

Contents
Cover	Page
About	This	eBook
Half	Title	Page
Title	Page
Copyright	Page
Dedication	Page
Contents	at	a	Glance
Contents
Preface
Acknowledgments
About	the	Author
1.	Pythonic	Thinking

Item	1:	Know	Which	Version	of	Python	You’re	Using
Item	2:	Follow	the	PEP	8	Style	Guide
Item	3:	Know	the	Differences	Between	bytes	and	str
Item	4:	Prefer	Interpolated	F-Strings	Over	C-style	Format	Strings	and
str.format

Item	5:	Write	Helper	Functions	Instead	of	Complex	Expressions
Item	6:	Prefer	Multiple	Assignment	Unpacking	Over	Indexing
Item	7:	Prefer	enumerate	Over	range
Item	8:	Use	zip	to	Process	Iterators	in	Parallel
Item	9:	Avoid	else	Blocks	After	for	and	while	Loops
Item	10:	Prevent	Repetition	with	Assignment	Expressions

2.	Lists	and	Dictionaries
Item	11:	Know	How	to	Slice	Sequences
Item	12:	Avoid	Striding	and	Slicing	in	a	Single	Expression

Item	13:	Prefer	Catch-All	Unpacking	Over	Slicing
Item	14:	Sort	by	Complex	Criteria	Using	the	key	Parameter
Item	15:	Be	Cautious	When	Relying	on	dict	Insertion	Ordering
Item	16:	Prefer	get	Over	in	and	KeyError	to	Handle	Missing
Dictionary	Keys
Item	17:	Prefer	defaultdict	Over	setdefault	to	Handle	Missing	Items
in	Internal	State
Item	18:	Know	How	to	Construct	Key-Dependent	Default	Values	with
__missing__

3.	Functions
Item	19:	Never	Unpack	More	Than	Three	Variables	When	Functions
Return	Multiple	Values
Item	20:	Prefer	Raising	Exceptions	to	Returning	None
Item	21:	Know	How	Closures	Interact	with	Variable	Scope
Item	22:	Reduce	Visual	Noise	with	Variable	Positional	Arguments
Item	23:	Provide	Optional	Behavior	with	Keyword	Arguments
Item	24:	Use	None	and	Docstrings	to	Specify	Dynamic	Default
Arguments
Item	25:	Enforce	Clarity	with	Keyword-Only	and	Positional-Only
Arguments
Item	26:	Define	Function	Decorators	with	functools.wraps

4.	Comprehensions	and	Generators
Item	27:	Use	Comprehensions	Instead	of	map	and	filter
Item	28:	Avoid	More	Than	Two	Control	Subexpressions	in
Comprehensions
Item	29:	Avoid	Repeated	Work	in	Comprehensions	by	Using
Assignment	Expressions
Item	30:	Consider	Generators	Instead	of	Returning	Lists
Item	31:	Be	Defensive	When	Iterating	Over	Arguments
Item	32:	Consider	Generator	Expressions	for	Large	List
Comprehensions

Item	33:	Compose	Multiple	Generators	with	yield	from
Item	34:	Avoid	Injecting	Data	into	Generators	with	send
Item	35:	Avoid	Causing	State	Transitions	in	Generators	with	throw
Item	36:	Consider	itertools	for	Working	with	Iterators	and
Generators

5.	Classes	and	Interfaces
Item	37:	Compose	Classes	Instead	of	Nesting	Many	Levels	of	Built-in
Types
Item	38:	Accept	Functions	Instead	of	Classes	for	Simple	Interfaces
Item	39:	Use	@classmethod	Polymorphism	to	Construct	Objects
Generically
Item	40:	Initialize	Parent	Classes	with	super
Item	41:	Consider	Composing	Functionality	with	Mix-in	Classes
Item	42:	Prefer	Public	Attributes	Over	Private	Ones
Item	43:	Inherit	from	collections.abc	for	Custom	Container	Types

6.	Metaclasses	and	Attributes
Item	44:	Use	Plain	Attributes	Instead	of	Setter	and	Getter	Methods
Item	45:	Consider	@property	Instead	of	Refactoring	Attributes
Item	46:	Use	Descriptors	for	Reusable	@property	Methods
Item	47:	Use	__getattr__,	__getattribute__,	and	__setattr__	for
Lazy	Attributes
Item	48:	Validate	Subclasses	with	__init_subclass__
Item	49:	Register	Class	Existence	with	__init_subclass__
Item	50:	Annotate	Class	Attributes	with	__set_name__
Item	51:	Prefer	Class	Decorators	Over	Metaclasses	for	Composable
Class	Extensions

7.	Concurrency	and	Parallelism
Item	52:	Use	subprocess	to	Manage	Child	Processes
Item	53:	Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism
Item	54:	Use	Lock	to	Prevent	Data	Races	in	Threads

Item	55:	Use	Queue	to	Coordinate	Work	Between	Threads
Item	56:	Know	How	to	Recognize	When	Concurrency	Is	Necessary
Item	57:	Avoid	Creating	New	Thread	Instances	for	On-demand	Fan-
out
Item	58:	Understand	How	Using	Queue	for	Concurrency	Requires
Refactoring
Item	59:	Consider	ThreadPoolExecutor	When	Threads	Are	Necessary
for	Concurrency
Item	60:	Achieve	Highly	Concurrent	I/O	with	Coroutines
Item	61:	Know	How	to	Port	Threaded	I/O	to	asyncio
Item	62:	Mix	Threads	and	Coroutines	to	Ease	the	Transition	to	asyncio
Item	63:	Avoid	Blocking	the	asyncio	Event	Loop	to	Maximize
Responsiveness
Item	64:	Consider	concurrent.futures	for	True	Parallelism

8.	Robustness	and	Performance
Item	65:	Take	Advantage	of	Each	Block	in	try/except/else/finally
Item	66:	Consider	contextlib	and	with	Statements	for	Reusable
try/finally	Behavior
Item	67:	Use	datetime	Instead	of	time	for	Local	Clocks
Item	68:	Make	pickle	Reliable	with	copyreg
Item	69:	Use	decimal	When	Precision	Is	Paramount
Item	70:	Profile	Before	Optimizing
Item	71:	Prefer	deque	for	Producer–Consumer	Queues
Item	72:	Consider	Searching	Sorted	Sequences	with	bisect
Item	73:	Know	How	to	Use	heapq	for	Priority	Queues
Item	74:	Consider	memoryview	and	bytearray	for	Zero-Copy
Interactions	with	bytes

9.	Testing	and	Debugging
Item	75:	Use	repr	Strings	for	Debugging	Output
Item	76:	Verify	Related	Behaviors	in	TestCase	Subclasses

Item	77:	Isolate	Tests	from	Each	Other	with	setUp,	tearDown,
setUpModule,	and	tearDownModule
Item	78:	Use	Mocks	to	Test	Code	with	Complex	Dependencies
Item	79:	Encapsulate	Dependencies	to	Facilitate	Mocking	and	Testing
Item	80:	Consider	Interactive	Debugging	with	pdb
Item	81:	Use	tracemalloc	to	Understand	Memory	Usage	and	Leaks

10.	Collaboration
Item	82:	Know	Where	to	Find	Community-Built	Modules
Item	83:	Use	Virtual	Environments	for	Isolated	and	Reproducible
Dependencies
Item	84:	Write	Docstrings	for	Every	Function,	Class,	and	Module
Item	85:	Use	Packages	to	Organize	Modules	and	Provide	Stable	APIs
Item	86:	Consider	Module-Scoped	Code	to	Configure	Deployment
Environments
Item	87:	Define	a	Root	Exception	to	Insulate	Callers	from	APIs
Item	88:	Know	How	to	Break	Circular	Dependencies
Item	89:	Consider	warnings	to	Refactor	and	Migrate	Usage
Item	90:	Consider	Static	Analysis	via	typing	to	Obviate	Bugs

Index
Code	Snippets

i
ii
iii
iv
v
vi
vii
viii
ix

x
xi
xii
xiii
xiv
xv
xvi
xvii
xviii
xix
xx
xxi
xxii
xxiii
xxiv
1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

450
451
452
453
454
455
456

About	This	eBook

ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of
ePUB	and	its	many	features	varies	across	reading	devices	and	applications.	Use
your	device	or	app	settings	to	customize	the	presentation	to	your	liking.	Settings
that	you	can	customize	often	include	font,	font	size,	single	or	double	column,
landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or
app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize
the	presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape
mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting
code	and	configurations	in	the	reflowable	text	format,	we	have	included	images
of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where
the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you
will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.

Praise	for	Effective	Python

“I	have	been	recommending	this	book	enthusiastically	since	the	first	edition
appeared	in	2015.	This	new	edition,	updated	and	expanded	for	Python	3,	is	a
treasure	trove	of	practical	Python	programming	wisdom	that	can	benefit
programmers	of	all	experience	levels.”

—Wes	McKinney,	Creator	of	Python	Pandas	project,	Director	of	Ursa	Labs

“If	you’re	coming	from	another	language,	this	is	your	definitive	guide	to	taking
full	advantage	of	the	unique	features	Python	has	to	offer.	I’ve	been	working	with
Python	for	nearly	twenty	years	and	I	still	learned	a	bunch	of	useful	tricks,
especially	around	newer	features	introduced	by	Python	3.	Effective	Python	is
crammed	with	actionable	advice,	and	really	helps	define	what	our	community
means	when	they	talk	about	Pythonic	code.”

—Simon	Willison,	Co-creator	of	Django

“I’ve	been	programming	in	Python	for	years	and	thought	I	knew	it	pretty	well.
Thanks	to	this	treasure	trove	of	tips	and	techniques,	I’ve	discovered	many	ways
to	improve	my	Python	code	to	make	it	faster	(e.g.,	using	bisect	to	search	sorted
lists),	easier	to	read	(e.g.,	enforcing	keyword-only	arguments),	less	prone	to	error
(e.g.,	unpacking	with	starred	expressions),	and	more	Pythonic	(e.g.,	using	zip	to
iterate	over	lists	in	parallel).	Plus,	the	second	edition	is	a	great	way	to	quickly
get	up	to	speed	on	Python	3	features,	such	as	the	walrus	operator,	f-strings,	and
the	typing	module.”

—Pamela	Fox,	Creator	of	Khan	Academy	programming	courses

“Now	that	Python	3	has	finally	become	the	standard	version	of	Python,	it’s
already	gone	through	eight	minor	releases	and	a	lot	of	new	features	have	been
added	throughout.	Brett	Slatkin	returns	with	a	second	edition	of	Effective	Python
with	a	huge	new	list	of	Python	idioms	and	straightforward	recommendations,
catching	up	with	everything	that’s	introduced	in	version	3	all	the	way	through
3.8	that	we’ll	all	want	to	use	as	we	finally	leave	Python	2	behind.	Early	sections
lay	out	an	enormous	list	of	tips	regarding	new	Python	3	syntaxes	and	concepts
like	string	and	byte	objects,	f-strings,	assignment	expressions	(and	their	special
nickname	you	might	not	know),	and	catch-all	unpacking	of	tuples.	Later	sections
take	on	bigger	subjects,	all	of	which	are	packed	with	things	I	either	didn’t	know
or	which	I’m	always	trying	to	teach	to	others,	including	‘Metaclasses	and

Attributes’	(good	advice	includes	‘Prefer	Class	Decorators	over	Metaclasses’
and	also	introduces	a	new	magic	method	‘__init_subclass__()’	I	wasn’t	familiar
with),	‘Concurrency’	(favorite	advice:	‘Use	Threads	for	Blocking	I/O,	but	not
Parallelism,’	but	it	also	covers	asyncio	and	coroutines	correctly)	and
‘Robustness	and	Performance’	(advice	given:	‘Profile	before	Optimizing’).	It’s	a
joy	to	go	through	each	section	as	everything	I	read	is	terrific	best	practice
information	smartly	stated,	and	I’m	considering	quoting	from	this	book	in	the
future	as	it	has	such	great	advice	all	throughout.	This	is	the	definite	winner	for
the	‘if	you	only	read	one	Python	book	this	year...’	contest.

—Mike	Bayer,	Creator	of	SQLAlchemy

“This	is	a	great	book	for	both	novice	and	experienced	programmers.	The	code
examples	and	explanations	are	well	thought	out	and	explained	concisely	and
thoroughly.	The	second	edition	updates	the	advice	for	Python	3,	and	it’s
fantastic!	I’ve	been	using	Python	for	almost	20	years,	and	I	learned	something
new	every	few	pages.	The	advice	given	in	this	book	will	serve	anyone	well.”

—Titus	Brown,	Associate	Professor	at	UC	Davis

“Once	again,	Brett	Slatkin	has	managed	to	condense	a	wide	range	of	solid
practices	from	the	community	into	a	single	volume.	From	exotic	topics	like
metaclasses	and	concurrency	to	crucial	basics	like	robustness,	testing,	and
collaboration,	the	updated	Effective	Python	makes	a	consensus	view	of	what’s
‘Pythonic’	available	to	a	wide	audience.”

—Brandon	Rhodes,	Author	of	python-patterns.guide

Effective	Python
Second	Edition

Effective	Python
90	SPECIFIC	WAYS	TO	WRITE	BETTER	PYTHON

Second	Edition

Brett	Slatkin

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.
The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	liability	is	assumed	for	incidental	or	consequential
damages	in	connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.
For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and
content	particular	to	your	business,	training	goals,	marketing	focus,	or	branding
interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.
For	government	sales	inquiries,	please	contact
governmentsales@pearsoned.com.
For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.
Visit	us	on	the	Web:	informit.com/aw
Library	of	Congress	Control	Number:	On	file
Copyright	©	2020	Pearson	Education,	Inc.
All	rights	reserved.	This	publication	is	protected	by	copyright,	and	permission
must	be	obtained	from	the	publisher	prior	to	any	prohibited	reproduction,	storage
in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,	electronic,
mechanical,	photocopying,	recording,	or	likewise.	For	information	regarding
permissions,	request	forms	and	the	appropriate	contacts	within	the	Pearson
Education	Global	Rights	&	Permissions	Department,	please	visit
www.pearson.com/permissions/.
ISBN-13:	978-0-13-485398-7
ISBN-10:	0-13-485398-9

ScoutAutomatedPrintCode

Editor-in-Chief
Mark	L.	Taub
Executive	Editor
Deborah	Williams

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

Deborah	Williams
Development	Editor
Chris	Zahn
Managing	Editor
Sandra	Schroeder
Senior	Project	Editor
Lori	Lyons
Production	Manager
Aswini	Kumar/codeMantra
Copy	Editor
Catherine	D.	Wilson
Indexer
Cheryl	Lenser
Proofreader
Gill	Editorial	Services
Cover	Designer
Chuti	Prasertsith
Compositor
codeMantra

To	our	family

Contents	at	a	Glance

Preface

Acknowledgments

About	the	Author

Chapter	1:	Pythonic	Thinking

Chapter	2:	Lists	and	Dictionaries

Chapter	3:	Functions

Chapter	4:	Comprehensions	and	Generators

Chapter	5:	Classes	and	Interfaces

Chapter	6:	Metaclasses	and	Attributes

Chapter	7:	Concurrency	and	Parallelism

Chapter	8:	Robustness	and	Performance

Chapter	9:	Testing	and	Debugging

Chapter	10:	Collaboration

Index

Contents

Preface
Acknowledgments
About	the	Author

Chapter	1	Pythonic	Thinking
Item	1:			Know	Which	Version	of	Python	You’re	Using
Item	2:			Follow	the	PEP	8	Style	Guide
Item	3:			Know	the	Differences	Between	bytes	and	str
Item	4:			Prefer	Interpolated	F-Strings	Over	C-style	Format	Strings

and	str.format
Item	5:				Write	Helper	Functions	Instead	of	Complex	Expressions
Item	6:				Prefer	Multiple	Assignment	Unpacking	Over	Indexing
Item	7:			Prefer	enumerate	Over	range
Item	8:			Use	zip	to	Process	Iterators	in	Parallel
Item	9:			Avoid	else	Blocks	After	for	and	while	Loops
Item	10:	Prevent	Repetition	with	Assignment	Expressions

Chapter	2	Lists	and	Dictionaries
Item	11:	Know	How	to	Slice	Sequences
Item	12:	Avoid	Striding	and	Slicing	in	a	Single	Expression
Item	13:	Prefer	Catch-All	Unpacking	Over	Slicing
Item	14:	Sort	by	Complex	Criteria	Using	the	key	Parameter
Item	15:	Be	Cautious	When	Relying	on	dict	Insertion	Ordering
Item	16:	Prefer	get	Over	in	and	KeyError	to	Handle	Missing

Dictionary	Keys
Item	17:	Prefer	defaultdict	Over	setdefault	to	Handle	Missing

Items	in	Internal	State
Item	18:	Know	How	to	Construct	Key-Dependent	Default	Values

with	__missing__

Chapter	3	Functions

Item	19:	Never	Unpack	More	Than	Three	Variables	When
Functions	Return	Multiple	Values

Item	20:	Prefer	Raising	Exceptions	to	Returning	None
Item	21:	Know	How	Closures	Interact	with	Variable	Scope
Item	22:	Reduce	Visual	Noise	with	Variable	Positional	Arguments
Item	23:	Provide	Optional	Behavior	with	Keyword	Arguments
Item	24:	Use	None	and	Docstrings	to	Specify	Dynamic	Default

Arguments
Item	25:	Enforce	Clarity	with	Keyword-Only	and	Positional-Only

Arguments
Item	26:	Define	Function	Decorators	with	functools.wraps

Chapter	4	Comprehensions	and	Generators
Item	27:	Use	Comprehensions	Instead	of	map	and	filter
Item	28:	Avoid	More	Than	Two	Control	Subexpressions	in

Comprehensions
Item	29:	Avoid	Repeated	Work	in	Comprehensions	by	Using

Assignment	Expressions
Item	30:	Consider	Generators	Instead	of	Returning	Lists
Item	31:	Be	Defensive	When	Iterating	Over	Arguments
Item	32:	Consider	Generator	Expressions	for	Large	List

Comprehensions
Item	33:	Compose	Multiple	Generators	with	yield	from
Item	34:	Avoid	Injecting	Data	into	Generators	with	send
Item	35:	Avoid	Causing	State	Transitions	in	Generators	with	throw
Item	36:	Consider	itertools	for	Working	with	Iterators	and

Generators

Chapter	5	Classes	and	Interfaces
Item	37:	Compose	Classes	Instead	of	Nesting	Many	Levels	of	Built-

in	Types
Item	38:	Accept	Functions	Instead	of	Classes	for	Simple	Interfaces
Item	39:	Use	@classmethod	Polymorphism	to	Construct	Objects

Generically
Item	40:	Initialize	Parent	Classes	with	super

Item	41:	Consider	Composing	Functionality	with	Mix-in	Classes
Item	42:	Prefer	Public	Attributes	Over	Private	Ones
Item	43:	Inherit	from	collections.abc	for	Custom	Container	Types

Chapter	6	Metaclasses	and	Attributes
Item	44:	Use	Plain	Attributes	Instead	of	Setter	and	Getter	Methods
Item	45:	Consider	@property	Instead	of	Refactoring	Attributes
Item	46:	Use	Descriptors	for	Reusable	@property	Methods
Item	47:	Use	__getattr__,	__getattribute__,	and	__setattr__	for

Lazy	Attributes
Item	48:	Validate	Subclasses	with	__init_subclass__
Item	49:	Register	Class	Existence	with	__init_subclass__
Item	50:	Annotate	Class	Attributes	with	__set_name__
Item	51:	Prefer	Class	Decorators	Over	Metaclasses	for	Composable

Class	Extensions

Chapter	7	Concurrency	and	Parallelism
Item	52:	Use	subprocess	to	Manage	Child	Processes
Item	53:	Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism
Item	54:	Use	Lock	to	Prevent	Data	Races	in	Threads
Item	55:	Use	Queue	to	Coordinate	Work	Between	Threads
Item	56:	Know	How	to	Recognize	When	Concurrency	Is	Necessary
Item	57:	Avoid	Creating	New	Thread	Instances	for	On-demand	Fan-

out
Item	58:	Understand	How	Using	Queue	for	Concurrency	Requires

Refactoring
Item	59:	Consider	ThreadPoolExecutor	When	Threads	Are

Necessary	for	Concurrency
Item	60:	Achieve	Highly	Concurrent	I/O	with	Coroutines
Item	61:	Know	How	to	Port	Threaded	I/O	to	asyncio
Item	62:	Mix	Threads	and	Coroutines	to	Ease	the	Transition	to

asyncio

Item	63:	Avoid	Blocking	the	asyncio	Event	Loop	to	Maximize
Responsiveness

Item	64:	Consider	concurrent.futures	for	True	Parallelism

Chapter	8	Robustness	and	Performance
Item	65:	Take	Advantage	of	Each	Block	in	try/except/else/finally
Item	66:	Consider	contextlib	and	with	Statements	for	Reusable

try/finally	Behavior
Item	67:	Use	datetime	Instead	of	time	for	Local	Clocks
Item	68:	Make	pickle	Reliable	with	copyreg
Item	69:	Use	decimal	When	Precision	Is	Paramount
Item	70:	Profile	Before	Optimizing
Item	71:	Prefer	deque	for	Producer–Consumer	Queues
Item	72:	Consider	Searching	Sorted	Sequences	with	bisect
Item	73:	Know	How	to	Use	heapq	for	Priority	Queues
Item	74:	Consider	memoryview	and	bytearray	for	Zero-Copy

Interactions	with	bytes

Chapter	9	Testing	and	Debugging
Item	75:	Use	repr	Strings	for	Debugging	Output
Item	76:	Verify	Related	Behaviors	in	TestCase	Subclasses
Item	77:	Isolate	Tests	from	Each	Other	with	setUp,	tearDown,

setUpModule,	and	tearDownModule
Item	78:	Use	Mocks	to	Test	Code	with	Complex	Dependencies
Item	79:	Encapsulate	Dependencies	to	Facilitate	Mocking	and

Testing
Item	80:	Consider	Interactive	Debugging	with	pdb
Item	81:	Use	tracemalloc	to	Understand	Memory	Usage	and	Leaks

Chapter	10	Collaboration
Item	82:	Know	Where	to	Find	Community-Built	Modules
Item	83:	Use	Virtual	Environments	for	Isolated	and	Reproducible

Dependencies
Item	84:	Write	Docstrings	for	Every	Function,	Class,	and	Module
Item	85:	Use	Packages	to	Organize	Modules	and	Provide	Stable

APIs
Item	86:	Consider	Module-Scoped	Code	to	Configure	Deployment

Environments
Item	87:	Define	a	Root	Exception	to	Insulate	Callers	from	APIs

Item	88:	Know	How	to	Break	Circular	Dependencies
Item	89:	Consider	warnings	to	Refactor	and	Migrate	Usage
Item	90:	Consider	Static	Analysis	via	typing	to	Obviate	Bugs

Index

Preface

The	Python	programming	language	has	unique	strengths	and	charms	that	can	be
hard	to	grasp.	Many	programmers	familiar	with	other	languages	often	approach
Python	from	a	limited	mindset	instead	of	embracing	its	full	expressivity.	Some
programmers	go	too	far	in	the	other	direction,	overusing	Python	features	that	can
cause	big	problems	later.

This	book	provides	insight	into	the	Pythonic	way	of	writing	programs:	the	best
way	to	use	Python.	It	builds	on	a	fundamental	understanding	of	the	language	that
I	assume	you	already	have.	Novice	programmers	will	learn	the	best	practices	of
Python’s	capabilities.	Experienced	programmers	will	learn	how	to	embrace	the
strangeness	of	a	new	tool	with	confidence.

My	goal	is	to	prepare	you	to	make	a	big	impact	with	Python.

What	This	Book	Covers
Each	chapter	in	this	book	contains	a	broad	but	related	set	of	items.	Feel	free	to
jump	between	items	and	follow	your	interest.	Each	item	contains	concise	and
specific	guidance	explaining	how	you	can	write	Python	programs	more
effectively.	Items	include	advice	on	what	to	do,	what	to	avoid,	how	to	strike	the
right	balance,	and	why	this	is	the	best	choice.	Items	reference	each	other	to	make
it	easier	to	fill	in	the	gaps	as	you	read.

This	second	edition	of	this	book	is	focused	exclusively	on	Python	3	(see	Item	1:
“Know	Which	Version	of	Python	You’re	Using”),	up	to	and	including	version
3.8.	Most	of	the	original	items	from	the	first	edition	have	been	revised	and
included,	but	many	have	undergone	substantial	updates.	For	some	items,	my
advice	has	completely	changed	between	the	two	editions	of	the	book	due	to	best
practices	evolving	as	Python	has	matured.	If	you’re	still	primarily	using	Python
2,	despite	its	end-of-life	on	January	1st,	2020,	the	previous	edition	of	the	book
may	be	more	useful	to	you.

Python	takes	a	“batteries	included”	approach	to	its	standard	library,	in
comparison	to	many	other	languages	that	ship	with	a	small	number	of	common
packages	and	require	you	to	look	elsewhere	for	important	functionality.	Many	of
these	built-in	packages	are	so	closely	intertwined	with	idiomatic	Python	that
they	may	as	well	be	part	of	the	language	specification.	The	full	set	of	standard

they	may	as	well	be	part	of	the	language	specification.	The	full	set	of	standard
modules	is	too	large	to	cover	in	this	book,	but	I’ve	included	the	ones	that	I	feel
are	critical	to	be	aware	of	and	use.

Chapter	1:	Pythonic	Thinking
The	Python	community	has	come	to	use	the	adjective	Pythonic	to	describe	code
that	follows	a	particular	style.	The	idioms	of	Python	have	emerged	over	time
through	experience	using	the	language	and	working	with	others.	This	chapter
covers	the	best	way	to	do	the	most	common	things	in	Python.

Chapter	2:	Lists	and	Dictionaries
In	Python,	the	most	common	way	to	organize	information	is	in	a	sequence	of
values	stored	in	a	list.	A	list’s	natural	complement	is	the	dict	that	stores	lookup
keys	mapped	to	corresponding	values.	This	chapter	covers	how	to	build
programs	with	these	versatile	building	blocks.

Chapter	3:	Functions
Functions	in	Python	have	a	variety	of	extra	features	that	make	a	programmer’s
life	easier.	Some	are	similar	to	capabilities	in	other	programming	languages,	but
many	are	unique	to	Python.	This	chapter	covers	how	to	use	functions	to	clarify
intention,	promote	reuse,	and	reduce	bugs.

Chapter	4:	Comprehensions	and	Generators
Python	has	special	syntax	for	quickly	iterating	through	lists,	dictionaries,	and
sets	to	generate	derivative	data	structures.	It	also	allows	for	a	stream	of	iterable
values	to	be	incrementally	returned	by	a	function.	This	chapter	covers	how	these
features	can	provide	better	performance,	reduced	memory	usage,	and	improved
readability.

Chapter	5:	Classes	and	Interfaces
Python	is	an	object-oriented	language.	Getting	things	done	in	Python	often
requires	writing	new	classes	and	defining	how	they	interact	through	their
interfaces	and	hierarchies.	This	chapter	covers	how	to	use	classes	to	express
your	intended	behaviors	with	objects.

Chapter	6:	Metaclasses	and	Attributes

Metaclasses	and	dynamic	attributes	are	powerful	Python	features.	However,	they
also	enable	you	to	implement	extremely	bizarre	and	unexpected	behaviors.	This
chapter	covers	the	common	idioms	for	using	these	mechanisms	to	ensure	that
you	follow	the	rule	of	least	surprise.

Chapter	7:	Concurrency	and	Parallelism
Python	makes	it	easy	to	write	concurrent	programs	that	do	many	different	things
seemingly	at	the	same	time.	Python	can	also	be	used	to	do	parallel	work	through
system	calls,	subprocesses,	and	C	extensions.	This	chapter	covers	how	to	best
utilize	Python	in	these	subtly	different	situations.

Chapter	8:	Robustness	and	Performance
Python	has	built-in	features	and	modules	that	aid	in	hardening	your	programs	so
they	are	dependable.	Python	also	includes	tools	to	help	you	achieve	higher
performance	with	minimal	effort.	This	chapter	covers	how	to	use	Python	to
optimize	your	programs	to	maximize	their	reliability	and	efficiency	in
production.

Chapter	9:	Testing	and	Debugging
You	should	always	test	your	code,	regardless	of	what	language	it’s	written	in.
However,	Python’s	dynamic	features	can	increase	the	risk	of	runtime	errors	in
unique	ways.	Luckily,	they	also	make	it	easier	to	write	tests	and	diagnose
malfunctioning	programs.	This	chapter	covers	Python’s	built-in	tools	for	testing
and	debugging.

Chapter	10:	Collaboration
Collaborating	on	Python	programs	requires	you	to	be	deliberate	about	how	you
write	your	code.	Even	if	you’re	working	alone,	you’ll	want	to	understand	how	to
use	modules	written	by	others.	This	chapter	covers	the	standard	tools	and	best
practices	that	enable	people	to	work	together	on	Python	programs.

Conventions	Used	in	This	Book
Python	code	snippets	in	this	book	are	in	monospace	font	and	have	syntax
highlighting.	When	lines	are	long,	I	use	characters	to	show	when	they	wrap.	I
truncate	some	snippets	with	ellipses	(...)	to	indicate	regions	where	code	exists

that	isn’t	essential	for	expressing	the	point.	You’ll	need	to	download	the	full
example	code	(see	below	on	where	to	get	it)	to	get	these	truncated	snippets	to
run	correctly	on	your	computer.

I	take	some	artistic	license	with	the	Python	style	guide	in	order	to	make	the	code
examples	better	fit	the	format	of	a	book,	or	to	highlight	the	most	important	parts.
I’ve	also	left	out	embedded	documentation	to	reduce	the	size	of	code	examples.	I
strongly	suggest	that	you	don’t	emulate	this	in	your	projects;	instead,	you	should
follow	the	style	guide	(see	Item	2:	“Follow	the	PEP	8	Style	Guide”)	and	write
documentation	(see	Item	84:	“Write	Docstrings	for	Every	Function,	Class,	and
Module”).

Most	code	snippets	in	this	book	are	accompanied	by	the	corresponding	output
from	running	the	code.	When	I	say	“output,”	I	mean	console	or	terminal	output:
what	you	see	when	running	the	Python	program	in	an	interactive	interpreter.
Output	sections	are	in	monospace	font	and	are	preceded	by	a	>>>	line	(the	Python
interactive	prompt).	The	idea	is	that	you	could	type	the	code	snippets	into	a
Python	shell	and	reproduce	the	expected	output.

Finally,	there	are	some	other	sections	in	monospace	font	that	are	not	preceded	by
a	>>>	line.	These	represent	the	output	of	running	programs	besides	the	normal
Python	interpreter.	These	examples	often	begin	with	$	characters	to	indicate	that
I’m	running	programs	from	a	command-line	shell	like	Bash.	If	you’re	running
these	commands	on	Windows	or	another	type	of	system,	you	may	need	to	adjust
the	program	names	and	arguments	accordingly.

Where	to	Get	the	Code	and	Errata
It’s	useful	to	view	some	of	the	examples	in	this	book	as	whole	programs	without
interleaved	prose.	This	also	gives	you	a	chance	to	tinker	with	the	code	yourself
and	understand	why	the	program	works	as	described.	You	can	find	the	source
code	for	all	code	snippets	in	this	book	on	the	book’s	website	at
https://effectivepython.com.	The	website	also	includes	any	corrections	to	the
book,	as	well	as	how	to	report	errors.

https://effectivepython.com

Acknowledgments

This	book	would	not	have	been	possible	without	the	guidance,	support,	and
encouragement	from	many	people	in	my	life.

Thanks	to	Scott	Meyers	for	the	Effective	Software	Development	series.	I	first
read	Effective	C++	when	I	was	15	years	old	and	fell	in	love	with	programming.
There’s	no	doubt	that	Scott’s	books	led	to	my	academic	experience	and	first	job.
I’m	thrilled	to	have	had	the	opportunity	to	write	this	book.

Thanks	to	my	technical	reviewers	for	the	depth	and	thoroughness	of	their
feedback	for	the	second	edition	of	this	book:	Andy	Chu,	Nick	Cohron,	Andrew
Dolan,	Asher	Mancinelli,	and	Alex	Martelli.	Thanks	to	my	colleagues	at	Google
for	their	review	and	input.	Without	all	of	your	help,	this	book	would	have	been
inscrutable.

Thanks	to	everyone	at	Pearson	involved	in	making	this	second	edition	a	reality.
Thanks	to	my	executive	editor	Debra	Williams	for	being	supportive	throughout
the	process.	Thanks	to	the	team	who	were	instrumental:	development	editor
Chris	Zahn,	marketing	manager	Stephane	Nakib,	copy	editor	Catherine	Wilson,
senior	project	editor	Lori	Lyons,	and	cover	designer	Chuti	Prasertsith.

Thanks	to	everyone	who	supported	me	in	creating	the	first	edition	of	this	book:
Trina	MacDonald,	Brett	Cannon,	Tavis	Rudd,	Mike	Taylor,	Leah	Culver,	Adrian
Holovaty,	Michael	Levine,	Marzia	Niccolai,	Ade	Oshineye,	Katrina	Sostek,	Tom
Cirtin,	Chris	Zahn,	Olivia	Basegio,	Stephane	Nakib,	Stephanie	Geels,	Julie
Nahil,	and	Toshiaki	Kurokawa.	Thanks	to	all	of	the	readers	who	reported	errors
and	room	for	improvement.	Thanks	to	all	of	the	translators	who	made	the	book
available	in	other	languages	around	the	world.

Thanks	to	the	wonderful	Python	programmers	I’ve	known	and	worked	with:
Anthony	Baxter,	Brett	Cannon,	Wesley	Chun,	Jeremy	Hylton,	Alex	Martelli,
Neal	Norwitz,	Guido	van	Rossum,	Andy	Smith,	Greg	Stein,	and	Ka-Ping	Yee.	I
appreciate	your	tutelage	and	leadership.	Python	has	an	excellent	community,	and
I	feel	lucky	to	be	a	part	of	it.

Thanks	to	my	teammates	over	the	years	for	letting	me	be	the	worst	player	in	the
band.	Thanks	to	Kevin	Gibbs	for	helping	me	take	risks.	Thanks	to	Ken	Ashcraft,
Ryan	Barrett,	and	Jon	McAlister	for	showing	me	how	it’s	done.	Thanks	to	Brad
Fitzpatrick	for	taking	it	to	the	next	level.	Thanks	to	Paul	McDonald	for	being	an

Fitzpatrick	for	taking	it	to	the	next	level.	Thanks	to	Paul	McDonald	for	being	an
amazing	co-founder.	Thanks	to	Jeremy	Ginsberg,	Jack	Hebert,	John	Skidgel,
Evan	Martin,	Tony	Chang,	Troy	Trimble,	Tessa	Pupius,	and	Dylan	Lorimer	for
helping	me	learn.	Thanks	to	Sagnik	Nandy	and	Waleed	Ojeil	for	your
mentorship.

Thanks	to	the	inspiring	programming	and	engineering	teachers	that	I’ve	had:
Ben	Chelf,	Glenn	Cowan,	Vince	Hugo,	Russ	Lewin,	Jon	Stemmle,	Derek
Thomson,	and	Daniel	Wang.	Without	your	instruction,	I	would	never	have
pursued	our	craft	or	gained	the	perspective	required	to	teach	others.

Thanks	to	my	mother	for	giving	me	a	sense	of	purpose	and	encouraging	me	to
become	a	programmer.	Thanks	to	my	brother,	my	grandparents,	and	the	rest	of
my	family	and	childhood	friends	for	being	role	models	as	I	grew	up	and	found
my	passion.

Finally,	thanks	to	my	wife,	Colleen,	for	her	love,	support,	and	laughter	through
the	journey	of	life.

About	the	Author

Brett	Slatkin	is	a	principal	software	engineer	at	Google.	He	is	the	technical	co-
founder	of	Google	Surveys,	the	co-creator	of	the	PubSubHubbub	protocol,	and
he	launched	Google’s	first	cloud	computing	product	(App	Engine).	Fourteen
years	ago,	he	cut	his	teeth	using	Python	to	manage	Google’s	enormous	fleet	of
servers.

Outside	of	his	day	job,	he	likes	to	play	piano	and	surf	(both	poorly).	He	also
enjoys	writing	about	programming-related	topics	on	his	personal	website
(https://onebigfluke.com).	He	earned	his	B.S.	in	computer	engineering	from
Columbia	University	in	the	City	of	New	York.	He	lives	in	San	Francisco.

https://onebigfluke.com

1.	Pythonic	Thinking

The	idioms	of	a	programming	language	are	defined	by	its	users.	Over	the	years,
the	Python	community	has	come	to	use	the	adjective	Pythonic	to	describe	code
that	follows	a	particular	style.	The	Pythonic	style	isn’t	regimented	or	enforced
by	the	compiler.	It	has	emerged	over	time	through	experience	using	the	language
and	working	with	others.	Python	programmers	prefer	to	be	explicit,	to	choose
simple	over	complex,	and	to	maximize	readability.	(Type	import	this	into	your
interpreter	to	read	The	Zen	of	Python.)

Programmers	familiar	with	other	languages	may	try	to	write	Python	as	if	it’s
C++,	Java,	or	whatever	they	know	best.	New	programmers	may	still	be	getting
comfortable	with	the	vast	range	of	concepts	that	can	be	expressed	in	Python.	It’s
important	for	you	to	know	the	best—the	Pythonic—way	to	do	the	most	common
things	in	Python.	These	patterns	will	affect	every	program	you	write.

Item	1:	Know	Which	Version	of	Python	You’re	Using
Throughout	this	book,	the	majority	of	example	code	is	in	the	syntax	of	Python
3.7	(released	in	June	2018).	This	book	also	provides	some	examples	in	the
syntax	of	Python	3.8	(released	in	October	2019)	to	highlight	new	features	that
will	be	more	widely	available	soon.	This	book	does	not	cover	Python	2.

Many	computers	come	with	multiple	versions	of	the	standard	CPython	runtime
preinstalled.	However,	the	default	meaning	of	python	on	the	command	line	may
not	be	clear.	python	is	usually	an	alias	for	python2.7,	but	it	can	sometimes	be	an
alias	for	even	older	versions,	like	python2.6	or	python2.5.	To	find	out	exactly
which	version	of	Python	you’re	using,	you	can	use	the	--version	flag:
$	python	--version

Python	2.7.10

Python	3	is	usually	available	under	the	name	python3:
$	python3	--version

Python	3.8.0

You	can	also	figure	out	the	version	of	Python	you’re	using	at	runtime	by
inspecting	values	in	the	sys	built-in	module:

Click	here	to	view	code	image
import	sys

print(sys.version_info)

print(sys.version)

>>>

sys.version_info(major=3,	minor=8,	micro=0,

➥releaselevel='final',	serial=0)
3.8.0	(default,	Oct	21	2019,	12:51:32)

[Clang	6.0	(clang-600.0.57)]

Python	3	is	actively	maintained	by	the	Python	core	developers	and	community,
and	it	is	constantly	being	improved.	Python	3	includes	a	variety	of	powerful	new
features	that	are	covered	in	this	book.	The	majority	of	Python’s	most	common
open	source	libraries	are	compatible	with	and	focused	on	Python	3.	I	strongly
encourage	you	to	use	Python	3	for	all	your	Python	projects.

Python	2	is	scheduled	for	end	of	life	after	January	1,	2020,	at	which	point	all
forms	of	bug	fixes,	security	patches,	and	backports	of	features	will	cease.	Using
Python	2	after	that	date	is	a	liability	because	it	will	no	longer	be	officially
maintained.	If	you’re	still	stuck	working	in	a	Python	2	codebase,	you	should
consider	using	helpful	tools	like	2to3	(preinstalled	with	Python)	and	six
(available	as	a	community	package;	see	Item	82:	“Know	Where	to	Find
Community-Built	Modules”)	to	help	you	make	the	transition	to	Python	3.

Things	to	Remember

✦	Python	3	is	the	most	up-to-date	and	well-supported	version	of	Python,	and
you	should	use	it	for	your	projects.

✦	Be	sure	that	the	command-line	executable	for	running	Python	on	your
system	is	the	version	you	expect	it	to	be.

✦	Avoid	Python	2	because	it	will	no	longer	be	maintained	after	January	1,
2020.

Item	2:	Follow	the	PEP	8	Style	Guide
Python	Enhancement	Proposal	#8,	otherwise	known	as	PEP	8,	is	the	style	guide
for	how	to	format	Python	code.	You	are	welcome	to	write	Python	code	any	way
you	want,	as	long	as	it	has	valid	syntax.	However,	using	a	consistent	style	makes
your	code	more	approachable	and	easier	to	read.	Sharing	a	common	style	with

other	Python	programmers	in	the	larger	community	facilitates	collaboration	on
projects.	But	even	if	you	are	the	only	one	who	will	ever	read	your	code,
following	the	style	guide	will	make	it	easier	for	you	to	change	things	later,	and
can	help	you	avoid	many	common	errors.

PEP	8	provides	a	wealth	of	details	about	how	to	write	clear	Python	code.	It
continues	to	be	updated	as	the	Python	language	evolves.	It’s	worth	reading	the
whole	guide	online	(https://www.python.org/dev/peps/pep-0008/).	Here	are	a
few	rules	you	should	be	sure	to	follow.

Whitespace
In	Python,	whitespace	is	syntactically	significant.	Python	programmers	are
especially	sensitive	to	the	effects	of	whitespace	on	code	clarity.	Follow	these
guidelines	related	to	whitespace:

Use	spaces	instead	of	tabs	for	indentation.

Use	four	spaces	for	each	level	of	syntactically	significant	indenting.

Lines	should	be	79	characters	in	length	or	less.

Continuations	of	long	expressions	onto	additional	lines	should	be	indented
by	four	extra	spaces	from	their	normal	indentation	level.

In	a	file,	functions	and	classes	should	be	separated	by	two	blank	lines.

In	a	class,	methods	should	be	separated	by	one	blank	line.

In	a	dictionary,	put	no	whitespace	between	each	key	and	colon,	and	put	a
single	space	before	the	corresponding	value	if	it	fits	on	the	same	line.

Put	one—and	only	one—space	before	and	after	the	=	operator	in	a	variable
assignment.

For	type	annotations,	ensure	that	there	is	no	separation	between	the	variable
name	and	the	colon,	and	use	a	space	before	the	type	information.

Naming
PEP	8	suggests	unique	styles	of	naming	for	different	parts	in	the	language.	These
conventions	make	it	easy	to	distinguish	which	type	corresponds	to	each	name
when	reading	code.	Follow	these	guidelines	related	to	naming:

Functions,	variables,	and	attributes	should	be	in	lowercase_underscore

https://www.python.org/dev/peps/pep-0008/

format.

Protected	instance	attributes	should	be	in	_leading_underscore	format.

Private	instance	attributes	should	be	in	__double_leading_underscore
format.

Classes	(including	exceptions)	should	be	in	CapitalizedWord	format.

Module-level	constants	should	be	in	ALL_CAPS	format.

Instance	methods	in	classes	should	use	self,	which	refers	to	the	object,	as
the	name	of	the	first	parameter.

Class	methods	should	use	cls,	which	refers	to	the	class,	as	the	name	of	the
first	parameter.

Expressions	and	Statements
The	Zen	of	Python	states:	“There	should	be	one—and	preferably	only	one—
obvious	way	to	do	it.”	PEP	8	attempts	to	codify	this	style	in	its	guidance	for
expressions	and	statements:

Use	inline	negation	(if	a	is	not	b)	instead	of	negation	of	positive
expressions	(if	not	a	is	b).

Don’t	check	for	empty	containers	or	sequences	(like	[]	or	'')	by	comparing
the	length	to	zero	(if	len(somelist)	==	0).	Use	if	not	somelist	and
assume	that	empty	values	will	implicitly	evaluate	to	False.

The	same	thing	goes	for	non-empty	containers	or	sequences	(like	[1]	or
'hi').	The	statement	if	somelist	is	implicitly	True	for	non-empty	values.

Avoid	single-line	if	statements,	for	and	while	loops,	and	except
compound	statements.	Spread	these	over	multiple	lines	for	clarity.

If	you	can’t	fit	an	expression	on	one	line,	surround	it	with	parentheses	and
add	line	breaks	and	indentation	to	make	it	easier	to	read.

Prefer	surrounding	multiline	expressions	with	parentheses	over	using	the	\
line	continuation	character.

Imports
PEP	8	suggests	some	guidelines	for	how	to	import	modules	and	use	them	in	your
code:

Always	put	import	statements	(including	from	x	import	y)	at	the	top	of	a
file.

Always	use	absolute	names	for	modules	when	importing	them,	not	names
relative	to	the	current	module’s	own	path.	For	example,	to	import	the	foo
module	from	within	the	bar	package,	you	should	use	from	bar	import	foo,
not	just	import	foo.

If	you	must	do	relative	imports,	use	the	explicit	syntax	from	.	import	foo.

Imports	should	be	in	sections	in	the	following	order:	standard	library
modules,	third-party	modules,	your	own	modules.	Each	subsection	should
have	imports	in	alphabetical	order.

Note
The	Pylint	 tool	 (https://www.pylint.org)	 is	 a	 popular	 static	 analyzer	 for
Python	source	code.	Pylint	provides	automated	enforcement	of	the	PEP	8
style	 guide	 and	 detects	many	 other	 types	 of	 common	 errors	 in	 Python
programs.	Many	 IDEs	 and	 editors	 also	 include	 linting	 tools	 or	 support
similar	plug-ins.

Things	to	Remember

✦	Always	follow	the	Python	Enhancement	Proposal	#8	(PEP	8)	style	guide
when	writing	Python	code.

✦	Sharing	a	common	style	with	the	larger	Python	community	facilitates
collaboration	with	others.

✦	Using	a	consistent	style	makes	it	easier	to	modify	your	own	code	later.

Item	3:	Know	the	Differences	Between	bytes	and	str
In	Python,	there	are	two	types	that	represent	sequences	of	character	data:	bytes
and	str.	Instances	of	bytes	contain	raw,	unsigned	8-bit	values	(often	displayed
in	the	ASCII	encoding):
a	=	b'h\x65llo'

print(list(a))

print(a)

https://www.pylint.org

>>>

[104,	101,	108,	108,	111]

b'hello'

Instances	of	str	contain	Unicode	code	points	that	represent	textual	characters
from	human	languages:

Click	here	to	view	code	image
a	=	'a\u0300	propos'

print(list(a))

print(a)

>>>

['a',	'ˋ',	'	',	'p',	'r',	'o',	'p',	'o',	's']

à	propos

Importantly,	str	instances	do	not	have	an	associated	binary	encoding,	and	bytes
instances	do	not	have	an	associated	text	encoding.	To	convert	Unicode	data	to
binary	data,	you	must	call	the	encode	method	of	str.	To	convert	binary	data	to
Unicode	data,	you	must	call	the	decode	method	of	bytes.	You	can	explicitly
specify	the	encoding	you	want	to	use	for	these	methods,	or	accept	the	system
default,	which	is	commonly	UTF-8	(but	not	always—see	more	on	that	below).

When	you’re	writing	Python	programs,	it’s	important	to	do	encoding	and
decoding	of	Unicode	data	at	the	furthest	boundary	of	your	interfaces;	this
approach	is	often	called	the	Unicode	sandwich.	The	core	of	your	program	should
use	the	str	type	containing	Unicode	data	and	should	not	assume	anything	about
character	encodings.	This	approach	allows	you	to	be	very	accepting	of
alternative	text	encodings	(such	as	Latin-1,	Shift	JIS,	and	Big5)	while	being	strict
about	your	output	text	encoding	(ideally,	UTF-8).

The	split	between	character	types	leads	to	two	common	situations	in	Python
code:

You	want	to	operate	on	raw	8-bit	sequences	that	contain	UTF-8-encoded
strings	(or	some	other	encoding).

You	want	to	operate	on	Unicode	strings	that	have	no	specific	encoding.

You’ll	often	need	two	helper	functions	to	convert	between	these	cases	and	to
ensure	that	the	type	of	input	values	matches	your	code’s	expectations.

The	first	function	takes	a	bytes	or	str	instance	and	always	returns	a	str:

Click	here	to	view	code	image
def	to_str(bytes_or_str):

				if	isinstance(bytes_or_str,	bytes):

								value	=	bytes_or_str.decode('utf-8')

				else:

								value	=	bytes_or_str

				return	value		#	Instance	of	str

print(repr(to_str(b'foo')))

print(repr(to_str('bar')))

>>>

'foo'

'bar'

The	second	function	takes	a	bytes	or	str	instance	and	always	returns	a	bytes:

Click	here	to	view	code	image
def	to_bytes(bytes_or_str):

				if	isinstance(bytes_or_str,	str):

								value	=	bytes_or_str.encode('utf-8')

				else:

								value	=	bytes_or_str

				return	value		#	Instance	of	bytes

print(repr(to_bytes(b'foo')))

print(repr(to_bytes('bar')))

There	are	two	big	gotchas	when	dealing	with	raw	8-bit	values	and	Unicode
strings	in	Python.

The	first	issue	is	that	bytes	and	str	seem	to	work	the	same	way,	but	their
instances	are	not	compatible	with	each	other,	so	you	must	be	deliberate	about	the
types	of	character	sequences	that	you’re	passing	around.

By	using	the	+	operator,	you	can	add	bytes	to	bytes	and	str	to	str,	respectively:
print(b'one'	+	b'two')

print('one'	+	'two')

>>>

b'onetwo'

onetwo

But	you	can’t	add	str	instances	to	bytes	instances:

Click	here	to	view	code	image
b'one'	+	'two'

>>>

Traceback	...

TypeError:	can't	concat	str	to	bytes

Nor	can	you	add	bytes	instances	to	str	instances:

Click	here	to	view	code	image
'one'	+	b'two'

>>>

Traceback	...

TypeError:	can	only	concatenate	str	(not	"bytes")	to	str

By	using	binary	operators,	you	can	compare	bytes	to	bytes	and	str	to	str,
respectively:
assert	b'red'	>	b'blue'

assert	'red'	>	'blue'

But	you	can’t	compare	a	str	instance	to	a	bytes	instance:

Click	here	to	view	code	image
assert	'red'	>	b'blue'

>>>

Traceback	...

TypeError:	'>'	not	supported	between	instances	of	'str'	and

➥'bytes'

Nor	can	you	compare	a	bytes	instance	to	a	str	instance:

Click	here	to	view	code	image
assert	b'blue'	<	'red'

>>>

Traceback	...

TypeError:	'<'	not	supported	between	instances	of	'bytes'

➥and	'str'

Comparing	bytes	and	str	instances	for	equality	will	always	evaluate	to	False,
even	when	they	contain	exactly	the	same	characters	(in	this	case,	ASCII-encoded
“foo”):
print(b'foo'	==	'foo')

>>>

False

The	%	operator	works	with	format	strings	for	each	type,	respectively:
print(b'red	%s'	%	b'blue')

print('red	%s'	%	'blue')

>>>

b'red	blue'

red	blue

But	you	can’t	pass	a	str	instance	to	a	bytes	format	string	because	Python
doesn’t	know	what	binary	text	encoding	to	use:

Click	here	to	view	code	image
print(b'red	%s'	%	'blue')

>>>

Traceback	...

TypeError:	%b	requires	a	bytes-like	object,	or	an	object	that

➥implements	__bytes__,	not	'str'

You	can	pass	a	bytes	instance	to	a	str	format	string	using	the	%	operator,	but	it
doesn’t	do	what	you’d	expect:
print('red	%s'	%	b'blue')

>>>

red	b'blue'

This	code	actually	invokes	the	__repr__	method	(see	Item	75:	“Use	repr	Strings
for	Debugging	Output”)	on	the	bytes	instance	and	substitutes	that	in	place	of	the
%s,	which	is	why	b'blue'	remains	escaped	in	the	output.

The	second	issue	is	that	operations	involving	file	handles	(returned	by	the	open
built-in	function)	default	to	requiring	Unicode	strings	instead	of	raw	bytes.	This
can	cause	surprising	failures,	especially	for	programmers	accustomed	to	Python
2.	For	example,	say	that	I	want	to	write	some	binary	data	to	a	file.	This
seemingly	simple	code	breaks:

Click	here	to	view	code	image
with	open('data.bin',	'w')	as	f:

				f.write(b'\xf1\xf2\xf3\xf4\xf5')

>>>

Traceback	...

TypeError:	write()	argument	must	be	str,	not	bytes

The	cause	of	the	exception	is	that	the	file	was	opened	in	write	text	mode	('w')
instead	of	write	binary	mode	('wb').	When	a	file	is	in	text	mode,	write
operations	expect	str	instances	containing	Unicode	data	instead	of	bytes
instances	containing	binary	data.	Here,	I	fix	this	by	changing	the	open	mode	to
'wb':
with	open('data.bin',	'wb')	as	f:

				f.write(b'\xf1\xf2\xf3\xf4\xf5')

A	similar	problem	also	exists	for	reading	data	from	files.	For	example,	here	I	try
to	read	the	binary	file	that	was	written	above:

Click	here	to	view	code	image
with	open('data.bin',	'r')	as	f:

			data	=	f.read()

>>>

Traceback	...

UnicodeDecodeError:	'utf-8'	codec	can't	decode	byte	0xf1	in

➥position	0:	invalid	continuation	byte

This	fails	because	the	file	was	opened	in	read	text	mode	('r')	instead	of	read
binary	mode	('rb').	When	a	handle	is	in	text	mode,	it	uses	the	system’s	default
text	encoding	to	interpret	binary	data	using	the	bytes.encode	(for	writing)	and
str.decode	(for	reading)	methods.	On	most	systems,	the	default	encoding	is
UTF-8,	which	can’t	accept	the	binary	data	b'\xf1\xf2\xf3\xf4\xf5',	thus
causing	the	error	above.	Here,	I	solve	this	problem	by	changing	the	open	mode
to	'rb':

Click	here	to	view	code	image
with	open('data.bin',	'rb')	as	f:

				data	=	f.read()

assert	data	==	b'\xf1\xf2\xf3\xf4\xf5'

Alternatively,	I	can	explicitly	specify	the	encoding	parameter	to	the	open
function	to	make	sure	that	I’m	not	surprised	by	any	platform-specific	behavior.
For	example,	here	I	assume	that	the	binary	data	in	the	file	was	actually	meant	to
be	a	string	encoded	as	'cp1252'	(a	legacy	Windows	encoding):

Click	here	to	view	code	image
with	open('data.bin',	'r',	encoding='cp1252')	as	f:

				data	=	f.read()

assert	data	==	'ñòóôõ'

The	exception	is	gone,	and	the	string	interpretation	of	the	file’s	contents	is	very
different	from	what	was	returned	when	reading	raw	bytes.	The	lesson	here	is	that
you	should	check	the	default	encoding	on	your	system	(using	python3	-c
'import	locale;	print(locale.	getpreferredencoding())')	to	understand	how
it	differs	from	your	expectations.	When	in	doubt,	you	should	explicitly	pass	the
encoding	parameter	to	open.

Things	to	Remember

✦	bytes	contains	sequences	of	8-bit	values,	and	str	contains	sequences	of
Unicode	code	points.

✦	Use	helper	functions	to	ensure	that	the	inputs	you	operate	on	are	the	type	of
character	sequence	that	you	expect	(8-bit	values,	UTF-8-encoded	strings,
Unicode	code	points,	etc).

✦	bytes	and	str	instances	can’t	be	used	together	with	operators	(like	>,	==,	+,
and	%).

✦	If	you	want	to	read	or	write	binary	data	to/from	a	file,	always	open	the	file
using	a	binary	mode	(like	'rb'	or	'wb').

✦	If	you	want	to	read	or	write	Unicode	data	to/from	a	file,	be	careful	about
your	system’s	default	text	encoding.	Explicitly	pass	the	encoding	parameter
to	open	if	you	want	to	avoid	surprises.

Item	4:	Prefer	Interpolated	F-Strings	Over	C-style
Format	Strings	and	str.format

Strings	are	present	throughout	Python	codebases.	They’re	used	for	rendering
messages	in	user	interfaces	and	command-line	utilities.	They’re	used	for	writing
data	to	files	and	sockets.	They’re	used	for	specifying	what’s	gone	wrong	in
Exception	details	(see	Item	27:	“Use	Comprehensions	Instead	of	map	and
filter”).	They’re	used	in	debugging	(see	Item	80:	“Consider	Interactive
Debugging	with	pdb”	and	Item	75:	“Use	repr	Strings	for	Debugging	Output”).

Formatting	is	the	process	of	combining	predefined	text	with	data	values	into	a
single	human-readable	message	that’s	stored	as	a	string.	Python	has	four

different	ways	of	formatting	strings	that	are	built	into	the	language	and	standard
library.	All	but	one	of	them,	which	is	covered	last	in	this	item,	have	serious
shortcomings	that	you	should	understand	and	avoid.

The	most	common	way	to	format	a	string	in	Python	is	by	using	the	%	formatting
operator.	The	predefined	text	template	is	provided	on	the	left	side	of	the	operator
in	a	format	string.	The	values	to	insert	into	the	template	are	provided	as	a	single
value	or	tuple	of	multiple	values	on	the	right	side	of	the	format	operator.	For
example,	here	I	use	the	%	operator	to	convert	difficult-to-read	binary	and
hexadecimal	values	to	integer	strings:

Click	here	to	view	code	image
a	=	0b10111011

b	=	0xc5f

print('Binary	is	%d,	hex	is	%d'	%	(a,	b))

>>>

Binary	is	187,	hex	is	3167

The	format	string	uses	format	specifiers	(like	%d)	as	placeholders	that	will	be
replaced	by	values	from	the	right	side	of	the	formatting	expression.	The	syntax
for	format	specifiers	comes	from	C’s	printf	function,	which	has	been	inherited
by	Python	(as	well	as	by	other	programming	languages).	Python	supports	all	the
usual	options	you’d	expect	from	printf,	such	as	%s,	%x,	and	%f	format	specifiers,
as	well	as	control	over	decimal	places,	padding,	fill,	and	alignment.	Many
programmers	who	are	new	to	Python	start	with	C-style	format	strings	because
they’re	familiar	and	simple	to	use.

There	are	four	problems	with	C-style	format	strings	in	Python.

The	first	problem	is	that	if	you	change	the	type	or	order	of	data	values	in	the
tuple	on	the	right	side	of	a	formatting	expression,	you	can	get	errors	due	to	type
conversion	incompatibility.	For	example,	this	simple	formatting	expression
works:

Click	here	to	view	code	image
key	=	'my_var'

value	=	1.234

formatted	=	'%-10s	=	%.2f'	%	(key,	value)

print(formatted)

>>>

my_var					=	1.23

But	if	you	swap	key	and	value,	you	get	an	exception	at	runtime:

Click	here	to	view	code	image
reordered_tuple	=	'%-10s	=	%.2f'	%	(value,	key)

>>>

Traceback	...

TypeError:	must	be	real	number,	not	str

Similarly,	leaving	the	right	side	parameters	in	the	original	order	but	changing	the
format	string	results	in	the	same	error:

Click	here	to	view	code	image
reordered_string	=	'%.2f	=	%-10s'	%	(key,	value)

>>>

Traceback	...

TypeError:	must	be	real	number,	not	str

To	avoid	this	gotcha,	you	need	to	constantly	check	that	the	two	sides	of	the	%
operator	are	in	sync;	this	process	is	error	prone	because	it	must	be	done
manually	for	every	change.

The	second	problem	with	C-style	formatting	expressions	is	that	they	become
difficult	to	read	when	you	need	to	make	small	modifications	to	values	before
formatting	them	into	a	string—and	this	is	an	extremely	common	need.	Here,	I
list	the	contents	of	my	kitchen	pantry	without	making	inline	changes:

Click	here	to	view	code	image
pantry	=	[

				('avocados',	1.25),

				('bananas',	2.5),

				('cherries',	15),

]

for	i,	(item,	count)	in	enumerate(pantry):

				print('#%d:	%-10s	=	%.2f'	%	(i,	item,	count))

>>>

#0:	avocados				=	1.25

#1:	bananas					=	2.50

#2:	cherries				=	15.00

Now,	I	make	a	few	modifications	to	the	values	that	I’m	formatting	to	make	the
printed	message	more	useful.	This	causes	the	tuple	in	the	formatting	expression
to	become	so	long	that	it	needs	to	be	split	across	multiple	lines,	which	hurts

readability:

Click	here	to	view	code	image
for	i,	(item,	count)	in	enumerate(pantry):

				print('#%d:	%-10s	=	%d'	%	(

								i	+	1,

								item.title(),

								round(count)))

>>>

#1:	Avocados			=	1

#2:	Bananas				=	2

#3:	Cherries			=	15

The	third	problem	with	formatting	expressions	is	that	if	you	want	to	use	the
same	value	in	a	format	string	multiple	times,	you	have	to	repeat	it	in	the	right
side	tuple:

Click	here	to	view	code	image
template	=	'%s	loves	food.	See	%s	cook.'

name	=	'Max'

formatted	=	template	%	(name,	name)

print(formatted)

>>>

Max	loves	food.	See	Max	cook.

This	is	especially	annoying	and	error	prone	if	you	have	to	repeat	small
modifications	to	the	values	being	formatted.	For	example,	here	I	remembered	to
call	the	title()	method	multiple	times,	but	I	could	have	easily	added	the	method
call	to	one	reference	to	name	and	not	the	other,	which	would	cause	mismatched
output:

Click	here	to	view	code	image
name	=	'brad'

formatted	=	template	%	(name.title(),	name.title())

print(formatted)

>>>

Brad	loves	food.	See	Brad	cook.

To	help	solve	some	of	these	problems,	the	%	operator	in	Python	has	the	ability	to
also	do	formatting	with	a	dictionary	instead	of	a	tuple.	The	keys	from	the
dictionary	are	matched	with	format	specifiers	with	the	corresponding	name,	such

as	%(key)s.	Here,	I	use	this	functionality	to	change	the	order	of	values	on	the
right	side	of	the	formatting	expression	with	no	effect	on	the	output,	thus	solving
problem	#1	from	above:

Click	here	to	view	code	image
key	=	'my_var'

value	=	1.234

old_way	=	'%-10s	=	%.2f'	%	(key,	value)

new_way	=	'%(key)-10s	=	%(value).2f'	%	{

				'key':	key,	'value':	value}	#	Original

reordered	=	'%(key)-10s	=	%(value).2f'	%	{

				'value':	value,	'key':	key}	#	Swapped

assert	old_way	==	new_way	==	reordered

Using	dictionaries	in	formatting	expressions	also	solves	problem	#3	from	above
by	allowing	multiple	format	specifiers	to	reference	the	same	value,	thus	making
it	unnecessary	to	supply	that	value	more	than	once:

Click	here	to	view	code	image
name	=	'Max'

template	=	'%s	loves	food.	See	%s	cook.'

before	=	template	%	(name,	name)	#	Tuple

template	=	'%(name)s	loves	food.	See	%(name)s	cook.'

after	=	template	%	{'name':	name}	#	Dictionary

assert	before	==	after

However,	dictionary	format	strings	introduce	and	exacerbate	other	issues.	For
problem	#2	above,	regarding	small	modifications	to	values	before	formatting
them,	formatting	expressions	become	longer	and	more	visually	noisy	because	of
the	presence	of	the	dictionary	key	and	colon	operator	on	the	right	side.	Here,	I
render	the	same	string	with	and	without	dictionaries	to	show	this	problem:

Click	here	to	view	code	image
for	i,	(item,	count)	in	enumerate(pantry):

				before	=	'#%d:	%-10s	=	%d'	%	(

								i	+	1,

								item.title(),

								round(count))

				after	=	'#%(loop)d:	%(item)-10s	=	%(count)d'	%	{

								'loop':	i	+	1,

								'item':	item.title(),

								'count':	round(count),

				}

				assert	before	==	after

Using	dictionaries	in	formatting	expressions	also	increases	verbosity,	which	is
problem	#4	with	C-style	formatting	expressions	in	Python.	Each	key	must	be
specified	at	least	twice—once	in	the	format	specifier,	once	in	the	dictionary	as	a
key,	and	potentially	once	more	for	the	variable	name	that	contains	the	dictionary
value:

Click	here	to	view	code	image
soup	=	'lentil'

formatted	=	'Today\'s	soup	is	%(soup)s.'	%	{'soup':	soup}

print(formatted)

>>>

Today's	soup	is	lentil.

Besides	the	duplicative	characters,	this	redundancy	causes	formatting
expressions	that	use	dictionaries	to	be	long.	These	expressions	often	must	span
multiple	lines,	with	the	format	strings	being	concatenated	across	multiple	lines
and	the	dictionary	assignments	having	one	line	per	value	to	use	in	formatting:

Click	here	to	view	code	image
menu	=	{

				'soup':	'lentil',

				'oyster':	'kumamoto',

				'special':	'schnitzel',

}

template	=	('Today\'s	soup	is	%(soup)s,	'

												'buy	one	get	two	%(oyster)s	oysters,	'

												'and	our	special	entrée	is	%(special)s.')

formatted	=	template	%	menu

print(formatted)

>>>

Today's	soup	is	lentil,	buy	one	get	two	kumamoto	oysters,	and

➥our	special	entrée	is	schnitzel.

To	understand	what	this	formatting	expression	is	going	to	produce,	your	eyes
have	to	keep	going	back	and	forth	between	the	lines	of	the	format	string	and	the
lines	of	the	dictionary.	This	disconnect	makes	it	hard	to	spot	bugs,	and
readability	gets	even	worse	if	you	need	to	make	small	modifications	to	any	of
the	values	before	formatting.

There	must	be	a	better	way.

The	format	Built-in	and	str.format
Python	3	added	support	for	advanced	string	formatting	that	is	more	expressive
than	the	old	C-style	format	strings	that	use	the	%	operator.	For	individual	Python
values,	this	new	functionality	can	be	accessed	through	the	format	built-in
function.	For	example,	here	I	use	some	of	the	new	options	(,	for	thousands
separators	and	^	for	centering)	to	format	values:
a	=	1234.5678

formatted	=	format(a,	',.2f')

print(formatted)

b	=	'my	string'

formatted	=	format(b,	'^20s')

print('*',	formatted,	'*')

>>>

1,234.57

*					my	string					*

You	can	use	this	functionality	to	format	multiple	values	together	by	calling	the
new	format	method	of	the	str	type.	Instead	of	using	C-style	format	specifiers
like	%d,	you	can	specify	placeholders	with	{}.	By	default	the	placeholders	in	the
format	string	are	replaced	by	the	corresponding	positional	arguments	passed	to
the	format	method	in	the	order	in	which	they	appear:

Click	here	to	view	code	image
key	=	'my_var'

value	=	1.234

formatted	=	'{}	=	{}'.format(key,	value)

print(formatted)

>>>

my_var	=	1.234

Within	each	placeholder	you	can	optionally	provide	a	colon	character	followed

by	format	specifiers	to	customize	how	values	will	be	converted	into	strings	(see
help('FORMATTING')	for	the	full	range	of	options):

Click	here	to	view	code	image
formatted	=	'{:<10}	=	{:.2f}'.format(key,	value)

print(formatted)

>>>

my_var						=	1.23

The	way	to	think	about	how	this	works	is	that	the	format	specifiers	will	be
passed	to	the	format	built-in	function	along	with	the	value	(format(value,
'.2f')	in	the	example	above).	The	result	of	that	function	call	is	what	replaces
the	placeholder	in	the	overall	formatted	string.	The	formatting	behavior	can	be
customized	per	class	using	the	__format__	special	method.

With	C-style	format	strings,	you	need	to	escape	the	%	character	(by	doubling	it)
so	it’s	not	interpreted	as	a	placeholder	accidentally.	With	the	str.format	method
you	need	to	similarly	escape	braces:

Click	here	to	view	code	image
print('%.2f%%'	%	12.5)

print('{}	replaces	{{}}'.format(1.23))

>>>

12.50%

1.23	replaces	{}

Within	the	braces	you	may	also	specify	the	positional	index	of	an	argument
passed	to	the	format	method	to	use	for	replacing	the	placeholder.	This	allows	the
format	string	to	be	updated	to	reorder	the	output	without	requiring	you	to	also
change	the	right	side	of	the	formatting	expression,	thus	addressing	problem	#1
from	above:

Click	here	to	view	code	image
formatted	=	'{1}	=	{0}'.format(key,	value)

print(formatted)

>>>

1.234	=	my_var

The	same	positional	index	may	also	be	referenced	multiple	times	in	the	format
string	without	the	need	to	pass	the	value	to	the	format	method	more	than	once,

which	solves	problem	#3	from	above:

Click	here	to	view	code	image
formatted	=	'{0}	loves	food.	See	{0}	cook.'.format(name)

print(formatted)

>>>

Max	loves	food.	See	Max	cook.

Unfortunately,	the	new	format	method	does	nothing	to	address	problem	#2	from
above,	leaving	your	code	difficult	to	read	when	you	need	to	make	small
modifications	to	values	before	formatting	them.	There’s	little	difference	in
readability	between	the	old	and	new	options,	which	are	similarly	noisy:

Click	here	to	view	code	image
for	i,	(item,	count)	in	enumerate(pantry):

				old_style	=	'#%d:	%-10s	=	%d'	%	(

								i	+	1,

								item.title(),

								round(count))

				new_style	=	'#{}:	{:<10s}	=	{}'.format(

								i	+	1,

								item.title(),

								round(count))

				assert	old_style	==	new_style

There	are	even	more	advanced	options	for	the	specifiers	used	with	the
str.format	method,	such	as	using	combinations	of	dictionary	keys	and	list
indexes	in	placeholders,	and	coercing	values	to	Unicode	and	repr	strings:

Click	here	to	view	code	image
formatted	=	'First	letter	is	{menu[oyster][0]!r}'.format(

				menu=menu)

print(formatted)

>>>

First	letter	is	'k'

But	these	features	don’t	help	reduce	the	redundancy	of	repeated	keys	from
problem	#4	above.	For	example,	here	I	compare	the	verbosity	of	using
dictionaries	in	C-style	formatting	expressions	to	the	new	style	of	passing
keyword	arguments	to	the	format	method:

Click	here	to	view	code	image
old_template	=	(

				'Today\'s	soup	is	%(soup)s,	'

				'buy	one	get	two	%(oyster)s	oysters,	'

				'and	our	special	entrée	is	%(special)s.')

old_formatted	=	template	%	{

				'soup':	'lentil',

				'oyster':	'kumamoto',

				'special':	'schnitzel',

}

new_template	=	(

				'Today\'s	soup	is	{soup},	'

				'buy	one	get	two	{oyster}	oysters,	'

				'and	our	special	entrée	is	{special}.')

new_formatted	=	new_template.format(

				soup='lentil',

				oyster='kumamoto',

				special='schnitzel',

)

assert	old_formatted	==	new_formatted

This	style	is	slightly	less	noisy	because	it	eliminates	some	quotes	in	the
dictionary	and	a	few	characters	in	the	format	specifiers,	but	it’s	hardly
compelling.	Further,	the	advanced	features	of	using	dictionary	keys	and	indexes
within	placeholders	only	provides	a	tiny	subset	of	Python’s	expression
functionality.	This	lack	of	expressiveness	is	so	limiting	that	it	undermines	the
value	of	the	format	method	from	str	overall.

Given	these	shortcomings	and	the	problems	from	C-style	formatting	expressions
that	remain	(problems	#2	and	#4	from	above),	I	suggest	that	you	avoid	the
str.format	method	in	general.	It’s	important	to	know	about	the	new	mini
language	used	in	format	specifiers	(everything	after	the	colon)	and	how	to	use
the	format	built-in	function.	But	the	rest	of	the	str.format	method	should	be
treated	as	a	historical	artifact	to	help	you	understand	how	Python’s	new	f-strings
work	and	why	they’re	so	great.

Interpolated	Format	Strings
Python	3.6	added	interpolated	format	strings—f-strings	for	short—to	solve	these
issues	once	and	for	all.	This	new	language	syntax	requires	you	to	prefix	format
strings	with	an	f	character,	which	is	similar	to	how	byte	strings	are	prefixed	with
a	b	character	and	raw	(unescaped)	strings	are	prefixed	with	an	r	character.

F-strings	take	the	expressiveness	of	format	strings	to	the	extreme,	solving
problem	#4	from	above	by	completely	eliminating	the	redundancy	of	providing
keys	and	values	to	be	formatted.	They	achieve	this	pithiness	by	allowing	you	to
reference	all	names	in	the	current	Python	scope	as	part	of	a	formatting
expression:
key	=	'my_var'

value	=	1.234

formatted	=	f'{key}	=	{value}'

print(formatted)

>>>

my_var	=	1.234

All	of	the	same	options	from	the	new	format	built-in	mini	language	are	available
after	the	colon	in	the	placeholders	within	an	f-string,	as	is	the	ability	to	coerce
values	to	Unicode	and	repr	strings	similar	to	the	str.format	method:

Click	here	to	view	code	image
formatted	=	f'{key!r:<10}	=	{value:.2f}'

print(formatted)

>>>

'my_var'	=	1.23

Formatting	with	f-strings	is	shorter	than	using	C-style	format	strings	with	the	%
operator	and	the	str.format	method	in	all	cases.	Here,	I	show	all	these	options
together	in	order	of	shortest	to	longest,	and	line	up	the	left	side	of	the	assignment
so	you	can	easily	compare	them:

Click	here	to	view	code	image
f_string	=	f'{key:<10}	=	{value:.2f}'

c_tuple		=	'%-10s	=	%.2f'	%	(key,	value)

str_args	=	'{:<10}	=	{:.2f}'.format(key,	value)

str_kw			=	'{key:<10}	=	{value:.2f}'.format(key=key,

																																										value=value)

c_dict			=	'%(key)-10s	=	%(value).2f'	%	{'key':	key,

																																							'value':	value}

assert	c_tuple	==	c_dict	==	f_string

assert	str_args	==	str_kw	==	f_string

F-strings	also	enable	you	to	put	a	full	Python	expression	within	the	placeholder
braces,	solving	problem	#2	from	above	by	allowing	small	modifications	to	the
values	being	formatted	with	concise	syntax.	What	took	multiple	lines	with	C-
style	formatting	and	the	str.format	method	now	easily	fits	on	a	single	line:

Click	here	to	view	code	image
for	i,	(item,	count)	in	enumerate(pantry):

				old_style	=	'#%d:	%-10s	=	%d'	%	(

								i	+	1,

								item.title(),

								round(count))

				new_style	=	'#{}:	{:<10s}	=	{}'.format(

								i	+	1,

								item.title(),

								round(count))

			f_string	=	f'#{i+1}:	{item.title():<10s}	=	{round(count)}'

			assert	old_style	==	new_style	==	f_string

Or,	if	it’s	clearer,	you	can	split	an	f-string	over	multiple	lines	by	relying	on
adjacent-string	concatenation	(similar	to	C).	Even	though	this	is	longer	than	the
single-line	version,	it’s	still	much	clearer	than	any	of	the	other	multiline
approaches:

Click	here	to	view	code	image
for	i,	(item,	count)	in	enumerate(pantry):

				print(f'#{i+1}:	'

										f'{item.title():<10s}	=	'

										f'{round(count)}')

>>>

#1:	Avocados			=	1

#2:	Bananas				=	2

#3:	Cherries			=	15

Python	expressions	may	also	appear	within	the	format	specifier	options.	For
example,	here	I	parameterize	the	number	of	digits	to	print	by	using	a	variable
instead	of	hard-coding	it	in	the	format	string:

Click	here	to	view	code	image

places	=	3

number	=	1.23456

print(f'My	number	is	{number:.{places}f}')

>>>

My	number	is	1.235

The	combination	of	expressiveness,	terseness,	and	clarity	provided	by	f-strings
makes	them	the	best	built-in	option	for	Python	programmers.	Any	time	you	find
yourself	needing	to	format	values	into	strings,	choose	f-strings	over	the
alternatives.

Things	to	Remember

✦	C-style	format	strings	that	use	the	%	operator	suffer	from	a	variety	of
gotchas	and	verbosity	problems.

✦	The	str.format	method	introduces	some	useful	concepts	in	its	formatting
specifiers	mini	language,	but	it	otherwise	repeats	the	mistakes	of	C-style
format	strings	and	should	be	avoided.

✦	F-strings	are	a	new	syntax	for	formatting	values	into	strings	that	solves	the
biggest	problems	with	C-style	format	strings.

✦	F-strings	are	succinct	yet	powerful	because	they	allow	for	arbitrary	Python
expressions	to	be	directly	embedded	within	format	specifiers.

Item	5:	Write	Helper	Functions	Instead	of	Complex
Expressions

Python’s	pithy	syntax	makes	it	easy	to	write	single-line	expressions	that
implement	a	lot	of	logic.	For	example,	say	that	I	want	to	decode	the	query	string
from	a	URL.	Here,	each	query	string	parameter	represents	an	integer	value:

Click	here	to	view	code	image
from	urllib.parse	import	parse_qs

my_values	=	parse_qs('red=5&blue=0&green=',

																					keep_blank_values=True)

print(repr(my_values))

>>>

{'red':	['5'],	'blue':	['0'],	'green':	['']}

Some	query	string	parameters	may	have	multiple	values,	some	may	have	single
values,	some	may	be	present	but	have	blank	values,	and	some	may	be	missing
entirely.	Using	the	get	method	on	the	result	dictionary	will	return	different
values	in	each	circumstance:

Click	here	to	view	code	image
print('Red:					',	my_values.get('red'))

print('Green:			',	my_values.get('green'))

print('Opacity:	',	my_values.get('opacity'))

>>>

Red:						['5']

Green:				['']

Opacity:		None

It’d	be	nice	if	a	default	value	of	0	were	assigned	when	a	parameter	isn’t	supplied
or	is	blank.	I	might	choose	to	do	this	with	Boolean	expressions	because	it	feels
like	this	logic	doesn’t	merit	a	whole	if	statement	or	helper	function	quite	yet.

Python’s	syntax	makes	this	choice	all	too	easy.	The	trick	here	is	that	the	empty
string,	the	empty	list,	and	zero	all	evaluate	to	False	implicitly.	Thus,	the
expressions	below	will	evaluate	to	the	subexpression	after	the	or	operator	when
the	first	subexpression	is	False:

Click	here	to	view	code	image
#	For	query	string	'red=5&blue=0&green='

red	=	my_values.get('red',	[''])[0]	or	0

green	=	my_values.get('green',	[''])[0]	or	0

opacity	=	my_values.get('opacity',	[''])[0]	or	0

print(f'Red:					{red!r}')

print(f'Green:			{green!r}')

print(f'Opacity:	{opacity!r}')

>>>

Red:					'5'

Green:			0

Opacity:	0

The	red	case	works	because	the	key	is	present	in	the	my_values	dictionary.	The
value	is	a	list	with	one	member:	the	string	'5'.	This	string	implicitly	evaluates
to	True,	so	red	is	assigned	to	the	first	part	of	the	or	expression.

The	green	case	works	because	the	value	in	the	my_values	dictionary	is	a	list
with	one	member:	an	empty	string.	The	empty	string	implicitly	evaluates	to

False,	causing	the	or	expression	to	evaluate	to	0.

The	opacity	case	works	because	the	value	in	the	my_values	dictionary	is	missing
altogether.	The	behavior	of	the	get	method	is	to	return	its	second	argument	if	the
key	doesn’t	exist	in	the	dictionary	(see	Item	16:	“Prefer	get	Over	in	and
KeyError	to	Handle	Missing	Dictionary	Keys”).	The	default	value	in	this	case	is
a	list	with	one	member:	an	empty	string.	When	opacity	isn’t	found	in	the
dictionary,	this	code	does	exactly	the	same	thing	as	the	green	case.

However,	this	expression	is	difficult	to	read,	and	it	still	doesn’t	do	everything	I
need.	I’d	also	want	to	ensure	that	all	the	parameter	values	are	converted	to
integers	so	I	can	immediately	use	them	in	mathematical	expressions.	To	do	that,
I’d	wrap	each	expression	with	the	int	built-in	function	to	parse	the	string	as	an
integer:

Click	here	to	view	code	image
red	=	int(my_values.get('red',	[''])[0]	or	0)

This	is	now	extremely	hard	to	read.	There’s	so	much	visual	noise.	The	code	isn’t
approachable.	A	new	reader	of	the	code	would	have	to	spend	too	much	time
picking	apart	the	expression	to	figure	out	what	it	actually	does.	Even	though	it’s
nice	to	keep	things	short,	it’s	not	worth	trying	to	fit	this	all	on	one	line.

Python	has	if/else	conditional—or	ternary—expressions	to	make	cases	like	this
clearer	while	keeping	the	code	short:

Click	here	to	view	code	image
red_str	=	my_values.get('red',	[''])

red	=	int(red_str[0])	if	red_str[0]	else	0

This	is	better.	For	less	complicated	situations,	if/else	conditional	expressions
can	make	things	very	clear.	But	the	example	above	is	still	not	as	clear	as	the
alternative	of	a	full	if/else	statement	over	multiple	lines.	Seeing	all	of	the	logic
spread	out	like	this	makes	the	dense	version	seem	even	more	complex:

Click	here	to	view	code	image
green_str	=	my_values.get('green',	[''])

if	green_str[0]:

				green	=	int(green_str[0])

else:

green	=	0

If	you	need	to	reuse	this	logic	repeatedly—even	just	two	or	three	times,	as	in	this

If	you	need	to	reuse	this	logic	repeatedly—even	just	two	or	three	times,	as	in	this
example—then	writing	a	helper	function	is	the	way	to	go:

Click	here	to	view	code	image
def	get_first_int(values,	key,	default=0):

				found	=	values.get(key,	[''])

				if	found[0]:

							return	int(found[0])

				return	default

The	calling	code	is	much	clearer	than	the	complex	expression	using	or	and	the
two-line	version	using	the	if/else	expression:

Click	here	to	view	code	image
green	=	get_first_int(my_values,	'green')

As	soon	as	expressions	get	complicated,	it’s	time	to	consider	splitting	them	into
smaller	pieces	and	moving	logic	into	helper	functions.	What	you	gain	in
readability	always	outweighs	what	brevity	may	have	afforded	you.	Avoid	letting
Python’s	pithy	syntax	for	complex	expressions	from	getting	you	into	a	mess	like
this.	Follow	the	DRY	principle:	Don’t	repeat	yourself.

Things	to	Remember

✦	Python’s	syntax	makes	it	easy	to	write	single-line	expressions	that	are
overly	complicated	and	difficult	to	read.

✦	Move	complex	expressions	into	helper	functions,	especially	if	you	need	to
use	the	same	logic	repeatedly.

✦	An	if/else	expression	provides	a	more	readable	alternative	to	using	the
Boolean	operators	or	and	and	in	expressions.

Item	6:	Prefer	Multiple	Assignment	Unpacking	Over
Indexing

Python	has	a	built-in	tuple	type	that	can	be	used	to	create	immutable,	ordered
sequences	of	values.	In	the	simplest	case,	a	tuple	is	a	pair	of	two	values,	such	as
keys	and	values	from	a	dictionary:

Click	here	to	view	code	image

snack_calories	=	{

				'chips':	140,

				'popcorn':	80,

				'nuts':	190,

}

items	=	tuple(snack_calories.items())

print(items)

>>>

(('chips',	140),	('popcorn',	80),	('nuts',	190))

The	values	in	tuples	can	be	accessed	through	numerical	indexes:
item	=	('Peanut	butter',	'Jelly')

first	=	item[0]

second	=	item[1]

print(first,	'and',	second)

>>>

Peanut	butter	and	Jelly

Once	a	tuple	is	created,	you	can’t	modify	it	by	assigning	a	new	value	to	an
index:

Click	here	to	view	code	image
pair	=	('Chocolate',	'Peanut	butter')

pair[0]	=	'Honey'

>>>

Traceback	...

TypeError:	'tuple'	object	does	not	support	item	assignment

Python	also	has	syntax	for	unpacking,	which	allows	for	assigning	multiple
values	in	a	single	statement.	The	patterns	that	you	specify	in	unpacking
assignments	look	a	lot	like	trying	to	mutate	tuples—which	isn’t	allowed—but
they	actually	work	quite	differently.	For	example,	if	you	know	that	a	tuple	is	a
pair,	instead	of	using	indexes	to	access	its	values,	you	can	assign	it	to	a	tuple	of
two	variable	names:

Click	here	to	view	code	image
item	=	('Peanut	butter',	'Jelly')

first,	second	=	item	#	Unpacking

print(first,	'and',	second)

>>>

Peanut	butter	and	Jelly

Unpacking	has	less	visual	noise	than	accessing	the	tuple’s	indexes,	and	it	often

Unpacking	has	less	visual	noise	than	accessing	the	tuple’s	indexes,	and	it	often
requires	fewer	lines.	The	same	pattern	matching	syntax	of	unpacking	works
when	assigning	to	lists,	sequences,	and	multiple	levels	of	arbitrary	iterables
within	iterables.	I	don’t	recommend	doing	the	following	in	your	code,	but	it’s
important	to	know	that	it’s	possible	and	how	it	works:

Click	here	to	view	code	image
favorite_snacks	=	{

				'salty':	('pretzels',	100),

				'sweet':	('cookies',	180),

				'veggie':	('carrots',	20),

}

((type1,	(name1,	cals1)),

	(type2,	(name2,	cals2)),

	(type3,	(name3,	cals3)))	=	favorite_snacks.items()

print(f'Favorite	{type1}	is	{name1}	with	{cals1}	calories')

print(f'Favorite	{type2}	is	{name2}	with	{cals2}	calories')

print(f'Favorite	{type3}	is	{name3}	with	{cals3}	calories')

>>>

Favorite	salty	is	pretzels	with	100	calories

Favorite	sweet	is	cookies	with	180	calories

Favorite	veggie	is	carrots	with	20	calories

Newcomers	to	Python	may	be	surprised	to	learn	that	unpacking	can	even	be	used
to	swap	values	in	place	without	the	need	to	create	temporary	variables.	Here,	I
use	typical	syntax	with	indexes	to	swap	the	values	between	two	positions	in	a
list	as	part	of	an	ascending	order	sorting	algorithm:

Click	here	to	view	code	image
def	bubble_sort(a):

				for	_	in	range(len(a)):

								for	i	in	range(1,	len(a)):

												if	a[i]	<	a[i-1]:

																temp	=	a[i]

																a[i]	=	a[i-1]

																a[i-1]	=	temp

names	=	['pretzels',	'carrots',	'arugula',	'bacon']

bubble_sort(names)

print(names)

>>>

['arugula',	'bacon',	'carrots',	'pretzels']

However,	with	unpacking	syntax,	it’s	possible	to	swap	indexes	in	a	single	line:

However,	with	unpacking	syntax,	it’s	possible	to	swap	indexes	in	a	single	line:

Click	here	to	view	code	image
def	bubble_sort(a):

				for	_	in	range(len(a)):

								for	i	in	range(1,	len(a)):

												if	a[i]	<	a[i-1]:

																a[i-1],	a[i]	=	a[i],	a[i-1]	#	Swap

names	=	['pretzels',	'carrots',	'arugula',	'bacon']

bubble_sort(names)

print(names)

>>>

['arugula',	'bacon',	'carrots',	'pretzels']

The	way	this	swap	works	is	that	the	right	side	of	the	assignment	(a[i],	a[i-1])
is	evaluated	first,	and	its	values	are	put	into	a	new	temporary,	unnamed	tuple
(such	as	('carrots',	'pretzels')	on	the	first	iteration	of	the	loops).	Then,	the
unpacking	pattern	from	the	left	side	of	the	assignment	(a[i-1],	a[i])	is	used	to
receive	that	tuple	value	and	assign	it	to	the	variable	names	a[i-1]	and	a[i],
respectively.	This	replaces	'pretzels'	with	'carrots'	at	index	0	and	'carrots'
with	'pretzels'	at	index	1.	Finally,	the	temporary	unnamed	tuple	silently	goes
away.

Another	valuable	application	of	unpacking	is	in	the	target	list	of	for	loops	and
similar	constructs,	such	as	comprehensions	and	generator	expressions	(see	Item
27:	“Use	Comprehensions	Instead	of	map	and	filter”	for	those).	As	an	example
for	contrast,	here	I	iterate	over	a	list	of	snacks	without	using	unpacking:

Click	here	to	view	code	image
snacks	=	[('bacon',	350),	('donut',	240),	('muffin',	190)]

for	i	in	range(len(snacks)):

				item	=	snacks[i]

				name	=	item[0]

				calories	=	item[1]

				print(f'#{i+1}:	{name}	has	{calories}	calories')

>>>

#1:	bacon	has	350	calories

#2:	donut	has	240	calories

#3:	muffin	has	190	calories

This	works,	but	it’s	noisy.	There	are	a	lot	of	extra	characters	required	in	order	to
index	into	the	various	levels	of	the	snacks	structure.	Here,	I	achieve	the	same

output	by	using	unpacking	along	with	the	enumerate	built-in	function	(see	Item
7:	“Prefer	enumerate	Over	range”):

Click	here	to	view	code	image
for	rank,	(name,	calories)	in	enumerate(snacks,	1):

				print(f'#{rank}:	{name}	has	{calories}	calories')

>>>

#1:	bacon	has	350	calories

#2:	donut	has	240	calories

#3:	muffin	has	190	calories

This	is	the	Pythonic	way	to	write	this	type	of	loop;	it’s	short	and	easy	to
understand.	There’s	usually	no	need	to	access	anything	using	indexes.

Python	provides	additional	unpacking	functionality	for	list	construction	(see
Item	13:	“Prefer	Catch-All	Unpacking	Over	Slicing”),	function	arguments	(see
Item	22:	“Reduce	Visual	Noise	with	Variable	Positional	Arguments”),	keyword
arguments	(see	Item	23:	“Provide	Optional	Behavior	with	Keyword
Arguments”),	multiple	return	values	(see	Item	19:	“Never	Unpack	More	Than
Three	Variables	When	Functions	Return	Multiple	Values”),	and	more.

Using	unpacking	wisely	will	enable	you	to	avoid	indexing	when	possible,
resulting	in	clearer	and	more	Pythonic	code.

Things	to	Remember

✦	Python	has	special	syntax	called	unpacking	for	assigning	multiple	values	in
a	single	statement.

✦	Unpacking	is	generalized	in	Python	and	can	be	applied	to	any	iterable,
including	many	levels	of	iterables	within	iterables.

✦	Reduce	visual	noise	and	increase	code	clarity	by	using	unpacking	to	avoid
explicitly	indexing	into	sequences.

Item	7:	Prefer	enumerate	Over	range
The	range	built-in	function	is	useful	for	loops	that	iterate	over	a	set	of	integers:

Click	here	to	view	code	image
from	random	import	randint

random_bits	=	0

for	i	in	range(32):

				if	randint(0,	1):

								random_bits	|=	1	<<	i

print(bin(random_bits))

>>>

0b11101000100100000111000010000001

When	you	have	a	data	structure	to	iterate	over,	like	a	list	of	strings,	you	can
loop	directly	over	the	sequence:

Click	here	to	view	code	image
flavor_list	=	['vanilla',	'chocolate',	'pecan',	'strawberry']

for	flavor	in	flavor_list:

				print(f'{flavor}	is	delicious')

>>>

vanilla	is	delicious

chocolate	is	delicious

pecan	is	delicious

strawberry	is	delicious

Often,	you’ll	want	to	iterate	over	a	list	and	also	know	the	index	of	the	current
item	in	the	list.	For	example,	say	that	I	want	to	print	the	ranking	of	my	favorite
ice	cream	flavors.	One	way	to	do	it	is	by	using	range:
for	i	in	range(len(flavor_list)):

				flavor	=	flavor_list[i]

				print(f'{i	+	1}:	{flavor}')

>>>

1:	vanilla

2:	chocolate

3:	pecan

4:	strawberry

This	looks	clumsy	compared	with	the	other	examples	of	iterating	over
flavor_list	or	range.	I	have	to	get	the	length	of	the	list.	I	have	to	index	into
the	array.	The	multiple	steps	make	it	harder	to	read.

Python	provides	the	enumerate	built-in	function	to	address	this	situation.
enumerate	wraps	any	iterator	with	a	lazy	generator	(see	Item	30:	“Consider
Generators	Instead	of	Returning	Lists”).	enumerate	yields	pairs	of	the	loop	index
and	the	next	value	from	the	given	iterator.	Here,	I	manually	advance	the	returned

iterator	with	the	next	built-in	function	to	demonstrate	what	it	does:
it	=	enumerate(flavor_list)

print(next(it))

print(next(it))

>>>

(0,	'vanilla')

(1,	'chocolate')

Each	pair	yielded	by	enumerate	can	be	succinctly	unpacked	in	a	for	statement
(see	Item	6:	“Prefer	Multiple	Assignment	Unpacking	Over	Indexing”	for	how
that	works).	The	resulting	code	is	much	clearer:

Click	here	to	view	code	image
for	i,	flavor	in	enumerate(flavor_list):

				print(f'{i	+	1}:	{flavor}')

>>>

1:	vanilla

2:	chocolate

3:	pecan

4:	strawberry

I	can	make	this	even	shorter	by	specifying	the	number	from	which	enumerate
should	begin	counting	(1	in	this	case)	as	the	second	parameter:

Click	here	to	view	code	image
for	i,	flavor	in	enumerate(flavor_list,	1):

				print(f'{i}:	{flavor}')

Things	to	Remember

✦	enumerate	provides	concise	syntax	for	looping	over	an	iterator	and	getting
the	index	of	each	item	from	the	iterator	as	you	go.

✦	Prefer	enumerate	instead	of	looping	over	a	range	and	indexing	into	a
sequence.

✦	You	can	supply	a	second	parameter	to	enumerate	to	specify	the	number
from	which	to	begin	counting	(zero	is	the	default).

Item	8:	Use	zip	to	Process	Iterators	in	Parallel

Often	in	Python	you	find	yourself	with	many	lists	of	related	objects.	List
comprehensions	make	it	easy	to	take	a	source	list	and	get	a	derived	list	by
applying	an	expression	(see	Item	27:	“Use	Comprehensions	Instead	of	map	and
filter”):

Click	here	to	view	code	image
names	=	['Cecilia',	'Lise',	'Marie']

counts	=	[len(n)	for	n	in	names]

print(counts)

>>>

[7,	4,	5]

The	items	in	the	derived	list	are	related	to	the	items	in	the	source	list	by	their
indexes.	To	iterate	over	both	lists	in	parallel,	I	can	iterate	over	the	length	of	the
names	source	list:
longest_name	=	None

max_count	=	0

for	i	in	range(len(names)):

				count	=	counts[i]

				if	count	>	max_count:

							longest_name	=	names[i]

							max_count	=	count

print(longest_name)

>>>

Cecilia

The	problem	is	that	this	whole	loop	statement	is	visually	noisy.	The	indexes	into
names	and	counts	make	the	code	hard	to	read.	Indexing	into	the	arrays	by	the
loop	index	i	happens	twice.	Using	enumerate	(see	Item	7:	“Prefer	enumerate
Over	range”)	improves	this	slightly,	but	it’s	still	not	ideal:
for	i,	name	in	enumerate(names):

				count	=	counts[i]

				if	count	>	max_count:

								longest_name	=	name

								max_count	=	count

To	make	this	code	clearer,	Python	provides	the	zip	built-in	function.	zip	wraps
two	or	more	iterators	with	a	lazy	generator.	The	zip	generator	yields	tuples
containing	the	next	value	from	each	iterator.	These	tuples	can	be	unpacked
directly	within	a	for	statement	(see	Item	6:	“Prefer	Multiple	Assignment

Unpacking	Over	Indexing”).	The	resulting	code	is	much	cleaner	than	the	code
for	indexing	into	multiple	lists:

Click	here	to	view	code	image
for	name,	count	in	zip(names,	counts):

				if	count	>	max_count:

								longest_name	=	name

								max_count	=	count

zip	consumes	the	iterators	it	wraps	one	item	at	a	time,	which	means	it	can	be
used	with	infinitely	long	inputs	without	risk	of	a	program	using	too	much
memory	and	crashing.

However,	beware	of	zip’s	behavior	when	the	input	iterators	are	of	different
lengths.	For	example,	say	that	I	add	another	item	to	names	above	but	forget	to
update	counts.	Running	zip	on	the	two	input	lists	will	have	an	unexpected	result:

Click	here	to	view	code	image
names.append('Rosalind')

for	name,	count	in	zip(names,	counts):

				print(name)

>>>

Cecilia

Lise

Marie

The	new	item	for	'Rosalind'	isn’t	there.	Why	not?	This	is	just	how	zip	works.	It
keeps	yielding	tuples	until	any	one	of	the	wrapped	iterators	is	exhausted.	Its
output	is	as	long	as	its	shortest	input.	This	approach	works	fine	when	you	know
that	the	iterators	are	of	the	same	length,	which	is	often	the	case	for	derived	lists
created	by	list	comprehensions.

But	in	many	other	cases,	the	truncating	behavior	of	zip	is	surprising	and	bad.	If
you	don’t	expect	the	lengths	of	the	lists	passed	to	zip	to	be	equal,	consider	using
the	zip_longest	function	from	the	itertools	built-in	module	instead:

Click	here	to	view	code	image
import	itertools

for	name,	count	in	itertools.zip_longest(names,	counts):

				print(f'{name}:	{count}')

>>>

Cecilia:	7	Lise:	4

Marie:	5

Rosalind:	None

zip_longest	replaces	missing	values—the	length	of	the	string	'Rosalind'	in	this
case—with	whatever	fillvalue	is	passed	to	it,	which	defaults	to	None.

Things	to	Remember

✦	The	zip	built-in	function	can	be	used	to	iterate	over	multiple	iterators	in
parallel.

✦	zip	creates	a	lazy	generator	that	produces	tuples,	so	it	can	be	used	on
infinitely	long	inputs.

✦	zip	truncates	its	output	silently	to	the	shortest	iterator	if	you	supply	it	with
iterators	of	different	lengths.

✦	Use	the	zip_longest	function	from	the	itertools	built-in	module	if	you
want	to	use	zip	on	iterators	of	unequal	lengths	without	truncation.

Item	9:	Avoid	else	Blocks	After	for	and	while	Loops
Python	loops	have	an	extra	feature	that	is	not	available	in	most	other
programming	languages:	You	can	put	an	else	block	immediately	after	a	loop’s
repeated	interior	block:
for	i	in	range(3):

				print('Loop',	i)

else:

				print('Else	block!')

>>>

Loop	0	Loop	1

Loop	2

Else	block!

Surprisingly,	the	else	block	runs	immediately	after	the	loop	finishes.	Why	is	the
clause	called	“else”?	Why	not	“and”?	In	an	if/else	statement,	else	means	“Do
this	if	the	block	before	this	doesn’t	happen.”	In	a	try/except	statement,	except
has	the	same	definition:	“Do	this	if	trying	the	block	before	this	failed.”

Similarly,	else	from	try/except/else	follows	this	pattern	(see	Item	65:	“Take
Advantage	of	Each	Block	in	try/except/else/finally”)	because	it	means	“Do
this	if	there	was	no	exception	to	handle.”	try/finally	is	also	intuitive	because	it

means	“Always	do	this	after	trying	the	block	before.”

Given	all	the	uses	of	else,	except,	and	finally	in	Python,	a	new	programmer
might	assume	that	the	else	part	of	for/else	means	“Do	this	if	the	loop	wasn’t
completed.”	In	reality,	it	does	exactly	the	opposite.	Using	a	break	statement	in	a
loop	actually	skips	the	else	block:
for	i	in	range(3):

				print('Loop',	i)

				if	i	==	1:

								break

else:

				print('Else	block!')

>>>

Loop	0

Loop	1

Another	surprise	is	that	the	else	block	runs	immediately	if	you	loop	over	an
empty	sequence:
for	x	in	[]:

				print('Never	runs')

else:

				print('For	Else	block!')

>>>

For	Else	block!

The	else	block	also	runs	when	while	loops	are	initially	False:
while	False:

				print('Never	runs')

else:

				print('While	Else	block!')

>>>

While	Else	block!

The	rationale	for	these	behaviors	is	that	else	blocks	after	loops	are	useful	when
using	loops	to	search	for	something.	For	example,	say	that	I	want	to	determine
whether	two	numbers	are	coprime	(that	is,	their	only	common	divisor	is	1).	Here,
I	iterate	through	every	possible	common	divisor	and	test	the	numbers.	After
every	option	has	been	tried,	the	loop	ends.	The	else	block	runs	when	the
numbers	are	coprime	because	the	loop	doesn’t	encounter	a	break:
a	=	4

b	=	9

for	i	in	range(2,	min(a,	b)	+	1):

				print('Testing',	i)

				if	a	%	i	==	0	and	b	%	i	==	0:

								print('Not	coprime')

								break

else:

				print('Coprime')

>>>

Testing	2

Testing	3

Testing	4

Coprime

In	practice,	I	wouldn’t	write	the	code	this	way.	Instead,	I’d	write	a	helper
function	to	do	the	calculation.	Such	a	helper	function	is	written	in	two	common
styles.

The	first	approach	is	to	return	early	when	I	find	the	condition	I’m	looking	for.	I
return	the	default	outcome	if	I	fall	through	the	loop:

Click	here	to	view	code	image
def	coprime(a,	b):

				for	i	in	range(2,	min(a,	b)	+	1):

								if	a	%	i	==	0	and	b	%	i	==	0:

												return	False

				return	True

assert	coprime(4,	9)

assert	not	coprime(3,	6)

The	second	way	is	to	have	a	result	variable	that	indicates	whether	I’ve	found
what	I’m	looking	for	in	the	loop.	I	break	out	of	the	loop	as	soon	as	I	find
something:

Click	here	to	view	code	image
def	coprime_alternate(a,	b):

				is_coprime	=	True

				for	i	in	range(2,	min(a,	b)	+	1):

								if	a	%	i	==	0	and	b	%	i	==	0:

												is_coprime	=	False

												break

								return	is_coprime

assert	coprime_alternate(4,	9)

assert	not	coprime_alternate(3,	6)

Both	approaches	are	much	clearer	to	readers	of	unfamiliar	code.	Depending	on
the	situation,	either	may	be	a	good	choice.	However,	the	expressivity	you	gain
from	the	else	block	doesn’t	outweigh	the	burden	you	put	on	people	(including
yourself)	who	want	to	understand	your	code	in	the	future.	Simple	constructs	like
loops	should	be	self-evident	in	Python.	You	should	avoid	using	else	blocks	after
loops	entirely.

Things	to	Remember

✦	Python	has	special	syntax	that	allows	else	blocks	to	immediately	follow	for
and	while	loop	interior	blocks.

✦	The	else	block	after	a	loop	runs	only	if	the	loop	body	did	not	encounter	a
break	statement.

✦	Avoid	using	else	blocks	after	loops	because	their	behavior	isn’t	intuitive
and	can	be	confusing.

Item	10:	Prevent	Repetition	with	Assignment
Expressions

An	assignment	expression—also	known	as	the	walrus	operator—is	a	new	syntax
introduced	in	Python	3.8	to	solve	a	long-standing	problem	with	the	language	that
can	cause	code	duplication.	Whereas	normal	assignment	statements	are	written	a
=	b	and	pronounced	“a	equals	b,”	these	assignments	are	written	a	:=	b	and
pronounced	“a	walrus	b”	(because	:=	looks	like	a	pair	of	eyeballs	and	tusks).

Assignment	expressions	are	useful	because	they	enable	you	to	assign	variables
in	places	where	assignment	statements	are	disallowed,	such	as	in	the	conditional
expression	of	an	if	statement.	An	assignment	expression’s	value	evaluates	to
whatever	was	assigned	to	the	identifier	on	the	left	side	of	the	walrus	operator.

For	example,	say	that	I	have	a	basket	of	fresh	fruit	that	I’m	trying	to	manage	for
a	juice	bar.	Here,	I	define	the	contents	of	the	basket:
fresh_fruit	=	{

				'apple':	10,

				'banana':	8,

				'lemon':	5,

}

When	a	customer	comes	to	the	counter	to	order	some	lemonade,	I	need	to	make
sure	there	is	at	least	one	lemon	in	the	basket	to	squeeze.	Here,	I	do	this	by
retrieving	the	count	of	lemons	and	then	using	an	if	statement	to	check	for	a	non-
zero	value:
def	make_lemonade(count):

				...

def	out_of_stock():

				...

count	=	fresh_fruit.get('lemon',	0)

if	count:

				make_lemonade(count)

else:

				out_of_stock()

The	problem	with	this	seemingly	simple	code	is	that	it’s	noisier	than	it	needs	to
be.	The	count	variable	is	used	only	within	the	first	block	of	the	if	statement.
Defining	count	above	the	if	statement	causes	it	to	appear	to	be	more	important
than	it	really	is,	as	if	all	code	that	follows,	including	the	else	block,	will	need	to
access	the	count	variable,	when	in	fact	that	is	not	the	case.

This	pattern	of	fetching	a	value,	checking	to	see	if	it’s	non-zero,	and	then	using
it	is	extremely	common	in	Python.	Many	programmers	try	to	work	around	the
multiple	references	to	count	with	a	variety	of	tricks	that	hurt	readability	(see
Item	5:	“Write	Helper	Functions	Instead	of	Complex	Expressions”	for	an
example).	Luckily,	assignment	expressions	were	added	to	the	language	to
streamline	exactly	this	type	of	code.	Here,	I	rewrite	this	example	using	the
walrus	operator:

Click	here	to	view	code	image
if	count	:=	fresh_fruit.get('lemon',	0):

				make_lemonade(count)

else:

				out_of_stock()

Though	this	is	only	one	line	shorter,	it’s	a	lot	more	readable	because	it’s	now
clear	that	count	is	only	relevant	to	the	first	block	of	the	if	statement.	The
assignment	expression	is	first	assigning	a	value	to	the	count	variable,	and	then
evaluating	that	value	in	the	context	of	the	if	statement	to	determine	how	to
proceed	with	flow	control.	This	twostep	behavior—assign	and	then	evaluate—is
the	fundamental	nature	of	the	walrus	operator.

Lemons	are	quite	potent,	so	only	one	is	needed	for	my	lemonade	recipe,	which

means	a	non-zero	check	is	good	enough.	If	a	customer	orders	a	cider,	though,	I
need	to	make	sure	that	I	have	at	least	four	apples.	Here,	I	do	this	by	fetching	the
count	from	the	fruit_basket	dictionary,	and	then	using	a	comparison	in	the	if
statement	conditional	expression:
def	make_cider(count):

				...

count	=	fresh_fruit.get('apple',	0)

if	count	>=	4:

				make_cider(count)

else:

				out_of_stock()

This	has	the	same	problem	as	the	lemonade	example,	where	the	assignment	of
count	puts	distracting	emphasis	on	that	variable.	Here,	I	improve	the	clarity	of
this	code	by	also	using	the	walrus	operator:

Click	here	to	view	code	image
if	(count	:=	fresh_fruit.get('apple',	0))	>=	4:

				make_cider(count)

else:

				out_of_stock()

This	works	as	expected	and	makes	the	code	one	line	shorter.	It’s	important	to
note	how	I	needed	to	surround	the	assignment	expression	with	parentheses	to
compare	it	with	4	in	the	if	statement.	In	the	lemonade	example,	no	surrounding
parentheses	were	required	because	the	assignment	expression	stood	on	its	own
as	a	non-zero	check;	it	wasn’t	a	subexpression	of	a	larger	expression.	As	with
other	expressions,	you	should	avoid	surrounding	assignment	expressions	with
parentheses	when	possible.

