Monitoring Celery
	Web-based monitoring with Flower

	Creating a reminder app
	Creating a weekly digest
	Summary

	Chapter 10: Useful Flask Extensions
	Flask CLI
	Flask Debug Toolbar
	Flask Caching
	Caching views and functions
	Caching functions with parameters
	Caching routes with query strings
	Using Redis as a cache backend
	Using memcached as a cache backend

	Flask Assets
	Flask Admin
	Creating basic admin pages
	Creating database admin pages
	Enhancing administration for the post page
	Creating file system admin pages
	Securing Flask Admin

	Flask-Babel
	Flask Mail
	Summary

	Chapter 11: Building Your Own Extension
	Creating a YouTube Flask extension
	Creating a Python package
	Creating blog posts with videos

	Modifying the response with Flask extensions
	Summary

	Chapter 12: Testing Flask Apps
	What are unit tests?
	How does testing work?
	Unit testing the application
	Testing the route functions
	Testing security
	Testing the REST API

	User interface testing
	Test coverage
	Test-driven development
	Summary

	Chapter 13: Deploying Flask Apps
	Web servers and gateway interfaces
	Gevent
	Tornado
	Nginx and uWSGI
	Apache and uWSGI

	Deploying on Heroku
	Using Heroku Postgres
	Using Celery on Heroku

	Deploying on Amazon Web Services
	Using Flask on Amazon Elastic Beanstalk
	Using Amazon RDS
	Using Celery with Amazon SQS

	Using Docker
	Creating Docker images
	Docker Compose
	Deploying Docker containers on AWS
	CloudFormation Basics
	Create and update a CloudFormation stack

	Building and deploying highly available applications readily
	Building and deploying reliably
	Creating highly available applications that scale
	Monitoring and collecting logs

	Summary

	Other Books You May Enjoy
	Index