Another	common	variation	of	this	repetitive	pattern	occurs	when	I	need	to	assign
a	variable	in	the	enclosing	scope	depending	on	some	condition,	and	then
reference	that	variable	shortly	afterward	in	a	function	call.	For	example,	say	that
a	customer	orders	some	banana	smoothies.	In	order	to	make	them,	I	need	to	have
at	least	two	bananas’	worth	of	slices,	or	else	an	OutOfBananas	exception	will	be
raised.	Here,	I	implement	this	logic	in	a	typical	way:

Click	here	to	view	code	image
def	slice_bananas(count):

				...

class	OutOfBananas(Exception):

				pass

def	make_smoothies(count):

				...

pieces	=	0

count	=	fresh_fruit.get('banana',	0)

if	count	>=	2:

				pieces	=	slice_bananas(count)

try:

				smoothies	=	make_smoothies(pieces)

except	OutOfBananas:

				out_of_stock()

The	other	common	way	to	do	this	is	to	put	the	pieces	=	0	assignment	in	the	else
block:

Click	here	to	view	code	image
count	=	fresh_fruit.get('banana',	0)

if	count	>=	2:

				pieces	=	slice_bananas(count)

else:

				pieces	=	0

try:

				smoothies	=	make_smoothies(pieces)

except	OutOfBananas:

				out_of_stock()

This	second	approach	can	feel	odd	because	it	means	that	the	pieces	variable	has
two	different	locations—in	each	block	of	the	if	statement—where	it	can	be
initially	defined.	This	split	definition	technically	works	because	of	Python’s
scoping	rules	(see	Item	21:	“Know	How	Closures	Interact	with	Variable
Scope”),	but	it	isn’t	easy	to	read	or	discover,	which	is	why	many	people	prefer
the	construct	above,	where	the	pieces	=	0	assignment	is	first.

The	walrus	operator	can	again	be	used	to	shorten	this	example	by	one	line	of
code.	This	small	change	removes	any	emphasis	on	the	count	variable.	Now,	it’s
clearer	that	pieces	will	be	important	beyond	the	if	statement:

Click	here	to	view	code	image
pieces	=	0

if	(count	:=	fresh_fruit.get('banana',	0))	>=	2:

				pieces	=	slice_bananas(count)

try:

				smoothies	=	make_smoothies(pieces)

except	OutOfBananas:

				out_of_stock()

Using	the	walrus	operator	also	improves	the	readability	of	splitting	the	definition
of	pieces	across	both	parts	of	the	if	statement.	It’s	easier	to	trace	the	pieces
variable	when	the	count	definition	no	longer	precedes	the	if	statement:

Click	here	to	view	code	image
if	(count	:=	fresh_fruit.get('banana',	0))	>=	2:

				pieces	=	slice_bananas(count)

else:

				pieces	=	0

try:

				smoothies	=	make_smoothies(pieces)

except	OutOfBananas:

				out_of_stock()

One	frustration	that	programmers	who	are	new	to	Python	often	have	is	the	lack
of	a	flexible	switch/case	statement.	The	general	style	for	approximating	this	type
of	functionality	is	to	have	a	deep	nesting	of	multiple	if,	elif,	and	else
statements.

For	example,	imagine	that	I	want	to	implement	a	system	of	precedence	so	that
each	customer	automatically	gets	the	best	juice	available	and	doesn’t	have	to
order.	Here,	I	define	logic	to	make	it	so	banana	smoothies	are	served	first,
followed	by	apple	cider,	and	then	finally	lemonade:

Click	here	to	view	code	image
count	=	fresh_fruit.get('banana',	0)

if	count	>=	2:

				pieces	=	slice_bananas(count)

				to_enjoy	=	make_smoothies(pieces)

else:

				count	=	fresh_fruit.get('apple',	0)

				if	count	>=	4:

								to_enjoy	=	make_cider(count)

				else:

								count	=	fresh_fruit.get('lemon',	0)

								if	count:

											to_enjoy	=	make_lemonade(count)

								else:

											to_enjoy‘=	'Nothing'

Ugly	constructs	like	this	are	surprisingly	common	in	Python	code.	Luckily,	the
walrus	operator	provides	an	elegant	solution	that	can	feel	nearly	as	versatile	as

walrus	operator	provides	an	elegant	solution	that	can	feel	nearly	as	versatile	as
dedicated	syntax	for	switch/case	statements:

Click	here	to	view	code	image
if	(count	:=	fresh_fruit.get('banana',	0))	>=	2:

				pieces	=	slice_bananas(count)

				to_enjoy	=	make_smoothies(pieces)

elif	(count	:=	fresh_fruit.get('apple',	0))	>=	4:

				to_enjoy	=	make_cider(count)

elif	count	:=	fresh_fruit.get('lemon',	0):

				to_enjoy	=	make_lemonade(count)

else:

				to_enjoy	=	'Nothing'

The	version	that	uses	assignment	expressions	is	only	five	lines	shorter	than	the
original,	but	the	improvement	in	readability	is	vast	due	to	the	reduction	in
nesting	and	indentation.	If	you	ever	see	such	ugly	constructs	emerge	in	your
code,	I	suggest	that	you	move	them	over	to	using	the	walrus	operator	if	possible.

Another	common	frustration	of	new	Python	programmers	is	the	lack	of	a
do/while	loop	construct.	For	example,	say	that	I	want	to	bottle	juice	as	new	fruit
is	delivered	until	there’s	no	fruit	remaining.	Here,	I	implement	this	logic	with	a
while	loop:

Click	here	to	view	code	image
def	pick_fruit():

				...

def	make_juice(fruit,	count):

				...

bottles	=	[]

fresh_fruit	=	pick_fruit()

while	fresh_fruit:

				for	fruit,	count	in	fresh_fruit.items():

								batch	=	make_juice(fruit,	count)

								bottles.extend(batch)

				fresh_fruit	=	pick_fruit()

This	is	repetitive	because	it	requires	two	separate	fresh_fruit	=	pick_fruit()
calls:	one	before	the	loop	to	set	initial	conditions,	and	another	at	the	end	of	the
loop	to	replenish	the	list	of	delivered	fruit.

A	strategy	for	improving	code	reuse	in	this	situation	is	to	use	the	loop-and-a-half
idiom.	This	eliminates	the	redundant	lines,	but	it	also	undermines	the	while

loop’s	contribution	by	making	it	a	dumb	infinite	loop.	Now,	all	of	the	flow
control	of	the	loop	depends	on	the	conditional	break	statement:

Click	here	to	view	code	image
bottles	=	[]

while	True:																				#	Loop

				fresh_fruit	=	pick_fruit()

				if	not	fresh_fruit:								#	And	a	half

								break

				for	fruit,	count	in	fresh_fruit.items():

								batch	=	make_juice(fruit,	count)

								bottles.extend(batch)

The	walrus	operator	obviates	the	need	for	the	loop-and-a-half	idiom	by	allowing
the	fresh_fruit	variable	to	be	reassigned	and	then	conditionally	evaluated	each
time	through	the	while	loop.	This	solution	is	short	and	easy	to	read,	and	it	should
be	the	preferred	approach	in	your	code:

Click	here	to	view	code	image
bottles	=	[]

while	fresh_fruit	:=	pick_fruit():

				for	fruit,	count	in	fresh_fruit.items():

								batch	=	make_juice(fruit,	count)

								bottles.extend(batch)

There	are	many	other	situations	where	assignment	expressions	can	be	used	to
eliminate	redundancy	(see	Item	29:	“Avoid	Repeated	Work	in	Comprehensions
by	Using	Assignment	Expressions”	for	another).	In	general,	when	you	find
yourself	repeating	the	same	expression	or	assignment	multiple	times	within	a
grouping	of	lines,	it’s	time	to	consider	using	assignment	expressions	in	order	to
improve	readability.

Things	to	Remember

✦	Assignment	expressions	use	the	walrus	operator	(:=)	to	both	assign	and
evaluate	variable	names	in	a	single	expression,	thus	reducing	repetition.

✦	When	an	assignment	expression	is	a	subexpression	of	a	larger	expression,	it
must	be	surrounded	with	parentheses.

✦	Although	switch/case	statements	and	do/while	loops	are	not	available	in
Python,	their	functionality	can	be	emulated	much	more	clearly	by	using

assignment	expressions.

2.	Lists	and	Dictionaries

Many	programs	are	written	to	automate	repetitive	tasks	that	are	better	suited	to
machines	than	to	humans.	In	Python,	the	most	common	way	to	organize	this
kind	of	work	is	by	using	a	sequence	of	values	stored	in	a	list	type.	Lists	are
extremely	versatile	and	can	be	used	to	solve	a	variety	of	problems.

A	natural	complement	to	lists	is	the	dict	type,	which	stores	lookup	keys	mapped
to	corresponding	values	(in	what	is	often	called	an	associative	array	or	a	hash
table).	Dictionaries	provide	constant	time	(amortized)	performance	for
assignments	and	accesses,	which	means	they	are	ideal	for	bookkeeping	dynamic
information.

Python	has	special	syntax	and	built-in	modules	that	enhance	readability	and
extend	the	capabilities	of	lists	and	dictionaries	beyond	what	you	might	expect
from	simple	array,	vector,	and	hash	table	types	in	other	languages.

Item	11:	Know	How	to	Slice	Sequences
Python	includes	syntax	for	slicing	sequences	into	pieces.	Slicing	allows	you	to
access	a	subset	of	a	sequence’s	items	with	minimal	effort.	The	simplest	uses	for
slicing	are	the	built-in	types	list,	str,	and	bytes.	Slicing	can	be	extended	to	any
Python	class	that	implements	the	__getitem__	and	__setitem__	special	methods
(see	Item	43:	“Inherit	from	collections.abc	for	Custom	Container	Types”).

The	basic	form	of	the	slicing	syntax	is	somelist[start:end],	where	start	is
inclusive	and	end	is	exclusive:

Click	here	to	view	code	image
a	=	['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h']

print('Middle	two:		',	a[3:5])

print('All	but	ends:',	a[1:7])

>>>

Middle	two:			['d',	'e']

All	but	ends:	['b',	'c',	'd',	'e',	'f',	'g']

When	slicing	from	the	start	of	a	list,	you	should	leave	out	the	zero	index	to
reduce	visual	noise:

assert	a[:5]	==	a[0:5]

When	slicing	to	the	end	of	a	list,	you	should	leave	out	the	final	index	because
it’s	redundant:
assert	a[5:]	==	a[5:len(a)]

Using	negative	numbers	for	slicing	is	helpful	for	doing	offsets	relative	to	the	end
of	a	list.	All	of	these	forms	of	slicing	would	be	clear	to	a	new	reader	of	your
code:

Click	here	to	view	code	image
a[:]						#	['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h']

a[:5]					#	['a',	'b',	'c',	'd',	'e']

a[:-1]				#	['a',	'b',	'c',	'd',	'e',	'f',	'g']

a[4:]					#																					['e',	'f',	'g',	'h']

a[-3:]				#																										['f',	'g',	'h']

a[2:5]				#											['c',	'd',	'e']

a[2:-1]			#											['c',	'd',	'e',	'f',	'g']

a[-3:-1]		#																										['f',	'g']

There	are	no	surprises	here,	and	I	encourage	you	to	use	these	variations.

Slicing	deals	properly	with	start	and	end	indexes	that	are	beyond	the	boundaries
of	a	list	by	silently	omitting	missing	items.	This	behavior	makes	it	easy	for
your	code	to	establish	a	maximum	length	to	consider	for	an	input	sequence:
first_twenty_items	=	a[:20]

last_twenty_items	=	a[-20:]

In	contrast,	accessing	the	same	index	directly	causes	an	exception:
a[20]

>>>

Traceback	...

IndexError:	list	index	out	of	range

Note
Beware	that	indexing	a	list	by	a	negated	variable	is	one	of	the	few	situations
in	 which	 you	 can	 get	 surprising	 results	 from	 slicing.	 For	 example,	 the
expression	 somelist[-n:]	 will	 work	 fine	 when	 n	 is	 greater	 than	 one	 (e.g.,
somelist[-3:]).	 However,	 when	 n	 is	 zero,	 the	 expression	 somelist[-0:]	 is
equivalent	to	somelist[:]	and	will	result	in	a	copy	of	the	original	list.

The	result	of	slicing	a	list	is	a	whole	new	list.	References	to	the	objects	from
the	original	list	are	maintained.	Modifying	the	result	of	slicing	won’t	affect	the
original	list:

Click	here	to	view	code	image
b	=	a[3:]

print('Before:			',	b)

b[1]	=	99

print('After:				',	b)

print('No	change:',	a)

>>>

Before:				['d',	'e',	'f',	'g',	'h']

After:					['d',	99,	'f',	'g',	'h']

No	change:	['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h']

When	used	in	assignments,	slices	replace	the	specified	range	in	the	original	list.
Unlike	unpacking	assignments	(such	as	a,	b	=	c[:2];	see	Item	6:	“Prefer
Multiple	Assignment	Unpacking	Over	Indexing”),	the	lengths	of	slice
assignments	don’t	need	to	be	the	same.	The	values	before	and	after	the	assigned
slice	will	be	preserved.	Here,	the	list	shrinks	because	the	replacement	list	is
shorter	than	the	specified	slice:

Click	here	to	view	code	image
print('Before	',	a)

a[2:7]	=	[99,	22,	14]

print('After		',	a)

>>>

Before		['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h']

After			['a',	'b',	99,	22,	14,	'h']

And	here	the	list	grows	because	the	assigned	list	is	longer	than	the	specific
slice:

Click	here	to	view	code	image
print('Before	',	a)

a[2:3]	=	[47,	11]

print('After		',	a)

>>>

Before		['a',	'b',	99,	22,	14,	'h']

After			['a',	'b',	47,	11,	22,	14,	'h']

If	you	leave	out	both	the	start	and	the	end	indexes	when	slicing,	you	end	up	with

a	copy	of	the	original	list:
b	=	a[:]

assert	b	==	a	and	b	is	not	a

If	you	assign	to	a	slice	with	no	start	or	end	indexes,	you	replace	the	entire
contents	of	the	list	with	a	copy	of	what’s	referenced	(instead	of	allocating	a
new	list):

Click	here	to	view	code	image
b	=	a

print('Before	a',	a)

print('Before	b',	b)

a[:]	=	[101,	102,	103]

assert	a	is	b													#	Still	the	same	list	object

print('After	a	',	a)						#	Now	has	different	contents

print('After	b	',	b)						#	Same	list,	so	same	contents	as	a

>>>

Before	a	['a',	'b',	47,	11,	22,	14,	'h']

Before	b	['a',	'b',	47,	11,	22,	14,	'h']

After	a		[101,	102,	103]

After	b		[101,	102,	103]

Things	to	Remember

✦	Avoid	being	verbose	when	slicing:	Don’t	supply	0	for	the	start	index	or	the
length	of	the	sequence	for	the	end	index.

✦	Slicing	is	forgiving	of	start	or	end	indexes	that	are	out	of	bounds,	which
means	it’s	easy	to	express	slices	on	the	front	or	back	boundaries	of	a
sequence	(like	a[:20]	or	a[-20:]).

✦	Assigning	to	a	list	slice	replaces	that	range	in	the	original	sequence	with
what’s	referenced	even	if	the	lengths	are	different.

Item	12:	Avoid	Striding	and	Slicing	in	a	Single
Expression

In	addition	to	basic	slicing	(see	Item	11:	“Know	How	to	Slice	Sequences”),
Python	has	special	syntax	for	the	stride	of	a	slice	in	the	form
somelist[start:end:stride].	This	lets	you	take	every	nth	item	when	slicing	a
sequence.	For	example,	the	stride	makes	it	easy	to	group	by	even	and	odd

indexes	in	a	list:

Click	here	to	view	code	image
x	=	['red',	'orange',	'yellow',	'green',	'blue',	'purple']

odds	=	x[::2]

evens	=	x[1::2]

print(odds)

print(evens)

>>>

['red',	'yellow',	'blue']

['orange',	'green',	'purple']

The	problem	is	that	the	stride	syntax	often	causes	unexpected	behavior	that	can
introduce	bugs.	For	example,	a	common	Python	trick	for	reversing	a	byte	string
is	to	slice	the	string	with	a	stride	of	-1:
x	=	b'mongoose'

y	=	x[::-1]

print(y)

>>>

b'esoognom'

This	also	works	correctly	for	Unicode	strings	(see	Item	3:	“Know	the
Differences	Between	bytes	and	str”):
x	=	'寿司'

y	=	x[::-1]

print(y)

>>>

司寿

But	it	will	break	when	Unicode	data	is	encoded	as	a	UTF-8	byte	string:

Click	here	to	view	code	image
w	=	'寿司'

x	=	w.encode('utf-8')

y	=	x[::-1]

z	=	y.decode('utf-8')

>>>

Traceback	...

UnicodeDecodeError:	'utf-8'	codec	can't	decode	byte	0xb8	in

position	0:	invalid	start	byte

Are	negative	strides	besides	-1	useful?	Consider	the	following	examples:

Click	here	to	view	code	image
x	=	['a',	'b',	'c',	'd',	'e',	'f',	'g',	'h']

x[::2]			#	['a',	'c',	'e',	'g']

x[::-2]		#	['h',	'f',	'd',	'b']

Here,	::2	means	“Select	every	second	item	starting	at	the	beginning.”	Trickier,
::-2	means	“Select	every	second	item	starting	at	the	end	and	moving	backward.”

What	do	you	think	2::2	means?	What	about	-2::-2	vs.	-2:2:-2	vs.	2:2:-2?

Click	here	to	view	code	image
x[2::2]					#	['c',	'e',	'g']

x[-2::-2]			#	['g',	'e',	'c',	'a']

x[-2:2:-2]		#	['g',	'e']

x[2:2:-2]			#	[]

The	point	is	that	the	stride	part	of	the	slicing	syntax	can	be	extremely	confusing.
Having	three	numbers	within	the	brackets	is	hard	enough	to	read	because	of	its
density.	Then,	it’s	not	obvious	when	the	start	and	end	indexes	come	into	effect
relative	to	the	stride	value,	especially	when	the	stride	is	negative.

To	prevent	problems,	I	suggest	you	avoid	using	a	stride	along	with	start	and	end
indexes.	If	you	must	use	a	stride,	prefer	making	it	a	positive	value	and	omit	start
and	end	indexes.	If	you	must	use	a	stride	with	start	or	end	indexes,	consider
using	one	assignment	for	striding	and	another	for	slicing:

Click	here	to	view	code	image
y	=	x[::2]			#	['a',	'c',	'e',	'g']

z	=	y[1:-1]		#	['c',	'e']

Striding	and	then	slicing	creates	an	extra	shallow	copy	of	the	data.	The	first
operation	should	try	to	reduce	the	size	of	the	resulting	slice	by	as	much	as
possible.	If	your	program	can’t	afford	the	time	or	memory	required	for	two
steps,	consider	using	the	itertools	built-in	module’s	islice	method	(see	Item
36:	“Consider	itertools	for	Working	with	Iterators	and	Generators”),	which	is
clearer	to	read	and	doesn’t	permit	negative	values	for	start,	end,	or	stride.

Things	to	Remember

✦	Specifying	start,	end,	and	stride	in	a	slice	can	be	extremely	confusing.

✦	Prefer	using	positive	stride	values	in	slices	without	start	or	end	indexes.
Avoid	negative	stride	values	if	possible.

✦	Avoid	using	start,	end,	and	stride	together	in	a	single	slice.	If	you	need	all
three	parameters,	consider	doing	two	assignments	(one	to	stride	and	another
to	slice)	or	using	islice	from	the	itertools	built-in	module.

Item	13:	Prefer	Catch-All	Unpacking	Over	Slicing
One	limitation	of	basic	unpacking	(see	Item	6:	“Prefer	Multiple	Assignment
Unpacking	Over	Indexing”)	is	that	you	must	know	the	length	of	the	sequences
you’re	unpacking	in	advance.	For	example,	here	I	have	a	list	of	the	ages	of	cars
that	are	being	traded	in	at	a	dealership.	When	I	try	to	take	the	first	two	items	of
the	list	with	basic	unpacking,	an	exception	is	raised	at	runtime:

Click	here	to	view	code	image
car_ages	=	[0,	9,	4,	8,	7,	20,	19,	1,	6,	15]

car_ages_descending	=	sorted(car_ages,	reverse=True)

oldest,	second_oldest	=	car_ages_descending

>>>

Traceback	...

ValueError:	too	many	values	to	unpack	(expected	2)

Newcomers	to	Python	often	rely	on	indexing	and	slicing	(see	Item	11:	“Know
How	to	Slice	Sequences”)	for	this	situation.	For	example,	here	I	extract	the
oldest,	second	oldest,	and	other	car	ages	from	a	list	of	at	least	two	items:

Click	here	to	view	code	image
oldest	=	car_ages_descending[0]

second_oldest	=	car_ages_descending[1]

others	=	car_ages_descending[2:]

print(oldest,	second_oldest,	others)

>>>

20	19	[15,	9,	8,	7,	6,	4,	1,	0]

This	works,	but	all	of	the	indexing	and	slicing	is	visually	noisy.	In	practice,	it’s
also	error	prone	to	divide	the	members	of	a	sequence	into	various	subsets	this
way	because	you’re	much	more	likely	to	make	off-by-one	errors;	for	example,
you	might	change	boundaries	on	one	line	and	forget	to	update	the	others.

To	better	handle	this	situation,	Python	also	supports	catch-all	unpacking	through
a	starred	expression.	This	syntax	allows	one	part	of	the	unpacking	assignment	to
receive	all	values	that	didn’t	match	any	other	part	of	the	unpacking	pattern.
Here,	I	use	a	starred	expression	to	achieve	the	same	result	as	above	without
indexing	or	slicing:

Click	here	to	view	code	image
oldest,	second_oldest,	*others	=	car_ages_descending

print(oldest,	second_oldest,	others)

>>>

20	19	[15,	9,	8,	7,	6,	4,	1,	0]

This	code	is	shorter,	easier	to	read,	and	no	longer	has	the	error-prone	brittleness
of	boundary	indexes	that	must	be	kept	in	sync	between	lines.

A	starred	expression	may	appear	in	any	position,	so	you	can	get	the	benefits	of
catch-all	unpacking	anytime	you	need	to	extract	one	slice:

Click	here	to	view	code	image
oldest,	*others,	youngest	=	car_ages_descending

print(oldest,	youngest,	others)

*others,	second_youngest,	youngest	=	car_ages_descending

print(youngest,	second_youngest,	others)

>>>

20	0	[19,	15,	9,	8,	7,	6,	4,	1]

0	1	[20,	19,	15,	9,	8,	7,	6,	4]

However,	to	unpack	assignments	that	contain	a	starred	expression,	you	must
have	at	least	one	required	part,	or	else	you’ll	get	a	SyntaxError.	You	can’t	use	a
catch-all	expression	on	its	own:

Click	here	to	view	code	image
*others	=	car_ages_descending

>>>

Traceback	...

SyntaxError:	starred	assignment	target	must	be	in	a	list	or

➥tuple

You	also	can’t	use	multiple	catch-all	expressions	in	a	single-level	unpacking
pattern:

Click	here	to	view	code	image
first,	*middle,	*second_middle,	last	=	[1,	2,	3,	4]

>>>

Traceback	...

SyntaxError:	two	starred	expressions	in	assignment

But	it	is	possible	to	use	multiple	starred	expressions	in	an	unpacking	assignment
statement,	as	long	as	they’re	catch-alls	for	different	parts	of	the	multilevel
structure	being	unpacked.	I	don’t	recommend	doing	the	following	(see	Item	19:
“Never	Unpack	More	Than	Three	Variables	When	Functions	Return	Multiple
Values”	for	related	guidance),	but	understanding	it	should	help	you	develop	an
intuition	for	how	starred	expressions	can	be	used	in	unpacking	assignments:

Click	here	to	view	code	image
car_inventory	=	{

				'Downtown':	('Silver	Shadow',	'Pinto',	'DMC'),

				'Airport':	('Skyline',	'Viper',	'Gremlin',	'Nova'),

}

((loc1,	(best1,	*rest1)),

	(loc2,	(best2,	*rest2)))	=	car_inventory.items()

print(f'Best	at	{loc1}	is	{best1},	{len(rest1)}	others')

print(f'Best	at	{loc2}	is	{best2},	{len(rest2)}	others')

>>>

Best	at	Downtown	is	Silver	Shadow,	2	others

Best	at	Airport	is	Skyline,	3	others

Starred	expressions	become	list	instances	in	all	cases.	If	there	are	no	leftover
items	from	the	sequence	being	unpacked,	the	catch-all	part	will	be	an	empty
list.	This	is	especially	useful	when	you’re	processing	a	sequence	that	you	know
in	advance	has	at	least	N	elements:
short_list	=	[1,	2]

first,	second,	*rest	=	short_list

print(first,	second,	rest)

>>>

1	2	[]

You	can	also	unpack	arbitrary	iterators	with	the	unpacking	syntax.	This	isn’t
worth	much	with	a	basic	multiple-assignment	statement.	For	example,	here	I

unpack	the	values	from	iterating	over	a	range	of	length	2.	This	doesn’t	seem
useful	because	it	would	be	easier	to	just	assign	to	a	static	list	that	matches	the
unpacking	pattern	(e.g.,	[1,	2]):
it	=	iter(range(1,	3))

first,	second	=	it

print(f'{first}	and	{second}')

>>>

1	and	2

But	with	the	addition	of	starred	expressions,	the	value	of	unpacking	iterators
becomes	clear.	For	example,	here	I	have	a	generator	that	yields	the	rows	of	a
CSV	file	containing	all	car	orders	from	the	dealership	this	week:

Click	here	to	view	code	image
def	generate_csv():

				yield	('Date',	'Make',	'Model',	'Year',	'Price')

				...

Processing	the	results	of	this	generator	using	indexes	and	slices	is	fine,	but	it
requires	multiple	lines	and	is	visually	noisy:

Click	here	to	view	code	image
all_csv_rows	=	list(generate_csv())

header	=	all_csv_rows[0]

rows	=	all_csv_rows[1:]

print('CSV	Header:',	header)

print('Row	count:	',	len(rows))

>>>

CSV	Header:	('Date',	'Make',	'Model',	'Year',	'Price')

Row	count:		200

Unpacking	with	a	starred	expression	makes	it	easy	to	process	the	first	row—the
header—separately	from	the	rest	of	the	iterator’s	contents.	This	is	much	clearer:

Click	here	to	view	code	image
it	=	generate_csv()

header,	*rows	=	it

print('CSV	Header:',	header)

print('Row	count:	',	len(rows))

>>>

CSV	Header:	('Date',	'Make',	'Model',	'Year',	'Price')

Row	count:		200

Keep	in	mind,	however,	that	because	a	starred	expression	is	always	turned	into	a
list,	unpacking	an	iterator	also	risks	the	potential	of	using	up	all	of	the	memory
on	your	computer	and	causing	your	program	to	crash.	So	you	should	only	use
catch-all	unpacking	on	iterators	when	you	have	good	reason	to	believe	that	the
result	data	will	all	fit	in	memory	(see	Item	31:	“Be	Defensive	When	Iterating
Over	Arguments”	for	another	approach).

Things	to	Remember

✦	Unpacking	assignments	may	use	a	starred	expression	to	catch	all	values	that
weren’t	assigned	to	the	other	parts	of	the	unpacking	pattern	into	a	list.

✦	Starred	expressions	may	appear	in	any	position,	and	they	will	always
become	a	list	containing	the	zero	or	more	values	they	receive.

✦	When	dividing	a	list	into	non-overlapping	pieces,	catch-all	unpacking	is
much	less	error	prone	than	slicing	and	indexing.

Item	14:	Sort	by	Complex	Criteria	Using	the	key
Parameter

The	list	built-in	type	provides	a	sort	method	for	ordering	the	items	in	a	list
instance	based	on	a	variety	of	criteria.	By	default,	sort	will	order	a	list’s
contents	by	the	natural	ascending	order	of	the	items.	For	example,	here	I	sort	a
list	of	integers	from	smallest	to	largest:
numbers	=	[93,	86,	11,	68,	70]

numbers.sort()

print(numbers)

>>>

[11,	68,	70,	86,	93]

The	sort	method	works	for	nearly	all	built-in	types	(strings,	floats,	etc.)	that
have	a	natural	ordering	to	them.	What	does	sort	do	with	objects?	For	example,
here	I	define	a	class—including	a	__repr__	method	so	instances	are	printable;
see	Item	75:	“Use	repr	Strings	for	Debugging	Output”—to	represent	various
tools	you	may	need	to	use	on	a	construction	site:

Click	here	to	view	code	image

class	Tool:

				def	__init__(self,	name,	weight):

								self.name	=	name

								self.weight	=	weight

				def	__repr__(self):

								return	f'Tool({self.name!r},	{self.weight})'

tools	=	[

				Tool('level',	3.5),

				Tool('hammer',	1.25),

				Tool('screwdriver',	0.5),

				Tool('chisel',	0.25),

]

Sorting	objects	of	this	type	doesn’t	work	because	the	sort	method	tries	to	call
comparison	special	methods	that	aren’t	defined	by	the	class:

Click	here	to	view	code	image
tools.sort()

	

>>>

Traceback	...

TypeError:	'<'	not	supported	between	instances	of	'Tool'	and

'Tool'

If	your	class	should	have	a	natural	ordering	like	integers	do,	then	you	can	define
the	necessary	special	methods	(see	Item	73:	“Know	How	to	Use	heapq	for
Priority	Queues”	for	an	example)	to	make	sort	work	without	extra	parameters.
But	the	more	common	case	is	that	your	objects	may	need	to	support	multiple
orderings,	in	which	case	defining	a	natural	ordering	really	doesn’t	make	sense.

Often	there’s	an	attribute	on	the	object	that	you’d	like	to	use	for	sorting.	To
support	this	use	case,	the	sort	method	accepts	a	key	parameter	that’s	expected	to
be	a	function.	The	key	function	is	passed	a	single	argument,	which	is	an	item
from	the	list	that	is	being	sorted.	The	return	value	of	the	key	function	should	be
a	comparable	value	(i.e.,	with	a	natural	ordering)	to	use	in	place	of	an	item	for
sorting	purposes.

Here,	I	use	the	lambda	keyword	to	define	a	function	for	the	key	parameter	that
enables	me	to	sort	the	list	of	Tool	objects	alphabetically	by	their	name:

Click	here	to	view	code	image
print('Unsorted:',	repr(tools))

tools.sort(key=lambda	x:	x.name)

print('\nSorted:	',	tools)

>>>

Unsorted:	[Tool('level',								3.5),

											Tool('hammer',							1.25),

											Tool('screwdriver',		0.5),

											Tool('chisel',							0.25)]

Sorted:	[Tool('chisel',									0.25),

									Tool('hammer',									1.25),

									Tool('level',										3.5),

									Tool('screwdriver',				0.5)]

I	can	just	as	easily	define	another	lambda	function	to	sort	by	weight	and	pass	it
as	the	key	parameter	to	the	sort	method:

Click	here	to	view	code	image
tools.sort(key=lambda	x:	x.weight)

print('By	weight:',	tools)

>>>

By	weight:	[Tool('chisel',						0.25),

												Tool('screwdriver',	0.5),

												Tool('hammer',						1.25),

												Tool('level',							3.5)]

Within	the	lambda	function	passed	as	the	key	parameter	you	can	access	attributes
of	items	as	I’ve	done	here,	index	into	items	(for	sequences,	tuples,	and
dictionaries),	or	use	any	other	valid	expression.

For	basic	types	like	strings,	you	may	even	want	to	use	the	key	function	to	do
transformations	on	the	values	before	sorting.	For	example,	here	I	apply	the	lower
method	to	each	item	in	a	list	of	place	names	to	ensure	that	they’re	in
alphabetical	order,	ignoring	any	capitalization	(since	in	the	natural	lexical
ordering	of	strings,	capital	letters	come	before	lowercase	letters):

Click	here	to	view	code	image
places	=	['home',	'work',	'New	York',	'Paris']

places.sort()

print('Case	sensitive:	',	places)

places.sort(key=lambda	x:	x.lower())

print('Case	insensitive:',	places)

>>>

Case	sensitive:	['New	York',	'Paris',	'home',	'work']

Case	insensitive:	['home',	'New	York',	'Paris',	'work']

Sometimes	you	may	need	to	use	multiple	criteria	for	sorting.	For	example,	say
that	I	have	a	list	of	power	tools	and	I	want	to	sort	them	first	by	weight	and	then
by	name.	How	can	I	accomplish	this?
power_tools	=	[

				Tool('drill',	4),

				Tool('circular	saw',	5),

				Tool('jackhammer',	40),

				Tool('sander',	4),

]

The	simplest	solution	in	Python	is	to	use	the	tuple	type.	Tuples	are	immutable
sequences	of	arbitrary	Python	values.	Tuples	are	comparable	by	default	and	have
a	natural	ordering,	meaning	that	they	implement	all	of	the	special	methods,	such
as	__lt__,	that	are	required	by	the	sort	method.	Tuples	implement	these	special
method	comparators	by	iterating	over	each	position	in	the	tuple	and	comparing
the	corresponding	values	one	index	at	a	time.	Here,	I	show	how	this	works	when
one	tool	is	heavier	than	another:

Click	here	to	view	code	image
saw	=	(5,	'circular	saw')

jackhammer	=	(40,	'jackhammer')

assert	not	(jackhammer	<	saw)	#	Matches	expectations

If	the	first	position	in	the	tuples	being	compared	are	equal—weight	in	this	case
—then	the	tuple	comparison	will	move	on	to	the	second	position,	and	so	on:

Click	here	to	view	code	image
drill	=	(4,	'drill')

sander	=	(4,	'sander')

assert	drill[0]	==	sander[0]	#	Same	weight

assert	drill[1]	<	sander[1]		#	Alphabetically	less

assert	drill	<	sander								#	Thus,	drill	comes	first

You	can	take	advantage	of	this	tuple	comparison	behavior	in	order	to	sort	the
list	of	power	tools	first	by	weight	and	then	by	name.	Here,	I	define	a	key
function	that	returns	a	tuple	containing	the	two	attributes	that	I	want	to	sort	on
in	order	of	priority:

Click	here	to	view	code	image
power_tools.sort(key=lambda	x:	(x.weight,	x.name))

print(power_tools)

>>>

[Tool('drill',								4),

	Tool('sander',							4),

	Tool('circular	saw',	5),

	Tool('jackhammer',			40)]

One	limitation	of	having	the	key	function	return	a	tuple	is	that	the	direction	of
sorting	for	all	criteria	must	be	the	same	(either	all	in	ascending	order,	or	all	in
descending	order).	If	I	provide	the	reverse	parameter	to	the	sort	method,	it	will
affect	both	criteria	in	the	tuple	the	same	way	(note	how	'sander'	now	comes
before	'drill'	instead	of	after):

Click	here	to	view	code	image
power_tools.sort(key=lambda	x:	(x.weight,	x.name),

																	reverse=True)	#	Makes	all	criteria	descending

print(power_tools)

>>>

[Tool('jackhammer',			40),

	Tool('circular	saw',	5),

	Tool('sander',							4),

	Tool('drill',								4)]

For	numerical	values	it’s	possible	to	mix	sorting	directions	by	using	the	unary
minus	operator	in	the	key	function.	This	negates	one	of	the	values	in	the	returned
tuple,	effectively	reversing	its	sort	order	while	leaving	the	others	intact.	Here,	I
use	this	approach	to	sort	by	weight	descending,	and	then	by	name	ascending	(note
how	'sander'	now	comes	after	'drill'	instead	of	before):

Click	here	to	view	code	image
power_tools.sort(key=lambda	x:	(-x.weight,	x.name))

print(power_tools)

>>>

[Tool('jackhammer',			40),

	Tool('circular	saw',	5),

	Tool('drill',								4),

	Tool('sander',							4)]

Unfortunately,	unary	negation	isn’t	possible	for	all	types.	Here,	I	try	to	achieve
the	same	outcome	by	using	the	reverse	argument	to	sort	by	weight	descending
and	then	negating	name	to	put	it	in	ascending	order:

Click	here	to	view	code	image

power_tools.sort(key=lambda	x:	(x.weight,	-x.name),

																	reverse=True)

>>>

Traceback	...

TypeError:	bad	operand	type	for	unary	-:	'str'

For	situations	like	this,	Python	provides	a	stable	sorting	algorithm.	The	sort
method	of	the	list	type	will	preserve	the	order	of	the	input	list	when	the	key
function	returns	values	that	are	equal	to	each	other.	This	means	that	I	can	call
sort	multiple	times	on	the	same	list	to	combine	different	criteria	together.
Here,	I	produce	the	same	sort	ordering	of	weight	descending	and	name	ascending
as	I	did	above	but	by	using	two	separate	calls	to	sort:

Click	here	to	view	code	image
power_tools.sort(key=lambda	x:	x.name)	#	Name	ascending

power_tools.sort(key=lambda	x:	x.weight,	#	Weight	descending

																	reverse=True)

print(power_tools)

>>>

[Tool('jackhammer',			40),

	Tool('circular	saw',	5),

	Tool('drill',								4),

	Tool('sander',							4)]

To	understand	why	this	works,	note	how	the	first	call	to	sort	puts	the	names	in
alphabetical	order:

Click	here	to	view	code	image
power_tools.sort(key=lambda	x:	x.name)

print(power_tools)

>>>

[Tool('circular	saw',	5),

	Tool('drill',								4),

	Tool('jackhammer',			40),

	Tool('sander',							4)]

When	the	second	sort	call	by	weight	descending	is	made,	it	sees	that	both
'sander'	and	'drill'	have	a	weight	of	4.	This	causes	the	sort	method	to	put
both	items	into	the	final	result	list	in	the	same	order	that	they	appeared	in	the
original	list,	thus	preserving	their	relative	ordering	by	name	ascending:

Click	here	to	view	code	image

power_tools.sort(key=lambda	x:	x.weight,

																	reverse=True)

print(power_tools)

>>>

[Tool('jackhammer',			40),

	Tool('circular	saw',	5),

	Tool('drill',								4),

	Tool('sander',							4)]

This	same	approach	can	be	used	to	combine	as	many	different	types	of	sorting
criteria	as	you’d	like	in	any	direction,	respectively.	You	just	need	to	make	sure
that	you	execute	the	sorts	in	the	opposite	sequence	of	what	you	want	the	final
list	to	contain.	In	this	example,	I	wanted	the	sort	order	to	be	by	weight
descending	and	then	by	name	ascending,	so	I	had	to	do	the	name	sort	first,
followed	by	the	weight	sort.

That	said,	the	approach	of	having	the	key	function	return	a	tuple,	and	using
unary	negation	to	mix	sort	orders,	is	simpler	to	read	and	requires	less	code.	I
recommend	only	using	multiple	calls	to	sort	if	it’s	absolutely	necessary.

Things	to	Remember

✦	The	sort	method	of	the	list	type	can	be	used	to	rearrange	a	list’s	contents
by	the	natural	ordering	of	built-in	types	like	strings,	integers,	tuples,	and	so
on.

✦	The	sort	method	doesn’t	work	for	objects	unless	they	define	a	natural
ordering	using	special	methods,	which	is	uncommon.

✦	The	key	parameter	of	the	sort	method	can	be	used	to	supply	a	helper
function	that	returns	the	value	to	use	for	sorting	in	place	of	each	item	from
the	list.

✦	Returning	a	tuple	from	the	key	function	allows	you	to	combine	multiple
sorting	criteria	together.	The	unary	minus	operator	can	be	used	to	reverse
individual	sort	orders	for	types	that	allow	it.

✦	For	types	that	can’t	be	negated,	you	can	combine	many	sorting	criteria
together	by	calling	the	sort	method	multiple	times	using	different	key
functions	and	reverse	values,	in	the	order	of	lowest	rank	sort	call	to
highest	rank	sort	call.

Item	15:	Be	Cautious	When	Relying	on	dict	Insertion
Ordering

In	Python	3.5	and	before,	iterating	over	a	dict	would	return	keys	in	arbitrary
order.	The	order	of	iteration	would	not	match	the	order	in	which	the	items	were
inserted.	For	example,	here	I	create	a	dictionary	mapping	animal	names	to	their
corresponding	baby	names	and	then	print	it	out	(see	Item	75:	“Use	repr	Strings
for	Debugging	Output”	for	how	this	works):
#	Python	3.5

baby_names	=	{

				'cat':	'kitten',

				'dog':	'puppy',

}

print(baby_names)

>>>

{'dog':	'puppy',	'cat':	'kitten'}

When	I	created	the	dictionary	the	keys	were	in	the	order	'cat',	'dog',	but	when
I	printed	it	the	keys	were	in	the	reverse	order	'dog',	'cat'.	This	behavior	is
surprising,	makes	it	harder	to	reproduce	test	cases,	increases	the	difficulty	of
debugging,	and	is	especially	confusing	to	newcomers	to	Python.

This	happened	because	the	dictionary	type	previously	implemented	its	hash	table
algorithm	with	a	combination	of	the	hash	built-in	function	and	a	random	seed
that	was	assigned	when	the	Python	interpreter	started.	Together,	these	behaviors
caused	dictionary	orderings	to	not	match	insertion	order	and	to	randomly	shuffle
between	program	executions.

Starting	with	Python	3.6,	and	officially	part	of	the	Python	specification	in
version	3.7,	dictionaries	will	preserve	insertion	order.	Now,	this	code	will
always	print	the	dictionary	in	the	same	way	it	was	originally	created	by	the
programmer:
baby_names	=	{

				'cat':	'kitten',

				'dog':	'puppy',

}

print(baby_names)

>>>

{'cat':	'kitten',	'dog':	'puppy'}

With	Python	3.5	and	earlier,	all	methods	provided	by	dict	that	relied	on	iteration
order,	including	keys,	values,	items,	and	popitem,	would	similarly	demonstrate
this	random-looking	behavior:

Click	here	to	view	code	image
#	Python	3.5

print(list(baby_names.keys()))

print(list(baby_names.values()))

print(list(baby_names.items()))

print(baby_names.popitem())		#	Randomly	chooses	an	item

>>>

['dog',	'cat']

['puppy',	'kitten']

[('dog',	'puppy'),	('cat',	'kitten')]

('dog',	'puppy')

These	methods	now	provide	consistent	insertion	ordering	that	you	can	rely	on
when	you	write	your	programs:

Click	here	to	view	code	image
print(list(baby_names.keys()))

print(list(baby_names.values()))

print(list(baby_names.items()))

print(baby_names.popitem())	#	Last	item	inserted

>>>

['cat',	'dog']

['kitten',	'puppy']

[('cat',	'kitten'),	('dog',	'puppy')]

('dog',	'puppy')

There	are	many	repercussions	of	this	change	on	other	Python	features	that	are
dependent	on	the	dict	type	and	its	specific	implementation.

Keyword	arguments	to	functions—including	the	**kwargs	catch-all	parameter;
see	Item	23:	“Provide	Optional	Behavior	with	Keyword	Arguments”—
previously	would	come	through	in	seemingly	random	order,	which	can	make	it
harder	to	debug	function	calls:

Click	here	to	view	code	image
#	Python	3.5

def	my_func(**kwargs):

				for	key,	value	in	kwargs.items():

								print('%s	=	%s'	%	(key,	value))

my_func(goose='gosling',	kangaroo='joey')

>>>

kangaroo	=	joey

goose	=	gosling

Now,	the	order	of	keyword	arguments	is	always	preserved	to	match	how	the
programmer	originally	called	the	function:

Click	here	to	view	code	image
def	my_func(**kwargs):

				for	key,	value	in	kwargs.items():

								print(f'{key}	=	{value}')

my_func(goose='gosling',	kangaroo='joey')

>>>

goose	=	gosling

kangaroo	=	joey

Classes	also	use	the	dict	type	for	their	instance	dictionaries.	In	previous	versions
of	Python,	object	fields	would	show	the	randomizing	behavior:

Click	here	to	view	code	image
#	Python	3.5

class	MyClass:

				def	__init__(self):

								self.alligator	=	'hatchling'

								self.elephant	=	'calf'

a	=	MyClass()

for	key,	value	in	a.__dict__.items():

				print('%s	=	%s'	%	(key,	value))

>>>

elephant	=	calf

alligator	=	hatchling

Again,	you	can	now	assume	that	the	order	of	assignment	for	these	instance	fields
will	be	reflected	in	__dict__:

Click	here	to	view	code	image
class	MyClass:

				def	__init__(self):

								self.alligator	=	'hatchling'

								self.elephant	=	'calf'

a	=	MyClass()

for	key,	value	in	a.__dict__.items():

				print(f'{key}	=	{value}')

>>>

alligator	=	hatchling

elephant	=	calf

The	way	that	dictionaries	preserve	insertion	ordering	is	now	part	of	the	Python
language	specification.	For	the	language	features	above,	you	can	rely	on	this
behavior	and	even	make	it	part	of	the	APIs	you	design	for	your	classes	and
functions.

Note
For	a	long	time	the	collections	built-in	module	has	had	an	OrderedDict	class
that	preserves	 insertion	ordering.	Although	 this	class’s	behavior	 is	similar	 to
that	 of	 the	 standard	 dict	 type	 (since	 Python	 3.7),	 the	 performance
characteristics	of	OrderedDict	are	quite	different.	If	you	need	to	handle	a	high
rate	 of	 key	 insertions	 and	popitem	 calls	 (e.g.,	 to	 implement	 a	 least-recently-
used	 cache),	 OrderedDict	may	 be	 a	 better	 fit	 than	 the	 standard	Python	 dict
type	(see	Item	70:	“Profile	Before	Optimizing”	on	how	to	make	sure	you	need
this).

However,	you	shouldn’t	always	assume	that	insertion	ordering	behavior	will	be
present	when	you’re	handling	dictionaries.	Python	makes	it	easy	for
programmers	to	define	their	own	custom	container	types	that	emulate	the
standard	protocols	matching	list,	dict,	and	other	types	(see	Item	43:	“Inherit
from	collections.abc	for	Custom	Container	Types”).	Python	is	not	statically
typed,	so	most	code	relies	on	duck	typing—where	an	object’s	behavior	is	its	de
facto	type—instead	of	rigid	class	hierarchies.	This	can	result	in	surprising
gotchas.

For	example,	say	that	I’m	writing	a	program	to	show	the	results	of	a	contest	for
the	cutest	baby	animal.	Here,	I	start	with	a	dictionary	containing	the	total	vote
count	for	each	one:
votes	=	{

				'otter':	1281,

				'polar	bear':	587,

				'fox':	863,

}

I	define	a	function	to	process	this	voting	data	and	save	the	rank	of	each	animal
name	into	a	provided	empty	dictionary.	In	this	case,	the	dictionary	could	be	the
data	model	that	powers	a	UI	element:

Click	here	to	view	code	image
def	populate_ranks(votes,	ranks):

				names	=	list(votes.keys())

				names.sort(key=votes.get,	reverse=True)

				for	i,	name	in	enumerate(names,	1):

								ranks[name]	=	i

I	also	need	a	function	that	will	tell	me	which	animal	won	the	contest.	This
function	works	by	assuming	that	populate_ranks	will	assign	the	contents	of	the
ranks	dictionary	in	ascending	order,	meaning	that	the	first	key	must	be	the
winner:
def	get_winner(ranks):

				return	next(iter(ranks))

Here,	I	can	confirm	that	these	functions	work	as	designed	and	deliver	the	result
that	I	expected:

Click	here	to	view	code	image
ranks	=	{}

populate_ranks(votes,	ranks)

print(ranks)

winner	=	get_winner(ranks)

print(winner)

>>>

{'otter':	1,	'fox':	2,	'polar	bear':	3}

otter

Now,	imagine	that	the	requirements	of	this	program	have	changed.	The	UI
element	that	shows	the	results	should	be	in	alphabetical	order	instead	of	rank
order.	To	accomplish	this,	I	can	use	the	collections.abc	built-in	module	to
define	a	new	dictionary-like	class	that	iterates	its	contents	in	alphabetical	order:

Click	here	to	view	code	image
from	collections.abc	import	MutableMapping

class	SortedDict(MutableMapping):

				def	__init__(self):

								self.data	=	{}

				def	__getitem__(self,	key):

								return	self.data[key]

				def	__setitem__(self,	key,	value):

								self.data[key]	=	value

				def	__delitem__(self,	key):

								del	self.data[key]

				def	__iter__(self):

								keys	=	list(self.data.keys())

								keys.sort()

								for	key	in	keys:

												yield	key

				def	__len__(self):

										return	len(self.data)

I	can	use	a	SortedDict	instance	in	place	of	a	standard	dict	with	the	functions
from	before	and	no	errors	will	be	raised	since	this	class	conforms	to	the	protocol
of	a	standard	dictionary.	However,	the	result	is	incorrect:

Click	here	to	view	code	image
sorted_ranks	=	SortedDict()

populate_ranks(votes,	sorted_ranks)

print(sorted_ranks.data)

winner	=	get_winner(sorted_ranks)

print(winner)

>>>

{'otter':	1,	'fox':	2,	'polar	bear':	3}

fox

The	problem	here	is	that	the	implementation	of	get_winner	assumes	that	the
dictionary’s	iteration	is	in	insertion	order	to	match	populate_ranks.	This	code	is
using	SortedDict	instead	of	dict,	so	that	assumption	is	no	longer	true.	Thus,	the
value	returned	for	the	winner	is	'fox',	which	is	alphabetically	first.

There	are	three	ways	to	mitigate	this	problem.	First,	I	can	reimplement	the
get_winner	function	to	no	longer	assume	that	the	ranks	dictionary	has	a	specific
iteration	order.	This	is	the	most	conservative	and	robust	solution:

Click	here	to	view	code	image
def	get_winner(ranks):

				for	name,	rank	in	ranks.items():

								if	rank	==	1:

												return	name

winner	=	get_winner(sorted_ranks)

print(winner)

>>>

otter

The	second	approach	is	to	add	an	explicit	check	to	the	top	of	the	function	to
ensure	that	the	type	of	ranks	matches	my	expectations,	and	to	raise	an	exception
if	not.	This	solution	likely	has	better	runtime	performance	than	the	more
conservative	approach:

Click	here	to	view	code	image
def	get_winner(ranks):

				if	not	isinstance(ranks,	dict):

								raise	TypeError('must	provide	a	dict	instance')

				return	next(iter(ranks))

get_winner(sorted_ranks)

>>>

Traceback	...

TypeError:	must	provide	a	dict	instance

The	third	alternative	is	to	use	type	annotations	to	enforce	that	the	value	passed	to
get_winner	is	a	dict	instance	and	not	a	MutableMapping	with	dictionary-like
behavior	(see	Item	90:	“Consider	Static	Analysis	via	typing	to	Obviate	Bugs”).
Here,	I	run	the	mypy	tool	in	strict	mode	on	an	annotated	version	of	the	code
above:

Click	here	to	view	code	image
from	typing	import	Dict,	MutableMapping

def	populate_ranks(votes:	Dict[str,	int],

																			ranks:	Dict[str,	int])	->	None:

				names	=	list(votes.keys())

				names.sort(key=votes.get,	reverse=True)

				for	i,	name	in	enumerate(names,	1):

								ranks[name]	=	i

def	get_winner(ranks:	Dict[str,	int])	->	str:

				return	next(iter(ranks))

class	SortedDict(MutableMapping[str,	int]):

				...

votes	=	{

				'otter':	1281,

				'polar	bear':	587,

				'fox':	863,

}

sorted_ranks	=	SortedDict()

populate_ranks(votes,	sorted_ranks)

print(sorted_ranks.data)

winner	=	get_winner(sorted_ranks)

print(winner)

Click	here	to	view	code	image
$	python3	-m	mypy	--strict	example.py

.../example.py:48:	error:	Argument	2	to	"populate_ranks"	has

➥incompatible	type	"SortedDict";	expected	"Dict[str,	int]"
.../example.py:50:	error:	Argument	1	to	"get_winner"	has

➥incompatible	type	"SortedDict";	expected	"Dict[str,	int]"

This	correctly	detects	the	mismatch	between	the	dict	and	MutableMapping	types
and	flags	the	incorrect	usage	as	an	error.	This	solution	provides	the	best	mix	of
static	type	safety	and	runtime	performance.

Things	to	Remember

✦	Since	Python	3.7,	you	can	rely	on	the	fact	that	iterating	a	dict	instance’s
contents	will	occur	in	the	same	order	in	which	the	keys	were	initially	added.

✦	Python	makes	it	easy	to	define	objects	that	act	like	dictionaries	but	that
aren’t	dict	instances.	For	these	types,	you	can’t	assume	that	insertion
ordering	will	be	preserved.

✦	There	are	three	ways	to	be	careful	about	dictionary-like	classes:	Write	code
that	doesn’t	rely	on	insertion	ordering,	explicitly	check	for	the	dict	type	at
runtime,	or	require	dict	values	using	type	annotations	and	static	analysis.

Item	16:	Prefer	get	Over	in	and	KeyError	to	Handle
Missing	Dictionary	Keys

The	three	fundamental	operations	for	interacting	with	dictionaries	are	accessing,
assigning,	and	deleting	keys	and	their	associated	values.	The	contents	of
dictionaries	are	dynamic,	and	thus	it’s	entirely	possible—even	likely—that	when
you	try	to	access	or	delete	a	key,	it	won’t	already	be	present.

For	example,	say	that	I’m	trying	to	determine	people’s	favorite	type	of	bread	to
devise	the	menu	for	a	sandwich	shop.	Here,	I	define	a	dictionary	of	counters
with	the	current	votes	for	each	style:

with	the	current	votes	for	each	style:
counters	=	{

				'pumpernickel':	2,

				'sourdough':	1,

}

To	increment	the	counter	for	a	new	vote,	I	need	to	see	if	the	key	exists,	insert	the
key	with	a	default	counter	value	of	zero	if	it’s	missing,	and	then	increment	the
counter’s	value.	This	requires	accessing	the	key	two	times	and	assigning	it	once.
Here,	I	accomplish	this	task	using	an	if	statement	with	an	in	expression	that
returns	True	when	the	key	is	present:
key	=	'wheat'

if	key	in	counters:

				count	=	counters[key]

else:

				count	=	0

counters[key]	=	count	+	1

Another	way	to	accomplish	the	same	behavior	is	by	relying	on	how	dictionaries
raise	a	KeyError	exception	when	you	try	to	get	the	value	for	a	key	that	doesn’t
exist.	This	approach	is	more	efficient	because	it	requires	only	one	access	and	one
assignment:
try:

				count	=	counters[key]

except	KeyError:

				count	=	0

counters[key]	=	count	+	1

This	flow	of	fetching	a	key	that	exists	or	returning	a	default	value	is	so	common
that	the	dict	built-in	type	provides	the	get	method	to	accomplish	this	task.	The
second	parameter	to	get	is	the	default	value	to	return	in	the	case	that	the	key—
the	first	parameter—isn’t	present.	This	also	requires	only	one	access	and	one
assignment,	but	it’s	much	shorter	than	the	KeyError	example:
count	=	counters.get(key,	0)

counters[key]	=	count	+	1

It’s	possible	to	shorten	the	in	expression	and	KeyError	approaches	in	various
ways,	but	all	of	these	alternatives	suffer	from	requiring	code	duplication	for	the
assignments,	which	makes	them	less	readable	and	worth	avoiding:
if	key	not	in	counters:

				counters[key]	=	0

counters[key]	+=	1

if	key	in	counters:

				counters[key]	+=	1

else:

				counters[key]	=	1

try:

				counters[key]	+=	1

except	KeyError:

				counters[key]	=	1

Thus,	for	a	dictionary	with	simple	types,	using	the	get	method	is	the	shortest	and
clearest	option.

Note
If	you’re	maintaining	dictionaries	of	counters	like	this,	it’s	worth	considering
the	Counter	class	from	the	collections	built-in	module,	which	provides	most
of	the	facilities	you	are	likely	to	need.

What	if	the	values	of	the	dictionary	are	a	more	complex	type,	like	a	list?	For
example,	say	that	instead	of	only	counting	votes,	I	also	want	to	know	who	voted
for	each	type	of	bread.	Here,	I	do	this	by	associating	a	list	of	names	with	each
key:
votes	=	{

				'baguette':	['Bob',	'Alice'],

				'ciabatta':	['Coco',	'Deb'],

}

key	=	'brioche'

who	=	'Elmer'

if	key	in	votes:

				names	=	votes[key]

else:

				votes[key]	=	names	=	[]

names.append(who)

print(votes)

>>>

{'baguette':	['Bob',	'Alice'],

	'ciabatta':	['Coco',	'Deb'],

	'brioche':	['Elmer']}

Relying	on	the	in	expression	requires	two	accesses	if	the	key	is	present,	or	one
access	and	one	assignment	if	the	key	is	missing.	This	example	is	different	from
the	counters	example	above	because	the	value	for	each	key	can	be	assigned
blindly	to	the	default	value	of	an	empty	list	if	the	key	doesn’t	already	exist.	The
triple	assignment	statement	(votes[key]	=	names	=	[])	populates	the	key	in	one
line	instead	of	two.	Once	the	default	value	has	been	inserted	into	the	dictionary,	I
don’t	need	to	assign	it	again	because	the	list	is	modified	by	reference	in	the
later	call	to	append.

It’s	also	possible	to	rely	on	the	KeyError	exception	being	raised	when	the
dictionary	value	is	a	list.	This	approach	requires	one	key	access	if	the	key	is
present,	or	one	key	access	and	one	assignment	if	it’s	missing,	which	makes	it
more	efficient	than	the	in	condition:
try:

				names	=	votes[key]

except	KeyError:

				votes[key]	=	names	=	[]

names.append(who)

Similarly,	you	can	use	the	get	method	to	fetch	a	list	value	when	the	key	is
present,	or	do	one	fetch	and	one	assignment	if	the	key	isn’t	present:
names	=	votes.get(key)

if	names	is	None:

				votes[key]	=	names	=	[]

names.append(who)

The	approach	that	involves	using	get	to	fetch	list	values	can	further	be
shortened	by	one	line	if	you	use	an	assignment	expression	(introduced	in	Python
3.8;	see	Item	10:	“Prevent	Repetition	with	Assignment	Expressions”)	in	the	if
statement,	which	improves	readability:

Click	here	to	view	code	image
if	(names	:=	votes.get(key))	is	None:

				votes[key]	=	names	=	[]

names.append(who)

The	dict	type	also	provides	the	setdefault	method	to	help	shorten	this	pattern
even	further.	setdefault	tries	to	fetch	the	value	of	a	key	in	the	dictionary.	If	the
key	isn’t	present,	the	method	assigns	that	key	to	the	default	value	provided.	And

then	the	method	returns	the	value	for	that	key:	either	the	originally	present	value
or	the	newly	inserted	default	value.	Here,	I	use	setdefault	to	implement	the
same	logic	as	in	the	get	example	above:
names	=	votes.setdefault(key,	[])

names.append(who)

This	works	as	expected,	and	it	is	shorter	than	using	get	with	an	assignment
expression.	However,	the	readability	of	this	approach	isn’t	ideal.	The	method
name	setdefault	doesn’t	make	its	purpose	immediately	obvious.	Why	is	it	set
when	what	it’s	doing	is	getting	a	value?	Why	not	call	it	get_or_set?	I’m	arguing
about	the	color	of	the	bike	shed	here,	but	the	point	is	that	if	you	were	a	new
reader	of	the	code	and	not	completely	familiar	with	Python,	you	might	have
trouble	understanding	what	this	code	is	trying	to	accomplish	because	setdefault
isn’t	self-explanatory.

There’s	also	one	important	gotcha:	The	default	value	passed	to	setdefault	is
assigned	directly	into	the	dictionary	when	the	key	is	missing	instead	of	being
copied.	Here,	I	demonstrate	the	effect	of	this	when	the	value	is	a	list:
data	=	{}

key	=	'foo'

value	=	[]

data.setdefault(key,	value)

print('Before:',	data)

value.append('hello')

print('After:	',	data)

>>>

Before:	{'foo':	[]}

After:	{'foo':	['hello']}

This	means	that	I	need	to	make	sure	that	I’m	always	constructing	a	new	default
value	for	each	key	I	access	with	setdefault.	This	leads	to	a	significant
performance	overhead	in	this	example	because	I	have	to	allocate	a	list	instance
for	each	call.	If	I	reuse	an	object	for	the	default	value—which	I	might	try	to	do
to	increase	efficiency	or	readability—I	might	introduce	strange	behavior	and
bugs	(see	Item	24:	“Use	None	and	Docstrings	to	Specify	Dynamic	Default
Arguments”	for	another	example	of	this	problem).

Going	back	to	the	earlier	example	that	used	counters	for	dictionary	values
instead	of	lists	of	who	voted:	Why	not	also	use	the	setdefault	method	in	that
case?	Here,	I	reimplement	the	same	example	using	this	approach:
count	=	counters.setdefault(key,	0)

counters[key]	=	count	+	1

The	problem	here	is	that	the	call	to	setdefault	is	superfluous.	You	always	need
to	assign	the	key	in	the	dictionary	to	a	new	value	after	you	increment	the
counter,	so	the	extra	assignment	done	by	setdefault	is	unnecessary.	The	earlier
approach	of	using	get	for	counter	updates	requires	only	one	access	and	one
assignment,	whereas	using	setdefault	requires	one	access	and	two	assignments.

There	are	only	a	few	circumstances	in	which	using	setdefault	is	the	shortest
way	to	handle	missing	dictionary	keys,	such	as	when	the	default	values	are
cheap	to	construct,	mutable,	and	there’s	no	potential	for	raising	exceptions	(e.g.,
list	instances).	In	these	very	specific	cases,	it	may	seem	worth	accepting	the
confusing	method	name	setdefault	instead	of	having	to	write	more	characters
and	lines	to	use	get.	However,	often	what	you	really	should	do	in	these
situations	is	to	use	defaultdict	instead	(see	Item	17:	“Prefer	defaultdict	Over
setdefault	to	Handle	Missing	Items	in	Internal	State”).

Things	to	Remember

✦	There	are	four	common	ways	to	detect	and	handle	missing	keys	in
dictionaries:	using	in	expressions,	KeyError	exceptions,	the	get	method,	and
the	setdefault	method.

✦	The	get	method	is	best	for	dictionaries	that	contain	basic	types	like
counters,	and	it	is	preferable	along	with	assignment	expressions	when
creating	dictionary	values	has	a	high	cost	or	may	raise	exceptions.

✦	When	the	setdefault	method	of	dict	seems	like	the	best	fit	for	your
problem,	you	should	consider	using	defaultdict	instead.

Item	17:	Prefer	defaultdict	Over	setdefault	to	Handle
Missing	Items	in	Internal	State

When	working	with	a	dictionary	that	you	didn’t	create,	there	are	a	variety	of
ways	to	handle	missing	keys	(see	Item	16:	“Prefer	get	Over	in	and	KeyError	to
Handle	Missing	Dictionary	Keys”).	Although	using	the	get	method	is	a	better
approach	than	using	in	expressions	and	KeyError	exceptions,	for	some	use	cases
setdefault	appears	to	be	the	shortest	option.

For	example,	say	that	I	want	to	keep	track	of	the	cities	I’ve	visited	in	countries
around	the	world.	Here,	I	do	this	by	using	a	dictionary	that	maps	country	names

to	a	set	instance	containing	corresponding	city	names:

Click	here	to	view	code	image
visits	=	{

				'Mexico':	{'Tulum',	'Puerto	Vallarta'},

				'Japan':	{'Hakone'},

}

I	can	use	the	setdefault	method	to	add	new	cities	to	the	sets,	whether	the
country	name	is	already	present	in	the	dictionary	or	not.	This	approach	is	much
shorter	than	achieving	the	same	behavior	with	the	get	method	and	an	assignment
expression	(which	is	available	as	of	Python	3.8):

Click	here	to	view	code	image
visits.setdefault('France',	set()).add('Arles')	#	Short

if	(japan	:=	visits.get('Japan'))	is	None:						#	Long

				visits['Japan']	=	japan	=	set()

japan.add('Kyoto')

print(visits)

>>>

{'Mexico':	{'Tulum',	'Puerto	Vallarta'},

	'Japan':	{'Kyoto',	'Hakone'},

	'France':	{'Arles'}}

What	about	the	situation	when	you	do	control	creation	of	the	dictionary	being
accessed?	This	is	generally	the	case	when	you’re	using	a	dictionary	instance	to
keep	track	of	the	internal	state	of	a	class,	for	example.	Here,	I	wrap	the	example
above	in	a	class	with	helper	methods	to	access	the	dynamic	inner	state	stored	in
a	dictionary:

Click	here	to	view	code	image
class	Visits:

				def	__init__(self):

								self.data	=	{}

				def	add(self,	country,	city):

								city_set	=	self.data.setdefault(country,	set())

								city_set.add(city)

This	new	class	hides	the	complexity	of	calling	setdefault	correctly,	and	it
provides	a	nicer	interface	for	the	programmer:

Click	here	to	view	code	image
visits	=	Visits()

visits.add('Russia',	'Yekaterinburg')

visits.add('Tanzania',	'Zanzibar')

print(visits.data)

>>>

{'Russia':	{'Yekaterinburg'},	'Tanzania':	{'Zanzibar'}}

However,	the	implementation	of	the	Visits.add	method	still	isn’t	ideal.	The
setdefault	method	is	still	confusingly	named,	which	makes	it	more	difficult	for
a	new	reader	of	the	code	to	immediately	understand	what’s	happening.	And	the
implementation	isn’t	efficient	because	it	constructs	a	new	set	instance	on	every
call,	regardless	of	whether	the	given	country	was	already	present	in	the	data
dictionary.

Luckily,	the	defaultdict	class	from	the	collections	built-in	module	simplifies
this	common	use	case	by	automatically	storing	a	default	value	when	a	key
doesn’t	exist.	All	you	have	to	do	is	provide	a	function	that	will	return	the	default
value	to	use	each	time	a	key	is	missing	(an	example	of	Item	38:	“Accept
Functions	Instead	of	Classes	for	Simple	Interfaces”).	Here,	I	rewrite	the	Visits
class	to	use	defaultdict:

Click	here	to	view	code	image
from	collections	import	defaultdict

class	Visits:

				def	__init__(self):

							self.data	=	defaultdict(set)

				def	add(self,	country,	city):

							self.data[country].add(city)

visits	=	Visits()

visits.add('England',	'Bath')

visits.add('England',	'London')

print(visits.data)

>>>

defaultdict(<class	'set'>,	{'England':	{'London',	'Bath'}})

Now,	the	implementation	of	add	is	short	and	simple.	The	code	can	assume	that
accessing	any	key	in	the	data	dictionary	will	always	result	in	an	existing	set
instance.	No	superfluous	set	instances	will	be	allocated,	which	could	be	costly	if

the	add	method	is	called	a	large	number	of	times.

Using	defaultdict	is	much	better	than	using	setdefault	for	this	type	of	situation
(see	Item	37:	“Compose	Classes	Instead	of	Nesting	Many	Levels	of	Built-in
Types”	for	another	example).	There	are	still	cases	in	which	defaultdict	will	fall
short	of	solving	your	problems,	but	there	are	even	more	tools	available	in	Python
to	work	around	those	limitations	(see	Item	18:	“Know	How	to	Construct	Key-
Dependent	Default	Values	with	__missing__,”	Item	43:	“Inherit	from
collections.abc	for	Custom	Container	Types,”	and	the	collections.Counter
built-in	class).

Things	to	Remember

✦	If	you’re	creating	a	dictionary	to	manage	an	arbitrary	set	of	potential	keys,
then	you	should	prefer	using	a	defaultdict	instance	from	the	collections
built-in	module	if	it	suits	your	problem.

✦	If	a	dictionary	of	arbitrary	keys	is	passed	to	you,	and	you	don’t	control	its
creation,	then	you	should	prefer	the	get	method	to	access	its	items.
However,	it’s	worth	considering	using	the	setdefault	method	for	the	few
situations	in	which	it	leads	to	shorter	code.

Item	18:	Know	How	to	Construct	Key-Dependent
Default	Values	with	__missing__

The	built-in	dict	type’s	setdefault	method	results	in	shorter	code	when
handling	missing	keys	in	some	specific	circumstances	(see	Item	16:	“Prefer	get
Over	in	and	KeyError	to	Handle	Missing	Dictionary	Keys”	for	examples).	For
many	of	those	situations,	the	better	tool	for	the	job	is	the	defaultdict	type	from
the	collections	built-in	module	(see	Item	17:	“Prefer	defaultdict	Over
setdefault	to	Handle	Missing	Items	in	Internal	State”	for	why).	However,	there
are	times	when	neither	setdefault	nor	defaultdict	is	the	right	fit.

For	example,	say	that	I’m	writing	a	program	to	manage	social	network	profile
pictures	on	the	filesystem.	I	need	a	dictionary	to	map	profile	picture	pathnames
to	open	file	handles	so	I	can	read	and	write	those	images	as	needed.	Here,	I	do
this	by	using	a	normal	dict	instance	and	checking	for	the	presence	of	keys	using
the	get	method	and	an	assignment	expression	(introduced	in	Python	3.8;	see
Item	10:	“Prevent	Repetition	with	Assignment	Expressions”):

Click	here	to	view	code	image
pictures	=	{}

path	=	'profile_1234.png'

if	(handle	:=	pictures.get(path))	is	None:

				try:

								handle	=	open(path,	'a+b')

				except	OSError:

								print(f'Failed	to	open	path	{path}')

								raise

				else:

								pictures[path]	=	handle

handle.seek(0)

image_data	=	handle.read()

When	the	file	handle	already	exists	in	the	dictionary,	this	code	makes	only	a
single	dictionary	access.	In	the	case	that	the	file	handle	doesn’t	exist,	the
dictionary	is	accessed	once	by	get,	and	then	it	is	assigned	in	the	else	clause	of
the	try/except	block.	(This	approach	also	works	with	finally;	see	Item	65:
“Take	Advantage	of	Each	Block	in	try/except/else/finally.”)	The	call	to	the
read	method	stands	clearly	separate	from	the	code	that	calls	open	and	handles
exceptions.

Although	it’s	possible	to	use	the	in	expression	or	KeyError	approaches	to
implement	this	same	logic,	those	options	require	more	dictionary	accesses	and
levels	of	nesting.	Given	that	these	other	options	work,	you	might	also	assume
that	the	setdefault	method	would	work,	too:

Click	here	to	view	code	image
try:

				handle	=	pictures.setdefault(path,	open(path,	'a+b'))

except	OSError:

				print(f'Failed	to	open	path	{path}')

				raise

else:

				handle.seek(0)

				image_data	=	handle.read()

This	code	has	many	problems.	The	open	built-in	function	to	create	the	file	handle
is	always	called,	even	when	the	path	is	already	present	in	the	dictionary.	This
results	in	an	additional	file	handle	that	may	conflict	with	existing	open	handles
in	the	same	program.	Exceptions	may	be	raised	by	the	open	call	and	need	to	be
handled,	but	it	may	not	be	possible	to	differentiate	them	from	exceptions	that

may	be	raised	by	the	setdefault	call	on	the	same	line	(which	is	possible	for
other	dictionary-like	implementations;	see	Item	43:	“Inherit	from
collections.abc	for	Custom	Container	Types”).

If	you’re	trying	to	manage	internal	state,	another	assumption	you	might	make	is
that	a	defaultdict	could	be	used	for	keeping	track	of	these	profile	pictures.
Here,	I	attempt	to	implement	the	same	logic	as	before	but	now	using	a	helper
function	and	the	defaultdict	class:

Click	here	to	view	code	image
from	collections	import	defaultdict

def	open_picture(profile_path):

				try:

								return	open(profile_path,	'a+b')

				except	OSError:

								print(f'Failed	to	open	path	{profile_path}')

								raise

pictures	=	defaultdict(open_picture)

handle	=	pictures[path]

handle.seek(0)

image_data	=	handle.read()

>>>

Traceback	...

TypeError:	open_picture()	missing	1	required	positional

argument:	'profile_path'

The	problem	is	that	defaultdict	expects	that	the	function	passed	to	its
constructor	doesn’t	require	any	arguments.	This	means	that	the	helper	function
that	defaultdict	calls	doesn’t	know	which	specific	key	is	being	accessed,	which
eliminates	my	ability	to	call	open.	In	this	situation,	both	setdefault	and
defaultdict	fall	short	of	what	I	need.

Fortunately,	this	situation	is	common	enough	that	Python	has	another	built-in
solution.	You	can	subclass	the	dict	type	and	implement	the	__missing__	special
method	to	add	custom	logic	for	handling	missing	keys.	Here,	I	do	this	by
defining	a	new	class	that	takes	advantage	of	the	same	open_picture	helper
method	defined	above:
class	Pictures(dict):

				def	__missing__(self,	key):

								value	=	open_picture(key)

								self[key]	=	value

								return	value

pictures	=	Pictures()

handle	=	pictures[path]

handle.seek(0)

image_data	=	handle.read()

When	the	pictures[path]	dictionary	access	finds	that	the	path	key	isn’t	present
in	the	dictionary,	the	__missing__	method	is	called.	This	method	must	create	the
new	default	value	for	the	key,	insert	it	into	the	dictionary,	and	return	it	to	the
caller.	Subsequent	accesses	of	the	same	path	will	not	call	__missing__	since	the
corresponding	item	is	already	present	(similar	to	the	behavior	of	__getattr__;
see	Item	47:	“Use	__getattr__,	__getattribute__,	and	__setattr__	for	Lazy
Attributes”).

Things	to	Remember

✦	The	setdefault	method	of	dict	is	a	bad	fit	when	creating	the	default	value
has	high	computational	cost	or	may	raise	exceptions.

✦	The	function	passed	to	defaultdict	must	not	require	any	arguments,	which
makes	it	impossible	to	have	the	default	value	depend	on	the	key	being
accessed.

✦	You	can	define	your	own	dict	subclass	with	a	__missing__	method	in	order
to	construct	default	values	that	must	know	which	key	was	being	accessed.

3.	Functions

The	first	organizational	tool	programmers	use	in	Python	is	the	function.	As	in
other	programming	languages,	functions	enable	you	to	break	large	programs	into
smaller,	simpler	pieces	with	names	to	represent	their	intent.	They	improve
readability	and	make	code	more	approachable.	They	allow	for	reuse	and
refactoring.

Functions	in	Python	have	a	variety	of	extra	features	that	make	a	programmer’s
life	easier.	Some	are	similar	to	capabilities	in	other	programming	languages,	but
many	are	unique	to	Python.	These	extras	can	make	a	function’s	purpose	more
obvious.	They	can	eliminate	noise	and	clarify	the	intention	of	callers.	They	can
significantly	reduce	subtle	bugs	that	are	difficult	to	find.

Item	19:	Never	Unpack	More	Than	Three	Variables
When	Functions	Return	Multiple	Values

One	effect	of	the	unpacking	syntax	(see	Item	6:	“Prefer	Multiple	Assignment
Unpacking	Over	Indexing”)	is	that	it	allows	Python	functions	to	seemingly
return	more	than	one	value.	For	example,	say	that	I’m	trying	to	determine
various	statistics	for	a	population	of	alligators.	Given	a	list	of	lengths,	I	need	to
calculate	the	minimum	and	maximum	lengths	in	the	population.	Here,	I	do	this
in	a	single	function	that	appears	to	return	two	values:

Click	here	to	view	code	image
def	get_stats(numbers):

				minimum	=	min(numbers)

				maximum	=	max(numbers)

				return	minimum,	maximum

lengths	=	[63,	73,	72,	60,	67,	66,	71,	61,	72,	70]

minimum,	maximum	=	get_stats(lengths)	#	Two	return	values

print(f'Min:	{minimum},	Max:	{maximum}')

>>>

Min:	60,	Max:	73

The	way	this	works	is	that	multiple	values	are	returned	together	in	a	two-item
tuple.	The	calling	code	then	unpacks	the	returned	tuple	by	assigning	two
variables.	Here,	I	use	an	even	simpler	example	to	show	how	an	unpacking
statement	and	multiple-return	function	work	the	same	way:
first,	second	=	1,	2

assert	first	==	1

assert	second	==	2

def	my_function():

				return	1,	2

first,	second	=	my_function()

assert	first	==	1

assert	second	==	2

Multiple	return	values	can	also	be	received	by	starred	expressions	for	catch-all
unpacking	(see	Item	13:	“Prefer	Catch-All	Unpacking	Over	Slicing”).	For
example,	say	I	need	another	function	that	calculates	how	big	each	alligator	is
relative	to	the	population	average.	This	function	returns	a	list	of	ratios,	but	I
can	receive	the	longest	and	shortest	items	individually	by	using	a	starred
expression	for	the	middle	portion	of	the	list:

Click	here	to	view	code	image
def	get_avg_ratio(numbers):

				average	=	sum(numbers)	/	len(numbers)

				scaled	=	[x	/	average	for	x	in	numbers]

				scaled.sort(reverse=True)

				return	scaled

longest,	*middle,	shortest	=	get_avg_ratio(lengths)

print(f'Longest:	{longest:>4.0%}')

print(f'Shortest:	{shortest:>4.0%}')

>>>

Longest:		108%

Shortest:		89%

Now,	imagine	that	the	program’s	requirements	change,	and	I	need	to	also
determine	the	average	length,	median	length,	and	total	population	size	of	the
alligators.	I	can	do	this	by	expanding	the	get_stats	function	to	also	calculate
these	statistics	and	return	them	in	the	result	tuple	that	is	unpacked	by	the	caller:

Click	here	to	view	code	image

def	get_stats(numbers):

				minimum	=	min(numbers)

				maximum	=	max(numbers)

				count	=	len(numbers)

				average	=	sum(numbers)	/	count

				sorted_numbers	=	sorted(numbers)

				middle	=	count	//	2

				if	count	%	2	==	0:

								lower	=	sorted_numbers[middle	-	1]

								upper	=	sorted_numbers[middle]

								median	=	(lower	+	upper)	/	2

				else:

								median	=	sorted_numbers[middle]

				return	minimum,	maximum,	average,	median,	count

minimum,	maximum,	average,	median,	count	=	get_stats(lengths)

print(f'Min:	{minimum},	Max:	{maximum}')

print(f'Average:	{average},	Median:	{median},	Count	{count}')

>>>

Min:	60,	Max:	73

Average:	67.5,	Median:	68.5,	Count	10

There	are	two	problems	with	this	code.	First,	all	the	return	values	are	numeric,
so	it	is	all	too	easy	to	reorder	them	accidentally	(e.g.,	swapping	average	and
median),	which	can	cause	bugs	that	are	hard	to	spot	later.	Using	a	large	number
of	return	values	is	extremely	error	prone:

Click	here	to	view	code	image
#	Correct:

minimum,	maximum,	average,	median,	count	=	get_stats(lengths)

#	Oops!	Median	and	average	swapped:

minimum,	maximum,	median,	average,	count	=	get_stats(lengths)

Second,	the	line	that	calls	the	function	and	unpacks	the	values	is	long,	and	it
likely	will	need	to	be	wrapped	in	one	of	a	variety	of	ways	(due	to	PEP8	style;
see	Item	2:	“Follow	the	PEP	8	Style	Guide”),	which	hurts	readability:

Click	here	to	view	code	image
minimum,	maximum,	average,	median,	count	=	get_stats(

				lengths)

minimum,	maximum,	average,	median,	count	=	\

				get_stats(lengths)

(minimum,	maximum,	average,

	median,	count)	=	get_stats(lengths)

(minimum,	maximum,	average,	median,	count

)	=	get_stats(lengths)

To	avoid	these	problems,	you	should	never	use	more	than	three	variables	when
unpacking	the	multiple	return	values	from	a	function.	These	could	be	individual
values	from	a	three-tuple,	two	variables	and	one	catch-all	starred	expression,	or
anything	shorter.	If	you	need	to	unpack	more	return	values	than	that,	you’re
better	off	defining	a	lightweight	class	or	namedtuple	(see	Item	37:	“Compose
Classes	Instead	of	Nesting	Many	Levels	of	Built-in	Types”)	and	having	your
function	return	an	instance	of	that	instead.

Things	to	Remember

✦	You	can	have	functions	return	multiple	values	by	putting	them	in	a	tuple
and	having	the	caller	take	advantage	of	Python’s	unpacking	syntax.

✦	Multiple	return	values	from	a	function	can	also	be	unpacked	by	catch-all
starred	expressions.

✦	Unpacking	into	four	or	more	variables	is	error	prone	and	should	be	avoided;
instead,	return	a	small	class	or	namedtuple	instance.

Item	20:	Prefer	Raising	Exceptions	to	Returning	None
When	writing	utility	functions,	there’s	a	draw	for	Python	programmers	to	give
special	meaning	to	the	return	value	of	None.	It	seems	to	make	sense	in	some
cases.	For	example,	say	I	want	a	helper	function	that	divides	one	number	by
another.	In	the	case	of	dividing	by	zero,	returning	None	seems	natural	because	the
result	is	undefined:
def	careful_divide(a,	b):

				try:

								return	a	/	b

				except	ZeroDivisionError:

								return	None

Code	using	this	function	can	interpret	the	return	value	accordingly:

x,	y	=	1,	0

result	=	careful_divide(x,	y)

if	result	is	None:

				print('Invalid	inputs')

What	happens	with	the	careful_divide	function	when	the	numerator	is	zero?	If
the	denominator	is	not	zero,	the	function	returns	zero.	The	problem	is	that	a	zero
return	value	can	cause	issues	when	you	evaluate	the	result	in	a	condition	like	an
if	statement.	You	might	accidentally	look	for	any	False-equivalent	value	to
indicate	errors	instead	of	only	looking	for	None	(see	Item	5:	“Write	Helper
Functions	Instead	of	Complex	Expressions”	for	a	similar	situation):

Click	here	to	view	code	image
x,	y	=	0,	5

result	=	careful_divide(x,	y)

if	not	result:

						print('Invalid	inputs')	#	This	runs!	But	shouldn't

>>>

Invalid	inputs

This	misinterpretation	of	a	False-equivalent	return	value	is	a	common	mistake	in
Python	code	when	None	has	special	meaning.	This	is	why	returning	None	from	a
function	like	careful_divide	is	error	prone.	There	are	two	ways	to	reduce	the
chance	of	such	errors.

The	first	way	is	to	split	the	return	value	into	a	two-tuple	(see	Item	19:	“Never
Unpack	More	Than	Three	Variables	When	Functions	Return	Multiple	Values”
for	background).	The	first	part	of	the	tuple	indicates	that	the	operation	was	a
success	or	failure.	The	second	part	is	the	actual	result	that	was	computed:
def	careful_divide(a,	b):

				try:

								return	True,	a	/	b

				except	ZeroDivisionError:

								return	False,	None

Callers	of	this	function	have	to	unpack	the	tuple.	That	forces	them	to	consider
the	status	part	of	the	tuple	instead	of	just	looking	at	the	result	of	division:

Click	here	to	view	code	image
success,	result	=	careful_divide(x,	y)

if	not	success:

				print('Invalid	inputs')

The	problem	is	that	callers	can	easily	ignore	the	first	part	of	the	tuple	(using	the
underscore	variable	name,	a	Python	convention	for	unused	variables).	The
resulting	code	doesn’t	look	wrong	at	first	glance,	but	this	can	be	just	as	error
prone	as	returning	None:
_,	result	=	careful_divide(x,	y)

if	not	result:

				print('Invalid	inputs')

The	second,	better	way	to	reduce	these	errors	is	to	never	return	None	for	special
cases.	Instead,	raise	an	Exception	up	to	the	caller	and	have	the	caller	deal	with	it.
Here,	I	turn	a	ZeroDivisionError	into	a	ValueError	to	indicate	to	the	caller	that
the	input	values	are	bad	(see	Item	87:	“Define	a	Root	Exception	to	Insulate
Callers	from	APIs”	on	when	you	should	use	Exception	subclasses):

Click	here	to	view	code	image
def	careful_divide(a,	b):

				try:

								return	a	/	b

				except	ZeroDivisionError	as	e:

								raise	ValueError('Invalid	inputs')

The	caller	no	longer	requires	a	condition	on	the	return	value	of	the	function.
Instead,	it	can	assume	that	the	return	value	is	always	valid	and	use	the	results
immediately	in	the	else	block	after	try	(see	Item	65:	“Take	Advantage	of	Each
Block	in	try/except/else/finally”	for	details):

Click	here	to	view	code	image
x,	y	=	5,	2

try:

				result	=	careful_divide(x,	y)

except	ValueError:

				print('Invalid	inputs')

else:

				print('Result	is	%.1f'	%	result)

>>>

Result	is	2.5

This	approach	can	be	extended	to	code	using	type	annotations	(see	Item	90:
“Consider	Static	Analysis	via	typing	to	Obviate	Bugs”	for	background).	You
can	specify	that	a	function’s	return	value	will	always	be	a	float	and	thus	will
never	be	None.	However,	Python’s	gradual	typing	purposefully	doesn’t	provide	a
way	to	indicate	when	exceptions	are	part	of	a	function’s	interface	(also	known	as

checked	exceptions).	Instead,	you	have	to	document	the	exception-raising
behavior	and	expect	callers	to	rely	on	that	in	order	to	know	which	Exceptions
they	should	plan	to	catch	(see	Item	84:	“Write	Docstrings	for	Every	Function,
Class,	and	Module”).

Pulling	it	all	together,	here’s	what	this	function	should	look	like	when	using	type
annotations	and	docstrings:

Click	here	to	view	code	image
def	careful_divide(a:	float,	b:	float)	->	float:

				"""Divides	a	by	b.

				Raises:

								ValueError:	When	the	inputs	cannot	be	divided.

				"""

				try:

								return	a	/	b

				except	ZeroDivisionError	as	e:

								raise	ValueError('Invalid	inputs')

Now	the	inputs,	outputs,	and	exceptional	behavior	is	clear,	and	the	chance	of	a
caller	doing	the	wrong	thing	is	extremely	low.

Things	to	Remember

✦	Functions	that	return	None	to	indicate	special	meaning	are	error	prone
because	None	and	other	values	(e.g.,	zero,	the	empty	string)	all	evaluate	to
False	in	conditional	expressions.

✦	Raise	exceptions	to	indicate	special	situations	instead	of	returning	None.
Expect	the	calling	code	to	handle	exceptions	properly	when	they’re
documented.

✦	Type	annotations	can	be	used	to	make	it	clear	that	a	function	will	never
return	the	value	None,	even	in	special	situations.

Item	21:	Know	How	Closures	Interact	with	Variable
Scope

Say	that	I	want	to	sort	a	list	of	numbers	but	prioritize	one	group	of	numbers	to
come	first.	This	pattern	is	useful	when	you’re	rendering	a	user	interface	and

want	important	messages	or	exceptional	events	to	be	displayed	before	everything
else.

A	common	way	to	do	this	is	to	pass	a	helper	function	as	the	key	argument	to	a
list’s	sort	method	(see	Item	14:	“Sort	by	Complex	Criteria	Using	the	key
Parameter”	for	details).	The	helper’s	return	value	will	be	used	as	the	value	for
sorting	each	item	in	the	list.	The	helper	can	check	whether	the	given	item	is	in
the	important	group	and	can	vary	the	sorting	value	accordingly:
def	sort_priority(values,	group):

				def	helper(x):

								if	x	in	group:

												return	(0,	x)

								return	(1,	x)

				values.sort(key=helper)

This	function	works	for	simple	inputs:
numbers	=	[8,	3,	1,	2,	5,	4,	7,	6]

group	=	{2,	3,	5,	7}

sort_priority(numbers,	group)

print(numbers)

>>>

[2,	3,	5,	7,	1,	4,	6,	8]

There	are	three	reasons	this	function	operates	as	expected:

Python	supports	closures—that	is,	functions	that	refer	to	variables	from	the
scope	in	which	they	were	defined.	This	is	why	the	helper	function	is	able
to	access	the	group	argument	for	sort_priority.

Functions	are	first-class	objects	in	Python,	which	means	you	can	refer	to
them	directly,	assign	them	to	variables,	pass	them	as	arguments	to	other
functions,	compare	them	in	expressions	and	if	statements,	and	so	on.	This
is	how	the	sort	method	can	accept	a	closure	function	as	the	key	argument.

Python	has	specific	rules	for	comparing	sequences	(including	tuples).	It
first	compares	items	at	index	zero;	then,	if	those	are	equal,	it	compares
items	at	index	one;	if	they	are	still	equal,	it	compares	items	at	index	two,
and	so	on.	This	is	why	the	return	value	from	the	helper	closure	causes	the
sort	order	to	have	two	distinct	groups.

It’d	be	nice	if	this	function	returned	whether	higher-priority	items	were	seen	at
all	so	the	user	interface	code	can	act	accordingly.	Adding	such	behavior	seems
straightforward.	There’s	already	a	closure	function	for	deciding	which	group

straightforward.	There’s	already	a	closure	function	for	deciding	which	group
each	number	is	in.	Why	not	also	use	the	closure	to	flip	a	flag	when	high-priority
items	are	seen?	Then,	the	function	can	return	the	flag	value	after	it’s	been
modified	by	the	closure.

Here,	I	try	to	do	that	in	a	seemingly	obvious	way:

Click	here	to	view	code	image
def	sort_priority2(numbers,	group):

				found	=	False

				def	helper(x):

								if	x	in	group:

												found	=	True	#	Seems	simple

												return	(0,	x)

								return	(1,	x)

				numbers.sort(key=helper)

				return	found

I	can	run	the	function	on	the	same	inputs	as	before:

Click	here	to	view	code	image
found	=	sort_priority2(numbers,	group)

print('Found:',	found)

print(numbers)

>>>

Found:	False

[2,	3,	5,	7,	1,	4,	6,	8]

The	sorted	results	are	correct,	which	means	items	from	group	were	definitely
found	in	numbers.	Yet	the	found	result	returned	by	the	function	is	False	when	it
should	be	True.	How	could	this	happen?

When	you	reference	a	variable	in	an	expression,	the	Python	interpreter	traverses
the	scope	to	resolve	the	reference	in	this	order:

1.	 The	current	function’s	scope.

2.	 Any	enclosing	scopes	(such	as	other	containing	functions).

3.	 The	scope	of	the	module	that	contains	the	code	(also	called	the	global
scope).

4.	 The	built-in	scope	(that	contains	functions	like	len	and	str).

If	none	of	these	places	has	defined	a	variable	with	the	referenced	name,	then	a
NameError	exception	is	raised:

Click	here	to	view	code	image
foo	=	does_not_exist	*	5

>>>

Traceback	...

NameError:	name	'does_not_exist'	is	not	defined

Assigning	a	value	to	a	variable	works	differently.	If	the	variable	is	already
defined	in	the	current	scope,	it	will	just	take	on	the	new	value.	If	the	variable
doesn’t	exist	in	the	current	scope,	Python	treats	the	assignment	as	a	variable
definition.	Critically,	the	scope	of	the	newly	defined	variable	is	the	function	that
contains	the	assignment.

This	assignment	behavior	explains	the	wrong	return	value	of	the	sort_priority2
function.	The	found	variable	is	assigned	to	True	in	the	helper	closure.	The
closure’s	assignment	is	treated	as	a	new	variable	definition	within	helper,	not	as
an	assignment	within	sort_priority2:

Click	here	to	view	code	image
def	sort_priority2(numbers,	group):

				found	=	False								#	Scope:	'sort_priority2'

				def	helper(x):

								if	x	in	group:

												found	=	True	#	Scope:	'helper'	--	Bad!

												return	(0,	x)

								return	(1,	x)

				numbers.sort(key=helper)

				return	found

This	problem	is	sometimes	called	the	scoping	bug	because	it	can	be	so	surprising
to	newbies.	But	this	behavior	is	the	intended	result:	It	prevents	local	variables	in
a	function	from	polluting	the	containing	module.	Otherwise,	every	assignment
within	a	function	would	put	garbage	into	the	global	module	scope.	Not	only
would	that	be	noise,	but	the	interplay	of	the	resulting	global	variables	could
cause	obscure	bugs.

In	Python,	there	is	special	syntax	for	getting	data	out	of	a	closure.	The	nonlocal
statement	is	used	to	indicate	that	scope	traversal	should	happen	upon	assignment
for	a	specific	variable	name.	The	only	limit	is	that	nonlocal	won’t	traverse	up	to

the	module-level	scope	(to	avoid	polluting	globals).

Here,	I	define	the	same	function	again,	now	using	nonlocal:
def	sort_priority3(numbers,	group):

				found	=	False

				def	helper(x):

								nonlocal	found	#	Added

								if	x	in	group:

												found	=	True

												return	(0,	x)

								return	(1,	x)

				numbers.sort(key=helper)

				return	found

The	nonlocal	statement	makes	it	clear	when	data	is	being	assigned	out	of	a
closure	and	into	another	scope.	It’s	complementary	to	the	global	statement,
which	indicates	that	a	variable’s	assignment	should	go	directly	into	the	module
scope.

However,	much	as	with	the	anti-pattern	of	global	variables,	I’d	caution	against
using	nonlocal	for	anything	beyond	simple	functions.	The	side	effects	of
nonlocal	can	be	hard	to	follow.	It’s	especially	hard	to	understand	in	long
functions	where	the	nonlocal	statements	and	assignments	to	associated	variables
are	far	apart.

When	your	usage	of	nonlocal	starts	getting	complicated,	it’s	better	to	wrap	your
state	in	a	helper	class.	Here,	I	define	a	class	that	achieves	the	same	result	as	the
nonlocal	approach;	it’s	a	little	longer	but	much	easier	to	read	(see	Item	38:
“Accept	Functions	Instead	of	Classes	for	Simple	Interfaces”	for	details	on	the
__call__	special	method):
class	Sorter:

				def	__init__(self,	group):

								self.group	=	group

								self.found	=	False

				def	__call__(self,	x):

								if	x	in	self.group:

												self.found	=	True

												return	(0,	x)

				return	(1,	x)

sorter	=	Sorter(group)

numbers.sort(key=sorter)

assert	sorter.found	is	True

Things	to	Remember

✦	Closure	functions	can	refer	to	variables	from	any	of	the	scopes	in	which
they	were	defined.

✦	By	default,	closures	can’t	affect	enclosing	scopes	by	assigning	variables.
✦	Use	the	nonlocal	statement	to	indicate	when	a	closure	can	modify	a	variable
in	its	enclosing	scopes.

✦	Avoid	using	nonlocal	statements	for	anything	beyond	simple	functions.

Item	22:	Reduce	Visual	Noise	with	Variable	Positional
Arguments

Accepting	a	variable	number	of	positional	arguments	can	make	a	function	call
clearer	and	reduce	visual	noise.	(These	positional	arguments	are	often	called
varargs	for	short,	or	star	args,	in	reference	to	the	conventional	name	for	the
parameter	*args.)	For	example,	say	that	I	want	to	log	some	debugging
information.	With	a	fixed	number	of	arguments,	I	would	need	a	function	that
takes	a	message	and	a	list	of	values:

Click	here	to	view	code	image
def	log(message,	values):

				if	not	values:

								print(message)

				else:

								values_str	=	',	'.join(str(x)	for	x	in	values)

								print(f'{message}:	{values_str}')

log('My	numbers	are',	[1,	2])

log('Hi	there',	[])

>>>

My	numbers	are:	1,	2

Hi	there

Having	to	pass	an	empty	list	when	I	have	no	values	to	log	is	cumbersome	and
noisy.	It’d	be	better	to	leave	out	the	second	argument	entirely.	I	can	do	this	in
Python	by	prefixing	the	last	positional	parameter	name	with	*.	The	first
parameter	for	the	log	message	is	required,	whereas	any	number	of	subsequent
positional	arguments	are	optional.	The	function	body	doesn’t	need	to	change;

only	the	callers	do:

Click	here	to	view	code	image
def	log(message,	*values):	#	The	only	difference

				if	not	values:

							print(message)

				else:

								values_str	=	',	'.join(str(x)	for	x	in	values)

							print(f'{message}:	{values_str}')

log('My	numbers	are',	1,	2)

log('Hi	there')	#	Much	better

>>>

My	numbers	are:	1,	2

Hi	there

You	might	notice	that	this	syntax	works	very	similarly	to	the	starred	expressions
used	in	unpacking	assignment	statements	(see	Item	13:	“Prefer	Catch-All
Unpacking	Over	Slicing”).

If	I	already	have	a	sequence	(like	a	list)	and	want	to	call	a	variadic	function	like
log,	I	can	do	this	by	using	the	*	operator.	This	instructs	Python	to	pass	items
from	the	sequence	as	positional	arguments	to	the	function:
favorites	=	[7,	33,	99]

log('Favorite	colors',	*favorites)

>>>

Favorite	colors:	7,	33,	99

There	are	two	problems	with	accepting	a	variable	number	of	positional
arguments.

The	first	issue	is	that	these	optional	positional	arguments	are	always	turned	into
a	tuple	before	they	are	passed	to	a	function.	This	means	that	if	the	caller	of	a
function	uses	the	*	operator	on	a	generator,	it	will	be	iterated	until	it’s	exhausted
(see	Item	30:	“Consider	Generators	Instead	of	Returning	Lists”	for	background).
The	resulting	tuple	includes	every	value	from	the	generator,	which	could
consume	a	lot	of	memory	and	cause	the	program	to	crash:
def	my_generator():

				for	i	in	range(10):

								yield	i

def	my_func(*args):

			print(args)

it	=	my_generator()

my_func(*it)

>>>

(0,	1,	2,	3,	4,	5,	6,	7,	8,	9)

Functions	that	accept	*args	are	best	for	situations	where	you	know	the	number
of	inputs	in	the	argument	list	will	be	reasonably	small.	*args	is	ideal	for	function
calls	that	pass	many	literals	or	variable	names	together.	It’s	primarily	for	the
convenience	of	the	programmer	and	the	readability	of	the	code.

The	second	issue	with	*args	is	that	you	can’t	add	new	positional	arguments	to	a
function	in	the	future	without	migrating	every	caller.	If	you	try	to	add	a
positional	argument	in	the	front	of	the	argument	list,	existing	callers	will	subtly
break	if	they	aren’t	updated:

Click	here	to	view	code	image
def	log(sequence,	message,	*values):

				if	not	values:

							print(f'{sequence}	-	{message}')

				else:

								values_str	=	',	'.join(str(x)	for	x	in	values)

								print(f'{sequence}	-	{message}:	{values_str}')

log(1,	'Favorites',	7,	33)						#	New	with	*args	OK

log(1,	'Hi	there')														#	New	message	only	OK

log('Favorite	numbers',	7,	33)		#	Old	usage	breaks

>>>

1	-	Favorites:	7,	33

1	-	Hi	there

Favorite	numbers		-	7:	33

The	problem	here	is	that	the	third	call	to	log	used	7	as	the	message	parameter
because	a	sequence	argument	wasn’t	given.	Bugs	like	this	are	hard	to	track	down
because	the	code	still	runs	without	raising	exceptions.	To	avoid	this	possibility
entirely,	you	should	use	keyword-only	arguments	when	you	want	to	extend
functions	that	accept	*args	(see	Item	25:	“Enforce	Clarity	with	Keyword-Only
and	Positional-Only	Arguments”).	To	be	even	more	defensive,	you	could	also
consider	using	type	annotations	(see	Item	90:	“Consider	Static	Analysis	via
typing	to	Obviate	Bugs”).

Things	to	Remember

Things	to	Remember

✦	Functions	can	accept	a	variable	number	of	positional	arguments	by	using
*args	in	the	def	statement.

✦	You	can	use	the	items	from	a	sequence	as	the	positional	arguments	for	a
function	with	the	*	operator.

✦	Using	the	*	operator	with	a	generator	may	cause	a	program	to	run	out	of
memory	and	crash.

✦	Adding	new	positional	parameters	to	functions	that	accept	*args	can
introduce	hard-to-detect	bugs.

Item	23:	Provide	Optional	Behavior	with	Keyword
Arguments

As	in	most	other	programming	languages,	in	Python	you	may	pass	arguments	by
position	when	calling	a	function:
def	remainder(number,	divisor):

				return	number	%	divisor

assert	remainder(20,	7)	==	6

All	normal	arguments	to	Python	functions	can	also	be	passed	by	keyword,	where
the	name	of	the	argument	is	used	in	an	assignment	within	the	parentheses	of	a
function	call.	The	keyword	arguments	can	be	passed	in	any	order	as	long	as	all
of	the	required	positional	arguments	are	specified.	You	can	mix	and	match
keyword	and	positional	arguments.	These	calls	are	equivalent:
remainder(20,	7)

remainder(20,	divisor=7)

remainder(number=20,	divisor=7)

remainder(divisor=7,	number=20)

Positional	arguments	must	be	specified	before	keyword	arguments:

Click	here	to	view	code	image
remainder(number=20,	7)

>>>

Traceback	...

SyntaxError:	positional	argument	follows	keyword	argument

Each	argument	can	be	specified	only	once:

Click	here	to	view	code	image
remainder(20,	number=7)

>>>

Traceback	...

TypeError:	remainder()	got	multiple	values	for	argument

➥	'number'

If	you	already	have	a	dictionary,	and	you	want	to	use	its	contents	to	call	a
function	like	remainder,	you	can	do	this	by	using	the	**	operator.	This	instructs
Python	to	pass	the	values	from	the	dictionary	as	the	corresponding	keyword
arguments	of	the	function:
my_kwargs	=	{

				'number':	20,

				'divisor':	7,

}

assert	remainder(**my_kwargs)	==	6

You	can	mix	the	**	operator	with	positional	arguments	or	keyword	arguments	in
the	function	call,	as	long	as	no	argument	is	repeated:

Click	here	to	view	code	image
my_kwargs	=	{

				'divisor':	7,

}

assert	remainder(number=20,	**my_kwargs)	==	6

You	can	also	use	the	**	operator	multiple	times	if	you	know	that	the	dictionaries
don’t	contain	overlapping	keys:

Click	here	to	view	code	image
my_kwargs	=	{

				'number':	20,

}

other_kwargs	=	{

				'divisor':	7,

}

assert	remainder(**my_kwargs,	**other_kwargs)	==	6

And	if	you’d	like	for	a	function	to	receive	any	named	keyword	argument,	you
can	use	the	**kwargs	catch-all	parameter	to	collect	those	arguments	into	a	dict
that	you	can	then	process	(see	Item	26:	“Define	Function	Decorators	with

functools.wraps”	for	when	this	is	especially	useful):

Click	here	to	view	code	image
def	print_parameters(**kwargs):

				for	key,	value	in	kwargs.items():

								print(f'{key}	=	{value}')

print_parameters(alpha=1.5,	beta=9,	gamma=4)

>>>

alpha	=	1.5

beta	=	9

gamma	=	4

The	flexibility	of	keyword	arguments	provides	three	significant	benefits.

The	first	benefit	is	that	keyword	arguments	make	the	function	call	clearer	to	new
readers	of	the	code.	With	the	call	remainder(20,	7),	it’s	not	evident	which
argument	is	number	and	which	is	divisor	unless	you	look	at	the	implementation
of	the	remainder	method.	In	the	call	with	keyword	arguments,	number=20	and
divisor=7	make	it	immediately	obvious	which	parameter	is	being	used	for	each
purpose.

The	second	benefit	of	keyword	arguments	is	that	they	can	have	default	values
specified	in	the	function	definition.	This	allows	a	function	to	provide	additional
capabilities	when	you	need	them,	but	you	can	accept	the	default	behavior	most
of	the	time.	This	eliminates	repetitive	code	and	reduces	noise.

For	example,	say	that	I	want	to	compute	the	rate	of	fluid	flowing	into	a	vat.	If
the	vat	is	also	on	a	scale,	then	I	could	use	the	difference	between	two	weight
measurements	at	two	different	times	to	determine	the	flow	rate:

Click	here	to	view	code	image
def	flow_rate(weight_diff,	time_diff):

				return	weight_diff	/	time_diff

weight_diff	=	0.5

time_diff	=	3

flow	=	flow_rate(weight_diff,	time_diff)

print(f'{flow:.3}	kg	per	second')

>>>

0.167	kg	per	second

In	the	typical	case,	it’s	useful	to	know	the	flow	rate	in	kilograms	per	second.
Other	times,	it’d	be	helpful	to	use	the	last	sensor	measurements	to	approximate

Other	times,	it’d	be	helpful	to	use	the	last	sensor	measurements	to	approximate
larger	time	scales,	like	hours	or	days.	I	can	provide	this	behavior	in	the	same
function	by	adding	an	argument	for	the	time	period	scaling	factor:

Click	here	to	view	code	image
def	flow_rate(weight_diff,	time_diff,	period):

				return	(weight_diff	/	time_diff)	*	period

The	problem	is	that	now	I	need	to	specify	the	period	argument	every	time	I	call
the	function,	even	in	the	common	case	of	flow	rate	per	second	(where	the	period
is	1):

Click	here	to	view	code	image
flow_per_second	=	flow_rate(weight_diff,	time_diff,	1)

To	make	this	less	noisy,	I	can	give	the	period	argument	a	default	value:

Click	here	to	view	code	image
def	flow_rate(weight_diff,	time_diff,	period=1):

				return	(weight_diff	/	time_diff)	*	period

The	period	argument	is	now	optional:

Click	here	to	view	code	image
flow_per_second	=	flow_rate(weight_diff,	time_diff)

flow_per_hour	=	flow_rate(weight_diff,	time_diff,	period=3600)

This	works	well	for	simple	default	values;	it	gets	tricky	for	complex	default
values	(see	Item	24:	“Use	None	and	Docstrings	to	Specify	Dynamic	Default
Arguments”	for	details).

The	third	reason	to	use	keyword	arguments	is	that	they	provide	a	powerful	way
to	extend	a	function’s	parameters	while	remaining	backward	compatible	with
existing	callers.	This	means	you	can	provide	additional	functionality	without
having	to	migrate	a	lot	of	existing	code,	which	reduces	the	chance	of	introducing
bugs.

For	example,	say	that	I	want	to	extend	the	flow_rate	function	above	to	calculate
flow	rates	in	weight	units	besides	kilograms.	I	can	do	this	by	adding	a	new
optional	parameter	that	provides	a	conversion	rate	to	alternative	measurement
units:

Click	here	to	view	code	image

def	flow_rate(weight_diff,	time_diff,

														period=1,	units_per_kg=1):

				return	((weight_diff	*	units_per_kg)	/	time_diff)	*	period

The	default	argument	value	for	units_per_kg	is	1,	which	makes	the	returned
weight	units	remain	kilograms.	This	means	that	all	existing	callers	will	see	no
change	in	behavior.	New	callers	to	flow_rate	can	specify	the	new	keyword
argument	to	see	the	new	behavior:

Click	here	to	view	code	image
pounds_per_hour	=	flow_rate(weight_diff,	time_diff,

																												period=3600,	units_per_kg=2.2)

Providing	backward	compatibility	using	optional	keyword	arguments	like	this	is
also	crucial	for	functions	that	accept	*args	(see	Item	22:	“Reduce	Visual	Noise
with	Variable	Positional	Arguments”).

The	only	problem	with	this	approach	is	that	optional	keyword	arguments	like
period	and	units_per_kg	may	still	be	specified	as	positional	arguments:

Click	here	to	view	code	image
pounds_per_hour	=	flow_rate(weight_diff,	time_diff,	3600,	2.2)

Supplying	optional	arguments	positionally	can	be	confusing	because	it	isn’t	clear
what	the	values	3600	and	2.2	correspond	to.	The	best	practice	is	to	always
specify	optional	arguments	using	the	keyword	names	and	never	pass	them	as
positional	arguments.	As	a	function	author,	you	can	also	require	that	all	callers
use	this	more	explicit	keyword	style	to	minimize	potential	errors	(see	Item	25:
“Enforce	Clarity	with	Keyword-Only	and	Positional-Only	Arguments”).

Things	to	Remember

✦	Function	arguments	can	be	specified	by	position	or	by	keyword.
✦	Keywords	make	it	clear	what	the	purpose	of	each	argument	is	when	it
would	be	confusing	with	only	positional	arguments.

✦	Keyword	arguments	with	default	values	make	it	easy	to	add	new	behaviors
to	a	function	without	needing	to	migrate	all	existing	callers.

✦	Optional	keyword	arguments	should	always	be	passed	by	keyword	instead
of	by	position.

Item	24:	Use	None	and	Docstrings	to	Specify	Dynamic
Default	Arguments

Sometimes	you	need	to	use	a	non-static	type	as	a	keyword	argument’s	default
value.	For	example,	say	I	want	to	print	logging	messages	that	are	marked	with
the	time	of	the	logged	event.	In	the	default	case,	I	want	the	message	to	include
the	time	when	the	function	was	called.	I	might	try	the	following	approach,
assuming	that	the	default	arguments	are	reevaluated	each	time	the	function	is
called:

Click	here	to	view	code	image
from	time	import	sleep

from	datetime	import	datetime

def	log(message,	when=datetime.now()):

				print(f'{when}:	{message}')

log('Hi	there!')

sleep(0.1)

log('Hello	again!')

>>>

2019-07-06	14:06:15.120124:	Hi	there!

2019-07-06	14:06:15.120124:	Hello	again!

This	doesn’t	work	as	expected.	The	timestamps	are	the	same	because
datetime.now	is	executed	only	a	single	time:	when	the	function	is	defined.	A
default	argument	value	is	evaluated	only	once	per	module	load,	which	usually
happens	when	a	program	starts	up.	After	the	module	containing	this	code	is
loaded,	the	datetime.now()	default	argument	will	never	be	evaluated	again.

The	convention	for	achieving	the	desired	result	in	Python	is	to	provide	a	default
value	of	None	and	to	document	the	actual	behavior	in	the	docstring	(see	Item	84:
“Write	Docstrings	for	Every	Function,	Class,	and	Module”	for	background).
When	your	code	sees	the	argument	value	None,	you	allocate	the	default	value
accordingly:

Click	here	to	view	code	image
def	log(message,	when=None):

				"""Log	a	message	with	a	timestamp.

				Args:

								message:	Message	to	print.

								when:	datetime	of	when	the	message	occurred.

												Defaults	to	the	present	time.

				"""

				if	when	is	None:

								when	=	datetime.now()

				print(f'{when}:	{message}')

Now	the	timestamps	will	be	different:

Click	here	to	view	code	image
log('Hi	there!')

sleep(0.1)

log('Hello	again!')

>>>

2019-07-06	14:06:15.222419:	Hi	there!

2019-07-06	14:06:15.322555:	Hello	again!

Using	None	for	default	argument	values	is	especially	important	when	the
arguments	are	mutable.	For	example,	say	that	I	want	to	load	a	value	encoded	as
JSON	data;	if	decoding	the	data	fails,	I	want	an	empty	dictionary	to	be	returned
by	default:
import	json

def	decode(data,	default={}):

				try:

								return	json.loads(data)

				except	ValueError:

								return	default

The	problem	here	is	the	same	as	in	the	datetime.now	example	above.	The
dictionary	specified	for	default	will	be	shared	by	all	calls	to	decode	because
default	argument	values	are	evaluated	only	once	(at	module	load	time).	This	can
cause	extremely	surprising	behavior:
foo	=	decode('bad	data')

foo['stuff']	=	5

bar	=	decode('also	bad')

bar['meep']	=	1

print('Foo:',	foo)

print('Bar:',	bar)

>>>

Foo:	{'stuff':	5,	'meep':	1}

Bar:	{'stuff':	5,	'meep':	1}

You	might	expect	two	different	dictionaries,	each	with	a	single	key	and	value.
But	modifying	one	seems	to	also	modify	the	other.	The	culprit	is	that	foo	and
bar	are	both	equal	to	the	default	parameter.	They	are	the	same	dictionary	object:
assert	foo	is	bar

The	fix	is	to	set	the	keyword	argument	default	value	to	None	and	then	document
the	behavior	in	the	function’s	docstring:

Click	here	to	view	code	image
def	decode(data,	default=None):

				"""Load	JSON	data	from	a	string.

				Args:

									data:	JSON	data	to	decode.

									default:	Value	to	return	if	decoding	fails.

													Defaults	to	an	empty	dictionary.

				"""

				try:

									return	json.loads(data)

				except	ValueError:

									if	default	is	None:

													default	=	{}

				return	default

Now,	running	the	same	test	code	as	before	produces	the	expected	result:
foo	=	decode('bad	data')

foo['stuff']	=	5

bar	=	decode('also	bad')

bar['meep']	=	1

print('Foo:',	foo)

print('Bar:',	bar)

assert	foo	is	not	bar

>>>

Foo:	{'stuff':	5}

Bar:	{'meep':	1}

This	approach	also	works	with	type	annotations	(see	Item	90:	“Consider	Static
Analysis	via	typing	to	Obviate	Bugs”).	Here,	the	when	argument	is	marked	as
having	an	Optional	value	that	is	a	datetime.	Thus,	the	only	two	valid	choices	for
when	are	None	or	a	datetime	object:

Click	here	to	view	code	image
from	typing	import	Optional

def	log_typed(message:	str,

														when:	Optional[datetime]=None)	->	None:

				"""Log	a	message	with	a	timestamp.

				Args:

								message:	Message	to	print.

								when:	datetime	of	when	the	message	occurred.

												Defaults	to	the	present	time.

				"""

				if	when	is	None:

								when	=	datetime.now()

				print(f'{when}:	{message}')

Things	to	Remember

✦	A	default	argument	value	is	evaluated	only	once:	during	function	definition
at	module	load	time.	This	can	cause	odd	behaviors	for	dynamic	values	(like
{},	[],	or	datetime.now()).

✦	Use	None	as	the	default	value	for	any	keyword	argument	that	has	a	dynamic
value.	Document	the	actual	default	behavior	in	the	function’s	docstring.

✦	Using	None	to	represent	keyword	argument	default	values	also	works
correctly	with	type	annotations.

Item	25:	Enforce	Clarity	with	Keyword-Only	and
Positional-Only	Arguments

Passing	arguments	by	keyword	is	a	powerful	feature	of	Python	functions	(see
Item	23:	“Provide	Optional	Behavior	with	Keyword	Arguments”).	The
flexibility	of	keyword	arguments	enables	you	to	write	functions	that	will	be	clear
to	new	readers	of	your	code	for	many	use	cases.

For	example,	say	I	want	to	divide	one	number	by	another	but	know	that	I	need	to
be	very	careful	about	special	cases.	Sometimes,	I	want	to	ignore
ZeroDivisionError	exceptions	and	return	infinity	instead.	Other	times,	I	want	to
ignore	OverflowError	exceptions	and	return	zero	instead:

Click	here	to	view	code	image
def	safe_division(number,	divisor,

																		ignore_overflow,

																		ignore_zero_division):

				try:

									return	number	/	divisor

				except	OverflowError:

									if	ignore_overflow:

														return	0

				else:

									raise

				except	ZeroDivisionError:

									if	ignore_zero_division:

														return	float('inf')

									else:

														raise

Using	this	function	is	straightforward.	This	call	ignores	the	float	overflow	from
division	and	returns	zero:

Click	here	to	view	code	image
result	=	safe_division(1.0,	10**500,	True,	False)

print(result)

>>>

0

This	call	ignores	the	error	from	dividing	by	zero	and	returns	infinity:

Click	here	to	view	code	image
result	=	safe_division(1.0,	0,	False,	True)

print(result)

>>>

inf

The	problem	is	that	it’s	easy	to	confuse	the	position	of	the	two	Boolean
arguments	that	control	the	exception-ignoring	behavior.	This	can	easily	cause
bugs	that	are	hard	to	track	down.	One	way	to	improve	the	readability	of	this	code
is	to	use	keyword	arguments.	By	default,	the	function	can	be	overly	cautious	and
can	always	re-raise	exceptions:

Click	here	to	view	code	image
def	safe_division_b(number,	divisor,

																				ignore_overflow=False,							#	Changed

																				ignore_zero_division=False):	#	Changed

				...

Then,	callers	can	use	keyword	arguments	to	specify	which	of	the	ignore	flags

they	want	to	set	for	specific	operations,	overriding	the	default	behavior:

Click	here	to	view	code	image
result	=	safe_division_b(1.0,	10**500,	ignore_overflow=True)

print(result)

result	=	safe_division_b(1.0,	0,	ignore_zero_division=True)

print(result)

>>>

0

inf

The	problem	is,	since	these	keyword	arguments	are	optional	behavior,	there’s
nothing	forcing	callers	to	use	keyword	arguments	for	clarity.	Even	with	the	new
definition	of	safe_division_b,	you	can	still	call	it	the	old	way	with	positional
arguments:

Click	here	to	view	code	image
assert	safe_division_b(1.0,	10**500,	True,	False)	==	0

With	complex	functions	like	this,	it’s	better	to	require	that	callers	are	clear	about
their	intentions	by	defining	functions	with	keyword-only	arguments.	These
arguments	can	only	be	supplied	by	keyword,	never	by	position.

Here,	I	redefine	the	safe_division	function	to	accept	keyword-only	arguments.
The	*	symbol	in	the	argument	list	indicates	the	end	of	positional	arguments	and
the	beginning	of	keyword-only	arguments:

Click	here	to	view	code	image
def	safe_division_c(number,	divisor,	*,	#	Changed

													ignore_overflow=False,

													ignore_zero_division=False):

				...

Now,	calling	the	function	with	positional	arguments	for	the	keyword	arguments
won’t	work:

Click	here	to	view	code	image
safe_division_c(1.0,	10**500,	True,	False)

>>>

Traceback	...

TypeError:	safe_division_c()	takes	2	positional	arguments	but	4

➥were	given

But	keyword	arguments	and	their	default	values	will	work	as	expected	(ignoring
an	exception	in	one	case	and	raising	it	in	another):

Click	here	to	view	code	image
result	=	safe_division_c(1.0,	0,	ignore_zero_division=True)

assert	result	==	float('inf')

try:

				result	=	safe_division_c(1.0,	0)

except	ZeroDivisionError:

				pass	#	Expected

However,	a	problem	still	remains	with	the	safe_division_c	version	of	this
function:	Callers	may	specify	the	first	two	required	arguments	(number	and
divisor)	with	a	mix	of	positions	and	keywords:

Click	here	to	view	code	image
assert	safe_division_c(number=2,	divisor=5)	==	0.4

assert	safe_division_c(divisor=5,	number=2)	==	0.4

assert	safe_division_c(2,	divisor=5)	==	0.4

Later,	I	may	decide	to	change	the	names	of	these	first	two	arguments	because	of
expanding	needs	or	even	just	because	my	style	preferences	change:

Click	here	to	view	code	image
def	safe_division_c(numerator,	denominator,	*,	#	Changed

																				ignore_overflow=False,

																				ignore_zero_division=False):

				...

Unfortunately,	this	seemingly	superficial	change	breaks	all	the	existing	callers
that	specified	the	number	or	divisor	arguments	using	keywords:

Click	here	to	view	code	image
safe_division_c(number=2,	divisor=5)

>>>

Traceback	...

TypeError:	safe_division_c()	got	an	unexpected	keyword	argument

➥'number'

This	is	especially	problematic	because	I	never	intended	for	number	and	divisor

to	be	part	of	an	explicit	interface	for	this	function.	These	were	just	convenient
parameter	names	that	I	chose	for	the	implementation,	and	I	didn’t	expect	anyone
to	rely	on	them	explicitly.

Python	3.8	introduces	a	solution	to	this	problem,	called	positional-only
arguments.	These	arguments	can	be	supplied	only	by	position	and	never	by
keyword	(the	opposite	of	the	keyword-only	arguments	demonstrated	above).

Here,	I	redefine	the	safe_division	function	to	use	positional-only	arguments	for
the	first	two	required	parameters.	The	/	symbol	in	the	argument	list	indicates
where	positional-only	arguments	end:

Click	here	to	view	code	image
def	safe_division_d(numerator,	denominator,	/,	*,	#	Changed

									ignore_overflow=False,

									ignore_zero_division=False):

				...

I	can	verify	that	this	function	works	when	the	required	arguments	are	provided
positionally:
assert	safe_division_d(2,	5)	==	0.4

But	an	exception	is	raised	if	keywords	are	used	for	the	positional-only
parameters:

Click	here	to	view	code	image
safe_division_d(numerator=2,	denominator=5)

>>>

Traceback	...

TypeError:	safe_division_d()	got	some	positional-only	arguments

➥passed	as	keyword	arguments:	'numerator,	denominator'

Now,	I	can	be	sure	that	the	first	two	required	positional	arguments	in	the
definition	of	the	safe_division_d	function	are	decoupled	from	callers.	I	won’t
break	anyone	if	I	change	the	parameters’	names	again.

One	notable	consequence	of	keyword-	and	positional-only	arguments	is	that	any
parameter	name	between	the	/	and	*	symbols	in	the	argument	list	may	be	passed
either	by	position	or	by	keyword	(which	is	the	default	for	all	function	arguments
in	Python).	Depending	on	your	API’s	style	and	needs,	allowing	both	argument
passing	styles	can	increase	readability	and	reduce	noise.	For	example,	here	I’ve
added	another	optional	parameter	to	safe_division	that	allows	callers	to	specify

how	many	digits	to	use	in	rounding	the	result:

Click	here	to	view	code	image
def	safe_division_e(numerator,	denominator,	/,

																				ndigits=10,	*,															#	Changed

																				ignore_overflow=False,

																				ignore_zero_division=False):

				try:

								fraction	=	numerator	/	denominator							#	Changed

								return	round(fraction,	ndigits)										#	Changed

				except	OverflowError:

								if	ignore_overflow:

												return	0

								else:

												raise

				except	ZeroDivisionError:

								if	ignore_zero_division:

												return	float('inf')

								else:

												raise

Now,	I	can	call	this	new	version	of	the	function	in	all	these	different	ways,	since
ndigits	is	an	optional	parameter	that	may	be	passed	either	by	position	or	by
keyword:

Click	here	to	view	code	image
result	=	safe_division_e(22,	7)

print(result)

result	=	safe_division_e(22,	7,	5)

print(result)

result	=	safe_division_e(22,	7,	ndigits=2)

print(result)

>>>

3.1428571429

3.14286

3.14

Things	to	Remember

✦	Keyword-only	arguments	force	callers	to	supply	certain	arguments	by
keyword	(instead	of	by	position),	which	makes	the	intention	of	a	function
call	clearer.	Keyword-only	arguments	are	defined	after	a	single	*	in	the

argument	list.

✦	Positional-only	arguments	ensure	that	callers	can’t	supply	certain
parameters	using	keywords,	which	helps	reduce	coupling.	Positional-only
arguments	are	defined	before	a	single	/	in	the	argument	list.

✦	Parameters	between	the	/	and	*	characters	in	the	argument	list	may	be
supplied	by	position	or	keyword,	which	is	the	default	for	Python
parameters.

Item	26:	Define	Function	Decorators	with	functools.wraps
Python	has	special	syntax	for	decorators	that	can	be	applied	to	functions.	A
decorator	has	the	ability	to	run	additional	code	before	and	after	each	call	to	a
function	it	wraps.	This	means	decorators	can	access	and	modify	input
arguments,	return	values,	and	raised	exceptions.	This	functionality	can	be	useful
for	enforcing	semantics,	debugging,	registering	functions,	and	more.

For	example,	say	that	I	want	to	print	the	arguments	and	return	value	of	a
function	call.	This	can	be	especially	helpful	when	debugging	the	stack	of	nested
function	calls	from	a	recursive	function.	Here,	I	define	such	a	decorator	by	using
*args	and	**kwargs	(see	Item	22:	“Reduce	Visual	Noise	with	Variable	Positional
Arguments”	and	Item	23:	“Provide	Optional	Behavior	with	Keyword
Arguments”)	to	pass	through	all	parameters	to	the	wrapped	function:

Click	here	to	view	code	image
def	trace(func):

				def	wrapper(*args,	**kwargs):

								result	=	func(*args,	**kwargs)

								print(f'{func.__name__}({args!r},	{kwargs!r})	'

														f'->	{result!r}')

								return	result

				return	wrapper

I	can	apply	this	decorator	to	a	function	by	using	the	@	symbol:

Click	here	to	view	code	image
@trace

def	fibonacci(n):

				"""Return	the	n-th	Fibonacci	number"""

				if	n	in	(0,	1):

								return	n

				return	(fibonacci(n	-	2)	+	fibonacci(n	-	1))

Using	the	@	symbol	is	equivalent	to	calling	the	decorator	on	the	function	it	wraps
and	assigning	the	return	value	to	the	original	name	in	the	same	scope:
fibonacci	=	trace(fibonacci)

The	decorated	function	runs	the	wrapper	code	before	and	after	fibonacci	runs.	It
prints	the	arguments	and	return	value	at	each	level	in	the	recursive	stack:
fibonacci(4)

>>>

fibonacci((0,),	{})	->	0

fibonacci((1,),	{})	->	1

fibonacci((2,),	{})	->	1

fibonacci((1,),	{})	->	1

fibonacci((0,),	{})	->	0

fibonacci((1,),	{})	->	1

fibonacci((2,),	{})	->	1

fibonacci((3,),	{})	->	2

fibonacci((4,),	{})	->	3

This	works	well,	but	it	has	an	unintended	side	effect.	The	value	returned	by	the
decorator—the	function	that’s	called	above—doesn’t	think	it’s	named
fibonacci:

Click	here	to	view	code	image
print(fibonacci)

>>>

<function	trace.<locals>.wrapper	at	0x108955dc0>

The	cause	of	this	isn’t	hard	to	see.	The	trace	function	returns	the	wrapper
defined	within	its	body.	The	wrapper	function	is	what’s	assigned	to	the
fibonacci	name	in	the	containing	module	because	of	the	decorator.	This
behavior	is	problematic	because	it	undermines	tools	that	do	introspection,	such
as	debuggers	(see	Item	80:	“Consider	Interactive	Debugging	with	pdb”).

For	example,	the	help	built-in	function	is	useless	when	called	on	the	decorated
fibonacci	function.	It	should	instead	print	out	the	docstring	defined	above
('Return	the	n-th	Fibonacci	number'):

Click	here	to	view	code	image
help(fibonacci)

>>>

Help	on	function	wrapper	in	module	__main__:

wrapper(*args,	**kwargs)

Object	serializers	(see	Item	68:	“Make	pickle	Reliable	with	copyreg”)	break
because	they	can’t	determine	the	location	of	the	original	function	that	was
decorated:

Click	here	to	view	code	image
import	pickle

pickle.dumps(fibonacci)

>>>

Traceback	...

AttributeError:	Can't	pickle	local	object	'trace.<locals>.

➥wrapper'

The	solution	is	to	use	the	wraps	helper	function	from	the	functools	built-in
module.	This	is	a	decorator	that	helps	you	write	decorators.	When	you	apply	it	to
the	wrapper	function,	it	copies	all	of	the	important	metadata	about	the	inner
function	to	the	outer	function:
from	functools	import	wraps

def	trace(func):

				@wraps(func)

				def	wrapper(*args,	**kwargs):

									...

				return	wrapper

@trace

def	fibonacci(n):

				...

Now,	running	the	help	function	produces	the	expected	result,	even	though	the
function	is	decorated:

Click	here	to	view	code	image
help(fibonacci)

>>>

Help	on	function	fibonacci	in	module	__main__:

fibonacci(n)

						Return	the	n-th	Fibonacci	number

The	pickle	object	serializer	also	works:

Click	here	to	view	code	image
print(pickle.dumps(fibonacci))

>>>

b'\x80\x04\x95\x1a\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__\

➥x94\x8c\tfibonacci\x94\x93\x94.'

Beyond	these	examples,	Python	functions	have	many	other	standard	attributes
(e.g.,	__name__,	__module__,	__annotations__)	that	must	be	preserved	to
maintain	the	interface	of	functions	in	the	language.	Using	wraps	ensures	that
you’ll	always	get	the	correct	behavior.

Things	to	Remember

✦	Decorators	in	Python	are	syntax	to	allow	one	function	to	modify	another
function	at	runtime.

✦	Using	decorators	can	cause	strange	behaviors	in	tools	that	do	introspection,
such	as	debuggers.

✦	Use	the	wraps	decorator	from	the	functools	built-in	module	when	you
define	your	own	decorators	to	avoid	issues.

4.	Comprehensions	and	Generators

Many	programs	are	built	around	processing	lists,	dictionary	key/value	pairs,	and
sets.	Python	provides	a	special	syntax,	called	comprehensions,	for	succinctly
iterating	through	these	types	and	creating	derivative	data	structures.
Comprehensions	can	significantly	increase	the	readability	of	code	performing
these	common	tasks	and	provide	a	number	of	other	benefits.

This	style	of	processing	is	extended	to	functions	with	generators,	which	enable	a
stream	of	values	to	be	incrementally	returned	by	a	function.	The	result	of	a	call
to	a	generator	function	can	be	used	anywhere	an	iterator	is	appropriate	(e.g.,	for
loops,	starred	expressions).	Generators	can	improve	performance,	reduce
memory	usage,	and	increase	readability.

Item	27:	Use	Comprehensions	Instead	of	map	and	filter
Python	provides	compact	syntax	for	deriving	a	new	list	from	another	sequence
or	iterable.	These	expressions	are	called	list	comprehensions.	For	example,	say
that	I	want	to	compute	the	square	of	each	number	in	a	list.	Here,	I	do	this	by
using	a	simple	for	loop:

Click	here	to	view	code	image
a	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

squares	=	[]

for	x	in	a:

				squares.append(x**2)

print(squares)

>>>

[1,	4,	9,	16,	25,	36,	49,	64,	81,	100]

With	a	list	comprehension,	I	can	achieve	the	same	outcome	by	specifying	the
expression	for	my	computation	along	with	the	input	sequence	to	loop	over:

Click	here	to	view	code	image
squares	=	[x**2	for	x	in	a]		#	List	comprehension

print(squares)

>>>

[1,	4,	9,	16,	25,	36,	49,	64,	81,	100]

Unless	you’re	applying	a	single-argument	function,	list	comprehensions	are	also
clearer	than	the	map	built-in	function	for	simple	cases.	map	requires	the	creation
of	a	lambda	function	for	the	computation,	which	is	visually	noisy:
alt	=	map(lambda	x:	x	**	2,	a)

Unlike	map,	list	comprehensions	let	you	easily	filter	items	from	the	input	list,
removing	corresponding	outputs	from	the	result.	For	example,	say	I	want	to
compute	the	squares	of	the	numbers	that	are	divisible	by	2.	Here,	I	do	this	by
adding	a	conditional	expression	to	the	list	comprehension	after	the	loop:

Click	here	to	view	code	image
even_squares	=	[x**2	for	x	in	a	if	x	%	2	==	0]

print(even_squares)

>>>

[4,	16,	36,	64,	100]

The	filter	built-in	function	can	be	used	along	with	map	to	achieve	the	same
outcome,	but	it	is	much	harder	to	read:

Click	here	to	view	code	image
alt	=	map(lambda	x:	x**2,	filter(lambda	x:	x	%	2	==	0,	a))

assert	even_squares	==	list(alt)

Dictionaries	and	sets	have	their	own	equivalents	of	list	comprehensions	(called
dictionary	comprehensions	and	set	comprehensions,	respectively).	These	make	it
easy	to	create	other	types	of	derivative	data	structures	when	writing	algorithms:

Click	here	to	view	code	image
even_squares_dict	=	{x:	x**2	for	x	in	a	if	x	%	2	==	0}

threes_cubed_set	=	{x**3	for	x	in	a	if	x	%	3	==	0}

print(even_squares_dict)

print(threes_cubed_set)

>>>

{2:	4,	4:	16,	6:	36,	8:	64,	10:	100}

{216,	729,	27}

Achieving	the	same	outcome	is	possible	with	map	and	filter	if	you	wrap	each
call	with	a	corresponding	constructor.	These	statements	get	so	long	that	you
have	to	break	them	up	across	multiple	lines,	which	is	even	noisier	and	should	be

avoided:

Click	here	to	view	code	image
alt_dict	=	dict(map(lambda	x:	(x,	x**2),

																filter(lambda	x:	x	%	2	==	0,	a)))

alt_set	=	set(map(lambda	x:	x**3,

														filter(lambda	x:	x	%	3	==	0,	a)))

Things	to	Remember

✦	List	comprehensions	are	clearer	than	the	map	and	filter	built-in	functions
because	they	don’t	require	lambda	expressions.

✦	List	comprehensions	allow	you	to	easily	skip	items	from	the	input	list,	a
behavior	that	map	doesn’t	support	without	help	from	filter.

✦	Dictionaries	and	sets	may	also	be	created	using	comprehensions.

Item	28:	Avoid	More	Than	Two	Control
Subexpressions	in	Comprehensions

Beyond	basic	usage	(see	Item	27:	“Use	Comprehensions	Instead	of	map	and
filter”),	comprehensions	support	multiple	levels	of	looping.	For	example,	say
that	I	want	to	simplify	a	matrix	(a	list	containing	other	list	instances)	into	one
flat	list	of	all	cells.	Here,	I	do	this	with	a	list	comprehension	by	including	two
for	subexpressions.	These	subexpressions	run	in	the	order	provided,	from	left	to
right:

Click	here	to	view	code	image
matrix	=	[[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]

flat	=	[x	for	row	in	matrix	for	x	in	row]

print(flat)

>>>

[1,	2,	3,	4,	5,	6,	7,	8,	9]

This	example	is	simple,	readable,	and	a	reasonable	usage	of	multiple	loops	in	a
comprehension.	Another	reasonable	usage	of	multiple	loops	involves	replicating
the	two-level-deep	layout	of	the	input	list.	For	example,	say	that	I	want	to
square	the	value	in	each	cell	of	a	twodimensional	matrix.	This	comprehension	is
noisier	because	of	the	extra	[]	characters,	but	it’s	still	relatively	easy	to	read:

Click	here	to	view	code	image
squared	=	[[x**2	for	x	in	row]	for	row	in	matrix]

print(squared)

>>>

[[1,	4,	9],	[16,	25,	36],	[49,	64,	81]]

If	this	comprehension	included	another	loop,	it	would	get	so	long	that	I’d	have	to
split	it	over	multiple	lines:
my_lists	=	[

				[[1,	2,	3],	[4,	5,	6]],

				...

]

flat	=	[x	for	sublist1	in	my_lists

								for	sublist2	in	sublist1

								for	x	in	sublist2]

At	this	point,	the	multiline	comprehension	isn’t	much	shorter	than	the
alternative.	Here,	I	produce	the	same	result	using	normal	loop	statements.	The
indentation	of	this	version	makes	the	looping	clearer	than	the	three-level-list
comprehension:
flat	=	[]

for	sublist1	in	my_lists:

				for	sublist2	in	sublist1:

								flat.extend(sublist2)

Comprehensions	support	multiple	if	conditions.	Multiple	conditions	at	the	same
loop	level	have	an	implicit	and	expression.	For	example,	say	that	I	want	to	filter
a	list	of	numbers	to	only	even	values	greater	than	4.	These	two	list
comprehensions	are	equivalent:

Click	here	to	view	code	image
a	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

b	=	[x	for	x	in	a	if	x	>	4	if	x	%	2	==	0]

c	=	[x	for	x	in	a	if	x	>	4	and	x	%	2	==	0]

Conditions	can	be	specified	at	each	level	of	looping	after	the	for	subexpression.
For	example,	say	I	want	to	filter	a	matrix	so	the	only	cells	remaining	are	those
divisible	by	3	in	rows	that	sum	to	10	or	higher.	Expressing	this	with	a	list
comprehension	does	not	require	a	lot	of	code,	but	it	is	extremely	difficult	to
read:

Click	here	to	view	code	image

matrix	=	[[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]

filtered	=	[[x	for	x	in	row	if	x	%	3	==	0]

												for	row	in	matrix	if	sum(row)	>=	10]

print(filtered)

>>>

[[6],	[9]]

Although	this	example	is	a	bit	convoluted,	in	practice	you’ll	see	situations	arise
where	such	comprehensions	seem	like	a	good	fit.	I	strongly	encourage	you	to
avoid	using	list,	dict,	or	set	comprehensions	that	look	like	this.	The	resulting
code	is	very	difficult	for	new	readers	to	understand.	The	potential	for	confusion
is	even	worse	for	dict	comprehensions	since	they	already	need	an	extra
parameter	to	represent	both	the	key	and	the	value	for	each	item.

The	rule	of	thumb	is	to	avoid	using	more	than	two	control	subexpressions	in	a
comprehension.	This	could	be	two	conditions,	two	loops,	or	one	condition	and
one	loop.	As	soon	as	it	gets	more	complicated	than	that,	you	should	use	normal
if	and	for	statements	and	write	a	helper	function	(see	Item	30:	“Consider
Generators	Instead	of	Returning	Lists”).

Things	to	Remember

✦	Comprehensions	support	multiple	levels	of	loops	and	multiple	conditions
per	loop	level.

✦	Comprehensions	with	more	than	two	control	subexpressions	are	very
difficult	to	read	and	should	be	avoided.

Item	29:	Avoid	Repeated	Work	in	Comprehensions	by
Using	Assignment	Expressions

A	common	pattern	with	comprehensions—including	list,	dict,	and	set	variants
—is	the	need	to	reference	the	same	computation	in	multiple	places.	For	example,
say	that	I’m	writing	a	program	to	manage	orders	for	a	fastener	company.	As	new
orders	come	in	from	customers,	I	need	to	be	able	to	tell	them	whether	I	can
fulfill	their	orders.	I	need	to	verify	that	a	request	is	sufficiently	in	stock	and
above	the	minimum	threshold	for	shipping	(in	batches	of	8):

Click	here	to	view	code	image
stock	=	{

				'nails':	125,

				'screws':	35,

				'wingnuts':	8,

				'washers':	24,

}

order	=	['screws',	'wingnuts',	'clips']

def	get_batches(count,	size):

				return	count	//	size

result	=	{}

for	name	in	order:

		count	=	stock.get(name,	0)

		batches	=	get_batches(count,	8)

		if	batches:

				result[name]	=	batches

print(result)

>>>

{'screws':	4,	'wingnuts':	1}

Here,	I	implement	this	looping	logic	more	succinctly	using	a	dictionary
comprehension	(see	Item	27:	“Use	Comprehensions	Instead	of	map	and	filter”
for	best	practices):

Click	here	to	view	code	image
found	=	{name:	get_batches(stock.get(name,	0),	8)

									for	name	in	order

									if	get_batches(stock.get(name,	0),	8)}

print(found)

>>>

{'screws':	4,	'wingnuts':	1}

Although	this	code	is	more	compact,	the	problem	with	it	is	that	the
get_batches(stock.get(name,	0),	8)	expression	is	repeated.	This	hurts
readability	by	adding	visual	noise	that’s	technically	unnecessary.	It	also
increases	the	likelihood	of	introducing	a	bug	if	the	two	expressions	aren’t	kept	in
sync.	For	example,	here	I’ve	changed	the	first	get_batches	call	to	have	4	as	its
second	parameter	instead	of	8,	which	causes	the	results	to	be	different:

Click	here	to	view	code	image
has_bug	=	{name:	get_batches(stock.get(name,	0),	4)

											for	name	in	order

											if	get_batches(stock.get(name,	0),	8)}

print('Expected:',	found)

print('Found:	',	has_bug)

>>>

Expected:	{'screws':	4,	'wingnuts':	1}

Found:	{'screws':	8,	'wingnuts':	2}

An	easy	solution	to	these	problems	is	to	use	the	walrus	operator	(:=),	which	was
introduced	in	Python	3.8,	to	form	an	assignment	expression	as	part	of	the
comprehension	(see	Item	10:	“Prevent	Repetition	with	Assignment	Expressions”
for	background):

Click	here	to	view	code	image
found	=	{name:	batches	for	name	in	order

									if	(batches	:=	get_batches(stock.get(name,	0),	8))}

The	assignment	expression	(batches	:=	get_batches(...))	allows	me	to	look
up	the	value	for	each	order	key	in	the	stock	dictionary	a	single	time,	call
get_batches	once,	and	then	store	its	corresponding	value	in	the	batches	variable.
I	can	then	reference	that	variable	elsewhere	in	the	comprehension	to	construct
the	dict’s	contents	instead	of	having	to	call	get_batches	a	second	time.
Eliminating	the	redundant	calls	to	get	and	get_batches	may	also	improve
performance	by	avoiding	unnecessary	computations	for	each	item	in	the	order
list.

It’s	valid	syntax	to	define	an	assignment	expression	in	the	value	expression	for	a
comprehension.	But	if	you	try	to	reference	the	variable	it	defines	in	other	parts
of	the	comprehension,	you	might	get	an	exception	at	runtime	because	of	the
order	in	which	comprehensions	are	evaluated:

Click	here	to	view	code	image
result	=	{name:	(tenth	:=	count	//	10)

										for	name,	count	in	stock.items()	if	tenth	>	0}

>>>

Traceback	...

NameError:	name	'tenth'	is	not	defined

I	can	fix	this	example	by	moving	the	assignment	expression	into	the	condition
and	then	referencing	the	variable	name	it	defined	in	the	comprehension’s	value
expression:

Click	here	to	view	code	image
result	=	{name:	tenth	for	name,	count	in	stock.items()

										if	(tenth	:=	count	//	10)	>	0}

print(result)

>>>

{'nails':	12,	'screws':	3,	'washers':	2}

If	a	comprehension	uses	the	walrus	operator	in	the	value	part	of	the
comprehension	and	doesn’t	have	a	condition,	it’ll	leak	the	loop	variable	into	the
containing	scope	(see	Item	21:	“Know	How	Closures	Interact	with	Variable
Scope”	for	background):

Click	here	to	view	code	image
half	=	[(last	:=	count	//	2)	for	count	in	stock.values()]

print(f'Last	item	of	{half}	is	{last}')

>>>

Last	item	of	[62,	17,	4,	12]	is	12

This	leakage	of	the	loop	variable	is	similar	to	what	happens	with	a	normal	for
loop:

Click	here	to	view	code	image
for	count	in	stock.values():	#	Leaks	loop	variable

				pass

print(f'Last	item	of	{list(stock.values())}	is	{count}')

>>>

Last	item	of	[125,	35,	8,	24]	is	24

However,	similar	leakage	doesn’t	happen	for	the	loop	variables	from
comprehensions:

Click	here	to	view	code	image
half	=	[count	//	2	for	count	in	stock.values()]

print(half)	#	Works

print(count)	#	Exception	because	loop	variable	didn't	leak

>>>

[62,	17,	4,	12]

Traceback	...

NameError:	name	'count'	is	not	defined

It’s	better	not	to	leak	loop	variables,	so	I	recommend	using	assignment
expressions	only	in	the	condition	part	of	a	comprehension.

expressions	only	in	the	condition	part	of	a	comprehension.

Using	an	assignment	expression	also	works	the	same	way	in	generator
expressions	(see	Item	32:	“Consider	Generator	Expressions	for	Large	List
Comprehensions”).	Here,	I	create	an	iterator	of	pairs	containing	the	item	name
and	the	current	count	in	stock	instead	of	a	dict	instance:

Click	here	to	view	code	image
found	=	((name,	batches)	for	name	in	order

									if	(batches	:=	get_batches(stock.get(name,	0),	8)))

print(next(found))

print(next(found))

>>>

('screws',	4)

('wingnuts',	1)

Things	to	Remember

✦	Assignment	expressions	make	it	possible	for	comprehensions	and	generator
expressions	to	reuse	the	value	from	one	condition	elsewhere	in	the	same
comprehension,	which	can	improve	readability	and	performance.

✦	Although	it’s	possible	to	use	an	assignment	expression	outside	of	a
comprehension	or	generator	expression’s	condition,	you	should	avoid	doing
so.

Item	30:	Consider	Generators	Instead	of	Returning
Lists

The	simplest	choice	for	a	function	that	produces	a	sequence	of	results	is	to	return
a	list	of	items.	For	example,	say	that	I	want	to	find	the	index	of	every	word	in	a
string.	Here,	I	accumulate	results	in	a	list	using	the	append	method	and	return	it
at	the	end	of	the	function:

Click	here	to	view	code	image
def	index_words(text):

				result	=	[]

				if	text:

								result.append(0)

				for	index,	letter	in	enumerate(text):

								if	letter	==	'	':

												result.append(index	+	1)

			return	result

This	works	as	expected	for	some	sample	input:

Click	here	to	view	code	image
address	=	'Four	score	and	seven	years	ago...'

result	=	index_words(address)

print(result[:10])

>>>

[0,	5,	11,	15,	21,	27,	31,	35,	43,	51]

There	are	two	problems	with	the	index_words	function.

The	first	problem	is	that	the	code	is	a	bit	dense	and	noisy.	Each	time	a	new	result
is	found,	I	call	the	append	method.	The	method	call’s	bulk	(result.append)
deemphasizes	the	value	being	added	to	the	list	(index	+	1).	There	is	one	line
for	creating	the	result	list	and	another	for	returning	it.	While	the	function	body
contains	~130	characters	(without	whitespace),	only	~75	characters	are
important.

A	better	way	to	write	this	function	is	by	using	a	generator.	Generators	are
produced	by	functions	that	use	yield	expressions.	Here,	I	define	a	generator
function	that	produces	the	same	results	as	before:

Click	here	to	view	code	image
def	index_words_iter(text):

				if	text:

								yield	0

				for	index,	letter	in	enumerate(text):

								if	letter	==	'	':

													yield	index	+	1

When	called,	a	generator	function	does	not	actually	run	but	instead	immediately
returns	an	iterator.	With	each	call	to	the	next	built-in	function,	the	iterator
advances	the	generator	to	its	next	yield	expression.	Each	value	passed	to	yield
by	the	generator	is	returned	by	the	iterator	to	the	caller:
it	=	index_words_iter(address)

print(next(it))

print(next(it))

>>>

0

5

The	index_words_iter	function	is	significantly	easier	to	read	because	all
interactions	with	the	result	list	have	been	eliminated.	Results	are	passed	to
yield	expressions	instead.	You	can	easily	convert	the	iterator	returned	by	the
generator	to	a	list	by	passing	it	to	the	list	built-in	function	if	necessary	(see
Item	32:	“Consider	Generator	Expressions	for	Large	List	Comprehensions”	for
how	this	works):

Click	here	to	view	code	image
result	=	list(index_words_iter(address))

print(result[:10])

>>>

[0,	5,	11,	15,	21,	27,	31,	35,	43,	51]

The	second	problem	with	index_words	is	that	it	requires	all	results	to	be	stored	in
the	list	before	being	returned.	For	huge	inputs,	this	can	cause	a	program	to	run
out	of	memory	and	crash.

In	contrast,	a	generator	version	of	this	function	can	easily	be	adapted	to	take
inputs	of	arbitrary	length	due	to	its	bounded	memory	requirements.	For	example,
here	I	define	a	generator	that	streams	input	from	a	file	one	line	at	a	time	and
yields	outputs	one	word	at	a	time:
def	index_file(handle):

				offset	=	0

				for	line	in	handle:

								if	line:

												yield	offset

								for	letter	in	line:

												offset	+=	1

												if	letter	==	'	':

																yield	offset

The	working	memory	for	this	function	is	limited	to	the	maximum	length	of	one
line	of	input.	Running	the	generator	produces	the	same	results	(see	Item	36:
“Consider	itertools	for	Working	with	Iterators	and	Generators”	for	more	about
the	islice	function):

Click	here	to	view	code	image
with	open('address.txt',	'r')	as	f:

				it	=	index_file(f)

				results	=	itertools.islice(it,	0,	10)

				print(list(results))

>>>

[0,	5,	11,	15,	21,	27,	31,	35,	43,	51]

The	only	gotcha	with	defining	generators	like	this	is	that	the	callers	must	be
aware	that	the	iterators	returned	are	stateful	and	can’t	be	reused	(see	Item	31:
“Be	Defensive	When	Iterating	Over	Arguments”).

Things	to	Remember

✦	Using	generators	can	be	clearer	than	the	alternative	of	having	a	function
return	a	list	of	accumulated	results.

✦	The	iterator	returned	by	a	generator	produces	the	set	of	values	passed	to
yield	expressions	within	the	generator	function’s	body.

✦	Generators	can	produce	a	sequence	of	outputs	for	arbitrarily	large	inputs
because	their	working	memory	doesn’t	include	all	inputs	and	outputs.

Item	31:	Be	Defensive	When	Iterating	Over
Arguments

When	a	function	takes	a	list	of	objects	as	a	parameter,	it’s	often	important	to
iterate	over	that	list	multiple	times.	For	example,	say	that	I	want	to	analyze
tourism	numbers	for	the	U.S.	state	of	Texas.	Imagine	that	the	data	set	is	the
number	of	visitors	to	each	city	(in	millions	per	year).	I’d	like	to	figure	out	what
percentage	of	overall	tourism	each	city	receives.

To	do	this,	I	need	a	normalization	function	that	sums	the	inputs	to	determine	the
total	number	of	tourists	per	year	and	then	divides	each	city’s	individual	visitor
count	by	the	total	to	find	that	city’s	contribution	to	the	whole:
def	normalize(numbers):

				total	=	sum(numbers)

				result	=	[]

				for	value	in	numbers:

								percent	=	100	*	value	/	total

								result.append(percent)

				return	result

This	function	works	as	expected	when	given	a	list	of	visits:

Click	here	to	view	code	image
visits	=	[15,	35,	80]

percentages	=	normalize(visits)

print(percentages)

assert	sum(percentages)	==	100.0

>>>

[11.538461538461538,	26.923076923076923,	61.53846153846154]

To	scale	this	up,	I	need	to	read	the	data	from	a	file	that	contains	every	city	in	all
of	Texas.	I	define	a	generator	to	do	this	because	then	I	can	reuse	the	same
function	later,	when	I	want	to	compute	tourism	numbers	for	the	whole	world—a
much	larger	data	set	with	higher	memory	requirements	(see	Item	30:	“Consider
Generators	Instead	of	Returning	Lists”	for	background):
def	read_visits(data_path):

				with	open(data_path)	as	f:

								for	line	in	f:

												yield	int(line)

Surprisingly,	calling	normalize	on	the	read_visits	generator’s	return	value
produces	no	results:
it	=	read_visits('my_numbers.txt')

percentages	=	normalize(it)

print(percentages)

>>>

[]

This	behavior	occurs	because	an	iterator	produces	its	results	only	a	single	time.
If	you	iterate	over	an	iterator	or	a	generator	that	has	already	raised	a
StopIteration	exception,	you	won’t	get	any	results	the	second	time	around:
it	=	read_visits('my_numbers.txt')

print(list(it))

print(list(it))	#	Already	exhausted

>>>

[15,	35,	80]

[]

Confusingly,	you	also	won’t	get	errors	when	you	iterate	over	an	already
exhausted	iterator.	for	loops,	the	list	constructor,	and	many	other	functions
throughout	the	Python	standard	library	expect	the	StopIteration	exception	to	be
raised	during	normal	operation.	These	functions	can’t	tell	the	difference	between
an	iterator	that	has	no	output	and	an	iterator	that	had	output	and	is	now
exhausted.

To	solve	this	problem,	you	can	explicitly	exhaust	an	input	iterator	and	keep	a
copy	of	its	entire	contents	in	a	list.	You	can	then	iterate	over	the	list	version	of
the	data	as	many	times	as	you	need	to.	Here’s	the	same	function	as	before,	but	it
defensively	copies	the	input	iterator:

Click	here	to	view	code	image
def	normalize_copy(numbers):

				numbers_copy	=	list(numbers)	#	Copy	the	iterator

total	=	sum(numbers_copy)

result	=	[]

for	value	in	numbers_copy:

				percent	=	100	*	value	/	total

				result.append(percent)

return	result

Now	the	function	works	correctly	on	the	read_visits	generator’s	return	value:

Click	here	to	view	code	image
it	=	read_visits('my_numbers.txt')

percentages	=	normalize_copy(it)

print(percentages)

assert	sum(percentages)	==	100.0

>>>

[11.538461538461538,	26.923076923076923,	61.53846153846154]

The	problem	with	this	approach	is	that	the	copy	of	the	input	iterator’s	contents
could	be	extremely	large.	Copying	the	iterator	could	cause	the	program	to	run
out	of	memory	and	crash.	This	potential	for	scalability	issues	undermines	the
reason	that	I	wrote	read_visits	as	a	generator	in	the	first	place.	One	way	around
this	is	to	accept	a	function	that	returns	a	new	iterator	each	time	it’s	called:

Click	here	to	view	code	image
def	normalize_func(get_iter):

				total	=	sum(get_iter())	#	New	iterator

				result	=	[]

				for	value	in	get_iter():	#	New	iterator

								percent	=	100	*	value	/	total

								result.append(percent)

				return	result

To	use	normalize_func,	I	can	pass	in	a	lambda	expression	that	calls	the	generator
and	produces	a	new	iterator	each	time:

Click	here	to	view	code	image
path	=	'my_numbers.txt'

percentages	=	normalize_func(lambda:	read_visits(path))

print(percentages)

assert	sum(percentages)	==	100.0

>>>

[11.538461538461538,	26.923076923076923,	61.53846153846154]

Although	this	works,	having	to	pass	a	lambda	function	like	this	is	clumsy.	A
better	way	to	achieve	the	same	result	is	to	provide	a	new	container	class	that
implements	the	iterator	protocol.

The	iterator	protocol	is	how	Python	for	loops	and	related	expressions	traverse
the	contents	of	a	container	type.	When	Python	sees	a	statement	like	for	x	in
foo,	it	actually	calls	iter(foo).	The	iter	built-in	function	calls	the	foo.__iter__
special	method	in	turn.	The	__iter__	method	must	return	an	iterator	object
(which	itself	implements	the	__next__	special	method).	Then,	the	for	loop
repeatedly	calls	the	next	built-in	function	on	the	iterator	object	until	it’s
exhausted	(indicated	by	raising	a	StopIteration	exception).

It	sounds	complicated,	but	practically	speaking,	you	can	achieve	all	of	this
behavior	for	your	classes	by	implementing	the	__iter__	method	as	a	generator.
Here,	I	define	an	iterable	container	class	that	reads	the	file	containing	tourism
data:
class	ReadVisits:

				def	__init__(self,	data_path):

								self.data_path	=	data_path

				def	__iter__(self):

								with	open(self.data_path)	as	f:

												for	line	in	f:

																yield	int(line)

This	new	container	type	works	correctly	when	passed	to	the	original	function
without	modifications:

Click	here	to	view	code	image
visits	=	ReadVisits(path)

percentages	=	normalize(visits)

print(percentages)

assert	sum(percentages)	==	100.0

>>>

[11.538461538461538,	26.923076923076923,	61.53846153846154]

This	works	because	the	sum	method	in	normalize	calls	ReadVisits.__iter__	to
allocate	a	new	iterator	object.	The	for	loop	to	normalize	the	numbers	also	calls
__iter__	to	allocate	a	second	iterator	object.	Each	of	those	iterators	will	be
advanced	and	exhausted	independently,	ensuring	that	each	unique	iteration	sees
all	of	the	input	data	values.	The	only	downside	of	this	approach	is	that	it	reads
the	input	data	multiple	times.

Now	that	you	know	how	containers	like	ReadVisits	work,	you	can	write	your
functions	and	methods	to	ensure	that	parameters	aren’t	just	iterators.	The
protocol	states	that	when	an	iterator	is	passed	to	the	iter	built-in	function,	iter
returns	the	iterator	itself.	In	contrast,	when	a	container	type	is	passed	to	iter,	a
new	iterator	object	is	returned	each	time.	Thus,	you	can	test	an	input	value	for
this	behavior	and	raise	a	TypeError	to	reject	arguments	that	can’t	be	repeatedly
iterated	over:

Click	here	to	view	code	image
def	normalize_defensive(numbers):

				if	iter(numbers)	is	numbers:	#	An	iterator	--	bad!

								raise	TypeError('Must	supply	a	container')

				total	=	sum(numbers)

				result	=	[]

				for	value	in	numbers:

								percent	=	100	*	value	/	total

								result.append(percent)

				return	result

Alternatively,	the	collections.abc	built-in	module	defines	an	Iterator	class
that	can	be	used	in	an	isinstance	test	to	recognize	the	potential	problem	(see
Item	43:	“Inherit	from	collections.abc	for	Custom	Container	Types”):

Click	here	to	view	code	image
from	collections.abc	import	Iterator

def	normalize_defensive(numbers):

				if	isinstance(numbers,	Iterator):	#	Another	way	to	check

								raise	TypeError('Must	supply	a	container')

				total	=	sum(numbers)

				result	=	[]

				for	value	in	numbers:

								percent	=	100	*	value	/	total

								result.append(percent)

				return	result

The	approach	of	using	a	container	is	ideal	if	you	don’t	want	to	copy	the	full
input	iterator,	as	with	the	normalize_copy	function	above,	but	you	also	need	to
iterate	over	the	input	data	multiple	times.	This	function	works	as	expected	for
list	and	ReadVisits	inputs	because	they	are	iterable	containers	that	follow	the
iterator	protocol:

Click	here	to	view	code	image
visits	=	[15,	35,	80]

percentages	=	normalize_defensive(visits)

assert	sum(percentages)	==	100.0

visits	=	ReadVisits(path)

percentages	=	normalize_defensive(visits)

assert	sum(percentages)	==	100.0

The	function	raises	an	exception	if	the	input	is	an	iterator	rather	than	a	container:
visits	=	[15,	35,	80]

it	=	iter(visits)

normalize_defensive(it)

>>>

Traceback	...

TypeError:	Must	supply	a	container

The	same	approach	can	also	be	used	for	asynchronous	iterators	(see	Item	61:
“Know	How	to	Port	Threaded	I/O	to	asyncio”	for	an	example).

Things	to	Remember

✦	Beware	of	functions	and	methods	that	iterate	over	input	arguments	multiple
times.	If	these	arguments	are	iterators,	you	may	see	strange	behavior	and
missing	values.

✦	Python’s	iterator	protocol	defines	how	containers	and	iterators	interact	with
the	iter	and	next	built-in	functions,	for	loops,	and	related	expressions.

✦	You	can	easily	define	your	own	iterable	container	type	by	implementing	the
__iter__	method	as	a	generator.

✦	You	can	detect	that	a	value	is	an	iterator	(instead	of	a	container)	if	calling
iter	on	it	produces	the	same	value	as	what	you	passed	in.	Alternatively,
you	can	use	the	isinstance	built-in	function	along	with	the
collections.abc.Iterator	class.

Item	32:	Consider	Generator	Expressions	for	Large
List	Comprehensions

The	problem	with	list	comprehensions	(see	Item	27:	“Use	Comprehensions
Instead	of	map	and	filter”)	is	that	they	may	create	new	list	instances
containing	one	item	for	each	value	in	input	sequences.	This	is	fine	for	small
inputs,	but	for	large	inputs,	this	behavior	could	consume	significant	amounts	of
memory	and	cause	a	program	to	crash.

For	example,	say	that	I	want	to	read	a	file	and	return	the	number	of	characters	on
each	line.	Doing	this	with	a	list	comprehension	would	require	holding	the	length
of	every	line	of	the	file	in	memory.	If	the	file	is	enormous	or	perhaps	a	never-
ending	network	socket,	using	list	comprehensions	would	be	problematic.	Here,	I
use	a	list	comprehension	in	a	way	that	can	only	handle	small	input	values:

Click	here	to	view	code	image
value	=	[len(x)	for	x	in	open('my_file.txt')]

print(value)

>>>

[100,	57,	15,	1,	12,	75,	5,	86,	89,	11]

To	solve	this	issue,	Python	provides	generator	expressions,	which	are	a
generalization	of	list	comprehensions	and	generators.	Generator	expressions
don’t	materialize	the	whole	output	sequence	when	they’re	run.	Instead,	generator
expressions	evaluate	to	an	iterator	that	yields	one	item	at	a	time	from	the
expression.

You	create	a	generator	expression	by	putting	list-comprehension-like	syntax
between	()	characters.	Here,	I	use	a	generator	expression	that	is	equivalent	to	the
code	above.	However,	the	generator	expression	immediately	evaluates	to	an
iterator	and	doesn’t	make	forward	progress:

Click	here	to	view	code	image
it	=	(len(x)	for	x	in	open('my_file.txt'))

print(it)

>>>

<generator	object	<genexpr>	at	0x108993dd0>

The	returned	iterator	can	be	advanced	one	step	at	a	time	to	produce	the	next
output	from	the	generator	expression,	as	needed	(using	the	next	built-in

function).	I	can	consume	as	much	of	the	generator	expression	as	I	want	without
risking	a	blowup	in	memory	usage:
print(next(it))

print(next(it))

>>>

100

57

Another	powerful	outcome	of	generator	expressions	is	that	they	can	be
composed	together.	Here,	I	take	the	iterator	returned	by	the	generator	expression
above	and	use	it	as	the	input	for	another	generator	expression:
roots	=	((x,	x**0.5)	for	x	in	it)

Each	time	I	advance	this	iterator,	it	also	advances	the	interior	iterator,	creating	a
domino	effect	of	looping,	evaluating	conditional	expressions,	and	passing
around	inputs	and	outputs,	all	while	being	as	memory	efficient	as	possible:
print(next(roots))

>>>

(15,	3.872983346207417)

Chaining	generators	together	like	this	executes	very	quickly	in	Python.	When
you’re	looking	for	a	way	to	compose	functionality	that’s	operating	on	a	large
stream	of	input,	generator	expressions	are	a	great	choice.	The	only	gotcha	is	that
the	iterators	returned	by	generator	expressions	are	stateful,	so	you	must	be
careful	not	to	use	these	iterators	more	than	once	(see	Item	31:	“Be	Defensive
When	Iterating	Over	Arguments”).

Things	to	Remember

✦	List	comprehensions	can	cause	problems	for	large	inputs	by	using	too	much
memory.

✦	Generator	expressions	avoid	memory	issues	by	producing	outputs	one	at	a
time	as	iterators.

✦	Generator	expressions	can	be	composed	by	passing	the	iterator	from	one
generator	expression	into	the	for	subexpression	of	another.

✦	Generator	expressions	execute	very	quickly	when	chained	together	and	are
memory	efficient.

Item	33:	Compose	Multiple	Generators	with	yield	from
Generators	provide	a	variety	of	benefits	(see	Item	30:	“Consider	Generators
Instead	of	Returning	Lists”)	and	solutions	to	common	problems	(see	Item	31:
“Be	Defensive	When	Iterating	Over	Arguments”).	Generators	are	so	useful	that
many	programs	start	to	look	like	layers	of	generators	strung	together.

For	example,	say	that	I	have	a	graphical	program	that’s	using	generators	to
animate	the	movement	of	images	onscreen.	To	get	the	visual	effect	I’m	looking
for,	I	need	the	images	to	move	quickly	at	first,	pause	temporarily,	and	then
continue	moving	at	a	slower	pace.	Here,	I	define	two	generators	that	yield	the
expected	onscreen	deltas	for	each	part	of	this	animation:
def	move(period,	speed):

				for	_	in	range(period):

								yield	speed

def	pause(delay):

				for	_	in	range(delay):

								yield	0

To	create	the	final	animation,	I	need	to	combine	move	and	pause	together	to
produce	a	single	sequence	of	onscreen	deltas.	Here,	I	do	this	by	calling	a
generator	for	each	step	of	the	animation,	iterating	over	each	generator	in	turn,
and	then	yielding	the	deltas	from	all	of	them	in	sequence:
def	animate():

				for	delta	in	move(4,	5.0):

								yield	delta

				for	delta	in	pause(3):

								yield	delta

				for	delta	in	move(2,	3.0):

								yield	delta

Now,	I	can	render	those	deltas	onscreen	as	they’re	produced	by	the	single
animation	generator:
def	render(delta):

				print(f'Delta:	{delta:.1f}')

				#	Move	the	images	onscreen

				...

def	run(func):

				for	delta	in	func():

								render(delta)

run(animate)

>>>

Delta:	5.0

Delta:	5.0

Delta:	5.0

Delta:	5.0

Delta:	0.0

Delta:	0.0

Delta:	0.0

Delta:	3.0

Delta:	3.0

The	problem	with	this	code	is	the	repetitive	nature	of	the	animate	function.	The
redundancy	of	the	for	statements	and	yield	expressions	for	each	generator	adds
noise	and	reduces	readability.	This	example	includes	only	three	nested
generators	and	it’s	already	hurting	clarity;	a	complex	animation	with	a	dozen
phases	or	more	would	be	extremely	difficult	to	follow.

The	solution	to	this	problem	is	to	use	the	yield	from	expression.	This	advanced
generator	feature	allows	you	to	yield	all	values	from	a	nested	generator	before
returning	control	to	the	parent	generator.	Here,	I	reimplement	the	animation
function	by	using	yield	from:
def	animate_composed():

				yield	from	move(4,	5.0)

				yield	from	pause(3)

				yield	from	move(2,	3.0)

run(animate_composed)

>>>

Delta:	5.0

Delta:	5.0

Delta:	5.0

Delta:	5.0

Delta:	0.0

Delta:	0.0

Delta:	0.0

Delta:	3.0

Delta:	3.0

The	result	is	the	same	as	before,	but	now	the	code	is	clearer	and	more	intuitive.
yield	from	essentially	causes	the	Python	interpreter	to	handle	the	nested	for
loop	and	yield	expression	boilerplate	for	you,	which	results	in	better
performance.	Here,	I	verify	the	speedup	by	using	the	timeit	built-in	module	to
run	a	micro-benchmark:

Click	here	to	view	code	image
import	timeit

def	child():

				for	i	in	range(1_000_000):

								yield	i

def	slow():

				for	i	in	child():

								yield	i

def	fast():

				yield	from	child()

baseline	=	timeit.timeit(

				stmt='for	_	in	slow():	pass',

				globals=globals(),

				number=50)

print(f'Manual	nesting	{baseline:.2f}s')

comparison	=	timeit.timeit(

			stmt='for	_	in	fast():	pass',

			globals=globals(),

			number=50)

print(f'Composed	nesting	{comparison:.2f}s')

reduction	=	-(comparison	-	baseline)	/	baseline

print(f'{reduction:.1%}	less	time')

>>>

Manual	nesting	4.02s

Composed	nesting	3.47s

13.5%	less	time

If	you	find	yourself	composing	generators,	I	strongly	encourage	you	to	use	yield
from	when	possible.

Things	to	Remember

✦	The	yield	from	expression	allows	you	to	compose	multiple	nested
generators	together	into	a	single	combined	generator.

✦	yield	from	provides	better	performance	than	manually	iterating	nested
generators	and	yielding	their	outputs.

Item	34:	Avoid	Injecting	Data	into	Generators	with

send

yield	expressions	provide	generator	functions	with	a	simple	way	to	produce	an
iterable	series	of	output	values	(see	Item	30:	“Consider	Generators	Instead	of
Returning	Lists”).	However,	this	channel	appears	to	be	unidirectional:	There’s
no	immediately	obvious	way	to	simultaneously	stream	data	in	and	out	of	a
generator	as	it	runs.	Having	such	bidirectional	communication	could	be	valuable
for	a	variety	of	use	cases.

For	example,	say	that	I’m	writing	a	program	to	transmit	signals	using	a	software-
defined	radio.	Here,	I	use	a	function	to	generate	an	approximation	of	a	sine	wave
with	a	given	number	of	points:

Click	here	to	view	code	image
import	math

def	wave(amplitude,	steps):

				step_size	=	2	*	math.pi	/	steps

				for	step	in	range(steps):

								radians	=	step	*	step_size

								fraction	=	math.sin(radians)

				output	=	amplitude	*	fraction

				yield	output

Now,	I	can	transmit	the	wave	signal	at	a	single	specified	amplitude	by	iterating
over	the	wave	generator:

Click	here	to	view	code	image
def	transmit(output):

				if	output	is	None:

								print(f'Output	is	None')

				else:

								print(f'Output:	{output:>5.1f}')

def	run(it):

				for	output	in	it:

								transmit(output)

run(wave(3.0,	8))

>>>

Output:		0.0

Output:		2.1

Output:		3.0

Output:		2.1

Output:		0.0

Output:	-2.1

Output:	-3.0

Output:	-2.1

This	works	fine	for	producing	basic	waveforms,	but	it	can’t	be	used	to	constantly
vary	the	amplitude	of	the	wave	based	on	a	separate	input	(i.e.,	as	required	to
broadcast	AM	radio	signals).	I	need	a	way	to	modulate	the	amplitude	on	each
iteration	of	the	generator.

Python	generators	support	the	send	method,	which	upgrades	yield	expressions
into	a	two-way	channel.	The	send	method	can	be	used	to	provide	streaming
inputs	to	a	generator	at	the	same	time	it’s	yielding	outputs.	Normally,	when
iterating	a	generator,	the	value	of	the	yield	expression	is	None:

Click	here	to	view	code	image
def	my_generator():

				received	=	yield	1

				print(f'received	=	{received}')

it	=	iter(my_generator())

output	=	next(it)								#	Get	first	generator	output

print(f'output	=	{output}')

try:

				next(it)													#	Run	generator	until	it	exits

except	StopIteration:

				pass

>>>

output	=	1

received	=	None

When	I	call	the	send	method	instead	of	iterating	the	generator	with	a	for	loop	or
the	next	built-in	function,	the	supplied	parameter	becomes	the	value	of	the	yield
expression	when	the	generator	is	resumed.	However,	when	the	generator	first
starts,	a	yield	expression	has	not	been	encountered	yet,	so	the	only	valid	value
for	calling	send	initially	is	None	(any	other	argument	would	raise	an	exception	at
runtime):

Click	here	to	view	code	image
it	=	iter(my_generator())

output	=	it.send(None)	#	Get	first	generator	output

print(f'output	=	{output}')

try:

			it.send('hello!')			#	Send	value	into	the	generator

except	StopIteration:

			pass

>>>

output	=	1

received	=	hello!

I	can	take	advantage	of	this	behavior	in	order	to	modulate	the	amplitude	of	the
sine	wave	based	on	an	input	signal.	First,	I	need	to	change	the	wave	generator	to
save	the	amplitude	returned	by	the	yield	expression	and	use	it	to	calculate	the
next	generated	output:

Click	here	to	view	code	image
def	wave_modulating(steps):

				step_size	=	2	*	math.pi	/	steps

				amplitude	=	yield													#	Receive	initial	amplitude

				for	step	in	range(steps):

								radians	=	step	*	step_size

								fraction	=	math.sin(radians)

								output	=	amplitude	*	fraction

								amplitude	=	yield	output		#	Receive	next	amplitude

Then,	I	need	to	update	the	run	function	to	stream	the	modulating	amplitude	into
the	wave_modulating	generator	on	each	iteration.	The	first	input	to	send	must	be
None,	since	a	yield	expression	would	not	have	occurred	within	the	generator	yet:

Click	here	to	view	code	image
def	run_modulating(it):

				amplitudes	=	[

								None,	7,	7,	7,	2,	2,	2,	2,	10,	10,	10,	10,	10]

				for	amplitude	in	amplitudes:

								output	=	it.send(amplitude)

								transmit(output)

run_modulating(wave_modulating(12))

>>>

Output	is	None

Output:			0.0

Output:			3.5

Output:			6.1

Output:			2.0

Output:			1.7

Output:			1.0

Output:			0.0

Output:		-5.0

Output:		-8.7

Output:	-10.0

Output:		-8.7

Output:		-5.0

This	works;	it	properly	varies	the	output	amplitude	based	on	the	input	signal.
The	first	output	is	None,	as	expected,	because	a	value	for	the	amplitude	wasn’t
received	by	the	generator	until	after	the	initial	yield	expression.

One	problem	with	this	code	is	that	it’s	difficult	for	new	readers	to	understand:
Using	yield	on	the	right	side	of	an	assignment	statement	isn’t	intuitive,	and	it’s
hard	to	see	the	connection	between	yield	and	send	without	already	knowing	the
details	of	this	advanced	generator	feature.

Now,	imagine	that	the	program’s	requirements	get	more	complicated.	Instead	of
using	a	simple	sine	wave	as	my	carrier,	I	need	to	use	a	complex	waveform
consisting	of	multiple	signals	in	sequence.	One	way	to	implement	this	behavior
is	by	composing	multiple	generators	together	by	using	the	yield	from	expression
(see	Item	33:	“Compose	Multiple	Generators	with	yield	from”).	Here,	I	confirm
that	this	works	as	expected	in	the	simpler	case	where	the	amplitude	is	fixed:
def	complex_wave():

				yield	from	wave(7.0,	3)

				yield	from	wave(2.0,	4)

				yield	from	wave(10.0,	5)

run(complex_wave())

>>>

Output:		0.0

Output:		6.1

Output:	-6.1

Output:		0.0

Output:		2.0

Output:		0.0

Output:	-2.0

Output:		0.0

Output:		9.5

Output:		5.9

Output:	-5.9

Output:	-9.5

Given	that	the	yield	from	expression	handles	the	simpler	case,	you	may	expect
it	to	also	work	properly	along	with	the	generator	send	method.	Here,	I	try	to	use
it	this	way	by	composing	multiple	calls	to	the	wave_modulating	generator
together:

Click	here	to	view	code	image
def	complex_wave_modulating():

				yield	from	wave_modulating(3)

				yield	from	wave_modulating(4)

				yield	from	wave_modulating(5)

run_modulating(complex_wave_modulating())

>>>

Output	is	None

Output:			0.0

Output:			6.1

Output:		-6.1

Output	is	None

Output:			0.0

Output:			2.0

Output:			0.0

Output:	-10.0

Output	is	None

Output:			0.0

Output:			9.5

Output:			5.9

This	works	to	some	extent,	but	the	result	contains	a	big	surprise:	There	are	many
None	values	in	the	output!	Why	does	this	happen?	When	each	yield	from
expression	finishes	iterating	over	a	nested	generator,	it	moves	on	to	the	next	one.
Each	nested	generator	starts	with	a	bare	yield	expression—one	without	a	value
—in	order	to	receive	the	initial	amplitude	from	a	generator	send	method	call.
This	causes	the	parent	generator	to	output	a	None	value	when	it	transitions
between	child	generators.

This	means	that	assumptions	about	how	the	yield	from	and	send	features	behave
individually	will	be	broken	if	you	try	to	use	them	together.	Although	it’s
possible	to	work	around	this	None	problem	by	increasing	the	complexity	of	the
run_modulating	function,	it’s	not	worth	the	trouble.	It’s	already	difficult	for	new
readers	of	the	code	to	understand	how	send	works.	This	surprising	gotcha	with
yield	from	makes	it	even	worse.	My	advice	is	to	avoid	the	send	method	entirely
and	go	with	a	simpler	approach.

The	easiest	solution	is	to	pass	an	iterator	into	the	wave	function.	The	iterator
should	return	an	input	amplitude	each	time	the	next	built-in	function	is	called	on
it.	This	arrangement	ensures	that	each	generator	is	progressed	in	a	cascade	as
inputs	and	outputs	are	processed	(see	Item	32:	“Consider	Generator	Expressions
for	Large	List	Comprehensions”	for	another	example):

Click	here	to	view	code	image
def	wave_cascading(amplitude_it,	steps):

				step_size	=	2	*	math.pi	/	steps

				for	step	in	range(steps):

								radians	=	step	*	step_size

								fraction	=	math.sin(radians)

								amplitude	=	next(amplitude_it)	#	Get	next	input

								output	=	amplitude	*	fraction

								yield	output

I	can	pass	the	same	iterator	into	each	of	the	generator	functions	that	I’m	trying	to
compose	together.	Iterators	are	stateful	(see	Item	31:	“Be	Defensive	When
Iterating	Over	Arguments”),	and	thus	each	of	the	nested	generators	picks	up
where	the	previous	generator	left	off:

Click	here	to	view	code	image
def	complex_wave_cascading(amplitude_it):

				yield	from	wave_cascading(amplitude_it,	3)

				yield	from	wave_cascading(amplitude_it,	4)

				yield	from	wave_cascading(amplitude_it,	5)

Now,	I	can	run	the	composed	generator	by	simply	passing	in	an	iterator	from	the
amplitudes	list:

Click	here	to	view	code	image
def	run_cascading():

				amplitudes	=	[7,	7,	7,	2,	2,	2,	2,	10,	10,	10,	10,	10]

it	=	complex_wave_cascading(iter(amplitudes))

for	amplitude	in	amplitudes:

				output	=	next(it)

				transmit(output)

run_cascading()

>>>

Output:		0.0

Output:		6.1

Output:	-6.1

Output:		0.0

Output:		2.0

Output:		0.0

Output:	-2.0

Output:		0.0

Output:		9.5

Output:		5.9

Output:	-5.9

Output:	-9.5

The	best	part	about	this	approach	is	that	the	iterator	can	come	from	anywhere
and	could	be	completely	dynamic	(e.g.,	implemented	using	a	generator
function).	The	only	downside	is	that	this	code	assumes	that	the	input	generator	is
completely	thread	safe,	which	may	not	be	the	case.	If	you	need	to	cross	thread
boundaries,	async	functions	may	be	a	better	fit	(see	Item	62:	“Mix	Threads	and
Coroutines	to	Ease	the	Transition	to	asyncio”).

Things	to	Remember

✦	The	send	method	can	be	used	to	inject	data	into	a	generator	by	giving	the
yield	expression	a	value	that	can	be	assigned	to	a	variable.

✦	Using	send	with	yield	from	expressions	may	cause	surprising	behavior,
such	as	None	values	appearing	at	unexpected	times	in	the	generator	output.

✦	Providing	an	input	iterator	to	a	set	of	composed	generators	is	a	better
approach	than	using	the	send	method,	which	should	be	avoided.

Item	35:	Avoid	Causing	State	Transitions	in
Generators	with	throw

In	addition	to	yield	from	expressions	(see	Item	33:	“Compose	Multiple
Generators	with	yield	from”)	and	the	send	method	(see	Item	34:	“Avoid
Injecting	Data	into	Generators	with	send”),	another	advanced	generator	feature	is
the	throw	method	for	re-raising	Exception	instances	within	generator	functions.
The	way	throw	works	is	simple:	When	the	method	is	called,	the	next	occurrence
of	a	yield	expression	re-raises	the	provided	Exception	instance	after	its	output	is
received	instead	of	continuing	normally.	Here,	I	show	a	simple	example	of	this
behavior	in	action:

Click	here	to	view	code	image
class	MyError(Exception):

				pass

def	my_generator():

				yield	1

				yield	2

				yield	3

it	=	my_generator()

print(next(it))	#	Yield	1

print(next(it))	#	Yield	2

print(it.throw(MyError('test	error')))

>>>

1

2

Traceback	...

MyError:	test	error

When	you	call	throw,	the	generator	function	may	catch	the	injected	exception
with	a	standard	try/except	compound	statement	that	surrounds	the	last	yield
expression	that	was	executed	(see	Item	65:	“Take	Advantage	of	Each	Block	in
try/except/else/finally”	for	more	about	exception	handling):

Click	here	to	view	code	image
def	my_generator():

				yield	1

				try:

								yield	2

				except	MyError:

								print('Got	MyError!')

				else:

								yield	3

			yield	4

it	=	my_generator()

print(next(it))	#	Yield	1

print(next(it))	#	Yield	2

print(it.throw(MyError('test	error')))

>>>

1

2

Got	MyError!

4

This	functionality	provides	a	two-way	communication	channel	between	a
generator	and	its	caller	that	can	be	useful	in	certain	situations	(see	Item	34:
“Avoid	Injecting	Data	into	Generators	with	send”	for	another	one).	For	example,
imagine	that	I’m	trying	to	write	a	program	with	a	timer	that	supports	sporadic
resets.	Here,	I	implement	this	behavior	by	defining	a	generator	that	relies	on	the
throw	method:

class	Reset(Exception):

			pass

def	timer(period):

				current	=	period

				while	current:

								current	-=	1

								try:

												yield	current

								except	Reset:

												current	=	period

In	this	code,	whenever	the	Reset	exception	is	raised	by	the	yield	expression,	the
counter	resets	itself	to	its	original	period.

I	can	connect	this	counter	reset	event	to	an	external	input	that’s	polled	every
second.	Then,	I	can	define	a	run	function	to	drive	the	timer	generator,	which
injects	exceptions	with	throw	to	cause	resets,	or	calls	announce	for	each	generator
output:

Click	here	to	view	code	image
def	check_for_reset():

				#	Poll	for	external	event

				...

def	announce(remaining):

				print(f'{remaining}	ticks	remaining')

def	run():

				it	=	timer(4)

				while	True:

				try:

								if	check_for_reset():

												current	=	it.throw(Reset())

								else:

												current	=	next(it)

				except	StopIteration:

								break

				else:

								announce(current)

run()

>>>

3	ticks	remaining

2	ticks	remaining

1	ticks	remaining

3	ticks	remaining

2	ticks	remaining

3	ticks	remaining

2	ticks	remaining

1	ticks	remaining

0	ticks	remaining

This	code	works	as	expected,	but	it’s	much	harder	to	read	than	necessary.	The
various	levels	of	nesting	required	to	catch	StopIteration	exceptions	or	decide	to
throw,	call	next,	or	announce	make	the	code	noisy.

A	simpler	approach	to	implementing	this	functionality	is	to	define	a	stateful
closure	(see	Item	38:	“Accept	Functions	Instead	of	Classes	for	Simple
Interfaces”)	using	an	iterable	container	object	(see	Item	31:	“Be	Defensive	When
Iterating	Over	Arguments”).	Here,	I	redefine	the	timer	generator	by	using	such	a
class:

Click	here	to	view	code	image
class	Timer:

				def	__init__(self,	period):

								self.current	=	period

								self.period	=	period

				def	reset(self):

								self.current	=	self.period

				def	__iter__(self):

								while	self.current:

												self.current	-=	1

												yield	self.current

Now,	the	run	method	can	do	a	much	simpler	iteration	by	using	a	for	statement,
and	the	code	is	much	easier	to	follow	because	of	the	reduction	in	the	levels	of
nesting:
def	run():

				timer	=	Timer(4)

				for	current	in	timer:

								if	check_for_reset():

												timer.reset()

								announce(current)

run()

>>>

3	ticks	remaining

2	ticks	remaining

1	ticks	remaining

3	ticks	remaining

2	ticks	remaining

3	ticks	remaining

2	ticks	remaining

1	ticks	remaining

0	ticks	remaining

The	output	matches	the	earlier	version	using	throw,	but	this	implementation	is
much	easier	to	understand,	especially	for	new	readers	of	the	code.	Often,	what
you’re	trying	to	accomplish	by	mixing	generators	and	exceptions	is	better
achieved	with	asynchronous	features	(see	Item	60:	“Achieve	Highly	Concurrent
I/O	with	Coroutines”).	Thus,	I	suggest	that	you	avoid	using	throw	entirely	and
instead	use	an	iterable	class	if	you	need	this	type	of	exceptional	behavior.

Things	to	Remember

✦	The	throw	method	can	be	used	to	re-raise	exceptions	within	generators	at
the	position	of	the	most	recently	executed	yield	expression.

✦	Using	throw	harms	readability	because	it	requires	additional	nesting	and
boilerplate	in	order	to	raise	and	catch	exceptions.

✦	A	better	way	to	provide	exceptional	behavior	in	generators	is	to	use	a	class
that	implements	the	__iter__	method	along	with	methods	to	cause
exceptional	state	transitions.

Item	36:	Consider	itertools	for	Working	with	Iterators
and	Generators

The	itertools	built-in	module	contains	a	large	number	of	functions	that	are
useful	for	organizing	and	interacting	with	iterators	(see	Item	30:	“Consider
Generators	Instead	of	Returning	Lists”	and	Item	31:	“Be	Defensive	When
Iterating	Over	Arguments”	for	background):
import	itertools

Whenever	you	find	yourself	dealing	with	tricky	iteration	code,	it’s	worth	looking
at	the	itertools	documentation	again	to	see	if	there’s	anything	in	there	for	you
to	use	(see	help(itertools)).	The	following	sections	describe	the	most
important	functions	that	you	should	know	in	three	primary	categories.

Linking	Iterators	Together

The	itertools	built-in	module	includes	a	number	of	functions	for	linking
iterators	together.

chain
Use	chain	to	combine	multiple	iterators	into	a	single	sequential	iterator:

Click	here	to	view	code	image
it	=	itertools.chain([1,	2,	3],	[4,	5,	6])

print(list(it))

>>>

[1,	2,	3,	4,	5,	6]

repeat
Use	repeat	to	output	a	single	value	forever,	or	use	the	second	parameter	to
specify	a	maximum	number	of	times:
it	=	itertools.repeat('hello',	3)

print(list(it))

>>>

['hello',	'hello',	'hello']

cycle
Use	cycle	to	repeat	an	iterator’s	items	forever:

Click	here	to	view	code	image
it	=	itertools.cycle([1,	2])

result	=	[next(it)	for	_	in	range	(10)]

print(result)

>>>

[1,	2,	1,	2,	1,	2,	1,	2,	1,	2]

tee
Use	tee	to	split	a	single	iterator	into	the	number	of	parallel	iterators	specified	by
the	second	parameter.	The	memory	usage	of	this	function	will	grow	if	the
iterators	don’t	progress	at	the	same	speed	since	buffering	will	be	required	to
enqueue	the	pending	items:

Click	here	to	view	code	image
it1,	it2,	it3	=	itertools.tee(['first',	'second'],	3)

print(list(it1))

print(list(it2))

print(list(it3))

>>>

['first',	'second']

['first',	'second']

['first',	'second']

zip_longest
This	variant	of	the	zip	built-in	function	(see	Item	8:	“Use	zip	to	Process	Iterators
in	Parallel”)	returns	a	placeholder	value	when	an	iterator	is	exhausted,	which
may	happen	if	iterators	have	different	lengths:

Click	here	to	view	code	image
keys	=	['one',	'two',	'three']

values	=	[1,	2]

normal	=	list(zip(keys,	values))

print('zip:	',	normal)

it	=	itertools.zip_longest(keys,	values,	fillvalue='nope')

longest	=	list(it)

print('zip_longest:',	longest)

>>>

zip:									[('one',	1),	('two',	2)]

zip_longest:	[('one',	1),	('two',	2),	('three',	'nope')]

Filtering	Items	from	an	Iterator
The	itertools	built-in	module	includes	a	number	of	functions	for	filtering	items
from	an	iterator.

islice
Use	islice	to	slice	an	iterator	by	numerical	indexes	without	copying.	You	can
specify	the	end,	start	and	end,	or	start,	end,	and	step	sizes,	and	the	behavior	is
similar	to	that	of	standard	sequence	slicing	and	striding	(see	Item	11:	“Know
How	to	Slice	Sequences”	and	Item	12:	“Avoid	Striding	and	Slicing	in	a	Single
Expression”):

Click	here	to	view	code	image
values	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

first_five	=	itertools.islice(values,	5)

print('First	five:	',	list(first_five))

middle_odds	=	itertools.islice(values,	2,	8,	2)

print('Middle	odds:',	list(middle_odds))

>>>

First	five:	[1,	2,	3,	4,	5]

Middle	odds:	[3,	5,	7]

takewhile
takewhile	returns	items	from	an	iterator	until	a	predicate	function	returns	False
for	an	item:

Click	here	to	view	code	image
values	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

less_than_seven	=	lambda	x:	x	<	7

it	=	itertools.takewhile(less_than_seven,	values)

print(list(it))

>>>

[1,	2,	3,	4,	5,	6]

dropwhile
dropwhile,	which	is	the	opposite	of	takewhile,	skips	items	from	an	iterator	until
the	predicate	function	returns	True	for	the	first	time:

Click	here	to	view	code	image
values	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

less_than_seven	=	lambda	x:	x	<	7

it	=	itertools.dropwhile(less_than_seven,	values)

print(list(it))

>>>

[7,	8,	9,	10]

filterfalse
filterfalse,	which	is	the	opposite	of	the	filter	built-in	function,	returns	all

items	from	an	iterator	where	a	predicate	function	returns	False:

Click	here	to	view	code	image
values	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

evens	=	lambda	x:	x	%	2	==	0

filter_result	=	filter(evens,	values)

print('Filter:						',	list(filter_result))

filter_false_result	=	itertools.filterfalse(evens,	values)

print('Filter	false:',	list(filter_false_result))

>>>

Filter:							[2,	4,	6,	8,	10]

Filter	false:	[1,	3,	5,	7,	9]

Producing	Combinations	of	Items	from	Iterators
The	itertools	built-in	module	includes	a	number	of	functions	for	producing
combinations	of	items	from	iterators.

accumulate
accumulate	folds	an	item	from	the	iterator	into	a	running	value	by	applying	a
function	that	takes	two	parameters.	It	outputs	the	current	accumulated	result	for
each	input	value:

Click	here	to	view	code	image
values	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

sum_reduce	=	itertools.accumulate(values)

print('Sum:			',	list(sum_reduce))

def	sum_modulo_20(first,	second):

				output	=	first	+	second

				return	output	%	20

modulo_reduce	=	itertools.accumulate(values,	sum_modulo_20)

print('Modulo:',	list(modulo_reduce))

>>>

Sum:				[1,	3,	6,	10,	15,	21,	28,	36,	45,	55]

Modulo:	[1,	3,	6,	10,	15,	1,	8,	16,	5,	15]

This	is	essentially	the	same	as	the	reduce	function	from	the	functools	built-in
module,	but	with	outputs	yielded	one	step	at	a	time.	By	default	it	sums	the	inputs

if	no	binary	function	is	specified.

product
product	returns	the	Cartesian	product	of	items	from	one	or	more	iterators,	which
is	a	nice	alternative	to	using	deeply	nested	list	comprehensions	(see	Item	28:
“Avoid	More	Than	Two	Control	Subexpressions	in	Comprehensions”	for	why	to
avoid	those):

Click	here	to	view	code	image
single	=	itertools.product([1,	2],	repeat=2)

print('Single:	',	list(single))

multiple	=	itertools.product([1,	2],	['a',	'b'])

print('Multiple:',	list(multiple))

>>>

Single:			[(1,	1),	(1,	2),	(2,	1),	(2,	2)]

Multiple:	[(1,	'a'),	(1,	'b'),	(2,	'a'),	(2,	'b')]

permutations
permutations	returns	the	unique	ordered	permutations	of	length	N	with	items
from	an	iterator:

Click	here	to	view	code	image
it	=	itertools.permutations([1,	2,	3,	4],	2)

print(list(it))

>>>

[(1,	2),

	(1,	3),

	(1,	4),

	(2,	1),

	(2,	3),

	(2,	4),

	(3,	1),

	(3,	2),

	(3,	4),

	(4,	1),

	(4,	2),

	(4,	3)]

combinations

combinations	returns	the	unordered	combinations	of	length	N	with	unrepeated
items	from	an	iterator:

Click	here	to	view	code	image
it	=	itertools.combinations([1,	2,	3,	4],	2)

print(list(it))

>>>

[(1,	2),	(1,	3),	(1,	4),	(2,	3),	(2,	4),	(3,	4)]

combinations_with_replacement
combinations_with_replacement	is	the	same	as	combinations,	but	repeated
values	are	allowed:

Click	here	to	view	code	image
it	=	itertools.combinations_with_replacement([1,	2,	3,	4],	2)

print(list(it))

>>>

[(1,	1),

	(1,	2),

	(1,	3),

	(1,	4),

	(2,	2),

	(2,	3),

	(2,	4),

	(3,	3),

	(3,	4),

	(4,	4)]

Things	to	Remember

✦	The	itertools	functions	fall	into	three	main	categories	for	working	with
iterators	and	generators:	linking	iterators	together,	filtering	items	they
output,	and	producing	combinations	of	items.

✦	There	are	more	advanced	functions,	additional	parameters,	and	useful
recipes	available	in	the	documentation	at	help(itertools).

5.	Classes	and	Interfaces

As	an	object-oriented	programming	language,	Python	supports	a	full	range	of
features,	such	as	inheritance,	polymorphism,	and	encapsulation.	Getting	things
done	in	Python	often	requires	writing	new	classes	and	defining	how	they	interact
through	their	interfaces	and	hierarchies.

Python’s	classes	and	inheritance	make	it	easy	to	express	a	program’s	intended
behaviors	with	objects.	They	allow	you	to	improve	and	expand	functionality
over	time.	They	provide	flexibility	in	an	environment	of	changing	requirements.
Knowing	how	to	use	them	well	enables	you	to	write	maintainable	code.

Item	37:	Compose	Classes	Instead	of	Nesting	Many
Levels	of	Built-in	Types

Python’s	built-in	dictionary	type	is	wonderful	for	maintaining	dynamic	internal
state	over	the	lifetime	of	an	object.	By	dynamic,	I	mean	situations	in	which	you
need	to	do	bookkeeping	for	an	unexpected	set	of	identifiers.	For	example,	say
that	I	want	to	record	the	grades	of	a	set	of	students	whose	names	aren’t	known	in
advance.	I	can	define	a	class	to	store	the	names	in	a	dictionary	instead	of	using	a
predefined	attribute	for	each	student:

Click	here	to	view	code	image
class	SimpleGradebook:

				def	__init__(self):

								self._grades	=	{}

		def	add_student(self,	name):

						self._grades[name]	=	[]

		def	report_grade(self,	name,	score):

						self._grades[name].append(score)

		def	average_grade(self,	name):

						grades	=	self._grades[name]

						return	sum(grades)	/	len(grades)

Using	the	class	is	simple:

Click	here	to	view	code	image
book	=	SimpleGradebook()

book.add_student('Isaac	Newton')

book.report_grade('Isaac	Newton',	90)

book.report_grade('Isaac	Newton',	95)

book.report_grade('Isaac	Newton',	85)

print(book.average_grade('Isaac	Newton'))

>>>

90.0

Dictionaries	and	their	related	built-in	types	are	so	easy	to	use	that	there’s	a
danger	of	overextending	them	to	write	brittle	code.	For	example,	say	that	I	want
to	extend	the	SimpleGradebook	class	to	keep	a	list	of	grades	by	subject,	not	just
overall.	I	can	do	this	by	changing	the	_grades	dictionary	to	map	student	names
(its	keys)	to	yet	another	dictionary	(its	values).	The	innermost	dictionary	will
map	subjects	(its	keys)	to	a	list	of	grades	(its	values).	Here,	I	do	this	by	using	a
defaultdict	instance	for	the	inner	dictionary	to	handle	missing	subjects	(see
Item	17:	“Prefer	defaultdict	Over	setdefault	to	Handle	Missing	Items	in
Internal	State”	for	background):

Click	here	to	view	code	image
from	collections	import	defaultdict

class	BySubjectGradebook:

				def	__init__(self):

								self._grades	=	{}																					#	Outer	dict

			def	add_student(self,	name):

							self._grades[name]	=	defaultdict(list)	#	Inner	dict

This	seems	straightforward	enough.	The	report_grade	and	average_grade
methods	gain	quite	a	bit	of	complexity	to	deal	with	the	multilevel	dictionary,	but
it’s	seemingly	manageable:

Click	here	to	view	code	image
def	report_grade(self,	name,	subject,	grade):

				by_subject	=	self._grades[name]

				grade_list	=	by_subject[subject]

				grade_list.append(grade)

def	average_grade(self,	name):

				by_subject	=	self._grades[name]

				total,	count	=	0,	0

				for	grades	in	by_subject.values():

								total	+=	sum(grades)

								count	+=	len(grades)

				return	total	/	count

Using	the	class	remains	simple:

Click	here	to	view	code	image
book	=	BySubjectGradebook()

book.add_student('Albert	Einstein')

book.report_grade('Albert	Einstein',	'Math',	75)

book.report_grade('Albert	Einstein',	'Math',	65)

book.report_grade('Albert	Einstein',	'Gym',	90)

book.report_grade('Albert	Einstein',	'Gym',	95)

print(book.average_grade('Albert	Einstein'))

>>>

81.25

Now,	imagine	that	the	requirements	change	again.	I	also	want	to	track	the	weight
of	each	score	toward	the	overall	grade	in	the	class	so	that	midterm	and	final
exams	are	more	important	than	pop	quizzes.	One	way	to	implement	this	feature
is	to	change	the	innermost	dictionary;	instead	of	mapping	subjects	(its	keys)	to	a
list	of	grades	(its	values),	I	can	use	the	tuple	of	(score,	weight)	in	the	values
list:

Click	here	to	view	code	image
class	WeightedGradebook:

			def	__init__(self):

							self._grades	=	{}

			def	add_student(self,	name):

							self._grades[name]	=	defaultdict(list)

			def	report_grade(self,	name,	subject,	score,	weight):

							by_subject	=	self._grades[name]

							grade_list	=	by_subject[subject]

							grade_list.append((score,	weight))

Although	the	changes	to	report_grade	seem	simple—just	make	the	grade	list
store	tuple	instances—the	average_grade	method	now	has	a	loop	within	a	loop
and	is	difficult	to	read:

Click	here	to	view	code	image

def	average_grade(self,	name):

				by_subject	=	self._grades[name]

				score_sum,	score_count	=	0,	0

				for	subject,	scores	in	by_subject.items():

								subject_avg,	total_weight	=	0,	0

				for	score,	weight	in	scores:

								subject_avg	+=	score	*	weight

								total_weight	+=	weight

				score_sum	+=	subject_avg	/	total_weight

				score_count	+=	1

return	score_sum	/	score_count

Using	the	class	has	also	gotten	more	difficult.	It’s	unclear	what	all	of	the
numbers	in	the	positional	arguments	mean:

Click	here	to	view	code	image
book	=	WeightedGradebook()

book.add_student('Albert	Einstein')

book.report_grade('Albert	Einstein',	'Math',	75,	0.05)

book.report_grade('Albert	Einstein',	'Math',	65,	0.15)

book.report_grade('Albert	Einstein',	'Math',	70,	0.80)

book.report_grade('Albert	Einstein',	'Gym',	100,	0.40)

book.report_grade('Albert	Einstein',	'Gym',	85,	0.60)

print(book.average_grade('Albert	Einstein'))

>>>

80.25

When	you	see	complexity	like	this,	it’s	time	to	make	the	leap	from	built-in	types
like	dictionaries,	tuples,	sets,	and	lists	to	a	hierarchy	of	classes.

In	the	grades	example,	at	first	I	didn’t	know	I’d	need	to	support	weighted	grades,
so	the	complexity	of	creating	classes	seemed	unwarranted.	Python’s	built-in
dictionary	and	tuple	types	made	it	easy	to	keep	going,	adding	layer	after	layer	to
the	internal	bookkeeping.	But	you	should	avoid	doing	this	for	more	than	one
level	of	nesting;	using	dictionaries	that	contain	dictionaries	makes	your	code
hard	to	read	by	other	programmers	and	sets	you	up	for	a	maintenance	nightmare.

As	soon	as	you	realize	that	your	bookkeeping	is	getting	complicated,	break	it	all
out	into	classes.	You	can	then	provide	well-defined	interfaces	that	better
encapsulate	your	data.	This	approach	also	enables	you	to	create	a	layer	of
abstraction	between	your	interfaces	and	your	concrete	implementations.

Refactoring	to	Classes

Refactoring	to	Classes
There	are	many	approaches	to	refactoring	(see	Item	89:	“Consider	warnings	to
Refactor	and	Migrate	Usage”	for	another).	In	this	case,	I	can	start	moving	to
classes	at	the	bottom	of	the	dependency	tree:	a	single	grade.	A	class	seems	too
heavyweight	for	such	simple	information.	A	tuple,	though,	seems	appropriate
because	grades	are	immutable.	Here,	I	use	the	tuple	of	(score,	weight)	to	track
grades	in	a	list:

Click	here	to	view	code	image
grades	=	[]

grades.append((95,	0.45))

grades.append((85,	0.55))

total	=	sum(score	*	weight	for	score,	weight	in	grades)

total_weight	=	sum(weight	for	_,	weight	in	grades)

average_grade	=	total	/	total_weight

I	used	_	(the	underscore	variable	name,	a	Python	convention	for	unused
variables)	to	capture	the	first	entry	in	each	grade’s	tuple	and	ignore	it	when
calculating	the	total_weight.

The	problem	with	this	code	is	that	tuple	instances	are	positional.	For	example,	if
I	want	to	associate	more	information	with	a	grade,	such	as	a	set	of	notes	from	the
teacher,	I	need	to	rewrite	every	usage	of	the	two-tuple	to	be	aware	that	there	are
now	three	items	present	instead	of	two,	which	means	I	need	to	use	_	further	to
ignore	certain	indexes:

Click	here	to	view	code	image
grades	=	[]

grades.append((95,	0.45,	'Great	job'))

grades.append((85,	0.55,	'Better	next	time'))

total	=	sum(score	*	weight	for	score,	weight,	_	in	grades)

total_weight	=	sum(weight	for	_,	weight,	_	in	grades)

average_grade	=	total	/	total_weight

This	pattern	of	extending	tuples	longer	and	longer	is	similar	to	deepening	layers
of	dictionaries.	As	soon	as	you	find	yourself	going	longer	than	a	two-tuple,	it’s
time	to	consider	another	approach.

The	namedtuple	type	in	the	collections	built-in	module	does	exactly	what	I
need	in	this	case:	It	lets	me	easily	define	tiny,	immutable	data	classes:

Click	here	to	view	code	image

from	collections	import	namedtuple

Grade	=	namedtuple('Grade',	('score',	'weight'))

These	classes	can	be	constructed	with	positional	or	keyword	arguments.	The
fields	are	accessible	with	named	attributes.	Having	named	attributes	makes	it
easy	to	move	from	a	namedtuple	to	a	class	later	if	the	requirements	change	again
and	I	need	to,	say,	support	mutability	or	behaviors	in	the	simple	data	containers.

Limitations	of	namedtuple
Although	namedtuple	is	useful	in	many	circumstances,	it’s	important	to
understand	when	it	can	do	more	harm	than	good:

You	can’t	specify	default	argument	values	for	namedtuple	classes.	This
makes	them	unwieldy	when	your	data	may	have	many	optional
properties.	If	you	find	yourself	using	more	than	a	handful	of	attributes,
using	the	built-in	dataclasses	module	may	be	a	better	choice.

The	attribute	values	of	namedtuple	instances	are	still	accessible	using
numerical	indexes	and	iteration.	Especially	in	externalized	APIs,	this
can	lead	to	unintentional	usage	that	makes	it	harder	to	move	to	a	real
class	later.	If	you’re	not	in	control	of	all	of	the	usage	of	your	namedtuple
instances,	it’s	better	to	explicitly	define	a	new	class.

Next,	I	can	write	a	class	to	represent	a	single	subject	that	contains	a	set	of
grades:

Click	here	to	view	code	image
class	Subject:

				def	__init__(self):

								self._grades	=	[]

				def	report_grade(self,	score,	weight):

								self._grades.append(Grade(score,	weight))

				def	average_grade(self):

								total,	total_weight	=	0,	0

								for	grade	in	self._grades:

												total	+=	grade.score	*	grade.weight

												total_weight	+=	grade.weight

								return	total	/	total_weight

Then,	I	write	a	class	to	represent	a	set	of	subjects	that	are	being	studied	by	a
single	student:

Click	here	to	view	code	image
class	Student:

				def	__init__(self):

								self._subjects	=	defaultdict(Subject)

				def	get_subject(self,	name):

								return	self._subjects[name]

				def	average_grade(self):

								total,	count	=	0,	0

								for	subject	in	self._subjects.values():

												total	+=	subject.average_grade()

												count	+=	1

								return	total	/	count

Finally,	I’d	write	a	container	for	all	of	the	students,	keyed	dynamically	by	their
names:

Click	here	to	view	code	image
class	Gradebook:

				def	__init__(self):

								self._students	=	defaultdict(Student)

				def	get_student(self,	name):

								return	self._students[name]

The	line	count	of	these	classes	is	almost	double	the	previous	implementation’s
size.	But	this	code	is	much	easier	to	read.	The	example	driving	the	classes	is	also
more	clear	and	extensible:

Click	here	to	view	code	image
book	=	Gradebook()

albert	=	book.get_student('Albert	Einstein')

math	=	albert.get_subject('Math')

math.report_grade(75,	0.05)

math.report_grade(65,	0.15)

math.report_grade(70,	0.80)

gym	=	albert.get_subject('Gym')

gym.report_grade(100,	0.40)

gym.report_grade(85,	0.60)

print(albert.average_grade())

>>>

80.25

It	would	also	be	possible	to	write	backward-compatible	methods	to	help	migrate
usage	of	the	old	API	style	to	the	new	hierarchy	of	objects.

Things	to	Remember

✦	Avoid	making	dictionaries	with	values	that	are	dictionaries,	long	tuples,	or
complex	nestings	of	other	built-in	types.

✦	Use	namedtuple	for	lightweight,	immutable	data	containers	before	you	need
the	flexibility	of	a	full	class.

✦	Move	your	bookkeeping	code	to	using	multiple	classes	when	your	internal
state	dictionaries	get	complicated.

Item	38:	Accept	Functions	Instead	of	Classes	for
Simple	Interfaces

Many	of	Python’s	built-in	APIs	allow	you	to	customize	behavior	by	passing	in	a
function.	These	hooks	are	used	by	APIs	to	call	back	your	code	while	they
execute.	For	example,	the	list	type’s	sort	method	takes	an	optional	key
argument	that’s	used	to	determine	each	index’s	value	for	sorting	(see	Item	14:
“Sort	by	Complex	Criteria	Using	the	key	Parameter”	for	details).	Here,	I	sort	a
list	of	names	based	on	their	lengths	by	providing	the	len	built-in	function	as	the
key	hook:

Click	here	to	view	code	image
names	=	['Socrates',	'Archimedes',	'Plato',	'Aristotle']

names.sort(key=len)

print(names)

>>>

['Plato',	'Socrates',	'Aristotle',	'Archimedes']

In	other	languages,	you	might	expect	hooks	to	be	defined	by	an	abstract	class.	In
Python,	many	hooks	are	just	stateless	functions	with	well-defined	arguments	and
return	values.	Functions	are	ideal	for	hooks	because	they	are	easier	to	describe
and	simpler	to	define	than	classes.	Functions	work	as	hooks	because	Python	has
first-class	functions:	Functions	and	methods	can	be	passed	around	and
referenced	like	any	other	value	in	the	language.

For	example,	say	that	I	want	to	customize	the	behavior	of	the	defaultdict	class
(see	Item	17:	“Prefer	defaultdict	Over	setdefault	to	Handle	Missing	Items	in
Internal	State”	for	background).	This	data	structure	allows	you	to	supply	a
function	that	will	be	called	with	no	arguments	each	time	a	missing	key	is
accessed.	The	function	must	return	the	default	value	that	the	missing	key	should
have	in	the	dictionary.	Here,	I	define	a	hook	that	logs	each	time	a	key	is	missing
and	returns	0	for	the	default	value:
def	log_missing():

				print('Key	added')

				return	0

Given	an	initial	dictionary	and	a	set	of	desired	increments,	I	can	cause	the
log_missing	function	to	run	and	print	twice	(for	'red'	and	'orange'):

Click	here	to	view	code	image
from	collections	import	defaultdict

current	=	{'green':	12,	'blue':	3}

increments	=	[

				('red',	5),

				('blue',	17),

				('orange',	9),

]

result	=	defaultdict(log_missing,	current)

print('Before:',	dict(result))

for	key,	amount	in	increments:

				result[key]	+=	amount

print('After:	',	dict(result))

>>>

Before:	{'green':	12,	'blue':	3}

Key	added

Key	added

After:	{'green':	12,	'blue':	20,	'red':	5,	'orange':	9}

Supplying	functions	like	log_missing	makes	APIs	easy	to	build	and	test	because
it	separates	side	effects	from	deterministic	behavior.	For	example,	say	I	now
want	the	default	value	hook	passed	to	defaultdict	to	count	the	total	number	of
keys	that	were	missing.	One	way	to	achieve	this	is	by	using	a	stateful	closure
(see	Item	21:	“Know	How	Closures	Interact	with	Variable	Scope”	for	details).
Here,	I	define	a	helper	function	that	uses	such	a	closure	as	the	default	value
hook:

Click	here	to	view	code	image

def	increment_with_report(current,	increments):

				added_count	=	0

				def	missing():

								nonlocal	added_count	#	Stateful	closure

								added_count	+=	1

								return	0

				result	=	defaultdict(missing,	current)

				for	key,	amount	in	increments:

								result[key]	+=	amount

				return	result,	added_count

Running	this	function	produces	the	expected	result	(2),	even	though	the
defaultdict	has	no	idea	that	the	missing	hook	maintains	state.	Another	benefit
of	accepting	simple	functions	for	interfaces	is	that	it’s	easy	to	add	functionality
later	by	hiding	state	in	a	closure:

Click	here	to	view	code	image
result,	count	=	increment_with_report(current,	increments)

assert	count	==	2

The	problem	with	defining	a	closure	for	stateful	hooks	is	that	it’s	harder	to	read
than	the	stateless	function	example.	Another	approach	is	to	define	a	small	class
that	encapsulates	the	state	you	want	to	track:
class	CountMissing:

				def	__init__(self):

								self.added	=	0

				def	missing(self):

								self.added	+=	1

								return	0

In	other	languages,	you	might	expect	that	now	defaultdict	would	have	to	be
modified	to	accommodate	the	interface	of	CountMissing.	But	in	Python,	thanks
to	first-class	functions,	you	can	reference	the	CountMissing.missing	method
directly	on	an	object	and	pass	it	to	defaultdict	as	the	default	value	hook.	It’s
trivial	to	have	an	object	instance’s	method	satisfy	a	function	interface:

Click	here	to	view	code	image
counter	=	CountMissing()

result	=	defaultdict(counter.missing,	current)	#	Method	ref

for	key,	amount	in	increments:

				result[key]	+=	amount

assert	counter.added	==	2

Using	a	helper	class	like	this	to	provide	the	behavior	of	a	stateful	closure	is
clearer	than	using	the	increment_with_report	function,	as	above.	However,	in
isolation,	it’s	still	not	immediately	obvious	what	the	purpose	of	the	CountMissing
class	is.	Who	constructs	a	CountMissing	object?	Who	calls	the	missing	method?
Will	the	class	need	other	public	methods	to	be	added	in	the	future?	Until	you	see
its	usage	with	defaultdict,	the	class	is	a	mystery.

To	clarify	this	situation,	Python	allows	classes	to	define	the	__call__	special
method.	__call__	allows	an	object	to	be	called	just	like	a	function.	It	also
causes	the	callable	built-in	function	to	return	True	for	such	an	instance,	just	like
a	normal	function	or	method.	All	objects	that	can	be	executed	in	this	manner	are
referred	to	as	callables:
class	BetterCountMissing:

				def	__init__(self):

								self.added	=	0

				def	__call__(self):

								self.added	+=	1

								return	0

counter	=	BetterCountMissing()

assert	counter()	==	0

assert	callable(counter)

Here,	I	use	a	BetterCountMissing	instance	as	the	default	value	hook	for	a
defaultdict	to	track	the	number	of	missing	keys	that	were	added:

Click	here	to	view	code	image
counter	=	BetterCountMissing()

result	=	defaultdict(counter,	current)	#	Relies	on	__call__

for	key,	amount	in	increments:

				result[key]	+=	amount

assert	counter.added	==	2

This	is	much	clearer	than	the	CountMissing.missing	example.	The	__call__
method	indicates	that	a	class’s	instances	will	be	used	somewhere	a	function
argument	would	also	be	suitable	(like	API	hooks).	It	directs	new	readers	of	the
code	to	the	entry	point	that’s	responsible	for	the	class’s	primary	behavior.	It
provides	a	strong	hint	that	the	goal	of	the	class	is	to	act	as	a	stateful	closure.

Best	of	all,	defaultdict	still	has	no	view	into	what’s	going	on	when	you	use
__call__.	All	that	defaultdict	requires	is	a	function	for	the	default	value	hook.
Python	provides	many	different	ways	to	satisfy	a	simple	function	interface,	and

you	can	choose	the	one	that	works	best	for	what	you	need	to	accomplish.

Things	to	Remember

✦	Instead	of	defining	and	instantiating	classes,	you	can	often	simply	use
functions	for	simple	interfaces	between	components	in	Python.

✦	References	to	functions	and	methods	in	Python	are	first	class,	meaning	they
can	be	used	in	expressions	(like	any	other	type).

✦	The	__call__	special	method	enables	instances	of	a	class	to	be	called	like
plain	Python	functions.

✦	When	you	need	a	function	to	maintain	state,	consider	defining	a	class	that
provides	the	__call__	method	instead	of	defining	a	stateful	closure.

Item	39:	Use	@classmethod	Polymorphism	to	Construct
Objects	Generically

In	Python,	not	only	do	objects	support	polymorphism,	but	classes	do	as	well.
What	does	that	mean,	and	what	is	it	good	for?

Polymorphism	enables	multiple	classes	in	a	hierarchy	to	implement	their	own
unique	versions	of	a	method.	This	means	that	many	classes	can	fulfill	the	same
interface	or	abstract	base	class	while	providing	different	functionality	(see	Item
43:	“Inherit	from	collections.abc	for	Custom	Container	Types”).

For	example,	say	that	I’m	writing	a	MapReduce	implementation,	and	I	want	a
common	class	to	represent	the	input	data.	Here,	I	define	such	a	class	with	a	read
method	that	must	be	defined	by	subclasses:
class	InputData:

				def	read(self):

								raise	NotImplementedError

I	also	have	a	concrete	subclass	of	InputData	that	reads	data	from	a	file	on	disk:
class	PathInputData(InputData):

				def	__init__(self,	path):

								super().__init__()

								self.path	=	path

					def	read(self):

									with	open(self.path)	as	f:

													return	f.read()

I	could	have	any	number	of	InputData	subclasses,	like	PathInputData,	and	each
of	them	could	implement	the	standard	interface	for	read	to	return	the	data	to
process.	Other	InputData	subclasses	could	read	from	the	network,	decompress
data	transparently,	and	so	on.

I’d	want	a	similar	abstract	interface	for	the	MapReduce	worker	that	consumes
the	input	data	in	a	standard	way:

Click	here	to	view	code	image
class	Worker:

				def	__init__(self,	input_data):

								self.input_data	=	input_data

								self.result	=	None

				def	map(self):

								raise	NotImplementedError

				def	reduce(self,	other):

								raise	NotImplementedError

Here,	I	define	a	concrete	subclass	of	Worker	to	implement	the	specific
MapReduce	function	I	want	to	apply—a	simple	newline	counter:

Click	here	to	view	code	image
class	LineCountWorker(Worker):

				def	map(self):

								data	=	self.input_data.read()

								self.result	=	data.count('\n')

				def	reduce(self,	other):

								self.result	+=	other.result

It	may	look	like	this	implementation	is	going	great,	but	I’ve	reached	the	biggest
hurdle	in	all	of	this.	What	connects	all	of	these	pieces?	I	have	a	nice	set	of
classes	with	reasonable	interfaces	and	abstractions,	but	that’s	only	useful	once
the	objects	are	constructed.	What’s	responsible	for	building	the	objects	and
orchestrating	the	MapReduce?

The	simplest	approach	is	to	manually	build	and	connect	the	objects	with	some
helper	functions.	Here,	I	list	the	contents	of	a	directory	and	construct	a
PathInputData	instance	for	each	file	it	contains:

Click	here	to	view	code	image

import	os

def	generate_inputs(data_dir):

				for	name	in	os.listdir(data_dir):

								yield	PathInputData(os.path.join(data_dir,	name))

Next,	I	create	the	LineCountWorker	instances	by	using	the	InputData	instances
returned	by	generate_inputs:

Click	here	to	view	code	image
def	create_workers(input_list):

				workers	=	[]

				for	input_data	in	input_list:

								workers.append(LineCountWorker(input_data))

				return	workers

I	execute	these	Worker	instances	by	fanning	out	the	map	step	to	multiple	threads
(see	Item	53:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”	for
background).	Then,	I	call	reduce	repeatedly	to	combine	the	results	into	one	final
value:

Click	here	to	view	code	image
from	threading	import	Thread

def	execute(workers):

				threads	=	[Thread(target=w.map)	for	w	in	workers]

				for	thread	in	threads:	thread.start()

				for	thread	in	threads:	thread.join()

				first,	*rest	=	workers

				for	worker	in	rest:

								first.reduce(worker)

				return	first.result

Finally,	I	connect	all	the	pieces	together	in	a	function	to	run	each	step:

Click	here	to	view	code	image
def	mapreduce(data_dir):

				inputs	=	generate_inputs(data_dir)

				workers	=	create_workers(inputs)

				return	execute(workers)

Running	this	function	on	a	set	of	test	input	files	works	great:

Click	here	to	view	code	image

import	os

import	random

def	write_test_files(tmpdir):

				os.makedirs(tmpdir)

				for	i	in	range(100):

								with	open(os.path.join(tmpdir,	str(i)),	'w')	as	f:

												f.write('\n'	*	random.randint(0,	100))

tmpdir	=	'test_inputs'

write_test_files(tmpdir)

result	=	mapreduce(tmpdir)

print(f'There	are	{result}	lines')

>>>

There	are	4360	lines

What’s	the	problem?	The	huge	issue	is	that	the	mapreduce	function	is	not	generic
at	all.	If	I	wanted	to	write	another	InputData	or	Worker	subclass,	I	would	also
have	to	rewrite	the	generate_inputs,	create_workers,	and	mapreduce	functions
to	match.

This	problem	boils	down	to	needing	a	generic	way	to	construct	objects.	In	other
languages,	you’d	solve	this	problem	with	constructor	polymorphism,	requiring
that	each	InputData	subclass	provides	a	special	constructor	that	can	be	used
generically	by	the	helper	methods	that	orchestrate	the	MapReduce	(similar	to	the
factory	pattern).	The	trouble	is	that	Python	only	allows	for	the	single	constructor
method	__init__.	It’s	unreasonable	to	require	every	InputData	subclass	to	have
a	compatible	constructor.

The	best	way	to	solve	this	problem	is	with	class	method	polymorphism.	This	is
exactly	like	the	instance	method	polymorphism	I	used	for	InputData.read,
except	that	it’s	for	whole	classes	instead	of	their	constructed	objects.

Let	me	apply	this	idea	to	the	MapReduce	classes.	Here,	I	extend	the	InputData
class	with	a	generic	@classmethod	that’s	responsible	for	creating	new	InputData
instances	using	a	common	interface:
class	GenericInputData:

				def	read(self):

								raise	NotImplementedError

				@classmethod

				def	generate_inputs(cls,	config):

								raise	NotImplementedError

I	have	generate_inputs	take	a	dictionary	with	a	set	of	configuration	parameters
that	the	GenericInputData	concrete	subclass	needs	to	interpret.	Here,	I	use	the
config	to	find	the	directory	to	list	for	input	files:

Click	here	to	view	code	image
class	PathInputData(GenericInputData):

				...

			@classmethod

			def	generate_inputs(cls,	config):

								data_dir	=	config['data_dir']

								for	name	in	os.listdir(data_dir):

													yield	cls(os.path.join(data_dir,	name))

Similarly,	I	can	make	the	create_workers	helper	part	of	the	GenericWorker	class.
Here,	I	use	the	input_class	parameter,	which	must	be	a	subclass	of
GenericInputData,	to	generate	the	necessary	inputs.	I	construct	instances	of	the
GenericWorker	concrete	subclass	by	using	cls()	as	a	generic	constructor:

Click	here	to	view	code	image
class	GenericWorker:

				def	__init__(self,	input_data):

								self.input_data	=	input_data

								self.result	=	None

			def	map(self):

							raise	NotImplementedError

			def	reduce(self,	other):

							raise	NotImplementedError

			@classmethod

			def	create_workers(cls,	input_class,	config):

							workers	=	[]

							for	input_data	in	input_class.generate_inputs(config):

											workers.append(cls(input_data))

							return	workers

Note	that	the	call	to	input_class.generate_inputs	above	is	the	class
polymorphism	that	I’m	trying	to	show.	You	can	also	see	how	create_workers
calling	cls()	provides	an	alternative	way	to	construct	GenericWorker	objects
besides	using	the	__init__	method	directly.

The	effect	on	my	concrete	GenericWorker	subclass	is	nothing	more	than
changing	its	parent	class:

Click	here	to	view	code	image
class	LineCountWorker(GenericWorker):

				...

Finally,	I	can	rewrite	the	mapreduce	function	to	be	completely	generic	by	calling
create_workers:

Click	here	to	view	code	image
def	mapreduce(worker_class,	input_class,	config):

					workers	=	worker_class.create_workers(input_class,	config)

					return	execute(workers)

Running	the	new	worker	on	a	set	of	test	files	produces	the	same	result	as	the	old
implementation.	The	difference	is	that	the	mapreduce	function	requires	more
parameters	so	that	it	can	operate	generically:

Click	here	to	view	code	image
config	=	{'data_dir':	tmpdir}

result	=	mapreduce(LineCountWorker,	PathInputData,	config)

print(f'There	are	{result}	lines')

>>>

There	are	4360	lines

Now,	I	can	write	other	GenericInputData	and	GenericWorker	subclasses	as	I
wish,	without	having	to	rewrite	any	of	the	glue	code.

Things	to	Remember

✦	Python	only	supports	a	single	constructor	per	class:	the	__init__	method.
✦	Use	@classmethod	to	define	alternative	constructors	for	your	classes.
✦	Use	class	method	polymorphism	to	provide	generic	ways	to	build	and
connect	many	concrete	subclasses.

Item	40:	Initialize	Parent	Classes	with	super
The	old,	simple	way	to	initialize	a	parent	class	from	a	child	class	is	to	directly
call	the	parent	class’s	__init__	method	with	the	child	instance:
class	MyBaseClass:

				def	__init__(self,	value):

								self.value	=	value

class	MyChildClass(MyBaseClass):

				def	__init__(self):

								MyBaseClass.__init__(self,	5)

This	approach	works	fine	for	basic	class	hierarchies	but	breaks	in	many	cases.

If	a	class	is	affected	by	multiple	inheritance	(something	to	avoid	in	general;	see
Item	41:	“Consider	Composing	Functionality	with	Mix-in	Classes”),	calling	the
superclasses’	__init__	methods	directly	can	lead	to	unpredictable	behavior.

One	problem	is	that	the	__init__	call	order	isn’t	specified	across	all	subclasses.
For	example,	here	I	define	two	parent	classes	that	operate	on	the	instance’s
value	field:
class	TimesTwo:

				def	__init__(self):

								self.value	*=	2

class	PlusFive:

				def	__init__(self):

								self.value	+=	5

This	class	defines	its	parent	classes	in	one	ordering:

Click	here	to	view	code	image
class	OneWay(MyBaseClass,	TimesTwo,	PlusFive):

				def	__init__(self,	value):

								MyBaseClass.__init__(self,	value)

								TimesTwo.__init__(self)

								PlusFive.__init__(self)

And	constructing	it	produces	a	result	that	matches	the	parent	class	ordering:

Click	here	to	view	code	image
foo	=	OneWay(5)

print('First	ordering	value	is	(5	*	2)	+	5	=',	foo.value)

>>>

First	ordering	value	is	(5	*	2)	+	5	=	15

Here’s	another	class	that	defines	the	same	parent	classes	but	in	a	different
ordering	(PlusFive	followed	by	TimesTwo	instead	of	the	other	way	around):

Click	here	to	view	code	image
class	AnotherWay(MyBaseClass,	PlusFive,	TimesTwo):

				def	__init__(self,	value):

								MyBaseClass.__init__(self,	value)

								TimesTwo.__init__(self)

								PlusFive.__init__(self)

However,	I	left	the	calls	to	the	parent	class	constructors—	PlusFive.__init__
and	TimesTwo.__init__—in	the	same	order	as	before,	which	means	this	class’s
behavior	doesn’t	match	the	order	of	the	parent	classes	in	its	definition.	The
conflict	here	between	the	inheritance	base	classes	and	the	__init__	calls	is	hard
to	spot,	which	makes	this	especially	difficult	for	new	readers	of	the	code	to
understand:

Click	here	to	view	code	image
bar	=	AnotherWay(5)

print('Second	ordering	value	is',	bar.value)

>>>

Second	ordering	value	is	15

Another	problem	occurs	with	diamond	inheritance.	Diamond	inheritance
happens	when	a	subclass	inherits	from	two	separate	classes	that	have	the	same
superclass	somewhere	in	the	hierarchy.	Diamond	inheritance	causes	the	common
superclass’s	__init__	method	to	run	multiple	times,	causing	unexpected
behavior.	For	example,	here	I	define	two	child	classes	that	inherit	from
MyBaseClass:

Click	here	to	view	code	image
class	TimesSeven(MyBaseClass):

				def	__init__(self,	value):

								MyBaseClass.__init__(self,	value)

								self.value	*=	7

class	PlusNine(MyBaseClass):

				def	__init__(self,	value):

								MyBaseClass.__init__(self,	value)

								self.value	+=	9

Then,	I	define	a	child	class	that	inherits	from	both	of	these	classes,	making
MyBaseClass	the	top	of	the	diamond:

Click	here	to	view	code	image
class	ThisWay(TimesSeven,	PlusNine):

				def	__init__(self,	value):

								TimesSeven.__init__(self,	value)

								PlusNine.__init__(self,	value)

foo	=	ThisWay(5)

print('Should	be	(5	*	7)	+	9	=	44	but	is',	foo.value)

>>>

Should	be	(5	*	7)	+	9	=	44	but	is	14

The	call	to	the	second	parent	class’s	constructor,	PlusNine.__init__,	causes
self.value	to	be	reset	back	to	5	when	MyBaseClass.__init__	gets	called	a
second	time.	That	results	in	the	calculation	of	self.value	to	be	5	+	9	=	14,
completely	ignoring	the	effect	of	the	TimesSeven.__init__	constructor.	This
behavior	is	surprising	and	can	be	very	difficult	to	debug	in	more	complex	cases.

To	solve	these	problems,	Python	has	the	super	built-in	function	and	standard
method	resolution	order	(MRO).	super	ensures	that	common	superclasses	in
diamond	hierarchies	are	run	only	once	(for	another	example,	see	Item	48:
“Validate	Subclasses	with	__init_subclass__”).	The	MRO	defines	the	ordering
in	which	superclasses	are	initialized,	following	an	algorithm	called	C3
linearization.

Here,	I	create	a	diamond-shaped	class	hierarchy	again,	but	this	time	I	use	super
to	initialize	the	parent	class:
class	TimesSevenCorrect(MyBaseClass):

				def	__init__(self,	value):

								super().__init__(value)

								self.value	*=	7

class	PlusNineCorrect(MyBaseClass):

				def	__init__(self,	value):

								super().__init__(value)

								self.value	+=	9

Now,	the	top	part	of	the	diamond,	MyBaseClass.__init__,	is	run	only	a	single
time.	The	other	parent	classes	are	run	in	the	order	specified	in	the	class
statement:

Click	here	to	view	code	image
class	GoodWay(TimesSevenCorrect,	PlusNineCorrect):

				def	__init__(self,	value):

								super().__init__(value)

foo	=	GoodWay(5)

print('Should	be	7	*	(5	+	9)	=	98	and	is',	foo.value)

>>>

Should	be	7	*	(5	+	9)	=	98	and	is	98

This	order	may	seem	backward	at	first.	Shouldn’t	TimesSevenCorrect.__init__
have	run	first?	Shouldn’t	the	result	be	(5	*	7)	+	9	=	44?	The	answer	is	no.	This
ordering	matches	what	the	MRO	defines	for	this	class.	The	MRO	ordering	is
available	on	a	class	method	called	mro:

Click	here	to	view	code	image
mro_str	=	'\n'.join(repr(cls)	for	cls	in	GoodWay.mro())

print(mro_str)

>>>

<class	'__main__.GoodWay'>

<class	'__main__.TimesSevenCorrect'>

<class	'__main__.PlusNineCorrect'>

<class	'__main__.MyBaseClass'>

<class	'object'>

When	I	call	GoodWay(5),	it	in	turn	calls	TimesSevenCorrect.__init__,	which	calls
PlusNineCorrect.__init__,	which	calls	MyBaseClass.__	init__.	Once	this
reaches	the	top	of	the	diamond,	all	of	the	initialization	methods	actually	do	their
work	in	the	opposite	order	from	how	their	__init__	functions	were	called.
MyBaseClass.__init__	assigns	value	to	5.	PlusNineCorrect.__init__	adds	9	to
make	value	equal	14.	TimesSevenCorrect.__init__	multiplies	it	by	7	to	make
value	equal	98.

Besides	making	multiple	inheritance	robust,	the	call	to	super().	__init__	is	also
much	more	maintainable	than	calling	MyBaseClass.__init__	directly	from	within
the	subclasses.	I	could	later	rename	MyBaseClass	to	something	else	or	have
TimesSevenCorrect	and	PlusNineCorrect	inherit	from	another	superclass	without
having	to	update	their	__init__	methods	to	match.

The	super	function	can	also	be	called	with	two	parameters:	first	the	type	of	the
class	whose	MRO	parent	view	you’re	trying	to	access,	and	then	the	instance	on
which	to	access	that	view.	Using	these	optional	parameters	within	the
constructor	looks	like	this:

Click	here	to	view	code	image
class	ExplicitTrisect(MyBaseClass):

				def	__init__(self,	value):

								super(ExplicitTrisect,	self).__init__(value)

								self.value	/=	3

However,	these	parameters	are	not	required	for	object	instance	initialization.
Python’s	compiler	automatically	provides	the	correct	parameters	(__class__	and
self)	for	you	when	super	is	called	with	zero	arguments	within	a	class	definition.
This	means	all	three	of	these	usages	are	equivalent:

Click	here	to	view	code	image
class	AutomaticTrisect(MyBaseClass):

				def	__init__(self,	value):

								super(__class__,	self).__init__(value)

								self.value	/=	3

class	ImplicitTrisect(MyBaseClass):

				def	__init__(self,	value):

								super().__init__(value)

								self.value	/=	3

assert	ExplicitTrisect(9).value	==	3

assert	AutomaticTrisect(9).value	==	3

assert	ImplicitTrisect(9).value	==	3

The	only	time	you	should	provide	parameters	to	super	is	in	situations	where	you
need	to	access	the	specific	functionality	of	a	superclass’s	implementation	from	a
child	class	(e.g.,	to	wrap	or	reuse	functionality).

Things	to	Remember

✦	Python’s	standard	method	resolution	order	(MRO)	solves	the	problems	of
superclass	initialization	order	and	diamond	inheritance.

✦	Use	the	super	built-in	function	with	zero	arguments	to	initialize	parent
classes.

Item	41:	Consider	Composing	Functionality	with	Mix-
in	Classes

Python	is	an	object-oriented	language	with	built-in	facilities	for	making	multiple
inheritance	tractable	(see	Item	40:	“Initialize	Parent	Classes	with	super”).
However,	it’s	better	to	avoid	multiple	inheritance	altogether.

If	you	find	yourself	desiring	the	convenience	and	encapsulation	that	come	with
multiple	inheritance,	but	want	to	avoid	the	potential	headaches,	consider	writing
a	mix-in	instead.	A	mix-in	is	a	class	that	defines	only	a	small	set	of	additional

methods	for	its	child	classes	to	provide.	Mix-in	classes	don’t	define	their	own
instance	attributes	nor	require	their	__init__	constructor	to	be	called.

Writing	mix-ins	is	easy	because	Python	makes	it	trivial	to	inspect	the	current
state	of	any	object,	regardless	of	its	type.	Dynamic	inspection	means	you	can
write	generic	functionality	just	once,	in	a	mix-in,	and	it	can	then	be	applied	to
many	other	classes.	Mix-ins	can	be	composed	and	layered	to	minimize	repetitive
code	and	maximize	reuse.

For	example,	say	I	want	the	ability	to	convert	a	Python	object	from	its	in-
memory	representation	to	a	dictionary	that’s	ready	for	serialization.	Why	not
write	this	functionality	generically	so	I	can	use	it	with	all	my	classes?

Here,	I	define	an	example	mix-in	that	accomplishes	this	with	a	new	public
method	that’s	added	to	any	class	that	inherits	from	it:

Click	here	to	view	code	image
class	ToDictMixin:

				def	to_dict(self):

								return	self._traverse_dict(self.__dict__)

The	implementation	details	are	straightforward	and	rely	on	dynamic	attribute
access	using	hasattr,	dynamic	type	inspection	with	isinstance,	and	accessing
the	instance	dictionary	__dict__:

Click	here	to	view	code	image
def	_traverse_dict(self,	instance_dict):

				output	=	{}

				for	key,	value	in	instance_dict.items():

								output[key]	=	self._traverse(key,	value)

				return	output

def	_traverse(self,	key,	value):

				if	isinstance(value,	ToDictMixin):

								return	value.to_dict()

				elif	isinstance(value,	dict):

								return	self._traverse_dict(value)

				elif	isinstance(value,	list):

								return	[self._traverse(key,	i)	for	i	in	value]

				elif	hasattr(value,	'__dict__'):

								return	self._traverse_dict(value.__dict__)

				else:

								return	value

Here,	I	define	an	example	class	that	uses	the	mix-in	to	make	a	dictionary
representation	of	a	binary	tree:

representation	of	a	binary	tree:

Click	here	to	view	code	image
class	BinaryTree(ToDictMixin):

				def	__init__(self,	value,	left=None,	right=None):

								self.value	=	value

								self.left	=	left

								self.right	=	right

Translating	a	large	number	of	related	Python	objects	into	a	dictionary	becomes
easy:

Click	here	to	view	code	image
tree	=	BinaryTree(10,

				left=BinaryTree(7,	right=BinaryTree(9)),

				right=BinaryTree(13,	left=BinaryTree(11)))

print(tree.to_dict())

>>>

{'value':	10,

	'left':	{'value':	7,

										'left':	None,

										'right':	{'value':	9,	'left':	None,	'right':	None}},

	'right':	{'value':	13,

											'left':	{'value':	11,	'left':	None,	'right':	None},

											'right':	None}}

The	best	part	about	mix-ins	is	that	you	can	make	their	generic	functionality
pluggable	so	behaviors	can	be	overridden	when	required.	For	example,	here	I
define	a	subclass	of	BinaryTree	that	holds	a	reference	to	its	parent.	This	circular
reference	would	cause	the	default	implementation	of	ToDictMixin.to_dict	to
loop	forever:

Click	here	to	view	code	image
class	BinaryTreeWithParent(BinaryTree):

				def	__init__(self,	value,	left=None,

																	right=None,	parent=None):

								super().__init__(value,	left=left,	right=right)

								self.parent	=	parent

The	solution	is	to	override	the	BinaryTreeWithParent._traverse	method	to	only
process	values	that	matter,	preventing	cycles	encountered	by	the	mix-in.	Here,
the	_traverse	override	inserts	the	parent’s	numerical	value	and	otherwise	defers
to	the	mix-in’s	default	implementation	by	using	the	super	built-in	function:

Click	here	to	view	code	image
def	_traverse(self,	key,	value):

				if	(isinstance(value,	BinaryTreeWithParent)	and

												key	==	'parent'):

								return	value.value	#	Prevent	cycles

				else:

								return	super()._traverse(key,	value)

Calling	BinaryTreeWithParent.to_dict	works	without	issue	because	the	circular
referencing	properties	aren’t	followed:

Click	here	to	view	code	image
root	=	BinaryTreeWithParent(10)

root.left	=	BinaryTreeWithParent(7,	parent=root)

root.left.right	=	BinaryTreeWithParent(9,	parent=root.left)

print(root.to_dict())

>>>

{'value':	10,

	'left':	{'value':	7,

										'left':	None,

										'right':	{'value':	9,

																				'left':	None,

																				'right':	None,

																				'parent':	7},

										'parent':	10},

	'right':	None,

	'parent':	None}

By	defining	BinaryTreeWithParent._traverse,	I’ve	also	enabled	any	class	that
has	an	attribute	of	type	BinaryTreeWithParent	to	automatically	work	with	the
ToDictMixin:

Click	here	to	view	code	image
class	NamedSubTree(ToDictMixin):

				def	__init__(self,	name,	tree_with_parent):

								self.name	=	name

								self.tree_with_parent	=	tree_with_parent

my_tree	=	NamedSubTree('foobar',	root.left.right)

print(my_tree.to_dict())	#	No	infinite	loop

>>>

{'name':	'foobar',

	'tree_with_parent':	{'value':	9,

																						'left':	None,

																						'right':	None,

																						'parent':	7}}

Mix-ins	can	also	be	composed	together.	For	example,	say	I	want	a	mix-in	that
provides	generic	JSON	serialization	for	any	class.	I	can	do	this	by	assuming	that
a	class	provides	a	to_dict	method	(which	may	or	may	not	be	provided	by	the
ToDictMixin	class):

Click	here	to	view	code	image
import	json

class	JsonMixin:

				@classmethod

				def	from_json(cls,	data):

								kwargs	=	json.loads(data)

								return	cls(**kwargs)

				def	to_json(self):

								return	json.dumps(self.to_dict())

Note	how	the	JsonMixin	class	defines	both	instance	methods	and	class	methods.
Mix-ins	let	you	add	either	kind	of	behavior	to	subclasses.	In	this	example,	the
only	requirements	of	a	JsonMixin	subclass	are	providing	a	to_dict	method	and
taking	keyword	arguments	for	the	__init__	method	(see	Item	23:	“Provide
Optional	Behavior	with	Keyword	Arguments”	for	background).

This	mix-in	makes	it	simple	to	create	hierarchies	of	utility	classes	that	can	be
serialized	to	and	from	JSON	with	little	boilerplate.	For	example,	here	I	have	a
hierarchy	of	data	classes	representing	parts	of	a	datacenter	topology:

Click	here	to	view	code	image
class	DatacenterRack(ToDictMixin,	JsonMixin):

				def	__init__(self,	switch=None,	machines=None):

								self.switch	=	Switch(**switch)

								self.machines	=	[

												Machine(**kwargs)	for	kwargs	in	machines]

class	Switch(ToDictMixin,	JsonMixin):

				def	__init__(self,	ports=None,	speed=None):

								self.ports	=	ports

								self.speed	=	speed

class	Machine(ToDictMixin,	JsonMixin):

				def	__init__(self,	cores=None,	ram=None,	disk=None):

								self.cores	=	cores

								self.ram	=	ram

								self.disk	=	disk

Serializing	these	classes	to	and	from	JSON	is	simple.	Here,	I	verify	that	the	data
is	able	to	be	sent	round-trip	through	serializing	and	deserializing:

Click	here	to	view	code	image
serialized	=	"""{

				"switch":	{"ports":	5,	"speed":	1e9},

				"machines":	[

								{"cores":	8,	"ram":	32e9,	"disk":	5e12},

								{"cores":	4,	"ram":	16e9,	"disk":	1e12},

								{"cores":	2,	"ram":	4e9,	"disk":	500e9}

]

}"""

deserialized	=	DatacenterRack.from_json(serialized)

roundtrip	=	deserialized.to_json()

assert	json.loads(serialized)	==	json.loads(roundtrip)

When	you	use	mix-ins	like	this,	it’s	fine	if	the	class	you	apply	JsonMixin	to
already	inherits	from	JsonMixin	higher	up	in	the	class	hierarchy.	The	resulting
class	will	behave	the	same	way,	thanks	to	the	behavior	of	super.

Things	to	Remember

✦	Avoid	using	multiple	inheritance	with	instance	attributes	and	__init__	if
mix-in	classes	can	achieve	the	same	outcome.

✦	Use	pluggable	behaviors	at	the	instance	level	to	provide	per-class
customization	when	mix-in	classes	may	require	it.

✦	Mix-ins	can	include	instance	methods	or	class	methods,	depending	on	your
needs.

✦	Compose	mix-ins	to	create	complex	functionality	from	simple	behaviors.

Item	42:	Prefer	Public	Attributes	Over	Private	Ones
In	Python,	there	are	only	two	types	of	visibility	for	a	class’s	attributes:	public
and	private:
class	MyObject:

				def	__init__(self):

								self.public_field	=	5

								self.__private_field	=	10

				def	get_private_field(self):

								return	self.__private_field

Public	attributes	can	be	accessed	by	anyone	using	the	dot	operator	on	the	object:
foo	=	MyObject()

assert	foo.public_field	==	5

Private	fields	are	specified	by	prefixing	an	attribute’s	name	with	a	double
underscore.	They	can	be	accessed	directly	by	methods	of	the	containing	class:

Click	here	to	view	code	image
assert	foo.get_private_field()	==	10

However,	directly	accessing	private	fields	from	outside	the	class	raises	an
exception:

Click	here	to	view	code	image
foo.__private_field

>>>

Traceback	...

AttributeError:	'MyObject'	object	has	no	attribute

➥'__private_field'

Class	methods	also	have	access	to	private	attributes	because	they	are	declared
within	the	surrounding	class	block:

Click	here	to	view	code	image
class	MyOtherObject:

				def	__init__(self):

								self.__private_field	=	71

				@classmethod

				def	get_private_field_of_instance(cls,	instance):

								return	instance.__private_field

bar	=	MyOtherObject()

assert	MyOtherObject.get_private_field_of_instance(bar)	==	71

As	you’d	expect	with	private	fields,	a	subclass	can’t	access	its	parent	class’s
private	fields:

Click	here	to	view	code	image

class	MyParentObject:

				def	__init__(self):

								self.__private_field	=	71

class	MyChildObject(MyParentObject):

				def	get_private_field(self):

								return	self.__private_field

baz	=	MyChildObject()

baz.get_private_field()

>>>

Traceback	...

AttributeError:	'MyChildObject'	object	has	no	attribute

➥'_MyChildObject__private_field'

The	private	attribute	behavior	is	implemented	with	a	simple	transformation	of
the	attribute	name.	When	the	Python	compiler	sees	private	attribute	access	in
methods	like	MyChildObject.get_private_field,	it	translates	the
__private_field	attribute	access	to	use	the	name
_MyChildObject__private_field	instead.	In	the	example	above,	__private_field
is	only	defined	in	MyParentObject.__init__,	which	means	the	private	attribute’s
real	name	is	_MyParentObject__private_field.	Accessing	the	parent’s	private
attribute	from	the	child	class	fails	simply	because	the	transformed	attribute	name
doesn’t	exist	(_MyChildObject__private_field	instead	of
_MyParentObject__private_field).

Knowing	this	scheme,	you	can	easily	access	the	private	attributes	of	any	class—
from	a	subclass	or	externally—without	asking	for	permission:

Click	here	to	view	code	image
assert	baz._MyParentObject__private_field	==	71

If	you	look	in	the	object’s	attribute	dictionary,	you	can	see	that	private	attributes
are	actually	stored	with	the	names	as	they	appear	after	the	transformation:

Click	here	to	view	code	image
print(baz.__dict__)

>>>

{'_MyParentObject__private_field':	71}

Why	doesn’t	the	syntax	for	private	attributes	actually	enforce	strict	visibility?
The	simplest	answer	is	one	often-quoted	motto	of	Python:	“We	are	all

consenting	adults	here.”	What	this	means	is	that	we	don’t	need	the	language	to
prevent	us	from	doing	what	we	want	to	do.	It’s	our	individual	choice	to	extend
functionality	as	we	wish	and	to	take	responsibility	for	the	consequences	of	such
a	risk.	Python	programmers	believe	that	the	benefits	of	being	open—permitting
unplanned	extension	of	classes	by	default—outweigh	the	downsides.

Beyond	that,	having	the	ability	to	hook	language	features	like	attribute	access
(see	Item	47:	“Use	__getattr__,	__getattribute__,	and	__setattr__	for	Lazy
Attributes”)	enables	you	to	mess	around	with	the	internals	of	objects	whenever
you	wish.	If	you	can	do	that,	what	is	the	value	of	Python	trying	to	prevent
private	attribute	access	otherwise?

To	minimize	damage	from	accessing	internals	unknowingly,	Python
programmers	follow	a	naming	convention	defined	in	the	style	guide	(see	Item	2:
“Follow	the	PEP	8	Style	Guide”).	Fields	prefixed	by	a	single	underscore	(like
_protected_field)	are	protected	by	convention,	meaning	external	users	of	the
class	should	proceed	with	caution.

However,	many	programmers	who	are	new	to	Python	use	private	fields	to
indicate	an	internal	API	that	shouldn’t	be	accessed	by	subclasses	or	externally:
class	MyStringClass:

				def	__init__(self,	value):

								self.__value	=	value

				def	get_value(self):

								return	str(self.__value)

foo	=	MyStringClass(5)

assert	foo.get_value()	==	'5'

This	is	the	wrong	approach.	Inevitably	someone—maybe	even	you—will	want
to	subclass	your	class	to	add	new	behavior	or	to	work	around	deficiencies	in
existing	methods	(e.g.,	the	way	that	MyStringClass.get_value	always	returns	a
string).	By	choosing	private	attributes,	you’re	only	making	subclass	overrides
and	extensions	cumbersome	and	brittle.	Your	potential	subclassers	will	still
access	the	private	fields	when	they	absolutely	need	to	do	so:

Click	here	to	view	code	image
class	MyIntegerSubclass(MyStringClass):

				def	get_value(self):

								return	int(self._MyStringClass__value)

foo	=	MyIntegerSubclass('5')

assert	foo.get_value()	==	5

But	if	the	class	hierarchy	changes	beneath	you,	these	classes	will	break	because
the	private	attribute	references	are	no	longer	valid.	Here,	the	MyIntegerSubclass
class’s	immediate	parent,	MyStringClass,	has	had	another	parent	class	added,
called	MyBaseClass:

Click	here	to	view	code	image
class	MyBaseClass:

				def	__init__(self,	value):

								self.__value	=	value

				def	get_value(self):

								return	self.__value

class	MyStringClass(MyBaseClass):

				def	get_value(self):

								return	str(super().get_value())								#	Updated

class	MyIntegerSubclass(MyStringClass):

				def	get_value(self):

								return	int(self._MyStringClass__value)	#	Not	updated

The	__value	attribute	is	now	assigned	in	the	MyBaseClass	parent	class,	not	the
MyStringClass	parent.	This	causes	the	private	variable	reference
self._MyStringClass__value	to	break	in	MyIntegerSubclass:

Click	here	to	view	code	image
foo	=	MyIntegerSubclass(5)

foo.get_value()

>>>

Traceback	...

AttributeError:	'MyIntegerSubclass'	object	has	no	attribute

➥'_MyStringClass__value'

In	general,	it’s	better	to	err	on	the	side	of	allowing	subclasses	to	do	more	by
using	protected	attributes.	Document	each	protected	field	and	explain	which
fields	are	internal	APIs	available	to	subclasses	and	which	should	be	left	alone
entirely.	This	is	as	much	advice	to	other	programmers	as	it	is	guidance	for	your
future	self	on	how	to	extend	your	own	code	safely:

Click	here	to	view	code	image
class	MyStringClass:

				def	__init__(self,	value):

								#	This	stores	the	user-supplied	value	for	the	object.

								#	It	should	be	coercible	to	a	string.	Once	assigned	in

								#	the	object	it	should	be	treated	as	immutable.

								self._value	=	value

	...

The	only	time	to	seriously	consider	using	private	attributes	is	when	you’re
worried	about	naming	conflicts	with	subclasses.	This	problem	occurs	when	a
child	class	unwittingly	defines	an	attribute	that	was	already	defined	by	its	parent
class:

Click	here	to	view	code	image
class	ApiClass:

				def	__init__(self):

								self._value	=	5

				def	get(self):

								return	self._value

class	Child(ApiClass):

				def	__init__(self):

								super().__init__()

								self._value	=	'hello'	#	Conflicts

a	=	Child()

print(f'{a.get()}	and	{a._value}	should	be	different')

>>>

hello	and	hello	should	be	different

This	is	primarily	a	concern	with	classes	that	are	part	of	a	public	API;	the
subclasses	are	out	of	your	control,	so	you	can’t	refactor	to	fix	the	problem.	Such
a	conflict	is	especially	possible	with	attribute	names	that	are	very	common	(like
value).	To	reduce	the	risk	of	this	issue	occurring,	you	can	use	a	private	attribute
in	the	parent	class	to	ensure	that	there	are	no	attribute	names	that	overlap	with
child	classes:

Click	here	to	view	code	image
class	ApiClass:

				def	__init__(self):

								self.__value	=	5						#	Double	underscore

				def	get(self):

								return	self.__value			#	Double	underscore

class	Child(ApiClass):

				def	__init__(self):

								super().__init__()

								self._value	=	'hello'	#	OK!

a	=	Child()

print(f'{a.get()}	and	{a._value}	are	different')

>>>

5	and	hello	are	different

Things	to	Remember

✦	Private	attributes	aren’t	rigorously	enforced	by	the	Python	compiler.
✦	Plan	from	the	beginning	to	allow	subclasses	to	do	more	with	your	internal
APIs	and	attributes	instead	of	choosing	to	lock	them	out.

✦	Use	documentation	of	protected	fields	to	guide	subclasses	instead	of	trying
to	force	access	control	with	private	attributes.

✦	Only	consider	using	private	attributes	to	avoid	naming	conflicts	with
subclasses	that	are	out	of	your	control.

Item	43:	Inherit	from	collections.abc	for	Custom
Container	Types

Much	of	programming	in	Python	is	defining	classes	that	contain	data	and
describing	how	such	objects	relate	to	each	other.	Every	Python	class	is	a
container	of	some	kind,	encapsulating	attributes	and	functionality	together.
Python	also	provides	built-in	container	types	for	managing	data:	lists,	tuples,
sets,	and	dictionaries.

When	you’re	designing	classes	for	simple	use	cases	like	sequences,	it’s	natural
to	want	to	subclass	Python’s	built-in	list	type	directly.	For	example,	say	I	want
to	create	my	own	custom	list	type	that	has	additional	methods	for	counting	the
frequency	of	its	members:

Click	here	to	view	code	image
class	FrequencyList(list):

				def	__init__(self,	members):

								super().__init__(members)

				def	frequency(self):

								counts	=	{}

								for	item	in	self:

												counts[item]	=	counts.get(item,	0)	+	1

							return	counts

By	subclassing	list,	I	get	all	of	list’s	standard	functionality	and	preserve	the
semantics	familiar	to	all	Python	programmers.	I	can	define	additional	methods	to
provide	any	custom	behaviors	that	I	need:

Click	here	to	view	code	image
foo	=	FrequencyList(['a',	'b',	'a',	'c',	'b',	'a',	'd'])

print('Length	is',	len(foo))

foo.pop()

print('After	pop:',	repr(foo))

print('Frequency:',	foo.frequency())

>>>

Length	is	7

After	pop:	['a',	'b',	'a',	'c',	'b',	'a']

Frequency:	{'a':	3,	'b':	2,	'c':	1}

Now,	imagine	that	I	want	to	provide	an	object	that	feels	like	a	list	and	allows
indexing	but	isn’t	a	list	subclass.	For	example,	say	that	I	want	to	provide
sequence	semantics	(like	list	or	tuple)	for	a	binary	tree	class:

Click	here	to	view	code	image
class	BinaryNode:

					def	__init__(self,	value,	left=None,	right=None):

									self.value	=	value

									self.left	=	left

									self.right	=	right

How	do	you	make	this	class	act	like	a	sequence	type?	Python	implements	its
container	behaviors	with	instance	methods	that	have	special	names.	When	you
access	a	sequence	item	by	index:
bar	=	[1,	2,	3]

bar[0]

it	will	be	interpreted	as:
bar.__getitem__(0)

To	make	the	BinaryNode	class	act	like	a	sequence,	you	can	provide	a	custom
implementation	of	__getitem__	(often	pronounced	“dunder	getitem”	as	an

abbreviation	for	“double	underscore	getitem”)	that	traverses	the	object	tree	depth
first:

Click	here	to	view	code	image
class	IndexableNode(BinaryNode):

				def	_traverse(self):

								if	self.left	is	not	None:

												yield	from	self.left._traverse()

								yield	self

								if	self.right	is	not	None:

												yield	from	self.right._traverse()

				def	__getitem__(self,	index):

								for	i,	item	in	enumerate(self._traverse()):

												if	i	==	index:

																return	item.value

								raise	IndexError(f'Index	{index}	is	out	of	range')

You	can	construct	your	binary	tree	as	usual:

Click	here	to	view	code	image
tree	=	IndexableNode(

				10,

				left=IndexableNode(

								5,

								left=IndexableNode(2),

								right=IndexableNode(

												6,

												right=IndexableNode(7))),

				right=IndexableNode(

								15,

								left=IndexableNode(11)))

But	you	can	also	access	it	like	a	list	in	addition	to	being	able	to	traverse	the	tree
with	the	left	and	right	attributes:

Click	here	to	view	code	image
print('LRR	is',	tree.left.right.right.value)

print('Index	0	is',	tree[0])

print('Index	1	is',	tree[1])

print('11	in	the	tree?',	11	in	tree)

print('17	in	the	tree?',	17	in	tree)

print('Tree	is',	list(tree))

>>>

LRR	is	7

Index	0	is	2

Index	1	is	5

11	in	the	tree?	True

17	in	the	tree?	False

Tree	is	[2,	5,	6,	7,	10,	11,	15]

The	problem	is	that	implementing	__getitem__	isn’t	enough	to	provide	all	of	the
sequence	semantics	you’d	expect	from	a	list	instance:

Click	here	to	view	code	image
len(tree)

>>>

Traceback	...

TypeError:	object	of	type	'IndexableNode'	has	no	len()

The	len	built-in	function	requires	another	special	method,	named	__len__,	that
must	have	an	implementation	for	a	custom	sequence	type:

Click	here	to	view	code	image
class	SequenceNode(IndexableNode):

				def	__len__(self):

								for	count,	_	in	enumerate(self._traverse(),	1):

												pass

								return	count

tree	=	SequenceNode(

				10,

				left=SequenceNode(

								5,

								left=SequenceNode(2),

								right=SequenceNode(

												6,

												right=SequenceNode(7))),

				right=SequenceNode(

								15,

								left=SequenceNode(11))

)

print('Tree	length	is',	len(tree))

>>>

Tree	length	is	7

Unfortunately,	this	still	isn’t	enough	for	the	class	to	fully	be	a	valid	sequence.
Also	missing	are	the	count	and	index	methods	that	a	Python	programmer	would
expect	to	see	on	a	sequence	like	list	or	tuple.	It	turns	out	that	defining	your
own	container	types	is	much	harder	than	it	seems.

To	avoid	this	difficulty	throughout	the	Python	universe,	the	built-in
collections.abc	module	defines	a	set	of	abstract	base	classes	that	provide	all	of
the	typical	methods	for	each	container	type.	When	you	subclass	from	these
abstract	base	classes	and	forget	to	implement	required	methods,	the	module	tells
you	something	is	wrong:

Click	here	to	view	code	image
from	collections.abc	import	Sequence

class	BadType(Sequence):

				pass

foo	=	BadType()

>>>

Traceback	...

TypeError:	Can't	instantiate	abstract	class	BadType	with

➥abstract	methods	__getitem__,	__len__

When	you	do	implement	all	the	methods	required	by	an	abstract	base	class	from
collections.abc,	as	I	did	above	with	SequenceNode,	it	provides	all	of	the
additional	methods,	like	index	and	count,	for	free:

Click	here	to	view	code	image
class	BetterNode(SequenceNode,	Sequence):

				pass

tree	=	BetterNode(

				10,

				left=BetterNode(

								5,

								left=BetterNode(2),

								right=BetterNode(

												6,

												right=BetterNode(7))),

				right=BetterNode(

								15,

								left=BetterNode(11))

)

print('Index	of	7	is',	tree.index(7))

print('Count	of	10	is',	tree.count(10))

>>>

Index	of	7	is	3

Count	of	10	is	1

The	benefit	of	using	these	abstract	base	classes	is	even	greater	for	more	complex
container	types	such	as	Set	and	MutableMapping,	which	have	a	large	number	of
special	methods	that	need	to	be	implemented	to	match	Python	conventions.

Beyond	the	collections.abc	module,	Python	uses	a	variety	of	special	methods
for	object	comparisons	and	sorting,	which	may	be	provided	by	container	classes
and	non-container	classes	alike	(see	Item	73:	“Know	How	to	Use	heapq	for
Priority	Queues”	for	an	example).

Things	to	Remember

✦	Inherit	directly	from	Python’s	container	types	(like	list	or	dict)	for	simple
use	cases.

✦	Beware	of	the	large	number	of	methods	required	to	implement	custom
container	types	correctly.

✦	Have	your	custom	container	types	inherit	from	the	interfaces	defined	in
collections.abc	to	ensure	that	your	classes	match	required	interfaces	and
behaviors.

6.	Metaclasses	and	Attributes

Metaclasses	are	often	mentioned	in	lists	of	Python’s	features,	but	few	understand
what	they	accomplish	in	practice.	The	name	metaclass	vaguely	implies	a	concept
above	and	beyond	a	class.	Simply	put,	metaclasses	let	you	intercept	Python’s
class	statement	and	provide	special	behavior	each	time	a	class	is	defined.

Similarly	mysterious	and	powerful	are	Python’s	built-in	features	for	dynamically
customizing	attribute	accesses.	Along	with	Python’s	object-oriented	constructs,
these	facilities	provide	wonderful	tools	to	ease	the	transition	from	simple	classes
to	complex	ones.

However,	with	these	powers	come	many	pitfalls.	Dynamic	attributes	enable	you
to	override	objects	and	cause	unexpected	side	effects.	Metaclasses	can	create
extremely	bizarre	behaviors	that	are	unapproachable	to	newcomers.	It’s
important	that	you	follow	the	rule	of	least	surprise	and	only	use	these
mechanisms	to	implement	well-understood	idioms.

Item	44:	Use	Plain	Attributes	Instead	of	Setter	and
Getter	Methods

Programmers	coming	to	Python	from	other	languages	may	naturally	try	to
implement	explicit	getter	and	setter	methods	in	their	classes:
class	OldResistor:

				def	__init__(self,	ohms):

								self._ohms	=	ohms

				def	get_ohms(self):

								return	self._ohms

				def	set_ohms(self,	ohms):

								self._ohms	=	ohms

Using	these	setters	and	getters	is	simple,	but	it’s	not	Pythonic:
r0	=	OldResistor(50e3)

print('Before:',	r0.get_ohms())

r0.set_ohms(10e3)

print('After:	',	r0.get_ohms())

>>>

Before:	50000.0

After:		10000.0

Such	methods	are	especially	clumsy	for	operations	like	incrementing	in	place:
r0.set_ohms(r0.get_ohms()	-	4e3)

assert	r0.get_ohms()	==	6e3

These	utility	methods	do,	however,	help	define	the	interface	for	a	class,	making
it	easier	to	encapsulate	functionality,	validate	usage,	and	define	boundaries.
Those	are	important	goals	when	designing	a	class	to	ensure	that	you	don’t	break
callers	as	the	class	evolves	over	time.

In	Python,	however,	you	never	need	to	implement	explicit	setter	or	getter
methods.	Instead,	you	should	always	start	your	implementations	with	simple
public	attributes,	as	I	do	here:
class	Resistor:

				def	__init__(self,	ohms):

								self.ohms	=	ohms

								self.voltage	=	0

								self.current	=	0

r1	=	Resistor(50e3)

r1.ohms	=	10e3

These	attributes	make	operations	like	incrementing	in	place	natural	and	clear:
r1.ohms	+=	5e3

Later,	if	I	decide	I	need	special	behavior	when	an	attribute	is	set,	I	can	migrate	to
the	@property	decorator	(see	Item	26:	“Define	Function	Decorators	with
functools.wraps”	for	background)	and	its	corresponding	setter	attribute.	Here,
I	define	a	new	subclass	of	Resistor	that	lets	me	vary	the	current	by	assigning
the	voltage	property.	Note	that	in	order	for	this	code	to	work	properly,	the
names	of	both	the	setter	and	the	getter	methods	must	match	the	intended
property	name:

Click	here	to	view	code	image
class	VoltageResistance(Resistor):

				def	__init__(self,	ohms):

								super().__init__(ohms)

								self._voltage	=	0

				@property

				def	voltage(self):

								return	self._voltage

				@voltage.setter

				def	voltage(self,	voltage):

								self._voltage	=	voltage

								self.current	=	self._voltage	/	self.ohms

Now,	assigning	the	voltage	property	will	run	the	voltage	setter	method,	which
in	turn	will	update	the	current	attribute	of	the	object	to	match:

Click	here	to	view	code	image
r2	=	VoltageResistance(1e3)

print(f'Before:	{r2.current:.2f}	amps')

r2.voltage	=	10

print(f'After:		{r2.current:.2f}	amps')

>>>

Before:	0.00	amps

After:		0.01	amps

Specifying	a	setter	on	a	property	also	enables	me	to	perform	type	checking	and
validation	on	values	passed	to	the	class.	Here,	I	define	a	class	that	ensures	all
resistance	values	are	above	zero	ohms:

Click	here	to	view	code	image
class	BoundedResistance(Resistor):

				def	__init__(self,	ohms):

								super().__init__(ohms)

				@property

				def	ohms(self):

								return	self._ohms

				@ohms.setter

				def	ohms(self,	ohms):

								if	ohms	<=	0:

												raise	ValueError(f'ohms	must	be	>	0;	got	{ohms}')

								self._ohms	=	ohms

Assigning	an	invalid	resistance	to	the	attribute	now	raises	an	exception:
r3	=	BoundedResistance(1e3)

r3.ohms	=	0

>>>

Traceback	...

ValueError:	ohms	must	be	>	0;	got	0

An	exception	is	also	raised	if	I	pass	an	invalid	value	to	the	constructor:

Click	here	to	view	code	image
BoundedResistance(-5)

>>>

Traceback	...

ValueError:	ohms	must	be	>	0;	got	-5

This	happens	because	BoundedResistance.__init__	calls	Resistor.__init__,
which	assigns	self.ohms	=	-5.	That	assignment	causes	the	@ohms.setter	method
from	BoundedResistance	to	be	called,	and	it	immediately	runs	the	validation
code	before	object	construction	has	completed.

I	can	even	use	@property	to	make	attributes	from	parent	classes	immutable:

Click	here	to	view	code	image
class	FixedResistance(Resistor):

				def	__init__(self,	ohms):

								super().__init__(ohms)

				@property

				def	ohms(self):

								return	self._ohms

				@ohms.setter

				def	ohms(self,	ohms):

								if	hasattr(self,	'_ohms'):

												raise	AttributeError("Ohms	is	immutable")

								self._ohms	=	ohms

Trying	to	assign	to	the	property	after	construction	raises	an	exception:
r4	=	FixedResistance(1e3)

r4.ohms	=	2e3

>>>

Traceback	...

AttributeError:	Ohms	is	immutable

When	you	use	@property	methods	to	implement	setters	and	getters,	be	sure	that
the	behavior	you	implement	is	not	surprising.	For	example,	don’t	set	other
attributes	in	getter	property	methods:

Click	here	to	view	code	image
class	MysteriousResistor(Resistor):

				@property

				def	ohms(self):

								self.voltage	=	self._ohms	*	self.current

								return	self._ohms

				@ohms.setter

				def	ohms(self,	ohms):

								self._ohms	=	ohms

Setting	other	attributes	in	getter	property	methods	leads	to	extremely	bizarre
behavior:
r7	=	MysteriousResistor(10)

r7.current	=	0.01

print(f'Before:	{r7.voltage:.2f}')

r7.ohms

print(f'After:		{r7.voltage:.2f}')

>>>

Before:	0.00

After:		0.10

The	best	policy	is	to	modify	only	related	object	state	in	@property.setter
methods.	Be	sure	to	also	avoid	any	other	side	effects	that	the	caller	may	not
expect	beyond	the	object,	such	as	importing	modules	dynamically,	running	slow
helper	functions,	doing	I/O,	or	making	expensive	database	queries.	Users	of	a
class	will	expect	its	attributes	to	be	like	any	other	Python	object:	quick	and	easy.
Use	normal	methods	to	do	anything	more	complex	or	slow.

The	biggest	shortcoming	of	@property	is	that	the	methods	for	an	attribute	can
only	be	shared	by	subclasses.	Unrelated	classes	can’t	share	the	same
implementation.	However,	Python	also	supports	descriptors	(see	Item	46:	“Use
Descriptors	for	Reusable	@property	Methods”)	that	enable	reusable	property
logic	and	many	other	use	cases.

Things	to	Remember

✦	Define	new	class	interfaces	using	simple	public	attributes	and	avoid
defining	setter	and	getter	methods.

✦	Use	@property	to	define	special	behavior	when	attributes	are	accessed	on
your	objects,	if	necessary.

✦	Follow	the	rule	of	least	surprise	and	avoid	odd	side	effects	in	your
@property	methods.

✦	Ensure	that	@property	methods	are	fast;	for	slow	or	complex	work—
especially	involving	I/O	or	causing	side	effects—use	normal	methods
instead.

Item	45:	Consider	@property	Instead	of	Refactoring
Attributes

The	built-in	@property	decorator	makes	it	easy	for	simple	accesses	of	an
instance’s	attributes	to	act	smarter	(see	Item	44:	“Use	Plain	Attributes	Instead	of
Setter	and	Getter	Methods”).	One	advanced	but	common	use	of	@property	is
transitioning	what	was	once	a	simple	numerical	attribute	into	an	on-the-fly
calculation.	This	is	extremely	helpful	because	it	lets	you	migrate	all	existing
usage	of	a	class	to	have	new	behaviors	without	requiring	any	of	the	call	sites	to
be	rewritten	(which	is	especially	important	if	there’s	calling	code	that	you	don’t
control).	@property	also	provides	an	important	stopgap	for	improving	interfaces
over	time.

For	example,	say	that	I	want	to	implement	a	leaky	bucket	quota	using	plain
Python	objects.	Here,	the	Bucket	class	represents	how	much	quota	remains	and
the	duration	for	which	the	quota	will	be	available:

Click	here	to	view	code	image
from	datetime	import	datetime,	timedelta

class	Bucket:

				def	__init__(self,	period):

								self.period_delta	=	timedelta(seconds=period)

								self.reset_time	=	datetime.now()

								self.quota	=	0

				def	__repr__(self):

								return	f'Bucket(quota={self.quota})'

The	leaky	bucket	algorithm	works	by	ensuring	that,	whenever	the	bucket	is
filled,	the	amount	of	quota	does	not	carry	over	from	one	period	to	the	next:

Click	here	to	view	code	image
def	fill(bucket,	amount):

				now	=	datetime.now()

				if	(now	-	bucket.reset_time)	>	bucket.period_delta:

								bucket.quota	=	0

								bucket.reset_time	=	now

				bucket.quota	+=	amount

Each	time	a	quota	consumer	wants	to	do	something,	it	must	first	ensure	that	it
can	deduct	the	amount	of	quota	it	needs	to	use:

Click	here	to	view	code	image
def	deduct(bucket,	amount):

				now	=	datetime.now()

				if	(now	-	bucket.reset_time)	>	bucket.period_delta:

								return	False		#	Bucket	hasn't	been	filled	this	period

				if	bucket.quota	-	amount	<	0:

								return	False		#	Bucket	was	filled,	but	not	enough

bucket.quota	-=	amount

return	True							#	Bucket	had	enough,	quota	consumed

To	use	this	class,	first	I	fill	the	bucket	up:
bucket	=	Bucket(60)

fill(bucket,	100)

print(bucket)

>>>

Bucket(quota=100)

Then,	I	deduct	the	quota	that	I	need:

Click	here	to	view	code	image
if	deduct(bucket,	99):

				print('Had	99	quota')

else:

				print('Not	enough	for	99	quota')

print(bucket)

>>>

Had	99	quota

Bucket(quota=1)

Eventually,	I’m	prevented	from	making	progress	because	I	try	to	deduct	more
quota	than	is	available.	In	this	case,	the	bucket’s	quota	level	remains	unchanged:
if	deduct(bucket,	3):

				print('Had	3	quota')

else:

				print('Not	enough	for	3	quota')

print(bucket)

>>>

Not	enough	for	3	quota

Bucket(quota=1)

The	problem	with	this	implementation	is	that	I	never	know	what	quota	level	the
bucket	started	with.	The	quota	is	deducted	over	the	course	of	the	period	until	it
reaches	zero.	At	that	point,	deduct	will	always	return	False	until	the	bucket	is
refilled.	When	that	happens,	it	would	be	useful	to	know	whether	callers	to
deduct	are	being	blocked	because	the	Bucket	ran	out	of	quota	or	because	the
Bucket	never	had	quota	during	this	period	in	the	first	place.

To	fix	this,	I	can	change	the	class	to	keep	track	of	the	max_quota	issued	in	the
period	and	the	quota_consumed	in	the	period:

Click	here	to	view	code	image
class	NewBucket:

				def	__init__(self,	period):

								self.period_delta	=	timedelta(seconds=period)

								self.reset_time	=	datetime.now()

								self.max_quota	=	0

								self.quota_consumed	=	0

				def	__repr__(self):

								return	(f'NewBucket(max_quota={self.max_quota},	'

																f'quota_consumed={self.quota_consumed})')

To	match	the	previous	interface	of	the	original	Bucket	class,	I	use	a	@property
method	to	compute	the	current	level	of	quota	on-the-fly	using	these	new
attributes:

Click	here	to	view	code	image
				@property

				def	quota(self):

								return	self.max_quota	-	self.quota_consumed

When	the	quota	attribute	is	assigned,	I	take	special	action	to	be	compatible	with
the	current	usage	of	the	class	by	the	fill	and	deduct	functions:

Click	here	to	view	code	image
				@quota.setter

				def	quota(self,	amount):

								delta	=	self.max_quota	-	amount

								if	amount	==	0:

												#	Quota	being	reset	for	a	new	period

												self.quota_consumed	=	0

												self.max_quota	=	0

								elif	delta	<	0:

												#	Quota	being	filled	for	the	new	period

												assert	self.quota_consumed	==	0

												self.max_quota	=	amount

							else:

											#	Quota	being	consumed	during	the	period

											assert	self.max_quota	>=	self.quota_consumed

											self.quota_consumed	+=	delta

Rerunning	the	demo	code	from	above	produces	the	same	results:

Click	here	to	view	code	image
bucket	=	NewBucket(60)

print('Initial',	bucket)

fill(bucket,	100)

print('Filled',	bucket)

if	deduct(bucket,	99):

				print('Had	99	quota')

else:

				print('Not	enough	for	99	quota')

print('Now',	bucket)

if	deduct(bucket,	3):

				print('Had	3	quota')

else:

				print('Not	enough	for	3	quota')

print('Still',	bucket)

>>>

Initial	NewBucket(max_quota=0,	quota_consumed=0)

Filled	NewBucket(max_quota=100,	quota_consumed=0)

Had	99	quota

Now	NewBucket(max_quota=100,	quota_consumed=99)

Not	enough	for	3	quota

Still	NewBucket(max_quota=100,	quota_consumed=99)

The	best	part	is	that	the	code	using	Bucket.quota	doesn’t	have	to	change	or
know	that	the	class	has	changed.	New	usage	of	Bucket	can	do	the	right	thing	and
access	max_quota	and	quota_consumed	directly.

I	especially	like	@property	because	it	lets	you	make	incremental	progress	toward
a	better	data	model	over	time.	Reading	the	Bucket	example	above,	you	may	have
thought	that	fill	and	deduct	should	have	been	implemented	as	instance	methods
in	the	first	place.	Although	you’re	probably	right	(see	Item	37:	“Compose
Classes	Instead	of	Nesting	Many	Levels	of	Built-in	Types”),	in	practice	there	are

many	situations	in	which	objects	start	with	poorly	defined	interfaces	or	act	as
dumb	data	containers.	This	happens	when	code	grows	over	time,	scope
increases,	multiple	authors	contribute	without	anyone	considering	long-term
hygiene,	and	so	on.

@property	is	a	tool	to	help	you	address	problems	you’ll	come	across	in	real-
world	code.	Don’t	overuse	it.	When	you	find	yourself	repeatedly	extending
@property	methods,	it’s	probably	time	to	refactor	your	class	instead	of	further
paving	over	your	code’s	poor	design.

Things	to	Remember

✦	Use	@property	to	give	existing	instance	attributes	new	functionality.
✦	Make	incremental	progress	toward	better	data	models	by	using	@property.

✦	Consider	refactoring	a	class	and	all	call	sites	when	you	find	yourself	using
@property	too	heavily.

Item	46:	Use	Descriptors	for	Reusable	@property
Methods

The	big	problem	with	the	@property	built-in	(see	Item	44:	“Use	Plain	Attributes
Instead	of	Setter	and	Getter	Methods”	and	Item	45:	“Consider	@property	Instead
of	Refactoring	Attributes”)	is	reuse.	The	methods	it	decorates	can’t	be	reused	for
multiple	attributes	of	the	same	class.	They	also	can’t	be	reused	by	unrelated
classes.

For	example,	say	I	want	a	class	to	validate	that	the	grade	received	by	a	student
on	a	homework	assignment	is	a	percentage:

Click	here	to	view	code	image
class	Homework:

				def	__init__(self):

								self._grade	=	0

				@property

				def	grade(self):

								return	self._grade

				@grade.setter

				def	grade(self,	value):

								if	not	(0	<=	value	<=	100):

												raise	ValueError(

																'Grade	must	be	between	0	and	100')

								self._grade	=	value

Using	@property	makes	this	class	easy	to	use:
galileo	=	Homework()

galileo.grade	=	95

Say	that	I	also	want	to	give	the	student	a	grade	for	an	exam,	where	the	exam	has
multiple	subjects,	each	with	a	separate	grade:

Click	here	to	view	code	image
class	Exam:

					def	__init__(self):

									self._writing_grade	=	0

									self._math_grade	=	0

					@staticmethod

					def	_check_grade(value):

									if	not	(0	<=	value	<=	100):

													raise	ValueError(

																	'Grade	must	be	between	0	and	100')

This	quickly	gets	tedious.	For	each	section	of	the	exam	I	need	to	add	a	new
@property	and	related	validation:
		@property

		def	writing_grade(self):

						return	self._writing_grade

		@writing_grade.setter

		def	writing_grade(self,	value):

						self._check_grade(value)

						self._writing_grade	=	value

		@property

		def	math_grade(self):

						return	self._math_grade

		@math_grade.setter

		def	math_grade(self,	value):

						self._check_grade(value)

						self._math_grade	=	value

Also,	this	approach	is	not	general.	If	I	want	to	reuse	this	percentage	validation	in
other	classes	beyond	homework	and	exams,	I’ll	need	to	write	the	@property

boilerplate	and	_check_grade	method	over	and	over	again.

The	better	way	to	do	this	in	Python	is	to	use	a	descriptor.	The	descriptor
protocol	defines	how	attribute	access	is	interpreted	by	the	language.	A	descriptor
class	can	provide	__get__	and	__set__	methods	that	let	you	reuse	the	grade
validation	behavior	without	boilerplate.	For	this	purpose,	descriptors	are	also
better	than	mix-ins	(see	Item	41:	“Consider	Composing	Functionality	with	Mix-
in	Classes”)	because	they	let	you	reuse	the	same	logic	for	many	different
attributes	in	a	single	class.

Here,	I	define	a	new	class	called	Exam	with	class	attributes	that	are	Grade
instances.	The	Grade	class	implements	the	descriptor	protocol:

Click	here	to	view	code	image
class	Grade:

				def	__get__(self,	instance,	instance_type):

								...

				def	__set__(self,	instance,	value):

								...

class	Exam:

				#	Class	attributes

				math_grade	=	Grade()

				writing_grade	=	Grade()

				science_grade	=	Grade()

Before	I	explain	how	the	Grade	class	works,	it’s	important	to	understand	what
Python	will	do	when	such	descriptor	attributes	are	accessed	on	an	Exam	instance.
When	I	assign	a	property:
exam	=	Exam()

exam.writing_grade	=	40

it	is	interpreted	as:

Click	here	to	view	code	image
Exam.__dict__['writing_grade'].__set__(exam,	40)

When	I	retrieve	a	property:
exam.writing_grade

it	is	interpreted	as:

Click	here	to	view	code	image

Exam.__dict__['writing_grade'].__get__(exam,	Exam)

What	drives	this	behavior	is	the	__getattribute__	method	of	object	(see	Item
47:	“Use	__getattr__,	__getattribute__,	and	__setattr__	for	Lazy
Attributes”).	In	short,	when	an	Exam	instance	doesn’t	have	an	attribute	named
writing_grade,	Python	falls	back	to	the	Exam	class’s	attribute	instead.	If	this	class
attribute	is	an	object	that	has	__get__	and	__set__	methods,	Python	assumes	that
you	want	to	follow	the	descriptor	protocol.

Knowing	this	behavior	and	how	I	used	@property	for	grade	validation	in	the
Homework	class,	here’s	a	reasonable	first	attempt	at	implementing	the	Grade
descriptor:

Click	here	to	view	code	image
class	Grade:

				def	__init__(self):

								self._value	=	0

				def	__get__(self,	instance,	instance_type):

								return	self._value

				def	__set__(self,	instance,	value):

								if	not	(0	<=	value	<=	100):

												raise	ValueError(

																'Grade	must	be	between	0	and	100')

								self._value	=	value

Unfortunately,	this	is	wrong	and	results	in	broken	behavior.	Accessing	multiple
attributes	on	a	single	Exam	instance	works	as	expected:

Click	here	to	view	code	image
class	Exam:

				math_grade	=	Grade()

				writing_grade	=	Grade()

				science_grade	=	Grade()

first_exam	=	Exam()

first_exam.writing_grade	=	82

first_exam.science_grade	=	99

print('Writing',	first_exam.writing_grade)

print('Science',	first_exam.science_grade)

>>>

Writing	82

Science	99

But	accessing	these	attributes	on	multiple	Exam	instances	causes	unexpected
behavior:

Click	here	to	view	code	image
second_exam	=	Exam()

second_exam.writing_grade	=	75

print(f'Second	{second_exam.writing_grade}	is	right')

print(f'First		{first_exam.writing_grade}	is	wrong;	'

						f'should	be	82')

>>>

Second	75	is	right

First		75	is	wrong;	should	be	82

The	problem	is	that	a	single	Grade	instance	is	shared	across	all	Exam	instances	for
the	class	attribute	writing_grade.	The	Grade	instance	for	this	attribute	is
constructed	once	in	the	program	lifetime,	when	the	Exam	class	is	first	defined,	not
each	time	an	Exam	instance	is	created.

To	solve	this,	I	need	the	Grade	class	to	keep	track	of	its	value	for	each	unique
Exam	instance.	I	can	do	this	by	saving	the	per-instance	state	in	a	dictionary:

Click	here	to	view	code	image
class	Grade:

				def	__init__(self):

								self._values	=	{}

				def	__get__(self,	instance,	instance_type):

								if	instance	is	None:

												return	self

								return	self._values.get(instance,	0)

				def	__set__(self,	instance,	value):

								if	not	(0	<=	value	<=	100):

												raise	ValueError(

																'Grade	must	be	between	0	and	100')

								self._values[instance]	=	value

This	implementation	is	simple	and	works	well,	but	there’s	still	one	gotcha:	It
leaks	memory.	The	_values	dictionary	holds	a	reference	to	every	instance	of
Exam	ever	passed	to	__set__	over	the	lifetime	of	the	program.	This	causes
instances	to	never	have	their	reference	count	go	to	zero,	preventing	cleanup	by
the	garbage	collector	(see	Item	81:	“Use	tracemalloc	to	Understand	Memory
Usage	and	Leaks”	for	how	to	detect	this	type	of	problem).

To	fix	this,	I	can	use	Python’s	weakref	built-in	module.	This	module	provides	a
special	class	called	WeakKeyDictionary	that	can	take	the	place	of	the	simple
dictionary	used	for	_values.	The	unique	behavior	of	WeakKeyDictionary	is	that	it
removes	Exam	instances	from	its	set	of	items	when	the	Python	runtime	knows	it’s
holding	the	instance’s	last	remaining	reference	in	the	program.	Python	does	the
bookkeeping	for	me	and	ensures	that	the	_values	dictionary	will	be	empty	when
all	Exam	instances	are	no	longer	in	use:

Click	here	to	view	code	image
from	weakref	import	WeakKeyDictionary

class	Grade:

				def	__init__(self):

								self._values	=	WeakKeyDictionary()

				def	__get__(self,	instance,	instance_type):

								...

				def	__set__(self,	instance,	value):

								...

Using	this	implementation	of	the	Grade	descriptor,	everything	works	as
expected:

Click	here	to	view	code	image
class	Exam:

						math_grade	=	Grade()

						writing_grade	=	Grade()

						science_grade	=	Grade()

first_exam	=	Exam()

first_exam.writing_grade	=	82

second_exam	=	Exam()

second_exam.writing_grade	=	75

print(f'First		{first_exam.writing_grade}	is	right')

print(f'Second	{second_exam.writing_grade}	is	right')

>>>

First		82	is	right

Second	75	is	right

Things	to	Remember

✦	Reuse	the	behavior	and	validation	of	@property	methods	by	defining	your
own	descriptor	classes.

✦	Use	WeakKeyDictionary	to	ensure	that	your	descriptor	classes	don’t	cause
memory	leaks.

✦	Don’t	get	bogged	down	trying	to	understand	exactly	how	__getattribute__
uses	the	descriptor	protocol	for	getting	and	setting	attributes.

Item	47:	Use	__getattr__,	__getattribute__,	and	__setattr__	for
Lazy	Attributes

Python’s	object	hooks	make	it	easy	to	write	generic	code	for	gluing	systems
together.	For	example,	say	that	I	want	to	represent	the	records	in	a	database	as
Python	objects.	The	database	has	its	schema	set	already.	My	code	that	uses
objects	corresponding	to	those	records	must	also	know	what	the	database	looks
like.	However,	in	Python,	the	code	that	connects	Python	objects	to	the	database
doesn’t	need	to	explicitly	specify	the	schema	of	the	records;	it	can	be	generic.

How	is	that	possible?	Plain	instance	attributes,	@property	methods,	and
descriptors	can’t	do	this	because	they	all	need	to	be	defined	in	advance.	Python
makes	this	dynamic	behavior	possible	with	the	__getattr__	special	method.	If	a
class	defines	__getattr__,	that	method	is	called	every	time	an	attribute	can’t	be
found	in	an	object’s	instance	dictionary:
class	LazyRecord:

				def	__init__(self):

								self.exists	=	5

				def	__getattr__(self,	name):

								value	=	f'Value	for	{name}'

								setattr(self,	name,	value)

								return	value

Here,	I	access	the	missing	property	foo.	This	causes	Python	to	call	the
__getattr__	method	above,	which	mutates	the	instance	dictionary	__dict__:

Click	here	to	view	code	image
data	=	LazyRecord()

print('Before:',	data.__dict__)

print('foo:	',	data.foo)

print('After:	',	data.__dict__)

>>>

Before:	{'exists':	5}

foo:		Value	for	foo

After:		{'exists':	5,	'foo':	'Value	for	foo'}

Here,	I	add	logging	to	LazyRecord	to	show	when	__getattr__	is	actually	called.
Note	how	I	call	super().__getattr__()	to	use	the	superclass’s	implementation
of	__getattr__	in	order	to	fetch	the	real	property	value	and	avoid	infinite
recursion	(see	Item	40:	“Initialize	Parent	Classes	with	super”	for	background):

Click	here	to	view	code	image
class	LoggingLazyRecord(LazyRecord):

				def	__getattr__(self,	name):

								print(f'*	Called	__getattr__({name!r}),	'

														f'populating	instance	dictionary')

								result	=	super().__getattr__(name)

								print(f'*	Returning	{result!r}')

								return	result

data	=	LoggingLazyRecord()

print('exists:		',	data.exists)

print('First	foo:		',	data.foo)

print('Second	foo:	',	data.foo)

>>>

exists:		5

*	Called	__getattr__('foo'),	populating	instance	dictionary

*	Returning	'Value	for	foo'

First	foo:		Value	for	foo

Second	foo:		Value	for	foo

The	exists	attribute	is	present	in	the	instance	dictionary,	so	__getattr__	is	never
called	for	it.	The	foo	attribute	is	not	in	the	instance	dictionary	initially,	so
__getattr__	is	called	the	first	time.	But	the	call	to	__getattr__	for	foo	also	does
a	setattr,	which	populates	foo	in	the	instance	dictionary.	This	is	why	the	second
time	I	access	foo,	it	doesn’t	log	a	call	to	__getattr__.

This	behavior	is	especially	helpful	for	use	cases	like	lazily	accessing	schemaless
data.	__getattr__	runs	once	to	do	the	hard	work	of	loading	a	property;	all
subsequent	accesses	retrieve	the	existing	result.

Say	that	I	also	want	transactions	in	this	database	system.	The	next	time	the	user
accesses	a	property,	I	want	to	know	whether	the	corresponding	record	in	the
database	is	still	valid	and	whether	the	transaction	is	still	open.	The	__getattr__
hook	won’t	let	me	do	this	reliably	because	it	will	use	the	object’s	instance
dictionary	as	the	fast	path	for	existing	attributes.

To	enable	this	more	advanced	use	case,	Python	has	another	object	hook	called

__getattribute__.	This	special	method	is	called	every	time	an	attribute	is
accessed	on	an	object,	even	in	cases	where	it	does	exist	in	the	attribute
dictionary.	This	enables	me	to	do	things	like	check	global	transaction	state	on
every	property	access.	It’s	important	to	note	that	such	an	operation	can	incur
significant	overhead	and	negatively	impact	performance,	but	sometimes	it’s
worth	it.	Here,	I	define	ValidatingRecord	to	log	each	time	__getattribute__	is
called:

Click	here	to	view	code	image
class	ValidatingRecord:

				def	__init__(self):

								self.exists	=	5

				def	__getattribute__(self,	name):

								print(f'*	Called	__getattribute__({name!r})')

								try:

												value	=	super().__getattribute__(name)

												print(f'*	Found	{name!r},	returning	{value!r}')

												return	value

								except	AttributeError:

												value	=	f'Value	for	{name}'

												print(f'*	Setting	{name!r}	to	{value!r}')

												setattr(self,	name,	value)

												return	value

data	=	ValidatingRecord()

print('exists:		',	data.exists)

print('First	foo:		',	data.foo)

print('Second	foo:	',	data.foo)

>>>

*	Called	__getattribute__('exists')

*	Found	'exists',	returning	5

exists:		5

*	Called	__getattribute__('foo')

*	Setting	'foo'	to	'Value	for	foo'

First	foo:		Value	for	foo

*	Called	__getattribute__('foo')

*	Found	'foo',	returning	'Value	for	foo'

Second	foo:		Value	for	foo

In	the	event	that	a	dynamically	accessed	property	shouldn’t	exist,	I	can	raise	an
AttributeError	to	cause	Python’s	standard	missing	property	behavior	for	both
__getattr__	and	__getattribute__:

Click	here	to	view	code	image

class	MissingPropertyRecord:

				def	__getattr__(self,	name):

								if	name	==	'bad_name':

												raise	AttributeError(f'{name}	is	missing')

								...

data	=	MissingPropertyRecord()

data.bad_name

>>>

Traceback	...

AttributeError:	bad_name	is	missing

Python	code	implementing	generic	functionality	often	relies	on	the	hasattr
built-in	function	to	determine	when	properties	exist,	and	the	getattr	built-in
function	to	retrieve	property	values.	These	functions	also	look	in	the	instance
dictionary	for	an	attribute	name	before	calling	__getattr__:

Click	here	to	view	code	image
data	=	LoggingLazyRecord()		#	Implements	__getattr__

print('Before:									',	data.__dict__)

print('Has	first	foo:		',	hasattr(data,	'foo'))

print('After:										',	data.__dict__)

print('Has	second	foo:	',	hasattr(data,	'foo'))

>>>

Before:		{'exists':	5}

*	Called	__getattr__('foo'),	populating	instance	dictionary

*	Returning	'Value	for	foo'

Has	first	foo:		True

After:		{'exists':	5,	'foo':	'Value	for	foo'}

Has	second	foo:		True

In	the	example	above,	__getattr__	is	called	only	once.	In	contrast,	classes	that
implement	__getattribute__	have	that	method	called	each	time	hasattr	or
getattr	is	used	with	an	instance:

Click	here	to	view	code	image
data	=	ValidatingRecord()		#	Implements	__getattribute__

print('Has	first	foo:		',	hasattr(data,	'foo'))

print('Has	second	foo:	',	hasattr(data,	'foo'))

>>>

*	Called	__getattribute__('foo')

*	Setting	'foo'	to	'Value	for	foo'

Has	first	foo:		True

*	Called	__getattribute__('foo')

*	Found	'foo',	returning	'Value	for	foo'

Has	second	foo:		True

Now,	say	that	I	want	to	lazily	push	data	back	to	the	database	when	values	are
assigned	to	my	Python	object.	I	can	do	this	with	__setattr__,	a	similar	object
hook	that	lets	you	intercept	arbitrary	attribute	assignments.	Unlike	when
retrieving	an	attribute	with	__getattr__	and	__getattribute__,	there’s	no	need
for	two	separate	methods.	The	__setattr__	method	is	always	called	every	time
an	attribute	is	assigned	on	an	instance	(either	directly	or	through	the	setattr
built-in	function):

Click	here	to	view	code	image
class	SavingRecord:

				def	__setattr__(self,	name,	value):

								#	Save	some	data	for	the	record

								...

								super().__setattr__(name,	value)

Here,	I	define	a	logging	subclass	of	SavingRecord.	Its	__setattr__	method	is
always	called	on	each	attribute	assignment:

Click	here	to	view	code	image
class	LoggingSavingRecord(SavingRecord):

				def	__setattr__(self,	name,	value):

								print(f'*	Called	__setattr__({name!r},	{value!r})')

								super().__setattr__(name,	value)

data	=	LoggingSavingRecord()

print('Before:	',	data.__dict__)

data.foo	=	5

print('After:		',	data.__dict__)

data.foo	=	7

print('Finally:',	data.__dict__)

>>>

Before:		{}

*	Called	__setattr__('foo',	5)

After:		{'foo':	5}

*	Called	__setattr__('foo',	7)

Finally:	{'foo':	7}

The	problem	with	__getattribute__	and	__setattr__	is	that	they’re	called	on
every	attribute	access	for	an	object,	even	when	you	may	not	want	that	to	happen.

For	example,	say	that	I	want	attribute	accesses	on	my	object	to	actually	look	up
keys	in	an	associated	dictionary:

Click	here	to	view	code	image
class	BrokenDictionaryRecord:

				def	__init__(self,	data):

								self._data	=	{}

				def	__getattribute__(self,	name):

								print(f'*	Called	__getattribute__({name!r})')

								return	self._data[name]

This	requires	accessing	self._data	from	the	__getattribute__	method.
However,	if	I	actually	try	to	do	that,	Python	will	recurse	until	it	reaches	its	stack
limit,	and	then	it’ll	die:

Click	here	to	view	code	image
data	=	BrokenDictionaryRecord({'foo':	3})

data.foo

>>>

*	Called	__getattribute__('foo')

*	Called	__getattribute__('_data')

*	Called	__getattribute__('_data')

*	Called	__getattribute__('_data')

...

Traceback	...

RecursionError:	maximum	recursion	depth	exceeded	while	calling

➥	a	Python	object

The	problem	is	that	__getattribute__	accesses	self._data,	which	causes
__getattribute__	to	run	again,	which	accesses	self._data	again,	and	so	on.	The
solution	is	to	use	the	super().__getattribute__	method	to	fetch	values	from	the
instance	attribute	dictionary.	This	avoids	the	recursion:

Click	here	to	view	code	image
class	DictionaryRecord:

				def	__init__(self,	data):

								self._data	=	data

				def	__getattribute__(self,	name):

								print(f'*	Called	__getattribute__({name!r})')

								data_dict	=	super().__getattribute__('_data')

								return	data_dict[name]

data	=	DictionaryRecord({'foo':	3})

print('foo:	',	data.foo)

>>>

*	Called	__getattribute__('foo')

foo:		3

__setattr__	methods	that	modify	attributes	on	an	object	also	need	to	use
super().__setattr__	accordingly.

Things	to	Remember

✦	Use	__getattr__	and	__setattr__	to	lazily	load	and	save	attributes	for	an
object.

✦	Understand	that	__getattr__	only	gets	called	when	accessing	a	missing
attribute,	whereas	__getattribute__	gets	called	every	time	any	attribute	is
accessed.

✦	Avoid	infinite	recursion	in	__getattribute__	and	__setattr__	by	using
methods	from	super()	(i.e.,	the	object	class)	to	access	instance	attributes.

Item	48:	Validate	Subclasses	with	__init_subclass__
One	of	the	simplest	applications	of	metaclasses	is	verifying	that	a	class	was
defined	correctly.	When	you’re	building	a	complex	class	hierarchy,	you	may
want	to	enforce	style,	require	overriding	methods,	or	have	strict	relationships
between	class	attributes.	Metaclasses	enable	these	use	cases	by	providing	a
reliable	way	to	run	your	validation	code	each	time	a	new	subclass	is	defined.

Often	a	class’s	validation	code	runs	in	the	__init__	method,	when	an	object	of
the	class’s	type	is	constructed	at	runtime	(see	Item	44:	“Use	Plain	Attributes
Instead	of	Setter	and	Getter	Methods”	for	an	example).	Using	metaclasses	for
validation	can	raise	errors	much	earlier,	such	as	when	the	module	containing	the
class	is	first	imported	at	program	startup.

Before	I	get	into	how	to	define	a	metaclass	for	validating	subclasses,	it’s
important	to	understand	the	metaclass	action	for	standard	objects.	A	metaclass	is
defined	by	inheriting	from	type.	In	the	default	case,	a	metaclass	receives	the
contents	of	associated	class	statements	in	its	__new__	method.	Here,	I	can
inspect	and	modify	the	class	information	before	the	type	is	actually	constructed:

Click	here	to	view	code	image

class	Meta(type):

				def	__new__(meta,	name,	bases,	class_dict):

								print(f'*	Running	{meta}.__new__	for	{name}')

								print('Bases:',	bases)

								print(class_dict)

								return	type.__new__(meta,	name,	bases,	class_dict)

class	MyClass(metaclass=Meta):

				stuff	=	123

				def	foo(self):

								pass

class	MySubclass(MyClass):

				other	=	567

				def	bar(self):

								pass

The	metaclass	has	access	to	the	name	of	the	class,	the	parent	classes	it	inherits
from	(bases),	and	all	the	class	attributes	that	were	defined	in	the	class’s	body.
All	classes	inherit	from	object,	so	it’s	not	explicitly	listed	in	the	tuple	of	base
classes:

Click	here	to	view	code	image
>>>

*	Running	<class	'__main__.Meta'>.__new__	for	MyClass

Bases:	()

{'__module__':	'__main__',

	'__qualname__':	'MyClass',

	'stuff':	123,

	'foo':	<function	MyClass.foo	at	0x105a05280>}

*	Running	<class	'__main__.Meta'>.__new__	for	MySubclass

Bases:	(<class	'__main__.MyClass'>,)

{'__module__':	'__main__',

	'__qualname__':	'MySubclass',

	'other':	567,

'bar':	<function	MySubclass.bar	at	0x105a05310>}

I	can	add	functionality	to	the	Meta.__new__	method	in	order	to	validate	all	of	the
parameters	of	an	associated	class	before	it’s	defined.	For	example,	say	that	I
want	to	represent	any	type	of	multisided	polygon.	I	can	do	this	by	defining	a
special	validating	metaclass	and	using	it	in	the	base	class	of	my	polygon	class
hierarchy.	Note	that	it’s	important	not	to	apply	the	same	validation	to	the	base
class:

Click	here	to	view	code	image
class	ValidatePolygon(type):

				def	__new__(meta,	name,	bases,	class_dict):

								#	Only	validate	subclasses	of	the	Polygon	class

								if	bases:

												if	class_dict['sides']	<	3:

																raise	ValueError('Polygons	need	3+	sides')

							return	type.__new__(meta,	name,	bases,	class_dict)

class	Polygon(metaclass=ValidatePolygon):

				sides	=	None		#	Must	be	specified	by	subclasses

				@classmethod

				def	interior_angles(cls):

								return	(cls.sides	-	2)	*	180

class	Triangle(Polygon):

				sides	=	3

class	Rectangle(Polygon):

				sides	=	4

class	Nonagon(Polygon):

				sides	=	9

assert	Triangle.interior_angles()	==	180

assert	Rectangle.interior_angles()	==	360

assert	Nonagon.interior_angles()	==	1260

If	I	try	to	define	a	polygon	with	fewer	than	three	sides,	the	validation	will	cause
the	class	statement	to	fail	immediately	after	the	class	statement	body.	This
means	the	program	will	not	even	be	able	to	start	running	when	I	define	such	a
class	(unless	it’s	defined	in	a	dynamically	imported	module;	see	Item	88:	“Know
How	to	Break	Circular	Dependencies”	for	how	this	can	happen):
print('Before	class')

class	Line(Polygon):

				print('Before	sides')

				sides	=	2

				print('After	sides')

print('After	class')

>>>

Before	class

Before	sides

After	sides

Traceback	...

ValueError:	Polygons	need	3+	sides

This	seems	like	quite	a	lot	of	machinery	in	order	to	get	Python	to	accomplish
such	a	basic	task.	Luckily,	Python	3.6	introduced	simplified	syntax—the
__init_subclass__	special	class	method—for	achieving	the	same	behavior	while
avoiding	metaclasses	entirely.	Here,	I	use	this	mechanism	to	provide	the	same
level	of	validation	as	before:

Click	here	to	view	code	image
class	BetterPolygon:

				sides	=	None		#	Must	be	specified	by	subclasses

				def	__init_subclass__(cls):

								super().__init_subclass__()

								if	cls.sides	<	3:

											raise	ValueError('Polygons	need	3+	sides')

								@classmethod

								def	interior_angles(cls):

												return	(cls.sides	-	2)	*	180

class	Hexagon(BetterPolygon):

				sides	=	6

assert	Hexagon.interior_angles()	==	720

The	code	is	much	shorter	now,	and	the	ValidatePolygon	metaclass	is	gone
entirely.	It’s	also	easier	to	follow	since	I	can	access	the	sides	attribute	directly
on	the	cls	instance	in	__init_subclass__	instead	of	having	to	go	into	the	class’s
dictionary	with	class_dict['sides'].	If	I	define	an	invalid	subclass	of
BetterPolygon,	the	same	exception	is	raised:
print('Before	class')

class	Point(BetterPolygon):

				sides	=	1

print('After	class')

>>>

Before	class

Traceback	...

ValueError:	Polygons	need	3+	sides

Another	problem	with	the	standard	Python	metaclass	machinery	is	that	you	can
only	specify	a	single	metaclass	per	class	definition.	Here,	I	define	a	second

only	specify	a	single	metaclass	per	class	definition.	Here,	I	define	a	second
metaclass	that	I’d	like	to	use	for	validating	the	fill	color	used	for	a	region	(not
necessarily	just	polygons):

Click	here	to	view	code	image
class	ValidateFilled(type):

				def	__new__(meta,	name,	bases,	class_dict):

								#	Only	validate	subclasses	of	the	Filled	class

								if	bases:

												if	class_dict['color']	not	in	('red',	'green'):

															raise	ValueError('Fill	color	must	be	supported')

								return	type.__new__(meta,	name,	bases,	class_dict)

class	Filled(metaclass=ValidateFilled):

				color	=	None		#	Must	be	specified	by	subclasses

When	I	try	to	use	the	Polygon	metaclass	and	Filled	metaclass	together,	I	get	a
cryptic	error	message:

Click	here	to	view	code	image
class	RedPentagon(Filled,	Polygon):

				color	=	'red'

				sides	=	5

>>>

Traceback	...

TypeError:	metaclass	conflict:	the	metaclass	of	a	derived

➥class	must	be	a	(non-strict)	subclass	of	the	metaclasses
➥of	all	its	bases

It’s	possible	to	fix	this	by	creating	a	complex	hierarchy	of	metaclass	type
definitions	to	layer	validation:

Click	here	to	view	code	image
class	ValidatePolygon(type):

				def	__new__(meta,	name,	bases,	class_dict):

								#	Only	validate	non-root	classes

								if	not	class_dict.get('is_root'):

												if	class_dict['sides']	<	3:

																raise	ValueError('Polygons	need	3+	sides')

							return	type.__new__(meta,	name,	bases,	class_dict)

class	Polygon(metaclass=ValidatePolygon):

				is_root	=	True

				sides	=	None		#	Must	be	specified	by	subclasses

class	ValidateFilledPolygon(ValidatePolygon):

				def	__new__(meta,	name,	bases,	class_dict):

								#	Only	validate	non-root	classes

								if	not	class_dict.get('is_root'):

												if	class_dict['color']	not	in	('red',	'green'):

															raise	ValueError('Fill	color	must	be	supported')

								return	super().__new__(meta,	name,	bases,	class_dict)

class	FilledPolygon(Polygon,	metaclass=ValidateFilledPolygon):

				is_root	=	True

				color	=	None		#	Must	be	specified	by	subclasses

This	requires	every	FilledPolygon	instance	to	be	a	Polygon	instance:
class	GreenPentagon(FilledPolygon):

				color	=	'green'

				sides	=	5

greenie	=	GreenPentagon()

assert	isinstance(greenie,	Polygon)

Validation	works	for	colors:

Click	here	to	view	code	image
class	OrangePentagon(FilledPolygon):

				color	=	'orange'

				sides	=	5

>>>

Traceback	...

ValueError:	Fill	color	must	be	supported

Validation	also	works	for	number	of	sides:
class	RedLine(FilledPolygon):

				color	=	'red'

				sides	=	2

>>>

Traceback	...

ValueError:	Polygons	need	3+	sides

However,	this	approach	ruins	composability,	which	is	often	the	purpose	of	class
validation	like	this	(similar	to	mix-ins;	see	Item	41:	“Consider	Composing
Functionality	with	Mix-in	Classes”).	If	I	want	to	apply	the	color	validation	logic
from	ValidateFilledPolygon	to	another	hierarchy	of	classes,	I’ll	have	to
duplicate	all	of	the	logic	again,	which	reduces	code	reuse	and	increases
boilerplate.

The	__init_subclass__	special	class	method	can	also	be	used	to	solve	this
problem.	It	can	be	defined	by	multiple	levels	of	a	class	hierarchy	as	long	as	the
super	built-in	function	is	used	to	call	any	parent	or	sibling	__init_subclass__
definitions	(see	Item	40:	“Initialize	Parent	Classes	with	super”	for	a	similar
example).	It’s	even	compatible	with	multiple	inheritance.	Here,	I	define	a	class
to	represent	region	fill	color	that	can	be	composed	with	the	BetterPolygon	class
from	before:

Click	here	to	view	code	image
class	Filled:

				color	=	None		#	Must	be	specified	by	subclasses

				def	__init_subclass__(cls):

								super().__init_subclass__()

								if	cls.color	not	in	('red',	'green',	'blue'):

												raise	ValueError('Fills	need	a	valid	color')

I	can	inherit	from	both	classes	to	define	a	new	class.	Both	classes	call
super().__init_subclass__(),	causing	their	corresponding	validation	logic	to
run	when	the	subclass	is	created:
class	RedTriangle(Filled,	Polygon):

				color	=	'red'

				sides	=	3

ruddy	=	RedTriangle()

assert	isinstance(ruddy,	Filled)

assert	isinstance(ruddy,	Polygon)

If	I	specify	the	number	of	sides	incorrectly,	I	get	a	validation	error:
print('Before	class')

class	BlueLine(Filled,	Polygon):

				color	=	'blue'

				sides	=	2

print('After	class')

>>>

Before	class

Traceback	...

ValueError:	Polygons	need	3+	sides

If	I	specify	the	color	incorrectly,	I	also	get	a	validation	error:
print('Before	class')

class	BeigeSquare(Filled,	Polygon):

				color	=	'beige'

				sides	=	4

print('After	class')

>>>

Before	class

Traceback	...

ValueError:	Fills	need	a	valid	color

You	can	even	use	__init_subclass__	in	complex	cases	like	diamond	inheritance
(see	Item	40:	“Initialize	Parent	Classes	with	super”).	Here,	I	define	a	basic
diamond	hierarchy	to	show	this	in	action:
class	Top:

				def	__init_subclass__(cls):

								super().__init_subclass__()

								print(f'Top	for	{cls}')

class	Left(Top):

				def	__init_subclass__(cls):

								super().__init_subclass__()

								print(f'Left	for	{cls}')

class	Right(Top):

				def	__init_subclass__(cls):

								super().__init_subclass__()

								print(f'Right	for	{cls}')

class	Bottom(Left,	Right):

				def	__init_subclass__(cls):

								super().__init_subclass__()

								print(f'Bottom	for	{cls}')

>>>

Top	for	<class	'__main__.Left'>

Top	for	<class	'__main__.Right'>

Top	for	<class	'__main__.Bottom'>

Right	for	<class	'__main__.Bottom'>

Left	for	<class	'__main__.Bottom'>

As	expected,	Top.__init_subclass__	is	called	only	a	single	time	for	each	class,
even	though	there	are	two	paths	to	it	for	the	Bottom	class	through	its	Left	and
Right	parent	classes.

Things	to	Remember

✦	The	__new__	method	of	metaclasses	is	run	after	the	class	statement’s	entire
body	has	been	processed.

✦	Metaclasses	can	be	used	to	inspect	or	modify	a	class	after	it’s	defined	but
before	it’s	created,	but	they’re	often	more	heavyweight	than	what	you	need.

✦	Use	__init_subclass__	to	ensure	that	subclasses	are	well	formed	at	the	time
they	are	defined,	before	objects	of	their	type	are	constructed.

✦	Be	sure	to	call	super().__init_subclass__	from	within	your	class’s
__init_subclass__	definition	to	enable	validation	in	multiple	layers	of
classes	and	multiple	inheritance.

Item	49:	Register	Class	Existence	with	__init_subclass__
Another	common	use	of	metaclasses	is	to	automatically	register	types	in	a
program.	Registration	is	useful	for	doing	reverse	lookups,	where	you	need	to
map	a	simple	identifier	back	to	a	corresponding	class.

For	example,	say	that	I	want	to	implement	my	own	serialized	representation	of	a
Python	object	using	JSON.	I	need	a	way	to	turn	an	object	into	a	JSON	string.
Here,	I	do	this	generically	by	defining	a	base	class	that	records	the	constructor
parameters	and	turns	them	into	a	JSON	dictionary:

Click	here	to	view	code	image
import	json

class	Serializable:

				def	__init__(self,	*args):

								self.args	=	args

				def	serialize(self):

								return	json.dumps({'args':	self.args})

This	class	makes	it	easy	to	serialize	simple,	immutable	data	structures	like
Point2D	to	a	string:

Click	here	to	view	code	image
class	Point2D(Serializable):

				def	__init__(self,	x,	y):

								super().__init__(x,	y)

								self.x	=	x

								self.y	=	y

				def	__repr__(self):

								return	f'Point2D({self.x},	{self.y})'

point	=	Point2D(5,	3)

print('Object:		',	point)

print('Serialized:',	point.serialize())

>>>

Object:		Point2D(5,	3)

Serialized:	{"args":	[5,	3]}

Now,	I	need	to	deserialize	this	JSON	string	and	construct	the	Point2D	object	it
represents.	Here,	I	define	another	class	that	can	deserialize	the	data	from	its
Serializable	parent	class:

Click	here	to	view	code	image
class	Deserializable(Serializable):

				@classmethod

				def	deserialize(cls,	json_data):

								params	=	json.loads(json_data)

								return	cls(*params['args'])

Using	Deserializable	makes	it	easy	to	serialize	and	deserialize	simple,
immutable	objects	in	a	generic	way:

Click	here	to	view	code	image
class	BetterPoint2D(Deserializable):

				...

before	=	BetterPoint2D(5,	3)

print('Before:		',	before)

data	=	before.serialize()

print('Serialized:',	data)

after	=	BetterPoint2D.deserialize(data)

print('After:		',	after)

>>>

Before:					Point2D(5,	3)

Serialized:	{"args":	[5,	3]}

After:						Point2D(5,	3)

The	problem	with	this	approach	is	that	it	works	only	if	you	know	the	intended
type	of	the	serialized	data	ahead	of	time	(e.g.,	Point2D,	BetterPoint2D).	Ideally,
you’d	have	a	large	number	of	classes	serializing	to	JSON	and	one	common
function	that	could	deserialize	any	of	them	back	to	a	corresponding	Python
object.

To	do	this,	I	can	include	the	serialized	object’s	class	name	in	the	JSON	data:

To	do	this,	I	can	include	the	serialized	object’s	class	name	in	the	JSON	data:

Click	here	to	view	code	image
class	BetterSerializable:

				def	__init__(self,	*args):

								self.args	=	args

				def	serialize(self):

								return	json.dumps({

												'class':	self.__class__.__name__,

												'args':	self.args,

								})

				def	__repr__(self):

								name	=	self.__class__.__name__

								args_str	=	',	'.join(str(x)	for	x	in	self.args)

								return	f'{name}({args_str})'

Then,	I	can	maintain	a	mapping	of	class	names	back	to	constructors	for	those
objects.	The	general	deserialize	function	works	for	any	classes	passed	to
register_class:

Click	here	to	view	code	image
registry	=	{}

def	register_class(target_class):

				registry[target_class.__name__]	=	target_class

def	deserialize(data):

				params	=	json.loads(data)

name	=	params['class']

target_class	=	registry[name]

return	target_class(*params['args'])

To	ensure	that	deserialize	always	works	properly,	I	must	call	register_class
for	every	class	I	may	want	to	deserialize	in	the	future:

Click	here	to	view	code	image
class	EvenBetterPoint2D(BetterSerializable):

				def	__init__(self,	x,	y):

								super().__init__(x,	y)

								self.x	=	x

								self.y	=	y

register_class(EvenBetterPoint2D)

Now,	I	can	deserialize	an	arbitrary	JSON	string	without	having	to	know	which

Now,	I	can	deserialize	an	arbitrary	JSON	string	without	having	to	know	which
class	it	contains:

Click	here	to	view	code	image
before	=	EvenBetterPoint2D(5,	3)

print('Before:		',	before)

data	=	before.serialize()

print('Serialized:',	data)

after	=	deserialize(data)

print('After:		',	after)

>>>

Before:					EvenBetterPoint2D(5,	3)

Serialized:	{"class":	"EvenBetterPoint2D",	"args":	[5,	3]}

After:						EvenBetterPoint2D(5,	3)

The	problem	with	this	approach	is	that	it’s	possible	to	forget	to	call
register_class:

Click	here	to	view	code	image
class	Point3D(BetterSerializable):

				def	__init__(self,	x,	y,	z):

								super().__init__(x,	y,	z)

								self.x	=	x

								self.y	=	y

								self.z	=	z

#	Forgot	to	call	register_class!	Whoops!

This	causes	the	code	to	break	at	runtime,	when	I	finally	try	to	deserialize	an
instance	of	a	class	I	forgot	to	register:
point	=	Point3D(5,	9,	-4)

data	=	point.serialize()

deserialize(data)

>>>

Traceback	...

KeyError:	'Point3D'

Even	though	I	chose	to	subclass	BetterSerializable,	I	don’t	actually	get	all	of
its	features	if	I	forget	to	call	register_class	after	the	class	statement	body.	This
approach	is	error	prone	and	especially	challenging	for	beginners.	The	same
omission	can	happen	with	class	decorators	(see	Item	51:	“Prefer	Class
Decorators	Over	Metaclasses	for	Composable	Class	Extensions”	for	when	those
are	appropriate).

What	if	I	could	somehow	act	on	the	programmer’s	intent	to	use
BetterSerializable	and	ensure	that	register_class	is	called	in	all	cases?
Metaclasses	enable	this	by	intercepting	the	class	statement	when	subclasses	are
defined	(see	Item	48:	“Validate	Subclasses	with	__init_subclass__”	for	details
on	the	machinery).	Here,	I	use	a	metaclass	to	register	the	new	type	immediately
after	the	class’s	body:

Click	here	to	view	code	image
class	Meta(type):

				def	__new__(meta,	name,	bases,	class_dict):

								cls	=	type.__new__(meta,	name,	bases,	class_dict)

								register_class(cls)

								return	cls

class	RegisteredSerializable(BetterSerializable,

																													metaclass=Meta):

				pass

When	I	define	a	subclass	of	RegisteredSerializable,	I	can	be	confident	that	the
call	to	register_class	happened	and	deserialize	will	always	work	as	expected:

Click	here	to	view	code	image
class	Vector3D(RegisteredSerializable):

				def	__init__(self,	x,	y,	z):

								super().__init__(x,	y,	z)

								self.x,	self.y,	self.z	=	x,	y,	z

before	=	Vector3D(10,	-7,	3)

print('Before:		',	before)

data	=	before.serialize()

print('Serialized:',	data)

print('After:		',	deserialize(data))

>>>

Before:					Vector3D(10,	-7,	3)

Serialized:	{"class":	"Vector3D",	"args":	[10,	-7,	3]}

After:						Vector3D(10,	-7,	3)

An	even	better	approach	is	to	use	the	__init_subclass__	special	class	method.
This	simplified	syntax,	introduced	in	Python	3.6,	reduces	the	visual	noise	of
applying	custom	logic	when	a	class	is	defined.	It	also	makes	it	more
approachable	to	beginners	who	may	be	confused	by	the	complexity	of	metaclass
syntax:

Click	here	to	view	code	image

class	BetterRegisteredSerializable(BetterSerializable):

				def	__init_subclass__(cls):

								super().__init_subclass__()

								register_class(cls)

class	Vector1D(BetterRegisteredSerializable):

				def	__init__(self,	magnitude):

								super().__init__(magnitude)

								self.magnitude	=	magnitude

before	=	Vector1D(6)

print('Before:					',	before)

data	=	before.serialize()

print('Serialized:	',	data)

print('After:						',	deserialize(data))

>>>

Before:					Vector1D(6)

Serialized:	{"class":	"Vector1D",	"args":	[6]}

After:						Vector1D(6)

By	using	__init_subclass__	(or	metaclasses)	for	class	registration,	you	can
ensure	that	you’ll	never	miss	registering	a	class	as	long	as	the	inheritance	tree	is
right.	This	works	well	for	serialization,	as	I’ve	shown,	and	also	applies	to
database	object-relational	mappings	(ORMs),	extensible	plug-in	systems,	and
callback	hooks.

Things	to	Remember

✦	Class	registration	is	a	helpful	pattern	for	building	modular	Python	programs.
✦	Metaclasses	let	you	run	registration	code	automatically	each	time	a	base
class	is	subclassed	in	a	program.

✦	Using	metaclasses	for	class	registration	helps	you	avoid	errors	by	ensuring
that	you	never	miss	a	registration	call.

✦	Prefer	__init_subclass__	over	standard	metaclass	machinery	because	it’s
clearer	and	easier	for	beginners	to	understand.

Item	50:	Annotate	Class	Attributes	with	__set_name__
One	more	useful	feature	enabled	by	metaclasses	is	the	ability	to	modify	or
annotate	properties	after	a	class	is	defined	but	before	the	class	is	actually	used.
This	approach	is	commonly	used	with	descriptors	(see	Item	46:	“Use

Descriptors	for	Reusable	@property	Methods”)	to	give	them	more	introspection
into	how	they’re	being	used	within	their	containing	class.

For	example,	say	that	I	want	to	define	a	new	class	that	represents	a	row	in	a
customer	database.	I’d	like	to	have	a	corresponding	property	on	the	class	for
each	column	in	the	database	table.	Here,	I	define	a	descriptor	class	to	connect
attributes	to	column	names:

Click	here	to	view	code	image
class	Field:

				def	__init__(self,	name):

								self.name	=	name

								self.internal_name	=	'_'	+	self.name

				def	__get__(self,	instance,	instance_type):

								if	instance	is	None:

												return	self

								return	getattr(instance,	self.internal_name,	'')

				def	__set__(self,	instance,	value):

								setattr(instance,	self.internal_name,	value)

With	the	column	name	stored	in	the	Field	descriptor,	I	can	save	all	of	the	per-
instance	state	directly	in	the	instance	dictionary	as	protected	fields	by	using	the
setattr	built-in	function,	and	later	I	can	load	state	with	getattr.	At	first,	this
seems	to	be	much	more	convenient	than	building	descriptors	with	the	weakref
built-in	module	to	avoid	memory	leaks.

Defining	the	class	representing	a	row	requires	supplying	the	database	table’s
column	name	for	each	class	attribute:
class	Customer:

				#	Class	attributes

				first_name	=	Field('first_name')

				last_name	=	Field('last_name')

				prefix	=	Field('prefix')

				suffix	=	Field('suffix')

Using	the	class	is	simple.	Here,	you	can	see	how	the	Field	descriptors	modify
the	instance	dictionary	__dict__	as	expected:

Click	here	to	view	code	image
cust	=	Customer()

print(f'Before:	{cust.first_name!r}	{cust.__dict__}')

cust.first_name	=	'Euclid'

print(f'After:		{cust.first_name!r}	{cust.__dict__}')

>>>

Before:	''	{}

After:		'Euclid'	{'_first_name':	'Euclid'}

But	the	class	definition	seems	redundant.	I	already	declared	the	name	of	the	field
for	the	class	on	the	left	('field_name	=').	Why	do	I	also	have	to	pass	a	string
containing	the	same	information	to	the	Field	constructor	(Field('first_name'))
on	the	right?

Click	here	to	view	code	image
class	Customer:

				#	Left	side	is	redundant	with	right	side

				first_name	=	Field('first_name')

				...

The	problem	is	that	the	order	of	operations	in	the	Customer	class	definition	is	the
opposite	of	how	it	reads	from	left	to	right.	First,	the	Field	constructor	is	called	as
Field('first_name').	Then,	the	return	value	of	that	is	assigned	to
Customer.field_name.	There’s	no	way	for	a	Field	instance	to	know	upfront
which	class	attribute	it	will	be	assigned	to.

To	eliminate	this	redundancy,	I	can	use	a	metaclass.	Metaclasses	let	you	hook
the	class	statement	directly	and	take	action	as	soon	as	a	class	body	is	finished
(see	Item	48:	“Validate	Subclasses	with	__init_subclass__”	for	details	on	how
they	work).	In	this	case,	I	can	use	the	metaclass	to	assign	Field.name	and
Field.internal_name	on	the	descriptor	automatically	instead	of	manually
specifying	the	field	name	multiple	times:

Click	here	to	view	code	image
class	Meta(type):

				def	__new__(meta,	name,	bases,	class_dict):

								for	key,	value	in	class_dict.items():

												if	isinstance(value,	Field):

																value.name	=	key

																value.internal_name	=	'_'	+	key

											cls	=	type.__new__(meta,	name,	bases,	class_dict)

											return	cls

Here,	I	define	a	base	class	that	uses	the	metaclass.	All	classes	representing
database	rows	should	inherit	from	this	class	to	ensure	that	they	use	the
metaclass:

class	DatabaseRow(metaclass=Meta):

				pass

To	work	with	the	metaclass,	the	Field	descriptor	is	largely	unchanged.	The	only
difference	is	that	it	no	longer	requires	arguments	to	be	passed	to	its	constructor.
Instead,	its	attributes	are	set	by	the	Meta.__new__	method	above:

Click	here	to	view	code	image
class	Field:

				def	__init__(self):

								#	These	will	be	assigned	by	the	metaclass.

								self.name	=	None

								self.internal_name	=	None

				def	__get__(self,	instance,	instance_type):

								if	instance	is	None:

												return	self

							return	getattr(instance,	self.internal_name,	'')

				def	__set__(self,	instance,	value):

								setattr(instance,	self.internal_name,	value)

By	using	the	metaclass,	the	new	DatabaseRow	base	class,	and	the	new	Field
descriptor,	the	class	definition	for	a	database	row	no	longer	has	the	redundancy
from	before:
class	BetterCustomer(DatabaseRow):

				first_name	=	Field()

				last_name	=	Field()

				prefix	=	Field()

				suffix	=	Field()

The	behavior	of	the	new	class	is	identical	to	the	behavior	of	the	old	one:

Click	here	to	view	code	image
cust	=	BetterCustomer()

print(f'Before:	{cust.first_name!r}	{cust.__dict__}')

cust.first_name	=	'Euler'

print(f'After:		{cust.first_name!r}	{cust.__dict__}')

>>>

Before:	''	{}

After:		'Euler'	{'_first_name':	'Euler'}

The	trouble	with	this	approach	is	that	you	can’t	use	the	Field	class	for	properties
unless	you	also	inherit	from	DatabaseRow.	If	you	somehow	forget	to	subclass

DatabaseRow,	or	if	you	don’t	want	to	due	to	other	structural	requirements	of	the
class	hierarchy,	the	code	will	break:

Click	here	to	view	code	image
class	BrokenCustomer:

				first_name	=	Field()

				last_name	=	Field()

				prefix	=	Field()

				suffix	=	Field()

cust	=	BrokenCustomer()

cust.first_name	=	'Mersenne'

>>>

Traceback	...

TypeError:	attribute	name	must	be	string,	not	'NoneType'

The	solution	to	this	problem	is	to	use	the	__set_name__	special	method	for
descriptors.	This	method,	introduced	in	Python	3.6,	is	called	on	every	descriptor
instance	when	its	containing	class	is	defined.	It	receives	as	parameters	the
owning	class	that	contains	the	descriptor	instance	and	the	attribute	name	to
which	the	descriptor	instance	was	assigned.	Here,	I	avoid	defining	a	metaclass
entirely	and	move	what	the	Meta.__new__	method	from	above	was	doing	into
__set_name__:

Click	here	to	view	code	image
class	Field:

				def	__init__(self):

								self.name	=	None

								self.internal_name	=	None

				def	__set_name__(self,	owner,	name):

								#	Called	on	class	creation	for	each	descriptor

								self.name	=	name

								self.internal_name	=	'_'	+	name

				def	__get__(self,	instance,	instance_type):

								if	instance	is	None:

											return	self

							return	getattr(instance,	self.internal_name,	'')

				def	__set__(self,	instance,	value):

								setattr(instance,	self.internal_name,	value)

Now,	I	can	get	the	benefits	of	the	Field	descriptor	without	having	to	inherit	from

a	specific	parent	class	or	having	to	use	a	metaclass:

Click	here	to	view	code	image
class	FixedCustomer:

				first_name	=	Field()

				last_name	=	Field()

				prefix	=	Field()

				suffix	=	Field()

cust	=	FixedCustomer()

print(f'Before:	{cust.first_name!r}	{cust.__dict__}')

cust.first_name	=	'Mersenne'

print(f'After:		{cust.first_name!r}	{cust.__dict__}')

>>>

Before:	''	{}

After:		'Mersenne'	{'_first_name':	'Mersenne'}

Things	to	Remember

✦	Metaclasses	enable	you	to	modify	a	class’s	attributes	before	the	class	is
fully	defined.

✦	Descriptors	and	metaclasses	make	a	powerful	combination	for	declarative
behavior	and	runtime	introspection.

✦	Define	__set_name__	on	your	descriptor	classes	to	allow	them	to	take	into
account	their	surrounding	class	and	its	property	names.

✦	Avoid	memory	leaks	and	the	weakref	built-in	module	by	having	descriptors
store	data	they	manipulate	directly	within	a	class’s	instance	dictionary.

Item	51:	Prefer	Class	Decorators	Over	Metaclasses
for	Composable	Class	Extensions

Although	metaclasses	allow	you	to	customize	class	creation	in	multiple	ways
(see	Item	48:	“Validate	Subclasses	with	__init_subclass__”	and	Item	49:
“Register	Class	Existence	with	__init_subclass__”),	they	still	fall	short	of
handling	every	situation	that	may	arise.

For	example,	say	that	I	want	to	decorate	all	of	the	methods	of	a	class	with	a
helper	that	prints	arguments,	return	values,	and	exceptions	raised.	Here,	I	define
the	debugging	decorator	(see	Item	26:	“Define	Function	Decorators	with

functools.wraps”	for	background):

Click	here	to	view	code	image
from	functools	import	wraps

def	trace_func(func):

				if	hasattr(func,	'tracing'):		#	Only	decorate	once

								return	func

				@wraps(func)

				def	wrapper(*args,	**kwargs):

								result	=	None

								try:

												result	=	func(*args,	**kwargs)

												return	result

								except	Exception	as	e:

												result	=	e

												raise

				finally:

								print(f'{func.__name__}({args!r},	{kwargs!r})	->	'

														f'{result!r}')

		wrapper.tracing	=	True

		return	wrapper

I	can	apply	this	decorator	to	various	special	methods	in	my	new	dict	subclass
(see	Item	43:	“Inherit	from	collections.abc	for	Custom	Container	Types”	for
background):

Click	here	to	view	code	image
class	TraceDict(dict):

				@trace_func

				def	__init__(self,	*args,	**kwargs):

								super().__init__(*args,	**kwargs)

				@trace_func

				def	__setitem__(self,	*args,	**kwargs):

							return	super().__setitem__(*args,	**kwargs)

				@trace_func

				def	__getitem__(self,	*args,	**kwargs):

								return	super().__getitem__(*args,	**kwargs)

				...

And	I	can	verify	that	these	methods	are	decorated	by	interacting	with	an	instance

And	I	can	verify	that	these	methods	are	decorated	by	interacting	with	an	instance
of	the	class:

Click	here	to	view	code	image
trace_dict	=	TraceDict([('hi',	1)])

trace_dict['there']	=	2

trace_dict['hi']

try:

				trace_dict['does	not	exist']

except	KeyError:

				pass		#	Expected

>>>

__init__(({'hi':	1},	[('hi',	1)]),	{})	->	None

__setitem__(({'hi':	1,	'there':	2},	'there',	2),	{})	->	None

__getitem__(({'hi':	1,	'there':	2},	'hi'),	{})	->	1

__getitem__(({'hi':	1,	'there':	2},	'does	not	exist'),

➥	{})	->	KeyError('does	not	exist')

The	problem	with	this	code	is	that	I	had	to	redefine	all	of	the	methods	that	I
wanted	to	decorate	with	@trace_func.	This	is	redundant	boilerplate	that’s	hard	to
read	and	error	prone.	Further,	if	a	new	method	is	later	added	to	the	dict
superclass,	it	won’t	be	decorated	unless	I	also	define	it	in	TraceDict.

One	way	to	solve	this	problem	is	to	use	a	metaclass	to	automatically	decorate	all
methods	of	a	class.	Here,	I	implement	this	behavior	by	wrapping	each	function
or	method	in	the	new	type	with	the	trace_func	decorator:

Click	here	to	view	code	image
import	types

trace_types	=	(

				types.MethodType,

				types.FunctionType,

				types.BuiltinFunctionType,

				types.BuiltinMethodType,

				types.MethodDescriptorType,

				types.ClassMethodDescriptorType)

class	TraceMeta(type):

				def	__new__(meta,	name,	bases,	class_dict):

								klass	=	super().__new__(meta,	name,	bases,	class_dict)

								for	key	in	dir(klass):

												value	=	getattr(klass,	key)

												if	isinstance(value,	trace_types):

																wrapped	=	trace_func(value)

																setattr(klass,	key,	wrapped)

								return	klass

Now,	I	can	declare	my	dict	subclass	by	using	the	TraceMeta	metaclass	and
verify	that	it	works	as	expected:

Click	here	to	view	code	image
class	TraceDict(dict,	metaclass=TraceMeta):

				pass

trace_dict	=	TraceDict([('hi',	1)])

trace_dict['there']	=	2

trace_dict['hi']

try:

				trace_dict['does	not	exist']

except	KeyError:

				pass		#	Expected

>>>

__new__((<class	'__main__.TraceDict'>,	[('hi',	1)]),	{})	->	{}

__getitem__(({'hi':	1,	'there':	2},	'hi'),	{})	->	1

__getitem__(({'hi':	1,	'there':	2},	'does	not	exist'),

➥	{})	->	KeyError('does	not	exist')

This	works,	and	it	even	prints	out	a	call	to	__new__	that	was	missing	from	my
earlier	implementation.	What	happens	if	I	try	to	use	TraceMeta	when	a	superclass
already	has	specified	a	metaclass?

Click	here	to	view	code	image
class	OtherMeta(type):

				pass

class	SimpleDict(dict,	metaclass=OtherMeta):

				pass

class	TraceDict(SimpleDict,	metaclass=TraceMeta):

				pass

>>>

Traceback	...

TypeError:	metaclass	conflict:	the	metaclass	of	a	derived

➥class	must	be	a	(non-strict)	subclass	of	the	metaclasses
➥of	all	its	bases

This	fails	because	TraceMeta	does	not	inherit	from	OtherMeta.	In	theory,	I	can

use	metaclass	inheritance	to	solve	this	problem	by	having	OtherMeta	inherit	from
TraceMeta:

Click	here	to	view	code	image
class	TraceMeta(type):

				...

class	OtherMeta(TraceMeta):

				pass

class	SimpleDict(dict,	metaclass=OtherMeta):

				pass

class	TraceDict(SimpleDict,	metaclass=TraceMeta):

			pass

trace_dict	=	TraceDict([('hi',	1)])

trace_dict['there']	=	2

trace_dict['hi']

try:

				trace_dict['does	not	exist']

except	KeyError:

				pass		#	Expected

>>>

__init_subclass__((),	{})	->	None

__new__((<class	'__main__.TraceDict'>,	[('hi',	1)]),	{})	->	{}

__getitem__(({'hi':	1,	'there':	2},	'hi'),	{})	->	1

__getitem__(({'hi':	1,	'there':	2},	'does	not	exist'),

➥{})	->	KeyError('does	not	exist')

But	this	won’t	work	if	the	metaclass	is	from	a	library	that	I	can’t	modify,	or	if	I
want	to	use	multiple	utility	metaclasses	like	TraceMeta	at	the	same	time.	The
metaclass	approach	puts	too	many	constraints	on	the	class	that’s	being	modified.

To	solve	this	problem,	Python	supports	class	decorators.	Class	decorators	work
just	like	function	decorators:	They’re	applied	with	the	@	symbol	prefixing	a
function	before	the	class	declaration.	The	function	is	expected	to	modify	or	re-
create	the	class	accordingly	and	then	return	it:
def	my_class_decorator(klass):

				klass.extra_param	=	'hello'

				return	klass

@my_class_decorator

class	MyClass:

				pass

print(MyClass)

print(MyClass.extra_param)

>>>

<class	'__main__.MyClass'>

hello

I	can	implement	a	class	decorator	to	apply	trace_func	to	all	methods	and
functions	of	a	class	by	moving	the	core	of	the	TraceMeta.__new__	method	above
into	a	stand-alone	function.	This	implementation	is	much	shorter	than	the
metaclass	version:

Click	here	to	view	code	image
def	trace(klass):

				for	key	in	dir(klass):

								value	=	getattr(klass,	key)

								if	isinstance(value,	trace_types):

											wrapped	=	trace_func(value)

											setattr(klass,	key,	wrapped)

				return	klass

I	can	apply	this	decorator	to	my	dict	subclass	to	get	the	same	behavior	as	I	get
by	using	the	metaclass	approach	above:

Click	here	to	view	code	image
@trace

class	TraceDict(dict):

				pass

trace_dict	=	TraceDict([('hi',	1)])

trace_dict['there']	=	2

trace_dict['hi']

try:

				trace_dict['does	not	exist']

except	KeyError:

				pass		#	Expected

>>>

__new__((<class	'__main__.TraceDict'>,	[('hi',	1)]),	{})	->	{}

__getitem__(({'hi':	1,	'there':	2},	'hi'),	{})	->	1

__getitem__(({'hi':	1,	'there':	2},	'does	not	exist'),

➥{})	->	KeyError('does	not	exist')

Class	decorators	also	work	when	the	class	being	decorated	already	has	a
metaclass:

Click	here	to	view	code	image
class	OtherMeta(type):

				pass

@trace

class	TraceDict(dict,	metaclass=OtherMeta):

				pass

trace_dict	=	TraceDict([('hi',	1)])

trace_dict['there']	=	2

trace_dict['hi']

try:

				trace_dict['does	not	exist']

except	KeyError:

				pass		#	Expected

>>>

__new__((<class	'__main__.TraceDict'>,	[('hi',	1)]),	{})	->	{}

__getitem__(({'hi':	1,	'there':	2},	'hi'),	{})	->	1

__getitem__(({'hi':	1,	'there':	2},	'does	not	exist'),

➥{})	->	KeyError('does	not	exist')

When	you’re	looking	for	composable	ways	to	extend	classes,	class	decorators
are	the	best	tool	for	the	job.	(see	Item	73:	“Know	How	to	Use	heapq	for	Priority
Queues”	for	a	useful	class	decorator	called	functools.total_ordering.)

Things	to	Remember

✦	A	class	decorator	is	a	simple	function	that	receives	a	class	instance	as	a
parameter	and	returns	either	a	new	class	or	a	modified	version	of	the
original	class.

✦	Class	decorators	are	useful	when	you	want	to	modify	every	method	or
attribute	of	a	class	with	minimal	boilerplate.

✦	Metaclasses	can’t	be	composed	together	easily,	while	many	class	decorators
can	be	used	to	extend	the	same	class	without	conflicts.

7.	Concurrency	and	Parallelism

Concurrency	enables	a	computer	to	do	many	different	things	seemingly	at	the
same	time.	For	example,	on	a	computer	with	one	CPU	core,	the	operating	system
rapidly	changes	which	program	is	running	on	the	single	processor.	In	doing	so,	it
interleaves	execution	of	the	programs,	providing	the	illusion	that	the	programs
are	running	simultaneously.

Parallelism,	in	contrast,	involves	actually	doing	many	different	things	at	the
same	time.	A	computer	with	multiple	CPU	cores	can	execute	multiple	programs
simultaneously.	Each	CPU	core	runs	the	instructions	of	a	separate	program,
allowing	each	program	to	make	forward	progress	during	the	same	instant.

Within	a	single	program,	concurrency	is	a	tool	that	makes	it	easier	for
programmers	to	solve	certain	types	of	problems.	Concurrent	programs	enable
many	distinct	paths	of	execution,	including	separate	streams	of	I/O,	to	make
forward	progress	in	a	way	that	seems	to	be	both	simultaneous	and	independent.

The	key	difference	between	parallelism	and	concurrency	is	speedup.	When	two
distinct	paths	of	execution	in	a	program	make	forward	progress	in	parallel,	the
time	it	takes	to	do	the	total	work	is	cut	in	half;	the	speed	of	execution	is	faster	by
a	factor	of	two.	In	contrast,	concurrent	programs	may	run	thousands	of	separate
paths	of	execution	seemingly	in	parallel	but	provide	no	speedup	for	the	total
work.

Python	makes	it	easy	to	write	concurrent	programs	in	a	variety	of	styles.	Threads
support	a	relatively	small	amount	of	concurrency,	while	coroutines	enable	vast
numbers	of	concurrent	functions.	Python	can	also	be	used	to	do	parallel	work
through	system	calls,	subprocesses,	and	C	extensions.	But	it	can	be	very	difficult
to	make	concurrent	Python	code	truly	run	in	parallel.	It’s	important	to
understand	how	to	best	utilize	Python	in	these	different	situations.

Item	52:	Use	subprocess	to	Manage	Child	Processes
Python	has	battle-hardened	libraries	for	running	and	managing	child	processes.
This	makes	it	a	great	language	for	gluing	together	other	tools,	such	as	command-
line	utilities.	When	existing	shell	scripts	get	complicated,	as	they	often	do	over
time,	graduating	them	to	a	rewrite	in	Python	for	the	sake	of	readability	and
maintainability	is	a	natural	choice.

maintainability	is	a	natural	choice.

Child	processes	started	by	Python	are	able	to	run	in	parallel,	enabling	you	to	use
Python	to	consume	all	of	the	CPU	cores	of	a	machine	and	maximize	the
throughput	of	programs.	Although	Python	itself	may	be	CPU	bound	(see	Item
53:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”),	it’s	easy	to	use
Python	to	drive	and	coordinate	CPU-intensive	workloads.

Python	has	many	ways	to	run	subprocesses	(e.g.,	os.popen,	os.exec*),	but	the
best	choice	for	managing	child	processes	is	to	use	the	subprocess	built-in
module.	Running	a	child	process	with	subprocess	is	simple.	Here,	I	use	the
module’s	run	convenience	function	to	start	a	process,	read	its	output,	and	verify
that	it	terminated	cleanly:

Click	here	to	view	code	image
import	subprocess

result	=	subprocess.run(

				['echo',	'Hello	from	the	child!'],

				capture_output=True,

				encoding='utf-8')

result.check_returncode()		#	No	exception	means	clean	exit

print(result.stdout)

>>>

Hello	from	the	child!

Note
The	 examples	 in	 this	 item	 assume	 that	 your	 system	 has	 the	 echo,
sleep,	and	openssl	commands	available.	On	Windows,	this	may	not
be	the	case.	Please	refer	to	the	full	example	code	for	this	item	to	see
specific	directions	on	how	to	run	these	snippets	on	Windows.

Child	processes	run	independently	from	their	parent	process,	the	Python
interpreter.	If	I	create	a	subprocess	using	the	Popen	class	instead	of	the	run
function,	I	can	poll	child	process	status	periodically	while	Python	does	other
work:

Click	here	to	view	code	image
proc	=	subprocess.Popen(['sleep',	'1'])

while	proc.poll()	is	None:

				print('Working...')

				#	Some	time-consuming	work	here

				...

print('Exit	status',	proc.poll())

>>>

Working...

Working...

Working...

Working...

Exit	status	0

Decoupling	the	child	process	from	the	parent	frees	up	the	parent	process	to	run
many	child	processes	in	parallel.	Here,	I	do	this	by	starting	all	the	child
processes	together	with	Popen	upfront:

Click	here	to	view	code	image
import	time

start	=	time.time()

sleep_procs	=	[]

for	_	in	range(10):

				proc	=	subprocess.Popen(['sleep',	'1'])

				sleep_procs.append(proc)

Later,	I	wait	for	them	to	finish	their	I/O	and	terminate	with	the	communicate
method:

Click	here	to	view	code	image
for	proc	in	sleep_procs:

				proc.communicate()

end	=	time.time()

delta	=	end	-	start

print(f'Finished	in	{delta:.3}	seconds')

>>>

Finished	in	1.05	seconds

If	these	processes	ran	in	sequence,	the	total	delay	would	be	10	seconds	or	more
rather	than	the	~1	second	that	I	measured.

You	can	also	pipe	data	from	a	Python	program	into	a	subprocess	and	retrieve	its
output.	This	allows	you	to	utilize	many	other	programs	to	do	work	in	parallel.

For	example,	say	that	I	want	to	use	the	openssl	command-line	tool	to	encrypt
some	data.	Starting	the	child	process	with	command-line	arguments	and	I/O
pipes	is	easy:

Click	here	to	view	code	image
import	os

def	run_encrypt(data):

				env	=	os.environ.copy()

				env['password']	=	'zf7ShyBhZOraQDdE/FiZpm/m/8f9X+M1'

				proc	=	subprocess.Popen(

								['openssl',	'enc',	'-des3',	'-pass',	'env:password'],

								env=env,

								stdin=subprocess.PIPE,

								stdout=subprocess.PIPE)

				proc.stdin.write(data)

				proc.stdin.flush()		#	Ensure	that	the	child	gets	input

				return	proc

Here,	I	pipe	random	bytes	into	the	encryption	function,	but	in	practice	this	input
pipe	would	be	fed	data	from	user	input,	a	file	handle,	a	network	socket,	and	so
on:
procs	=	[]

for	_	in	range(3):

				data	=	os.urandom(10)

				proc	=	run_encrypt(data)

				procs.append(proc)

The	child	processes	run	in	parallel	and	consume	their	input.	Here,	I	wait	for
them	to	finish	and	then	retrieve	their	final	output.	The	output	is	random
encrypted	bytes	as	expected:
for	proc	in	procs:

				out,	_	=	proc.communicate()

				print(out[-10:])

>>>

b'\x8c(\xed\xc7m1\xf0F4\xe6'

b'\x0eD\x97\xe9>\x10h{\xbd\xf0'

b'g\x93)\x14U\xa9\xdc\xdd\x04\xd2'

It’s	also	possible	to	create	chains	of	parallel	processes,	just	like	UNIX	pipelines,
connecting	the	output	of	one	child	process	to	the	input	of	another,	and	so	on.
Here’s	a	function	that	starts	the	openssl	command-line	tool	as	a	subprocess	to
generate	a	Whirlpool	hash	of	the	input	stream:

Click	here	to	view	code	image
def	run_hash(input_stdin):

				return	subprocess.Popen(

								['openssl',	'dgst',	'-whirlpool',	'-binary'],

								stdin=input_stdin,

								stdout=subprocess.PIPE)

Now,	I	can	kick	off	one	set	of	processes	to	encrypt	some	data	and	another	set	of
processes	to	subsequently	hash	their	encrypted	output.	Note	that	I	have	to	be
careful	with	how	the	stdout	instance	of	the	upstream	process	is	retained	by	the
Python	interpreter	process	that’s	starting	this	pipeline	of	child	processes:

Click	here	to	view	code	image
encrypt_procs	=	[]

hash_procs	=	[]

for	_	in	range(3):

				data	=	os.urandom(100)

				encrypt_proc	=	run_encrypt(data)

				encrypt_procs.append(encrypt_proc)

				hash_proc	=	run_hash(encrypt_proc.stdout)

				hash_procs.append(hash_proc)

				#	Ensure	that	the	child	consumes	the	input	stream	and

				#	the	communicate()	method	doesn't	inadvertently	steal

				#	input	from	the	child.	Also	lets	SIGPIPE	propagate	to

				#	the	upstream	process	if	the	downstream	process	dies.

				encrypt_proc.stdout.close()

				encrypt_proc.stdout	=	None

The	I/O	between	the	child	processes	happens	automatically	once	they	are	started.
All	I	need	to	do	is	wait	for	them	to	finish	and	print	the	final	output:
for	proc	in	encrypt_procs:

				proc.communicate()

				assert	proc.returncode	==	0

for	proc	in	hash_procs:

				out,	_	=	proc.communicate()

				print(out[-10:])

				assert	proc.returncode	==	0

>>>

b'\xe2j\x98h\xfd\xec\xe7T\xd84'

b'\xf3.i\x01\xd74|\xf2\x94E'

b'5_n\xc3-\xe6j\xeb[i'

If	I’m	worried	about	the	child	processes	never	finishing	or	somehow	blocking	on
input	or	output	pipes,	I	can	pass	the	timeout	parameter	to	the	communicate
method.	This	causes	an	exception	to	be	raised	if	the	child	process	hasn’t	finished
within	the	time	period,	giving	me	a	chance	to	terminate	the	misbehaving
subprocess:

Click	here	to	view	code	image
proc	=	subprocess.Popen(['sleep',	'10'])

try:

				proc.communicate(timeout=0.1)

except	subprocess.TimeoutExpired:

				proc.terminate()

				proc.wait()

print('Exit	status',	proc.poll())

>>>

Exit	status	-15

Things	to	Remember

✦	Use	the	subprocess	module	to	run	child	processes	and	manage	their	input
and	output	streams.

✦	Child	processes	run	in	parallel	with	the	Python	interpreter,	enabling	you	to
maximize	your	usage	of	CPU	cores.

✦	Use	the	run	convenience	function	for	simple	usage,	and	the	Popen	class	for
advanced	usage	like	UNIX-style	pipelines.

✦	Use	the	timeout	parameter	of	the	communicate	method	to	avoid	deadlocks
and	hanging	child	processes.

Item	53:	Use	Threads	for	Blocking	I/O,	Avoid	for
Parallelism

The	standard	implementation	of	Python	is	called	CPython.	CPython	runs	a
Python	program	in	two	steps.	First,	it	parses	and	compiles	the	source	text	into
bytecode,	which	is	a	low-level	representation	of	the	program	as	8-bit
instructions.	(As	of	Python	3.6,	however,	it’s	technically	wordcode	with	16-bit
instructions,	but	the	idea	is	the	same.)	Then,	CPython	runs	the	bytecode	using	a

stack-based	interpreter.	The	bytecode	interpreter	has	state	that	must	be
maintained	and	coherent	while	the	Python	program	executes.	CPython	enforces
coherence	with	a	mechanism	called	the	global	interpreter	lock	(GIL).

Essentially,	the	GIL	is	a	mutual-exclusion	lock	(mutex)	that	prevents	CPython
from	being	affected	by	preemptive	multithreading,	where	one	thread	takes
control	of	a	program	by	interrupting	another	thread.	Such	an	interruption	could
corrupt	the	interpreter	state	(e.g.,	garbage	collection	reference	counts)	if	it	comes
at	an	unexpected	time.	The	GIL	prevents	these	interruptions	and	ensures	that
every	bytecode	instruction	works	correctly	with	the	CPython	implementation
and	its	C-extension	modules.

The	GIL	has	an	important	negative	side	effect.	With	programs	written	in
languages	like	C++	or	Java,	having	multiple	threads	of	execution	means	that	a
program	could	utilize	multiple	CPU	cores	at	the	same	time.	Although	Python
supports	multiple	threads	of	execution,	the	GIL	causes	only	one	of	them	to	ever
make	forward	progress	at	a	time.	This	means	that	when	you	reach	for	threads	to
do	parallel	computation	and	speed	up	your	Python	programs,	you	will	be	sorely
disappointed.

For	example,	say	that	I	want	to	do	something	computationally	intensive	with
Python.	Here,	I	use	a	naive	number	factorization	algorithm	as	a	proxy:
def	factorize(number):

				for	i	in	range(1,	number	+	1):

								if	number	%	i	==	0:

												yield	i

Factoring	a	set	of	numbers	in	serial	takes	quite	a	long	time:

Click	here	to	view	code	image
import	time

numbers	=	[2139079,	1214759,	1516637,	1852285]

start	=	time.time()

for	number	in	numbers:

				list(factorize(number))

end	=	time.time()

delta	=	end	-	start

print(f'Took	{delta:.3f}	seconds')

>>>

Took	0.399	seconds

Using	multiple	threads	to	do	this	computation	would	make	sense	in	other
languages	because	I	could	take	advantage	of	all	the	CPU	cores	of	my	computer.
Let	me	try	that	in	Python.	Here,	I	define	a	Python	thread	for	doing	the	same
computation	as	before:

Click	here	to	view	code	image
from	threading	import	Thread

class	FactorizeThread(Thread):

				def	__init__(self,	number):

								super().__init__()

								self.number	=	number

				def	run(self):

								self.factors	=	list(factorize(self.number))

Then,	I	start	a	thread	for	each	number	to	factorize	in	parallel:

Click	here	to	view	code	image
start	=	time.time()

threads	=	[]

for	number	in	numbers:

				thread	=	FactorizeThread(number)

				thread.start()

				threads.append(thread)

Finally,	I	wait	for	all	of	the	threads	to	finish:
for	thread	in	threads:

				thread.join()

end	=	time.time()

delta	=	end	-	start

print(f'Took	{delta:.3f}	seconds')

>>>

Took	0.446	seconds

Surprisingly,	this	takes	even	longer	than	running	factorize	in	serial.	With	one
thread	per	number,	you	might	expect	less	than	a	4x	speedup	in	other	languages
due	to	the	overhead	of	creating	threads	and	coordinating	with	them.	You	might
expect	only	a	2x	speedup	on	the	dualcore	machine	I	used	to	run	this	code.	But
you	wouldn’t	expect	the	performance	of	these	threads	to	be	worse	when	there
are	multiple	CPUs	to	utilize.	This	demonstrates	the	effect	of	the	GIL	(e.g.,	lock

contention	and	scheduling	overhead)	on	programs	running	in	the	standard
CPython	interpreter.

There	are	ways	to	get	CPython	to	utilize	multiple	cores,	but	they	don’t	work
with	the	standard	Thread	class	(see	Item	64:	“Consider	concurrent.futures	for
True	Parallelism”),	and	they	can	require	substantial	effort.	Given	these
limitations,	why	does	Python	support	threads	at	all?	There	are	two	good	reasons.

First,	multiple	threads	make	it	easy	for	a	program	to	seem	like	it’s	doing
multiple	things	at	the	same	time.	Managing	the	juggling	act	of	simultaneous
tasks	is	difficult	to	implement	yourself	(see	Item	56:	“Know	How	to	Recognize
When	Concurrency	Is	Necessary”	for	an	example).	With	threads,	you	can	leave
it	to	Python	to	run	your	functions	concurrently.	This	works	because	CPython
ensures	a	level	of	fairness	between	Python	threads	of	execution,	even	though
only	one	of	them	makes	forward	progress	at	a	time	due	to	the	GIL.

The	second	reason	Python	supports	threads	is	to	deal	with	blocking	I/O,	which
happens	when	Python	does	certain	types	of	system	calls.

A	Python	program	uses	system	calls	to	ask	the	computer’s	operating	system	to
interact	with	the	external	environment	on	its	behalf.	Blocking	I/O	includes	things
like	reading	and	writing	files,	interacting	with	networks,	communicating	with
devices	like	displays,	and	so	on.	Threads	help	handle	blocking	I/O	by	insulating
a	program	from	the	time	it	takes	for	the	operating	system	to	respond	to	requests.

For	example,	say	that	I	want	to	send	a	signal	to	a	remote-controlled	helicopter
through	a	serial	port.	I’ll	use	a	slow	system	call	(select)	as	a	proxy	for	this
activity.	This	function	asks	the	operating	system	to	block	for	0.1	seconds	and
then	return	control	to	my	program,	which	is	similar	to	what	would	happen	when
using	a	synchronous	serial	port:

Click	here	to	view	code	image
import	select

import	socket

def	slow_systemcall():

				select.select([socket.socket()],	[],	[],	0.1)

Running	this	system	call	in	serial	requires	a	linearly	increasing	amount	of	time:
start	=	time.time()

for	_	in	range(5):

				slow_systemcall()

end	=	time.time()

delta	=	end	-	start

print(f'Took	{delta:.3f}	seconds')

>>>

Took	0.510	seconds

The	problem	is	that	while	the	slow_systemcall	function	is	running,	my	program
can’t	make	any	other	progress.	My	program’s	main	thread	of	execution	is
blocked	on	the	select	system	call.	This	situation	is	awful	in	practice.	You	need
to	be	able	to	compute	your	helicopter’s	next	move	while	you’re	sending	it	a
signal;	otherwise,	it’ll	crash.	When	you	find	yourself	needing	to	do	blocking	I/O
and	computation	simultaneously,	it’s	time	to	consider	moving	your	system	calls
to	threads.

Here,	I	run	multiple	invocations	of	the	slow_systemcall	function	in	separate
threads.	This	would	allow	me	to	communicate	with	multiple	serial	ports	(and
helicopters)	at	the	same	time	while	leaving	the	main	thread	to	do	whatever
computation	is	required:

Click	here	to	view	code	image
start	=	time.time()

threads	=	[]

for	_	in	range(5):

				thread	=	Thread(target=slow_systemcall)

				thread.start()

				threads.append(thread)

With	the	threads	started,	here	I	do	some	work	to	calculate	the	next	helicopter
move	before	waiting	for	the	system	call	threads	to	finish:

Click	here	to	view	code	image
def	compute_helicopter_location(index):

				...

for	i	in	range(5):

				compute_helicopter_location(i)

for	thread	in	threads:

				thread.join()

end	=	time.time()

delta	=	end	-	start

print(f'Took	{delta:.3f}	seconds')

>>>

Took	0.108	seconds

The	parallel	time	is	~5x	less	than	the	serial	time.	This	shows	that	all	the	system
calls	will	run	in	parallel	from	multiple	Python	threads	even	though	they’re
limited	by	the	GIL.	The	GIL	prevents	my	Python	code	from	running	in	parallel,
but	it	doesn’t	have	an	effect	on	system	calls.	This	works	because	Python	threads
release	the	GIL	just	before	they	make	system	calls,	and	they	reacquire	the	GIL
as	soon	as	the	system	calls	are	done.

There	are	many	other	ways	to	deal	with	blocking	I/O	besides	using	threads,	such
as	the	asyncio	built-in	module,	and	these	alternatives	have	important	benefits.
But	those	options	might	require	extra	work	in	refactoring	your	code	to	fit	a
different	model	of	execution	(see	Item	60:	“Achieve	Highly	Concurrent	I/O	with
Coroutines”	and	Item	62:	“Mix	Threads	and	Coroutines	to	Ease	the	Transition	to
asyncio”).	Using	threads	is	the	simplest	way	to	do	blocking	I/O	in	parallel	with
minimal	changes	to	your	program.

Things	to	Remember

✦	Python	threads	can’t	run	in	parallel	on	multiple	CPU	cores	because	of	the
global	interpreter	lock	(GIL).

✦	Python	threads	are	still	useful	despite	the	GIL	because	they	provide	an	easy
way	to	do	multiple	things	seemingly	at	the	same	time.

✦	Use	Python	threads	to	make	multiple	system	calls	in	parallel.	This	allows
you	to	do	blocking	I/O	at	the	same	time	as	computation.

Item	54:	Use	Lock	to	Prevent	Data	Races	in	Threads
After	learning	about	the	global	interpreter	lock	(GIL)	(see	Item	53:	“Use	Threads
for	Blocking	I/O,	Avoid	for	Parallelism”),	many	new	Python	programmers
assume	they	can	forgo	using	mutual-exclusion	locks	(also	called	mutexes)	in
their	code	altogether.	If	the	GIL	is	already	preventing	Python	threads	from
running	on	multiple	CPU	cores	in	parallel,	it	must	also	act	as	a	lock	for	a
program’s	data	structures,	right?	Some	testing	on	types	like	lists	and	dictionaries
may	even	show	that	this	assumption	appears	to	hold.

But	beware,	this	is	not	truly	the	case.	The	GIL	will	not	protect	you.	Although
only	one	Python	thread	runs	at	a	time,	a	thread’s	operations	on	data	structures

only	one	Python	thread	runs	at	a	time,	a	thread’s	operations	on	data	structures
can	be	interrupted	between	any	two	bytecode	instructions	in	the	Python
interpreter.	This	is	dangerous	if	you	access	the	same	objects	from	multiple
threads	simultaneously.	The	invariants	of	your	data	structures	could	be	violated
at	practically	any	time	because	of	these	interruptions,	leaving	your	program	in	a
corrupted	state.

For	example,	say	that	I	want	to	write	a	program	that	counts	many	things	in
parallel,	like	sampling	light	levels	from	a	whole	network	of	sensors.	If	I	want	to
determine	the	total	number	of	light	samples	over	time,	I	can	aggregate	them	with
a	new	class:
class	Counter:

				def	__init__(self):

								self.count	=	0

				def	increment(self,	offset):

								self.count	+=	offset

Imagine	that	each	sensor	has	its	own	worker	thread	because	reading	from	the
sensor	requires	blocking	I/O.	After	each	sensor	measurement,	the	worker	thread
increments	the	counter	up	to	a	maximum	number	of	desired	readings:

Click	here	to	view	code	image
def	worker(sensor_index,	how_many,	counter):

				for	_	in	range(how_many):

								#	Read	from	the	sensor

								...

								counter.increment(1)

Here,	I	run	one	worker	thread	for	each	sensor	in	parallel	and	wait	for	them	all	to
finish	their	readings:

Click	here	to	view	code	image
from	threading	import	Thread

how_many	=	10**5

counter	=	Counter()

threads	=	[]

for	i	in	range(5):

						thread	=	Thread(target=worker,

																						args=(i,	how_many,	counter))

						threads.append(thread)

						thread.start()

for	thread	in	threads:

				thread.join()

expected	=	how_many	*	5

found	=	counter.count

print(f'Counter	should	be	{expected},	got	{found}')

>>>

Counter	should	be	500000,	got	246760

This	seemed	straightforward,	and	the	outcome	should	have	been	obvious,	but	the
result	is	way	off!	What	happened	here?	How	could	something	so	simple	go	so
wrong,	especially	since	only	one	Python	interpreter	thread	can	run	at	a	time?

The	Python	interpreter	enforces	fairness	between	all	of	the	threads	that	are
executing	to	ensure	they	get	roughly	equal	processing	time.	To	do	this,	Python
suspends	a	thread	as	it’s	running	and	resumes	another	thread	in	turn.	The
problem	is	that	you	don’t	know	exactly	when	Python	will	suspend	your	threads.
A	thread	can	even	be	paused	seemingly	halfway	through	what	looks	like	an
atomic	operation.	That’s	what	happened	in	this	case.

The	body	of	the	Counter	object’s	increment	method	looks	simple,	and	is
equivalent	to	this	statement	from	the	perspective	of	the	worker	thread:
counter.count	+=	1

But	the	+=	operator	used	on	an	object	attribute	actually	instructs	Python	to	do
three	separate	operations	behind	the	scenes.	The	statement	above	is	equivalent	to
this:
value	=	getattr(counter,	'count')

result	=	value	+	1

setattr(counter,	'count',	result)

Python	threads	incrementing	the	counter	can	be	suspended	between	any	two	of
these	operations.	This	is	problematic	if	the	way	the	operations	interleave	causes
old	versions	of	value	to	be	assigned	to	the	counter.	Here’s	an	example	of	bad
interaction	between	two	threads,	A	and	B:
#	Running	in	Thread	A

value_a	=	getattr(counter,	'count')

#	Context	switch	to	Thread	B

value_b	=	getattr(counter,	'count')

result_b	=	value_b	+	1

setattr(counter,	'count',	result_b)

#	Context	switch	back	to	Thread	A

result_a	=	value_a	+	1

setattr(counter,	'count',	result_a)

Thread	B	interrupted	thread	A	before	it	had	completely	finished.	Thread	B	ran
and	finished,	but	then	thread	A	resumed	mid-execution,	overwriting	all	of	thread
B’s	progress	in	incrementing	the	counter.	This	is	exactly	what	happened	in	the
light	sensor	example	above.

To	prevent	data	races	like	these,	and	other	forms	of	data	structure	corruption,
Python	includes	a	robust	set	of	tools	in	the	threading	built-in	module.	The
simplest	and	most	useful	of	them	is	the	Lock	class,	a	mutual-exclusion	lock
(mutex).

By	using	a	lock,	I	can	have	the	Counter	class	protect	its	current	value	against
simultaneous	accesses	from	multiple	threads.	Only	one	thread	will	be	able	to
acquire	the	lock	at	a	time.	Here,	I	use	a	with	statement	to	acquire	and	release	the
lock;	this	makes	it	easier	to	see	which	code	is	executing	while	the	lock	is	held
(see	Item	66:	“Consider	contextlib	and	with	Statements	for	Reusable
try/finally	Behavior”	for	background):
from	threading	import	Lock

class	LockingCounter:

				def	__init__(self):

								self.lock	=	Lock()

								self.count	=	0

				def	increment(self,	offset):

								with	self.lock:

												self.count	+=	offset

Now,	I	run	the	worker	threads	as	before	but	use	a	LockingCounter	instead:

Click	here	to	view	code	image
counter	=	LockingCounter()

for	i	in	range(5):

				thread	=	Thread(target=worker,

																				args=(i,	how_many,	counter))

				threads.append(thread)

				thread.start()

for	thread	in	threads:

				thread.join()

expected	=	how_many	*	5

found	=	counter.count

print(f'Counter	should	be	{expected},	got	{found}')

>>>

Counter	should	be	500000,	got	500000

The	result	is	exactly	what	I	expect.	Lock	solved	the	problem.

Things	to	Remember

✦	Even	though	Python	has	a	global	interpreter	lock,	you’re	still	responsible	for
protecting	against	data	races	between	the	threads	in	your	programs.

✦	Your	programs	will	corrupt	their	data	structures	if	you	allow	multiple
threads	to	modify	the	same	objects	without	mutual-exclusion	locks
(mutexes).

✦	Use	the	Lock	class	from	the	threading	built-in	module	to	enforce	your
program’s	invariants	between	multiple	threads.

Item	55:	Use	Queue	to	Coordinate	Work	Between
Threads

Python	programs	that	do	many	things	concurrently	often	need	to	coordinate	their
work.	One	of	the	most	useful	arrangements	for	concurrent	work	is	a	pipeline	of
functions.

A	pipeline	works	like	an	assembly	line	used	in	manufacturing.	Pipelines	have
many	phases	in	serial,	with	a	specific	function	for	each	phase.	New	pieces	of
work	are	constantly	being	added	to	the	beginning	of	the	pipeline.	The	functions
can	operate	concurrently,	each	working	on	the	piece	of	work	in	its	phase.	The
work	moves	forward	as	each	function	completes	until	there	are	no	phases
remaining.	This	approach	is	especially	good	for	work	that	includes	blocking	I/O
or	subprocesses—activities	that	can	easily	be	parallelized	using	Python	(see	Item
53:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”).

For	example,	say	I	want	to	build	a	system	that	will	take	a	constant	stream	of
images	from	my	digital	camera,	resize	them,	and	then	add	them	to	a	photo
gallery	online.	Such	a	program	could	be	split	into	three	phases	of	a	pipeline.
New	images	are	retrieved	in	the	first	phase.	The	downloaded	images	are	passed
through	the	resize	function	in	the	second	phase.	The	resized	images	are
consumed	by	the	upload	function	in	the	final	phase.

Imagine	that	I’ve	already	written	Python	functions	that	execute	the	phases:
download,	resize,	upload.	How	do	I	assemble	a	pipeline	to	do	the	work
concurrently?
def	download(item):

				...

def	resize(item):

				...

def	upload(item):

				...

The	first	thing	I	need	is	a	way	to	hand	off	work	between	the	pipeline	phases.
This	can	be	modeled	as	a	thread-safe	producer–consumer	queue	(see	Item	54:
“Use	Lock	to	Prevent	Data	Races	in	Threads”	to	understand	the	importance	of
thread	safety	in	Python;	see	Item	71:	“Prefer	deque	for	Producer–Consumer
Queues”	to	understand	queue	performance):
from	collections	import	deque

from	threading	import	Lock

class	MyQueue:

				def	__init__(self):

								self.items	=	deque()

								self.lock	=	Lock()

The	producer,	my	digital	camera,	adds	new	images	to	the	end	of	the	deque	of
pending	items:
				def	put(self,	item):

								with	self.lock:

												self.items.append(item)

The	consumer,	the	first	phase	of	the	processing	pipeline,	removes	images	from
the	front	of	the	deque	of	pending	items:
				def	get(self):

								with	self.lock:

												return	self.items.popleft()

Here,	I	represent	each	phase	of	the	pipeline	as	a	Python	thread	that	takes	work
from	one	queue	like	this,	runs	a	function	on	it,	and	puts	the	result	on	another
queue.	I	also	track	how	many	times	the	worker	has	checked	for	new	input	and
how	much	work	it’s	completed:

Click	here	to	view	code	image

from	threading	import	Thread

import	time

class	Worker(Thread):

				def	__init__(self,	func,	in_queue,	out_queue):

								super().__init__()

								self.func	=	func

								self.in_queue	=	in_queue

								self.out_queue	=	out_queue

								self.polled_count	=	0

								self.work_done	=	0

The	trickiest	part	is	that	the	worker	thread	must	properly	handle	the	case	where
the	input	queue	is	empty	because	the	previous	phase	hasn’t	completed	its	work
yet.	This	happens	where	I	catch	the	IndexError	exception	below.	You	can	think
of	this	as	a	holdup	in	the	assembly	line:

Click	here	to	view	code	image
				def	run(self):

								while	True:

												self.polled_count	+=	1

												try:

																item	=	self.in_queue.get()

												except	IndexError:

																time.sleep(0.01)	#	No	work	to	do

												else:

																result	=	self.func(item)

																self.out_queue.put(result)

																self.work_done	+=	1

Now,	I	can	connect	the	three	phases	together	by	creating	the	queues	for	their
coordination	points	and	the	corresponding	worker	threads:

Click	here	to	view	code	image
download_queue	=	MyQueue()

resize_queue	=	MyQueue()

upload_queue	=	MyQueue()

done_queue	=	MyQueue()

threads	=	[

				Worker(download,	download_queue,	resize_queue),

				Worker(resize,	resize_queue,	upload_queue),

				Worker(upload,	upload_queue,	done_queue),

]

I	can	start	the	threads	and	then	inject	a	bunch	of	work	into	the	first	phase	of	the
pipeline.	Here,	I	use	a	plain	object	instance	as	a	proxy	for	the	real	data	required

by	the	download	function:
for	thread	in	threads:

				thread.start()

for	_	in	range(1000):

				download_queue.put(object())

Now,	I	wait	for	all	of	the	items	to	be	processed	by	the	pipeline	and	end	up	in	the
done_queue:

Click	here	to	view	code	image
while	len(done_queue.items)	<	1000:

				#	Do	something	useful	while	waiting

				...

This	runs	properly,	but	there’s	an	interesting	side	effect	caused	by	the	threads
polling	their	input	queues	for	new	work.	The	tricky	part,	where	I	catch
IndexError	exceptions	in	the	run	method,	executes	a	large	number	of	times:

Click	here	to	view	code	image
processed	=	len(done_queue.items)

polled	=	sum(t.polled_count	for	t	in	threads)

print(f'Processed	{processed}	items	after	'

						f'polling	{polled}	times')

>>>

Processed	1000	items	after	polling	3035	times

When	the	worker	functions	vary	in	their	respective	speeds,	an	earlier	phase	can
prevent	progress	in	later	phases,	backing	up	the	pipeline.	This	causes	later
phases	to	starve	and	constantly	check	their	input	queues	for	new	work	in	a	tight
loop.	The	outcome	is	that	worker	threads	waste	CPU	time	doing	nothing	useful;
they’re	constantly	raising	and	catching	IndexError	exceptions.

But	that’s	just	the	beginning	of	what’s	wrong	with	this	implementation.	There
are	three	more	problems	that	you	should	also	avoid.	First,	determining	that	all	of
the	input	work	is	complete	requires	yet	another	busy	wait	on	the	done_queue.
Second,	in	Worker,	the	run	method	will	execute	forever	in	its	busy	loop.	There’s
no	obvious	way	to	signal	to	a	worker	thread	that	it’s	time	to	exit.

Third,	and	worst	of	all,	a	backup	in	the	pipeline	can	cause	the	program	to	crash
arbitrarily.	If	the	first	phase	makes	rapid	progress	but	the	second	phase	makes
slow	progress,	then	the	queue	connecting	the	first	phase	to	the	second	phase	will

constantly	increase	in	size.	The	second	phase	won’t	be	able	to	keep	up.	Given
enough	time	and	input	data,	the	program	will	eventually	run	out	of	memory	and
die.

The	lesson	here	isn’t	that	pipelines	are	bad;	it’s	that	it’s	hard	to	build	a	good
producer–consumer	queue	yourself.	So	why	even	try?

Queue	to	the	Rescue
The	Queue	class	from	the	queue	built-in	module	provides	all	of	the	functionality
you	need	to	solve	the	problems	outlined	above.

Queue	eliminates	the	busy	waiting	in	the	worker	by	making	the	get	method	block
until	new	data	is	available.	For	example,	here	I	start	a	thread	that	waits	for	some
input	data	on	a	queue:

Click	here	to	view	code	image
from	queue	import	Queue

my_queue	=	Queue()

def	consumer():

				print('Consumer	waiting')

				my_queue.get()														#	Runs	after	put()	below

				print('Consumer	done')

thread	=	Thread(target=consumer)

thread.start()

Even	though	the	thread	is	running	first,	it	won’t	finish	until	an	item	is	put	on	the
Queue	instance	and	the	get	method	has	something	to	return:

Click	here	to	view	code	image
print('Producer	putting')

my_queue.put(object())									#	Runs	before	get()	above

print('Producer	done')

thread.join()

>>>

Consumer	waiting

Producer	putting

Producer	done

Consumer	done

To	solve	the	pipeline	backup	issue,	the	Queue	class	lets	you	specify	the

maximum	amount	of	pending	work	to	allow	between	two	phases.

This	buffer	size	causes	calls	to	put	to	block	when	the	queue	is	already	full.	For
example,	here	I	define	a	thread	that	waits	for	a	while	before	consuming	a	queue:

Click	here	to	view	code	image
my_queue	=	Queue(1)													#	Buffer	size	of	1

def	consumer():

				time.sleep(0.1)													#	Wait

				my_queue.get()														#	Runs	second

				print('Consumer	got	1')

				my_queue.get()														#	Runs	fourth

				print('Consumer	got	2')

				print('Consumer	done')

thread	=	Thread(target=consumer)

thread.start()

The	wait	should	allow	the	producer	thread	to	put	both	objects	on	the	queue
before	the	consumer	thread	ever	calls	get.	But	the	Queue	size	is	one.	This	means
the	producer	adding	items	to	the	queue	will	have	to	wait	for	the	consumer	thread
to	call	get	at	least	once	before	the	second	call	to	put	will	stop	blocking	and	add
the	second	item	to	the	queue:

Click	here	to	view	code	image
my_queue.put(object())									#	Runs	first

print('Producer	put	1')

my_queue.put(object())									#	Runs	third

print('Producer	put	2')

print('Producer	done')

thread.join()

>>>

Producer	put	1

Consumer	got	1

Producer	put	2

Producer	done

Consumer	got	2

Consumer	done

The	Queue	class	can	also	track	the	progress	of	work	using	the	task_done	method.
This	lets	you	wait	for	a	phase’s	input	queue	to	drain	and	eliminates	the	need	to
poll	the	last	phase	of	a	pipeline	(as	with	the	done_queue	above).	For	example,
here	I	define	a	consumer	thread	that	calls	task_done	when	it	finishes	working	on

an	item:

Click	here	to	view	code	image
in_queue	=	Queue()

def	consumer():

				print('Consumer	waiting')

				work	=	in_queue.get()							#	Runs	second

				print('Consumer	working')

				#	Doing	work

				...

				print('Consumer	done')

				in_queue.task_done()								#	Runs	third

thread	=	Thread(target=consumer)

thread.start()

Now,	the	producer	code	doesn’t	have	to	join	the	consumer	thread	or	poll.	The
producer	can	just	wait	for	the	in_queue	to	finish	by	calling	join	on	the	Queue
instance.	Even	once	it’s	empty,	the	in_queue	won’t	be	joinable	until	after
task_done	is	called	for	every	item	that	was	ever	enqueued:

Click	here	to	view	code	image
print('Producer	putting')

in_queue.put(object())								#	Runs	first

print('Producer	waiting')

in_queue.join()															#	Runs	fourth

print('Producer	done')

thread.join()

>>>

Consumer	waiting

Producer	putting

Producer	waiting

Consumer	working

Consumer	done

Producer	done

I	can	put	all	these	behaviors	together	into	a	Queue	subclass	that	also	tells	the
worker	thread	when	it	should	stop	processing.	Here,	I	define	a	close	method	that
adds	a	special	sentinel	item	to	the	queue	that	indicates	there	will	be	no	more
input	items	after	it:
class	ClosableQueue(Queue):

				SENTINEL	=	object()

				def	close(self):

								self.put(self.SENTINEL)

Then,	I	define	an	iterator	for	the	queue	that	looks	for	this	special	object	and
stops	iteration	when	it’s	found.	This	__iter__	method	also	calls	task_done	at
appropriate	times,	letting	me	track	the	progress	of	work	on	the	queue	(see	Item
31:	“Be	Defensive	When	Iterating	Over	Arguments”	for	details	about	__iter__):

Click	here	to	view	code	image
				def	__iter__(self):

								while	True:

												item	=	self.get()

												try:

																if	item	is	self.SENTINEL:

																				return	#	Cause	the	thread	to	exit

																yield	item

												finally:

																self.task_done()

Now,	I	can	redefine	my	worker	thread	to	rely	on	the	behavior	of	the
ClosableQueue	class.	The	thread	will	exit	when	the	for	loop	is	exhausted:

Click	here	to	view	code	image
class	StoppableWorker(Thread):

				def	__init__(self,	func,	in_queue,	out_queue):

								super().__init__()

								self.func	=	func

								self.in_queue	=	in_queue

								self.out_queue	=	out_queue

				def	run(self):

								for	item	in	self.in_queue:

												result	=	self.func(item)

												self.out_queue.put(result)

I	re-create	the	set	of	worker	threads	using	the	new	worker	class:

Click	here	to	view	code	image
download_queue	=	ClosableQueue()

resize_queue	=	ClosableQueue()

upload_queue	=	ClosableQueue()

done_queue	=	ClosableQueue()

threads	=	[

				StoppableWorker(download,	download_queue,	resize_queue),

				StoppableWorker(resize,	resize_queue,	upload_queue),

				StoppableWorker(upload,	upload_queue,	done_queue),

]

After	running	the	worker	threads	as	before,	I	also	send	the	stop	signal	after	all
the	input	work	has	been	injected	by	closing	the	input	queue	of	the	first	phase:
for	thread	in	threads:

				thread.start()

for	_	in	range(1000):

				download_queue.put(object())

download_queue.close()

Finally,	I	wait	for	the	work	to	finish	by	joining	the	queues	that	connect	the
phases.	Each	time	one	phase	is	done,	I	signal	the	next	phase	to	stop	by	closing	its
input	queue.	At	the	end,	the	done_queue	contains	all	of	the	output	objects,	as
expected:

Click	here	to	view	code	image
download_queue.join()

resize_queue.close()

resize_queue.join()

upload_queue.close()

upload_queue.join()

print(done_queue.qsize(),	'items	finished')

for	thread	in	threads:

				thread.join()

>>>

1000	items	finished

This	approach	can	be	extended	to	use	multiple	worker	threads	per	phase,	which
can	increase	I/O	parallelism	and	speed	up	this	type	of	program	significantly.	To
do	this,	first	I	define	some	helper	functions	that	start	and	stop	multiple	threads.
The	way	stop_threads	works	is	by	calling	close	on	each	input	queue	once	per
consuming	thread,	which	ensures	that	all	of	the	workers	exit	cleanly:

Click	here	to	view	code	image
def	start_threads(count,	*args):

				threads	=	[StoppableWorker(*args)	for	_	in	range(count)]

				for	thread	in	threads:

								thread.start()

				return	threads

def	stop_threads(closable_queue,	threads):

				for	_	in	threads:

								closable_queue.close()

				closable_queue.join()

				for	thread	in	threads:

								thread.join()

Then,	I	connect	the	pieces	together	as	before,	putting	objects	to	process	into	the
top	of	the	pipeline,	joining	queues	and	threads	along	the	way,	and	finally
consuming	the	results:

Click	here	to	view	code	image
download_queue	=	ClosableQueue()

resize_queue	=	ClosableQueue()

upload_queue	=	ClosableQueue()

done_queue	=	ClosableQueue()

download_threads	=	start_threads(

				3,	download,	download_queue,	resize_queue)

resize_threads	=	start_threads(

				4,	resize,	resize_queue,	upload_queue)

upload_threads	=	start_threads(

				5,	upload,	upload_queue,	done_queue)

for	_	in	range(1000):

				download_queue.put(object())

stop_threads(download_queue,	download_threads)

stop_threads(resize_queue,	resize_threads)

stop_threads(upload_queue,	upload_threads)

print(done_queue.qsize(),	'items	finished')

>>>

1000	items	finished

Although	Queue	works	well	in	this	case	of	a	linear	pipeline,	there	are	many	other
situations	for	which	there	are	better	tools	that	you	should	consider	(see	Item	60:
“Achieve	Highly	Concurrent	I/O	with	Coroutines”).

Things	to	Remember

✦	Pipelines	are	a	great	way	to	organize	sequences	of	work—especially	I/O-
bound	programs—that	run	concurrently	using	multiple	Python	threads.

✦	Be	aware	of	the	many	problems	in	building	concurrent	pipelines:	busy
waiting,	how	to	tell	workers	to	stop,	and	potential	memory	explosion.

✦	The	Queue	class	has	all	the	facilities	you	need	to	build	robust	pipelines:
blocking	operations,	buffer	sizes,	and	joining.

Item	56:	Know	How	to	Recognize	When	Concurrency
Is	Necessary

Inevitably,	as	the	scope	of	a	program	grows,	it	also	becomes	more	complicated.
Dealing	with	expanding	requirements	in	a	way	that	maintains	clarity,	testability,
and	efficiency	is	one	of	the	most	difficult	parts	of	programming.	Perhaps	the
hardest	type	of	change	to	handle	is	moving	from	a	single-threaded	program	to
one	that	needs	multiple	concurrent	lines	of	execution.

Let	me	demonstrate	how	you	might	encounter	this	problem	with	an	example.
Say	that	I	want	to	implement	Conway’s	Game	of	Life,	a	classic	illustration	of
finite	state	automata.	The	rules	of	the	game	are	simple:	You	have	a	two-
dimensional	grid	of	an	arbitrary	size.	Each	cell	in	the	grid	can	either	be	alive	or
empty:
ALIVE	=	'*'

EMPTY	=	'-'

The	game	progresses	one	tick	of	the	clock	at	a	time.	Every	tick,	each	cell	counts
how	many	of	its	neighboring	eight	cells	are	still	alive.	Based	on	its	neighbor
count,	a	cell	decides	if	it	will	keep	living,	die,	or	regenerate.	(I’ll	explain	the
specific	rules	further	below.)	Here’s	an	example	of	a	5	×	5	Game	of	Life	grid
after	four	generations	with	time	going	to	the	right:

Click	here	to	view	code	image
		0			|			1			|			2			|			3			|			4

-----	|	-----	|	-----	|	-----	|	-----

-*---	|	--*--	|	--**-	|	--*--	|	-----

--**-	|	--**-	|	-*---	|	-*---	|	-**--

---*-	|	--**-	|	--**-	|	--*--	|	-----

-----	|	-----	|	-----	|	-----	|	-----

I	can	represent	the	state	of	each	cell	with	a	simple	container	class.	The	class
must	have	methods	that	allow	me	to	get	and	set	the	value	of	any	coordinate.
Coordinates	that	are	out	of	bounds	should	wrap	around,	making	the	grid	act	like
an	infinite	looping	space:

Click	here	to	view	code	image

class	Grid:

				def	__init__(self,	height,	width):

								self.height	=	height

								self.width	=	width

								self.rows	=	[]

								for	_	in	range(self.height):

												self.rows.append([EMPTY]	*	self.width)

				def	get(self,	y,	x):

								return	self.rows[y	%	self.height][x	%	self.width]

				def	set(self,	y,	x,	state):

								self.rows[y	%	self.height][x	%	self.width]	=	state

				def	__str__(self):

								...

To	see	this	class	in	action,	I	can	create	a	Grid	instance	and	set	its	initial	state	to	a
classic	shape	called	a	glider:
grid	=	Grid(5,	9)

grid.set(0,	3,	ALIVE)

grid.set(1,	4,	ALIVE)

grid.set(2,	2,	ALIVE)

grid.set(2,	3,	ALIVE)

grid.set(2,	4,	ALIVE)

print(grid)

>>>

---*-----

----*----

--***----

Now,	I	need	a	way	to	retrieve	the	status	of	neighboring	cells.	I	can	do	this	with	a
helper	function	that	queries	the	grid	and	returns	the	count	of	living	neighbors.	I
use	a	simple	function	for	the	get	parameter	instead	of	passing	in	a	whole	Grid
instance	in	order	to	reduce	coupling	(see	Item	38:	“Accept	Functions	Instead	of
Classes	for	Simple	Interfaces”	for	more	about	this	approach):

Click	here	to	view	code	image
def	count_neighbors(y,	x,	get):

				n_	=	get(y	-	1,	x	+	0)		#	North

				ne	=	get(y	-	1,	x	+	1)		#	Northeast

				e_	=	get(y	+	0,	x	+	1)		#	East

				se	=	get(y	+	1,	x	+	1)		#	Southeast

				s_	=	get(y	+	1,	x	+	0)		#	South

				sw	=	get(y	+	1,	x	-	1)		#	Southwest

				w_	=	get(y	+	0,	x	-	1)		#	West

				nw	=	get(y	-	1,	x	-	1)		#	Northwest

				neighbor_states	=	[n_,	ne,	e_,	se,	s_,	sw,	w_,	nw]

				count	=	0

for	state	in	neighbor_states:

				if	state	==	ALIVE:

								count	+=	1

				return	count

Now,	I	define	the	simple	logic	for	Conway’s	Game	of	Life,	based	on	the	game’s
three	rules:	Die	if	a	cell	has	fewer	than	two	neighbors,	die	if	a	cell	has	more	than
three	neighbors,	or	become	alive	if	an	empty	cell	has	exactly	three	neighbors:

Click	here	to	view	code	image
def	game_logic(state,	neighbors):

				if	state	==	ALIVE:

								if	neighbors	<	2:

												return	EMPTY					#	Die:	Too	few

								elif	neighbors	>	3:

												return	EMPTY					#	Die:	Too	many

				else:

								if	neighbors	==	3:

												return	ALIVE					#	Regenerate

				return	state

I	can	connect	count_neighbors	and	game_logic	together	in	another	function	that
transitions	the	state	of	a	cell.	This	function	will	be	called	each	generation	to
figure	out	a	cell’s	current	state,	inspect	the	neighboring	cells	around	it,	determine
what	its	next	state	should	be,	and	update	the	resulting	grid	accordingly.	Again,	I
use	a	function	interface	for	set	instead	of	passing	in	the	Grid	instance	to	make
this	code	more	decoupled:

Click	here	to	view	code	image
def	step_cell(y,	x,	get,	set):

				state	=	get(y,	x)

				neighbors	=	count_neighbors(y,	x,	get)

				next_state	=	game_logic(state,	neighbors)

				set(y,	x,	next_state)

Finally,	I	can	define	a	function	that	progresses	the	whole	grid	of	cells	forward	by
a	single	step	and	then	returns	a	new	grid	containing	the	state	for	the	next
generation.	The	important	detail	here	is	that	I	need	all	dependent	functions	to
call	the	get	method	on	the	previous	generation’s	Grid	instance,	and	to	call	the
set	method	on	the	next	generation’s	Grid	instance.	This	is	how	I	ensure	that	all

of	the	cells	move	in	lockstep,	which	is	an	essential	part	of	how	the	game	works.
This	is	easy	to	achieve	because	I	used	function	interfaces	for	get	and	set	instead
of	passing	Grid	instances:

Click	here	to	view	code	image
def	simulate(grid):

				next_grid	=	Grid(grid.height,	grid.width)

				for	y	in	range(grid.height):

								for	x	in	range(grid.width):

												step_cell(y,	x,	grid.get,	next_grid.set)

				return	next_grid

Now,	I	can	progress	the	grid	forward	one	generation	at	a	time.	You	can	see	how
the	glider	moves	down	and	to	the	right	on	the	grid	based	on	the	simple	rules
from	the	game_logic	function:

Click	here	to	view	code	image
class	ColumnPrinter:

				...

columns	=	ColumnPrinter()

for	i	in	range(5):

				columns.append(str(grid))

				grid	=	simulate(grid)

print(columns)

>>>

				0					|					1					|					2					|					3					|					4

---*-----	|	---------	|	---------	|	---------	|	---------

----*----	|	--*-*----	|	----*----	|	---*-----	|	----*----

--***----	|	---**----	|	--*-*----	|	----**---	|	-----*---

---------	|	---*-----	|	---**----	|	---**----	|	---***---

---------	|	---------	|	---------	|	---------	|	---------

This	works	great	for	a	program	that	can	run	in	one	thread	on	a	single	machine.
But	imagine	that	the	program’s	requirements	have	changed—as	I	alluded	to
above—and	now	I	need	to	do	some	I/O	(e.g.,	with	a	socket)	from	within	the
game_logic	function.	For	example,	this	might	be	required	if	I’m	trying	to	build	a
massively	multiplayer	online	game	where	the	state	transitions	are	determined	by
a	combination	of	the	grid	state	and	communication	with	other	players	over	the
Internet.

How	can	I	extend	this	implementation	to	support	such	functionality?	The
simplest	thing	to	do	is	to	add	blocking	I/O	directly	into	the	game_logic	function:

Click	here	to	view	code	image
def	game_logic(state,	neighbors):

				...

				#	Do	some	blocking	input/output	in	here:

				data	=	my_socket.recv(100)

				...

The	problem	with	this	approach	is	that	it’s	going	to	slow	down	the	whole
program.	If	the	latency	of	the	I/O	required	is	100	milliseconds	(i.e.,	a	reasonably
good	cross-country,	round-trip	latency	on	the	Internet),	and	there	are	45	cells	in
the	grid,	then	each	generation	will	take	a	minimum	of	4.5	seconds	to	evaluate
because	each	cell	is	processed	serially	in	the	simulate	function.	That’s	far	too
slow	and	will	make	the	game	unplayable.	It	also	scales	poorly:	If	I	later	wanted
to	expand	the	grid	to	10,000	cells,	I	would	need	over	15	minutes	to	evaluate	each
generation.

The	solution	is	to	do	the	I/O	in	parallel	so	each	generation	takes	roughly	100
milliseconds,	regardless	of	how	big	the	grid	is.	The	process	of	spawning	a
concurrent	line	of	execution	for	each	unit	of	work—a	cell	in	this	case—is	called
fan-out.	Waiting	for	all	of	those	concurrent	units	of	work	to	finish	before	moving
on	to	the	next	phase	in	a	coordinated	process—a	generation	in	this	case—is
called	fan-in.

Python	provides	many	built-in	tools	for	achieving	fan-out	and	fan-in	with
various	trade-offs.	You	should	understand	the	pros	and	cons	of	each	approach
and	choose	the	best	tool	for	the	job,	depending	on	the	situation.	See	the	items
that	follow	for	details	based	on	this	Game	of	Life	example	program	(Item	57:
“Avoid	Creating	New	Thread	Instances	for	On-demand	Fan-out,”	Item	58:
“Understand	How	Using	Queue	for	Concurrency	Requires	Refactoring,”	Item	59:
“Consider	ThreadPoolExecutor	When	Threads	Are	Necessary	for	Concurrency,”
and	Item	60:	“Achieve	Highly	Concurrent	I/O	with	Coroutines”).

Things	to	Remember

✦	A	program	often	grows	to	require	multiple	concurrent	lines	of	execution	as
its	scope	and	complexity	increases.

✦	The	most	common	types	of	concurrency	coordination	are	fan-out
(generating	new	units	of	concurrency)	and	fan-in	(waiting	for	existing	units
of	concurrency	to	complete).

✦	Python	has	many	different	ways	of	achieving	fan-out	and	fan-in.

Item	57:	Avoid	Creating	New	Thread	Instances	for	On-
demand	Fan-out

Threads	are	the	natural	first	tool	to	reach	for	in	order	to	do	parallel	I/O	in	Python
(see	Item	53:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”).	However,
they	have	significant	downsides	when	you	try	to	use	them	for	fanning	out	to
many	concurrent	lines	of	execution.

To	demonstrate	this,	I’ll	continue	with	the	Game	of	Life	example	from	before
(see	Item	56:	“Know	How	to	Recognize	When	Concurrency	Is	Necessary”	for
background	and	the	implementations	of	various	functions	and	classes	below).
I’ll	use	threads	to	solve	the	latency	problem	caused	by	doing	I/O	in	the
game_logic	function.	To	begin,	threads	require	coordination	using	locks	to
ensure	that	assumptions	within	data	structures	are	maintained	properly.	I	can
create	a	subclass	of	the	Grid	class	that	adds	locking	behavior	so	an	instance	can
be	used	by	multiple	threads	simultaneously:

Click	here	to	view	code	image
from	threading	import	Lock

ALIVE	=	'*'

EMPTY	=	'-'

class	Grid:

				...

class	LockingGrid(Grid):

				def	__init__(self,	height,	width):

								super().__init__(height,	width)

								self.lock	=	Lock()

				def	__str__(self):

								with	self.lock:

												return	super().__str__()

				def	get(self,	y,	x):

								with	self.lock:

													return	super().get(y,	x)

				def	set(self,	y,	x,	state):

								with	self.lock:

												return	super().set(y,	x,	state)

Then,	I	can	reimplement	the	simulate	function	to	fan	out	by	creating	a	thread	for

each	call	to	step_cell.	The	threads	will	run	in	parallel	and	won’t	have	to	wait	on
each	other’s	I/O.	I	can	then	fan	in	by	waiting	for	all	of	the	threads	to	complete
before	moving	on	to	the	next	generation:

Click	here	to	view	code	image
from	threading	import	Thread

def	count_neighbors(y,	x,	get):

				...

def	game_logic(state,	neighbors):

				...

				#	Do	some	blocking	input/output	in	here:

				data	=	my_socket.recv(100)

				...

def	step_cell(y,	x,	get,	set):

				state	=	get(y,	x)

				neighbors	=	count_neighbors(y,	x,	get)

				next_state	=	game_logic(state,	neighbors)

				set(y,	x,	next_state)

def	simulate_threaded(grid):

				next_grid	=	LockingGrid(grid.height,	grid.width)

				threads	=	[]

				for	y	in	range(grid.height):

								for	x	in	range(grid.width):

												args	=	(y,	x,	grid.get,	next_grid.set)

												thread	=	Thread(target=step_cell,	args=args)

												thread.start()		#	Fan	out

												threads.append(thread)

				for	thread	in	threads:

								thread.join()							#	Fan	in

				return	next_grid

I	can	run	this	code	using	the	same	implementation	of	step_cell	and	the	same
driving	code	as	before	with	only	two	lines	changed	to	use	the	LockingGrid	and
simulate_threaded	implementations:

Click	here	to	view	code	image
class	ColumnPrinter:

				...

grid	=	LockingGrid(5,	9)											#	Changed

grid.set(0,	3,	ALIVE)

grid.set(1,	4,	ALIVE)

grid.set(2,	2,	ALIVE)

grid.set(2,	3,	ALIVE)

grid.set(2,	4,	ALIVE)

columns	=	ColumnPrinter()

for	i	in	range(5):

				columns.append(str(grid))

				grid	=	simulate_threaded(grid)	#	Changed

print(columns)

>>>

				0					|					1					|					2					|					3					|					4

---*-----	|	---------	|	---------	|	---------	|	---------

----*----	|	--*-*----	|	----*----	|	---*-----	|	----*----

--***----	|	---**----	|	--*-*----	|	----**---	|	-----*---

---------	|	---*-----	|	---**----	|	---**----	|	---***---

---------	|	---------	|	---------	|	---------	|	---------

This	works	as	expected,	and	the	I/O	is	now	parallelized	between	the	threads.
However,	this	code	has	three	big	problems:

The	Thread	instances	require	special	tools	to	coordinate	with	each	other
safely	(see	Item	54:	“Use	Lock	to	Prevent	Data	Races	in	Threads”).	This
makes	the	code	that	uses	threads	harder	to	reason	about	than	the	procedural,
single-threaded	code	from	before.	This	complexity	makes	threaded	code
more	difficult	to	extend	and	maintain	over	time.

Threads	require	a	lot	of	memory—about	8	MB	per	executing	thread.	On
many	computers,	that	amount	of	memory	doesn’t	matter	for	the	45	threads
I’d	need	in	this	example.	But	if	the	game	grid	had	to	grow	to	10,000	cells,	I
would	need	to	create	that	many	threads,	which	couldn’t	even	fit	in	the
memory	of	my	machine.	Running	a	thread	per	concurrent	activity	just
won’t	work.

Starting	a	thread	is	costly,	and	threads	have	a	negative	performance	impact
when	they	run	due	to	context	switching	between	them.	In	this	case,	all	of
the	threads	are	started	and	stopped	each	generation	of	the	game,	which	has
high	overhead	and	will	increase	latency	beyond	the	expected	I/O	time	of
100	milliseconds.

This	code	would	also	be	very	difficult	to	debug	if	something	went	wrong.	For
example,	imagine	that	the	game_logic	function	raises	an	exception,	which	is
highly	likely	due	to	the	generally	flaky	nature	of	I/O:

Click	here	to	view	code	image
def	game_logic(state,	neighbors):

				...

				raise	OSError('Problem	with	I/O')

				...

I	can	test	what	this	would	do	by	running	a	Thread	instance	pointed	at	this
function	and	redirecting	the	sys.stderr	output	from	the	program	to	an	in-
memory	StringIO	buffer:

Click	here	to	view	code	image
import	contextlib

import	io

fake_stderr	=	io.StringIO()

with	contextlib.redirect_stderr(fake_stderr):

				thread	=	Thread(target=game_logic,	args=(ALIVE,	3))

				thread.start()

				thread.join()

print(fake_stderr.getvalue())

>>>

Exception	in	thread	Thread-226:

Traceback	(most	recent	call	last):

		File	"threading.py",	line	917,	in	_bootstrap_inner

				self.run()

		File	"threading.py",	line	865,	in	run

				self._target(*self._args,	**self._kwargs)

		File	"example.py",	line	193,	in	game_logic

				raise	OSError('Problem	with	I/O')

OSError:	Problem	with	I/O

An	OSError	exception	is	raised	as	expected,	but	somehow	the	code	that	created
the	Thread	and	called	join	on	it	is	unaffected.	How	can	this	be?	The	reason	is
that	the	Thread	class	will	independently	catch	any	exceptions	that	are	raised	by
the	target	function	and	then	write	their	traceback	to	sys.stderr.	Such
exceptions	are	never	re-raised	to	the	caller	that	started	the	thread	in	the	first
place.

Given	all	of	these	issues,	it’s	clear	that	threads	are	not	the	solution	if	you	need	to
constantly	create	and	finish	new	concurrent	functions.	Python	provides	other
solutions	that	are	a	better	fit	(see	Item	58:	“Understand	How	Using	Queue	for
Concurrency	Requires	Refactoring,”	Item	59:	“Consider	ThreadPoolExecutor

When	Threads	Are	Necessary	for	Concurrency”,	and	Item	60:	“Achieve	Highly
Concurrent	I/O	with	Coroutines”).

Things	to	Remember

✦	Threads	have	many	downsides:	They’re	costly	to	start	and	run	if	you	need	a
lot	of	them,	they	each	require	a	significant	amount	of	memory,	and	they
require	special	tools	like	Lock	instances	for	coordination.

✦	Threads	do	not	provide	a	built-in	way	to	raise	exceptions	back	in	the	code
that	started	a	thread	or	that	is	waiting	for	one	to	finish,	which	makes	them
difficult	to	debug.

Item	58:	Understand	How	Using	Queue	for	Concurrency
Requires	Refactoring

In	the	previous	item	(see	Item	57:	“Avoid	Creating	New	Thread	Instances	for
On-demand	Fan-out”)	I	covered	the	downsides	of	using	Thread	to	solve	the
parallel	I/O	problem	in	the	Game	of	Life	example	from	earlier	(see	Item	56:
“Know	How	to	Recognize	When	Concurrency	Is	Necessary”	for	background	and
the	implementations	of	various	functions	and	classes	below).

The	next	approach	to	try	is	to	implement	a	threaded	pipeline	using	the	Queue
class	from	the	queue	built-in	module	(see	Item	55:	“Use	Queue	to	Coordinate
Work	Between	Threads”	for	background;	I	rely	on	the	implementations	of
ClosableQueue	and	StoppableWorker	from	that	item	in	the	example	code	below).

Here’s	the	general	approach:	Instead	of	creating	one	thread	per	cell	per
generation	of	the	Game	of	Life,	I	can	create	a	fixed	number	of	worker	threads
upfront	and	have	them	do	parallelized	I/O	as	needed.	This	will	keep	my	resource
usage	under	control	and	eliminate	the	overhead	of	frequently	starting	new
threads.

To	do	this,	I	need	two	ClosableQueue	instances	to	use	for	communicating	to	and
from	the	worker	threads	that	execute	the	game_logic	function:
from	queue	import	Queue

class	ClosableQueue(Queue):

				...

in_queue	=	ClosableQueue()

out_queue	=	ClosableQueue()

I	can	start	multiple	threads	that	will	consume	items	from	the	in_queue,	process
them	by	calling	game_logic,	and	put	the	results	on	out_queue.	These	threads	will
run	concurrently,	allowing	for	parallel	I/O	and	reduced	latency	for	each
generation:

Click	here	to	view	code	image
from	threading	import	Thread

class	StoppableWorker(Thread):

				...

def	game_logic(state,	neighbors):

				...

				#	Do	some	blocking	input/output	in	here:

				data	=	my_socket.recv(100)

				...

def	game_logic_thread(item):

				y,	x,	state,	neighbors	=	item

				try:

								next_state	=	game_logic(state,	neighbors)

				except	Exception	as	e:

								next_state	=	e

				return	(y,	x,	next_state)

#	Start	the	threads	upfront

threads	=	[]

for	_	in	range(5):

				thread	=	StoppableWorker(

								game_logic_thread,	in_queue,	out_queue)

				thread.start()

				threads.append(thread)

Now,	I	can	redefine	the	simulate	function	to	interact	with	these	queues	to
request	state	transition	decisions	and	receive	corresponding	responses.	Adding
items	to	in_queue	causes	fan-out,	and	consuming	items	from	out_queue	until	it’s
empty	causes	fan-in:

Click	here	to	view	code	image
ALIVE	=	'*'

EMPTY	=	'-'

class	SimulationError(Exception):

				pass

class	Grid:

				...

def	count_neighbors(y,	x,	get):

				...

def	simulate_pipeline(grid,	in_queue,	out_queue):

				for	y	in	range(grid.height):

								for	x	in	range(grid.width):

												state	=	grid.get(y,	x)

												neighbors	=	count_neighbors(y,	x,	grid.get)

												in_queue.put((y,	x,	state,	neighbors))		#	Fan	out

				in_queue.join()

				out_queue.close()

				next_grid	=	Grid(grid.height,	grid.width)

				for	item	in	out_queue:																										#	Fan	in

								y,	x,	next_state	=	item

								if	isinstance(next_state,	Exception):

												raise	SimulationError(y,	x)	from	next_state

								next_grid.set(y,	x,	next_state)

				return	next_grid

The	calls	to	Grid.get	and	Grid.set	both	happen	within	this	new
simulate_pipeline	function,	which	means	I	can	use	the	single-threaded
implementation	of	Grid	instead	of	the	implementation	that	requires	Lock
instances	for	synchronization.

This	code	is	also	easier	to	debug	than	the	Thread	approach	used	in	the	previous
item.	If	an	exception	occurs	while	doing	I/O	in	the	game_logic	function,	it	will
be	caught,	propagated	to	the	out_queue,	and	then	re-raised	in	the	main	thread:

Click	here	to	view	code	image
def	game_logic(state,	neighbors):

				...

				raise	OSError('Problem	with	I/O	in	game_logic')

				...

simulate_pipeline(Grid(1,	1),	in_queue,	out_queue)

>>>

Traceback	...

OSError:	Problem	with	I/O	in	game_logic

The	above	exception	was	the	direct	cause	of	the	following

➥exception:

Traceback	...

SimulationError:	(0,	0)

I	can	drive	this	multithreaded	pipeline	for	repeated	generations	by	calling
simulate_pipeline	in	a	loop:

Click	here	to	view	code	image
class	ColumnPrinter:

				...

grid	=	Grid(5,	9)

grid.set(0,	3,	ALIVE)

grid.set(1,	4,	ALIVE)

grid.set(2,	2,	ALIVE)

grid.set(2,	3,	ALIVE)

grid.set(2,	4,	ALIVE)

columns	=	ColumnPrinter()

for	i	in	range(5):

				columns.append(str(grid))

				grid	=	simulate_pipeline(grid,	in_queue,	out_queue)

print(columns)

for	thread	in	threads:

				in_queue.close()

for	thread	in	threads:

				thread.join()

>>>

				0					|					1					|					2					|					3					|					4

---*-----	|	---------	|	---------	|	---------	|	---------

----*----	|	---------	|	--*-*----	|	---------	|	----*----

--***----	|	---------	|	---**----	|	---------	|	--*-*----

---------	|	---------	|	---*-----	|	---------	|	---**----

---------	|	---------	|	---------	|	---------	|	---------

The	results	are	the	same	as	before.	Although	I’ve	addressed	the	memory
explosion	problem,	startup	costs,	and	debugging	issues	of	using	threads	on	their
own,	many	issues	remain:

The	simulate_pipeline	function	is	even	harder	to	follow	than	the
simulate_threaded	approach	from	the	previous	item.

Extra	support	classes	were	required	for	ClosableQueue	and
StoppableWorker	in	order	to	make	the	code	easier	to	read,	at	the	expense	of
increased	complexity.

I	have	to	specify	the	amount	of	potential	parallelism—the	number	of
threads	running	game_logic_thread—upfront	based	on	my	expectations	of
the	workload	instead	of	having	the	system	automatically	scale	up
parallelism	as	needed.

In	order	to	enable	debugging,	I	have	to	manually	catch	exceptions	in
worker	threads,	propagate	them	on	a	Queue,	and	then	re-raise	them	in	the
main	thread.

However,	the	biggest	problem	with	this	code	is	apparent	if	the	requirements
change	again.	Imagine	that	later	I	needed	to	do	I/O	within	the	count_neighbors
function	in	addition	to	the	I/O	that	was	needed	within	game_logic:

Click	here	to	view	code	image
def	count_neighbors(y,	x,	get):

				...

#	Do	some	blocking	input/output	in	here:

data	=	my_socket.recv(100)

...

In	order	to	make	this	parallelizable,	I	need	to	add	another	stage	to	the	pipeline
that	runs	count_neighbors	in	a	thread.	I	need	to	make	sure	that	exceptions
propagate	correctly	between	the	worker	threads	and	the	main	thread.	And	I	need
to	use	a	Lock	for	the	Grid	class	in	order	to	ensure	safe	synchronization	between
the	worker	threads	(see	Item	54:	“Use	Lock	to	Prevent	Data	Races	in	Threads”
for	background	and	Item	57:	“Avoid	Creating	New	Thread	Instances	for	On-
demand	Fan-out”	for	the	implementation	of	LockingGrid):

Click	here	to	view	code	image
def	count_neighbors_thread(item):

				y,	x,	state,	get	=	item

				try:

								neighbors	=	count_neighbors(y,	x,	get)

				except	Exception	as	e:

								neighbors	=	e

				return	(y,	x,	state,	neighbors)

def	game_logic_thread(item):

				y,	x,	state,	neighbors	=	item

				if	isinstance(neighbors,	Exception):

								next_state	=	neighbors

				else:

								try:

												next_state	=	game_logic(state,	neighbors)

								except	Exception	as	e:

												next_state	=	e

				return	(y,	x,	next_state)

class	LockingGrid(Grid):

				...

I	have	to	create	another	set	of	Queue	instances	for	the	count_neighbors_thread
workers	and	the	corresponding	Thread	instances:

Click	here	to	view	code	image
in_queue	=	ClosableQueue()

logic_queue	=	ClosableQueue()

out_queue	=	ClosableQueue()

threads	=	[]

for	_	in	range(5):

				thread	=	StoppableWorker(

								count_neighbors_thread,	in_queue,	logic_queue)

				thread.start()

				threads.append(thread)

for	_	in	range(5):

				thread	=	StoppableWorker(

								game_logic_thread,	logic_queue,	out_queue)

				thread.start()

				threads.append(thread)

Finally,	I	need	to	update	simulate_pipeline	to	coordinate	the	multiple	phases	in
the	pipeline	and	ensure	that	work	fans	out	and	back	in	correctly:

Click	here	to	view	code	image
def	simulate_phased_pipeline(

								grid,	in_queue,	logic_queue,	out_queue):

				for	y	in	range(grid.height):

								for	x	in	range(grid.width):

												state	=	grid.get(y,	x)

												item	=	(y,	x,	state,	grid.get)

												in_queue.put(item)										#	Fan	out

				in_queue.join()

				logic_queue.join()																		#	Pipeline	sequencing

				out_queue.close()

				next_grid	=	LockingGrid(grid.height,	grid.width)

				for	item	in	out_queue:														#	Fan	in

								y,	x,	next_state	=	item

								if	isinstance(next_state,	Exception):

												raise	SimulationError(y,	x)	from	next_state

								next_grid.set(y,	x,	next_state)

				return	next_grid

With	these	updated	implementations,	now	I	can	run	the	multiphase	pipeline	end-
to-end:

Click	here	to	view	code	image
grid	=	LockingGrid(5,	9)

grid.set(0,	3,	ALIVE)

grid.set(1,	4,	ALIVE)

grid.set(2,	2,	ALIVE)

grid.set(2,	3,	ALIVE)

grid.set(2,	4,	ALIVE)

columns	=	ColumnPrinter()

for	i	in	range(5):

				columns.append(str(grid))

				grid	=	simulate_phased_pipeline(

								grid,	in_queue,	logic_queue,	out_queue)

print(columns)

for	thread	in	threads:

				in_queue.close()

for	thread	in	threads:

				logic_queue.close()

for	thread	in	threads:

				thread.join()

>>>

				0					|					1					|					2					|					3					|					4

---*-----	|	---------	|	---------	|	---------	|	---------

----*----	|	--*-*----	|	----*----	|	---*-----	|	----*----

--***----	|	---**----	|	--*-*----	|	----**---	|	-----*---

---------	|	---*-----	|	---**----	|	---**----	|	---***---

---------	|	---------	|	---------	|	---------	|	---------

Again,	this	works	as	expected,	but	it	required	a	lot	of	changes	and	boilerplate.
The	point	here	is	that	Queue	does	make	it	possible	to	solve	fan-out	and	fan-in

problems,	but	the	overhead	is	very	high.	Although	using	Queue	is	a	better
approach	than	using	Thread	instances	on	their	own,	it’s	still	not	nearly	as	good	as
some	of	the	other	tools	provided	by	Python	(see	Item	59:	“Consider
ThreadPoolExecutor	When	Threads	Are	Necessary	for	Concurrency”	and	Item
60:	“Achieve	Highly	Concurrent	I/O	with	Coroutines”).

Things	to	Remember

✦	Using	Queue	instances	with	a	fixed	number	of	worker	threads	improves	the
scalability	of	fan-out	and	fan-in	using	threads.

✦	It	takes	a	significant	amount	of	work	to	refactor	existing	code	to	use	Queue,
especially	when	multiple	stages	of	a	pipeline	are	required.

✦	Using	Queue	fundamentally	limits	the	total	amount	of	I/O	parallelism	a
program	can	leverage	compared	to	alternative	approaches	provided	by	other
built-in	Python	features	and	modules.

Item	59:	Consider	ThreadPoolExecutor	When	Threads	Are
Necessary	for	Concurrency

Python	includes	the	concurrent.futures	built-in	module,	which	provides	the
ThreadPoolExecutor	class.	It	combines	the	best	of	the	Thread	(see	Item	57:
“Avoid	Creating	New	Thread	Instances	for	On-demand	Fan-out”)	and	Queue	(see
Item	58:	“Understand	How	Using	Queue	for	Concurrency	Requires	Refactoring”)
approaches	to	solving	the	parallel	I/O	problem	from	the	Game	of	Life	example
(see	Item	56:	“Know	How	to	Recognize	When	Concurrency	Is	Necessary”	for
background	and	the	implementations	of	various	functions	and	classes	below):

Click	here	to	view	code	image
ALIVE	=	'*'

EMPTY	=	'-'

class	Grid:

				...

class	LockingGrid(Grid):

				...

def	count_neighbors(y,	x,	get):

				...

def	game_logic(state,	neighbors):

				...

				#	Do	some	blocking	input/output	in	here:

				data	=	my_socket.recv(100)

				...

def	step_cell(y,	x,	get,	set):

				state	=	get(y,	x)

				neighbors	=	count_neighbors(y,	x,	get)

				next_state	=	game_logic(state,	neighbors)

				set(y,	x,	next_state)

Instead	of	starting	a	new	Thread	instance	for	each	Grid	square,	I	can	fan	out	by
submitting	a	function	to	an	executor	that	will	be	run	in	a	separate	thread.	Later,	I
can	wait	for	the	result	of	all	tasks	in	order	to	fan	in:

Click	here	to	view	code	image
from	concurrent.futures	import	ThreadPoolExecutor

def	simulate_pool(pool,	grid):

				next_grid	=	LockingGrid(grid.height,	grid.width)

				futures	=	[]

				for	y	in	range(grid.height):

								for	x	in	range(grid.width):

												args	=	(y,	x,	grid.get,	next_grid.set)

												future	=	pool.submit(step_cell,	*args)		#	Fan	out

												futures.append(future)

				for	future	in	futures:

								future.result()																													#	Fan	in

				return	next_grid

The	threads	used	for	the	executor	can	be	allocated	in	advance,	which	means	I
don’t	have	to	pay	the	startup	cost	on	each	execution	of	simulate_pool.	I	can	also
specify	the	maximum	number	of	threads	to	use	for	the	pool—using	the
max_workers	parameter—to	prevent	the	memory	blow-up	issues	associated	with
the	naive	Thread	solution	to	the	parallel	I/O	problem:

Click	here	to	view	code	image
class	ColumnPrinter:

				...

grid	=	LockingGrid(5,	9)

grid.set(0,	3,	ALIVE)

grid.set(1,	4,	ALIVE)

grid.set(2,	2,	ALIVE)

grid.set(2,	3,	ALIVE)

grid.set(2,	4,	ALIVE)

columns	=	ColumnPrinter()

with	ThreadPoolExecutor(max_workers=10)	as	pool:

				for	i	in	range(5):

								columns.append(str(grid))

								grid	=	simulate_pool(pool,	grid)

print(columns)

>>>

				0					|					1					|					2					|					3					|					4

---*-----	|	---------	|	---------	|	---------	|	---------

----*----	|	--*-*----	|	----*----	|	---*-----	|	----*----

--***----	|	---**----	|	--*-*----	|	----**---	|	-----*---

---------	|	---*-----	|	---**----	|	---**----	|	---***---

---------	|	---------	|	---------	|	---------	|	---------

The	best	part	about	the	ThreadPoolExecutor	class	is	that	it	automatically
propagates	exceptions	back	to	the	caller	when	the	result	method	is	called	on	the
Future	instance	returned	by	the	submit	method:

Click	here	to	view	code	image
def	game_logic(state,	neighbors):

				...

				raise	OSError('Problem	with	I/O')

				...

with	ThreadPoolExecutor(max_workers=10)	as	pool:

				task	=	pool.submit(game_logic,	ALIVE,	3)

				task.result()

>>>

Traceback	...

OSError:	Problem	with	I/O

If	I	needed	to	provide	I/O	parallelism	for	the	count_neighbors	function	in
addition	to	game_logic,	no	modifications	to	the	program	would	be	required	since
ThreadPoolExecutor	already	runs	these	functions	concurrently	as	part	of
step_cell.	It’s	even	possible	to	achieve	CPU	parallelism	by	using	the	same
interface	if	necessary	(see	Item	64:	“Consider	concurrent.futures	for	True
Parallelism”).

However,	the	big	problem	that	remains	is	the	limited	amount	of	I/O	parallelism

that	ThreadPoolExecutor	provides.	Even	if	I	use	a	max_workers	parameter	of	100,
this	solution	still	won’t	scale	if	I	need	10,000+	cells	in	the	grid	that	require
simultaneous	I/O.	ThreadPoolExecutor	is	a	good	choice	for	situations	where
there	is	no	asynchronous	solution	(e.g.,	file	I/O),	but	there	are	better	ways	to
maximize	I/O	parallelism	in	many	cases	(see	Item	60:	“Achieve	Highly
Concurrent	I/O	with	Coroutines”).

Things	to	Remember

✦	ThreadPoolExecutor	enables	simple	I/O	parallelism	with	limited	refactoring,
easily	avoiding	the	cost	of	thread	startup	each	time	fanout	concurrency	is
required.

✦	Although	ThreadPoolExecutor	eliminates	the	potential	memory	blow-up
issues	of	using	threads	directly,	it	also	limits	I/O	parallelism	by	requiring
max_workers	to	be	specified	upfront.

Item	60:	Achieve	Highly	Concurrent	I/O	with
Coroutines

The	previous	items	have	tried	to	solve	the	parallel	I/O	problem	for	the	Game	of
Life	example	with	varying	degrees	of	success.	(see	Item	56:	“Know	How	to
Recognize	When	Concurrency	Is	Necessary”	for	background	and	the
implementations	of	various	functions	and	classes	below.)	All	of	the	other
approaches	fall	short	in	their	ability	to	handle	thousands	of	simultaneously
concurrent	functions	(see	Item	57:	“Avoid	Creating	New	Thread	Instances	for
On-demand	Fan-out,”	Item	58:	“Understand	How	Using	Queue	for	Concurrency
Requires	Refactoring,”	and	Item	59:	“Consider	ThreadPoolExecutor	When
Threads	Are	Necessary	for	Concurrency”).

Python	addresses	the	need	for	highly	concurrent	I/O	with	coroutines.	Coroutines
let	you	have	a	very	large	number	of	seemingly	simultaneous	functions	in	your
Python	programs.	They’re	implemented	using	the	async	and	await	keywords
along	with	the	same	infrastructure	that	powers	generators	(see	Item	30:
“Consider	Generators	Instead	of	Returning	Lists,”	Item	34:	“Avoid	Injecting
Data	into	Generators	with	send,”	and	Item	35:	“Avoid	Causing	State	Transitions
in	Generators	with	throw”).

The	cost	of	starting	a	coroutine	is	a	function	call.	Once	a	coroutine	is	active,	it

uses	less	than	1	KB	of	memory	until	it’s	exhausted.	Like	threads,	coroutines	are
independent	functions	that	can	consume	inputs	from	their	environment	and
produce	resulting	outputs.	The	difference	is	that	coroutines	pause	at	each	await
expression	and	resume	executing	an	async	function	after	the	pending	awaitable
is	resolved	(similar	to	how	yield	behaves	in	generators).

Many	separate	async	functions	advanced	in	lockstep	all	seem	to	run
simultaneously,	mimicking	the	concurrent	behavior	of	Python	threads.	However,
coroutines	do	this	without	the	memory	overhead,	startup	and	context	switching
costs,	or	complex	locking	and	synchronization	code	that’s	required	for	threads.
The	magical	mechanism	powering	coroutines	is	the	event	loop,	which	can	do
highly	concurrent	I/O	efficiently,	while	rapidly	interleaving	execution	between
appropriately	written	functions.

I	can	use	coroutines	to	implement	the	Game	of	Life.	My	goal	is	to	allow	for	I/O
to	occur	within	the	game_logic	function	while	overcoming	the	problems	from	the
Thread	and	Queue	approaches	in	the	previous	items.	To	do	this,	first	I	indicate
that	the	game_logic	function	is	a	coroutine	by	defining	it	using	async	def	instead
of	def.	This	will	allow	me	to	use	the	await	syntax	for	I/O,	such	as	an
asynchronous	read	from	a	socket:

Click	here	to	view	code	image
ALIVE	=	'*'

EMPTY	=	'-'

class	Grid:

				...

def	count_neighbors(y,	x,	get):

				...

async	def	game_logic(state,	neighbors):

				...

				#	Do	some	input/output	in	here:

				data	=	await	my_socket.read(50)

				...

Similarly,	I	can	turn	step_cell	into	a	coroutine	by	adding	async	to	its	definition
and	using	await	for	the	call	to	the	game_logic	function:

Click	here	to	view	code	image
async	def	step_cell(y,	x,	get,	set):

				state	=	get(y,	x)

				neighbors	=	count_neighbors(y,	x,	get)

				next_state	=	await	game_logic(state,	neighbors)

				set(y,	x,	next_state)

The	simulate	function	also	needs	to	become	a	coroutine:

Click	here	to	view	code	image
import	asyncio

async	def	simulate(grid):

				next_grid	=	Grid(grid.height,	grid.width)

				tasks	=	[]

				for	y	in	range(grid.height):

								for	x	in	range(grid.width):

												task	=	step_cell(

																y,	x,	grid.get,	next_grid.set)						#	Fan	out

												tasks.append(task)

				await	asyncio.gather(*tasks)																				#	Fan	in

				return	next_grid

The	coroutine	version	of	the	simulate	function	requires	some	explanation:

Calling	step_cell	doesn’t	immediately	run	that	function.	Instead,	it	returns
a	coroutine	instance	that	can	be	used	with	an	await	expression	at	a	later
time.	This	is	similar	to	how	generator	functions	that	use	yield	return	a
generator	instance	when	they’re	called	instead	of	executing	immediately.
Deferring	execution	like	this	is	the	mechanism	that	causes	fan-out.

The	gather	function	from	the	asyncio	built-in	library	causes	fan-in.	The
await	expression	on	gather	instructs	the	event	loop	to	run	the	step_cell
coroutines	concurrently	and	resume	execution	of	the	simulate	coroutine
when	all	of	them	have	been	completed.

No	locks	are	required	for	the	Grid	instance	since	all	execution	occurs
within	a	single	thread.	The	I/O	becomes	parallelized	as	part	of	the	event
loop	that’s	provided	by	asyncio.

Finally,	I	can	drive	this	code	with	a	one-line	change	to	the	original	example.
This	relies	on	the	asyncio.run	function	to	execute	the	simulate	coroutine	in	an
event	loop	and	carry	out	its	dependent	I/O:

Click	here	to	view	code	image

class	ColumnPrinter:

				...

grid	=	Grid(5,	9)

grid.set(0,	3,	ALIVE)

grid.set(1,	4,	ALIVE)

grid.set(2,	2,	ALIVE)

grid.set(2,	3,	ALIVE)

grid.set(2,	4,	ALIVE)

columns	=	ColumnPrinter()

for	i	in	range(5):

				columns.append(str(grid))

				grid	=	asyncio.run(simulate(grid))			#	Run	the	event	loop

print(columns)

>>>

				0					|					1					|					2					|					3					|					4

---*-----	|	---------	|	---------	|	---------	|	---------

----*----	|	--*-*----	|	----*----	|	---*-----	|	----*----

--***----	|	---**----	|	--*-*----	|	----**---	|	-----*---

---------	|	---*-----	|	---**----	|	---**----	|	---***---

---------	|	---------	|	---------	|	---------	|	---------

The	result	is	the	same	as	before.	All	of	the	overhead	associated	with	threads	has
been	eliminated.	Whereas	the	Queue	and	ThreadPoolExecutor	approaches	are
limited	in	their	exception	handling—merely	re-raising	exceptions	across	thread
boundaries—with	coroutines	I	can	actually	use	the	interactive	debugger	to	step
through	the	code	line	by	line	(see	Item	80:	“Consider	Interactive	Debugging	with
pdb”):

Click	here	to	view	code	image
async	def	game_logic(state,	neighbors):

				...

				raise	OSError('Problem	with	I/O')

				...

asyncio.run(game_logic(ALIVE,	3))

>>>

Traceback	...

OSError:	Problem	with	I/O

Later,	if	my	requirements	change	and	I	also	need	to	do	I/O	from	within
count_neighbors,	I	can	easily	accomplish	this	by	adding	async	and	await
keywords	to	the	existing	functions	and	call	sites	instead	of	having	to	restructure

everything	as	I	would	have	had	to	do	if	I	were	using	Thread	or	Queue	instances
(see	Item	61:	“Know	How	to	Port	Threaded	I/O	to	asyncio”	for	another
example):

Click	here	to	view	code	image
async	def	count_neighbors(y,	x,	get):

				...

async	def	step_cell(y,	x,	get,	set):

				state	=	get(y,	x)

				neighbors	=	await	count_neighbors(y,	x,	get)

				next_state	=	await	game_logic(state,	neighbors)

				set(y,	x,	next_state)

grid	=	Grid(5,	9)

grid.set(0,	3,	ALIVE)

grid.set(1,	4,	ALIVE)

grid.set(2,	2,	ALIVE)

grid.set(2,	3,	ALIVE)

grid.set(2,	4,	ALIVE)

columns	=	ColumnPrinter()

for	i	in	range(5):

				columns.append(str(grid))

				grid	=	asyncio.run(simulate(grid))

print(columns)

>>>

				0					|					1					|					2					|					3					|					4

---*-----	|	---------	|	---------	|	---------	|	---------

----*----	|	--*-*----	|	----*----	|	---*-----	|	----*----

--***----	|	---**----	|	--*-*----	|	----**---	|	-----*---

---------	|	---*-----	|	---**----	|	---**----	|	---***---

---------	|	---------	|	---------	|	---------	|	---------

The	beauty	of	coroutines	is	that	they	decouple	your	code’s	instructions	for	the
external	environment	(i.e.,	I/O)	from	the	implementation	that	carries	out	your
wishes	(i.e.,	the	event	loop).	They	let	you	focus	on	the	logic	of	what	you’re
trying	to	do	instead	of	wasting	time	trying	to	figure	out	how	you’re	going	to
accomplish	your	goals	concurrently.

Things	to	Remember

✦	Functions	that	are	defined	using	the	async	keyword	are	called	coroutines.	A

caller	can	receive	the	result	of	a	dependent	coroutine	by	using	the	await
keyword.

✦	Coroutines	provide	an	efficient	way	to	run	tens	of	thousands	of	functions
seemingly	at	the	same	time.

✦	Coroutines	can	use	fan-out	and	fan-in	in	order	to	parallelize	I/O,	while	also
overcoming	all	of	the	problems	associated	with	doing	I/O	in	threads.

Item	61:	Know	How	to	Port	Threaded	I/O	to	asyncio
Once	you	understand	the	advantage	of	coroutines	(see	Item	60:	“Achieve	Highly
Concurrent	I/O	with	Coroutines”),	it	may	seem	daunting	to	port	an	existing
codebase	to	use	them.	Luckily,	Python’s	support	for	asynchronous	execution	is
well	integrated	into	the	language.	This	makes	it	straightforward	to	move	code
that	does	threaded,	blocking	I/O	over	to	coroutines	and	asynchronous	I/O.

For	example,	say	that	I	have	a	TCP-based	server	for	playing	a	game	involving
guessing	a	number.	The	server	takes	lower	and	upper	parameters	that	determine
the	range	of	numbers	to	consider.	Then,	the	server	returns	guesses	for	integer
values	in	that	range	as	they	are	requested	by	the	client.	Finally,	the	server
collects	reports	from	the	client	on	whether	each	of	those	numbers	was	closer
(warmer)	or	further	away	(colder)	from	the	client’s	secret	number.

The	most	common	way	to	build	this	type	of	client/server	system	is	by	using
blocking	I/O	and	threads	(see	Item	53:	“Use	Threads	for	Blocking	I/O,	Avoid	for
Parallelism”).	To	do	this,	I	need	a	helper	class	that	can	manage	sending	and
receiving	of	messages.	For	my	purposes,	each	line	sent	or	received	represents	a
command	to	be	processed:

Click	here	to	view	code	image
class	EOFError(Exception):

				pass

class	ConnectionBase:

				def	__init__(self,	connection):

								self.connection	=	connection

								self.file	=	connection.makefile('rb')

				def	send(self,	command):

								line	=	command	+	'\n'

								data	=	line.encode()

								self.connection.send(data)

				def	receive(self):

								line	=	self.file.readline()

								if	not	line:

												raise	EOFError('Connection	closed')

								return	line[:-1].decode()

The	server	is	implemented	as	a	class	that	handles	one	connection	at	a	time	and
maintains	the	client’s	session	state:

Click	here	to	view	code	image
import	random

WARMER	=	'Warmer'

COLDER	=	'Colder'

UNSURE	=	'Unsure'

CORRECT	=	'Correct'

class	UnknownCommandError(Exception):

				pass

class	Session(ConnectionBase):

				def	__init__(self,	*args):

								super().__init__(*args)

								self._clear_state(None,	None)

				def	_clear_state(self,	lower,	upper):

								self.lower	=	lower

								self.upper	=	upper

								self.secret	=	None

								self.guesses	=	[]

It	has	one	primary	method	that	handles	incoming	commands	from	the	client	and
dispatches	them	to	methods	as	needed.	Note	that	here	I’m	using	an	assignment
expression	(introduced	in	Python	3.8;	see	Item	10:	“Prevent	Repetition	with
Assignment	Expressions”)	to	keep	the	code	short:

Click	here	to	view	code	image
				def	loop(self):

								while	command	:=	self.receive():

				parts	=	command.split('	')

				if	parts[0]	==	'PARAMS':

										self.set_params(parts)

				elif	parts[0]	==	'NUMBER':

										self.send_number()

				elif	parts[0]	==	'REPORT':

										self.receive_report(parts)

				else:

										raise	UnknownCommandError(command)

The	first	command	sets	the	lower	and	upper	bounds	for	the	numbers	that	the
server	is	trying	to	guess:

Click	here	to	view	code	image
				def	set_params(self,	parts):

								assert	len(parts)	==	3

								lower	=	int(parts[1])

								upper	=	int(parts[2])

								self._clear_state(lower,	upper)

The	second	command	makes	a	new	guess	based	on	the	previous	state	that’s
stored	in	the	client’s	Session	instance.	Specifically,	this	code	ensures	that	the
server	will	never	try	to	guess	the	same	number	more	than	once	per	parameter
assignment:

Click	here	to	view	code	image
				def	next_guess(self):

								if	self.secret	is	not	None:

												return	self.secret

								while	True:

												guess	=	random.randint(self.lower,	self.upper)

												if	guess	not	in	self.guesses:

																return	guess

				def	send_number(self):

								guess	=	self.next_guess()

								self.guesses.append(guess)

								self.send(format(guess))

The	third	command	receives	the	decision	from	the	client	of	whether	the	guess
was	warmer	or	colder,	and	it	updates	the	Session	state	accordingly:

Click	here	to	view	code	image
				def	receive_report(self,	parts):

								assert	len(parts)	==	2

								decision	=	parts[1]

								last	=	self.guesses[-1]

				if	decision	==	CORRECT:

								self.secret	=	last

				print(f'Server:	{last}	is	{decision}')

The	client	is	also	implemented	using	a	stateful	class:
import	contextlib

import	math

class	Client(ConnectionBase):

				def	__init__(self,	*args):

								super().__init__(*args)

								self._clear_state()

				def	_clear_state(self):

								self.secret	=	None

								self.last_distance	=	None

The	parameters	of	each	guessing	game	are	set	using	a	with	statement	to	ensure
that	state	is	correctly	managed	on	the	server	side	(see	Item	66:	“Consider
contextlib	and	with	Statements	for	Reusable	try/finally	Behavior”	for
background	and	Item	63:	“Avoid	Blocking	the	asyncio	Event	Loop	to	Maximize
Responsiveness”	for	another	example).	This	method	sends	the	first	command	to
the	server:

Click	here	to	view	code	image
				@contextlib.contextmanager

				def	session(self,	lower,	upper,	secret):

								print(f'Guess	a	number	between	{lower}	and	{upper}!'

														f'	Shhhhh,	it\'s	{secret}.')

								self.secret	=	secret

								self.send(f'PARAMS	{lower}	{upper}')

								try:

												yield

								finally:

												self._clear_state()

												self.send('PARAMS	0	-1')

New	guesses	are	requested	from	the	server,	using	another	method	that
implements	the	second	command:

Click	here	to	view	code	image
				def	request_numbers(self,	count):

								for	_	in	range(count):

												self.send('NUMBER')

												data	=	self.receive()

												yield	int(data)

												if	self.last_distance	==	0:

																return

Whether	each	guess	from	the	server	was	warmer	or	colder	than	the	last	is
reported	using	the	third	command	in	the	final	method:

Click	here	to	view	code	image
				def	report_outcome(self,	number):

								new_distance	=	math.fabs(number	-	self.secret)

								decision	=	UNSURE

								if	new_distance	==	0:

												decision	=	CORRECT

								elif	self.last_distance	is	None:

												pass

								elif	new_distance	<	self.last_distance:

												decision	=	WARMER

								elif	new_distance	>	self.last_distance:

												decision	=	COLDER

								self.last_distance	=	new_distance

								self.send(f'REPORT	{decision}')

								return	decision

I	can	run	the	server	by	having	one	thread	listen	on	a	socket	and	spawn	additional
threads	to	handle	the	new	connections:

Click	here	to	view	code	image
import	socket

from	threading	import	Thread

def	handle_connection(connection):

				with	connection:

								session	=	Session(connection)

								try:

												session.loop()

								except	EOFError:

												pass

def	run_server(address):

				with	socket.socket()	as	listener:

								listener.bind(address)

								listener.listen()

								while	True:

												connection,	_	=	listener.accept()

												thread	=	Thread(target=handle_connection,

																												args=(connection,),

																												daemon=True)

												thread.start()

The	client	runs	in	the	main	thread	and	returns	the	results	of	the	guessing	game	to
the	caller.	This	code	explicitly	exercises	a	variety	of	Python	language	features
(for	loops,	with	statements,	generators,	comprehensions)	so	that	below	I	can
show	what	it	takes	to	port	these	over	to	using	coroutines:

Click	here	to	view	code	image
def	run_client(address):

				with	socket.create_connection(address)	as	connection:

								client	=	Client(connection)

								with	client.session(1,	5,	3):

												results	=	[(x,	client.report_outcome(x))

																							for	x	in	client.request_numbers(5)]

								with	client.session(10,	15,	12):

												for	number	in	client.request_numbers(5):

																outcome	=	client.report_outcome(number)

																results.append((number,	outcome))

				return	results

Finally,	I	can	glue	all	of	this	together	and	confirm	that	it	works	as	expected:

Click	here	to	view	code	image
def	main():

				address	=	('127.0.0.1',	1234)

				server_thread	=	Thread(

								target=run_server,	args=(address,),	daemon=True)

				server_thread.start()

				results	=	run_client(address)

				for	number,	outcome	in	results:

								print(f'Client:	{number}	is	{outcome}')

main()

>>>

Guess	a	number	between	1	and	5!	Shhhhh,	it's	3.

Server:	4	is	Unsure

Server:	1	is	Colder

Server:	5	is	Unsure

Server:	3	is	Correct

Guess	a	number	between	10	and	15!	Shhhhh,	it's	12.

Server:	11	is	Unsure

Server:	10	is	Colder

Server:	12	is	Correct

Client:	4	is	Unsure

Client:	1	is	Colder

Client:	5	is	Unsure

Client:	3	is	Correct

Client:	11	is	Unsure

Client:	10	is	Colder

Client:	12	is	Correct

How	much	effort	is	needed	to	convert	this	example	to	using	async,	await,	and
the	asyncio	built-in	module?

First,	I	need	to	update	my	ConnectionBase	class	to	provide	coroutines	for	send
and	receive	instead	of	blocking	I/O	methods.	I’ve	marked	each	line	that’s
changed	with	a	#	Changed	comment	to	make	it	clear	what	the	delta	is	between
this	new	example	and	the	code	above:

Click	here	to	view	code	image
class	AsyncConnectionBase:

				def	__init__(self,	reader,	writer):													#	Changed

								self.reader	=	reader																								#	Changed

								self.writer	=	writer																								#	Changed

				async	def	send(self,	command):

								line	=	command	+	'\n'

								data	=	line.encode()

								self.writer.write(data)																					#	Changed

								await	self.writer.drain()																			#	Changed

				async	def	receive(self):

								line	=	await	self.reader.readline()									#	Changed

								if	not	line:

												raise	EOFError('Connection	closed')

								return	line[:-1].decode()

I	can	create	another	stateful	class	to	represent	the	session	state	for	a	single
connection.	The	only	changes	here	are	the	class’s	name	and	inheriting	from
AsyncConnectionBase	instead	of	ConnectionBase:

Click	here	to	view	code	image
class	AsyncSession(AsyncConnectionBase):												#	Changed

				def	__init__(self,	*args):

								...

				def	_clear_values(self,	lower,	upper):

								...

The	primary	entry	point	for	the	server’s	command	processing	loop	requires	only
minimal	changes	to	become	a	coroutine:

minimal	changes	to	become	a	coroutine:

Click	here	to	view	code	image
				async	def	loop(self):																											#	Changed

								while	command	:=	await	self.receive():						#	Changed

												parts	=	command.split('	')

												if	parts[0]	==	'PARAMS':

																self.set_params(parts)

												elif	parts[0]	==	'NUMBER':

																await	self.send_number()												#	Changed

												elif	parts[0]	==	'REPORT':

																self.receive_report(parts)

												else:

																raise	UnknownCommandError(command)

No	changes	are	required	for	handling	the	first	command:
				def	set_params(self,	parts):

								...

The	only	change	required	for	the	second	command	is	allowing	asynchronous	I/O
to	be	used	when	guesses	are	transmitted	to	the	client:

Click	here	to	view	code	image
				def	next_guess(self):

								...

				async	def	send_number(self):																				#	Changed

								guess	=	self.next_guess()

								self.guesses.append(guess)

								await	self.send(format(guess))														#	Changed

No	changes	are	required	for	processing	the	third	command:
				def	receive_report(self,	parts):

								...

Similarly,	the	client	class	needs	to	be	reimplemented	to	inherit	from
AsyncConnectionBase:

Click	here	to	view	code	image
class	AsyncClient(AsyncConnectionBase):													#	Changed

				def	__init__(self,	*args):

								...

				def	_clear_state(self):

								...

The	first	command	method	for	the	client	requires	a	few	async	and	await
keywords	to	be	added.	It	also	needs	to	use	the	asynccontextmanager	helper
function	from	the	contextlib	built-in	module:

Click	here	to	view	code	image
				@contextlib.asynccontextmanager																	#	Changed

				async	def	session(self,	lower,	upper,	secret):		#	Changed

								print(f'Guess	a	number	between	{lower}	and	{upper}!'

														f'	Shhhhh,	it\'s	{secret}.')

								self.secret	=	secret

								await	self.send(f'PARAMS	{lower}	{upper}')		#	Changed

								try:

												yield

								finally:

												self._clear_state()

												await	self.send('PARAMS	0	-1')										#	Changed

The	second	command	again	only	requires	the	addition	of	async	and	await
anywhere	coroutine	behavior	is	required:

Click	here	to	view	code	image
				async	def	request_numbers(self,	count):									#	Changed

								for	_	in	range(count):

												await	self.send('NUMBER')															#	Changed

												data	=	await	self.receive()													#	Changed

												yield	int(data)

												if	self.last_distance	==	0:

																return

The	third	command	only	requires	adding	one	async	and	one	await	keyword:

Click	here	to	view	code	image
				async	def	report_outcome(self,	number):									#	Changed

								...

								await	self.send(f'REPORT	{decision}')							#	Changed

								...

The	code	that	runs	the	server	needs	to	be	completely	reimplemented	to	use	the
asyncio	built-in	module	and	its	start_server	function:

Click	here	to	view	code	image
import	asyncio

async	def	handle_async_connection(reader,	writer):

				session	=	AsyncSession(reader,	writer)

				try:

								await	session.loop()

				except	EOFError:

								pass

async	def	run_async_server(address):

				server	=	await	asyncio.start_server(

								handle_async_connection,	*address)

				async	with	server:

								await	server.serve_forever()

The	run_client	function	that	initiates	the	game	requires	changes	on	nearly	every
line.	Any	code	that	previously	interacted	with	the	blocking	socket	instances	has
to	be	replaced	with	asyncio	versions	of	similar	functionality	(which	are	marked
with	#	New	below).	All	other	lines	in	the	function	that	require	interaction	with
coroutines	need	to	use	async	and	await	keywords	as	appropriate.	If	you	forget	to
add	one	of	these	keywords	in	a	necessary	place,	an	exception	will	be	raised	at
runtime.

Click	here	to	view	code	image
async	def	run_async_client(address):

				streams	=	await	asyncio.open_connection(*address)			#	New

				client	=	AsyncClient(*streams)																						#	New

				async	with	client.session(1,	5,	3):

								results	=	[(x,	await	client.report_outcome(x))

																			async	for	x	in	client.request_numbers(5)]

				async	with	client.session(10,	15,	12):

								async	for	number	in	client.request_numbers(5):

												outcome	=	await	client.report_outcome(number)

												results.append((number,	outcome))

				_,	writer	=	streams																																	#	New

				writer.close()																																						#	New

				await	writer.wait_closed()																										#	New

				return	results

What’s	most	interesting	about	run_async_client	is	that	I	didn’t	have	to
restructure	any	of	the	substantive	parts	of	interacting	with	the	AsyncClient	in
order	to	port	this	function	over	to	use	coroutines.	Each	of	the	language	features
that	I	needed	has	a	corresponding	asynchronous	version,	which	made	the
migration	easy	to	do.

This	won’t	always	be	the	case,	though.	There	are	currently	no	asynchronous

versions	of	the	next	and	iter	built-in	functions	(see	Item	31:	“Be	Defensive
When	Iterating	Over	Arguments”	for	background);	you	have	to	await	on	the
__anext__	and	__aiter__	methods	directly.	There’s	also	no	asynchronous
version	of	yield	from	(see	Item	33:	“Compose	Multiple	Generators	with	yield
from”),	which	makes	it	noisier	to	compose	generators.	But	given	the	rapid	pace
at	which	async	functionality	is	being	added	to	Python,	it’s	only	a	matter	of	time
before	these	features	become	available.

Finally,	the	glue	needs	to	be	updated	to	run	this	new	asynchronous	example	end-
to-end.	I	use	the	asyncio.create_task	function	to	enqueue	the	server	for
execution	on	the	event	loop	so	that	it	runs	in	parallel	with	the	client	when	the
await	expression	is	reached.	This	is	another	approach	to	causing	fan-out	with
different	behavior	than	the	asyncio.gather	function:

Click	here	to	view	code	image
async	def	main_async():

				address	=	('127.0.0.1',	4321)

				server	=	run_async_server(address)

				asyncio.create_task(server)

				results	=	await	run_async_client(address)

				for	number,	outcome	in	results:

								print(f'Client:	{number}	is	{outcome}')

asyncio.run(main_async())

>>>

Guess	a	number	between	1	and	5!	Shhhhh,	it's	3.

Server:	5	is	Unsure

Server:	4	is	Warmer

Server:	2	is	Unsure

Server:	1	is	Colder

Server:	3	is	Correct

Guess	a	number	between	10	and	15!	Shhhhh,	it's	12.

Server:	14	is	Unsure

Server:	10	is	Unsure

Server:	15	is	Colder

Server:	12	is	Correct

Client:	5	is	Unsure

Client:	4	is	Warmer

Client:	2	is	Unsure

Client:	1	is	Colder

Client:	3	is	Correct

Client:	14	is	Unsure

Client:	10	is	Unsure

Client:	15	is	Colder

Client:	12	is	Correct

This	works	as	expected.	The	coroutine	version	is	easier	to	follow	because	all	of
the	interactions	with	threads	have	been	removed.	The	asyncio	built-in	module
also	provides	many	helper	functions	and	shortens	the	amount	of	socket
boilerplate	required	to	write	a	server	like	this.

Your	use	case	may	be	more	complex	and	harder	to	port	for	a	variety	of	reasons.
The	asyncio	module	has	a	vast	number	of	I/O,	synchronization,	and	task
management	features	that	could	make	adopting	coroutines	easier	for	you	(see
Item	62:	“Mix	Threads	and	Coroutines	to	Ease	the	Transition	to	asyncio”	and
Item	63:	“Avoid	Blocking	the	asyncio	Event	Loop	to	Maximize
Responsiveness”).	Be	sure	to	check	out	the	online	documentation	for	the	library
(https://docs.python.org/3/library/asyncio.html)	to	understand	its	full	potential.

Things	to	Remember

✦	Python	provides	asynchronous	versions	of	for	loops,	with	statements,
generators,	comprehensions,	and	library	helper	functions	that	can	be	used	as
drop-in	replacements	in	coroutines.

✦	The	asyncio	built-in	module	makes	it	straightforward	to	port	existing	code
that	uses	threads	and	blocking	I/O	over	to	coroutines	and	asynchronous	I/O.

Item	62:	Mix	Threads	and	Coroutines	to	Ease	the
Transition	to	asyncio

In	the	previous	item	(see	Item	61:	“Know	How	to	Port	Threaded	I/O	to
asyncio”),	I	ported	a	TCP	server	that	does	blocking	I/O	with	threads	over	to	use
asyncio	with	coroutines.	The	transition	was	big-bang:	I	moved	all	of	the	code	to
the	new	style	in	one	go.	But	it’s	rarely	feasible	to	port	a	large	program	this	way.
Instead,	you	usually	need	to	incrementally	migrate	your	codebase	while	also
updating	your	tests	as	needed	and	verifying	that	everything	works	at	each	step
along	the	way.

In	order	to	do	that,	your	codebase	needs	to	be	able	to	use	threads	for	blocking
I/O	(see	Item	53:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”)	and
coroutines	for	asynchronous	I/O	(see	Item	60:	“Achieve	Highly	Concurrent	I/O
with	Coroutines”)	at	the	same	time	in	a	way	that’s	mutually	compatible.

https://docs.python.org/3/library/asyncio.html

Practically,	this	means	that	you	need	threads	to	be	able	to	run	coroutines,	and
you	need	coroutines	to	be	able	to	start	and	wait	on	threads.	Luckily,	asyncio
includes	built-in	facilities	for	making	this	type	of	interoperability
straightforward.

For	example,	say	that	I’m	writing	a	program	that	merges	log	files	into	one	output
stream	to	aid	with	debugging.	Given	a	file	handle	for	an	input	log,	I	need	a	way
to	detect	whether	new	data	is	available	and	return	the	next	line	of	input.	I	can	do
this	using	the	tell	method	of	the	file	handle	to	check	whether	the	current	read
position	matches	the	length	of	the	file.	When	no	new	data	is	present,	an
exception	should	be	raised	(see	Item	20:	“Prefer	Raising	Exceptions	to
Returning	None”	for	background):
class	NoNewData(Exception):

				pass

def	readline(handle):

				offset	=	handle.tell()

				handle.seek(0,	2)

				length	=	handle.tell()

				if	length	==	offset:

								raise	NoNewData

				handle.seek(offset,	0)

				return	handle.readline()

By	wrapping	this	function	in	a	while	loop,	I	can	turn	it	into	a	worker	thread.
When	a	new	line	is	available,	I	call	a	given	callback	function	to	write	it	to	the
output	log	(see	Item	38:	“Accept	Functions	Instead	of	Classes	for	Simple
Interfaces”	for	why	to	use	a	function	interface	for	this	instead	of	a	class).	When
no	data	is	available,	the	thread	sleeps	to	reduce	the	amount	of	busy	waiting
caused	by	polling	for	new	data.	When	the	input	file	handle	is	closed,	the	worker
thread	exits:

Click	here	to	view	code	image
import	time

def	tail_file(handle,	interval,	write_func):

				while	not	handle.closed:

								try:

												line	=	readline(handle)

								except	NoNewData:

												time.sleep(interval)

								else:

												write_func(line)

Now,	I	can	start	one	worker	thread	per	input	file	and	unify	their	output	into	a
single	output	file.	The	write	helper	function	below	needs	to	use	a	Lock	instance
(see	Item	54:	“Use	Lock	to	Prevent	Data	Races	in	Threads”)	in	order	to	serialize
writes	to	the	output	stream	and	make	sure	that	there	are	no	intra-line	conflicts:

Click	here	to	view	code	image
from	threading	import	Lock,	Thread

def	run_threads(handles,	interval,	output_path):

				with	open(output_path,	'wb')	as	output:

								lock	=	Lock()

								def	write(data):

												with	lock:

																output.write(data)

								threads	=	[]

								for	handle	in	handles:

												args	=	(handle,	interval,	write)

												thread	=	Thread(target=tail_file,	args=args)

												thread.start()

												threads.append(thread)

								for	thread	in	threads:

												thread.join()

As	long	as	an	input	file	handle	is	still	alive,	its	corresponding	worker	thread	will
also	stay	alive.	That	means	it’s	sufficient	to	wait	for	the	join	method	from	each
thread	to	complete	in	order	to	know	that	the	whole	process	is	done.

Given	a	set	of	input	paths	and	an	output	path,	I	can	call	run_threads	and	confirm
that	it	works	as	expected.	How	the	input	file	handles	are	created	or	separately
closed	isn’t	important	in	order	to	demonstrate	this	code’s	behavior,	nor	is	the
output	verification	function—defined	in	confirm_merge	that	follows—which	is
why	I’ve	left	them	out	here:

Click	here	to	view	code	image
def	confirm_merge(input_paths,	output_path):

				...

input_paths	=	...

handles	=	...

output_path	=	...

run_threads(handles,	0.1,	output_path)

confirm_merge(input_paths,	output_path)

With	this	threaded	implementation	as	the	starting	point,	how	can	I	incrementally
convert	this	code	to	use	asyncio	and	coroutines	instead?	There	are	two
approaches:	top-down	and	bottom-up.

Top-down	means	starting	at	the	highest	parts	of	a	codebase,	like	in	the	main
entry	points,	and	working	down	to	the	individual	functions	and	classes	that	are
the	leaves	of	the	call	hierarchy.	This	approach	can	be	useful	when	you	maintain
a	lot	of	common	modules	that	you	use	across	many	different	programs.	By
porting	the	entry	points	first,	you	can	wait	to	port	the	common	modules	until
you’re	already	using	coroutines	everywhere	else.

The	concrete	steps	are:

1.	 Change	a	top	function	to	use	async	def	instead	of	def.

2.	 Wrap	all	of	its	calls	that	do	I/O—potentially	blocking	the	event	loop—to
use	asyncio.run_in_executor	instead.

3.	 Ensure	that	the	resources	or	callbacks	used	by	run_in_executor	invocations
are	properly	synchronized	(i.e.,	using	Lock	or	the
asyncio.run_coroutine_threadsafe	function).

4.	 Try	to	eliminate	get_event_loop	and	run_in_executor	calls	by	moving
downward	through	the	call	hierarchy	and	converting	intermediate	functions
and	methods	to	coroutines	(following	the	first	three	steps).

Here,	I	apply	steps	1–3	to	the	run_threads	function:

Click	here	to	view	code	image
import	asyncio

async	def	run_tasks_mixed(handles,	interval,	output_path):

				loop	=	asyncio.get_event_loop()

				with	open(output_path,	'wb')	as	output:

								async	def	write_async(data):

												output.write(data)

								def	write(data):

												coro	=	write_async(data)

												future	=	asyncio.run_coroutine_threadsafe(

																coro,	loop)

												future.result()

								tasks	=	[]

								for	handle	in	handles:

												task	=	loop.run_in_executor(

																None,	tail_file,	handle,	interval,	write)

												tasks.append(task)

								await	asyncio.gather(*tasks)

The	run_in_executor	method	instructs	the	event	loop	to	run	a	given	function
—tail_file	in	this	case—using	a	specific	ThreadPoolExecutor	(see	Item	59:
“Consider	ThreadPoolExecutor	When	Threads	Are	Necessary	for	Concurrency”)
or	a	default	executor	instance	when	the	first	parameter	is	None.	By	making
multiple	calls	to	run_in_executor	without	corresponding	await	expressions,	the
run_tasks_mixed	coroutine	fans	out	to	have	one	concurrent	line	of	execution	for
each	input	file.	Then,	the	asyncio.gather	function	along	with	an	await
expression	fans	in	the	tail_file	threads	until	they	all	complete	(see	Item	56:
“Know	How	to	Recognize	When	Concurrency	Is	Necessary”	for	more	about	fan-
out	and	fan-in).

This	code	eliminates	the	need	for	the	Lock	instance	in	the	write	helper	by	using
asyncio.run_coroutine_threadsafe.	This	function	allows	plain	old	worker
threads	to	call	a	coroutine—write_async	in	this	case—and	have	it	execute	in	the
event	loop	from	the	main	thread	(or	from	any	other	thread,	if	necessary).	This
effectively	synchronizes	the	threads	together	and	ensures	that	all	writes	to	the
output	file	are	only	done	by	the	event	loop	in	the	main	thread.	Once	the
asyncio.gather	awaitable	is	resolved,	I	can	assume	that	all	writes	to	the	output
file	have	also	completed,	and	thus	I	can	close	the	output	file	handle	in	the	with
statement	without	having	to	worry	about	race	conditions.

I	can	verify	that	this	code	works	as	expected.	I	use	the	asyncio.run	function	to
start	the	coroutine	and	run	the	main	event	loop:

Click	here	to	view	code	image
input_paths	=	...

handles	=	...

output_path	=	...

asyncio.run(run_tasks_mixed(handles,	0.1,	output_path))

confirm_merge(input_paths,	output_path)

Now,	I	can	apply	step	4	to	the	run_tasks_mixed	function	by	moving	down	the

call	stack.	I	can	redefine	the	tail_file	dependent	function	to	be	an
asynchronous	coroutine	instead	of	doing	blocking	I/O	by	following	steps	1–3:

Click	here	to	view	code	image
async	def	tail_async(handle,	interval,	write_func):

				loop	=	asyncio.get_event_loop()

				while	not	handle.closed:

								try:

												line	=	await	loop.run_in_executor(

																None,	readline,	handle)

								except	NoNewData:

												await	asyncio.sleep(interval)

								else:

												await	write_func(line)

This	new	implementation	of	tail_async	allows	me	to	push	calls	to
get_event_loop	and	run_in_executor	down	the	stack	and	out	of	the
run_tasks_mixed	function	entirely.	What’s	left	is	clean	and	much	easier	to
follow:

Click	here	to	view	code	image
async	def	run_tasks(handles,	interval,	output_path):

				with	open(output_path,	'wb')	as	output:

								async	def	write_async(data):

												output.write(data)

								tasks	=	[]

								for	handle	in	handles:

												coro	=	tail_async(handle,	interval,	write_async)

												task	=	asyncio.create_task(coro)

												tasks.append(task)

								await	asyncio.gather(*tasks)

I	can	verify	that	run_tasks	works	as	expected,	too:

Click	here	to	view	code	image
input_paths	=	...

handles	=	...

output_path	=	...

asyncio.run(run_tasks(handles,	0.1,	output_path))

confirm_merge(input_paths,	output_path)

It’s	possible	to	continue	this	iterative	refactoring	pattern	and	convert	readline
into	an	asynchronous	coroutine	as	well.	However,	that	function	requires	so	many

blocking	file	I/O	operations	that	it	doesn’t	seem	worth	porting,	given	how	much
that	would	reduce	the	clarity	of	the	code	and	hurt	performance.	In	some
situations,	it	makes	sense	to	move	everything	to	asyncio,	and	in	others	it	doesn’t.

The	bottom-up	approach	to	adopting	coroutines	has	four	steps	that	are	similar	to
the	steps	of	the	top-down	style,	but	the	process	traverses	the	call	hierarchy	in	the
opposite	direction:	from	leaves	to	entry	points.

The	concrete	steps	are:

1.	 Create	a	new	asynchronous	coroutine	version	of	each	leaf	function	that
you’re	trying	to	port.

2.	 Change	the	existing	synchronous	functions	so	they	call	the	coroutine
versions	and	run	the	event	loop	instead	of	implementing	any	real	behavior.

3.	 Move	up	a	level	of	the	call	hierarchy,	make	another	layer	of	coroutines,	and
replace	existing	calls	to	synchronous	functions	with	calls	to	the	coroutines
defined	in	step	1.

4.	 Delete	synchronous	wrappers	around	coroutines	created	in	step	2	as	you
stop	requiring	them	to	glue	the	pieces	together.

For	the	example	above,	I	would	start	with	the	tail_file	function	since	I	decided
that	the	readline	function	should	keep	using	blocking	I/O.	I	can	rewrite
tail_file	so	it	merely	wraps	the	tail_async	coroutine	that	I	defined	above.	To
run	that	coroutine	until	it	finishes,	I	need	to	create	an	event	loop	for	each
tail_file	worker	thread	and	then	call	its	run_until_complete	method.	This
method	will	block	the	current	thread	and	drive	the	event	loop	until	the
tail_async	coroutine	exits,	achieving	the	same	behavior	as	the	threaded,
blocking	I/O	version	of	tail_file:

Click	here	to	view	code	image
def	tail_file(handle,	interval,	write_func):

				loop	=	asyncio.new_event_loop()

				asyncio.set_event_loop(loop)

				async	def	write_async(data):

								write_func(data)

				coro	=	tail_async(handle,	interval,	write_async)

				loop.run_until_complete(coro)

This	new	tail_file	function	is	a	drop-in	replacement	for	the	old	one.	I	can
verify	that	everything	works	as	expected	by	calling	run_threads	again:

Click	here	to	view	code	image
input_paths	=	...

handles	=	...

output_path	=	...

run_threads(handles,	0.1,	output_path)

confirm_merge(input_paths,	output_path)

After	wrapping	tail_async	with	tail_file,	the	next	step	is	to	convert	the
run_threads	function	to	a	coroutine.	This	ends	up	being	the	same	work	as	step	4
of	the	top-down	approach	above,	so	at	this	point,	the	styles	converge.

This	is	a	great	start	for	adopting	asyncio,	but	there’s	even	more	that	you	could
do	to	increase	the	responsiveness	of	your	program	(see	Item	63:	“Avoid
Blocking	the	asyncio	Event	Loop	to	Maximize	Responsiveness”).

Things	to	Remember

✦	The	awaitable	run_in_executor	method	of	the	asyncio	event	loop	enables
coroutines	to	run	synchronous	functions	in	ThreadPoolExecutor	pools.	This
facilitates	top-down	migrations	to	asyncio.

✦	The	run_until_complete	method	of	the	asyncio	event	loop	enables
synchronous	code	to	run	a	coroutine	until	it	finishes.	The
asyncio.run_coroutine_threadsafe	function	provides	the	same
functionality	across	thread	boundaries.	Together	these	help	with	bottom-up
migrations	to	asyncio.

Item	63:	Avoid	Blocking	the	asyncio	Event	Loop	to
Maximize	Responsiveness

In	the	previous	item	I	showed	how	to	migrate	to	asyncio	incrementally	(see	Item
62:	“Mix	Threads	and	Coroutines	to	Ease	the	Transition	to	asyncio”	for
background	and	the	implementation	of	various	functions	below).	The	resulting
coroutine	properly	tails	input	files	and	merges	them	into	a	single	output:

Click	here	to	view	code	image
import	asyncio

async	def	run_tasks(handles,	interval,	output_path):

				with	open(output_path,	'wb')	as	output:

								async	def	write_async(data):

												output.write(data)

								tasks	=	[]

								for	handle	in	handles:

												coro	=	tail_async(handle,	interval,	write_async)

												task	=	asyncio.create_task(coro)

												tasks.append(task)

								await	asyncio.gather(*tasks)

However,	it	still	has	one	big	problem:	The	open,	close,	and	write	calls	for	the
output	file	handle	happen	in	the	main	event	loop.	These	operations	all	require
making	system	calls	to	the	program’s	host	operating	system,	which	may	block
the	event	loop	for	significant	amounts	of	time	and	prevent	other	coroutines	from
making	progress.	This	could	hurt	overall	responsiveness	and	increase	latency,
especially	for	programs	such	as	highly	concurrent	servers.

I	can	detect	when	this	problem	happens	by	passing	the	debug=True	parameter	to
the	asyncio.run	function.	Here,	I	show	how	the	file	and	line	of	a	bad	coroutine,
presumably	blocked	on	a	slow	system	call,	can	be	identified:

Click	here	to	view	code	image
import	time

async	def	slow_coroutine():

				time.sleep(0.5)		#	Simulating	slow	I/O

asyncio.run(slow_coroutine(),	debug=True)

>>>

Executing	<Task	finished	name='Task-1'	coro=<slow_coroutine()

➥done,	defined	at	example.py:29>	result=None	created
➥at	.../asyncio/base_events.py:487>	took	0.503	seconds
...

If	I	want	the	most	responsive	program	possible,	I	need	to	minimize	the	potential
system	calls	that	are	made	from	within	the	event	loop.	In	this	case,	I	can	create	a
new	Thread	subclass	(see	Item	53:	“Use	Threads	for	Blocking	I/O,	Avoid	for
Parallelism”)	that	encapsulates	everything	required	to	write	to	the	output	file
using	its	own	event	loop:

Click	here	to	view	code	image
from	threading	import	Thread

class	WriteThread(Thread):

				def	__init__(self,	output_path):

								super().__init__()

								self.output_path	=	output_path

								self.output	=	None

								self.loop	=	asyncio.new_event_loop()

				def	run(self):

								asyncio.set_event_loop(self.loop)

								with	open(self.output_path,	'wb')	as	self.output:

												self.loop.run_forever()

								#	Run	one	final	round	of	callbacks	so	the	await	on

								#	stop()	in	another	event	loop	will	be	resolved.

								self.loop.run_until_complete(asyncio.sleep(0))

Coroutines	in	other	threads	can	directly	call	and	await	on	the	write	method	of
this	class,	since	it’s	merely	a	thread-safe	wrapper	around	the	real_write	method
that	actually	does	the	I/O.	This	eliminates	the	need	for	a	Lock	(see	Item	54:	“Use
Lock	to	Prevent	Data	Races	in	Threads”):

Click	here	to	view	code	image
				async	def	real_write(self,	data):

								self.output.write(data)

				async	def	write(self,	data):

								coro	=	self.real_write(data)

								future	=	asyncio.run_coroutine_threadsafe(

												coro,	self.loop)

								await	asyncio.wrap_future(future)

Other	coroutines	can	tell	the	worker	thread	when	to	stop	in	a	threadsafe	manner,
using	similar	boilerplate:

Click	here	to	view	code	image
				async	def	real_stop(self):

								self.loop.stop()

				async	def	stop(self):

								coro	=	self.real_stop()

								future	=	asyncio.run_coroutine_threadsafe(

												coro,	self.loop)

								await	asyncio.wrap_future(future)

I	can	also	define	the	__aenter__	and	__aexit__	methods	to	allow	this	class	to	be
used	in	with	statements	(see	Item	66:	“Consider	contextlib	and	with	Statements
for	Reusable	try/finally	Behavior”).	This	ensures	that	the	worker	thread	starts
and	stops	at	the	right	times	without	slowing	down	the	main	event	loop	thread:

Click	here	to	view	code	image
				async	def	__aenter__(self):

								loop	=	asyncio.get_event_loop()

								await	loop.run_in_executor(None,	self.start)

								return	self

				async	def	__aexit__(self,	*_):

								await	self.stop()

With	this	new	WriteThread	class,	I	can	refactor	run_tasks	into	a	fully
asynchronous	version	that’s	easy	to	read	and	completely	avoids	running	slow
system	calls	in	the	main	event	loop	thread:

Click	here	to	view	code	image
def	readline(handle):

				...

async	def	tail_async(handle,	interval,	write_func):

				...

async	def	run_fully_async(handles,	interval,	output_path):

				async	with	WriteThread(output_path)	as	output:

								tasks	=	[]

								for	handle	in	handles:

												coro	=	tail_async(handle,	interval,	output.write)

												task	=	asyncio.create_task(coro)

												tasks.append(task)

								await	asyncio.gather(*tasks)

I	can	verify	that	this	works	as	expected,	given	a	set	of	input	handles	and	an
output	file	path:

Click	here	to	view	code	image
def	confirm_merge(input_paths,	output_path):

				...

input_paths	=	...

handles	=	...

output_path	=	...

asyncio.run(run_fully_async(handles,	0.1,	output_path))

confirm_merge(input_paths,	output_path)

Things	to	Remember

✦	Making	system	calls	in	coroutines—including	blocking	I/O	and	starting
threads—can	reduce	program	responsiveness	and	increase	the	perception	of
latency.

✦	Pass	the	debug=True	parameter	to	asyncio.run	in	order	to	detect	when
certain	coroutines	are	preventing	the	event	loop	from	reacting	quickly.

Item	64:	Consider	concurrent.futures	for	True	Parallelism
At	some	point	in	writing	Python	programs,	you	may	hit	the	performance	wall.
Even	after	optimizing	your	code	(see	Item	70:	“Profile	Before	Optimizing”),
your	program’s	execution	may	still	be	too	slow	for	your	needs.	On	modern
computers	that	have	an	increasing	number	of	CPU	cores,	it’s	reasonable	to
assume	that	one	solution	would	be	parallelism.	What	if	you	could	split	your
code’s	computation	into	independent	pieces	of	work	that	run	simultaneously
across	multiple	CPU	cores?

Unfortunately,	Python’s	global	interpreter	lock	(GIL)	prevents	true	parallelism
in	threads	(see	Item	53:	“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”),
so	that	option	is	out.	Another	common	suggestion	is	to	rewrite	your	most
performance-critical	code	as	an	extension	module,	using	the	C	language.	C	gets
you	closer	to	the	bare	metal	and	can	run	faster	than	Python,	eliminating	the	need
for	parallelism	in	some	cases.	C	extensions	can	also	start	native	threads
independent	of	the	Python	interpreter	that	run	in	parallel	and	utilize	multiple
CPU	cores	with	no	concern	for	the	GIL.	Python’s	API	for	C	extensions	is	well
documented	and	a	good	choice	for	an	escape	hatch.	It’s	also	worth	checking	out
tools	like	SWIG	(https://github.com/swig/swig)	and	CLIF
(https://github.com/google/clif)	to	aid	in	extension	development.

But	rewriting	your	code	in	C	has	a	high	cost.	Code	that	is	short	and
understandable	in	Python	can	become	verbose	and	complicated	in	C.	Such	a	port
requires	extensive	testing	to	ensure	that	the	functionality	is	equivalent	to	the
original	Python	code	and	that	no	bugs	have	been	introduced.	Sometimes	it’s
worth	it,	which	explains	the	large	ecosystem	of	C-extension	modules	in	the
Python	community	that	speed	up	things	like	text	parsing,	image	compositing,

https://github.com/swig/swig
https://github.com/google/clif

and	matrix	math.	There	are	even	open	source	tools	such	as	Cython
(https://cython.org)	and	Numba	(https://numba.pydata.org)	that	can	ease	the
transition	to	C.

The	problem	is	that	moving	one	piece	of	your	program	to	C	isn’t	sufficient	most
of	the	time.	Optimized	Python	programs	usually	don’t	have	one	major	source	of
slowness;	rather,	there	are	often	many	significant	contributors.	To	get	the
benefits	of	C’s	bare	metal	and	threads,	you’d	need	to	port	large	parts	of	your
program,	drastically	increasing	testing	needs	and	risk.	There	must	be	a	better
way	to	preserve	your	investment	in	Python	to	solve	difficult	computational
problems.

The	multiprocessing	built-in	module,	which	is	easily	accessed	via	the
concurrent.futures	built-in	module,	may	be	exactly	what	you	need	(see	Item
59:	“Consider	ThreadPoolExecutor	When	Threads	Are	Necessary	for
Concurrency”	for	a	related	example).	It	enables	Python	to	utilize	multiple	CPU
cores	in	parallel	by	running	additional	interpreters	as	child	processes.	These
child	processes	are	separate	from	the	main	interpreter,	so	their	global	interpreter
locks	are	also	separate.	Each	child	can	fully	utilize	one	CPU	core.	Each	child	has
a	link	to	the	main	process	where	it	receives	instructions	to	do	computation	and
returns	results.

For	example,	say	that	I	want	to	do	something	computationally	intensive	with
Python	and	utilize	multiple	CPU	cores.	I’ll	use	an	implementation	of	finding	the
greatest	common	divisor	of	two	numbers	as	a	proxy	for	a	more	computationally
intense	algorithm	(like	simulating	fluid	dynamics	with	the	Navier–Stokes
equation):

Click	here	to	view	code	image
#	my_module.py

def	gcd(pair):

				a,	b	=	pair

				low	=	min(a,	b)

				for	i	in	range(low,	0,	-1):

								if	a	%	i	==	0	and	b	%	i	==	0:

												return	i

				assert	False,	'Not	reachable'

Running	this	function	in	serial	takes	a	linearly	increasing	amount	of	time
because	there	is	no	parallelism:

Click	here	to	view	code	image

https://cython.org
https://numba.pydata.org

#	run_serial.py

import	my_module

import	time

NUMBERS	=	[

				(1963309,	2265973),	(2030677,	3814172),

				(1551645,	2229620),	(2039045,	2020802),

				(1823712,	1924928),	(2293129,	1020491),

				(1281238,	2273782),	(3823812,	4237281),

				(3812741,	4729139),	(1292391,	2123811),

]

def	main():

				start	=	time.time()

				results	=	list(map(my_module.gcd,	NUMBERS))

				end	=	time.time()

				delta	=	end	-	start

				print(f'Took	{delta:.3f}	seconds')

if	__name__	==	'__main__':

				main()

>>>

Took	1.173	seconds

Running	this	code	on	multiple	Python	threads	will	yield	no	speed	improvement
because	the	GIL	prevents	Python	from	using	multiple	CPU	cores	in	parallel.
Here,	I	do	the	same	computation	as	above	but	using	the	concurrent.futures
module	with	its	ThreadPoolExecutor	class	and	two	worker	threads	(to	match	the
number	of	CPU	cores	on	my	computer):

Click	here	to	view	code	image
#	run_threads.py

import	my_module

from	concurrent.futures	import	ThreadPoolExecutor

import	time

NUMBERS	=	[

				...

]

def	main():

				start	=	time.time()

				pool	=	ThreadPoolExecutor(max_workers=2)

				results	=	list(pool.map(my_module.gcd,	NUMBERS))

				end	=	time.time()

				delta	=	end	-	start

				print(f'Took	{delta:.3f}	seconds')

if	__name__	==	'__main__':

				main()

>>>

Took	1.436	seconds

It’s	even	slower	this	time	because	of	the	overhead	of	starting	and	communicating
with	the	pool	of	threads.

Now	for	the	surprising	part:	Changing	a	single	line	of	code	causes	something
magical	to	happen.	If	I	replace	the	ThreadPoolExecutor	with	the
ProcessPoolExecutor	from	the	concurrent.futures	module,	everything	speeds
up:

Click	here	to	view	code	image
#	run_parallel.py

import	my_module

from	concurrent.futures	import	ProcessPoolExecutor

import	time

NUMBERS	=	[

				...

]

def	main():

				start	=	time.time()

				pool	=	ProcessPoolExecutor(max_workers=2)		#	The	one	change

				results	=	list(pool.map(my_module.gcd,	NUMBERS))

				end	=	time.time()

				delta	=	end	-	start

				print(f'Took	{delta:.3f}	seconds')

if	__name__	==	'__main__':

				main()

>>>

Took	0.683	seconds

Running	on	my	dual-core	machine,	this	is	significantly	faster!	How	is	this
possible?	Here’s	what	the	ProcessPoolExecutor	class	actually	does	(via	the	low-
level	constructs	provided	by	the	multiprocessing	module):

1.	 It	takes	each	item	from	the	numbers	input	data	to	map.

2.	 It	serializes	the	item	into	binary	data	by	using	the	pickle	module	(see	Item
68:	“Make	pickle	Reliable	with	copyreg”).

3.	 It	copies	the	serialized	data	from	the	main	interpreter	process	to	a	child
interpreter	process	over	a	local	socket.

4.	 It	deserializes	the	data	back	into	Python	objects,	using	pickle	in	the	child
process.

5.	 It	imports	the	Python	module	containing	the	gcd	function.

6.	 It	runs	the	function	on	the	input	data	in	parallel	with	other	child	processes.

7.	 It	serializes	the	result	back	into	binary	data.

8.	 It	copies	that	binary	data	back	through	the	socket.

9.	 It	deserializes	the	binary	data	back	into	Python	objects	in	the	parent
process.

10.	 It	merges	the	results	from	multiple	children	into	a	single	list	to	return.

Although	it	looks	simple	to	the	programmer,	the	multiprocessing	module	and
ProcessPoolExecutor	class	do	a	huge	amount	of	work	to	make	parallelism
possible.	In	most	other	languages,	the	only	touch	point	you	need	to	coordinate
two	threads	is	a	single	lock	or	atomic	operation	(see	Item	54:	“Use	Lock	to
Prevent	Data	Races	in	Threads”	for	an	example).	The	overhead	of	using
multiprocessing	via	ProcessPoolExecutor	is	high	because	of	all	of	the
serialization	and	deserialization	that	must	happen	between	the	parent	and	child
processes.

This	scheme	is	well	suited	to	certain	types	of	isolated,	high-leverage	tasks.	By
isolated,	I	mean	functions	that	don’t	need	to	share	state	with	other	parts	of	the
program.	By	high-leverage	tasks,	I	mean	situations	in	which	only	a	small
amount	of	data	must	be	transferred	between	the	parent	and	child	processes	to
enable	a	large	amount	of	computation.	The	greatest	common	divisor	algorithm	is
one	example	of	this,	but	many	other	mathematical	algorithms	work	similarly.

If	your	computation	doesn’t	have	these	characteristics,	then	the	overhead	of
ProcessPoolExecutor	may	prevent	it	from	speeding	up	your	program	through
parallelization.	When	that	happens,	multiprocessing	provides	more	advanced

facilities	for	shared	memory,	cross-process	locks,	queues,	and	proxies.	But	all	of
these	features	are	very	complex.	It’s	hard	enough	to	reason	about	such	tools	in
the	memory	space	of	a	single	process	shared	between	Python	threads.	Extending
that	complexity	to	other	processes	and	involving	sockets	makes	this	much	more
difficult	to	understand.

I	suggest	that	you	initially	avoid	all	parts	of	the	multiprocessing	built-in
module.	You	can	start	by	using	the	ThreadPoolExecutor	class	to	run	isolated,
high-leverage	functions	in	threads.	Later	you	can	move	to	the
ProcessPoolExecutor	to	get	a	speedup.	Finally,	when	you’ve	completely
exhausted	the	other	options,	you	can	consider	using	the	multiprocessing	module
directly.

Things	to	Remember

✦	Moving	CPU	bottlenecks	to	C-extension	modules	can	be	an	effective	way	to
improve	performance	while	maximizing	your	investment	in	Python	code.
However,	doing	so	has	a	high	cost	and	may	introduce	bugs.

✦	The	multiprocessing	module	provides	powerful	tools	that	can	parallelize
certain	types	of	Python	computation	with	minimal	effort.

✦	The	power	of	multiprocessing	is	best	accessed	through	the
concurrent.futures	built-in	module	and	its	simple	ProcessPoolExecutor
class.

✦	Avoid	the	advanced	(and	complicated)	parts	of	the	multiprocessing	module
until	you’ve	exhausted	all	other	options.

8.	Robustness	and	Performance

Once	you’ve	written	a	useful	Python	program,	the	next	step	is	to	productionize
your	code	so	it’s	bulletproof.	Making	programs	dependable	when	they	encounter
unexpected	circumstances	is	just	as	important	as	making	programs	with	correct
functionality.	Python	has	built-in	features	and	modules	that	aid	in	hardening
your	programs	so	they	are	robust	in	a	wide	variety	of	situations.

One	dimension	of	robustness	is	scalability	and	performance.	When	you’re
implementing	Python	programs	that	handle	a	non-trivial	amount	of	data,	you’ll
often	see	slowdowns	caused	by	the	algorithmic	complexity	of	your	code	or	other
types	of	computational	overhead.	Luckily,	Python	includes	many	of	the
algorithms	and	data	structures	you	need	to	achieve	high	performance	with
minimal	effort.

Item	65:	Take	Advantage	of	Each	Block	in
try/except/else/finally

There	are	four	distinct	times	when	you	might	want	to	take	action	during
exception	handling	in	Python.	These	are	captured	in	the	functionality	of	try,
except,	else,	and	finally	blocks.	Each	block	serves	a	unique	purpose	in	the
compound	statement,	and	their	various	combinations	are	useful	(see	Item	87:
“Define	a	Root	Exception	to	Insulate	Callers	from	APIs”	for	another	example).

finally	Blocks
Use	try/finally	when	you	want	exceptions	to	propagate	up	but	also	want	to	run
cleanup	code	even	when	exceptions	occur.	One	common	usage	of	try/finally	is
for	reliably	closing	file	handles	(see	Item	66:	“Consider	contextlib	and	with
Statements	for	Reusable	try/finally	Behavior”	for	another—likely	better—
approach):

Click	here	to	view	code	image
def	try_finally_example(filename):

				print('*	Opening	file')

handle	=	open(filename,	encoding='utf-8')	#	Maybe	OSError

try:

				print('*	Reading	data')

				return	handle.read()		#	Maybe	UnicodeDecodeError

finally:

				print('*	Calling	close()')

				handle.close()								#	Always	runs	after	try	block

Any	exception	raised	by	the	read	method	will	always	propagate	up	to	the	calling
code,	but	the	close	method	of	handle	in	the	finally	block	will	run	first:

Click	here	to	view	code	image
filename	=	'random_data.txt'

with	open(filename,	'wb')	as	f:

				f.write(b'\xf1\xf2\xf3\xf4\xf5')		#	Invalid	utf-8

data	=	try_finally_example(filename)

>>>

*	Opening	file

*	Reading	data

*	Calling	close()

Traceback	...

UnicodeDecodeError:	'utf-8'	codec	can't	decode	byte	0xf1	in

➥position	0:	invalid	continuation	byte

You	must	call	open	before	the	try	block	because	exceptions	that	occur	when
opening	the	file	(like	OSError	if	the	file	does	not	exist)	should	skip	the	finally
block	entirely:

Click	here	to	view	code	image
try_finally_example('does_not_exist.txt')

>>>

*	Opening	file

Traceback	...

FileNotFoundError:	[Errno	2]	No	such	file	or	directory:

➥'does_not_exist.txt'

else	Blocks
Use	try/except/else	to	make	it	clear	which	exceptions	will	be	handled	by	your
code	and	which	exceptions	will	propagate	up.	When	the	try	block	doesn’t	raise
an	exception,	the	else	block	runs.	The	else	block	helps	you	minimize	the
amount	of	code	in	the	try	block,	which	is	good	for	isolating	potential	exception
causes	and	improves	readability.	For	example,	say	that	I	want	to	load	JSON

dictionary	data	from	a	string	and	return	the	value	of	a	key	it	contains:

Click	here	to	view	code	image
import	json

def	load_json_key(data,	key):

				try:

								print('*	Loading	JSON	data')

								result_dict	=	json.loads(data)		#	May	raise	ValueError

				except	ValueError	as	e:

								print('*	Handling	ValueError')

								raise	KeyError(key)	from	e

				else:

								print('*	Looking	up	key')

								return	result_dict[key]									#	May	raise	KeyError

In	the	successful	case,	the	JSON	data	is	decoded	in	the	try	block,	and	then	the
key	lookup	occurs	in	the	else	block:

Click	here	to	view	code	image
assert	load_json_key('{"foo":	"bar"}',	'foo')	==	'bar'

>>>

*	Loading	JSON	data

*	Looking	up	key

If	the	input	data	isn’t	valid	JSON,	then	decoding	with	json.loads	raises	a
ValueError.	The	exception	is	caught	by	the	except	block	and	handled:

Click	here	to	view	code	image
load_json_key('{"foo":	bad	payload',	'foo')

>>>

*	Loading	JSON	data

*	Handling	ValueError

Traceback	...

JSONDecodeError:	Expecting	value:	line	1	column	9	(char	8)

The	above	exception	was	the	direct	cause	of	the	following

➥exception:

Traceback	...

KeyError:	'foo'

If	the	key	lookup	raises	any	exceptions,	they	propagate	up	to	the	caller	because
they	are	outside	the	try	block.	The	else	clause	ensures	that	what	follows	the

try/except	is	visually	distinguished	from	the	except	block.	This	makes	the
exception	propagation	behavior	clear:

Click	here	to	view	code	image
load_json_key('{"foo":	"bar"}',	'does	not	exist')

>>>

*	Loading	JSON	data

*	Looking	up	key

Traceback	...

KeyError:	'does	not	exist'

Everything	Together
Use	try/except/else/finally	when	you	want	to	do	it	all	in	one	compound
statement.	For	example,	say	that	I	want	to	read	a	description	of	work	to	do	from
a	file,	process	it,	and	then	update	the	file	in-place.	Here,	the	try	block	is	used	to
read	the	file	and	process	it;	the	except	block	is	used	to	handle	exceptions	from
the	try	block	that	are	expected;	the	else	block	is	used	to	update	the	file	in	place
and	allow	related	exceptions	to	propagate	up;	and	the	finally	block	cleans	up
the	file	handle:

Click	here	to	view	code	image
UNDEFINED	=	object()

def	divide_json(path):

				print('*	Opening	file')

				handle	=	open(path,	'r+')			#	May	raise	OSError

				try:

								print('*	Reading	data')

								data	=	handle.read()				#	May	raise	UnicodeDecodeError

								print('*	Loading	JSON	data')

								op	=	json.loads(data)			#	May	raise	ValueError

								print('*	Performing	calculation')

								value	=	(

												op['numerator']	/

												op['denominator'])		#	May	raise	ZeroDivisionError

				except	ZeroDivisionError	as	e:

								print('*	Handling	ZeroDivisionError')

								return	UNDEFINED

				else:

								print('*	Writing	calculation')

								op['result']	=	value

								result	=	json.dumps(op)

								handle.seek(0)										#	May	raise	OSError

								handle.write(result)				#	May	raise	OSError

								return	value

				finally:

								print('*	Calling	close()')

								handle.close()										#	Always	runs

In	the	successful	case,	the	try,	else,	and	finally	blocks	run:

Click	here	to	view	code	image
temp_path	=	'random_data.json'

with	open(temp_path,	'w')	as	f:

				f.write('{"numerator":	1,	"denominator":	10}')

assert	divide_json(temp_path)	==	0.1

>>>

*	Opening	file

*	Reading	data

*	Loading	JSON	data

*	Performing	calculation

*	Writing	calculation

*	Calling	close()

If	the	calculation	is	invalid,	the	try,	except,	and	finally	blocks	run,	but	the	else
block	does	not:

Click	here	to	view	code	image
with	open(temp_path,	'w')	as	f:

				f.write('{"numerator":	1,	"denominator":	0}')

assert	divide_json(temp_path)	is	UNDEFINED

>>>

*	Opening	file

*	Reading	data

*	Loading	JSON	data

*	Performing	calculation

*	Handling	ZeroDivisionError

*	Calling	close()

If	the	JSON	data	was	invalid,	the	try	block	runs	and	raises	an	exception,	the
finally	block	runs,	and	then	the	exception	is	propagated	up	to	the	caller.	The
except	and	else	blocks	do	not	run:

Click	here	to	view	code	image
with	open(temp_path,	'w')	as	f:

				f.write('{"numerator":	1	bad	data')

divide_json(temp_path)

>>>

*	Opening	file

*	Reading	data

*	Loading	JSON	data

*	Calling	close()

Traceback	...

JSONDecodeError:	Expecting	','	delimiter:	line	1	column	17

➥(char	16)

This	layout	is	especially	useful	because	all	of	the	blocks	work	together	in
intuitive	ways.	For	example,	here	I	simulate	this	by	running	the	divide_json
function	at	the	same	time	that	my	hard	drive	runs	out	of	disk	space:

Click	here	to	view	code	image
with	open(temp_path,	'w')	as	f:

					f.write('{"numerator":	1,	"denominator":	10}')

divide_json(temp_path)

>>>

*	Opening	file

*	Reading	data

*	Loading	JSON	data

*	Performing	calculation

*	Writing	calculation

*	Calling	close()

Traceback	...

OSError:	[Errno	28]	No	space	left	on	device

When	the	exception	was	raised	in	the	else	block	while	rewriting	the	result	data,
the	finally	block	still	ran	and	closed	the	file	handle	as	expected.

Things	to	Remember

✦	The	try/finally	compound	statement	lets	you	run	cleanup	code	regardless
of	whether	exceptions	were	raised	in	the	try	block.

✦	The	else	block	helps	you	minimize	the	amount	of	code	in	try	blocks	and
visually	distinguish	the	success	case	from	the	try/except	blocks.

✦	An	else	block	can	be	used	to	perform	additional	actions	after	a	successful
try	block	but	before	common	cleanup	in	a	finally	block.

Item	66:	Consider	contextlib	and	with	Statements	for
Reusable	try/finally	Behavior

The	with	statement	in	Python	is	used	to	indicate	when	code	is	running	in	a
special	context.	For	example,	mutual-exclusion	locks	(see	Item	54:	“Use	Lock	to
Prevent	Data	Races	in	Threads”)	can	be	used	in	with	statements	to	indicate	that
the	indented	code	block	runs	only	while	the	lock	is	held:

Click	here	to	view	code	image
from	threading	import	Lock

lock	=	Lock()

with	lock:

				#	Do	something	while	maintaining	an	invariant

				...

The	example	above	is	equivalent	to	this	try/finally	construction	because	the
Lock	class	properly	enables	the	with	statement	(see	Item	65:	“Take	Advantage	of
Each	Block	in	try/except/else/finally”	for	more	about	try/finally):

Click	here	to	view	code	image
lock.acquire()

try:

				#	Do	something	while	maintaining	an	invariant

				...

finally:

		lock.release()

The	with	statement	version	of	this	is	better	because	it	eliminates	the	need	to
write	the	repetitive	code	of	the	try/finally	construction,	and	it	ensures	that	you
don’t	forget	to	have	a	corresponding	release	call	for	every	acquire	call.

It’s	easy	to	make	your	objects	and	functions	work	in	with	statements	by	using
the	contextlib	built-in	module.	This	module	contains	the	contextmanager
decorator	(see	Item	26:	“Define	Function	Decorators	with	functools.wraps”	for
background),	which	lets	a	simple	function	be	used	in	with	statements.	This	is
much	easier	than	defining	a	new	class	with	the	special	methods	__enter__	and
__exit__	(the	standard	way).

For	example,	say	that	I	want	a	region	of	code	to	have	more	debug	logging
sometimes.	Here,	I	define	a	function	that	does	logging	at	two	severity	levels:

Click	here	to	view	code	image
import	logging

def	my_function():

				logging.debug('Some	debug	data')

				logging.error('Error	log	here')

				logging.debug('More	debug	data')

The	default	log	level	for	my	program	is	WARNING,	so	only	the	error	message	will
print	to	screen	when	I	run	the	function:
my_function()

	

>>>

Error	log	here

I	can	elevate	the	log	level	of	this	function	temporarily	by	defining	a	context
manager.	This	helper	function	boosts	the	logging	severity	level	before	running
the	code	in	the	with	block	and	reduces	the	logging	severity	level	afterward:

Click	here	to	view	code	image
from	contextlib	import	contextmanager

@contextmanager

def	debug_logging(level):

				logger	=	logging.getLogger()

				old_level	=	logger.getEffectiveLevel()

				logger.setLevel(level)

				try:

								yield

				finally:

								logger.setLevel(old_level)

The	yield	expression	is	the	point	at	which	the	with	block’s	contents	will	execute
(see	Item	30:	“Consider	Generators	Instead	of	Returning	Lists”	for	background).
Any	exceptions	that	happen	in	the	with	block	will	be	re-raised	by	the	yield
expression	for	you	to	catch	in	the	helper	function	(see	Item	35:	“Avoid	Causing
State	Transitions	in	Generators	with	throw”	for	how	that	works).

Now,	I	can	call	the	same	logging	function	again	but	in	the	debug_logging
context.	This	time,	all	of	the	debug	messages	are	printed	to	the	screen	during	the
with	block.	The	same	function	running	outside	the	with	block	won’t	print	debug
messages:
with	debug_logging(logging.DEBUG):

				print('*	Inside:')

				my_function()

print('*	After:')

my_function()

>>>

*	Inside:

Some	debug	data

Error	log	here

More	debug	data

*	After:

Error	log	here

Using	with	Targets
The	context	manager	passed	to	a	with	statement	may	also	return	an	object.	This
object	is	assigned	to	a	local	variable	in	the	as	part	of	the	compound	statement.
This	gives	the	code	running	in	the	with	block	the	ability	to	directly	interact	with
its	context.

For	example,	say	I	want	to	write	a	file	and	ensure	that	it’s	always	closed
correctly.	I	can	do	this	by	passing	open	to	the	with	statement.	open	returns	a	file
handle	for	the	as	target	of	with,	and	it	closes	the	handle	when	the	with	block
exits:

Click	here	to	view	code	image
with	open('my_output.txt',	'w')	as	handle:

				handle.write('This	is	some	data!')

This	approach	is	more	Pythonic	than	manually	opening	and	closing	the	file
handle	every	time.	It	gives	you	confidence	that	the	file	is	eventually	closed	when
execution	leaves	the	with	statement.	By	highlighting	the	critical	section,	it	also
encourages	you	to	reduce	the	amount	of	code	that	executes	while	the	file	handle
is	open,	which	is	good	practice	in	general.

To	enable	your	own	functions	to	supply	values	for	as	targets,	all	you	need	to	do
is	yield	a	value	from	your	context	manager.	For	example,	here	I	define	a	context
manager	to	fetch	a	Logger	instance,	set	its	level,	and	then	yield	it	as	the	target:

Click	here	to	view	code	image
@contextmanager

def	log_level(level,	name):

				logger	=	logging.getLogger(name)

				old_level	=	logger.getEffectiveLevel()

				logger.setLevel(level)

				try:

								yield	logger

				finally:

								logger.setLevel(old_level)

Calling	logging	methods	like	debug	on	the	as	target	produces	output	because	the
logging	severity	level	is	set	low	enough	in	the	with	block	on	that	specific	Logger
instance.	Using	the	logging	module	directly	won’t	print	anything	because	the
default	logging	severity	level	for	the	default	program	logger	is	WARNING:

Click	here	to	view	code	image
with	log_level(logging.DEBUG,	'my-log')	as	logger:

				logger.debug(f'This	is	a	message	for	{logger.name}!')

				logging.debug('This	will	not	print')

>>>

This	is	a	message	for	my-log!

After	the	with	statement	exits,	calling	debug	logging	methods	on	the	Logger
named	'my-log'	will	not	print	anything	because	the	default	logging	severity
level	has	been	restored.	Error	log	messages	will	always	print:

Click	here	to	view	code	image
logger	=	logging.getLogger('my-log')

logger.debug('Debug	will	not	print')

logger.error('Error	will	print')

>>>

Error	will	print

Later,	I	can	change	the	name	of	the	logger	I	want	to	use	by	simply	updating	the
with	statement.	This	will	point	the	Logger	that’s	the	as	target	in	the	with	block	to
a	different	instance,	but	I	won’t	have	to	update	any	of	my	other	code	to	match:

Click	here	to	view	code	image
with	log_level(logging.DEBUG,	'other-log')	as	logger:

				logger.debug(f'This	is	a	message	for	{logger.name}!')

				logging.debug('This	will	not	print')

>>>

This	is	a	message	for	other-log!

This	isolation	of	state	and	decoupling	between	creating	a	context	and	acting
within	that	context	is	another	benefit	of	the	with	statement.

Things	to	Remember

✦	The	with	statement	allows	you	to	reuse	logic	from	try/finally	blocks	and
reduce	visual	noise.

✦	The	contextlib	built-in	module	provides	a	contextmanager	decorator	that
makes	it	easy	to	use	your	own	functions	in	with	statements.

✦	The	value	yielded	by	context	managers	is	supplied	to	the	as	part	of	the	with
statement.	It’s	useful	for	letting	your	code	directly	access	the	cause	of	a
special	context.

Item	67:	Use	datetime	Instead	of	time	for	Local	Clocks
Coordinated	Universal	Time	(UTC)	is	the	standard,	time-zoneindependent
representation	of	time.	UTC	works	great	for	computers	that	represent	time	as
seconds	since	the	UNIX	epoch.	But	UTC	isn’t	ideal	for	humans.	Humans
reference	time	relative	to	where	they’re	currently	located.	People	say	“noon”	or
“8	am”	instead	of	“UTC	15:00	minus	7	hours.”	If	your	program	handles	time,
you’ll	probably	find	yourself	converting	time	between	UTC	and	local	clocks	for
the	sake	of	human	understanding.

Python	provides	two	ways	of	accomplishing	time	zone	conversions.	The	old
way,	using	the	time	built-in	module,	is	terribly	error	prone.	The	new	way,	using
the	datetime	built-in	module,	works	great	with	some	help	from	the	community-
built	package	named	pytz.

You	should	be	acquainted	with	both	time	and	datetime	to	thoroughly	understand
why	datetime	is	the	best	choice	and	time	should	be	avoided.

The	time	Module
The	localtime	function	from	the	time	built-in	module	lets	you	convert	a	UNIX
timestamp	(seconds	since	the	UNIX	epoch	in	UTC)	to	a	local	time	that	matches
the	host	computer’s	time	zone	(Pacific	Daylight	Time	in	my	case).	This	local
time	can	be	printed	in	human-readable	format	using	the	strftime	function:

Click	here	to	view	code	image
import	time

now	=	1552774475

local_tuple	=	time.localtime(now)

time_format	=	'%Y-%m-%d	%H:%M:%S'

time_str	=	time.strftime(time_format,	local_tuple)

print(time_str)

>>>

2019-03-16	15:14:35

You’ll	often	need	to	go	the	other	way	as	well,	starting	with	user	input	in	human-
readable	local	time	and	converting	it	to	UTC	time.	You	can	do	this	by	using	the
strptime	function	to	parse	the	time	string,	and	then	calling	mktime	to	convert
local	time	to	a	UNIX	timestamp:

Click	here	to	view	code	image
time_tuple	=	time.strptime(time_str,	time_format)

utc_now	=	time.mktime(time_tuple)

print(utc_now)

>>>

1552774475.0

How	do	you	convert	local	time	in	one	time	zone	to	local	time	in	another	time
zone?	For	example,	say	that	I’m	taking	a	flight	between	San	Francisco	and	New
York,	and	I	want	to	know	what	time	it	will	be	in	San	Francisco	when	I’ve
arrived	in	New	York.

I	might	initially	assume	that	I	can	directly	manipulate	the	return	values	from	the
time,	localtime,	and	strptime	functions	to	do	time	zone	conversions.	But	this	is
a	very	bad	idea.	Time	zones	change	all	the	time	due	to	local	laws.	It’s	too
complicated	to	manage	yourself,	especially	if	you	want	to	handle	every	global
city	for	flight	departures	and	arrivals.

Many	operating	systems	have	configuration	files	that	keep	up	with	the	time	zone
changes	automatically.	Python	lets	you	use	these	time	zones	through	the	time
module	if	your	platform	supports	it.	On	other	platforms,	such	as	Windows,	some
time	zone	functionality	isn’t	available	from	time	at	all.	For	example,	here	I	parse
a	departure	time	from	the	San	Francisco	time	zone,	Pacific	Daylight	Time
(PDT):

Click	here	to	view	code	image
import	os

if	os.name	==	'nt':

				print("This	example	doesn't	work	on	Windows")

else:

				parse_format	=	'%Y-%m-%d	%H:%M:%S	%Z'

				depart_sfo	=	'2019-03-16	15:45:16	PDT'

				time_tuple	=	time.strptime(depart_sfo,	parse_format)

				time_str	=	time.strftime(time_format,	time_tuple)

				print(time_str)

>>>

2019-03-16	15:45:16

After	seeing	that	'PDT'	works	with	the	strptime	function,	I	might	also	assume
that	other	time	zones	known	to	my	computer	will	work.	Unfortunately,	this	isn’t
the	case.	strptime	raises	an	exception	when	it	sees	Eastern	Daylight	Time
(EDT),	which	is	the	time	zone	for	New	York:

Click	here	to	view	code	image
arrival_nyc	=	'2019-03-16	23:33:24	EDT'

time_tuple	=	time.strptime(arrival_nyc,	time_format)

>>>

Traceback	...

ValueError:	unconverted	data	remains:		EDT

The	problem	here	is	the	platform-dependent	nature	of	the	time	module.	Its
behavior	is	determined	by	how	the	underlying	C	functions	work	with	the	host
operating	system.	This	makes	the	functionality	of	the	time	module	unreliable	in
Python.	The	time	module	fails	to	consistently	work	properly	for	multiple	local
times.	Thus,	you	should	avoid	using	the	time	module	for	this	purpose.	If	you
must	use	time,	use	it	only	to	convert	between	UTC	and	the	host	computer’s	local
time.	For	all	other	types	of	conversions,	use	the	datetime	module.

The	datetime	Module
The	second	option	for	representing	times	in	Python	is	the	datetime	class	from
the	datetime	built-in	module.	Like	the	time	module,	datetime	can	be	used	to
convert	from	the	current	time	in	UTC	to	local	time.

Here,	I	convert	the	present	time	in	UTC	to	my	computer’s	local	time,	PDT:

Click	here	to	view	code	image
from	datetime	import	datetime,	timezone

now	=	datetime(2019,	3,	16,	22,	14,	35)

now_utc	=	now.replace(tzinfo=timezone.utc)

now_local	=	now_utc.astimezone()

print(now_local)

>>>

2019-03-16	15:14:35-07:00

The	datetime	module	can	also	easily	convert	a	local	time	back	to	a	UNIX
timestamp	in	UTC:

Click	here	to	view	code	image
time_str	=	'2019-03-16	15:14:35'

now	=	datetime.strptime(time_str,	time_format)

time_tuple	=	now.timetuple()

utc_now	=	time.mktime(time_tuple)

print(utc_now)

>>>

1552774475.0

Unlike	the	time	module,	the	datetime	module	has	facilities	for	reliably
converting	from	one	local	time	to	another	local	time.	However,	datetime	only
provides	the	machinery	for	time	zone	operations	with	its	tzinfo	class	and	related
methods.	The	Python	default	installation	is	missing	time	zone	definitions	besides
UTC.

Luckily,	the	Python	community	has	addressed	this	gap	with	the	pytz	module
that’s	available	for	download	from	the	Python	Package	Index	(see	Item	82:
“Know	Where	to	Find	Community-Built	Modules”	for	how	to	install	it).	pytz
contains	a	full	database	of	every	time	zone	definition	you	might	need.

To	use	pytz	effectively,	you	should	always	convert	local	times	to	UTC	first.
Perform	any	datetime	operations	you	need	on	the	UTC	values	(such	as
offsetting).	Then,	convert	to	local	times	as	a	final	step.

For	example,	here	I	convert	a	New	York	City	flight	arrival	time	to	a	UTC
datetime.	Although	some	of	these	calls	seem	redundant,	all	of	them	are
necessary	when	using	pytz:

Click	here	to	view	code	image
import	pytz

arrival_nyc	=	'2019-03-16	23:33:24'

nyc_dt_naive	=	datetime.strptime(arrival_nyc,	time_format)

eastern	=	pytz.timezone('US/Eastern')

nyc_dt	=	eastern.localize(nyc_dt_naive)

utc_dt	=	pytz.utc.normalize(nyc_dt.astimezone(pytz.utc))

print(utc_dt)

>>>

2019-03-17	03:33:24+00:00

Once	I	have	a	UTC	datetime,	I	can	convert	it	to	San	Francisco	local	time:

Click	here	to	view	code	image
pacific	=	pytz.timezone('US/Pacific')

sf_dt	=	pacific.normalize(utc_dt.astimezone(pacific))

print(sf_dt)

>>>

2019-03-16	20:33:24-07:00

Just	as	easily,	I	can	convert	it	to	the	local	time	in	Nepal:

Click	here	to	view	code	image
nepal	=	pytz.timezone('Asia/Katmandu')

nepal_dt	=	nepal.normalize(utc_dt.astimezone(nepal))

print(nepal_dt)

>>>

2019-03-17	09:18:24+05:45

With	datetime	and	pytz,	these	conversions	are	consistent	across	all
environments,	regardless	of	what	operating	system	the	host	computer	is	running.

Things	to	Remember

✦	Avoid	using	the	time	module	for	translating	between	different	time	zones.
✦	Use	the	datetime	built-in	module	along	with	the	pytz	community	module	to
reliably	convert	between	times	in	different	time	zones.

✦	Always	represent	time	in	UTC	and	do	conversions	to	local	time	as	the	very
final	step	before	presentation.

Item	68:	Make	pickle	Reliable	with	copyreg
The	pickle	built-in	module	can	serialize	Python	objects	into	a	stream	of	bytes
and	deserialize	bytes	back	into	objects.	Pickled	byte	streams	shouldn’t	be	used	to
communicate	between	untrusted	parties.	The	purpose	of	pickle	is	to	let	you	pass

Python	objects	between	programs	that	you	control	over	binary	channels.

Note
The	pickle	module’s	serialization	format	 is	unsafe	by	design.	The	serialized
data	contains	what	is	essentially	a	program	that	describes	how	to	reconstruct
the	original	Python	object.	This	means	a	malicious	pickle	payload	could	be
used	to	compromise	any	part	of	a	Python	program	that	attempts	to	deserialize
it.

In	contrast,	the	json	module	is	safe	by	design.	Serialized	JSON	data	contains	a
simple	description	of	 an	object	hierarchy.	Deserializing	 JSON	data	does	not
expose	 a	 Python	 program	 to	 additional	 risk.	 Formats	 like	 JSON	 should	 be
used	 for	 communication	 between	 programs	 or	 people	 who	 don’t	 trust	 each
other.

For	example,	say	that	I	want	to	use	a	Python	object	to	represent	the	state	of	a
player’s	progress	in	a	game.	The	game	state	includes	the	level	the	player	is	on
and	the	number	of	lives	they	have	remaining:
class	GameState:

				def	__init__(self):

								self.level	=	0

								self.lives	=	4

The	program	modifies	this	object	as	the	game	runs:

Click	here	to	view	code	image
state	=	GameState()

state.level	+=	1		#	Player	beat	a	level

state.lives	-=	1		#	Player	had	to	try	again

print(state.__dict__)

>>>

{'level':	1,	'lives':	3}

When	the	user	quits	playing,	the	program	can	save	the	state	of	the	game	to	a	file
so	it	can	be	resumed	at	a	later	time.	The	pickle	module	makes	it	easy	to	do	this.
Here,	I	use	the	dump	function	to	write	the	GameState	object	to	a	file:
import	pickle

state_path	=	'game_state.bin'

with	open(state_path,	'wb')	as	f:

				pickle.dump(state,	f)

Later,	I	can	call	the	load	function	with	the	file	and	get	back	the	GameState	object
as	if	it	had	never	been	serialized:
with	open(state_path,	'rb')	as	f:

				state_after	=	pickle.load(f)

print(state_after.__dict__)

>>>

{'level':	1,	'lives':	3}

The	problem	with	this	approach	is	what	happens	as	the	game’s	features	expand
over	time.	Imagine	that	I	want	the	player	to	earn	points	toward	a	high	score.	To
track	the	player’s	points,	I’d	add	a	new	field	to	the	GameState	class
class	GameState:

				def	__init__(self):

								self.level	=	0

								self.lives	=	4

								self.points	=	0		#	New	field

Serializing	the	new	version	of	the	GameState	class	using	pickle	will	work
exactly	as	before.	Here,	I	simulate	the	round-trip	through	a	file	by	serializing	to	a
string	with	dumps	and	back	to	an	object	with	loads:

Click	here	to	view	code	image
state	=	GameState()

serialized	=	pickle.dumps(state)

state_after	=	pickle.loads(serialized)

print(state_after.__dict__)

>>>

{'level':	0,	'lives':	4,	'points':	0}

But	what	happens	to	older	saved	GameState	objects	that	the	user	may	want	to
resume?	Here,	I	unpickle	an	old	game	file	by	using	a	program	with	the	new
definition	of	the	GameState	class:
with	open(state_path,	'rb')	as	f:

				state_after	=	pickle.load(f)

print(state_after.__dict__)

>>>

{'level':	1,	'lives':	3}

The	points	attribute	is	missing!	This	is	especially	confusing	because	the
returned	object	is	an	instance	of	the	new	GameState	class:

Click	here	to	view	code	image
assert	isinstance(state_after,	GameState)

This	behavior	is	a	byproduct	of	the	way	the	pickle	module	works.	Its	primary
use	case	is	making	object	serialization	easy.	As	soon	as	your	use	of	pickle
moves	beyond	trivial	usage,	the	module’s	functionality	starts	to	break	down	in
surprising	ways.

Fixing	these	problems	is	straightforward	using	the	copyreg	built-in	module.	The
copyreg	module	lets	you	register	the	functions	responsible	for	serializing	and
deserializing	Python	objects,	allowing	you	to	control	the	behavior	of	pickle	and
make	it	more	reliable.

Default	Attribute	Values
In	the	simplest	case,	you	can	use	a	constructor	with	default	arguments	(see	Item
23:	“Provide	Optional	Behavior	with	Keyword	Arguments”	for	background)	to
ensure	that	GameState	objects	will	always	have	all	attributes	after	unpickling.
Here,	I	redefine	the	constructor	this	way:

Click	here	to	view	code	image
class	GameState:

				def	__init__(self,	level=0,	lives=4,	points=0):

								self.level	=	level

								self.lives	=	lives

								self.points	=	points

To	use	this	constructor	for	pickling,	I	define	a	helper	function	that	takes	a
GameState	object	and	turns	it	into	a	tuple	of	parameters	for	the	copyreg	module.
The	returned	tuple	contains	the	function	to	use	for	unpickling	and	the
parameters	to	pass	to	the	unpickling	function:

Click	here	to	view	code	image
def	pickle_game_state(game_state):

				kwargs	=	game_state.__dict__

				return	unpickle_game_state,	(kwargs,)

Now,	I	need	to	define	the	unpickle_game_state	helper.	This	function	takes
serialized	data	and	parameters	from	pickle_game_state	and	returns	the

corresponding	GameState	object.	It’s	a	tiny	wrapper	around	the	constructor:
def	unpickle_game_state(kwargs):

				return	GameState(**kwargs)

Now,	I	register	these	functions	with	the	copyreg	built-in	module:

Click	here	to	view	code	image
import	copyreg

copyreg.pickle(GameState,	pickle_game_state)

After	registration,	serializing	and	deserializing	works	as	before:

Click	here	to	view	code	image
state	=	GameState()

state.points	+=	1000

serialized	=	pickle.dumps(state)

state_after	=	pickle.loads(serialized)

print(state_after.__dict__)

>>>

{'level':	0,	'lives':	4,	'points':	1000}

With	this	registration	done,	now	I’ll	change	the	definition	of	GameState	again	to
give	the	player	a	count	of	magic	spells	to	use.	This	change	is	similar	to	when	I
added	the	points	field	to	GameState:

Click	here	to	view	code	image
class	GameState:

				def	__init__(self,	level=0,	lives=4,	points=0,	magic=5):

								self.level	=	level

								self.lives	=	lives

								self.points	=	points

								self.magic	=	magic		#	New	field

But	unlike	before,	deserializing	an	old	GameState	object	will	result	in	valid	game
data	instead	of	missing	attributes.	This	works	because	unpickle_game_state	calls
the	GameState	constructor	directly	instead	of	using	the	pickle	module’s	default
behavior	of	saving	and	restoring	only	the	attributes	that	belong	to	an	object.	The
GameState	constructor’s	keyword	arguments	have	default	values	that	will	be	used
for	any	parameters	that	are	missing.	This	causes	old	game	state	files	to	receive
the	default	value	for	the	new	magic	field	when	they	are	deserialized:

Click	here	to	view	code	image

print('Before:',	state.__dict__)

state_after	=	pickle.loads(serialized)

print('After:	',	state_after.__dict__)

>>>

Before:	{'level':	0,	'lives':	4,	'points':	1000}

After:		{'level':	0,	'lives':	4,	'points':	1000,	'magic':	5}

Versioning	Classes
Sometimes	you	need	to	make	backward-incompatible	changes	to	your	Python
objects	by	removing	fields.	Doing	so	prevents	the	default	argument	approach
above	from	working.

For	example,	say	I	realize	that	a	limited	number	of	lives	is	a	bad	idea,	and	I	want
to	remove	the	concept	of	lives	from	the	game.	Here,	I	redefine	the	GameState
class	to	no	longer	have	a	lives	field:

Click	here	to	view	code	image
class	GameState:

				def	__init__(self,	level=0,	points=0,	magic=5):

								self.level	=	level

								self.points	=	points

								self.magic	=	magic

The	problem	is	that	this	breaks	deserialization	of	old	game	data.	All	fields	from
the	old	data,	even	ones	removed	from	the	class,	will	be	passed	to	the	GameState
constructor	by	the	unpickle_game_state	function:

Click	here	to	view	code	image
pickle.loads(serialized)

>>>

Traceback	...

TypeError:	__init__()	got	an	unexpected	keyword	argument

➥'lives'

I	can	fix	this	by	adding	a	version	parameter	to	the	functions	supplied	to	copyreg.
New	serialized	data	will	have	a	version	of	2	specified	when	pickling	a	new
GameState	object:
def	pickle_game_state(game_state):

				kwargs	=	game_state.__dict__

				kwargs['version']	=	2

				return	unpickle_game_state,	(kwargs,)

Old	versions	of	the	data	will	not	have	a	version	argument	present,	which	means
I	can	manipulate	the	arguments	passed	to	the	GameState	constructor	accordingly:
def	unpickle_game_state(kwargs):

				version	=	kwargs.pop('version',	1)

				if	version	==	1:

								del	kwargs['lives']

				return	GameState(**kwargs)

Now,	deserializing	an	old	object	works	properly:

Click	here	to	view	code	image
copyreg.pickle(GameState,	pickle_game_state)

print('Before:',	state.__dict__)

state_after	=	pickle.loads(serialized)

print('After:	',	state_after.__dict__)

>>>

Before:	{'level':	0,	'lives':	4,	'points':	1000}

After:		{'level':	0,	'points':	1000,	'magic':	5}

I	can	continue	using	this	approach	to	handle	changes	between	future	versions	of
the	same	class.	Any	logic	I	need	to	adapt	an	old	version	of	the	class	to	a	new
version	of	the	class	can	go	in	the	unpickle_game_state	function.

Stable	Import	Paths
One	other	issue	you	may	encounter	with	pickle	is	breakage	from	renaming	a
class.	Often	over	the	life	cycle	of	a	program,	you’ll	refactor	your	code	by
renaming	classes	and	moving	them	to	other	modules.	Unfortunately,	doing	so
breaks	the	pickle	module	unless	you’re	careful.

Here,	I	rename	the	GameState	class	to	BetterGameState	and	remove	the	old	class
from	the	program	entirely:

Click	here	to	view	code	image
class	BetterGameState:

				def	__init__(self,	level=0,	points=0,	magic=5):

								self.level	=	level

								self.points	=	points

								self.magic	=	magic

Attempting	to	deserialize	an	old	GameState	object	now	fails	because	the	class
can’t	be	found:

Click	here	to	view	code	image
pickle.loads(serialized)

>>>

Traceback	...

AttributeError:	Can't	get	attribute	'GameState'	on	<module

➥'__main__'	from	'my_code.py'>

The	cause	of	this	exception	is	that	the	import	path	of	the	serialized	object’s	class
is	encoded	in	the	pickled	data:

Click	here	to	view	code	image
print(serialized)

>>>

b'\x80\x04\x95A\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__

➥\x94\x8c\tGameState\x94\x93\x94)\x81\x94}\x94(\x8c\x05level
➥\x94K\x00\x8c\x06points\x94K\x00\x8c\x05magic\x94K\x05ub.'

The	solution	is	to	use	copyreg	again.	I	can	specify	a	stable	identifier	for	the
function	to	use	for	unpickling	an	object.	This	allows	me	to	transition	pickled
data	to	different	classes	with	different	names	when	it’s	deserialized.	It	gives	me
a	level	of	indirection:

Click	here	to	view	code	image
copyreg.pickle(BetterGameState,	pickle_game_state)

After	I	use	copyreg,	you	can	see	that	the	import	path	to	unpickle_game_state	is
encoded	in	the	serialized	data	instead	of	BetterGameState:

Click	here	to	view	code	image
state	=	BetterGameState()

serialized	=	pickle.dumps(state)

print(serialized)

>>>

b'\x80\x04\x95W\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__

➥\x94\x8c\x13unpickle_game_state\x94\x93\x94}\x94(\x8c
➥\x05level\x94K\x00\x8c\x06points\x94K\x00\x8c\x05magic\x94K
➥\x05\x8c\x07version\x94K\x02u\x85\x94R\x94.'

The	only	gotcha	is	that	I	can’t	change	the	path	of	the	module	in	which	the
unpickle_game_state	function	is	present.	Once	I	serialize	data	with	a	function,	it
must	remain	available	on	that	import	path	for	deserialization	in	the	future.

Things	to	Remember

✦	The	pickle	built-in	module	is	useful	only	for	serializing	and	deserializing
objects	between	trusted	programs.

✦	Deserializing	previously	pickled	objects	may	break	if	the	classes	involved
have	changed	over	time	(e.g.,	attributes	have	been	added	or	removed).

✦	Use	the	copyreg	built-in	module	with	pickle	to	ensure	backward
compatibility	for	serialized	objects.

Item	69:	Use	decimal	When	Precision	Is	Paramount
Python	is	an	excellent	language	for	writing	code	that	interacts	with	numerical
data.	Python’s	integer	type	can	represent	values	of	any	practical	size.	Its	double-
precision	floating	point	type	complies	with	the	IEEE	754	standard.	The	language
also	provides	a	standard	complex	number	type	for	imaginary	values.	However,
these	aren’t	enough	for	every	situation.

For	example,	say	that	I	want	to	compute	the	amount	to	charge	a	customer	for	an
international	phone	call.	I	know	the	time	in	minutes	and	seconds	that	the
customer	was	on	the	phone	(say,	3	minutes	42	seconds).	I	also	have	a	set	rate	for
the	cost	of	calling	Antarctica	from	the	United	States	($1.45/minute).	What
should	the	charge	be?

With	floating	point	math,	the	computed	charge	seems	reasonable
rate	=	1.45

seconds	=	3*60	+	42

cost	=	rate	*	seconds	/	60

print(cost)

>>>

5.364999999999999

The	result	is	0.0001	short	of	the	correct	value	(5.365)	due	to	how	IEEE	754
floating	point	numbers	are	represented.	I	might	want	to	round	up	this	value	to
5.37	to	properly	cover	all	costs	incurred	by	the	customer.	However,	due	to
floating	point	error,	rounding	to	the	nearest	whole	cent	actually	reduces	the	final
charge	(from	5.364	to	5.36)	instead	of	increasing	it	(from	5.365	to	5.37):
print(round(cost,	2))

>>>

5.36

The	solution	is	to	use	the	Decimal	class	from	the	decimal	built-in	module.	The
Decimal	class	provides	fixed	point	math	of	28	decimal	places	by	default.	It	can
go	even	higher,	if	required.	This	works	around	the	precision	issues	in	IEEE	754
floating	point	numbers.	The	class	also	gives	you	more	control	over	rounding
behaviors.

For	example,	redoing	the	Antarctica	calculation	with	Decimal	results	in	the	exact
expected	charge	instead	of	an	approximation:
from	decimal	import	Decimal

rate	=	Decimal('1.45')

seconds	=	Decimal(3*60	+	42)

cost	=	rate	*	seconds	/	Decimal(60)

print(cost)

>>>

5.365

Decimal	instances	can	be	given	starting	values	in	two	different	ways.	The	first
way	is	by	passing	a	str	containing	the	number	to	the	Decimal	constructor.	This
ensures	that	there	is	no	loss	of	precision	due	to	the	inherent	nature	of	Python
floating	point	numbers.	The	second	way	is	by	directly	passing	a	float	or	an	int
instance	to	the	constructor.	Here,	you	can	see	that	the	two	construction	methods
result	in	different	behavior.

Click	here	to	view	code	image
print(Decimal('1.45'))

print(Decimal(1.45))

>>>

1.45

1.4499999999999999555910790149937383830547332763671875

The	same	problem	doesn’t	happen	if	I	supply	integers	to	the	Decimal	constructor:
print('456')

print(456)

>>>

456

456

If	you	care	about	exact	answers,	err	on	the	side	of	caution	and	use	the	str
constructor	for	the	Decimal	type.

Getting	back	to	the	phone	call	example,	say	that	I	also	want	to	support	very	short
phone	calls	between	places	that	are	much	cheaper	to	connect	(like	Toledo	and
Detroit).	Here,	I	compute	the	charge	for	a	phone	call	that	was	5	seconds	long
with	a	rate	of	$0.05/minute:

Click	here	to	view	code	image
rate	=	Decimal('0.05')

seconds	=	Decimal('5')

small_cost	=	rate	*	seconds	/	Decimal(60)

print(small_cost)

>>>

0.004166666666666666666666666667

The	result	is	so	low	that	it	is	decreased	to	zero	when	I	try	to	round	it	to	the
nearest	whole	cent.	This	won’t	do!
print(round(small_cost,	2))

>>>

0.00

Luckily,	the	Decimal	class	has	a	built-in	function	for	rounding	to	exactly	the
decimal	place	needed	with	the	desired	rounding	behavior.	This	works	for	the
higher	cost	case	from	earlier:

Click	here	to	view	code	image
from	decimal	import	ROUND_UP

rounded	=	cost.quantize(Decimal('0.01'),	rounding=ROUND_UP)

print(f'Rounded	{cost}	to	{rounded}')

>>>

Rounded	5.365	to	5.37

Using	the	quantize	method	this	way	also	properly	handles	the	small	usage	case
for	short,	cheap	phone	calls:.

Click	here	to	view	code	image
rounded	=	small_cost.quantize(Decimal('0.01'),

																														rounding=ROUND_UP)

print(f'Rounded	{small_cost}	to	{rounded}')

>>>

Rounded	0.004166666666666666666666666667	to	0.01

While	Decimal	works	great	for	fixed	point	numbers,	it	still	has	limitations	in	its
precision	(e.g.,	1/3	will	be	an	approximation).	For	representing	rational	numbers
with	no	limit	to	precision,	consider	using	the	Fraction	class	from	the	fractions
built-in	module.

Things	to	Remember

✦	Python	has	built-in	types	and	classes	in	modules	that	can	represent
practically	every	type	of	numerical	value.

✦	The	Decimal	class	is	ideal	for	situations	that	require	high	precision	and
control	over	rounding	behavior,	such	as	computations	of	monetary	values.

✦	Pass	str	instances	to	the	Decimal	constructor	instead	of	float	instances	if
it’s	important	to	compute	exact	answers	and	not	floating	point
approximations.

Item	70:	Profile	Before	Optimizing
The	dynamic	nature	of	Python	causes	surprising	behaviors	in	its	runtime
performance.	Operations	you	might	assume	would	be	slow	are	actually	very	fast
(e.g.,	string	manipulation,	generators).	Language	features	you	might	assume
would	be	fast	are	actually	very	slow	(e.g.,	attribute	accesses,	function	calls).	The
true	source	of	slowdowns	in	a	Python	program	can	be	obscure.

The	best	approach	is	to	ignore	your	intuition	and	directly	measure	the
performance	of	a	program	before	you	try	to	optimize	it.	Python	provides	a	built-
in	profiler	for	determining	which	parts	of	a	program	are	responsible	for	its
execution	time.	This	means	you	can	focus	your	optimization	efforts	on	the
biggest	sources	of	trouble	and	ignore	parts	of	the	program	that	don’t	impact
speed	(i.e.,	follow	Amdahl’s	law).

For	example,	say	that	I	want	to	determine	why	an	algorithm	in	a	program	is
slow.	Here,	I	define	a	function	that	sorts	a	list	of	data	using	an	insertion	sort:
def	insertion_sort(data):

				result	=	[]

				for	value	in	data:

								insert_value(result,	value)

								return	result

The	core	mechanism	of	the	insertion	sort	is	the	function	that	finds	the	insertion

point	for	each	piece	of	data.	Here,	I	define	an	extremely	inefficient	version	of	the
insert_value	function	that	does	a	linear	scan	over	the	input	array:
def	insert_value(array,	value):

				for	i,	existing	in	enumerate(array):

								if	existing	>	value:

												array.insert(i,	value)

												return

				array.append(value)

To	profile	insertion_sort	and	insert_value,	I	create	a	data	set	of	random
numbers	and	define	a	test	function	to	pass	to	the	profiler:

Click	here	to	view	code	image
from	random	import	randint

max_size	=	10**4

data	=	[randint(0,	max_size)	for	_	in	range(max_size)]

test	=	lambda:	insertion_sort(data)

Python	provides	two	built-in	profilers:	one	that	is	pure	Python	(profile)	and
another	that	is	a	C-extension	module	(cProfile).	The	cProfile	built-in	module	is
better	because	of	its	minimal	impact	on	the	performance	of	your	program	while
it’s	being	profiled.	The	pure-Python	alternative	imposes	a	high	overhead	that
skews	the	results.

Note
When	profiling	a	Python	program,	be	sure	that	what	you’re	measuring	is	the
code	 itself	 and	 not	 external	 systems.	 Beware	 of	 functions	 that	 access	 the
network	 or	 resources	 on	 disk.	 These	may	 appear	 to	 have	 a	 large	 impact	 on
your	 program’s	 execution	 time	 because	 of	 the	 slowness	 of	 the	 underlying
systems.	If	your	program	uses	a	cache	to	mask	the	latency	of	slow	resources
like	 these,	 you	 should	 ensure	 that	 it’s	 properly	warmed	 up	 before	 you	 start
profiling.

Here,	I	instantiate	a	Profile	object	from	the	cProfile	module	and	run	the	test
function	through	it	using	the	runcall	method:
from	cProfile	import	Profile

profiler	=	Profile()

profiler.runcall(test)

When	the	test	function	has	finished	running,	I	can	extract	statistics	about	its
performance	by	using	the	pstats	built-in	module	and	its	Stats	class.	Various
methods	on	a	Stats	object	adjust	how	to	select	and	sort	the	profiling	information
to	show	only	the	things	I	care	about:
from	pstats	import	Stats

stats	=	Stats(profiler)

stats.strip_dirs()

stats.sort_stats('cumulative')

stats.print_stats()

The	output	is	a	table	of	information	organized	by	function.	The	data	sample	is
taken	only	from	the	time	the	profiler	was	active,	during	the	runcall	method
above:

Click	here	to	view	code	image
>>>

								20003	function	calls	in	1.320	seconds

	

				Ordered	by:	cumulative	time

	

				ncalls		tottime		percall		cumtime		percall	filename:lineno(function)

									1				0.000				0.000				1.320				1.320	main.py:35(<lambda>)

									1				0.003				0.003				1.320				1.320

main.py:10(insertion_sort)

					10000				1.306				0.000				1.317				0.000	main.py:20(insert_value)

						9992				0.011				0.000				0.011				0.000	{method	'insert'	of

'list'	objects}

									8				0.000				0.000				0.000				0.000	{method	'append'	of

'list'	objects}

Here’s	a	quick	guide	to	what	the	profiler	statistics	columns	mean:

ncalls:	The	number	of	calls	to	the	function	during	the	profiling	period.

tottime:	The	number	of	seconds	spent	executing	the	function,	excluding
time	spent	executing	other	functions	it	calls.

tottime	percall:	The	average	number	of	seconds	spent	in	the	function
each	time	it	is	called,	excluding	time	spent	executing	other	functions	it
calls.	This	is	tottime	divided	by	ncalls.

cumtime:	The	cumulative	number	of	seconds	spent	executing	the	function,
including	time	spent	in	all	other	functions	it	calls.

cumtime	percall:	The	average	number	of	seconds	spent	in	the	function
each	time	it	is	called,	including	time	spent	in	all	other	functions	it	calls.
This	is	cumtime	divided	by	ncalls.

Looking	at	the	profiler	statistics	table	above,	I	can	see	that	the	biggest	use	of
CPU	in	my	test	is	the	cumulative	time	spent	in	the	insert_value	function.	Here,
I	redefine	that	function	to	use	the	bisect	built-in	module	(see	Item	72:	“Consider
Searching	Sorted	Sequences	with	bisect”):
from	bisect	import	bisect_left

def	insert_value(array,	value):

				i	=	bisect_left(array,	value)

				array.insert(i,	value)

I	can	run	the	profiler	again	and	generate	a	new	table	of	profiler	statistics.	The
new	function	is	much	faster,	with	a	cumulative	time	spent	that	is	nearly	100
times	smaller	than	with	the	previous	insert_value	function:

Click	here	to	view	code	image
>>>

								30003	function	calls	in	0.017	seconds

				Ordered	by:	cumulative	time

				ncalls		tottime		percall		cumtime		percall	filename:lineno(function)

									1				0.000				0.000				0.017				0.017	main.py:35(<lambda>)

									1				0.002				0.002				0.017				0.017	

main.py:10(insertion_sort)

					10000				0.003				0.000				0.015				0.000	main.py:110(insert_value)

					10000				0.008				0.000				0.008				0.000	{method	'insert'	of	

'list'	objects}

					10000				0.004				0.000				0.004				0.000	{built-in	method	

_bisect.bisect_left}

Sometimes	when	you’re	profiling	an	entire	program,	you	might	find	that	a
common	utility	function	is	responsible	for	the	majority	of	execution	time.	The
default	output	from	the	profiler	makes	such	a	situation	difficult	to	understand
because	it	doesn’t	show	that	the	utility	function	is	called	by	many	different	parts
of	your	program.

For	example,	here	the	my_utility	function	is	called	repeatedly	by	two	different
functions	in	the	program:
def	my_utility(a,	b):

				c	=	1

				for	i	in	range(100):

								c	+=	a	*	b

def	first_func():

				for	_	in	range(1000):

								my_utility(4,	5)

def	second_func():

				for	_	in	range(10):

								my_utility(1,	3)

def	my_program():

				for	_	in	range(20):

								first_func()

								second_func()

Profiling	this	code	and	using	the	default	print_stats	output	generates	statistics
that	are	confusing:

Click	here	to	view	code	image
>>>

								20242	function	calls	in	0.118	seconds

	

				Ordered	by:	cumulative	time

	

				ncalls		tottime		percall		cumtime		percall	filename:lineno(function)

									1				0.000				0.000				0.118				0.118	main.py:176(my_program)

								20				0.003				0.000				0.117				0.006	main.py:168(first_func)

					20200				0.115				0.000				0.115				0.000	main.py:161(my_utility)

								20				0.000				0.000				0.001				0.000	main.py:172(second_func)

The	my_utility	function	is	clearly	the	source	of	most	execution	time,	but	it’s	not
immediately	obvious	why	that	function	is	called	so	much.	If	you	search	through
the	program’s	code,	you’ll	find	multiple	call	sites	for	my_utility	and	still	be
confused.

To	deal	with	this,	the	Python	profiler	provides	the	print_callers	method	to
show	which	callers	contributed	to	the	profiling	information	of	each	function:
stats.print_callers()

This	profiler	statistics	table	shows	functions	called	on	the	left	and	which
function	was	responsible	for	making	the	call	on	the	right.	Here,	it’s	clear	that
my_utility	is	most	used	by	first_func:

Click	here	to	view	code	image

>>>

			Ordered	by:	cumulative	time

	

Function																																was	called	by...

																																												ncalls		tottime		cumtime

main.py:176(my_program)																	<-

main.py:168(first_func)																	<-						20				0.003

0.117		main.py:176(my_program)

main.py:161(my_utility)																	<-			20000				0.114

0.114		main.py:168(first_func)

																																															200				0.001				0.001

main.py:172(second_func)

Profiling.md:172(second_func)											<-						20				0.000

0.001		main.py:176(my_program)

Things	to	Remember

✦	It’s	important	to	profile	Python	programs	before	optimizing	because	the
sources	of	slowdowns	are	often	obscure.

✦	Use	the	cProfile	module	instead	of	the	profile	module	because	it	provides
more	accurate	profiling	information.

✦	The	Profile	object’s	runcall	method	provides	everything	you	need	to
profile	a	tree	of	function	calls	in	isolation.

✦	The	Stats	object	lets	you	select	and	print	the	subset	of	profiling	information
you	need	to	see	to	understand	your	program’s	performance.

Item	71:	Prefer	deque	for	Producer–Consumer	Queues
A	common	need	in	writing	programs	is	a	first-in,	first-out	(FIFO)	queue,	which
is	also	known	as	a	producer–consumer	queue.	A	FIFO	queue	is	used	when	one
function	gathers	values	to	process	and	another	function	handles	them	in	the	order
in	which	they	were	received.	Often,	programmers	use	Python’s	built-in	list	type
as	a	FIFO	queue.

For	example,	say	that	I	have	a	program	that’s	processing	incoming	emails	for
long-term	archival,	and	it’s	using	a	list	for	a	producer–consumer	queue.	Here,	I
define	a	class	to	represent	the	messages:

Click	here	to	view	code	image
class	Email:

				def	__init__(self,	sender,	receiver,	message):

								self.sender	=	sender

								self.receiver	=	receiver

								self.message	=	message

				...

I	also	define	a	placeholder	function	for	receiving	a	single	email,	presumably
from	a	socket,	the	file	system,	or	some	other	type	of	I/O	system.	The
implementation	of	this	function	doesn’t	matter;	what’s	important	is	its	interface:
It	will	either	return	an	Email	instance	or	raise	a	NoEmailError	exception:

Click	here	to	view	code	image
class	NoEmailError(Exception):

				pass

def	try_receive_email():

				#	Returns	an	Email	instance	or	raises	NoEmailError

				...

The	producing	function	receives	emails	and	enqueues	them	to	be	consumed	at	a
later	time.	This	function	uses	the	append	method	on	the	list	to	add	new
messages	to	the	end	of	the	queue	so	they	are	processed	after	all	messages	that
were	previously	received:
def	produce_emails(queue):

				while	True:

								try:

												email	=	try_receive_email()

								except	NoEmailError:

												return

								else:

												queue.append(email)		#	Producer

The	consuming	function	does	something	useful	with	the	emails.	This	function
calls	pop(0)	on	the	queue,	which	removes	the	very	first	item	from	the	list	and
returns	it	to	the	caller.	By	always	processing	items	from	the	beginning	of	the
queue,	the	consumer	ensures	that	the	items	are	processed	in	the	order	in	which
they	were	received:

Click	here	to	view	code	image
def	consume_one_email(queue):

				if	not	queue:

								return

				email	=	queue.pop(0)		#	Consumer

				#	Index	the	message	for	long-term	archival

				...

Finally,	I	need	a	looping	function	that	connects	the	pieces	together.	This	function
alternates	between	producing	and	consuming	until	the	keep_running	function
returns	False	(see	Item	60:	“Achieve	Highly	Concurrent	I/O	with	Coroutines”	on
how	to	do	this	concurrently):
def	loop(queue,	keep_running):

				while	keep_running():

								produce_emails(queue)

								consume_one_email(queue)

def	my_end_func():

				...

loop([],	my_end_func)

Why	not	process	each	Email	message	in	produce_emails	as	it’s	returned	by
try_receive_email?	It	comes	down	to	the	trade-off	between	latency	and
throughput.	When	using	producer–consumer	queues,	you	often	want	to	minimize
the	latency	of	accepting	new	items	so	they	can	be	collected	as	fast	as	possible.
The	consumer	can	then	process	through	the	backlog	of	items	at	a	consistent	pace
—one	item	per	loop	in	this	case—which	provides	a	stable	performance	profile
and	consistent	throughput	at	the	cost	of	end-to-end	latency	(see	Item	55:	“Use
Queue	to	Coordinate	Work	Between	Threads”	for	related	best	practices).

Using	a	list	for	a	producer–consumer	queue	like	this	works	fine	up	to	a	point,
but	as	the	cardinality—the	number	of	items	in	the	list—increases,	the	list
type’s	performance	can	degrade	superlinearly.	To	analyze	the	performance	of
using	list	as	a	FIFO	queue,	I	can	run	some	micro-benchmarks	using	the	timeit
built-in	module.	Here,	I	define	a	benchmark	for	the	performance	of	adding	new
items	to	the	queue	using	the	append	method	of	list	(matching	the	producer
function’s	usage):

Click	here	to	view	code	image
import	timeit

def	print_results(count,	tests):

				avg_iteration	=	sum(tests)	/	len(tests)

				print(f'Count	{count:>5,}	takes	{avg_iteration:.6f}s')

				return	count,	avg_iteration

def	list_append_benchmark(count):

				def	run(queue):

				for	i	in	range(count):

								queue.append(i)

				tests	=	timeit.repeat(

								setup='queue	=	[]',

								stmt='run(queue)',

								globals=locals(),

								repeat=1000,

								number=1)

				return	print_results(count,	tests)

Running	this	benchmark	function	with	different	levels	of	cardinality	lets	me
compare	its	performance	in	relationship	to	data	size:

Click	here	to	view	code	image
def	print_delta(before,	after):

				before_count,	before_time	=	before

				after_count,	after_time	=	after

				growth	=	1	+	(after_count	-	before_count)	/	before_count

				slowdown	=	1	+	(after_time	-	before_time)	/	before_time

				print(f'{growth:>4.1f}x	data	size,	{slowdown:>4.1f}x	time')

baseline	=	list_append_benchmark(500)

for	count	in	(1_000,	2_000,	3_000,	4_000,	5_000):

				comparison	=	list_append_benchmark(count)

				print_delta(baseline,	comparison)

>>>

Count			500	takes	0.000039s

Count	1,000	takes	0.000073s

	2.0x	data	size,		1.9x	time

Count	2,000	takes	0.000121s

	4.0x	data	size,		3.1x	time

Count	3,000	takes	0.000172s

	6.0x	data	size,		4.5x	time

Count	4,000	takes	0.000240s

	8.0x	data	size,		6.2x	time

Count	5,000	takes	0.000304s

10.0x	data	size,		7.9x	time

This	shows	that	the	append	method	takes	roughly	constant	time	for	the	list	type,
and	the	total	time	for	enqueueing	scales	linearly	as	the	data	size	increases.	There
is	overhead	for	the	list	type	to	increase	its	capacity	under	the	covers	as	new

items	are	added,	but	it’s	reasonably	low	and	is	amortized	across	repeated	calls	to
append.

Here,	I	define	a	similar	benchmark	for	the	pop(0)	call	that	removes	items	from
the	beginning	of	the	queue	(matching	the	consumer	function’s	usage):
def	list_pop_benchmark(count):

				def	prepare():

								return	list(range(count))

				def	run(queue):

								while	queue:

												queue.pop(0)

				tests	=	timeit.repeat(

								setup='queue	=	prepare()',

								stmt='run(queue)',

								globals=locals(),

								repeat=1000,

								number=1)

				return	print_results(count,	tests)

I	can	similarly	run	this	benchmark	for	queues	of	different	sizes	to	see	how
performance	is	affected	by	cardinality:

Click	here	to	view	code	image
baseline	=	list_pop_benchmark(500)

for	count	in	(1_000,	2_000,	3_000,	4_000,	5_000):

				comparison	=	list_pop_benchmark(count)

				print_delta(baseline,	comparison)

>>>

Count			500	takes	0.000050s

Count	1,000	takes	0.000133s

	2.0x	data	size,		2.7x	time

Count	2,000	takes	0.000347s

	4.0x	data	size,		6.9x	time

Count	3,000	takes	0.000663s

	6.0x	data	size,	13.2x	time

Count	4,000	takes	0.000943s

	8.0x	data	size,	18.8x	time

Count	5,000	takes	0.001481s

10.0x	data	size,	29.5x	time

Surprisingly,	this	shows	that	the	total	time	for	dequeuing	items	from	a	list	with
pop(0)	scales	quadratically	as	the	length	of	the	queue	increases.	The	cause	is	that
pop(0)	needs	to	move	every	item	in	the	list	back	an	index,	effectively
reassigning	the	entire	list’s	contents.	I	need	to	call	pop(0)	for	every	item	in	the
list,	and	thus	I	end	up	doing	roughly	len(queue)	*	len(queue)	operations	to
consume	the	queue.	This	doesn’t	scale.

Python	provides	the	deque	class	from	the	collections	built-in	module	to	solve
this	problem.	deque	is	a	double-ended	queue	implementation.	It	provides
constant	time	operations	for	inserting	or	removing	items	from	its	beginning	or
end.	This	makes	it	ideal	for	FIFO	queues.

To	use	the	deque	class,	the	call	to	append	in	produce_emails	can	stay	the	same	as
it	was	when	using	a	list	for	the	queue.	The	list.pop	method	call	in
consume_one_email	must	change	to	call	the	deque.popleft	method	with	no
arguments	instead.	And	the	loop	method	must	be	called	with	a	deque	instance
instead	of	a	list.	Everything	else	stays	the	same.	Here,	I	redefine	the	one
function	affected	to	use	the	new	method	and	run	loop	again:
import	collections

def	consume_one_email(queue):

				if	not	queue:

								return

				email	=	queue.popleft()		#	Consumer

				#	Process	the	email	message

				...

def	my_end_func():

				...

loop(collections.deque(),	my_end_func)

I	can	run	another	version	of	the	benchmark	to	verify	that	append	performance
(matching	the	producer	function’s	usage)	has	stayed	roughly	the	same	(modulo	a
constant	factor):

Click	here	to	view	code	image
def	deque_append_benchmark(count):

				def	prepare():

								return	collections.deque()

				def	run(queue):

								for	i	in	range(count):

												queue.append(i)

				tests	=	timeit.repeat(

								setup='queue	=	prepare()',

								stmt='run(queue)',

								globals=locals(),

								repeat=1000,

								number=1)

				return	print_results(count,	tests)

baseline	=	deque_append_benchmark(500)

for	count	in	(1_000,	2_000,	3_000,	4_000,	5_000):

				comparison	=	deque_append_benchmark(count)

				print_delta(baseline,	comparison)

>>>

Count		500	takes	0.000029s

Count	1,000	takes	0.000059s

	2.0x	data	size,		2.1x	time

Count	2,000	takes	0.000121s

	4.0x	data	size,		4.2x	time

Count	3,000	takes	0.000171s

	6.0x	data	size,		6.0x	time

Count	4,000	takes	0.000243s

	8.0x	data	size,		8.5x	time

Count	5,000	takes	0.000295s

10.0x	data	size,	10.3x	time

And	I	can	benchmark	the	performance	of	calling	popleft	to	mimic	the	consumer
function’s	usage	of	deque:

Click	here	to	view	code	image
def	dequeue_popleft_benchmark(count):

				def	prepare():

								return	collections.deque(range(count))

				def	run(queue):

								while	queue:

												queue.popleft()

				tests	=	timeit.repeat(

								setup='queue	=	prepare()',

								stmt='run(queue)',

								globals=locals(),

								repeat=1000,

								number=1)

				return	print_results(count,	tests)

baseline	=	dequeue_popleft_benchmark(500)

for	count	in	(1_000,	2_000,	3_000,	4_000,	5_000):

				comparison	=	dequeue_popleft_benchmark(count)

				print_delta(baseline,	comparison)

>>>

Count			500	takes	0.000024s

Count	1,000	takes	0.000050s

	2.0x	data	size,		2.1x	time

Count	2,000	takes	0.000100s

	4.0x	data	size,		4.2x	time

Count	3,000	takes	0.000152s

	6.0x	data	size,		6.3x	time

Count	4,000	takes	0.000207s

	8.0x	data	size,		8.6x	time

Count	5,000	takes	0.000265s

10.0x	data	size,	11.0x	time

The	popleft	usage	scales	linearly	instead	of	displaying	the	superlinear	behavior
of	pop(0)	that	I	measured	before—hooray!	If	you	know	that	the	performance	of
a	program	critically	depends	on	the	speed	of	producer–consumer	queues,	then
deque	is	a	great	choice.	If	you’re	not	sure,	then	you	should	instrument	your
program	to	find	out	(see	Item	70:	“Profile	Before	Optimizing”).

Things	to	Remember

✦	The	list	type	can	be	used	as	a	FIFO	queue	by	having	the	producer	call
append	to	add	items	and	the	consumer	call	pop(0)	to	receive	items.
However,	this	may	cause	problems	because	the	performance	of	pop(0)
degrades	superlinearly	as	the	queue	length	increases.

✦	The	deque	class	from	the	collections	built-in	module	takes	constant	time—
regardless	of	length—for	append	and	popleft,	making	it	ideal	for	FIFO
queues.

Item	72:	Consider	Searching	Sorted	Sequences	with
bisect

It’s	common	to	find	yourself	with	a	large	amount	of	data	in	memory	as	a	sorted
list	that	you	then	want	to	search.	For	example,	you	may	have	loaded	an	English
language	dictionary	to	use	for	spell	checking,	or	perhaps	a	list	of	dated
financial	transactions	to	audit	for	correctness.

Regardless	of	the	data	your	specific	program	needs	to	process,	searching	for	a
specific	value	in	a	list	takes	linear	time	proportional	to	the	list’s	length	when
you	call	the	index	method:
data	=	list(range(10**5))

index	=	data.index(91234)

assert	index	==	91234

If	you’re	not	sure	whether	the	exact	value	you’re	searching	for	is	in	the	list,
then	you	may	want	to	search	for	the	closest	index	that	is	equal	to	or	exceeds	your
goal	value.	The	simplest	way	to	do	this	is	to	linearly	scan	the	list	and	compare
each	item	to	your	goal	value:

Click	here	to	view	code	image
def	find_closest(sequence,	goal):

				for	index,	value	in	enumerate(sequence):

								if	goal	<	value:

												return	index

				raise	ValueError(f'{goal}	is	out	of	bounds')

index	=	find_closest(data,	91234.56)

assert	index	==	91235

Python’s	built-in	bisect	module	provides	better	ways	to	accomplish	these	types
of	searches	through	ordered	lists.	You	can	use	the	bisect_left	function	to	do	an
efficient	binary	search	through	any	sequence	of	sorted	items.	The	index	it	returns
will	either	be	where	the	item	is	already	present	in	the	list	or	where	you’d	want
to	insert	the	item	in	the	list	to	keep	it	in	sorted	order:

Click	here	to	view	code	image
from	bisect	import	bisect_left

index	=	bisect_left(data,	91234)		#	Exact	match

assert	index	==	91234

index	=	bisect_left(data,	91234.56)		#	Closest	match

assert	index	==	91235

The	complexity	of	the	binary	search	algorithm	used	by	the	bisect	module	is
logarithmic.	This	means	searching	in	a	list	of	length	1	million	takes	roughly	the
same	amount	of	time	with	bisect	as	linearly	searching	a	list	of	length	20	using
the	list.index	method	(math.log2(10**6)	==	19.93...).	It’s	way	faster!

I	can	verify	this	speed	improvement	for	the	example	from	above	by	using	the
timeit	built-in	module	to	run	a	micro-benchmark:

Click	here	to	view	code	image
import	random

import	timeit

size	=	10**5

iterations	=	1000

data	=	list(range(size))

to_lookup	=	[random.randint(0,	size)

													for	_	in	range(iterations)]

def	run_linear(data,	to_lookup):

				for	index	in	to_lookup:

								data.index(index)

def	run_bisect(data,	to_lookup):

				for	index	in	to_lookup:

								bisect_left(data,	index)

baseline	=	timeit.timeit(

				stmt='run_linear(data,	to_lookup)',

				globals=globals(),

				number=10)

print(f'Linear	search	takes	{baseline:.6f}s')

comparison	=	timeit.timeit(

				stmt='run_bisect(data,	to_lookup)',

				globals=globals(),

				number=10)

print(f'Bisect	search	takes	{comparison:.6f}s')

slowdown	=	1	+	((baseline	-	comparison)	/	comparison)

print(f'{slowdown:.1f}x	time')

>>>

Linear	search	takes	5.370117s

Bisect	search	takes	0.005220s

1028.7x	time

The	best	part	about	bisect	is	that	it’s	not	limited	to	the	list	type;	you	can	use	it
with	any	Python	object	that	acts	like	a	sequence	(see	Item	43:	“Inherit	from
collections.abc	for	Custom	Container	Types”	for	how	to	do	that).	The	module
also	provides	additional	features	for	more	advanced	situations	(see
help(bisect)).

Things	to	Remember

✦	Searching	sorted	data	contained	in	a	list	takes	linear	time	using	the	index
method	or	a	for	loop	with	simple	comparisons.

✦	The	bisect	built-in	module’s	bisect_left	function	takes	logarithmic	time
to	search	for	values	in	sorted	lists,	which	can	be	orders	of	magnitude	faster
than	other	approaches.

Item	73:	Know	How	to	Use	heapq	for	Priority	Queues
One	of	the	limitations	of	Python’s	other	queue	implementations	(see	Item	71:
“Prefer	deque	for	Producer–Consumer	Queues”	and	Item	55:	“Use	Queue	to
Coordinate	Work	Between	Threads”)	is	that	they	are	first-in,	first-out	(FIFO)
queues:	Their	contents	are	sorted	by	the	order	in	which	they	were	received.
Often,	you	need	a	program	to	process	items	in	order	of	relative	importance
instead.	To	accomplish	this,	a	priority	queue	is	the	right	tool	for	the	job.

For	example,	say	that	I’m	writing	a	program	to	manage	books	borrowed	from	a
library.	There	are	people	constantly	borrowing	new	books.	There	are	people
returning	their	borrowed	books	on	time.	And	there	are	people	who	need	to	be
reminded	to	return	their	overdue	books.	Here,	I	define	a	class	to	represent	a	book
that’s	been	borrowed:
class	Book:

				def	__init__(self,	title,	due_date):

								self.title	=	title

								self.due_date	=	due_date

I	need	a	system	that	will	send	reminder	messages	when	each	book	passes	its	due
date.	Unfortunately,	I	can’t	use	a	FIFO	queue	for	this	because	the	amount	of
time	each	book	is	allowed	to	be	borrowed	varies	based	on	its	recency,
popularity,	and	other	factors.	For	example,	a	book	that	is	borrowed	today	may	be
due	back	later	than	a	book	that’s	borrowed	tomorrow.	Here,	I	achieve	this
behavior	by	using	a	standard	list	and	sorting	it	by	due_date	each	time	a	new

Book	is	added:

Click	here	to	view	code	image
def	add_book(queue,	book):

				queue.append(book)

				queue.sort(key=lambda	x:	x.due_date,	reverse=True)

queue	=	[]

add_book(queue,	Book('Don	Quixote',	'2019-06-07'))

add_book(queue,	Book('Frankenstein',	'2019-06-05'))

add_book(queue,	Book('Les	Misérables',	'2019-06-08'))

add_book(queue,	Book('War	and	Peace',	'2019-06-03'))

If	I	can	assume	that	the	queue	of	borrowed	books	is	always	in	sorted	order,	then
all	I	need	to	do	to	check	for	overdue	books	is	to	inspect	the	final	element	in	the
list.	Here,	I	define	a	function	to	return	the	next	overdue	book,	if	any,	and
remove	it	from	the	queue:

Click	here	to	view	code	image
class	NoOverdueBooks(Exception):

				pass

def	next_overdue_book(queue,	now):

				if	queue:

								book	=	queue[-1]

								if	book.due_date	<	now:

												queue.pop()

												return	book

				raise	NoOverdueBooks

I	can	call	this	function	repeatedly	to	get	overdue	books	to	remind	people	about	in
the	order	of	most	overdue	to	least	overdue:
now	=	'2019-06-10'

found	=	next_overdue_book(queue,	now)

print(found.title)

found	=	next_overdue_book(queue,	now)

print(found.title)

>>>

War	and	Peace

Frankenstein

If	a	book	is	returned	before	the	due	date,	I	can	remove	the	scheduled	reminder

message	by	removing	the	Book	from	the	list:

Click	here	to	view	code	image
def	return_book(queue,	book):

				queue.remove(book)

queue	=	[]

book	=	Book('Treasure	Island',	'2019-06-04')

add_book(queue,	book)

print('Before	return:',	[x.title	for	x	in	queue])

return_book(queue,	book)

print('After	return:	',	[x.title	for	x	in	queue])

>>>

Before	return:	['Treasure	Island']

After	return:		[]

And	I	can	confirm	that	when	all	books	are	returned,	the	return_book	function
will	raise	the	right	exception	(see	Item	20:	“Prefer	Raising	Exceptions	to
Returning	None”):
try:

				next_overdue_book(queue,	now)

except	NoOverdueBooks:

				pass										#	Expected

else:

				assert	False		#	Doesn't	happen

However,	the	computational	complexity	of	this	solution	isn’t	ideal.	Although
checking	for	and	removing	an	overdue	book	has	a	constant	cost,	every	time	I	add
a	book,	I	pay	the	cost	of	sorting	the	whole	list	again.	If	I	have	len(queue)
books	to	add,	and	the	cost	of	sorting	them	is	roughly	len(queue)	*
math.log(len(queue)),	the	time	it	takes	to	add	books	will	grow	superlinearly
(len(queue)	*	len(queue)	*	math.log(len(queue))).

Here,	I	define	a	micro-benchmark	to	measure	this	performance	behavior
experimentally	by	using	the	timeit	built-in	module	(see	Item	71:	“Prefer	deque
for	Producer–Consumer	Queues”	for	the	implementation	of	print_results	and
print_delta):
import	random

import	timeit

def	print_results(count,	tests):

				...

def	print_delta(before,	after):

				...

def	list_overdue_benchmark(count):

				def	prepare():

								to_add	=	list(range(count))

								random.shuffle(to_add)

								return	[],	to_add

				def	run(queue,	to_add):

								for	i	in	to_add:

												queue.append(i)

												queue.sort(reverse=True)

								while	queue:

												queue.pop()

				tests	=	timeit.repeat(

								setup='queue,	to_add	=	prepare()',

								stmt=f'run(queue,	to_add)',

								globals=locals(),

								repeat=100,

								number=1)

				return	print_results(count,	tests)

I	can	verify	that	the	runtime	of	adding	and	removing	books	from	the	queue
scales	superlinearly	as	the	number	of	books	being	borrowed	increases:

Click	here	to	view	code	image
baseline	=	list_overdue_benchmark(500)

for	count	in	(1_000,	1_500,	2_000):

				comparison	=	list_overdue_benchmark(count)

				print_delta(baseline,	comparison)

>>>

Count			500	takes	0.001138s

Count	1,000	takes	0.003317s

	2.0x	data	size,		2.9x	time

Count	1,500	takes	0.007744s

	3.0x	data	size,		6.8x	time

Count	2,000	takes	0.014739s

	4.0x	data	size,	13.0x	time

When	a	book	is	returned	before	the	due	date,	I	need	to	do	a	linear	scan	in	order
to	find	the	book	in	the	queue	and	remove	it.	Removing	a	book	causes	all
subsequent	items	in	the	list	to	be	shifted	back	an	index,	which	has	a	high	cost
that	also	scales	superlinearly.	Here,	I	define	another	micro-benchmark	to	test	the
performance	of	returning	a	book	using	this	function:
def	list_return_benchmark(count):

				def	prepare():

								queue	=	list(range(count))

								random.shuffle(queue)

								to_return	=	list(range(count))

								random.shuffle(to_return)

								return	queue,	to_return

				def	run(queue,	to_return):

								for	i	in	to_return:

												queue.remove(i)

				tests	=	timeit.repeat(

								setup='queue,	to_return	=	prepare()',

								stmt=f'run(queue,	to_return)',

								globals=locals(),

								repeat=100,

								number=1)

				return	print_results(count,	tests)

And	again,	I	can	verify	that	indeed	the	performance	degrades	superlinearly	as
the	number	of	books	increases:

Click	here	to	view	code	image
baseline	=	list_return_benchmark(500)

for	count	in	(1_000,	1_500,	2_000):

				comparison	=	list_return_benchmark(count)

				print_delta(baseline,	comparison)

>>>

Count			500	takes	0.000898s

Count	1,000	takes	0.003331s

	2.0x	data	size,		3.7x	time

Count	1,500	takes	0.007674s

	3.0x	data	size,		8.5x	time

Count	2,000	takes	0.013721s

	4.0x	data	size,	15.3x	time

Using	the	methods	of	list	may	work	for	a	tiny	library,	but	it	certainly	won’t
scale	to	the	size	of	the	Great	Library	of	Alexandria,	as	I	want	it	to!

Fortunately,	Python	has	the	built-in	heapq	module	that	solves	this	problem	by
implementing	priority	queues	efficiently.	A	heap	is	a	data	structure	that	allows
for	a	list	of	items	to	be	maintained	where	the	computational	complexity	of
adding	a	new	item	or	removing	the	smallest	item	has	logarithmic	computational
complexity	(i.e.,	even	better	than	linear	scaling).	In	this	library	example,	smallest
means	the	book	with	the	earliest	due	date.	The	best	part	about	this	module	is	that
you	don’t	have	to	understand	how	heaps	are	implemented	in	order	to	use	its
functions	correctly.

Here,	I	reimplement	the	add_book	function	using	the	heapq	module.	The	queue	is
still	a	plain	list.	The	heappush	function	replaces	the	list.append	call	from
before.	And	I	no	longer	have	to	call	list.sort	on	the	queue:
from	heapq	import	heappush

def	add_book(queue,	book):

				heappush(queue,	book)

If	I	try	to	use	this	with	the	Book	class	as	previously	defined,	I	get	this	somewhat
cryptic	error:

Click	here	to	view	code	image
queue	=	[]

add_book(queue,	Book('Little	Women',	'2019-06-05'))

add_book(queue,	Book('The	Time	Machine',	'2019-05-30'))

>>>

Traceback	...

TypeError:	'<'	not	supported	between	instances	of	'Book'	and

➥'Book'

The	heapq	module	requires	items	in	the	priority	queue	to	be	comparable	and
have	a	natural	sort	order	(see	Item	14:	“Sort	by	Complex	Criteria	Using	the	key
Parameter”	for	details).	You	can	quickly	give	the	Book	class	this	behavior	by
using	the	total_ordering	class	decorator	from	the	functools	built-in	module
(see	Item	51:	“Prefer	Class	Decorators	Over	Metaclasses	for	Composable	Class
Extensions”	for	background)	and	implementing	the	__lt__	special	method	(see
Item	43:	“Inherit	from	collections.abc	for	Custom	Container	Types”	for

background).	Here,	I	redefine	the	class	with	a	less-than	method	that	simply
compares	the	due_date	fields	between	two	Book	instances:
import	functools

@functools.total_ordering

class	Book:

				def	__init__(self,	title,	due_date):

								self.title	=	title

								self.due_date	=	due_date

				def	__lt__(self,	other):

								return	self.due_date	<	other.due_date

Now,	I	can	add	books	to	the	priority	queue	by	using	the	heapq.heappush	function
without	issues:

Click	here	to	view	code	image
queue	=	[]

add_book(queue,	Book('Pride	and	Prejudice',	'2019-06-01'))

add_book(queue,	Book('The	Time	Machine',	'2019-05-30'))

add_book(queue,	Book('Crime	and	Punishment',	'2019-06-06'))

add_book(queue,	Book('Wuthering	Heights',	'2019-06-12'))

Alternatively,	I	can	create	a	list	with	all	of	the	books	in	any	order	and	then	use
the	sort	method	of	list	to	produce	the	heap:

Click	here	to	view	code	image
queue	=	[

				Book('Pride	and	Prejudice',	'2019-06-01'),

				Book('The	Time	Machine',	'2019-05-30'),

				Book('Crime	and	Punishment',	'2019-06-06'),

				Book('Wuthering	Heights',	'2019-06-12'),

]

queue.sort()

Or	I	can	use	the	heapq.heapify	function	to	create	a	heap	in	linear	time	(as
opposed	to	the	sort	method’s	len(queue)	*	log(len(queue))	complexity):

Click	here	to	view	code	image
from	heapq	import	heapify

queue	=	[

				Book('Pride	and	Prejudice',	'2019-06-01'),

				Book('The	Time	Machine',	'2019-05-30'),

				Book('Crime	and	Punishment',	'2019-06-06'),

				Book('Wuthering	Heights',	'2019-06-12'),

]

heapify(queue)

To	check	for	overdue	books,	I	inspect	the	first	element	in	the	list	instead	of	the
last,	and	then	I	use	the	heapq.heappop	function	instead	of	the	list.pop	function:

Click	here	to	view	code	image
from	heapq	import	heappop

def	next_overdue_book(queue,	now):

				if	queue:

								book	=	queue[0]													#	Most	overdue	first

								if	book.due_date	<	now:

												heappop(queue)										#	Remove	the	overdue	book

												return	book

				raise	NoOverdueBooks

Now,	I	can	find	and	remove	overdue	books	in	order	until	there	are	none	left	for
the	current	time:

Click	here	to	view	code	image
now	=	'2019-06-02'

book	=	next_overdue_book(queue,	now)

print(book.title)

book	=	next_overdue_book(queue,	now)

print(book.title)

try:

				next_overdue_book(queue,	now)

except	NoOverdueBooks:

				pass										#	Expected

else:

				assert	False		#	Doesn't	happen

>>>

The	Time	Machine

Pride	and	Prejudice

I	can	write	another	micro-benchmark	to	test	the	performance	of	this
implementation	that	uses	the	heapq	module:
def	heap_overdue_benchmark(count):

				def	prepare():

								to_add	=	list(range(count))

								random.shuffle(to_add)

								return	[],	to_add

				def	run(queue,	to_add):

								for	i	in	to_add:

												heappush(queue,	i)

								while	queue:

												heappop(queue)

				tests	=	timeit.repeat(

								setup='queue,	to_add	=	prepare()',

								stmt=f'run(queue,	to_add)',

								globals=locals(),

								repeat=100,

								number=1)

				return	print_results(count,	tests)

This	benchmark	experimentally	verifies	that	the	heap-based	priority	queue
implementation	scales	much	better	(roughly	len(queue)	*
math.log(len(queue))),	without	superlinearly	degrading	performance:

Click	here	to	view	code	image
baseline	=	heap_overdue_benchmark(500)

for	count	in	(1_000,	1_500,	2_000):

				comparison	=	heap_overdue_benchmark(count)

				print_delta(baseline,	comparison)

>>>

Count			500	takes	0.000150s

Count	1,000	takes	0.000325s

	2.0x	data	size,		2.2x	time

Count	1,500	takes	0.000528s

	3.0x	data	size,		3.5x	time

Count	2,000	takes	0.000658s

	4.0x	data	size,		4.4x	time

With	the	heapq	implementation,	one	question	remains:	How	should	I	handle
returns	that	are	on	time?	The	solution	is	to	never	remove	a	book	from	the
priority	queue	until	its	due	date.	At	that	time,	it	will	be	the	first	item	in	the	list,
and	I	can	simply	ignore	the	book	if	it’s	already	been	returned.	Here,	I	implement
this	behavior	by	adding	a	new	field	to	track	the	book’s	return	status:

@functools.total_ordering

class	Book:

				def	__init__(self,	title,	due_date):

								self.title	=	title

								self.due_date	=	due_date

								self.returned	=	False		#	New	field

				...

Then,	I	change	the	next_overdue_book	function	to	repeatedly	ignore	any	book
that’s	already	been	returned:
def	next_overdue_book(queue,	now):

				while	queue:

								book	=	queue[0]

								if	book.returned:

												heappop(queue)

												continue

								if	book.due_date	<	now:

												heappop(queue)

												return	book

								break

				raise	NoOverdueBooks

This	approach	makes	the	return_book	function	extremely	fast	because	it	makes
no	modifications	to	the	priority	queue:
def	return_book(queue,	book):

				book.returned	=	True

The	downside	of	this	solution	for	returns	is	that	the	priority	queue	may	grow	to
the	maximum	size	it	would	have	needed	if	all	books	from	the	library	were
checked	out	and	went	overdue.	Although	the	queue	operations	will	be	fast
thanks	to	heapq,	this	storage	overhead	may	take	significant	memory	(see	Item
81:	“Use	tracemalloc	to	Understand	Memory	Usage	and	Leaks”	for	how	to
debug	such	usage).

That	said,	if	you’re	trying	to	build	a	robust	system,	you	need	to	plan	for	the
worst-case	scenario;	thus,	you	should	expect	that	it’s	possible	for	every	library
book	to	go	overdue	for	some	reason	(e.g.,	a	natural	disaster	closes	the	road	to	the
library).	This	memory	cost	is	a	design	consideration	that	you	should	have
already	planned	for	and	mitigated	through	additional	constraints	(e.g.,	imposing
a	maximum	number	of	simultaneously	lent	books).

Beyond	the	priority	queue	primitives	that	I’ve	used	in	this	example,	the	heapq

module	provides	additional	functionality	for	advanced	use	cases	(see
help(heapq)).	The	module	is	a	great	choice	when	its	functionality	matches	the
problem	you’re	facing	(see	the	queue.PriorityQueue	class	for	another	thread-
safe	option).

Things	to	Remember

✦	Priority	queues	allow	you	to	process	items	in	order	of	importance	instead	of
in	first-in,	first-out	order.

✦	If	you	try	to	use	list	operations	to	implement	a	priority	queue,	your
program’s	performance	will	degrade	superlinearly	as	the	queue	grows.

✦	The	heapq	built-in	module	provides	all	of	the	functions	you	need	to
implement	a	priority	queue	that	scales	efficiently.

✦	To	use	heapq,	the	items	being	prioritized	must	have	a	natural	sort	order,
which	requires	special	methods	like	__lt__	to	be	defined	for	classes.

Item	74:	Consider	memoryview	and	bytearray	for	Zero-Copy
Interactions	with	bytes

Although	Python	isn’t	able	to	parallelize	CPU-bound	computation	without	extra
effort	(see	Item	64:	“Consider	concurrent.futures	for	True	Parallelism”),	it	is
able	to	support	high-throughput,	parallel	I/O	in	a	variety	of	ways	(see	Item	53:
“Use	Threads	for	Blocking	I/O,	Avoid	for	Parallelism”	and	Item	60:	“Achieve
Highly	Concurrent	I/O	with	Coroutines”).	That	said,	it’s	surprisingly	easy	to	use
these	I/O	tools	the	wrong	way	and	reach	the	conclusion	that	the	language	is	too
slow	for	even	I/O-bound	workloads.

For	example,	say	that	I’m	building	a	media	server	to	stream	television	or	movies
over	a	network	to	users	so	they	can	watch	without	having	to	download	the	video
data	in	advance.	One	of	the	key	features	of	such	a	system	is	the	ability	for	users
to	move	forward	or	backward	in	the	video	playback	so	they	can	skip	or	repeat
parts.	In	the	client	program,	I	can	implement	this	by	requesting	a	chunk	of	data
from	the	server	corresponding	to	the	new	time	index	selected	by	the	user:

Click	here	to	view	code	image
def	timecode_to_index(video_id,	timecode):

				...

				#	Returns	the	byte	offset	in	the	video	data

def	request_chunk(video_id,	byte_offset,	size):

				...

				#	Returns	size	bytes	of	video_id's	data	from	the	offset

video_id	=	...

timecode	=	'01:09:14:28'

byte_offset	=	timecode_to_index(video_id,	timecode)

size	=	20	*	1024	*	1024

video_data	=	request_chunk(video_id,	byte_offset,	size)

How	would	you	implement	the	server-side	handler	that	receives	the
request_chunk	request	and	returns	the	corresponding	20	MB	chunk	of	video
data?	For	the	sake	of	this	example,	I	assume	that	the	command	and	control	parts
of	the	server	have	already	been	hooked	up	(see	Item	61:	“Know	How	to	Port
Threaded	I/O	to	asyncio”	for	what	that	requires).	I	focus	here	on	the	last	steps
where	the	requested	chunk	is	extracted	from	gigabytes	of	video	data	that’s
cached	in	memory	and	is	then	sent	over	a	socket	back	to	the	client.	Here’s	what
the	implementation	would	look	like:

Click	here	to	view	code	image
socket	=	...													#	socket	connection	to	client

video_data	=	...									#	bytes	containing	data	for	video_id

byte_offset	=	...								#	Requested	starting	position

size	=	20	*	1024	*	1024		#	Requested	chunk	size

chunk	=	video_data[byte_offset:byte_offset	+	size]

socket.send(chunk)

The	latency	and	throughput	of	this	code	will	come	down	to	two	factors:	how
much	time	it	takes	to	slice	the	20	MB	video	chunk	from	video_data,	and	how
much	time	the	socket	takes	to	transmit	that	data	to	the	client.	If	I	assume	that	the
socket	is	infinitely	fast,	I	can	run	a	micro-benchmark	by	using	the	timeit	built-in
module	to	understand	the	performance	characteristics	of	slicing	bytes	instances
this	way	to	create	chunks	(see	Item	11:	“Know	How	to	Slice	Sequences”	for
background):

Click	here	to	view	code	image
import	timeit

def	run_test():

				chunk	=	video_data[byte_offset:byte_offset	+	size]

				#	Call	socket.send(chunk),	but	ignoring	for	benchmark

result	=	timeit.timeit(

		stmt='run_test()',

		globals=globals(),

		number=100)	/	100

print(f'{result:0.9f}	seconds')

>>>

0.004925669	seconds

It	took	roughly	5	milliseconds	to	extract	the	20	MB	slice	of	data	to	transmit	to
the	client.	That	means	the	overall	throughput	of	my	server	is	limited	to	a
theoretical	maximum	of	20	MB	/	5	milliseconds	=	7.3	GB	/	second,	since	that’s
the	fastest	I	can	extract	the	video	data	from	memory.	My	server	will	also	be
limited	to	1	CPU-second	/	5	milliseconds	=	200	clients	requesting	new	chunks	in
parallel,	which	is	tiny	compared	to	the	tens	of	thousands	of	simultaneous
connections	that	tools	like	the	asyncio	built-in	module	can	support.	The	problem
is	that	slicing	a	bytes	instance	causes	the	underlying	data	to	be	copied,	which
takes	CPU	time.

A	better	way	to	write	this	code	is	by	using	Python’s	built-in	memoryview	type,
which	exposes	CPython’s	high-performance	buffer	protocol	to	programs.	The
buffer	protocol	is	a	low-level	C	API	that	allows	the	Python	runtime	and	C
extensions	to	access	the	underlying	data	buffers	that	are	behind	objects	like
bytes	instances.	The	best	part	about	memoryview	instances	is	that	slicing	them
results	in	another	memoryview	instance	without	copying	the	underlying	data.
Here,	I	create	a	memoryview	wrapping	a	bytes	instance	and	inspect	a	slice	of	it:

Click	here	to	view	code	image
data	=	b'shave	and	a	haircut,	two	bits'

view	=	memoryview(data)

chunk	=	view[12:19]

print(chunk)

print('Size:											',	chunk.nbytes)

print('Data	in	view:			',	chunk.tobytes())

print('Underlying	data:',	chunk.obj)

>>>

<memory	at	0x10951fb80>

Size:												7

Data	in	view:				b'haircut'

Underlying	data:	b'shave	and	a	haircut,	two	bits'

By	enabling	zero-copy	operations,	memoryview	can	provide	enormous	speedups

for	code	that	needs	to	quickly	process	large	amounts	of	memory,	such	as
numerical	C	extensions	like	NumPy	and	I/O-bound	programs	like	this	one.	Here,
I	replace	the	simple	bytes	slicing	from	above	with	memoryview	slicing	instead
and	repeat	the	same	micro-benchmark:

Click	here	to	view	code	image
video_view	=	memoryview(video_data)

def	run_test():

				chunk	=	video_view[byte_offset:byte_offset	+	size]

				#	Call	socket.send(chunk),	but	ignoring	for	benchmark

result	=	timeit.timeit(

				stmt='run_test()',

				globals=globals(),

				number=100)	/	100

print(f'{result:0.9f}	seconds')

>>>

0.000000250	seconds

The	result	is	250	nanoseconds.	Now	the	theoretical	maximum	throughput	of	my
server	is	20	MB	/	250	nanoseconds	=	164	TB	/	second.	For	parallel	clients,	I	can
theoretically	support	up	to	1	CPU-second	/	250	nanoseconds	=	4	million.	That’s
more	like	it!	This	means	that	now	my	program	is	entirely	bound	by	the
underlying	performance	of	the	socket	connection	to	the	client,	not	by	CPU
constraints.

Now,	imagine	that	the	data	must	flow	in	the	other	direction,	where	some	clients
are	sending	live	video	streams	to	the	server	in	order	to	broadcast	them	to	other
users.	In	order	to	do	this,	I	need	to	store	the	latest	video	data	from	the	user	in	a
cache	that	other	clients	can	read	from.	Here’s	what	the	implementation	of
reading	1	MB	of	new	data	from	the	incoming	client	would	look	like:

Click	here	to	view	code	image
socket	=	...								#	socket	connection	to	the	client

video_cache	=	...			#	Cache	of	incoming	video	stream

byte_offset	=	...			#	Incoming	buffer	position

size	=	1024	*	1024		#	Incoming	chunk	size

chunk	=	socket.recv(size)

video_view	=	memoryview(video_cache)

before	=	video_view[:byte_offset]

after	=	video_view[byte_offset	+	size:]

new_cache	=	b''.join([before,	chunk,	after])

The	socket.recv	method	returns	a	bytes	instance.	I	can	splice	the	new	data	with
the	existing	cache	at	the	current	byte_offset	by	using	simple	slicing	operations
and	the	bytes.join	method.	To	understand	the	performance	of	this,	I	can	run
another	micro-benchmark.	I’m	using	a	dummy	socket,	so	the	performance	test	is
only	for	the	memory	operations,	not	the	I/O	interaction:

Click	here	to	view	code	image
def	run_test():

				chunk	=	socket.recv(size)

				before	=	video_view[:byte_offset]

				after	=	video_view[byte_offset	+	size:]

				new_cache	=	b''.join([before,	chunk,	after])

result	=	timeit.timeit(

				stmt='run_test()',

				globals=globals(),

				number=100)	/	100

print(f'{result:0.9f}	seconds')

>>>

0.033520550	seconds

It	takes	33	milliseconds	to	receive	1	MB	and	update	the	video	cache.	This	means
my	maximum	receive	throughput	is	1	MB	/	33	milliseconds	=	31	MB	/	second,
and	I’m	limited	to	31	MB	/	1	MB	=	31	simultaneous	clients	streaming	in	video
data	this	way.	This	doesn’t	scale.

A	better	way	to	write	this	code	is	to	use	Python’s	built-in	bytearray	type	in
conjunction	with	memoryview.	One	limitation	with	bytes	instances	is	that	they	are
read-only	and	don’t	allow	for	individual	indexes	to	be	updated:

Click	here	to	view	code	image
my_bytes	=	b'hello'

my_bytes[0]	=	b'\x79'

>>>

Traceback	...

TypeError:	'bytes'	object	does	not	support	item	assignment

The	bytearray	type	is	like	a	mutable	version	of	bytes	that	allows	for	arbitrary
positions	to	be	overwritten.	bytearray	uses	integers	for	its	values	instead	of
bytes:

my_array	=	bytearray(b'hello')

my_array[0]	=	0x79

print(my_array)

>>>

bytearray(b'yello')

A	memoryview	can	also	be	used	to	wrap	a	bytearray.	When	you	slice	such	a
memoryview,	the	resulting	object	can	be	used	to	assign	data	to	a	particular	portion
of	the	underlying	buffer.	This	eliminates	the	copying	costs	from	above	that	were
required	to	splice	the	bytes	instances	back	together	after	data	was	received	from
the	client:

Click	here	to	view	code	image
my_array	=	bytearray(b'row,	row,	row	your	boat')

my_view	=	memoryview(my_array)

write_view	=	my_view[3:13]

write_view[:]	=	b'-10	bytes-'

print(my_array)

>>>

bytearray(b'row-10	bytes-	your	boat')

Many	library	methods	in	Python,	such	as	socket.recv_into	and
RawIOBase.readinto,	use	the	buffer	protocol	to	receive	or	read	data	quickly.	The
benefit	of	these	methods	is	that	they	avoid	allocating	memory	and	creating
another	copy	of	the	data;	what’s	received	goes	straight	into	an	existing	buffer.
Here,	I	use	socket.recv_into	along	with	a	memoryview	slice	to	receive	data	into
an	underlying	bytearray	without	the	need	for	splicing:

Click	here	to	view	code	image
video_array	=	bytearray(video_cache)

write_view	=	memoryview(video_array)

chunk	=	write_view[byte_offset:byte_offset	+	size]

socket.recv_into(chunk)

I	can	run	another	micro-benchmark	to	compare	the	performance	of	this	approach
to	the	earlier	example	that	used	socket.recv:

Click	here	to	view	code	image
def	run_test():

		chunk	=	write_view[byte_offset:byte_offset	+	size]

		socket.recv_into(chunk)

result	=	timeit.timeit(

		stmt='run_test()',

		globals=globals(),

		number=100)	/	100

print(f'{result:0.9f}	seconds')

>>>

0.000033925	seconds

It	took	33	microseconds	to	receive	a	1	MB	video	transmission.	This	means	my
server	can	support	1	MB	/	33	microseconds	=	31	GB	/	second	of	max
throughput,	and	31	GB	/	1	MB	=	31,000	parallel	streaming	clients.	That’s	the
type	of	scalability	that	I’m	looking	for!

Things	to	Remember

✦	The	memoryview	built-in	type	provides	a	zero-copy	interface	for	reading	and
writing	slices	of	objects	that	support	Python’s	highperformance	buffer
protocol.

✦	The	bytearray	built-in	type	provides	a	mutable	bytes-like	type	that	can	be
used	for	zero-copy	data	reads	with	functions	like	socket.recv_from.

✦	A	memoryview	can	wrap	a	bytearray,	allowing	for	received	data	to	be	spliced
into	an	arbitrary	buffer	location	without	copying	costs.

9.	Testing	and	Debugging

Python	doesn’t	have	compile-time	static	type	checking.	There’s	nothing	in	the
interpreter	that	will	ensure	that	your	program	will	work	correctly	when	you	run
it.	Python	does	support	optional	type	annotations	that	can	be	used	in	static
analysis	to	detect	many	kinds	of	bugs	(see	Item	90:	“Consider	Static	Analysis
via	typing	to	Obviate	Bugs”	for	details).	However,	it’s	still	fundamentally	a
dynamic	language,	and	anything	is	possible.	With	Python,	you	ultimately	don’t
know	if	the	functions	your	program	calls	will	be	defined	at	runtime,	even	when
their	existence	is	evident	in	the	source	code.	This	dynamic	behavior	is	both	a
blessing	and	a	curse.

The	large	numbers	of	Python	programmers	out	there	say	it’s	worth	going
without	compile-time	static	type	checking	because	of	the	productivity	gained
from	the	resulting	brevity	and	simplicity.	But	most	people	using	Python	have	at
least	one	horror	story	about	a	program	encountering	a	boneheaded	error	at
runtime.	One	of	the	worst	examples	I’ve	heard	of	involved	a	SyntaxError	being
raised	in	production	as	a	side	effect	of	a	dynamic	import	(see	Item	88:	“Know
How	to	Break	Circular	Dependencies”),	resulting	in	a	crashed	server	process.
The	programmer	I	know	who	was	hit	by	this	surprising	occurrence	has	since
ruled	out	using	Python	ever	again.

But	I	have	to	wonder,	why	wasn’t	the	code	more	well	tested	before	the	program
was	deployed	to	production?	Compile-time	static	type	safety	isn’t	everything.
You	should	always	test	your	code,	regardless	of	what	language	it’s	written	in.
However,	I’ll	admit	that	in	Python	it	may	be	more	important	to	write	tests	to
verify	correctness	than	in	other	languages.	Luckily,	the	same	dynamic	features
that	create	risks	also	make	it	extremely	easy	to	write	tests	for	your	code	and	to
debug	malfunctioning	programs.	You	can	use	Python’s	dynamic	nature	and
easily	overridable	behaviors	to	implement	tests	and	ensure	that	your	programs
work	as	expected.

You	should	think	of	tests	as	an	insurance	policy	on	your	code.	Good	tests	give
you	confidence	that	your	code	is	correct.	If	you	refactor	or	expand	your	code,
tests	that	verify	behavior—not	implementation—make	it	easy	to	identify	what’s
changed.	It	sounds	counterintuitive,	but	having	good	tests	actually	makes	it
easier	to	modify	Python	code,	not	harder.

Item	75:	Use	repr	Strings	for	Debugging	Output
When	debugging	a	Python	program,	the	print	function	and	format	strings	(see
Item	4:	“Prefer	Interpolated	F-Strings	Over	C-style	Format	Strings	and
str.format”),	or	output	via	the	logging	built-in	module,	will	get	you	surprisingly
far.	Python	internals	are	often	easy	to	access	via	plain	attributes	(see	Item	42:
“Prefer	Public	Attributes	Over	Private	Ones”).	All	you	need	to	do	is	call	print	to
see	how	the	state	of	your	program	changes	while	it	runs	and	understand	where	it
goes	wrong.

The	print	function	outputs	a	human-readable	string	version	of	whatever	you
supply	it.	For	example,	printing	a	basic	string	prints	the	contents	of	the	string
without	the	surrounding	quote	characters:
print('foo	bar')

>>>

foo	bar

This	is	equivalent	to	all	of	these	alternatives:

Calling	the	str	function	before	passing	the	value	to	print

Using	the	'%s'	format	string	with	the	%	operator

Default	formatting	of	the	value	with	an	f-string

Calling	the	format	built-in	function

Explicitly	calling	the	__format__	special	method

Explicitly	calling	the	__str__	special	method

Here,	I	verify	this	behavior:
my_value	=	'foo	bar'

print(str(my_value))

print('%s'	%	my_value)

print(f'{my_value}')

print(format(my_value))

print(my_value.__format__('s'))

print(my_value.__str__())

>>>

foo	bar

foo	bar

foo	bar

foo	bar

foo	bar

foo	bar

The	problem	is	that	the	human-readable	string	for	a	value	doesn’t	make	it	clear
what	the	actual	type	and	its	specific	composition	are.	For	example,	notice	how	in
the	default	output	of	print,	you	can’t	distinguish	between	the	types	of	the
number	5	and	the	string	'5':

Click	here	to	view	code	image
print(5)

print('5')

int_value	=	5

str_value	=	'5'

print(f'{int_value}	==	{str_value}	?')

>>>

5

5

5	==	5	?

If	you’re	debugging	a	program	with	print,	these	type	differences	matter.	What
you	almost	always	want	while	debugging	is	to	see	the	repr	version	of	an	object.
The	repr	built-in	function	returns	the	printable	representation	of	an	object,
which	should	be	its	most	clearly	understandable	string	representation.	For	most
built-in	types,	the	string	returned	by	repr	is	a	valid	Python	expression:
a	=	'\x07'

print(repr(a))

>>>

'\x07'

Passing	the	value	from	repr	to	the	eval	built-in	function	should	result	in	the
same	Python	object	that	you	started	with	(and,	of	course,	in	practice	you	should
only	use	eval	with	extreme	caution):
b	=	eval(repr(a))

assert	a	==	b

When	you’re	debugging	with	print,	you	should	call	repr	on	a	value	before
printing	to	ensure	that	any	difference	in	types	is	clear:
print(repr(5))

print(repr('5'))

>>>

5

'5'

This	is	equivalent	to	using	the	'%r'	format	string	with	the	%	operator	or	an	f-
string	with	the	!r	type	conversion:

Click	here	to	view	code	image
print('%r'	%	5)

print('%r'	%	'5')

int_value	=	5

str_value	=	'5'

print(f'{int_value!r}	!=	{str_value!r}')

>>>

5

'5'

5	!=	'5'

For	instances	of	Python	classes,	the	default	human-readable	string	value	is	the
same	as	the	repr	value.	This	means	that	passing	an	instance	to	print	will	do	the
right	thing,	and	you	don’t	need	to	explicitly	call	repr	on	it.	Unfortunately,	the
default	implementation	of	repr	for	object	subclasses	isn’t	especially	helpful.	For
example,	here	I	define	a	simple	class	and	then	print	one	of	its	instances:

Click	here	to	view	code	image
class	OpaqueClass:

				def	__init__(self,	x,	y):

								self.x	=	x

								self.y	=	y

obj	=	OpaqueClass(1,	'foo')

print(obj)

>>>

<__main__.OpaqueClass	object	at	0x10963d6d0>

This	output	can’t	be	passed	to	the	eval	function,	and	it	says	nothing	about	the
instance	fields	of	the	object.

There	are	two	solutions	to	this	problem.	If	you	have	control	of	the	class,	you	can
define	your	own	__repr__	special	method	that	returns	a	string	containing	the
Python	expression	that	re-creates	the	object.	Here,	I	define	that	function	for	the
class	above:

Click	here	to	view	code	image
class	BetterClass:

				def	__init__(self,	x,	y):

								self.x	=	x

								self.y	=	y

				def	__repr__(self):

								return	f'BetterClass({self.x!r},	{self.y!r})'

Now	the	repr	value	is	much	more	useful:
obj	=	BetterClass(2,	'bar')

print(obj)

>>>

BetterClass(2,	'bar')

When	you	don’t	have	control	over	the	class	definition,	you	can	reach	into	the
object’s	instance	dictionary,	which	is	stored	in	the	__dict__	attribute.	Here,	I
print	out	the	contents	of	an	OpaqueClass	instance:
obj	=	OpaqueClass(4,	'baz')

print(obj.__dict__)

>>>

{'x':	4,	'y':	'baz'}

Things	to	Remember

✦	Calling	print	on	built-in	Python	types	produces	the	humanreadable	string
version	of	a	value,	which	hides	type	information.

✦	Calling	repr	on	built-in	Python	types	produces	the	printable	string	version
of	a	value.	These	repr	strings	can	often	be	passed	to	the	eval	built-in
function	to	get	back	the	original	value.

✦	%s	in	format	strings	produces	human-readable	strings	like	str.	%r	produces
printable	strings	like	repr.	F-strings	produce	humanreadable	strings	for
replacement	text	expressions	unless	you	specify	the	!r	suffix.

✦	You	can	define	the	__repr__	special	method	on	a	class	to	customize	the
printable	representation	of	instances	and	provide	more	detailed	debugging
information.

Item	76:	Verify	Related	Behaviors	in	TestCase

Subclasses
The	canonical	way	to	write	tests	in	Python	is	to	use	the	unittest	built-in
module.	For	example,	say	I	have	the	following	utility	function	defined	in
utils.py	that	I	would	like	to	verify	works	correctly	across	a	variety	of	inputs:

Click	here	to	view	code	image
#	utils.py

def	to_str(data):

				if	isinstance(data,	str):

								return	data

				elif	isinstance(data,	bytes):

								return	data.decode('utf-8')

				else:

								raise	TypeError('Must	supply	str	or	bytes,	'

																								'found:	%r'	%	data)

To	define	tests,	I	create	a	second	file	named	test_utils.py	or	utils_test.py—
the	naming	scheme	you	prefer	is	a	style	choice—that	contains	tests	for	each
behavior	that	I	expect:

Click	here	to	view	code	image
#	utils_test.py

from	unittest	import	TestCase,	main

from	utils	import	to_str

class	UtilsTestCase(TestCase):

				def	test_to_str_bytes(self):

								self.assertEqual('hello',	to_str(b'hello'))

				def	test_to_str_str(self):

								self.assertEqual('hello',	to_str('hello'))

				def	test_failing(self):

								self.assertEqual('incorrect',	to_str('hello'))

if	__name__	==	'__main__':

				main()

Then,	I	run	the	test	file	using	the	Python	command	line.	In	this	case,	two	of	the
test	methods	pass	and	one	fails,	with	a	helpful	error	message	about	what	went
wrong:

Click	here	to	view	code	image
$	python3	utils_test.py

F..

===

FAIL:	test_failing	(__main__.UtilsTestCase)

Traceback	(most	recent	call	last):

		File	"utils_test.py",	line	15,	in	test_failing

				self.assertEqual('incorrect',	to_str('hello'))

AssertionError:	'incorrect'	!=	'hello'

-	incorrect

+	hello

Ran	3	tests	in	0.002s

FAILED	(failures=1)

Tests	are	organized	into	TestCase	subclasses.	Each	test	case	is	a	method
beginning	with	the	word	test.	If	a	test	method	runs	without	raising	any	kind	of
Exception	(including	AssertionError	from	assert	statements),	the	test	is
considered	to	have	passed	successfully.	If	one	test	fails,	the	TestCase	subclass
continues	running	the	other	test	methods	so	you	can	get	a	full	picture	of	how	all
your	tests	are	doing	instead	of	stopping	at	the	first	sign	of	trouble.

If	you	want	to	iterate	quickly	to	fix	or	improve	a	specific	test,	you	can	run	only
that	test	method	by	specifying	its	path	within	the	test	module	on	the	command
line:

Click	here	to	view	code	image
$	python3	utils_test.py	UtilsTestCase.test_to_str_bytes

.

Ran	1	test	in	0.000s

	

OK

You	can	also	invoke	the	debugger	from	directly	within	test	methods	at	specific
breakpoints	in	order	to	dig	more	deeply	into	the	cause	of	failures	(see	Item	80:
“Consider	Interactive	Debugging	with	pdb”	for	how	to	do	that).

The	TestCase	class	provides	helper	methods	for	making	assertions	in	your	tests,
such	as	assertEqual	for	verifying	equality,	assertTrue	for	verifying	Boolean
expressions,	and	many	more	(see	help(TestCase)	for	the	full	list).	These	are
better	than	the	built-in	assert	statement	because	they	print	out	all	of	the	inputs
and	outputs	to	help	you	understand	the	exact	reason	the	test	is	failing.	For

example,	here	I	have	the	same	test	case	written	with	and	without	using	a	helper
assertion	method:

Click	here	to	view	code	image
#	assert_test.py

from	unittest	import	TestCase,	main

from	utils	import	to_str

class	AssertTestCase(TestCase):

				def	test_assert_helper(self):

								expected	=	12

								found	=	2	*	5

								self.assertEqual(expected,	found)

				def	test_assert_statement(self):

								expected	=	12

								found	=	2	*	5

								assert	expected	==	found

if	__name__	==	'__main__':

				main()

Which	of	these	failure	messages	seems	more	helpful	to	you?

Click	here	to	view	code	image
$	python3	assert_test.py

FF

===

FAIL:	test_assert_helper	(__main__.AssertTestCase)

Traceback	(most	recent	call	last):

		File	"assert_test.py",	line	16,	in	test_assert_helper

				self.assertEqual(expected,	found)

AssertionError:	12	!=	10

	

===

FAIL:	test_assert_statement	(__main__.AssertTestCase)

Traceback	(most	recent	call	last):

		File	"assert_test.py",	line	11,	in	test_assert_statement

				assert	expected	==	found

AssertionError

Ran	2	tests	in	0.001s

	

FAILED	(failures=2)

There’s	also	an	assertRaises	helper	method	for	verifying	exceptions	that	can	be
used	as	a	context	manager	in	with	statements	(see	Item	66:	“Consider
contextlib	and	with	Statements	for	Reusable	try/finally	Behavior”	for	how
that	works).	This	appears	similar	to	a	try/except	statement	and	makes	it
abundantly	clear	where	the	exception	is	expected	to	be	raised:

Click	here	to	view	code	image
#	utils_error_test.py

from	unittest	import	TestCase,	main

from	utils	import	to_str

class	UtilsErrorTestCase(TestCase):

				def	test_to_str_bad(self):

								with	self.assertRaises(TypeError):

												to_str(object())

				def	test_to_str_bad_encoding(self):

								with	self.assertRaises(UnicodeDecodeError):

												to_str(b'\xfa\xfa')

if	__name__	==	'__main__':

				main()

You	can	define	your	own	helper	methods	with	complex	logic	in	TestCase
subclasses	to	make	your	tests	more	readable.	Just	ensure	that	your	method	names
don’t	begin	with	the	word	test,	or	they’ll	be	run	as	if	they’re	test	cases.	In
addition	to	calling	TestCase	assertion	methods,	these	custom	test	helpers	often
use	the	fail	method	to	clarify	which	assumption	or	invariant	wasn’t	met.	For
example,	here	I	define	a	custom	test	helper	method	for	verifying	the	behavior	of
a	generator:

Click	here	to	view	code	image
#	helper_test.py

from	unittest	import	TestCase,	main

def	sum_squares(values):

				cumulative	=	0

				for	value	in	values:

								cumulative	+=	value	**	2

								yield	cumulative

class	HelperTestCase(TestCase):

				def	verify_complex_case(self,	values,	expected):

								expect_it	=	iter(expected)

								found_it	=	iter(sum_squares(values))

								test_it	=	zip(expect_it,	found_it)

								for	i,	(expect,	found)	in	enumerate(test_it):

												self.assertEqual(

																expect,

																found,

																f'Index	{i}	is	wrong')

								#	Verify	both	generators	are	exhausted

								try:

												next(expect_it)

								except	StopIteration:

												pass

								else:

												self.fail('Expected	longer	than	found')

								try:

												next(found_it)

								except	StopIteration:

												pass

								else:

												self.fail('Found	longer	than	expected')

				def	test_wrong_lengths(self):

								values	=	[1.1,	2.2,	3.3]

								expected	=	[

												1.1**2,

]

								self.verify_complex_case(values,	expected)

				def	test_wrong_results(self):

								values	=	[1.1,	2.2,	3.3]

								expected	=	[

												1.1**2,

												1.1**2	+	2.2**2,

												1.1**2	+	2.2**2	+	3.3**2	+	4.4**2,

]

								self.verify_complex_case(values,	expected)

if	__name__	==	'__main__':

				main()

The	helper	method	makes	the	test	cases	short	and	readable,	and	the	outputted
error	messages	are	easy	to	understand:

Click	here	to	view	code	image
$	python3	helper_test.py

FF

===

FAIL:	test_wrong_lengths	(__main__.HelperTestCase)

Traceback	(most	recent	call	last):

		File	"helper_test.py",	line	43,	in	test_wrong_lengths

				self.verify_complex_case(values,	expected)

		File	"helper_test.py",	line	34,	in	verify_complex_case

				self.fail('Found	longer	than	expected')

AssertionError:	Found	longer	than	expected

===

FAIL:	test_wrong_results	(__main__.HelperTestCase)

Traceback	(most	recent	call	last):

		File	"helper_test.py",	line	52,	in	test_wrong_results

				self.verify_complex_case(values,	expected)

		File	"helper_test.py",	line	24,	in	verify_complex_case

				f'Index	{i}	is	wrong')

AssertionError:	36.3	!=	16.939999999999998	:	Index	2	is	wrong

Ran	2	tests	in	0.002s

FAILED	(failures=2)

I	usually	define	one	TestCase	subclass	for	each	set	of	related	tests.	Sometimes,	I
have	one	TestCase	subclass	for	each	function	that	has	many	edge	cases.	Other
times,	a	TestCase	subclass	spans	all	functions	in	a	single	module.	I	often	create
one	TestCase	subclass	for	testing	each	basic	class	and	all	of	its	methods.

The	TestCase	class	also	provides	a	subTest	helper	method	that	enables	you	to
avoid	boilerplate	by	defining	multiple	tests	within	a	single	test	method.	This	is
especially	helpful	for	writing	data-driven	tests,	and	it	allows	the	test	method	to
continue	testing	other	cases	even	after	one	of	them	fails	(similar	to	the	behavior
of	TestCase	with	its	contained	test	methods).	To	show	this,	here	I	define	an
example	data-driven	test:

Click	here	to	view	code	image
#	data_driven_test.py

from	unittest	import	TestCase,	main

from	utils	import	to_str

class	DataDrivenTestCase(TestCase):

				def	test_good(self):

								good_cases	=	[

												(b'my	bytes',	'my	bytes'),

												('no	error',	b'no	error'),	#	This	one	will	fail

												('other	str',	'other	str'),

												...

]

				for	value,	expected	in	good_cases:

								with	self.subTest(value):

												self.assertEqual(expected,	to_str(value))

				def	test_bad(self):

								bad_cases	=	[

												(object(),	TypeError),

												(b'\xfa\xfa',	UnicodeDecodeError),

												...

]

							for	value,	exception	in	bad_cases:

											with	self.subTest(value):

															with	self.assertRaises(exception):

																			to_str(value)

if	__name__	==	'__main__':

				main()

The	'no	error'	test	case	fails,	printing	a	helpful	error	message,	but	all	of	the
other	cases	are	still	tested	and	confirmed	to	pass:

Click	here	to	view	code	image
$	python3	data_driven_test.py

.

===

FAIL:	test_good	(__main__.DataDrivenTestCase)	[no	error]

Traceback	(most	recent	call	last):

		File	"testing/data_driven_test.py",	line	18,	in	test_good

				self.assertEqual(expected,	to_str(value))

AssertionError:	b'no	error'	!=	'no	error'

Ran	2	tests	in	0.001s

	

FAILED	(failures=1)

Note
Depending	on	your	project’s	complexity	and	 testing	requirements,	 the	pytest
(https://pytest.org)	 open	 source	 package	 and	 its	 large	 number	 of	 community
plug-ins	can	be	especially	useful.

Things	to	Remember

https://pytest.org

✦	You	can	create	tests	by	subclassing	the	TestCase	class	from	the	unittest
built-in	module	and	defining	one	method	per	behavior	you’d	like	to	test.
Test	methods	on	TestCase	classes	must	start	with	the	word	test.

✦	Use	the	various	helper	methods	defined	by	the	TestCase	class,	such	as
assertEqual,	to	confirm	expected	behaviors	in	your	tests	instead	of	using
the	built-in	assert	statement.

✦	Consider	writing	data-driven	tests	using	the	subTest	helper	method	in	order
to	reduce	boilerplate.

Item	77:	Isolate	Tests	from	Each	Other	with	setUp,
tearDown,	setUpModule,	and	tearDownModule

TestCase	classes	(see	Item	76:	“Verify	Related	Behaviors	in	TestCase
Subclasses”)	often	need	to	have	the	test	environment	set	up	before	test	methods
can	be	run;	this	is	sometimes	called	the	test	harness.	To	do	this,	you	can	override
the	setUp	and	tearDown	methods	of	a	TestCase	subclass.	These	methods	are
called	before	and	after	each	test	method,	respectively,	so	you	can	ensure	that
each	test	runs	in	isolation,	which	is	an	important	best	practice	of	proper	testing.

For	example,	here	I	define	a	TestCase	that	creates	a	temporary	directory	before
each	test	and	deletes	its	contents	after	each	test	finishes:

Click	here	to	view	code	image
#	environment_test.py

from	pathlib	import	Path

from	tempfile	import	TemporaryDirectory

from	unittest	import	TestCase,	main

class	EnvironmentTest(TestCase):

				def	setUp(self):

								self.test_dir	=	TemporaryDirectory()

								self.test_path	=	Path(self.test_dir.name)

			def	tearDown(self):

								self.test_dir.cleanup()

			def	test_modify_file(self):

								with	open(self.test_path	/	'data.bin',	'w')	as	f:

												...

if	__name__	==	'__main__':

				main()

When	programs	get	complicated,	you’ll	want	additional	tests	to	verify	the	end-
to-end	interactions	between	your	modules	instead	of	only	testing	code	in
isolation	(using	tools	like	mocks;	see	Item	78:	“Use	Mocks	to	Test	Code	with
Complex	Dependencies”).	This	is	the	difference	between	unit	tests	and
integration	tests.	In	Python,	it’s	important	to	write	both	types	of	tests	for	exactly
the	same	reason:	You	have	no	guarantee	that	your	modules	will	actually	work
together	unless	you	prove	it.

One	common	problem	is	that	setting	up	your	test	environment	for	integration
tests	can	be	computationally	expensive	and	may	require	a	lot	of	wall-clock	time.
For	example,	you	might	need	to	start	a	database	process	and	wait	for	it	to	finish
loading	indexes	before	you	can	run	your	integration	tests.	This	type	of	latency
makes	it	impractical	to	do	test	preparation	and	cleanup	for	every	test	in	the
TestCase	class’s	setUp	and	tearDown	methods.

To	handle	this	situation,	the	unittest	module	also	supports	module-level	test
harness	initialization.	You	can	configure	expensive	resources	a	single	time,	and
then	have	all	TestCase	classes	and	their	test	methods	run	without	repeating	that
initialization.	Later,	when	all	tests	in	the	module	are	finished,	the	test	harness
can	be	torn	down	a	single	time.	Here,	I	take	advantage	of	this	behavior	by
defining	setUpModule	and	tearDownModule	functions	within	the	module
containing	the	TestCase	classes:

Click	here	to	view	code	image
#	integration_test.py

from	unittest	import	TestCase,	main

def	setUpModule():

				print('*	Module	setup')

def	tearDownModule():

				print('*	Module	clean-up')

class	IntegrationTest(TestCase):

				def	setUp(self):

								print('*	Test	setup')

				def	tearDown(self):

								print('*	Test	clean-up')

				def	test_end_to_end1(self):

								print('*	Test	1')

				def	test_end_to_end2(self):

								print('*	Test	2')

if	__name__	==	'__main__':

				main()

$	python3	integration_test.py

*	Module	setup

*	Test	setup

*	Test	1

*	Test	clean-up

.*	Test	setup

*	Test	2

*	Test	clean-up

.*	Module	clean-up

Ran	2	tests	in	0.000s

OK

I	can	clearly	see	that	setUpModule	is	run	by	unittest	only	once,	and	it	happens
before	any	setUp	methods	are	called.	Similarly,	tearDownModule	happens	after
the	tearDown	method	is	called.

Things	to	Remember

✦	It’s	important	to	write	both	unit	tests	(for	isolated	functionality)	and
integration	tests	(for	modules	that	interact	with	each	other).

✦	Use	the	setUp	and	tearDown	methods	to	make	sure	your	tests	are	isolated
from	each	other	and	have	a	clean	test	environment.

✦	For	integration	tests,	use	the	setUpModule	and	tearDownModule	module-level
functions	to	manage	any	test	harnesses	you	need	for	the	entire	lifetime	of	a
test	module	and	all	of	the	TestCase	classes	that	it	contains.

Item	78:	Use	Mocks	to	Test	Code	with	Complex
Dependencies

Another	common	need	when	writing	tests	(see	Item	76:	“Verify	Related
Behaviors	in	TestCase	Subclasses”)	is	to	use	mocked	functions	and	classes	to
simulate	behaviors	when	it’s	too	difficult	or	slow	to	use	the	real	thing.	For
example,	say	that	I	need	a	program	to	maintain	the	feeding	schedule	for	animals
at	the	zoo.	Here,	I	define	a	function	to	query	a	database	for	all	of	the	animals	of	a

certain	species	and	return	when	they	most	recently	ate:

Click	here	to	view	code	image
class	DatabaseConnection:

				...

def	get_animals(database,	species):

				#	Query	the	database

				...

				#	Return	a	list	of	(name,	last_mealtime)	tuples

How	do	I	get	a	DatabaseConnection	instance	to	use	for	testing	this	function?
Here,	I	try	to	create	one	and	pass	it	into	the	function	being	tested:

Click	here	to	view	code	image
database	=	DatabaseConnection('localhost',	'4444')

get_animals(database,	'Meerkat')

>>>

Traceback	...

DatabaseConnectionError:	Not	connected

There’s	no	database	running,	so	of	course	this	fails.	One	solution	is	to	actually
stand	up	a	database	server	and	connect	to	it	in	the	test.	However,	it’s	a	lot	of
work	to	fully	automate	starting	up	a	database,	configuring	its	schema,	populating
it	with	data,	and	so	on	in	order	to	just	run	a	simple	unit	test.	Further,	it	will
probably	take	a	lot	of	wallclock	time	to	set	up	a	database	server,	which	would
slow	down	these	unit	tests	and	make	them	harder	to	maintain.

A	better	approach	is	to	mock	out	the	database.	A	mock	lets	you	provide	expected
responses	for	dependent	functions,	given	a	set	of	expected	calls.	It’s	important
not	to	confuse	mocks	with	fakes.	A	fake	would	provide	most	of	the	behavior	of
the	DatabaseConnection	class	but	with	a	simpler	implementation,	such	as	a	basic
in-memory,	single-threaded	database	with	no	persistence.

Python	has	the	unittest.mock	built-in	module	for	creating	mocks	and	using
them	in	tests.	Here,	I	define	a	Mock	instance	that	simulates	the	get_animals
function	without	actually	connecting	to	the	database:

Click	here	to	view	code	image
from	datetime	import	datetime

from	unittest.mock	import	Mock

mock	=	Mock(spec=get_animals)

expected	=	[

				('Spot',	datetime(2019,	6,	5,	11,	15)),

				('Fluffy',	datetime(2019,	6,	5,	12,	30)),

				('Jojo',	datetime(2019,	6,	5,	12,	45)),

]

mock.return_value	=	expected

The	Mock	class	creates	a	mock	function.	The	return_value	attribute	of	the	mock
is	the	value	to	return	when	it	is	called.	The	spec	argument	indicates	that	the
mock	should	act	like	the	given	object,	which	is	a	function	in	this	case,	and	error
if	it’s	used	in	the	wrong	way.

For	example,	here	I	try	to	treat	the	mock	function	as	if	it	were	a	mock	object
with	attributes:

Click	here	to	view	code	image
mock.does_not_exist

	

>>>

Traceback	...

AttributeError:	Mock	object	has	no	attribute	'does_not_exist'

Once	it’s	created,	I	can	call	the	mock,	get	its	return	value,	and	verify	that	what	it
returns	matches	expectations.	I	use	a	unique	object	value	as	the	database
argument	because	it	won’t	actually	be	used	by	the	mock	to	do	anything;	all	I
care	about	is	that	the	database	parameter	was	correctly	plumbed	through	to	any
dependent	functions	that	needed	a	DatabaseConnection	instance	in	order	to	work
(see	Item	55:	“Use	Queue	to	Coordinate	Work	Between	Threads”	for	another
example	of	using	sentinel	object	instances):
database	=	object()

result	=	mock(database,	'Meerkat')

assert	result	==	expected

This	verifies	that	the	mock	responded	correctly,	but	how	do	I	know	if	the	code
that	called	the	mock	provided	the	correct	arguments?	For	this,	the	Mock	class
provides	the	assert_called_once_with	method,	which	verifies	that	a	single	call
with	exactly	the	given	parameters	was	made:

Click	here	to	view	code	image
mock.assert_called_once_with(database,	'Meerkat')

If	I	supply	the	wrong	parameters,	an	exception	is	raised,	and	any	TestCase	that

the	assertion	is	used	in	fails:

Click	here	to	view	code	image
mock.assert_called_once_with(database,	'Giraffe')

>>>

Traceback	...

AssertionError:	expected	call	not	found.

Expected:	mock(<object	object	at	0x109038790>,	'Giraffe')

Actual:	mock(<object	object	at	0x109038790>,	'Meerkat')

If	I	actually	don’t	care	about	some	of	the	individual	parameters,	such	as	exactly
which	database	object	was	used,	then	I	can	indicate	that	any	value	is	okay	for	an
argument	by	using	the	unittest.mock.ANY	constant.	I	can	also	use	the
assert_called_with	method	of	Mock	to	verify	that	the	most	recent	call	to	the
mock—and	there	may	have	been	multiple	calls	in	this	case—matches	my
expectations:

Click	here	to	view	code	image
from	unittest.mock	import	ANY

mock	=	Mock(spec=get_animals)

mock('database	1',	'Rabbit')

mock('database	2',	'Bison')

mock('database	3',	'Meerkat')

mock.assert_called_with(ANY,	'Meerkat')

ANY	is	useful	in	tests	when	a	parameter	is	not	core	to	the	behavior	that’s	being
tested.	It’s	often	worth	erring	on	the	side	of	under-specifying	tests	by	using	ANY
more	liberally	instead	of	over-specifying	tests	and	having	to	plumb	through
various	test	parameter	expectations.

The	Mock	class	also	makes	it	easy	to	mock	exceptions	being	raised:

Click	here	to	view	code	image
class	MyError(Exception):

				pass

mock	=	Mock(spec=get_animals)

mock.side_effect	=	MyError('Whoops!	Big	problem')

result	=	mock(database,	'Meerkat')

>>>

Traceback	...

MyError:	Whoops!	Big	problem

There	are	many	more	features	available,	so	be	sure	to	see
help(unittest.mock.Mock)	for	the	full	range	of	options.

Now	that	I’ve	shown	the	mechanics	of	how	a	Mock	works,	I	can	apply	it	to	an
actual	testing	situation	to	show	how	to	use	it	effectively	in	writing	unit	tests.
Here,	I	define	a	function	to	do	the	rounds	of	feeding	animals	at	the	zoo,	given	a
set	of	database-interacting	functions:

Click	here	to	view	code	image
def	get_food_period(database,	species):

				#	Query	the	database

				...

				#	Return	a	time	delta

def	feed_animal(database,	name,	when):

				#	Write	to	the	database

				...

def	do_rounds(database,	species):

				now	=	datetime.datetime.utcnow()

				feeding_timedelta	=	get_food_period(database,	species)

				animals	=	get_animals(database,	species)

				fed	=	0

				for	name,	last_mealtime	in	animals:

								if	(now	-	last_mealtime)	>	feeding_timedelta:

												feed_animal(database,	name,	now)

												fed	+=	1

				return	fed

The	goal	of	my	test	is	to	verify	that	when	do_rounds	is	run,	the	right	animals	got
fed,	the	latest	feeding	time	was	recorded	to	the	database,	and	the	total	number	of
animals	fed	returned	by	the	function	matches	the	correct	total.	In	order	to	do	all
this,	I	need	to	mock	out	datetime.utcnow	so	my	tests	have	a	stable	time	that	isn’t
affected	by	daylight	saving	time	and	other	ephemeral	changes.	I	need	to	mock
out	get_food_period	and	get_animals	to	return	values	that	would	have	come
from	the	database.	And	I	need	to	mock	out	feed_animal	to	accept	data	that
would	have	been	written	back	to	the	database.

The	question	is:	Even	if	I	know	how	to	create	these	mock	functions	and	set
expectations,	how	do	I	get	the	do_rounds	function	that’s	being	tested	to	use	the
mock	dependent	functions	instead	of	the	real	versions?	One	approach	is	to	inject
everything	as	keyword-only	arguments	(see	Item	25:	“Enforce	Clarity	with
Keyword-Only	and	Positional-Only	Arguments”):

Click	here	to	view	code	image
def	do_rounds(database,	species,	*,

														now_func=datetime.utcnow,

														food_func=get_food_period,

														animals_func=get_animals,

														feed_func=feed_animal):

				now	=	now_func()

				feeding_timedelta	=	food_func(database,	species)

				animals	=	animals_func(database,	species)

				fed	=	0

				for	name,	last_mealtime	in	animals:

								if	(now	-	last_mealtime)	>	feeding_timedelta:

												feed_func(database,	name,	now)

												fed	+=	1

				return	fed

To	test	this	function,	I	need	to	create	all	of	the	Mock	instances	upfront	and	set
their	expectations:

Click	here	to	view	code	image
from	datetime	import	timedelta

now_func	=	Mock(spec=datetime.utcnow)

now_func.return_value	=	datetime(2019,	6,	5,	15,	45)

food_func	=	Mock(spec=get_food_period)

food_func.return_value	=	timedelta(hours=3)

animals_func	=	Mock(spec=get_animals)

animals_func.return_value	=	[

				('Spot',	datetime(2019,	6,	5,	11,	15)),

				('Fluffy',	datetime(2019,	6,	5,	12,	30)),

				('Jojo',	datetime(2019,	6,	5,	12,	45)),

]

feed_func	=	Mock(spec=feed_animal)

Then,	I	can	run	the	test	by	passing	the	mocks	into	the	do_rounds	function	to
override	the	defaults:
result	=	do_rounds(

				database,

				'Meerkat',

				now_func=now_func,

				food_func=food_func,

				animals_func=animals_func,

				feed_func=feed_func)

assert	result	==	2

Finally,	I	can	verify	that	all	of	the	calls	to	dependent	functions	matched	my
expectations:

Click	here	to	view	code	image
from	unittest.mock	import	call

food_func.assert_called_once_with(database,	'Meerkat')

animals_func.assert_called_once_with(database,	'Meerkat')

feed_func.assert_has_calls(

				[

								call(database,	'Spot',	now_func.return_value),

								call(database,	'Fluffy',	now_func.return_value),

],

				any_order=True)

I	don’t	verify	the	parameters	to	the	datetime.utcnow	mock	or	how	many	times	it
was	called	because	that’s	indirectly	verified	by	the	return	value	of	the	function.
For	get_food_period	and	get_animals,	I	verify	a	single	call	with	the	specified
parameters	by	using	assert_called_once_with.	For	the	feed_animal	function,	I
verify	that	two	calls	were	made—and	their	order	didn’t	matter—to	write	to	the
database	using	the	unittest.mock.call	helper	and	the	assert_has_calls
method.

This	approach	of	using	keyword-only	arguments	for	injecting	mocks	works,	but
it’s	quite	verbose	and	requires	changing	every	function	you	want	to	test.	The
unittest.mock.patch	family	of	functions	makes	injecting	mocks	easier.	It
temporarily	reassigns	an	attribute	of	a	module	or	class,	such	as	the	database-
accessing	functions	that	I	defined	above.	For	example,	here	I	override
get_animals	to	be	a	mock	using	patch:

Click	here	to	view	code	image
from	unittest.mock	import	patch

print('Outside	patch:',	get_animals)

with	patch('__main__.get_animals'):

				print('Inside	patch:	',	get_animals)

print('Outside	again:',	get_animals)

>>>

Outside	patch:	<function	get_animals	at	0x109217040>

Inside	patch:	<MagicMock	name='get_animals'	id='4454622832'>

Outside	again:	<function	get_animals	at	0x109217040>

patch	works	for	many	modules,	classes,	and	attributes.	It	can	be	used	in	with
statements	(see	Item	66:	“Consider	contextlib	and	with	Statements	for	Reusable
try/finally	Behavior”),	as	a	function	decorator	(see	Item	26:	“Define	Function
Decorators	with	functools.wraps”),	or	in	the	setUp	and	tearDown	methods	of
TestCase	classes	(see	Item	76:	“Verify	Related	Behaviors	in	TestCase
Subclasses”).	For	the	full	range	of	options,	see	help(unittest.mock.patch).

However,	patch	doesn’t	work	in	all	cases.	For	example,	to	test	do_rounds	I	need
to	mock	out	the	current	time	returned	by	the	datetime.utcnow	class	method.
Python	won’t	let	me	do	that	because	the	datetime	class	is	defined	in	a	C-
extension	module,	which	can’t	be	modified	in	this	way:

Click	here	to	view	code	image
fake_now	=	datetime(2019,	6,	5,	15,	45)

with	patch('datetime.datetime.utcnow'):

				datetime.utcnow.return_value	=	fake_now

>>>

Traceback	...

TypeError:	can't	set	attributes	of	built-in/extension	type

➥'datetime.datetime'

To	work	around	this,	I	can	create	another	helper	function	to	fetch	time	that	can
be	patched:

Click	here	to	view	code	image
def	get_do_rounds_time():

				return	datetime.datetime.utcnow()

def	do_rounds(database,	species):

				now	=	get_do_rounds_time()

				...

with	patch('__main__.get_do_rounds_time'):

				...

Alternatively,	I	can	use	a	keyword-only	argument	for	the	datetime.utcnow	mock
and	use	patch	for	all	of	the	other	mocks:

Click	here	to	view	code	image
def	do_rounds(database,	species,	*,	utcnow=datetime.utcnow):

				now	=	utcnow()

				feeding_timedelta	=	get_food_period(database,	species)

				animals	=	get_animals(database,	species)

				fed	=	0

				for	name,	last_mealtime	in	animals:

								if	(now	-	last_mealtime)	>	feeding_timedelta:

												feed_func(database,	name,	now)

												fed	+=	1

				return	fed

I’m	going	to	go	with	the	latter	approach.	Now,	I	can	use	the	patch.multiple
function	to	create	many	mocks	and	set	their	expectations:

Click	here	to	view	code	image
from	unittest.mock	import	DEFAULT

with	patch.multiple('__main__',

																				autospec=True,

																				get_food_period=DEFAULT,

																				get_animals=DEFAULT,

																				feed_animal=DEFAULT):

				now_func	=	Mock(spec=datetime.utcnow)

				now_func.return_value	=	datetime(2019,	6,	5,	15,	45)

				get_food_period.return_value	=	timedelta(hours=3)

				get_animals.return_value	=	[

								('Spot',	datetime(2019,	6,	5,	11,	15)),

								('Fluffy',	datetime(2019,	6,	5,	12,	30)),

								('Jojo',	datetime(2019,	6,	5,	12,	45))

]

With	the	setup	ready,	I	can	run	the	test	and	verify	that	the	calls	were	correct
inside	the	with	statement	that	used	patch.multiple:

Click	here	to	view	code	image
				result	=	do_rounds(database,	'Meerkat',	utcnow=now_func)

				assert	result	==	2

				food_func.assert_called_once_with(database,	'Meerkat')

				animals_func.assert_called_once_with(database,	'Meerkat')

				feed_func.assert_has_calls(

				[

								call(database,	'Spot',	now_func.return_value),

								call(database,	'Fluffy',	now_func.return_value),

],

				any_order=True)

The	keyword	arguments	to	patch.multiple	correspond	to	names	in	the	__main__
module	that	I	want	to	override	during	the	test.	The	DEFAULT	value	indicates	that	I
want	a	standard	Mock	instance	to	be	created	for	each	name.	All	of	the	generated
mocks	will	adhere	to	the	specification	of	the	objects	they	are	meant	to	simulate,
thanks	to	the	autospec=True	parameter.

These	mocks	work	as	expected,	but	it’s	important	to	realize	that	it’s	possible	to
further	improve	the	readability	of	these	tests	and	reduce	boilerplate	by
refactoring	your	code	to	be	more	testable	(see	Item	79:	“Encapsulate
Dependencies	to	Facilitate	Mocking	and	Testing”).

Things	to	Remember

✦	The	unittest.mock	module	provides	a	way	to	simulate	the	behavior	of
interfaces	using	the	Mock	class.	Mocks	are	useful	in	tests	when	it’s	difficult
to	set	up	the	dependencies	that	are	required	by	the	code	that’s	being	tested.

✦	When	using	mocks,	it’s	important	to	verify	both	the	behavior	of	the	code
being	tested	and	how	dependent	functions	were	called	by	that	code,	using
the	Mock.assert_called_once_with	family	of	methods.

✦	Keyword-only	arguments	and	the	unittest.mock.patch	family	of	functions
can	be	used	to	inject	mocks	into	the	code	being	tested.

Item	79:	Encapsulate	Dependencies	to	Facilitate
Mocking	and	Testing

In	the	previous	item	(see	Item	78:	“Use	Mocks	to	Test	Code	with	Complex
Dependencies”),	I	showed	how	to	use	the	facilities	of	the	unittest.mock	built-in
module—including	the	Mock	class	and	patch	family	of	functions—to	write	tests
that	have	complex	dependencies,	such	as	a	database.	However,	the	resulting	test
code	requires	a	lot	of	boilerplate,	which	could	make	it	more	difficult	for	new
readers	of	the	code	to	understand	what	the	tests	are	trying	to	verify.

One	way	to	improve	these	tests	is	to	use	a	wrapper	object	to	encapsulate	the
database’s	interface	instead	of	passing	a	DatabaseConnection	object	to	functions
as	an	argument.	It’s	often	worth	refactoring	your	code	(see	Item	89:	“Consider

warnings	to	Refactor	and	Migrate	Usage”	for	one	approach)	to	use	better
abstractions	because	it	facilitates	creating	mocks	and	writing	tests.	Here,	I
redefine	the	various	database	helper	functions	from	the	previous	item	as	methods
on	a	class	instead	of	as	independent	functions:

Click	here	to	view	code	image
class	ZooDatabase:

				...

				def	get_animals(self,	species):

								...

				def	get_food_period(self,	species):

								...

				def	feed_animal(self,	name,	when):

								...

Now,	I	can	redefine	the	do_rounds	function	to	call	methods	on	a	ZooDatabase
object:

Click	here	to	view	code	image
from	datetime	import	datetime

def	do_rounds(database,	species,	*,	utcnow=datetime.utcnow):

				now	=	utcnow()

				feeding_timedelta	=	database.get_food_period(species)

				animals	=	database.get_animals(species)

				fed	=	0

				for	name,	last_mealtime	in	animals:

								if	(now	-	last_mealtime)	>=	feeding_timedelta:

												database.feed_animal(name,	now)

												fed	+=	1

				return	fed

Writing	a	test	for	do_rounds	is	now	a	lot	easier	because	I	no	longer	need	to	use
unittest.mock.patch	to	inject	the	mock	into	the	code	being	tested.	Instead,	I	can
create	a	Mock	instance	to	represent	a	ZooDatabase	and	pass	that	in	as	the	database
parameter.	The	Mock	class	returns	a	mock	object	for	any	attribute	name	that	is
accessed.	Those	attributes	can	be	called	like	methods,	which	I	can	then	use	to	set
expectations	and	verify	calls.	This	makes	it	easy	to	mock	out	all	of	the	methods
of	a	class:

Click	here	to	view	code	image
from	unittest.mock	import	Mock

database	=	Mock(spec=ZooDatabase)

print(database.feed_animal)

database.feed_animal()

database.feed_animal.assert_any_call()

>>>

<Mock	name='mock.feed_animal'	id='4384773408'>

I	can	rewrite	the	Mock	setup	code	by	using	the	ZooDatabase	encapsulation:

Click	here	to	view	code	image
from	datetime	import	timedelta

from	unittest.mock	import	call

now_func	=	Mock(spec=datetime.utcnow)

now_func.return_value	=	datetime(2019,	6,	5,	15,	45)

database	=	Mock(spec=ZooDatabase)

database.get_food_period.return_value	=	timedelta(hours=3)

database.get_animals.return_value	=	[

				('Spot',	datetime(2019,	6,	5,	11,	15)),

				('Fluffy',	datetime(2019,	6,	5,	12,	30)),

				('Jojo',	datetime(2019,	6,	5,	12,	55))

]

Then	I	can	run	the	function	being	tested	and	verify	that	all	dependent	methods
were	called	as	expected:

Click	here	to	view	code	image
result	=	do_rounds(database,	'Meerkat',	utcnow=now_func)

assert	result	==	2

database.get_food_period.assert_called_once_with('Meerkat')

database.get_animals.assert_called_once_with('Meerkat')

database.feed_animal.assert_has_calls(

				[

								call('Spot',	now_func.return_value),

								call('Fluffy',	now_func.return_value),

],

				any_order=True)

Using	the	spec	parameter	to	Mock	is	especially	useful	when	mocking	classes
because	it	ensures	that	the	code	under	test	doesn’t	call	a	misspelled	method

name	by	accident.	This	allows	you	to	avoid	a	common	pitfall	where	the	same
bug	is	present	in	both	the	code	and	the	unit	test,	masking	a	real	error	that	will
later	reveal	itself	in	production:

Click	here	to	view	code	image
database.bad_method_name()

	

>>>

Traceback	...

AttributeError:	Mock	object	has	no	attribute	'bad_method_name'

If	I	want	to	test	this	program	end-to-end	with	a	mid-level	integration	test	(see
Item	77:	“Isolate	Tests	from	Each	Other	with	setUp,	tearDown,	setUpModule,	and
tearDownModule”),	I	still	need	a	way	to	inject	a	mock	ZooDatabase	into	the
program.	I	can	do	this	by	creating	a	helper	function	that	acts	as	a	seam	for
dependency	injection.	Here,	I	define	such	a	helper	function	that	caches	a
ZooDatabase	in	module	scope	(see	Item	86:	“Consider	Module-Scoped	Code	to
Configure	Deployment	Environments”)	by	using	a	global	statement:

Click	here	to	view	code	image
DATABASE	=	None

def	get_database():

				global	DATABASE

				if	DATABASE	is	None:

								DATABASE	=	ZooDatabase()

				return	DATABASE

def	main(argv):

				database	=	get_database()

				species	=	argv[1]

				count	=	do_rounds(database,	species)

				print(f'Fed	{count}	{species}(s)')

				return	0

Now,	I	can	inject	the	mock	ZooDatabase	using	patch,	run	the	test,	and	verify	the
program’s	output.	I’m	not	using	a	mock	datetime.utcnow	here;	instead,	I’m
relying	on	the	database	records	returned	by	the	mock	to	be	relative	to	the	current
time	in	order	to	produce	similar	behavior	to	the	unit	test.	This	approach	is	more
flaky	than	mocking	everything,	but	it	also	tests	more	surface	area:

Click	here	to	view	code	image
import	contextlib

import	io

from	unittest.mock	import	patch

with	patch('__main__.DATABASE',	spec=ZooDatabase):

				now	=	datetime.utcnow()

				DATABASE.get_food_period.return_value	=	timedelta(hours=3)

				DATABASE.get_animals.return_value	=	[

								('Spot',	now	-	timedelta(minutes=4.5)),

								('Fluffy',	now	-	timedelta(hours=3.25)),

								('Jojo',	now	-	timedelta(hours=3)),

]

				fake_stdout	=	io.StringIO()

				with	contextlib.redirect_stdout(fake_stdout):

								main(['program	name',	'Meerkat'])

				found	=	fake_stdout.getvalue()

				expected	=	'Fed	2	Meerkat(s)\n'

				assert	found	==	expected

The	results	match	my	expectations.	Creating	this	integration	test	was
straightforward	because	I	designed	the	implementation	to	make	it	easier	to	test.

Things	to	Remember

✦	When	unit	tests	require	a	lot	of	repeated	boilerplate	to	set	up	mocks,	one
solution	may	be	to	encapsulate	the	functionality	of	dependencies	into
classes	that	are	more	easily	mocked.

✦	The	Mock	class	of	the	unittest.mock	built-in	module	simulates	classes	by
returning	a	new	mock,	which	can	act	as	a	mock	method,	for	each	attribute
that	is	accessed.

✦	For	end-to-end	tests,	it’s	valuable	to	refactor	your	code	to	have	more	helper
functions	that	can	act	as	explicit	seams	to	use	for	injecting	mock
dependencies	in	tests.

Item	80:	Consider	Interactive	Debugging	with	pdb
Everyone	encounters	bugs	in	code	while	developing	programs.	Using	the	print
function	can	help	you	track	down	the	sources	of	many	issues	(see	Item	75:	“Use
repr	Strings	for	Debugging	Output”).	Writing	tests	for	specific	cases	that	cause
trouble	is	another	great	way	to	isolate	problems	(see	Item	76:	“Verify	Related
Behaviors	in	TestCase	Subclasses”).

But	these	tools	aren’t	enough	to	find	every	root	cause.	When	you	need
something	more	powerful,	it’s	time	to	try	Python’s	built-in	interactive	debugger.
The	debugger	lets	you	inspect	program	state,	print	local	variables,	and	step
through	a	Python	program	one	statement	at	a	time.

In	most	other	programming	languages,	you	use	a	debugger	by	specifying	what
line	of	a	source	file	you’d	like	to	stop	on,	and	then	execute	the	program.	In
contrast,	with	Python,	the	easiest	way	to	use	the	debugger	is	by	modifying	your
program	to	directly	initiate	the	debugger	just	before	you	think	you’ll	have	an
issue	worth	investigating.	This	means	that	there	is	no	difference	between	starting
a	Python	program	in	order	to	run	the	debugger	and	starting	it	normally.

To	initiate	the	debugger,	all	you	have	to	do	is	call	the	breakpoint	built-in
function.	This	is	equivalent	to	importing	the	pdb	built-in	module	and	running	its
set_trace	function:

Click	here	to	view	code	image
#	always_breakpoint.py

import	math

def	compute_rmse(observed,	ideal):

				total_err_2	=	0

				count	=	0

				for	got,	wanted	in	zip(observed,	ideal):

								err_2	=	(got	-	wanted)	**	2

								breakpoint()		#	Start	the	debugger	here

								total_err_2	+=	err_2

								count	+=	1

				mean_err	=	total_err_2	/	count

				rmse	=	math.sqrt(mean_err)

				return	rmse

result	=	compute_rmse(

				[1.8,	1.7,	3.2,	6],

				[2,	1.5,	3,	5])

print(result)

As	soon	as	the	breakpoint	function	runs,	the	program	pauses	its	execution
before	the	line	of	code	immediately	following	the	breakpoint	call.	The	terminal
that	started	the	program	turns	into	an	interactive	Python	shell:

Click	here	to	view	code	image
$	python3	always_breakpoint.py

>	always_breakpoint.py(12)compute_rmse()

>	always_breakpoint.py(12)compute_rmse()

->	total_err_2	+=	err_2

(Pdb)

At	the	(Pdb)	prompt,	you	can	type	in	the	names	of	local	variables	to	see	their
values	printed	out	(or	use	p	<name>).	You	can	see	a	list	of	all	local	variables	by
calling	the	locals	built-in	function.	You	can	import	modules,	inspect	global
state,	construct	new	objects,	run	the	help	built-in	function,	and	even	modify
parts	of	the	running	program—whatever	you	need	to	do	to	aid	in	your
debugging.

In	addition,	the	debugger	has	a	variety	of	special	commands	to	control	and
understand	program	execution;	type	help	to	see	the	full	list.

Three	very	useful	commands	make	inspecting	the	running	program	easier:

where:	Print	the	current	execution	call	stack.	This	lets	you	figure	out	where
you	are	in	your	program	and	how	you	arrived	at	the	breakpoint	trigger.

up:	Move	your	scope	up	the	execution	call	stack	to	the	caller	of	the	current
function.	This	allows	you	to	inspect	the	local	variables	in	higher	levels	of
the	program	that	led	to	the	breakpoint.

down:	Move	your	scope	back	down	the	execution	call	stack	one	level.

When	you’re	done	inspecting	the	current	state,	you	can	use	these	five	debugger
commands	to	control	the	program’s	execution	in	different	ways:

step:	Run	the	program	until	the	next	line	of	execution	in	the	program,	and
then	return	control	back	to	the	debugger	prompt.	If	the	next	line	of
execution	includes	calling	a	function,	the	debugger	stops	within	the
function	that	was	called.

next:	Run	the	program	until	the	next	line	of	execution	in	the	current
function,	and	then	return	control	back	to	the	debugger	prompt.	If	the	next
line	of	execution	includes	calling	a	function,	the	debugger	will	not	stop
until	the	called	function	has	returned.

return:	Run	the	program	until	the	current	function	returns,	and	then	return
control	back	to	the	debugger	prompt.

continue:	Continue	running	the	program	until	the	next	breakpoint	is	hit
(either	through	the	breakpoint	call	or	one	added	by	a	debugger	command).

quit:	Exit	the	debugger	and	end	the	program.	Run	this	command	if	you’ve

found	the	problem,	gone	too	far,	or	need	to	make	program	modifications
and	try	again.

The	breakpoint	function	can	be	called	anywhere	in	a	program.	If	you	know	that
the	problem	you’re	trying	to	debug	happens	only	under	special	circumstances,
then	you	can	just	write	plain	old	Python	code	to	call	breakpoint	after	a	specific
condition	is	met.	For	example,	here	I	start	the	debugger	only	if	the	squared	error
for	a	datapoint	is	more	than	1:

Click	here	to	view	code	image
#	conditional_breakpoint.py

def	compute_rmse(observed,	ideal):

				...

				for	got,	wanted	in	zip(observed,	ideal):

								err_2	=	(got	-	wanted)	**	2

								if	err_2	>=	1:		#	Start	the	debugger	if	True

												breakpoint()

								total_err_2	+=	err_2

								count	+=	1

				...

result	=	compute_rmse(

				[1.8,	1.7,	3.2,	7],

				[2,	1.5,	3,	5])

print(result)

When	I	run	the	program	and	it	enters	the	debugger,	I	can	confirm	that	the
condition	was	true	by	inspecting	local	variables:

Click	here	to	view	code	image
$	python3	conditional_breakpoint.py

>	conditional_breakpoint.py(14)compute_rmse()

->	total_err_2	+=	err_2

(Pdb)	wanted

5

(Pdb)	got

7

(Pdb)	err_2

4

Another	useful	way	to	reach	the	debugger	prompt	is	by	using	post-mortem
debugging.	This	enables	you	to	debug	a	program	after	it’s	already	raised	an
exception	and	crashed.	This	is	especially	helpful	when	you’re	not	quite	sure
where	to	put	the	breakpoint	function	call.

Here,	I	have	a	script	that	will	crash	due	to	the	7j	complex	number	being	present
in	one	of	the	function’s	arguments:

Click	here	to	view	code	image
#	postmortem_breakpoint.py

import	math

def	compute_rmse(observed,	ideal):

				...

result	=	compute_rmse(

				[1.8,	1.7,	3.2,	7j],		#	Bad	input

				[2,	1.5,	3,	5])

print(result)

I	use	the	command	line	python3	-m	pdb	-c	continue	<program	path>	to	run	the
program	under	control	of	the	pdb	module.	The	continue	command	tells	pdb	to
get	the	program	started	immediately.	Once	it’s	running,	the	program	hits	a
problem	and	automatically	enters	the	interactive	debugger,	at	which	point	I	can
inspect	the	program	state:

Click	here	to	view	code	image
$	python3	-m	pdb	-c	continue	postmortem_breakpoint.py

Traceback	(most	recent	call	last):

		File	".../pdb.py",	line	1697,	in	main

				pdb._runscript(mainpyfile)

		File	".../pdb.py",	line	1566,	in	_runscript

				self.run(statement)

		File	".../bdb.py",	line	585,	in	run

				exec(cmd,	globals,	locals)

		File	"<string>",	line	1,	in	<module>

		File	"postmortem_breakpoint.py",	line	4,	in	<module>

				import	math

		File	"postmortem_breakpoint.py",	line	16,	in	compute_rmse

				rmse	=	math.sqrt(mean_err)

TypeError:	can't	convert	complex	to	float

Uncaught	exception.	Entering	post	mortem	debugging

Running	'cont'	or	'step'	will	restart	the	program

>	postmortem_breakpoint.py(16)compute_rmse()

->	rmse	=	math.sqrt(mean_err)

(Pdb)	mean_err

(-5.97-17.5j)

You	can	also	use	post-mortem	debugging	after	hitting	an	uncaught	exception	in
the	interactive	Python	interpreter	by	calling	the	pm	function	of	the	pdb	module
(which	is	often	done	in	a	single	line	as	import	pdb;	pdb.pm()):

Click	here	to	view	code	image
$	python3

>>>	import	my_module

>>>	my_module.compute_stddev([5])

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"my_module.py",	line	17,	in	compute_stddev

				variance	=	compute_variance(data)

		File	"my_module.py",	line	13,	in	compute_variance

				variance	=	err_2_sum	/	(len(data)	-	1)

ZeroDivisionError:	float	division	by	zero

>>>	import	pdb;	pdb.pm()

>	my_module.py(13)compute_variance()

->	variance	=	err_2_sum	/	(len(data)	-	1)

(Pdb)	err_2_sum

0.0

(Pdb)	len(data)

1

Things	to	Remember

✦	You	can	initiate	the	Python	interactive	debugger	at	a	point	of	interest
directly	in	your	program	by	calling	the	breakpoint	built-in	function.

✦	The	Python	debugger	prompt	is	a	full	Python	shell	that	lets	you	inspect	and
modify	the	state	of	a	running	program.

✦	pdb	shell	commands	let	you	precisely	control	program	execution	and	allow
you	to	alternate	between	inspecting	program	state	and	progressing	program
execution.

✦	The	pdb	module	can	be	used	for	debug	exceptions	after	they	happen	in
independent	Python	programs	(using	python	-m	pdb	-c	continue	<program
path>)	or	the	interactive	Python	interpreter	(using	import	pdb;	pdb.pm()).

Item	81:	Use	tracemalloc	to	Understand	Memory	Usage
and	Leaks

Memory	management	in	the	default	implementation	of	Python,	CPython,	uses
reference	counting.	This	ensures	that	as	soon	as	all	references	to	an	object	have
expired,	the	referenced	object	is	also	cleared	from	memory,	freeing	up	that	space
for	other	data.	CPython	also	has	a	built-in	cycle	detector	to	ensure	that	self-
referencing	objects	are	eventually	garbage	collected.

In	theory,	this	means	that	most	Python	programmers	don’t	have	to	worry	about
allocating	or	deallocating	memory	in	their	programs.	It’s	taken	care	of
automatically	by	the	language	and	the	CPython	runtime.	However,	in	practice,
programs	eventually	do	run	out	of	memory	due	to	no	longer	useful	references
still	being	held.	Figuring	out	where	a	Python	program	is	using	or	leaking
memory	proves	to	be	a	challenge.

The	first	way	to	debug	memory	usage	is	to	ask	the	gc	built-in	module	to	list
every	object	currently	known	by	the	garbage	collector.	Although	it’s	quite	a
blunt	tool,	this	approach	lets	you	quickly	get	a	sense	of	where	your	program’s
memory	is	being	used.

Here,	I	define	a	module	that	fills	up	memory	by	keeping	references:

Click	here	to	view	code	image
#	waste_memory.py

import	os

class	MyObject:

				def	__init__(self):

								self.data	=	os.urandom(100)

def	get_data():

				values	=	[]

				for	_	in	range(100):

								obj	=	MyObject()

								values.append(obj)

				return	values

def	run():

				deep_values	=	[]

				for	_	in	range(100):

								deep_values.append(get_data())

				return	deep_values

Then,	I	run	a	program	that	uses	the	gc	built-in	module	to	print	out	how	many
objects	were	created	during	execution,	along	with	a	small	sample	of	allocated
objects:

Click	here	to	view	code	image
#	using_gc.py

import	gc

found_objects	=	gc.get_objects()

print('Before:',	len(found_objects))

import	waste_memory

hold_reference	=	waste_memory.run()

found_objects	=	gc.get_objects()

print('After:	',	len(found_objects))

for	obj	in	found_objects[:3]:

				print(repr(obj)[:100])

>>>

Before:	6207

After:		16801

<waste_memory.MyObject	object	at	0x10390aeb8>

<waste_memory.MyObject	object	at	0x10390aef0>

<waste_memory.MyObject	object	at	0x10390af28>

...

The	problem	with	gc.get_objects	is	that	it	doesn’t	tell	you	anything	about	how
the	objects	were	allocated.	In	complicated	programs,	objects	of	a	specific	class
could	be	allocated	many	different	ways.	Knowing	the	overall	number	of	objects
isn’t	nearly	as	important	as	identifying	the	code	responsible	for	allocating	the
objects	that	are	leaking	memory.

Python	3.4	introduced	a	new	tracemalloc	built-in	module	for	solving	this
problem.	tracemalloc	makes	it	possible	to	connect	an	object	back	to	where	it
was	allocated.	You	use	it	by	taking	before	and	after	snapshots	of	memory	usage
and	comparing	them	to	see	what’s	changed.	Here,	I	use	this	approach	to	print	out
the	top	three	memory	usage	offenders	in	a	program:

Click	here	to	view	code	image
#	top_n.py

import	tracemalloc

tracemalloc.start(10)																						#	Set	stack	depth

time1	=	tracemalloc.take_snapshot()								#	Before	snapshot

import	waste_memory

x	=	waste_memory.run()																					#	Usage	to	debug

time2	=	tracemalloc.take_snapshot()								#	After	snapshot

stats	=	time2.compare_to(time1,	'lineno')		#	Compare	snapshots

for	stat	in	stats[:3]:

				print(stat)

>>>

waste_memory.py:5:	size=2392	KiB	(+2392	KiB),	count=29994

➥(+29994),	average=82	B
waste_memory.py:10:	size=547	KiB	(+547	KiB),	count=10001

➥(+10001),	average=56	B
waste_memory.py:11:	size=82.8	KiB	(+82.8	KiB),	count=100

➥(+100),	average=848	B

The	size	and	count	labels	in	the	output	make	it	immediately	clear	which	objects
are	dominating	my	program’s	memory	usage	and	where	in	the	source	code	they
were	allocated.

The	tracemalloc	module	can	also	print	out	the	full	stack	trace	of	each	allocation
(up	to	the	number	of	frames	passed	to	the	tracemalloc.start	function).	Here,	I
print	out	the	stack	trace	of	the	biggest	source	of	memory	usage	in	the	program:

Click	here	to	view	code	image
#	with_trace.py

import	tracemalloc

tracemalloc.start(10)

time1	=	tracemalloc.take_snapshot()

import	waste_memory

x	=	waste_memory.run()

time2	=	tracemalloc.take_snapshot()

stats	=	time2.compare_to(time1,	'traceback')

top	=	stats[0]

print('Biggest	offender	is:')

print('\n'.join(top.traceback.format()))

>>>

Biggest	offender	is:

		File	"with_trace.py",	line	9

				x	=	waste_memory.run()

		File	"waste_memory.py",	line	17

				deep_values.append(get_data())

		File	"waste_memory.py",	line	10

				obj	=	MyObject()

		File	"waste_memory.py",	line	5

				self.data	=	os.urandom(100)

A	stack	trace	like	this	is	most	valuable	for	figuring	out	which	particular	usage	of
a	common	function	or	class	is	responsible	for	memory	consumption	in	a
program.

Things	to	Remember

✦	It	can	be	difficult	to	understand	how	Python	programs	use	and	leak
memory.

✦	The	gc	module	can	help	you	understand	which	objects	exist,	but	it	has	no
information	about	how	they	were	allocated.

✦	The	tracemalloc	built-in	module	provides	powerful	tools	for	understanding
the	sources	of	memory	usage.

10.	Collaboration

Python	has	language	features	that	help	you	construct	well-defined	APIs	with
clear	interface	boundaries.	The	Python	community	has	established	best	practices
to	maximize	the	maintainability	of	code	over	time.	In	addition,	some	standard
tools	that	ship	with	Python	enable	large	teams	to	work	together	across	disparate
environments.

Collaborating	with	others	on	Python	programs	requires	being	deliberate	in	how
you	write	your	code.	Even	if	you’re	working	on	your	own,	chances	are	you’ll	be
using	code	written	by	someone	else	via	the	standard	library	or	open	source
packages.	It’s	important	to	understand	the	mechanisms	that	make	it	easy	to
collaborate	with	other	Python	programmers.

Item	82:	Know	Where	to	Find	Community-Built
Modules

Python	has	a	central	repository	of	modules	(https://pypi.org)	that	you	can	install
and	use	in	your	programs.	These	modules	are	built	and	maintained	by	people
like	you:	the	Python	community.	When	you	find	yourself	facing	an	unfamiliar
challenge,	the	Python	Package	Index	(PyPI)	is	a	great	place	to	look	for	code	that
will	get	you	closer	to	your	goal.

To	use	the	Package	Index,	you	need	to	use	the	command-line	tool	pip	(a
recursive	acronym	for	“pip	installs	packages”).	pip	can	be	run	with	python3	-m
pip	to	ensure	that	packages	are	installed	for	the	correct	version	of	Python	on
your	system	(see	Item	1:	“Know	Which	Version	of	Python	You’re	Using”).
Using	pip	to	install	a	new	module	is	simple.	For	example,	here	I	install	the	pytz
module	that	I	use	elsewhere	in	this	book	(see	Item	67:	“Use	datetime	Instead	of
time	for	Local	Clocks”):
$	python3	-m	pip	install	pytz

Collecting	pytz

	Downloading	...

Installing	collected	packages:	pytz

Successfully	installed	pytz-2018.9

pip	is	best	used	together	with	the	built-in	module	venv	to	consistently	track	sets

https://pypi.org

of	packages	to	install	for	your	projects	(see	Item	83:	“Use	Virtual	Environments
for	Isolated	and	Reproducible	Dependencies”).	You	can	also	create	your	own
PyPI	packages	to	share	with	the	Python	community	or	host	your	own	private
package	repositories	for	use	with	pip.

Each	module	in	the	PyPI	has	its	own	software	license.	Most	of	the	packages,
especially	the	popular	ones,	have	free	or	open	source	licenses	(see
https://opensource.org	for	details).	In	most	cases,	these	licenses	allow	you	to
include	a	copy	of	the	module	with	your	program;	when	in	doubt,	talk	to	a
lawyer.

Things	to	Remember

✦	The	Python	Package	Index	(PyPI)	contains	a	wealth	of	common	packages
that	are	built	and	maintained	by	the	Python	community.

✦	pip	is	the	command-line	tool	you	can	use	to	install	packages	from	PyPI.
✦	The	majority	of	PyPI	modules	are	free	and	open	source	software.

Item	83:	Use	Virtual	Environments	for	Isolated	and
Reproducible	Dependencies

Building	larger	and	more	complex	programs	often	leads	you	to	rely	on	various
packages	from	the	Python	community	(see	Item	82:	“Know	Where	to	Find
Community-Built	Modules”).	You’ll	find	yourself	running	the	python3	-m	pip
command-line	tool	to	install	packages	like	pytz,	numpy,	and	many	others.

The	problem	is	that,	by	default,	pip	installs	new	packages	in	a	global	location.
That	causes	all	Python	programs	on	your	system	to	be	affected	by	these	installed
modules.	In	theory,	this	shouldn’t	be	an	issue.	If	you	install	a	package	and	never
import	it,	how	could	it	affect	your	programs?

The	trouble	comes	from	transitive	dependencies:	the	packages	that	the	packages
you	install	depend	on.	For	example,	you	can	see	what	the	Sphinx	package
depends	on	after	installing	it	by	asking	pip:

Click	here	to	view	code	image
$	python3	-m	pip	show	Sphinx

Name:	Sphinx

Version:	2.1.2

https://opensource.org

Summary:	Python	documentation	generator

Location:	/usr/local/lib/python3.8/site-packages

Requires:	alabaster,	imagesize,	requests,

➥	sphinxcontrib-applehelp,	sphinxcontrib-qthelp,
➥	Jinja2,	setuptools,	sphinxcontrib-jsmath,
➥	sphinxcontrib-serializinghtml,	Pygments,	snowballstemmer,
➥	packaging,	sphinxcontrib-devhelp,	sphinxcontrib-htmlhelp,
➥	babel,	docutils
Required-by:

If	you	install	another	package	like	flask,	you	can	see	that	it,	too,	depends	on	the
Jinja2	package:

Click	here	to	view	code	image
$	python3	-m	pip	show	flask

Name:	Flask

Version:	1.0.3

Summary:	A	simple	framework	for	building	complex	web	applications.

Location:	/usr/local/lib/python3.8/site-packages

Requires:	itsdangerous,	click,	Jinja2,	Werkzeug

Required-by:

A	dependency	conflict	can	arise	as	Sphinx	and	flask	diverge	over	time.	Perhaps
right	now	they	both	require	the	same	version	of	Jinja2,	and	everything	is	fine.
But	six	months	or	a	year	from	now,	Jinja2	may	release	a	new	version	that
makes	breaking	changes	to	users	of	the	library.	If	you	update	your	global	version
of	Jinja2	with	python3	-m	pip	install	--upgrade	Jinja2,	you	may	find	that
Sphinx	breaks,	while	flask	keeps	working.

The	cause	of	such	breakage	is	that	Python	can	have	only	a	single	global	version
of	a	module	installed	at	a	time.	If	one	of	your	installed	packages	must	use	the
new	version	and	another	package	must	use	the	old	version,	your	system	isn’t
going	to	work	properly;	this	situation	is	often	called	dependency	hell.

Such	breakage	can	even	happen	when	package	maintainers	try	their	best	to
preserve	API	compatibility	between	releases	(see	Item	85:	“Use	Packages	to
Organize	Modules	and	Provide	Stable	APIs”).	New	versions	of	a	library	can
subtly	change	behaviors	that	API-consuming	code	relies	on.	Users	on	a	system
may	upgrade	one	package	to	a	new	version	but	not	others,	which	could	break
dependencies.	If	you’re	not	careful	there’s	a	constant	risk	of	the	ground	moving
beneath	your	feet.

These	difficulties	are	magnified	when	you	collaborate	with	other	developers	who
do	their	work	on	separate	computers.	It’s	best	to	assume	the	worst:	that	the

versions	of	Python	and	global	packages	that	they	have	installed	on	their
machines	will	be	slightly	different	from	yours.	This	can	cause	frustrating
situations	such	as	a	codebase	working	perfectly	on	one	programmer’s	machine
and	being	completely	broken	on	another’s.

The	solution	to	all	of	these	problems	is	using	a	tool	called	venv,	which	provides
virtual	environments.	Since	Python	3.4,	pip	and	the	venv	module	have	been
available	by	default	along	with	the	Python	installation	(accessible	with	python	-
m	venv).

venv	allows	you	to	create	isolated	versions	of	the	Python	environment.	Using
venv,	you	can	have	many	different	versions	of	the	same	package	installed	on	the
same	system	at	the	same	time	without	conflicts.	This	means	you	can	work	on
many	different	projects	and	use	many	different	tools	on	the	same	computer.	venv
does	this	by	installing	explicit	versions	of	packages	and	their	dependencies	into
completely	separate	directory	structures.	This	makes	it	possible	to	reproduce	a
Python	environment	that	you	know	will	work	with	your	code.	It’s	a	reliable	way
to	avoid	surprising	breakages.

Using	venv	on	the	Command	Line
Here’s	a	quick	tutorial	on	how	to	use	venv	effectively.	Before	using	the	tool,	it’s
important	to	note	the	meaning	of	the	python3	command	line	on	your	system.	On
my	computer,	python3	is	located	in	the	/usr/local/bin	directory	and	evaluates
to	version	3.8.0	(see	Item	1:	“Know	Which	Version	of	Python	You’re	Using”):
$	which	python3

/usr/local/bin/python3

$	python3	--version

Python	3.8.0

To	demonstrate	the	setup	of	my	environment,	I	can	test	that	running	a	command
to	import	the	pytz	module	doesn’t	cause	an	error.	This	works	because	I	already
have	the	pytz	package	installed	as	a	global	module:
$	python3	-c	'import	pytz'

$

Now,	I	use	venv	to	create	a	new	virtual	environment	called	myproject.	Each
virtual	environment	must	live	in	its	own	unique	directory.	The	result	of	the
command	is	a	tree	of	directories	and	files	that	are	used	to	manage	the	virtual
environment:

Click	here	to	view	code	image
$	python3	-m	venv	myproject

$	cd	myproject

$	ls

bin					include					lib					pyvenv.cfg

To	start	using	the	virtual	environment,	I	use	the	source	command	from	my	shell
on	the	bin/activate	script.	activate	modifies	all	of	my	environment	variables	to
match	the	virtual	environment.	It	also	updates	my	command-line	prompt	to
include	the	virtual	environment	name	(“myproject”)	to	make	it	extremely	clear
what	I’m	working	on:
$	source	bin/activate

(myproject)$

On	Windows	the	same	script	is	available	as:
C:\>	myproject\Scripts\activate.bat

(myproject)	C:>

Or	with	PowerShell	as:

Click	here	to	view	code	image
PS	C:\>	myproject\Scripts\activate.ps1

(myproject)	PS	C:>

After	activation,	the	path	to	the	python3	command-line	tool	has	moved	to	within
the	virtual	environment	directory:

Click	here	to	view	code	image
(myproject)$	which	python3

/tmp/myproject/bin/python3

(myproject)$	ls	-l	/tmp/myproject/bin/python3

...	->	/usr/local/bin/python3.8

This	ensures	that	changes	to	the	outside	system	will	not	affect	the	virtual
environment.	Even	if	the	outer	system	upgrades	its	default	python3	to	version
3.9,	my	virtual	environment	will	still	explicitly	point	to	version	3.8.

The	virtual	environment	I	created	with	venv	starts	with	no	packages	installed
except	for	pip	and	setuptools.	Trying	to	use	the	pytz	package	that	was	installed
as	a	global	module	in	the	outside	system	will	fail	because	it’s	unknown	to	the
virtual	environment:

Click	here	to	view	code	image
(myproject)$	python3	-c	'import	pytz'

Traceback	(most	recent	call	last):

	File	"<string>",	line	1,	in	<module>

ModuleNotFoundError:	No	module	named	'pytz'

I	can	use	the	pip	command-line	tool	to	install	the	pytz	module	into	my	virtual
environment:

Click	here	to	view	code	image
(myproject)$	python3	-m	pip	install	pytz

Collecting	pytz

	Downloading	...

Installing	collected	packages:	pytz

Successfully	installed	pytz-2019.1

Once	it’s	installed,	I	can	verify	that	it’s	working	by	using	the	same	test	import
command:
(myproject)$	python3	-c	'import	pytz'

(myproject)$

When	I’m	done	with	a	virtual	environment	and	want	to	go	back	to	my	default
system,	I	use	the	deactivate	command.	This	restores	my	environment	to	the
system	defaults,	including	the	location	of	the	python3	command-line	tool:
(myproject)$	which	python3

/tmp/myproject/bin/python3

(myproject)$	deactivate

$	which	python3

/usr/local/bin/python3

If	I	ever	want	to	work	in	the	myproject	environment	again,	I	can	just	run	source
bin/activate	in	the	directory	as	before.

Reproducing	Dependencies
Once	you	are	in	a	virtual	environment,	you	can	continue	installing	packages	in	it
with	pip	as	you	need	them.	Eventually,	you	might	want	to	copy	your
environment	somewhere	else.	For	example,	say	that	I	want	to	reproduce	the
development	environment	from	my	workstation	on	a	server	in	a	datacenter.	Or
maybe	I	want	to	clone	someone	else’s	environment	on	my	own	machine	so	I	can
help	debug	their	code.

venv	makes	such	tasks	easy.	I	can	use	the	python3	-m	pip	freeze	command	to

save	all	of	my	explicit	package	dependencies	into	a	file	(which,	by	convention,
is	named	requirements.txt):

Click	here	to	view	code	image
(myproject)$	python3	-m	pip	freeze	>	requirements.txt

(myproject)$	cat	requirements.txt

certifi==2019.3.9

chardet==3.0.4

idna==2.8

numpy==1.16.2

pytz==2018.9

requests==2.21.0

urllib3==1.24.1

Now,	imagine	that	I’d	like	to	have	another	virtual	environment	that	matches	the
myproject	environment.	I	can	create	a	new	directory	as	before	by	using	venv	and
activate	it:
$	python3	-m	venv	otherproject

$	cd	otherproject

$	source	bin/activate

(otherproject)$

The	new	environment	will	have	no	extra	packages	installed:

Click	here	to	view	code	image
(otherproject)$	python3	-m	pip	list

Package				Version

----------	-------

pip								10.0.1

setuptools	39.0.1

I	can	install	all	of	the	packages	from	the	first	environment	by	running	python3	-
m	pip	install	on	the	requirements.txt	that	I	generated	with	the	python3	-m
pip	freeze	command:

Click	here	to	view	code	image
(otherproject)$	python3	-m	pip	install	-r	/tmp/myproject/

➥	requirements.txt

This	command	cranks	along	for	a	little	while	as	it	retrieves	and	installs	all	of	the
packages	required	to	reproduce	the	first	environment.	When	it’s	done,	I	can	list
the	set	of	installed	packages	in	the	second	virtual	environment	and	should	see
the	same	list	of	dependencies	found	in	the	first	virtual	environment:

Click	here	to	view	code	image
(otherproject)$	python3	-m	pip	list

Package				Version

----------	--------

certifi				2019.3.9

chardet				3.0.4

idna							2.8

numpy						1.16.2

pip								10.0.1

pytz							2018.9

requests			2.21.0

setuptools	39.0.1

urllib3				1.24.1

Using	a	requirements.txt	file	is	ideal	for	collaborating	with	others	through	a
revision	control	system.	You	can	commit	changes	to	your	code	at	the	same	time
you	update	your	list	of	package	dependencies,	ensuring	that	they	move	in
lockstep.	However,	it’s	important	to	note	that	the	specific	version	of	Python
you’re	using	is	not	included	in	the	requirements.txt	file,	so	that	must	be
managed	separately.

The	gotcha	with	virtual	environments	is	that	moving	them	breaks	everything
because	all	of	the	paths,	like	the	python3	command-line	tool,	are	hard-coded	to
the	environment’s	install	directory.	But	ultimately	this	limitation	doesn’t	matter.
The	whole	purpose	of	virtual	environments	is	to	make	it	easy	to	reproduce	a
setup.	Instead	of	moving	a	virtual	environment	directory,	just	use	python3	-m
pip	freeze	on	the	old	one,	create	a	new	virtual	environment	somewhere	else,
and	reinstall	everything	from	the	requirements.txt	file.

Things	to	Remember

✦	Virtual	environments	allow	you	to	use	pip	to	install	many	different	versions
of	the	same	package	on	the	same	machine	without	conflicts.

✦	Virtual	environments	are	created	with	python	-m	venv,	enabled	with	source
bin/activate,	and	disabled	with	deactivate.

✦	You	can	dump	all	of	the	requirements	of	an	environment	with	python3	-m
pip	freeze.	You	can	reproduce	an	environment	by	running	python3	-m	pip
install	-r	requirements.txt.

Item	84:	Write	Docstrings	for	Every	Function,	Class,
and	Module

and	Module
Documentation	in	Python	is	extremely	important	because	of	the	dynamic	nature
of	the	language.	Python	provides	built-in	support	for	attaching	documentation	to
blocks	of	code.	Unlike	with	many	other	languages,	the	documentation	from	a
program’s	source	code	is	directly	accessible	as	the	program	runs.

For	example,	you	can	add	documentation	by	providing	a	docstring	immediately
after	the	def	statement	of	a	function:

Click	here	to	view	code	image
def	palindrome(word):

				"""Return	True	if	the	given	word	is	a	palindrome."""

				return	word	==	word[::-1]

assert	palindrome('tacocat')

assert	not	palindrome('banana')

You	can	retrieve	the	docstring	from	within	the	Python	program	by	accessing	the
function’s	__doc__	special	attribute:

Click	here	to	view	code	image
print(repr(palindrome.__doc__))

>>>

'Return	True	if	the	given	word	is	a	palindrome.'

You	can	also	use	the	built-in	pydoc	module	from	the	command	line	to	run	a	local
web	server	that	hosts	all	of	the	Python	documentation	that’s	accessible	to	your
interpreter,	including	modules	that	you’ve	written:

Click	here	to	view	code	image
$	python3	-m	pydoc	-p	1234

Server	ready	at	http://localhost:1234/

Server	commands:	[b]rowser,	[q]uit

server>	b

Docstrings	can	be	attached	to	functions,	classes,	and	modules.	This	connection	is
part	of	the	process	of	compiling	and	running	a	Python	program.	Support	for
docstrings	and	the	__doc__	attribute	has	three	consequences:

The	accessibility	of	documentation	makes	interactive	development	easier.
You	can	inspect	functions,	classes,	and	modules	to	see	their	documentation

by	using	the	help	built-in	function.	This	makes	the	Python	interactive
interpreter	(the	Python	“shell”)	and	tools	like	IPython	Notebook
(https://ipython.org)	a	joy	to	use	while	you’re	developing	algorithms,
testing	APIs,	and	writing	code	snippets.

A	standard	way	of	defining	documentation	makes	it	easy	to	build	tools	that
convert	the	text	into	more	appealing	formats	(like	HTML).	This	has	led	to
excellent	documentation-generation	tools	for	the	Python	community,	such
as	Sphinx	(https://www.sphinx-doc.org).	It	has	also	enabled	community-
funded	sites	like	Read	the	Docs	(https://readthedocs.org)	that	provide	free
hosting	of	beautiful-looking	documentation	for	open	source	Python
projects.

Python’s	first-class,	accessible,	and	good-looking	documentation
encourages	people	to	write	more	documentation.	The	members	of	the
Python	community	have	a	strong	belief	in	the	importance	of
documentation.	There’s	an	assumption	that	“good	code”	also	means	well-
documented	code.	This	means	that	you	can	expect	most	open	source
Python	libraries	to	have	decent	documentation.

To	participate	in	this	excellent	culture	of	documentation,	you	need	to	follow	a
few	guidelines	when	you	write	docstrings.	The	full	details	are	discussed	online
in	PEP	257	(https://www.python.org/dev/peps/pep-0257/).	There	are	a	few	best
practices	you	should	be	sure	to	follow.

Documenting	Modules
Each	module	should	have	a	top-level	docstring—a	string	literal	that	is	the	first
statement	in	a	source	file.	It	should	use	three	double	quotes	(""").	The	goal	of
this	docstring	is	to	introduce	the	module	and	its	contents.

The	first	line	of	the	docstring	should	be	a	single	sentence	describing	the
module’s	purpose.	The	paragraphs	that	follow	should	contain	the	details	that	all
users	of	the	module	should	know	about	its	operation.	The	module	docstring	is
also	a	jumping-off	point	where	you	can	highlight	important	classes	and	functions
found	in	the	module.

Here’s	an	example	of	a	module	docstring:

Click	here	to	view	code	image
#	words.py

#!/usr/bin/env	python3

https://ipython.org
https://www.sphinx-doc.org
https://readthedocs.org
https://www.python.org/dev/peps/pep-0257/

"""Library	for	finding	linguistic	patterns	in	words.

Testing	how	words	relate	to	each	other	can	be	tricky	sometimes!

This	module	provides	easy	ways	to	determine	when	words	you've

found	have	special	properties.

Available	functions:

-	palindrome:	Determine	if	a	word	is	a	palindrome.

-	check_anagram:	Determine	if	two	words	are	anagrams.

...

"""

...

If	the	module	is	a	command-line	utility,	the	module	docstring	is	also	a	great
place	to	put	usage	information	for	running	the	tool.

Documenting	Classes
Each	class	should	have	a	class-level	docstring.	This	largely	follows	the	same
pattern	as	the	module-level	docstring.	The	first	line	is	the	single-sentence
purpose	of	the	class.	Paragraphs	that	follow	discuss	important	details	of	the
class’s	operation.

Important	public	attributes	and	methods	of	the	class	should	be	highlighted	in	the
class-level	docstring.	It	should	also	provide	guidance	to	subclasses	on	how	to
properly	interact	with	protected	attributes	(see	Item	42:	“Prefer	Public	Attributes
Over	Private	Ones”)	and	the	superclass’s	methods.

Here’s	an	example	of	a	class	docstring:

Click	here	to	view	code	image
class	Player:

				"""Represents	a	player	of	the	game.

				Subclasses	may	override	the	'tick'	method	to	provide

				custom	animations	for	the	player's	movement	depending

				on	their	power	level,	etc.

				Public	attributes:

				-	power:	Unused	power-ups	(float	between	0	and	1).

				-	coins:	Coins	found	during	the	level	(integer).

				"""

				...

Documenting	Functions

Documenting	Functions
Each	public	function	and	method	should	have	a	docstring.	This	follows	the	same
pattern	as	the	docstrings	for	modules	and	classes.	The	first	line	is	a	single-
sentence	description	of	what	the	function	does.	The	paragraphs	that	follow
should	describe	any	specific	behaviors	and	the	arguments	for	the	function.	Any
return	values	should	be	mentioned.	Any	exceptions	that	callers	must	handle	as
part	of	the	function’s	interface	should	be	explained	(see	Item	20:	“Prefer	Raising
Exceptions	to	Returning	None”	for	how	to	document	raised	exceptions).

Here’s	an	example	of	a	function	docstring:

Click	here	to	view	code	image
def	find_anagrams(word,	dictionary):

				"""Find	all	anagrams	for	a	word.

				This	function	only	runs	as	fast	as	the	test	for

				membership	in	the	'dictionary'	container.

				Args:

								word:	String	of	the	target	word.

								dictionary:	collections.abc.Container	with	all

												strings	that	are	known	to	be	actual	words.

				Returns:

								List	of	anagrams	that	were	found.	Empty	if

								none	were	found.

				"""

				...

There	are	also	some	special	cases	in	writing	docstrings	for	functions	that	are
important	to	know:

If	a	function	has	no	arguments	and	a	simple	return	value,	a	single-sentence
description	is	probably	good	enough.

If	a	function	doesn’t	return	anything,	it’s	better	to	leave	out	any	mention	of
the	return	value	instead	of	saying	“returns	None.”

If	a	function’s	interface	includes	raising	exceptions	(see	Item	20:	“Prefer
Raising	Exceptions	to	Returning	None”	for	an	example),	its	docstring
should	describe	each	exception	that’s	raised	and	when	it’s	raised.

If	you	don’t	expect	a	function	to	raise	an	exception	during	normal
operation,	don’t	mention	that	fact.

If	a	function	accepts	a	variable	number	of	arguments	(see	Item	22:	“Reduce

Visual	Noise	with	Variable	Positional	Arguments”)	or	keyword	arguments
(see	Item	23:	“Provide	Optional	Behavior	with	Keyword	Arguments”),	use
*args	and	**kwargs	in	the	documented	list	of	arguments	to	describe	their
purpose.
If	a	function	has	arguments	with	default	values,	those	defaults	should	be
mentioned	(see	Item	24:	“Use	None	and	Docstrings	to	Specify	Dynamic
Default	Arguments”).

If	a	function	is	a	generator	(see	Item	30:	“Consider	Generators	Instead	of
Returning	Lists”),	its	docstring	should	describe	what	the	generator	yields
when	it’s	iterated.

If	a	function	is	an	asynchronous	coroutine	(see	Item	60:	“Achieve	Highly
Concurrent	I/O	with	Coroutines”),	its	docstring	should	explain	when	it	will
stop	execution.

Using	Docstrings	and	Type	Annotations
Python	now	supports	type	annotations	for	a	variety	of	purposes	(see	Item	90:
“Consider	Static	Analysis	via	typing	to	Obviate	Bugs”	for	how	to	use	them).
The	information	they	contain	may	be	redundant	with	typical	docstrings.	For
example,	here	is	the	function	signature	for	find_anagrams	with	type	annotations
applied:

Click	here	to	view	code	image
from	typing	import	Container,	List

def	find_anagrams(word:	str,

																		dictionary:	Container[str])	->	List[str]:

				...

There	is	no	longer	a	need	to	specify	in	the	docstring	that	the	word	argument	is	a
string,	since	the	type	annotation	has	that	information.	The	same	goes	for	the
dictionary	argument	being	a	collections.abc.Container.	There’s	no	reason	to
mention	that	the	return	type	will	be	a	list,	since	this	fact	is	clearly	annotated.
And	when	no	anagrams	are	found,	the	return	value	still	must	be	a	list,	so	it’s
implied	that	it	will	be	empty;	that	doesn’t	need	to	be	noted	in	the	docstring.
Here,	I	write	the	same	function	signature	from	above	along	with	the	docstring
that	has	been	shortened	accordingly:

Click	here	to	view	code	image

def	find_anagrams(word:	str,

																		dictionary:	Container[str])	->	List[str]:

				"""Find	all	anagrams	for	a	word.

				This	function	only	runs	as	fast	as	the	test	for

				membership	in	the	'dictionary'	container.

				Args:

								word:	Target	word.

								dictionary:	All	known	actual	words.

				Returns:

								Anagrams	that	were	found.

				"""

				...

The	redundancy	between	type	annotations	and	docstrings	should	be	similarly
avoided	for	instance	fields,	class	attributes,	and	methods.	It’s	best	to	have	type
information	in	only	one	place	so	there’s	less	risk	that	it	will	skew	from	the	actual
implementation.

Things	to	Remember

✦	Write	documentation	for	every	module,	class,	method,	and	function	using
docstrings.	Keep	them	up-to-date	as	your	code	changes.

✦	For	modules:	Introduce	the	contents	of	a	module	and	any	important	classes
or	functions	that	all	users	should	know	about.

✦	For	classes:	Document	behavior,	important	attributes,	and	subclass	behavior
in	the	docstring	following	the	class	statement.

✦	For	functions	and	methods:	Document	every	argument,	returned	value,
raised	exception,	and	other	behaviors	in	the	docstring	following	the	def
statement.

✦	If	you’re	using	type	annotations,	omit	the	information	that’s	already	present
in	type	annotations	from	docstrings	since	it	would	be	redundant	to	have	it	in
both	places.

Item	85:	Use	Packages	to	Organize	Modules	and
Provide	Stable	APIs

As	the	size	of	a	program’s	codebase	grows,	it’s	natural	for	you	to	reorganize	its

structure.	You’ll	split	larger	functions	into	smaller	functions.	You’ll	refactor	data
structures	into	helper	classes	(see	Item	37:	“Compose	Classes	Instead	of	Nesting
Many	Levels	of	Built-in	Types”	for	an	example).	You’ll	separate	functionality
into	various	modules	that	depend	on	each	other.

At	some	point,	you’ll	find	yourself	with	so	many	modules	that	you	need	another
layer	in	your	program	to	make	it	understandable.	For	this	purpose,	Python
provides	packages.	Packages	are	modules	that	contain	other	modules.

In	most	cases,	packages	are	defined	by	putting	an	empty	file	named	__init__.py
into	a	directory.	Once	__init__.py	is	present,	any	other	Python	files	in	that
directory	will	be	available	for	import,	using	a	path	relative	to	the	directory.	For
example,	imagine	that	I	have	the	following	directory	structure	in	my	program:
main.py

mypackage/__init__.py

mypackage/models.py

mypackage/utils.py

To	import	the	utils	module,	I	use	the	absolute	module	name	that	includes	the
package	directory’s	name:
#	main.py

from	mypackage	import	utils

This	pattern	continues	when	I	have	package	directories	present	within	other
packages	(like	mypackage.foo.bar).

The	functionality	provided	by	packages	has	two	primary	purposes	in	Python
programs.

Namespaces
The	first	use	of	packages	is	to	help	divide	your	modules	into	separate
namespaces.	They	enable	you	to	have	many	modules	with	the	same	filename	but
different	absolute	paths	that	are	unique.	For	example,	here’s	a	program	that
imports	attributes	from	two	modules	with	the	same	filename,	utils.py:

Click	here	to	view	code	image
#	main.py

from	analysis.utils	import	log_base2_bucket

from	frontend.utils	import	stringify

bucket	=	stringify(log_base2_bucket(33))

This	approach	breaks	when	the	functions,	classes,	or	submodules	defined	in
packages	have	the	same	names.	For	example,	say	that	I	want	to	use	the	inspect
function	from	both	the	analysis.utils	and	the	frontend.utils	modules.
Importing	the	attributes	directly	won’t	work	because	the	second	import
statement	will	overwrite	the	value	of	inspect	in	the	current	scope:

Click	here	to	view	code	image
#	main2.py

from	analysis.utils	import	inspect

from	frontend.utils	import	inspect	#	Overwrites!

The	solution	is	to	use	the	as	clause	of	the	import	statement	to	rename	whatever
I’ve	imported	for	the	current	scope:

Click	here	to	view	code	image
#	main3.py

from	analysis.utils	import	inspect	as	analysis_inspect

from	frontend.utils	import	inspect	as	frontend_inspect

value	=	33

if	analysis_inspect(value)	==	frontend_inspect(value):

				print('Inspection	equal!')

The	as	clause	can	be	used	to	rename	anything	retrieved	with	the	import
statement,	including	entire	modules.	This	facilitates	accessing	namespaced	code
and	makes	its	identity	clear	when	you	use	it.

Another	approach	for	avoiding	imported	name	conflicts	is	to	always	access
names	by	their	highest	unique	module	name.	For	the	example	above,	this	means
I’d	use	basic	import	statements	instead	of	import	from:

Click	here	to	view	code	image
#	main4.py

import	analysis.utils

import	frontend.utils

value	=	33

if	(analysis.utils.inspect(value)	==

				frontend.utils.inspect(value)):

				print('Inspection	equal!')

This	approach	allows	you	to	avoid	the	as	clause	altogether.	It	also	makes	it
abundantly	clear	to	new	readers	of	the	code	where	each	of	the	similarly	named
functions	is	defined.

Stable	APIs
The	second	use	of	packages	in	Python	is	to	provide	strict,	stable	APIs	for
external	consumers.

When	you’re	writing	an	API	for	wider	consumption,	such	as	an	open	source
package	(see	Item	82:	“Know	Where	to	Find	Community-Built	Modules”	for
examples),	you’ll	want	to	provide	stable	functionality	that	doesn’t	change
between	releases.	To	ensure	that	happens,	it’s	important	to	hide	your	internal
code	organization	from	external	users.	This	way,	you	can	refactor	and	improve
your	package’s	internal	modules	without	breaking	existing	users.

Python	can	limit	the	surface	area	exposed	to	API	consumers	by	using	the
__all__	special	attribute	of	a	module	or	package.	The	value	of	__all__	is	a	list
of	every	name	to	export	from	the	module	as	part	of	its	public	API.	When
consuming	code	executes	from	foo	import	*,	only	the	attributes	in	foo.__all__
will	be	imported	from	foo.	If	__all__	isn’t	present	in	foo,	then	only	public
attributes—those	without	a	leading	underscore—are	imported	(see	Item	42:
“Prefer	Public	Attributes	Over	Private	Ones”	for	details	about	that	convention).

For	example,	say	that	I	want	to	provide	a	package	for	calculating	collisions
between	moving	projectiles.	Here,	I	define	the	models	module	of	mypackage	to
contain	the	representation	of	projectiles:

Click	here	to	view	code	image
#	models.py

__all__	=	['Projectile']

class	Projectile:

				def	__init__(self,	mass,	velocity):

								self.mass	=	mass

								self.velocity	=	velocity

I	also	define	a	utils	module	in	mypackage	to	perform	operations	on	the
Projectile	instances,	such	as	simulating	collisions	between	them:
#	utils.py

from	.	models	import	Projectile

__all__	=	['simulate_collision']

def	_dot_product(a,	b):

				...

def	simulate_collision(a,	b):

				...

Now,	I’d	like	to	provide	all	of	the	public	parts	of	this	API	as	a	set	of	attributes
that	are	available	on	the	mypackage	module.	This	will	allow	downstream
consumers	to	always	import	directly	from	mypackage	instead	of	importing	from
mypackage.models	or	mypackage.utils.	This	ensures	that	the	API	consumer’s
code	will	continue	to	work	even	if	the	internal	organization	of	mypackage
changes	(e.g.,	models.py	is	deleted).

To	do	this	with	Python	packages,	you	need	to	modify	the	__init__.py	file	in	the
mypackage	directory.	This	file	is	what	actually	becomes	the	contents	of	the
mypackage	module	when	it’s	imported.	Thus,	you	can	specify	an	explicit	API	for
mypackage	by	limiting	what	you	import	into	__init__.py.	Since	all	of	my	internal
modules	already	specify	__all__,	I	can	expose	the	public	interface	of	mypackage
by	simply	importing	everything	from	the	internal	modules	and	updating	__all__
accordingly:
#	__init__.py

__all__	=	[]

from	.	models	import	*

__all__	+=	models.__all__

from	.	utils	import	*

__all__	+=	utils.	__all__

Here’s	a	consumer	of	the	API	that	directly	imports	from	mypackage	instead	of
accessing	the	inner	modules:
#	api_consumer.py

from	mypackage	import	*

a	=	Projectile(1.5,	3)

b	=	Projectile(4,	1.7)

after_a,

after_b	=	simulate_collision(a,	b)

Notably,	internal-only	functions	like	mypackage.utils._dot_product	will	not	be
available	to	the	API	consumer	on	mypackage	because	they	weren’t	present	in
__all__.	Being	omitted	from	__all__	also	means	that	they	weren’t	imported	by
the	from	mypackage	import	*	statement.	The	internal-only	names	are	effectively
hidden.

This	whole	approach	works	great	when	it’s	important	to	provide	an	explicit,
stable	API.	However,	if	you’re	building	an	API	for	use	between	your	own
modules,	the	functionality	of	__all__	is	probably	unnecessary	and	should	be

avoided.	The	namespacing	provided	by	packages	is	usually	enough	for	a	team	of
programmers	to	collaborate	on	large	amounts	of	code	they	control	while
maintaining	reasonable	interface	boundaries.

Beware	of	import	*
Import	statements	like	from	x	import	y	are	clear	because	the	source	of	y
is	 explicitly	 the	x	 package	 or	module.	Wildcard	 imports	 like	from	foo
import	 *	 can	 also	 be	 useful,	 especially	 in	 interactive	 Python	 sessions.
However,	wildcards	make	code	more	difficult	to	understand:

from	foo	import	*	hides	the	source	of	names	from	new	readers	of
the	code.	If	a	module	has	multiple	import	*	statements,	you’ll	need
to	check	all	of	the	referenced	modules	to	figure	out	where	a	name
was	defined.

Names	 from	 import	 *	 statements	 will	 overwrite	 any	 conflicting
names	within	the	containing	module.	This	can	lead	to	strange	bugs
caused	 by	 accidental	 interactions	 between	 your	 code	 and
overlapping	names	from	multiple	import	*	statements.

The	 safest	 approach	 is	 to	 avoid	 import	 *	 in	 your	 code	 and	 explicitly
import	names	with	the	from	x	import	y	style.

Things	to	Remember

✦	Packages	in	Python	are	modules	that	contain	other	modules.	Packages	allow
you	to	organize	your	code	into	separate,	non-conflicting	namespaces	with
unique	absolute	module	names.

✦	Simple	packages	are	defined	by	adding	an	__init__.py	file	to	a	directory
that	contains	other	source	files.	These	files	become	the	child	modules	of	the
directory’s	package.	Package	directories	may	also	contain	other	packages.

✦	You	can	provide	an	explicit	API	for	a	module	by	listing	its	publicly	visible
names	in	its	__all__	special	attribute.

✦	You	can	hide	a	package’s	internal	implementation	by	only	importing	public
names	in	the	package’s	__init__.py	file	or	by	naming	internal-only
members	with	a	leading	underscore.

✦	When	collaborating	within	a	single	team	or	on	a	single	codebase,	using
__all__	for	explicit	APIs	is	probably	unnecessary.

Item	86:	Consider	Module-Scoped	Code	to	Configure
Deployment	Environments

A	deployment	environment	is	a	configuration	in	which	a	program	runs.	Every
program	has	at	least	one	deployment	environment:	the	production	environment.
The	goal	of	writing	a	program	in	the	first	place	is	to	put	it	to	work	in	the
production	environment	and	achieve	some	kind	of	outcome.

Writing	or	modifying	a	program	requires	being	able	to	run	it	on	the	computer
you	use	for	developing.	The	configuration	of	your	development	environment
may	be	very	different	from	that	of	your	production	environment.	For	example,
you	may	be	using	a	tiny	single-board	computer	to	develop	a	program	that’s
meant	to	run	on	enormous	supercomputers.

Tools	like	venv	(see	Item	83:	“Use	Virtual	Environments	for	Isolated	and
Reproducible	Dependencies”)	make	it	easy	to	ensure	that	all	environments	have
the	same	Python	packages	installed.	The	trouble	is	that	production	environments
often	require	many	external	assumptions	that	are	hard	to	reproduce	in
development	environments.

For	example,	say	that	I	want	to	run	a	program	in	a	web	server	container	and	give
it	access	to	a	database.	Every	time	I	want	to	modify	my	program’s	code,	I	need
to	run	a	server	container,	the	database	schema	must	be	set	up	properly,	and	my
program	needs	the	password	for	access.	This	is	a	very	high	cost	if	all	I’m	trying
to	do	is	verify	that	a	one-line	change	to	my	program	works	correctly.

The	best	way	to	work	around	such	issues	is	to	override	parts	of	a	program	at
startup	time	to	provide	different	functionality	depending	on	the	deployment
environment.	For	example,	I	could	have	two	different	__main__	files—one	for
production	and	one	for	development:
#	dev_main.py

TESTING	=	True

import	db_connection

db	=	db_connection.Database()

#	prod_main.py

TESTING	=	False

import	db_connection

db	=	db_connection.Database()

The	only	difference	between	the	two	files	is	the	value	of	the	TESTING	constant.
Other	modules	in	my	program	can	then	import	the	__main__	module	and	use	the
value	of	TESTING	to	decide	how	they	define	their	own	attributes:
#	db_connection.py

import	__main__

class	TestingDatabase:

				...

class	RealDatabase:

				...

if	__main__.TESTING:

				Database	=	TestingDatabase

else:

				Database	=	RealDatabase

The	key	behavior	to	notice	here	is	that	code	running	in	module	scope—not
inside	a	function	or	method—is	just	normal	Python	code.	You	can	use	an	if
statement	at	the	module	level	to	decide	how	the	module	will	define	names.	This
makes	it	easy	to	tailor	modules	to	your	various	deployment	environments.	You
can	avoid	having	to	reproduce	costly	assumptions	like	database	configurations
when	they	aren’t	needed.	You	can	inject	local	or	fake	implementations	that	ease
interactive	development,	or	you	can	use	mocks	for	writing	tests	(see	Item	78:
“Use	Mocks	to	Test	Code	with	Complex	Dependencies”).

Note
When	 your	 deployment	 environment	 configuration	 gets	 really	 complicated,
you	should	consider	moving	it	out	of	Python	constants	(like	TESTING)	and	into
dedicated	configuration	files.	Tools	like	the	configparser	built-in	module	let
you	 maintain	 production	 configurations	 separately	 from	 code,	 a	 distinction
that’s	crucial	for	collaborating	with	an	operations	team.

This	approach	can	be	used	for	more	than	working	around	external	assumptions.
For	example,	if	I	know	that	my	program	must	work	differently	depending	on	its
host	platform,	I	can	inspect	the	sys	module	before	defining	top-level	constructs

in	a	module:

Click	here	to	view	code	image
#	db_connection.py

import	sys

class	Win32Database:

				...

class	PosixDatabase:

				...

if	sys.platform.startswith('win32'):

				Database	=	Win32Database

else:

				Database	=	PosixDatabase

Similarly,	I	could	use	environment	variables	from	os.environ	to	guide	my
module	definitions.

Things	to	Remember

✦	Programs	often	need	to	run	in	multiple	deployment	environments	that	each
have	unique	assumptions	and	configurations.

✦	You	can	tailor	a	module’s	contents	to	different	deployment	environments	by
using	normal	Python	statements	in	module	scope.

✦	Module	contents	can	be	the	product	of	any	external	condition,	including
host	introspection	through	the	sys	and	os	modules.

Item	87:	Define	a	Root	Exception	to	Insulate	Callers
from	APIs

When	you’re	defining	a	module’s	API,	the	exceptions	you	raise	are	just	as	much
a	part	of	your	interface	as	the	functions	and	classes	you	define	(see	Item	20:
“Prefer	Raising	Exceptions	to	Returning	None”	for	an	example).

Python	has	a	built-in	hierarchy	of	exceptions	for	the	language	and	standard
library.	There’s	a	draw	to	using	the	built-in	exception	types	for	reporting	errors
instead	of	defining	your	own	new	types.	For	example,	I	could	raise	a	ValueError
exception	whenever	an	invalid	parameter	is	passed	to	a	function	in	one	of	my
modules:

Click	here	to	view	code	image
#	my_module.py

def	determine_weight(volume,	density):

				if	density	<=	0:

								raise	ValueError('Density	must	be	positive')

				...

In	some	cases,	using	ValueError	makes	sense,	but	for	APIs,	it’s	much	more
powerful	to	define	a	new	hierarchy	of	exceptions.	I	can	do	this	by	providing	a
root	Exception	in	my	module	and	having	all	other	exceptions	raised	by	that
module	inherit	from	the	root	exception:

Click	here	to	view	code	image
#	my_module.py

class	Error(Exception):

				"""Base-class	for	all	exceptions	raised	by	this	module."""

class	InvalidDensityError(Error):

				"""There	was	a	problem	with	a	provided	density	value."""

class	InvalidVolumeError(Error):

				"""There	was	a	problem	with	the	provided	weight	value."""

def	determine_weight(volume,	density):

				if	density	<	0:

								raise	InvalidDensityError('Density	must	be	positive')

				if	volume	<	0:

								raise	InvalidVolumeError('Volume	must	be	positive')

				if	volume	==	0:

								density	/	volume

Having	a	root	exception	in	a	module	makes	it	easy	for	consumers	of	an	API	to
catch	all	of	the	exceptions	that	were	raised	deliberately.	For	example,	here	a
consumer	of	my	API	makes	a	function	call	with	a	try/except	statement	that
catches	my	root	exception:

Click	here	to	view	code	image
try:

				weight	=	my_module.determine_weight(1,	-1)

except	my_module.Error:

			logging.exception('Unexpected	error')

>>>

Unexpected	error

Traceback	(most	recent	call	last):

		File	".../example.py",	line	3,	in	<module>

				weight	=	my_module.determine_weight(1,	-1)

		File	".../my_module.py",	line	10,	in	determine_weight

				raise	InvalidDensityError('Density	must	be	positive')

InvalidDensityError:	Density	must	be	positive

Here,	the	logging.exception	function	prints	the	full	stack	trace	of	the	caught
exception	so	it’s	easier	to	debug	in	this	situation.	The	try/	except	also	prevents
my	API’s	exceptions	from	propagating	too	far	upward	and	breaking	the	calling
program.	It	insulates	the	calling	code	from	my	API.	This	insulation	has	three
helpful	effects.

First,	root	exceptions	let	callers	understand	when	there’s	a	problem	with	their
usage	of	an	API.	If	callers	are	using	my	API	properly,	they	should	catch	the
various	exceptions	that	I	deliberately	raise.	If	they	don’t	handle	such	an
exception,	it	will	propagate	all	the	way	up	to	the	insulating	except	block	that
catches	my	module’s	root	exception.	That	block	can	bring	the	exception	to	the
attention	of	the	API	consumer,	providing	an	opportunity	for	them	to	add	proper
handling	of	the	missed	exception	type:

Click	here	to	view	code	image
try:

				weight	=	my_module.determine_weight(-1,	1)

except	my_module.InvalidDensityError:

				weight	=	0

except	my_module.Error:

				logging.exception('Bug	in	the	calling	code')

>>>

Bug	in	the	calling	code

Traceback	(most	recent	call	last):

		File	".../example.py",	line	3,	in	<module>

				weight	=	my_module.determine_weight(-1,	1)

		File	".../my_module.py",	line	12,	in	determine_weight

				raise	InvalidVolumeError('Volume	must	be	positive')

InvalidVolumeError:	Volume	must	be	positive

The	second	advantage	of	using	root	exceptions	is	that	they	can	help	find	bugs	in
an	API	module’s	code.	If	my	code	only	deliberately	raises	exceptions	that	I
define	within	my	module’s	hierarchy,	then	all	other	types	of	exceptions	raised	by
my	module	must	be	the	ones	that	I	didn’t	intend	to	raise.	These	are	bugs	in	my
API’s	code.

Using	the	try/except	statement	above	will	not	insulate	API	consumers	from
bugs	in	my	API	module’s	code.	To	do	that,	the	caller	needs	to	add	another

except	block	that	catches	Python’s	base	Exception	class.

This	allows	the	API	consumer	to	detect	when	there’s	a	bug	in	the	API	module’s
implementation	that	needs	to	be	fixed.	The	output	for	this	example	includes	both
the	logging.exception	message	and	the	default	interpreter	output	for	the
exception	since	it	was	re-raised:

Click	here	to	view	code	image
try:

				weight	=	my_module.determine_weight(0,	1)

except	my_module.InvalidDensityError:

				weight	=	0

except	my_module.Error:

				logging.exception('Bug	in	the	calling	code')

except	Exception:

				logging.exception('Bug	in	the	API	code!')

				raise	#	Re-raise	exception	to	the	caller

>>>

Bug	in	the	API	code!

Traceback	(most	recent	call	last):

		File	".../example.py",	line	3,	in	<module>

			weight	=	my_module.determine_weight(0,	1)

		File	".../my_module.py",	line	14,	in	determine_weight

			density	/	volume

ZeroDivisionError:	division	by	zero

Traceback	...

ZeroDivisionError:	division	by	zero

The	third	impact	of	using	root	exceptions	is	future-proofing	an	API.	Over	time,	I
might	want	to	expand	my	API	to	provide	more	specific	exceptions	in	certain
situations.	For	example,	I	could	add	an	Exception	subclass	that	indicates	the
error	condition	of	supplying	negative	densities:

Click	here	to	view	code	image
#	my_module.py

...

class	NegativeDensityError(InvalidDensityError):

				"""A	provided	density	value	was	negative."""

...

def	determine_weight(volume,	density):

				if	density	<	0:

								raise	NegativeDensityError('Density	must	be	positive')

				...

The	calling	code	will	continue	to	work	exactly	as	before	because	it	already
catches	InvalidDensityError	exceptions	(the	parent	class	of
NegativeDensityError).	In	the	future,	the	caller	could	decide	to	special-case	the
new	type	of	exception	and	change	the	handling	behavior	accordingly:

Click	here	to	view	code	image
try:

				weight	=	my_module.determine_weight(1,	-1)

except	my_module.NegativeDensityError:

				raise	ValueError('Must	supply	non-negative	density')

except	my_module.InvalidDensityError:

				weight	=	0

except	my_module.Error:

				logging.exception('Bug	in	the	calling	code')

except	Exception:

				logging.exception('Bug	in	the	API	code!')

				raise

>>>

Traceback	...

NegativeDensityError:	Density	must	be	positive

The	above	exception	was	the	direct	cause	of	the	following

➥	exception:

Traceback	...

ValueError:	Must	supply	non-negative	density

I	can	take	API	future-proofing	further	by	providing	a	broader	set	of	exceptions
directly	below	the	root	exception.	For	example,	imagine	that	I	have	one	set	of
errors	related	to	calculating	weights,	another	related	to	calculating	volume,	and	a
third	related	to	calculating	density:

Click	here	to	view	code	image
#	my_module.py

class	Error(Exception):

				"""Base-class	for	all	exceptions	raised	by	this	module."""

class	WeightError(Error):

				"""Base-class	for	weight	calculation	errors."""

class	VolumeError(Error):

				"""Base-class	for	volume	calculation	errors."""

class	DensityError(Error):

			"""Base-class	for	density	calculation	errors."""

...

Specific	exceptions	would	inherit	from	these	general	exceptions.	Each
intermediate	exception	acts	as	its	own	kind	of	root	exception.	This	makes	it
easier	to	insulate	layers	of	calling	code	from	API	code	based	on	broad
functionality.	This	is	much	better	than	having	all	callers	catch	a	long	list	of	very
specific	Exception	subclasses.

Things	to	Remember

✦	Defining	root	exceptions	for	modules	allows	API	consumers	to	insulate
themselves	from	an	API.

✦	Catching	root	exceptions	can	help	you	find	bugs	in	code	that	consumes	an
API.

✦	Catching	the	Python	Exception	base	class	can	help	you	find	bugs	in	API
implementations.

✦	Intermediate	root	exceptions	let	you	add	more	specific	types	of	exceptions
in	the	future	without	breaking	your	API	consumers.

Item	88:	Know	How	to	Break	Circular	Dependencies
Inevitably,	while	you’re	collaborating	with	others,	you’ll	find	a	mutual
interdependence	between	modules.	It	can	even	happen	while	you	work	by
yourself	on	the	various	parts	of	a	single	program.

For	example,	say	that	I	want	my	GUI	application	to	show	a	dialog	box	for
choosing	where	to	save	a	document.	The	data	displayed	by	the	dialog	could	be
specified	through	arguments	to	my	event	handlers.	But	the	dialog	also	needs	to
read	global	state,	such	as	user	preferences,	to	know	how	to	render	properly.

Here,	I	define	a	dialog	that	retrieves	the	default	document	save	location	from
global	preferences:

Click	here	to	view	code	image
#	dialog.py

import	app

class	Dialog:

				def	__init__(self,	save_dir):

								self.save_dir	=	save_dir

				...

save_dialog	=	Dialog(app.prefs.get('save_dir'))

def	show():

				...

The	problem	is	that	the	app	module	that	contains	the	prefs	object	also	imports
the	dialog	class	in	order	to	show	the	same	dialog	on	program	start:
#	app.py

import	dialog

class	Prefs:

				...

				def	get(self,	name):

								...

prefs	=	Prefs()

dialog.show()

It’s	a	circular	dependency.	If	I	try	to	import	the	app	module	from	my	main
program	like	this:

Click	here	to	view	code	image
#	main.py

import	app

I	get	an	exception:

>>>

$	python3	main.py

Traceback	(most	recent	call	last):

		File	".../main.py",	line	17,	in	<module>

				import	app

		File	".../app.py",	line	17,	in	<module>

				import	dialog

		File	".../dialog.py",	line	23,	in	<module>

				save_dialog	=	Dialog(app.prefs.get('save_dir'))

AttributeError:	partially	initialized	module	'app'	has	no

➥	attribute	'prefs'	(most	likely	due	to	a	circular	import)

To	understand	what’s	happening	here,	you	need	to	know	how	Python’s	import
machinery	works	in	general	(see	the	importlib	built-in	package	for	the	full

details).	When	a	module	is	imported,	here’s	what	Python	actually	does,	in	depth-
first	order:

1.	 Searches	for	a	module	in	locations	from	sys.path

2.	 Loads	the	code	from	the	module	and	ensures	that	it	compiles

3.	 Creates	a	corresponding	empty	module	object

4.	 Inserts	the	module	into	sys.modules

5.	 Runs	the	code	in	the	module	object	to	define	its	contents

The	problem	with	a	circular	dependency	is	that	the	attributes	of	a	module	aren’t
defined	until	the	code	for	those	attributes	has	executed	(after	step	5).	But	the
module	can	be	loaded	with	the	import	statement	immediately	after	it’s	inserted
into	sys.modules	(after	step	4).

In	the	example	above,	the	app	module	imports	dialog	before	defining	anything.
Then,	the	dialog	module	imports	app.	Since	app	still	hasn’t	finished	running—
it’s	currently	importing	dialog—the	app	module	is	empty	(from	step	4).	The
AttributeError	is	raised	(during	step	5	for	dialog)	because	the	code	that	defines
prefs	hasn’t	run	yet	(step	5	for	app	isn’t	complete).

The	best	solution	to	this	problem	is	to	refactor	the	code	so	that	the	prefs	data
structure	is	at	the	bottom	of	the	dependency	tree.	Then,	both	app	and	dialog	can
import	the	same	utility	module	and	avoid	any	circular	dependencies.	But	such	a
clear	division	isn’t	always	possible	or	could	require	too	much	refactoring	to	be
worth	the	effort.

There	are	three	other	ways	to	break	circular	dependencies.

Reordering	Imports
The	first	approach	is	to	change	the	order	of	imports.	For	example,	if	I	import	the
dialog	module	toward	the	bottom	of	the	app	module,	after	the	app	module’s
other	contents	have	run,	the	AttributeError	goes	away:
#	app.py

class	Prefs:

				...

prefs	=	Prefs()

import	dialog	#	Moved

dialog.show()

This	works	because,	when	the	dialog	module	is	loaded	late,	its	recursive	import
of	app	finds	that	app.prefs	has	already	been	defined	(step	5	is	mostly	done	for
app).

Although	this	avoids	the	AttributeError,	it	goes	against	the	PEP	8	style	guide
(see	Item	2:	“Follow	the	PEP	8	Style	Guide”).	The	style	guide	suggests	that	you
always	put	imports	at	the	top	of	your	Python	files.	This	makes	your	module’s
dependencies	clear	to	new	readers	of	the	code.	It	also	ensures	that	any	module
you	depend	on	is	in	scope	and	available	to	all	the	code	in	your	module.

Having	imports	later	in	a	file	can	be	brittle	and	can	cause	small	changes	in	the
ordering	of	your	code	to	break	the	module	entirely.	I	suggest	not	using	import
reordering	to	solve	your	circular	dependency	issues.

Import,	Configure,	Run
A	second	solution	to	the	circular	imports	problem	is	to	have	modules	minimize
side	effects	at	import	time.	I	can	have	my	modules	only	define	functions,	classes,
and	constants.	I	avoid	actually	running	any	functions	at	import	time.	Then,	I
have	each	module	provide	a	configure	function	that	I	call	once	all	other	modules
have	finished	importing.	The	purpose	of	configure	is	to	prepare	each	module’s
state	by	accessing	the	attributes	of	other	modules.	I	run	configure	after	all
modules	have	been	imported	(step	5	is	complete),	so	all	attributes	must	be
defined.

Here,	I	redefine	the	dialog	module	to	only	access	the	prefs	object	when
configure	is	called:

Click	here	to	view	code	image
#	dialog.py

import	app

class	Dialog:

				...

save_dialog	=	Dialog()

def	show():

				...

def	configure():

				save_dialog.save_dir	=	app.prefs.get('save_dir')

I	also	redefine	the	app	module	to	not	run	activities	on	import:
#	app.py

import	dialog

class	Prefs:

				...

prefs	=	Prefs()

def	configure():

				...

Finally,	the	main	module	has	three	distinct	phases	of	execution—	import
everything,	configure	everything,	and	run	the	first	activity:
#	main.py

import	app

import	dialog

app.configure()

dialog.configure()

dialog.show()

This	works	well	in	many	situations	and	enables	patterns	like	dependency
injection.	But	sometimes	it	can	be	difficult	to	structure	your	code	so	that	an
explicit	configure	step	is	possible.	Having	two	distinct	phases	within	a	module
can	also	make	your	code	harder	to	read	because	it	separates	the	definition	of
objects	from	their	configuration.

Dynamic	Import
The	third—and	often	simplest—solution	to	the	circular	imports	problem	is	to	use
an	import	statement	within	a	function	or	method.	This	is	called	a	dynamic	import
because	the	module	import	happens	while	the	program	is	running,	not	while	the
program	is	first	starting	up	and	initializing	its	modules.

Here,	I	redefine	the	dialog	module	to	use	a	dynamic	import.	The	dialog.show
function	imports	the	app	module	at	runtime	instead	of	the	dialog	module
importing	app	at	initialization	time:

Click	here	to	view	code	image

#	dialog.py

class	Dialog:

				...

save_dialog	=	Dialog()

def	show():

				import	app	#	Dynamic	import

				save_dialog.save_dir	=	app.prefs.get('save_dir')

				...

The	app	module	can	now	be	the	same	as	it	was	in	the	original	example.	It
imports	dialog	at	the	top	and	calls	dialog.show	at	the	bottom:
#	app.py

import	dialog

class	Prefs:

				...

prefs	=	Prefs()

dialog.show()

This	approach	has	a	similar	effect	to	the	import,	configure,	and	run	steps	from
before.	The	difference	is	that	it	requires	no	structural	changes	to	the	way	the
modules	are	defined	and	imported.	I’m	simply	delaying	the	circular	import	until
the	moment	I	must	access	the	other	module.	At	that	point,	I	can	be	pretty	sure
that	all	other	modules	have	already	been	initialized	(step	5	is	complete	for
everything).

In	general,	it’s	good	to	avoid	dynamic	imports	like	this.	The	cost	of	the	import
statement	is	not	negligible	and	can	be	especially	bad	in	tight	loops.	By	delaying
execution,	dynamic	imports	also	set	you	up	for	surprising	failures	at	runtime,
such	as	SyntaxError	exceptions	long	after	your	program	has	started	running	(see
Item	76:	“Verify	Related	Behaviors	in	TestCase	Subclasses”	for	how	to	avoid
that).	However,	these	downsides	are	often	better	than	the	alternative	of
restructuring	your	entire	program.

Things	to	Remember

✦	Circular	dependencies	happen	when	two	modules	must	call	into	each	other
at	import	time.	They	can	cause	your	program	to	crash	at	startup.

✦	The	best	way	to	break	a	circular	dependency	is	by	refactoring	mutual
dependencies	into	a	separate	module	at	the	bottom	of	the	dependency	tree.

✦	Dynamic	imports	are	the	simplest	solution	for	breaking	a	circular
dependency	between	modules	while	minimizing	refactoring	and
complexity.

Item	89:	Consider	warnings	to	Refactor	and	Migrate
Usage

It’s	natural	for	APIs	to	change	in	order	to	satisfy	new	requirements	that	meet
formerly	unanticipated	needs.	When	an	API	is	small	and	has	few	upstream	or
downstream	dependencies,	making	such	changes	is	straightforward.	One
programmer	can	often	update	a	small	API	and	all	of	its	callers	in	a	single
commit.

However,	as	a	codebase	grows,	the	number	of	callers	of	an	API	can	be	so	large
or	fragmented	across	source	repositories	that	it’s	infeasible	or	impractical	to
make	API	changes	in	lockstep	with	updating	callers	to	match.	Instead,	you	need
a	way	to	notify	and	encourage	the	people	that	you	collaborate	with	to	refactor
their	code	and	migrate	their	API	usage	to	the	latest	forms.

For	example,	say	that	I	want	to	provide	a	module	for	calculating	how	far	a	car
will	travel	at	a	given	average	speed	and	duration.	Here,	I	define	such	a	function
and	assume	that	speed	is	in	miles	per	hour	and	duration	is	in	hours:

Click	here	to	view	code	image
def	print_distance(speed,	duration):

				distance	=	speed	*	duration

				print(f'{distance}	miles')

print_distance(5,	2.5)

>>>

12.5	miles

Imagine	that	this	works	so	well	that	I	quickly	gather	a	large	number	of
dependencies	on	this	function.	Other	programmers	that	I	collaborate	with	need	to
calculate	and	print	distances	like	this	all	across	our	shared	codebase.

Despite	its	success,	this	implementation	is	error	prone	because	the	units	for	the
arguments	are	implicit.	For	example,	if	I	wanted	to	see	how	far	a	bullet	travels	in
3	seconds	at	1000	meters	per	second,	I	would	get	the	wrong	result:
print_distance(1000,	3)

>>>

3000	miles

I	can	address	this	problem	by	expanding	the	API	of	print_distance	to	include
optional	keyword	arguments	(see	Item	23:	“Provide	Optional	Behavior	with
Keyword	Arguments”	and	Item	25:	“Enforce	Clarity	with	Keyword-Only	and
Positional-Only	Arguments”)	for	the	units	of	speed,	duration,	and	the	computed
distance	to	print	out:

Click	here	to	view	code	image
CONVERSIONS	=	{

				'mph':	1.60934	/	3600	*	1000,			#	m/s

				'hours':	3600,																		#	seconds

				'miles':	1.60934	*	1000,								#	m

				'meters':	1,																				#	m

				'm/s':	1,																							#	m

				'seconds':	1,																			#	s

}

def	convert(value,	units):

				rate	=	CONVERSIONS[units]

				return	rate	*	value

def	localize(value,	units):

				rate	=	CONVERSIONS[units]

				return	value	/	rate

def	print_distance(speed,	duration,	*,

																			speed_units='mph',

																			time_units='hours',

																			distance_units='miles'):

				norm_speed	=	convert(speed,	speed_units)

				norm_duration	=	convert(duration,	time_units)

				norm_distance	=	norm_speed	*	norm_duration

				distance	=	localize(norm_distance,	distance_units)

				print(f'{distance}	{distance_units}')

Now,	I	can	modify	the	speeding	bullet	call	to	produce	an	accurate	result	with	a
unit	conversion	to	miles:

Click	here	to	view	code	image
print_distance(1000,	3,

															speed_units='meters',

															time_units='seconds')

>>>

1.8641182099494205	miles

It	seems	like	requiring	units	to	be	specified	for	this	function	is	a	much	better	way
to	go.	Making	them	explicit	reduces	the	likelihood	of	errors	and	is	easier	for	new
readers	of	the	code	to	understand.	But	how	can	I	migrate	all	callers	of	the	API
over	to	always	specifying	units?	How	do	I	minimize	breakage	of	any	code	that’s
dependent	on	print_distance	while	also	encouraging	callers	to	adopt	the	new
units	arguments	as	soon	as	possible?

For	this	purpose,	Python	provides	the	built-in	warnings	module.	Using	warnings
is	a	programmatic	way	to	inform	other	programmers	that	their	code	needs	to	be
modified	due	to	a	change	to	an	underlying	library	that	they	depend	on.	While
exceptions	are	primarily	for	automated	error	handling	by	machines	(see	Item	87:
“Define	a	Root	Exception	to	Insulate	Callers	from	APIs”),	warnings	are	all	about
communication	between	humans	about	what	to	expect	in	their	collaboration	with
each	other.

I	can	modify	print_distance	to	issue	warnings	when	the	optional	keyword
arguments	for	specifying	units	are	not	supplied.	This	way,	the	arguments	can
continue	being	optional	temporarily	(see	Item	24:	“Use	None	and	Docstrings	to
Specify	Dynamic	Default	Arguments”	for	background),	while	providing	an
explicit	notice	to	people	running	dependent	programs	that	they	should	expect
breakage	in	the	future	if	they	fail	to	take	action:

Click	here	to	view	code	image
import	warnings

def	print_distance(speed,	duration,	*,

																			speed_units=None,

																			time_units=None,

																			distance_units=None):

				if	speed_units	is	None:

								warnings.warn(

												'speed_units	required',	DeprecationWarning)

								speed_units	=	'mph'

				if	time_units	is	None:

								warnings.warn(

												'time_units	required',	DeprecationWarning)

								time_units	=	'hours'

				if	distance_units	is	None:

								warnings.warn(

												'distance_units	required',	DeprecationWarning)

							distance_units	=	'miles'

				norm_speed	=	convert(speed,	speed_units)

				norm_duration	=	convert(duration,	time_units)

				norm_distance	=	norm_speed	*	norm_duration

				distance	=	localize(norm_distance,	distance_units)

				print(f'{distance}	{distance_units}')

I	can	verify	that	this	code	issues	a	warning	by	calling	the	function	with	the	same
arguments	as	before	and	capturing	the	sys.stderr	output	from	the	warnings
module:

Click	here	to	view	code	image
import	contextlib

import	io

fake_stderr	=	io.StringIO()

with	contextlib.redirect_stderr(fake_stderr):

				print_distance(1000,	3,

																speed_units='meters',

																time_units='seconds')

print(fake_stderr.getvalue())

>>>

1.8641182099494205	miles

.../example.py:97:	DeprecationWarning:	distance_units	required

		warnings.warn(

Adding	warnings	to	this	function	required	quite	a	lot	of	repetitive	boilerplate
that’s	hard	to	read	and	maintain.	Also,	the	warning	message	indicates	the	line
where	warning.warn	was	called,	but	what	I	really	want	to	point	out	is	where	the
call	to	print_distance	was	made	without	soon-to-be-required	keyword
arguments.

Luckily,	the	warnings.warn	function	supports	the	stacklevel	parameter,	which
makes	it	possible	to	report	the	correct	place	in	the	stack	as	the	cause	of	the
warning.	stacklevel	also	makes	it	easy	to	write	functions	that	can	issue
warnings	on	behalf	of	other	code,	reducing	boilerplate.	Here,	I	define	a	helper
function	that	warns	if	an	optional	argument	wasn’t	supplied	and	then	provides	a
default	value	for	it:

Click	here	to	view	code	image
def	require(name,	value,	default):

				if	value	is	not	None:

								return	value

				warnings.warn(

								f'{name}	will	be	required	soon,	update	your	code',

								DeprecationWarning,

								stacklevel=3)

				return	default

def	print_distance(speed,	duration,	*,

																			speed_units=None,

																			time_units=None,

																			distance_units=None):

				speed_units	=	require('speed_units',	speed_units,	'mph')

				time_units	=	require('time_units',	time_units,	'hours')

				distance_units	=	require(

								'distance_units',	distance_units,	'miles')

				norm_speed	=	convert(speed,	speed_units)

				norm_duration	=	convert(duration,	time_units)

				norm_distance	=	norm_speed	*	norm_duration

				distance	=	localize(norm_distance,	distance_units)

				print(f'{distance}	{distance_units}')

I	can	verify	that	this	propagates	the	proper	offending	line	by	inspecting	the
captured	output:

Click	here	to	view	code	image
import	contextlib

import	io

fake_stderr	=	io.StringIO()

with	contextlib.redirect_stderr(fake_stderr):

				print_distance(1000,	3,

																			speed_units='meters',

																			time_units='seconds')

print(fake_stderr.getvalue())

>>>

1.8641182099494205	miles

.../example.py:174:	DeprecationWarning:	distance_units	will	be

➥	required	soon,	update	your	code
print_distance(1000,	3,

The	warnings	module	also	lets	me	configure	what	should	happen	when	a
warning	is	encountered.	One	option	is	to	make	all	warnings	become	errors,
which	raises	the	warning	as	an	exception	instead	of	printing	it	out	to	sys.stderr:

Click	here	to	view	code	image
warnings.simplefilter('error')

try:

				warnings.warn('This	usage	is	deprecated',

																		DeprecationWarning)

except	DeprecationWarning:

				pass	#	Expected

This	exception-raising	behavior	is	especially	useful	for	automated	tests	in	order
to	detect	changes	in	upstream	dependencies	and	fail	tests	accordingly.	Using
such	test	failures	is	a	great	way	to	make	it	clear	to	the	people	you	collaborate
with	that	they	will	need	to	update	their	code.	You	can	use	the	-W	error
command-line	argument	to	the	Python	interpreter	or	the	PYTHONWARNINGS
environment	variable	to	apply	this	policy:

Click	here	to	view	code	image
$	python	-W	error	example_test.py

Traceback	(most	recent	call	last):

		File	".../example_test.py",	line	6,	in	<module>

				warnings.warn('This	might	raise	an	exception!')

UserWarning:	This	might	raise	an	exception!

Once	the	people	responsible	for	code	that	depends	on	a	deprecated	API	are
aware	that	they’ll	need	to	do	a	migration,	they	can	tell	the	warnings	module	to
ignore	the	error	by	using	the	simplefilter	and	filterwarnings	functions	(see
https://docs.python.org/3/library/	warnings	for	all	the	details):

Click	here	to	view	code	image
warnings.simplefilter('ignore')

warnings.warn('This	will	not	be	printed	to	stderr')

After	a	program	is	deployed	into	production,	it	doesn’t	make	sense	for	warnings
to	cause	errors	because	they	might	crash	the	program	at	a	critical	time.	Instead,	a
better	approach	is	to	replicate	warnings	into	the	logging	built-in	module.	Here,	I
accomplish	this	by	calling	the	logging.captureWarnings	function	and
configuring	the	corresponding	'py.warnings'	logger:

Click	here	to	view	code	image
import	logging

fake_stderr	=	io.StringIO()

handler	=	logging.StreamHandler(fake_stderr)

formatter	=	logging.Formatter(

https://docs.python.org/3/library/

				'%(asctime)-15s	WARNING]	%(message)s')

handler.setFormatter(formatter)

logging.captureWarnings(True)

logger	=	logging.getLogger('py.warnings')

logger.addHandler(handler)

logger.setLevel(logging.DEBUG)

warnings.resetwarnings()

warnings.simplefilter('default')

warnings.warn('This	will	go	to	the	logs	output')

print(fake_stderr.getvalue())

>>>

2019-06-11	19:48:19,132	WARNING]	.../example.py:227:

➥	UserWarning:	This	will	go	to	the	logs	output
warnings.warn('This	will	go	to	the	logs	output')

Using	logging	to	capture	warnings	ensures	that	any	error	reporting	systems	that
my	program	already	has	in	place	will	also	receive	notice	of	important	warnings
in	production.	This	can	be	especially	useful	if	my	tests	don’t	cover	every	edge
case	that	I	might	see	when	the	program	is	undergoing	real	usage.

API	library	maintainers	should	also	write	unit	tests	to	verify	that	warnings	are
generated	under	the	correct	circumstances	with	clear	and	actionable	messages
(see	Item	76:	“Verify	Related	Behaviors	in	TestCase	Subclasses”).	Here,	I	use
the	warnings.catch_warnings	function	as	a	context	manager	(see	Item	66:
“Consider	contextlib	and	with	Statements	for	Reusable	try/finally	Behavior”
for	background)	to	wrap	a	call	to	the	require	function	that	I	defined	above:

Click	here	to	view	code	image
with	warnings.catch_warnings(record=True)	as	found_warnings:

				found	=	require('my_arg',	None,	'fake	units')

				expected	=	'fake	units'

				assert	found	==	expected

Once	I’ve	collected	the	warning	messages,	I	can	verify	that	their	number,	detail
messages,	and	categories	match	my	expectations:

Click	here	to	view	code	image
assert	len(found_warnings)	==	1

single_warning	=	found_warnings[0]

assert	str(single_warning.message)	==	(

				'my_arg	will	be	required	soon,	update	your	code')

assert	single_warning.category	==	DeprecationWarning

Things	to	Remember

✦	The	warnings	module	can	be	used	to	notify	callers	of	your	API	about
deprecated	usage.	Warning	messages	encourage	such	callers	to	fix	their
code	before	later	changes	break	their	programs.

✦	Raise	warnings	as	errors	by	using	the	-W	error	command-line	argument	to
the	Python	interpreter.	This	is	especially	useful	in	automated	tests	to	catch
potential	regressions	of	dependencies.

✦	In	production,	you	can	replicate	warnings	into	the	logging	module	to	ensure
that	your	existing	error	reporting	systems	will	capture	warnings	at	runtime.

✦	It’s	useful	to	write	tests	for	the	warnings	that	your	code	generates	to	make
sure	that	they’ll	be	triggered	at	the	right	time	in	any	of	your	downstream
dependencies.

Item	90:	Consider	Static	Analysis	via	typing	to	Obviate
Bugs

Providing	documentation	is	a	great	way	to	help	users	of	an	API	understand	how
to	use	it	properly	(see	Item	84:	“Write	Docstrings	for	Every	Function,	Class,	and
Module”),	but	often	it’s	not	enough,	and	incorrect	usage	still	causes	bugs.
Ideally,	there	would	be	a	programmatic	mechanism	to	verify	that	callers	are
using	your	APIs	the	right	way,	and	that	you	are	using	your	downstream
dependencies	correctly.	Many	programming	languages	address	part	of	this	need
with	compile-time	type	checking,	which	can	identify	and	eliminate	some
categories	of	bugs.

Historically	Python	has	focused	on	dynamic	features	and	has	not	provided
compile-time	type	safety	of	any	kind.	However,	more	recently	Python	has
introduced	special	syntax	and	the	built-in	typing	module,	which	allow	you	to
annotate	variables,	class	fields,	functions,	and	methods	with	type	information.
These	type	hints	allow	for	gradual	typing,	where	a	codebase	can	be
incrementally	updated	to	specify	types	as	desired.

The	benefit	of	adding	type	information	to	a	Python	program	is	that	you	can	run
static	analysis	tools	to	ingest	a	program’s	source	code	and	identify	where	bugs
are	most	likely	to	occur.	The	typing	built-in	module	doesn’t	actually	implement

any	of	the	type	checking	functionality	itself.	It	merely	provides	a	common
library	for	defining	types,	including	generics,	that	can	be	applied	to	Python	code
and	consumed	by	separate	tools.

Much	as	there	are	multiple	distinct	implementations	of	the	Python	interpreter
(e.g.,	CPython,	PyPy),	there	are	multiple	implementations	of	static	analysis	tools
for	Python	that	use	typing.	As	of	the	time	of	this	writing,	the	most	popular	tools
are	mypy	(https://github.com/python/mypy),	pytype
(https://github.com/google/pytype),	pyright
(https://github.com/microsoft/pyright),	and	pyre	(https://pyre-check.org).	For	the
typing	examples	in	this	book,	I’ve	used	mypy	with	the	--strict	flag,	which
enables	all	of	the	various	warnings	supported	by	the	tool.	Here’s	an	example	of
what	running	the	command	line	looks	like:
$	python3	-m	mypy	--strict	example.py

These	tools	can	be	used	to	detect	a	large	number	of	common	errors	before	a
program	is	ever	run,	which	can	provide	an	added	layer	of	safety	in	addition	to
having	good	unit	tests	(see	Item	76:	“Verify	Related	Behaviors	in	TestCase
Subclasses”).	For	example,	can	you	find	the	bug	in	this	simple	function	that
causes	it	to	compile	fine	but	throw	an	exception	at	runtime?

Click	here	to	view	code	image
def	subtract(a,	b):

				return	a	-	b

subtract(10,	'5')

>>>

Traceback	...

TypeError:	unsupported	operand	type(s)	for	-:	'int'	and	'str'

Parameter	and	variable	type	annotations	are	delineated	with	a	colon	(such	as
name:	type).	Return	value	types	are	specified	with	->	type	following	the
argument	list.	Using	such	type	annotations	and	mypy,	I	can	easily	spot	the	bug:

Click	here	to	view	code	image
def	subtract(a:	int,	b:	int)	->	int:	#	Function	annotation

				return	a	-	b

subtract(10,	'5')	#	Oops:	passed	string	value

$	python3	-m	mypy	--strict	example.py

.../example.py:4:	error:	Argument	2	to	"subtract"	has

https://github.com/python/mypy
https://github.com/google/pytype
https://github.com/microsoft/pyright
https://pyre-check.org

incompatible	type	"str";	expected	"int"

Another	common	mistake,	especially	for	programmers	who	have	recently	moved
from	Python	2	to	Python	3,	is	mixing	bytes	and	str	instances	together	(see	Item
3:	“Know	the	Differences	Between	bytes	and	str”).	Do	you	see	the	problem	in
this	example	that	causes	a	runtime	error?

Click	here	to	view	code	image
def	concat(a,	b):

				return	a	+	b

concat('first',	b'second')

>>>

Traceback	...

TypeError:	can	only	concatenate	str	(not	"bytes")	to	str

Using	type	hints	and	mypy,	this	issue	can	be	detected	statically	before	the
program	runs:

Click	here	to	view	code	image
def	concat(a:	str,	b:	str)	->	str:

				return	a	+	b

concat('first',	b'second')	#	Oops:	passed	bytes	value

$	python3	-m	mypy	--strict	example.py

.../example.py:4:	error:	Argument	2	to	"concat"	has

➥	incompatible	type	"bytes";	expected	"str"

Type	annotations	can	also	be	applied	to	classes.	For	example,	this	class	has	two
bugs	in	it	that	will	raise	exceptions	when	the	program	is	run:
class	Counter:

				def	__init__(self):

								self.value	=	0

	def	add(self,	offset):

					value	+=	offset

	def	get(self)	->	int:

					self.value

The	first	one	happens	when	I	call	the	add	method:

Click	here	to	view	code	image

counter	=	Counter()

counter.add(5)

>>>

Traceback	...

UnboundLocalError:	local	variable	'value'	referenced	before

➥	assignment

The	second	bug	happens	when	I	call	get:
counter	=	Counter()

found	=	counter.get()

assert	found	==	0,	found

>>>

Traceback	...

AssertionError:	None

Both	of	these	problems	are	easily	found	by	mypy:

Click	here	to	view	code	image
class	Counter:

				def	__init__(self)	->	None:

								self.value:	int	=	0	#	Field	/	variable	annotation

				def	add(self,	offset:	int)	->	None:

								value	+=	offset					#	Oops:	forgot	"self."

				def	get(self)	->	int:

								self.value										#	Oops:	forgot	"return"

counter	=	Counter()

counter.add(5)

counter.add(3)

assert	counter.get()	==	8

$	python3	-m	mypy	--strict	example.py

.../example.py:6:	error:	Name	'value'	is	not	defined

.../example.py:8:	error:	Missing	return	statement

One	of	the	strengths	of	Python’s	dynamism	is	the	ability	to	write	generic
functionality	that	operates	on	duck	types	(see	Item	15:	“Be	Cautious	When
Relying	on	dict	Insertion	Ordering”	and	Item	43:	“Inherit	from	collections.abc
for	Custom	Container	Types”).	This	allows	one	implementation	to	accept	a	wide
range	of	types,	saving	a	lot	of	duplicative	effort	and	simplifying	testing.	Here,
I’ve	defined	such	a	generic	function	for	combining	values	from	a	list.	Do	you
understand	why	the	last	assertion	fails?

def	combine(func,	values):

				assert	len(values)	>	0

				result	=	values[0]

				for	next_value	in	values[1:]:

								result	=	func(result,	next_value)

				return	result

def	add(x,	y):

				return	x	+	y

inputs	=	[1,	2,	3,	4j]

result	=	combine(add,	inputs)

assert	result	==	10,	result	#	Fails

>>>

Traceback	...

AssertionError:	(6+4j)

I	can	use	the	typing	module’s	support	for	generics	to	annotate	this	function	and
detect	the	problem	statically:

Click	here	to	view	code	image
from	typing	import	Callable,	List,	TypeVar

Value	=	TypeVar('Value')

Func	=	Callable[[Value,	Value],	Value]

def	combine(func:	Func[Value],	values:	List[Value])	->	Value:

				assert	len(values)	>	0

				result	=	values[0]

				for	next_value	in	values[1:]:

								result	=	func(result,	next_value)

				return	result

Real	=	TypeVar('Real',	int,	float)

def	add(x:	Real,	y:	Real)	->	Real:

				return	x	+	y

inputs	=	[1,	2,	3,	4j]	#	Oops:	included	a	complex	number

result	=	combine(add,	inputs)

assert	result	==	10

$	python3	-m	mypy	--strict	example.py

.../example.py:21:	error:	Argument	1	to	"combine"	has

➥	incompatible	type	"Callable[[Real,	Real],	Real]";	expected
➥	"Callable[[complex,	complex],	complex]"

Another	extremely	common	error	is	to	encounter	a	None	value	when	you	thought
you’d	have	a	valid	object	(see	Item	20:	“Prefer	Raising	Exceptions	to	Returning
None”).	This	problem	can	affect	seemingly	simple	code.	Do	you	see	the	issue
here?
def	get_or_default(value,	default):

				if	value	is	not	None:

								return	value

				return	value

found	=	get_or_default(3,	5)

assert	found	==	3

found	=	get_or_default(None,	5)

assert	found	==	5,	found	#	Fails

>>>

Traceback	...

AssertionError:	None

The	typing	module	supports	option	types,	which	ensure	that	programs	only
interact	with	values	after	proper	null	checks	have	been	performed.	This	allows
mypy	to	infer	that	there’s	a	bug	in	this	code:	The	type	used	in	the	return	statement
must	be	None,	and	that	doesn’t	match	the	int	type	required	by	the	function
signature:

Click	here	to	view	code	image
from	typing	import	Optional

def	get_or_default(value:	Optional[int],

																			default:	int)	->	int:

				if	value	is	not	None:

								return	value

				return	value	#	Oops:	should	have	returned	"default"

$	python3	-m	mypy	--strict	example.py

.../example.py:7:	error:	Incompatible	return	value	type	(got

➥	"None",	expected	"int")

A	wide	variety	of	other	options	are	available	in	the	typing	module.	See
https://docs.python.org/3.8/library/typing	for	all	of	the	details.	Notably,
exceptions	are	not	included.	Unlike	Java,	which	has	checked	exceptions	that	are

https://docs.python.org/3.8/library/typing

enforced	at	the	API	boundary	of	every	method,	Python’s	type	annotations	are
more	similar	to	C#’s:	Exceptions	are	not	considered	part	of	an	interface’s
definition.	Thus,	if	you	want	to	verify	that	you’re	raising	and	catching
exceptions	properly,	you	need	to	write	tests.

One	common	gotcha	in	using	the	typing	module	occurs	when	you	need	to	deal
with	forward	references	(see	Item	88:	“Know	How	to	Break	Circular
Dependencies”	for	a	similar	problem).	For	example,	imagine	that	I	have	two
classes	and	one	holds	a	reference	to	the	other:
class	FirstClass:

				def	__init__(self,	value):

								self.value	=	value

class	SecondClass:

				def	__init__(self,	value):

								self.value	=	value

second	=	SecondClass(5)

first	=	FirstClass(second)

If	I	apply	type	hints	to	this	program	and	run	mypy	it	will	say	that	there	are	no
issues:

Click	here	to	view	code	image
class	FirstClass:

				def	__init__(self,	value:	SecondClass)	->	None:

								self.value	=	value

class	SecondClass:

				def	__init__(self,	value:	int)	->	None:

								self.value	=	value

second	=	SecondClass(5)

first	=	FirstClass(second)

$	python3	-m	mypy	--strict	example.py

However,	if	you	actually	try	to	run	this	code,	it	will	fail	because	SecondClass	is
referenced	by	the	type	annotation	in	the	FirstClass.__init__	method’s
parameters	before	it’s	actually	defined:

Click	here	to	view	code	image
class	FirstClass:

				def	__init__(self,	value:	SecondClass)	->	None:		#	Breaks

								self.value	=	value

class	SecondClass:

				def	__init__(self,	value:	int)	->	None:

								self.value	=	value

second	=	SecondClass(5)

first	=	FirstClass(second)

>>>

Traceback	...

NameError:	name	'SecondClass'	is	not	defined

One	workaround	supported	by	these	static	analysis	tools	is	to	use	a	string	as	the
type	annotation	that	contains	the	forward	reference.	The	string	value	is	later
parsed	and	evaluated	to	extract	the	type	information	to	check:

Click	here	to	view	code	image
class	FirstClass:

				def	__init__(self,	value:	'SecondClass')	->	None:	#	OK

								self.value	=	value

class	SecondClass:

				def	__init__(self,	value:	int)	->	None:

								self.value	=	value

second	=	SecondClass(5)

first	=	FirstClass(second)

A	better	approach	is	to	use	from	__future__	import	annotations,	which	is
available	in	Python	3.7	and	will	become	the	default	in	Python	4.	This	instructs
the	Python	interpreter	to	completely	ignore	the	values	supplied	in	type
annotations	when	the	program	is	being	run.	This	resolves	the	forward	reference
problem	and	provides	a	performance	improvement	at	program	start	time:

Click	here	to	view	code	image
from	__future__	import	annotations

class	FirstClass:

				def	__init__(self,	value:	SecondClass)	->	None:	#	OK

								self.value	=	value

class	SecondClass:

				def	__init__(self,	value:	int)	->	None:

								self.value	=	value

second	=	SecondClass(5)

first	=	FirstClass(second)

Now	that	you’ve	seen	how	to	use	type	hints	and	their	potential	benefits,	it’s
important	to	be	thoughtful	about	when	to	use	them.	Here	are	some	of	the	best
practices	to	keep	in	mind:

It’s	going	to	slow	you	down	if	you	try	to	use	type	annotations	from	the	start
when	writing	a	new	piece	of	code.	A	general	strategy	is	to	write	a	first
version	without	annotations,	then	write	tests,	and	then	add	type	information
where	it’s	most	valuable.

Type	hints	are	most	important	at	the	boundaries	of	a	codebase,	such	as	an
API	you	provide	that	many	callers	(and	thus	other	people)	depend	on.	Type
hints	complement	integration	tests	(see	Item	77:	“Isolate	Tests	from	Each
Other	with	setUp,	tearDown,	setUpModule,	and	tearDownModule”)	and
warnings	(see	Item	89:	“Consider	warnings	to	Refactor	and	Migrate
Usage”)	to	ensure	that	your	API	callers	aren’t	surprised	or	broken	by	your
changes.

It	can	be	useful	to	apply	type	hints	to	the	most	complex	and	errorprone
parts	of	your	codebase	that	aren’t	part	of	an	API.	However,	it	may	not	be
worth	striving	for	100%	coverage	in	your	type	annotations	because	you’ll
quickly	encounter	diminishing	returns.

If	possible,	you	should	include	static	analysis	as	part	of	your	automated
build	and	test	system	to	ensure	that	every	commit	to	your	codebase	is
vetted	for	errors.	In	addition,	the	configuration	used	for	type	checking
should	be	maintained	in	the	repository	to	ensure	that	all	of	the	people	you
collaborate	with	are	using	the	same	rules.

As	you	add	type	information	to	your	code,	it’s	important	to	run	the	type
checker	as	you	go.	Otherwise,	you	may	nearly	finish	sprinkling	type	hints
everywhere	and	then	be	hit	by	a	huge	wall	of	errors	from	the	type	checking
tool,	which	can	be	disheartening	and	make	you	want	to	abandon	type	hints
altogether.

Finally,	it’s	important	to	acknowledge	that	in	many	situations,	you	may	not	need
or	want	to	use	type	annotations	at	all.	For	small	programs,	ad-hoc	code,	legacy
codebases,	and	prototypes,	type	hints	may	require	far	more	effort	than	they’re
worth.

Things	to	Remember

✦	Python	has	special	syntax	and	the	typing	built-in	module	for	annotating
variables,	fields,	functions,	and	methods	with	type	information.

✦	Static	type	checkers	can	leverage	type	information	to	help	you	avoid	many
common	bugs	that	would	otherwise	happen	at	runtime.

✦	There	are	a	variety	of	best	practices	for	adopting	types	in	your	programs,
using	them	in	APIs,	and	making	sure	they	don’t	get	in	the	way	of	your
productivity.

Index

Symbols
*	(asterisk)	operator

keyword-only	arguments,	98
variable	positional	arguments,	87–88

@	(at)	symbol,	decorators,	101
**	(double	asterisk)	operator,	keyword	arguments,	90–91
/	(forward	slash)	operator,	positional-only	arguments,	99
%	(percent)	operator

bytes	versus	str	instances,	8–9
formatting	strings,	11

+	(plus)	operator,	bytes	versus	str	instances,	7
_	(underscore)	variable	name,	149
:=	(walrus)	operator

assignment	expression,	35–41
in	comprehensions,	112–114

__call__	method,	154–155
@classmethod,	155–160
__format__method,	16
__getattr__	method,	195–201
__getattribute__	method,	195–201
__init__	method,	160–164
__init_subclass__	method

registering	classes,	208–213
validating	subclasses,	201–208

__iter__	method,	119,	244–245
__missing__	method	(dictionary	subclasses),	73–75
@property	decorator

descriptors	versus,	190–195
refactoring	attributes	with,	186–189

setter	attribute,	182–185
__set_name__	method,	annotating	attributes,	214–218
__setattr__	method,	195–201
CPython,	230

A
APIs

migrating	usage,	418–425
root	exceptions	for,	408–413
stability,	403–405

arguments
dynamic	default	values,	93–96
iterating	over,	116–121
keyword,	89–92
keyword-only,	96–101
positional-only,	96–101
variable	positional,	86–89

assertions	in	TestCase	subclasses,	359
assignment	expressions

in	comprehensions,	110–114
scope	and,	85
walrus	(:=)	operator,	35–41

associative	arrays,	43
asterisk	(*)	operator

keyword-only	arguments,	98
variable	positional	arguments,	87–88

asyncio	built-in	module
avoiding	blocking,	289–292
combining	threads	and	coroutines,	282–288
porting	threaded	I/O	to,	271–282

at	(@)	symbol,	decorators,	101
attributes

annotating,	214–218
dynamic,	181

getter	and	setter	methods	versus,	181–185
lazy,	195–201
public	versus	private,	169–174
refactoring,	186–189

B
binary	data,	converting	to	Unicode,	6–7
binary	operators,	bytes	versus	str	instances,	8
bisect	built-in	module,	334–336
blocking	asyncio	event	loop,	avoiding,	289–292
blocking	I/O	(input/output)	with	threads,	230–235
breaking	circular	dependencies,	413–418
breakpoint	built-in	function,	379–384
buffer	protocol,	348
built-in	types,	classes	versus,	145–148
bytearray	built-in	type,	346–351
bytecode,	230
bytes	instances,	str	instances	versus,	5–10

C
C	extensions,	292–293
C3	linearization,	162
callables,	154
catch-all	unpacking,	slicing	versus,	48–52
character	data,	bytes	versus	str	instances,	5–10
checked	exceptions,	82
child	processes,	managing,	226–230
circular	dependencies,	breaking,	413–418
classes,	145

attributes.	See	attributes
built-in	types	versus,	145–148
decorators,	218–224
documentation,	398–399

function	interfaces	versus,	151–155
initializing	parent	classes,	160–164
metaclasses.	See	metaclasses
mix-in	classes,	164–169
polymorphism,	155–160
public	versus	private	attributes,	169–174
refactoring	to,	148–151
registering,	208–213
serializing,	168–169
validating	subclasses,	201–208
versioning,	316–317

closures,	variable	scope	and,	83–86
collaboration

breaking	circular	dependencies,	413–418
dynamic	import,	417–418
import/configure/run,	415–416
reordering	imports,	415–416

community-built	modules,	389–390
documentation,	396–401
migrating	API	usage,	418–425
organizing	modules	into	packages,	401–406
root	exceptions	for	APIs,	408–413
static	analysis,	425–434
virtual	environments,	390–396

collections.abc	module,	inheritance	from,	174–178
combining	iterator	items,	139–142
commands	for	interactive	debugger,	381
community-built	modules,	389–390
compile-time	static	type	checking,	353
complex	sort	criteria	with	key	parameter,	52–58
comprehensions,	107

assignment	expressions	in,	110–114
generator	expressions	for,	121–122
map	and	filter	functions	versus,	107–109
multiple	subexpressions	in,	109–110

concurrency,	225
avoiding	threads	for	fan-out,	252–256
fan-in,	252
fan-out,	252
highly	concurrent	I/O	(input/output),	266–271
parallelism	versus,	225
with	pipelines,	238–247
preventing	data	races,	235–238
using	Queue	class	for,	257–263
using	ThreadPoolExecutor	for,	264–266
with	threads,	230–235
when	to	use,	248–252

concurrent.futures	built-in	module,	292–297
configuring	deployment	environments,	406–408
conflicts	with	dependencies,	390–396
containers

inheritance	from	collections.abc	module,	174–178
iterator	protocol,	119–121

contextlib	built-in	module,	304–308
Coordinated	Universal	Time	(UTC),	308
copyreg	built-in	module,	312–319
coroutines,	266–271

combining	with	threads,	282–288
C-style	strings,	f-strings	versus,	11–21
custom	container	types,	inheritance	from	collections.abc	module,	174–178

D
data	races,	preventing,	235–238
datetime	built-in	module,	308–312
debugging

with	interactive	debugger,	379–384
memory	usage,	384–387
with	repr	strings,	354–357
with	static	analysis,	425–434

Decimal	class,	rounding	numbers,	319–322
decorators

class	decorators,	218–224
function	decorators,	101–104

default	arguments
dynamic,	93–96
with	pickle	built-in	module,	315–316

default	values	in	dictionaries
__missing__	method,	73–75
defaultdict	versus	setdefault	methods,	70–72
get	method	versus	in	expressions,	65–70

defaultdict	class,	setdefault	method	versus,	70–72
dependencies

breaking	circular,	413–418
conflicts,	390–396
encapsulating,	375–379
injecting,	378–379
reproducing,	394–396
testing	with	mocks,	367–375

dependency	hell,	391
deployment	environments,	configuring,	406–408
deque	class,	326–334
descriptor	protocol,	191
descriptors	versus	@property	decorator,	190–195
deserializing	with	pickle	built-in	module,	312–319
development	environment,	406–407
diamond	inheritance,	161–162,	207–208
dictionaries,	43

insertion	ordering,	58–65
missing	keys

__missing__	method,	73–75
defaultdict	versus	setdefault	methods,	70–72
get	method	versus	in	expressions,	65–70

nesting,	145–148

tuples	versus	in	format	strings,	13–15
dictionary	comprehensions,	108–109
docstrings

for	dynamic	default	arguments,	93–96
writing,	396–401

for	classes,	398–399
for	functions,	399–400
for	modules,	397–398
type	annotations	and,	400–401

documentation.	See	docstrings
double	asterisk	(**)	operator,	keyword	arguments,	90–91
double-ended	queues,	331
duck	typing,	61,	429
dynamic	attributes,	181
dynamic	default	arguments,	93–96
dynamic	import,	417–418

E
else	blocks

for	statements,	32–35
exception	handling,	299–304

encapsulating	dependencies,	375–379
enumerate	built-in	function,	range	built-in	function	versus,	28–30
except	blocks,	exception	handling,	299–304
exception	handling	with	try/except/else/finally	blocks,	299–304
exceptions

raising,	None	return	value	versus,	80–82
root	exceptions	for	APIs,	408–413

expressions
helper	functions	versus,	21–24
PEP	8	style	guide,	4

F

fakes,	mocks	versus,	368
fan-in,	252

with	Queue	class,	257–263
with	ThreadPoolExecutor	class,	264–265

fan-out,	252
avoiding	threads	for,	252–256
with	Queue	class,	257–263
with	ThreadPoolExecutor	class,	264–265

FIFO	(first-in,	first-out)	queues,	326–334
file	operations,	bytes	versus	str	instances,	9–10
filter	built-in	function,	comprehensions	versus,	107–109
finally	blocks

exception	handling,	299–304
with	statements	versus,	304–308

first-class	functions,	152
first-in,	first-out	(FIFO)	queues,	326–334
for	loops,	avoiding	else	blocks,	32–35
format	built-in	function,	15–19
format	strings

bytes	versus	str	instances,	8–9
C-style	strings	versus	f-strings,	11–21
format	built-in	function,	15–19
f-strings	explained,	19–21
interpolated	format	strings,	19–21
problems	with	C-style	strings,	11–15
str.format	method,	15–19

forward	slash	(/)	operator,	positional-only	arguments,	99
f-strings

C-style	strings	versus,	11–21
str.format	method	versus,	15–19
explained,	19–21

functions,	77.	See	also	generators
closures,	variable	scope	and,	83–86
decorators,	101–104

documentation,	399–400
dynamic	default	arguments,	93–96
as	hooks,	151–155
keyword	arguments,	89–92
keyword-only	arguments,	96–101
None	return	value,	raising	exceptions	versus,	80–82
in	pipelines,	238–247
positional-only	arguments,	96–101
multiple	return	values,	77–80
variable	positional	arguments,	86–89

functools.wraps	method,	101–104

G
gc	built-in	module,	384–386
generator	expressions,	121–122
generators,	107

yield	from	for	composing,	123–126
injecting	data	into,	126–131
itertools	module	with,	136–142
returning	lists	versus,	114–116
send	method,	126–131
throw	method,	132–136

generic	object	construction,	155–160
get	method	for	missing	dictionary	keys,	65–70
getter	methods,	attributes	versus,	181–185
GIL	(global	interpreter	lock),	230–235,	292
gradual	typing,	426

H
hasattr	built-in	function,	198–199
hash	tables,	43
heapq	built-in	module,	336–346
heaps,	341

helper	functions,	expressions	versus,	21–24
highly	concurrent	I/O,	266–271
hooks,	functions	as,	151–155

I
if/else	conditional	expressions,	23
import	paths,	stabilizing,	317–319
importing	modules,	5,	414–415
in	expressions	for	missing	dictionary	keys,	65–70
indexing

slicing	and,	44
unpacking	versus,	24–28

inheritance
from	collections.abc	module,	174–178
diamond	inheritance,	161–162,	207–208

initializing	parent	classes,	160–164
injecting

data	into	generators,	126–131
dependencies,	378–379
mocks,	371–375

input/output	(I/O).	See	I/O	(input/output)
insertion	ordering,	dictionaries,	58–65
installing	modules,	389–390
integration	tests,	unit	tests	versus,	365
interactive	debugging,	379–384
interfaces,	145

simple	functions	for,	151–155
interpolated	format	strings.	See	f-strings
I/O	(input/output)

avoiding	blocking	asyncio	event	loop,	289–292
using	threads	for,	230–235
highly	concurrent,	266–271
porting	threaded	I/O	to	asyncio	built-in	module,	271–282

zero-copy	interactions,	346–351
isolating	tests,	365–367
iterator	protocol,	119–121
iterators.	See	also	loops

combining	items,	139–142
filtering	items,	138–139
generator	expressions	and,	121–122
generator	functions	and,	115–116
linking,	136–138
as	function	arguments,	116–121
StopIteration	exception,	117

itertools	module,	136–142
itertools.accumulate	method,	139–140
itertools.chain	method,	136
itertools.combinations	method,	141
itertools.combinations_with_replacement	method,	141–142
itertools.cycle	method,	137
itertools.dropwhile	method,	139
itertools.filterfalse	method,	139
itertools.islice	method,	138
itertools.permutations	method,	140–141
itertools.product	method,	140
itertools.repeat	method,	136
itertools.takewhile	method,	138
itertools.tee	method,	137
itertools.zip_longest	method,	31–32,	137–138

J
json	built-in	module,	313

K
key	parameter,	sorting	lists,	52–58
KeyError	exceptions	for	missing	dictionary	keys,	65–70
keys

keys
handling	in	dictionaries

__missing__	method,	73–75
defaultdict	versus	setdefault	methods,	70–72
get	method	versus	in	expressions,	65–70

keyword	arguments,	89–92
keyword-only	arguments,	96–101

L
lazy	attributes,	195–201
leaks	(memory),	debugging,	384–387
linking	iterators,	136–138
list	comprehensions,	107–108

generator	expressions	versus,	121–122
lists,	43.	See	also	comprehensions

as	FIFO	queues,	326–331
as	return	values,	generators	versus,	114–116
slicing,	43–46

catch-all	unpacking	versus,	48–52
striding	with,	46–48

sorting
with	key	parameter,	52–58
searching	sorted	lists,	334–336

local	time,	308–312
Lock	class,	preventing	data	races,	235–238
loops.	See	also	comprehensions

else	blocks,	avoiding,	32–35
range	versus	enumerate	built-in	functions,	28–30
zip	built-in	function,	30–32

M
map	built-in	function,	comprehensions	versus,	107–109
memory	usage,	debugging,	384–387

memoryview	built-in	type,	346–351
metaclasses,	181

annotating	attributes,	214–218
class	decorators	versus,	218–224
registering	classes,	208–213
validating	subclasses,	201–208

migrating	API	usage,	418–425
missing	dictionary	keys

__missing__	method,	73–75
defaultdict	versus	setdefault	methods,	70–72
get	method	versus	in	expressions,	65–70

mix-in	classes,	164–169
mocks

encapsulating	dependencies	for,	375–379
testing	with,	367–375

modules
documentation,	397–398
importing,	5,	414–415

dynamic	import,	417–418
import/configure/run,	415–416
reordering	imports,	415–416

installing,	389–390
organizing	into	packages,	401–406

module-scoped	code,	406–408
multiple	assignment.	See	tuples
multiple	return	values,	unpacking,	77–80
multiple	generators,	composing	with	yield	from	expression,	123–126
multiprocessing	built-in	module,	292–297
multi-threaded	program,	converting	from	single-threaded	to,	248–252
mutexes	(mutual-exclusion	locks),	preventing	data	races,	235–238

N
namedtuple	type,	149–150
namespaces,	402–403

naming	conventions,	3–4
negative	numbers	for	slicing,	44
nested	built-in	types,	classes	versus,	145–148
None

for	dynamic	default	arguments,	93–96
raising	exceptions	versus	returning,	80–82

nonlocal	statement,	85–86

O
objects,	generic	construction,	155–160
optimizing,	profiling	before,	322–326
option	types,	430
optional	arguments,	extending	functions	with,	92
OrderedDict	class,	61
organizing	modules	into	packages,	401–406

P
packages

installing,	389–390
organizing	modules	into,	401–406

parallel	iteration,	zip	built-in	function,	30–32
parallelism,	225

avoiding	threads,	230–235
concurrency	versus,	225
with	concurrent.futures	built-in	module,	292–297
managing	child	processes,	226–230

parent	classes,	initializing,	160–164
pdb	built-in	module,	379–384
PEP	8	style	guide,	2–5
percent	(%)	operator

bytes	versus	str	instances,	8–9
dictionaries	versus	tuples	with,	13–15
formatting	strings,	11

performance,	299
first-in,	first-out	(FIFO)	queues,	326–334
priority	queues,	336–346
profiling	before	optimizing,	322–326
searching	sorted	lists,	334–336
zero-copy	interactions,	346–351

pickle	built-in	module,	312–319
pip	command-line	tool,	389–390
pipelines

coordinating	threads	with,	238–247
parallel	processes,	chains	of,	228–229
refactoring	to	use	Queue	for,	257–263

plus	(+)	operator,	bytes	versus	str	instances,	7
polymorphism,	155–160
porting	threaded	I/O	to	asyncio	built-in	module,	271–282
positional	arguments,	variable,	86–89
positional-only	arguments,	96–101
post-mortem	debugging,	382–384
print	function,	debugging	with,	354–357
priority	queues,	336–346
private	attributes,	public	attributes	versus,	169–174
processes,	managing	child	processes,	226–230
ProcessPoolExecutor	class,	295–297
producer-consumer	queues,	326–334
production	environment,	406
profiling	before	optimizing,	322–326
public	attributes,	private	attributes	versus,	169–174
Pylint,	5
PyPI	(Python	Package	Index),	389–390
Python

determining	version	used,	1–2
style	guide.	See	PEP	8	style	guide

Python	2,	1–2
Python	3,	1–2

Python	Enhancement	Proposal	#8.	See	PEP	8	style	guide
Python	Package	Index	(PyPI),	389–390
Pythonic	style,	1
pytz	module,	311–312

Q
Queue	class

coordinating	threads	with,	238–247
refactoring	to	use	for	concurrency,	257–263

R
raising	exceptions,	None	return	value	versus,	80–82
range	built-in	function,	enumerate	built-in	function	versus,	28–30
refactoring

attributes,	186–189
to	break	circular	dependencies,	415
to	classes,	148–151
to	use	Queue	class	for	concurrency,	257–263

registering	classes,	208–213
reordering	imports,	415–416
repetitive	code,	avoiding,	35–41
repr	strings,	debugging	with,	354–357
reproducing	dependencies,	394–396
return	values

generators	versus	lists	as,	114–116
None	return	value,	raising	exceptions	versus,	80–82
unpacking	multiple,	77–80

reusable	@property	methods,	190–195
reusable	try/finally	blocks,	304–308
robustness,	299

exception	handling	with	try/except/else/finally	blocks,	299–304
reusable	try/finally	blocks,	304–308
rounding	numbers,	319–322

serialization/deserialization	with	pickle,	312–319
time	zone	conversion,	308–312

root	exceptions	for	APIs,	408–413
rounding	numbers	with	Decimal	class,	319–322
rule	of	least	surprise,	181

S
scope,	closures	and,	83–86
scoping	bug,	85
searching	sorted	lists,	334–336
send	method	in	generators,	126–131
sequences

searching	sorted,	334–336
slicing,	43–46

catch-all	unpacking	versus,	48–52
striding,	46–48

serializing
classes,	168–169
with	pickle	built-in	module,	312–319

set	comprehensions,	108–109
setdefault	method	(dictionaries),	68–70

defaultdict	method	versus,	70–72
setter	methods,	attributes	versus,	181–185
setUp	method	(TestCase	class),	365–367
setUpModule	function,	365–367
single-threaded	program,	converting	to	multi-threaded,	248–252
slicing

memoryview	instances,	348
sequences,	43–46

catch-all	unpacking	versus,	48–52
striding,	46–48

software	licensing,	390
sorting

dictionaries,	insertion	ordering,	58–65
lists

with	key	parameter,	52–58
searching	sorted	lists,	334–336

speedup,	225
stabilizing	import	paths,	317–319
stable	APIs,	403–405
stable	sorting,	56–57
star	args,	86–89
starred	expressions,	49–52
statements,	PEP	8	style	guide,	4
static	analysis,	425–434
StopIteration	exception,	117
str	instances,	bytes	instances	versus,	5–10
str.format	method,	15–19
striding,	46–48
strings,	C-style	versus	f-strings,	11–21

format	built-in	function,	15–19
interpolated	format	strings,	19–21
problems	with	C-style	strings,	11–15
str.format	method,	15–19

subclasses,	validating,	201–208
subexpressions	in	comprehensions,	109–110
subprocess	built-in	module,	226–230
super	built-in	function,	160–164

T
tearDown	method	(TestCase	class),	365–367
tearDownModule	function,	365–367
ternary	expressions,	23
test	harness,	365
TestCase	subclasses

isolating	tests,	365–367

verifying	related	behaviors,	357–365
testing

encapsulating	dependencies	for,	375–379
importance	of,	353–354
isolating	tests,	365–367
with	mocks,	367–375
with	TestCase	subclasses,	357–365
unit	versus	integration	tests,	365
with	unittest	built-in	module,	357

ThreadPoolExecutor	class,	264–266
threads

avoiding	for	fan-out,	252–256
combining	with	coroutines,	282–288
converting	from	single-	to	multi-threaded	program,	248–252
coordinating	between,	238–247
porting	threaded	I/O	to	asyncio	built-in	module,	271–282
preventing	data	races,	235–238
refactoring	to	use	Queue	class	for	concurrency,	257–263
ThreadPoolExecutor	class,	264–266
when	to	use,	230–235

throw	method	in	generators,	132–136
time	built-in	module,	308–312
time	zone	conversion,	308–312
timeout	parameter	for	subprocesses,	229–230
tracemalloc	built-in	module,	384–387
try	blocks

exception	handling,	299–304
versus	with	statements,	304–308

tuples
dictionaries	versus	with	format	strings,	13–15
indexing	versus	unpacking,	24–28
namedtuple	type,	149–150
sorting	with	multiple	criteria,	55–56
underscore	(_)	variable	name	in,	149

type	annotations,	82
docstrings	and,	400–401
with	static	analysis,	425–434

type	hints,	426
typing	built-in	module,	425–434

U
underscore	(_)	variable	name,	149
Unicode	data,	converting	to	binary,	6–7
unit	tests,	integration	tests	versus,	365
unittest	built-in	module,	357
unpacking

indexing	versus,	24–28
multiple	return	values,	77–80
slicing	versus,	48–52

UTC	(Coordinated	Universal	Time),	308

V
validating	subclasses,	201–208
variable	positional	arguments	(varargs),	86–89
variable	scope,	closures	and,	83–86
venv	built-in	module,	392–394
versioning	classes,	316–317
versions	of	Python,	determining	version	used,	1–2
virtual	environments,	390–396

W
walrus	(:=)	operator

assignment	expression,	35–41
in	comprehensions,	112–114

warnings	built-in	module,	418–425
weakref	built-in	module,	194

while	loops,	avoiding	else	blocks,	32–35
whitespace,	3
with	statements	for	reusable	try/finally	blocks,	304–308
with	as	targets,	306–308
writing	docstrings,	396–401

for	classes,	398–399
for	functions,	399–400
for	modules,	397–398
type	annotations	and,	400–401

Y
yield	from	expressions,	composing	multiple	generators,	123–126

Z
zero-copy	interactions,	346–351
zip	built-in	function,	30–32

Code	Snippets

Many	titles	include	programming	code	or	configuration	examples.	To	optimize
the	presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape
mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting
code	and	configurations	in	the	reflowable	text	format,	we	have	included	images
of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where
the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you
will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.

	Cover Page
	About This eBook
	Half Title Page
	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	About the Author
	1. Pythonic Thinking
	Item 1: Know Which Version of Python You’re Using
	Item 2: Follow the PEP 8 Style Guide
	Item 3: Know the Differences Between bytes and str
	Item 4: Prefer Interpolated F-Strings Over C-style Format Strings and str.format
	Item 5: Write Helper Functions Instead of Complex Expressions
	Item 6: Prefer Multiple Assignment Unpacking Over Indexing
	Item 7: Prefer enumerate Over range
	Item 8: Use zip to Process Iterators in Parallel
	Item 9: Avoid else Blocks After for and while Loops
	Item 10: Prevent Repetition with Assignment Expressions

	2. Lists and Dictionaries
	Item 11: Know How to Slice Sequences
	Item 12: Avoid Striding and Slicing in a Single Expression
	Item 13: Prefer Catch-All Unpacking Over Slicing
	Item 14: Sort by Complex Criteria Using the key Parameter
	Item 15: Be Cautious When Relying on dict Insertion Ordering
	Item 16: Prefer get Over in and KeyError to Handle Missing Dictionary Keys
	Item 17: Prefer defaultdict Over setdefault to Handle Missing Items in Internal State
	Item 18: Know How to Construct Key-Dependent Default Values with __missing__

	3. Functions
	Item 19: Never Unpack More Than Three Variables When Functions Return Multiple Values
	Item 20: Prefer Raising Exceptions to Returning None
	Item 21: Know How Closures Interact with Variable Scope
	Item 22: Reduce Visual Noise with Variable Positional Arguments
	Item 23: Provide Optional Behavior with Keyword Arguments
	Item 24: Use None and Docstrings to Specify Dynamic Default Arguments
	Item 25: Enforce Clarity with Keyword-Only and Positional-Only Arguments
	Item 26: Define Function Decorators with functools.wraps

	4. Comprehensions and Generators
	Item 27: Use Comprehensions Instead of map and filter
	Item 28: Avoid More Than Two Control Subexpressions in Comprehensions
	Item 29: Avoid Repeated Work in Comprehensions by Using Assignment Expressions
	Item 30: Consider Generators Instead of Returning Lists
	Item 31: Be Defensive When Iterating Over Arguments
	Item 32: Consider Generator Expressions for Large List Comprehensions
	Item 33: Compose Multiple Generators with yield from
	Item 34: Avoid Injecting Data into Generators with send
	Item 35: Avoid Causing State Transitions in Generators with throw
	Item 36: Consider itertools for Working with Iterators and Generators

	5. Classes and Interfaces
	Item 37: Compose Classes Instead of Nesting Many Levels of Built-in Types
	Item 38: Accept Functions Instead of Classes for Simple Interfaces
	Item 39: Use @classmethod Polymorphism to Construct Objects Generically
	Item 40: Initialize Parent Classes with super
	Item 41: Consider Composing Functionality with Mix-in Classes
	Item 42: Prefer Public Attributes Over Private Ones
	Item 43: Inherit from collections.abc for Custom Container Types

	6. Metaclasses and Attributes
	Item 44: Use Plain Attributes Instead of Setter and Getter Methods
	Item 45: Consider @property Instead of Refactoring Attributes
	Item 46: Use Descriptors for Reusable @property Methods
	Item 47: Use __getattr__, __getattribute__, and __setattr__ for Lazy Attributes
	Item 48: Validate Subclasses with __init_subclass__
	Item 49: Register Class Existence with __init_subclass__
	Item 50: Annotate Class Attributes with __set_name__
	Item 51: Prefer Class Decorators Over Metaclasses for Composable Class Extensions

	7. Concurrency and Parallelism
	Item 52: Use subprocess to Manage Child Processes
	Item 53: Use Threads for Blocking I/O, Avoid for Parallelism
	Item 54: Use Lock to Prevent Data Races in Threads
	Item 55: Use Queue to Coordinate Work Between Threads
	Item 56: Know How to Recognize When Concurrency Is Necessary
	Item 57: Avoid Creating New Thread Instances for On-demand Fan-out
	Item 58: Understand How Using Queue for Concurrency Requires Refactoring
	Item 59: Consider ThreadPoolExecutor When Threads Are Necessary for Concurrency
	Item 60: Achieve Highly Concurrent I/O with Coroutines
	Item 61: Know How to Port Threaded I/O to asyncio
	Item 62: Mix Threads and Coroutines to Ease the Transition to asyncio
	Item 63: Avoid Blocking the asyncio Event Loop to Maximize Responsiveness
	Item 64: Consider concurrent.futures for True Parallelism

	8. Robustness and Performance
	Item 65: Take Advantage of Each Block in try/except/else/finally
	Item 66: Consider contextlib and with Statements for Reusable try/finally Behavior
	Item 67: Use datetime Instead of time for Local Clocks
	Item 68: Make pickle Reliable with copyreg
	Item 69: Use decimal When Precision Is Paramount
	Item 70: Profile Before Optimizing
	Item 71: Prefer deque for Producer–Consumer Queues for Producer–Consumer Queues
	Item 72: Consider Searching Sorted Sequences with bisect
	Item 73: Know How to Use heapq for Priority Queues
	Item 74: Consider memoryview and bytearray for Zero-Copy Interactions with bytes

	9. Testing and Debugging
	Item 75: Use repr Strings for Debugging Output
	Item 76: Verify Related Behaviors in TestCase Subclasses
	Item 77: Isolate Tests from Each Other with setUp, tearDown, setUpModule, and tearDownModule
	Item 78: Use Mocks to Test Code with Complex Dependencies
	Item 79: Encapsulate Dependencies to Facilitate Mocking and Testing
	Item 80: Consider Interactive Debugging with pdb
	Item 81: Use tracemalloc to Understand Memory Usage and Leaks

	10. Collaboration
	Item 82: Know Where to Find Community-Built Modules
	Item 83: Use Virtual Environments for Isolated and Reproducible Dependencies
	Item 84: Write Docstrings for Every Function, Class, and Module
	Item 85: Use Packages to Organize Modules and Provide Stable APIs
	Item 86: Consider Module-Scoped Code to Configure Deployment Environments
	Item 87: Define a Root Exception to Insulate Callers from APIs
	Item 88: Know How to Break Circular Dependencies
	Item 89: Consider warnings to Refactor and Migrate Usage
	Item 90: Consider Static Analysis via typing to Obviate Bugs

	Index
	Code Snippets

