

Building Data Science
Applications with
FastAPI
Develop, manage, and deploy efficient machine
learning applications with Python

François Voron

BIRMINGHAM—MUMBAI

Building Data Science Applications
with FastAPI
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Publishing Product Manager: Ashish Tiwari
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editor: Nazia Shaikh
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Project Coordinator: Aparna Nair
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Ponraj Dhandapani

First published: October 2021

Production reference: 1250821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-921-1

www.packt.com

Contributors

About the author
François Voron is graduated from the University of Saint-Étienne (France) and the
University of Alicante (Spain) with a master's degree in Machine Learning and Data
Mining. A full-stack web developer and a data scientist, François has a proven track
record working in the SaaS industry, with a special focus on Python backends and
REST API.

He is also the creator and maintainer of FastAPI Users, the #1 authentication library for
FastAPI, and is one of the top experts in the FastAPI community.

About the reviewers
Prajjwal Nijhara is an electrical engineering student at Aligarh Muslim University and a
member of the AUV-ZHCET club where he works on computer vision. He is a mentor at
AMU-OSS and has worked with DeepSource as the developer-relation intern for
six months.

I dedicate my contribution in this book to my mentor Areeb Jamal who recently
passed away recently. Areeb is forever in our hearts and our memory.

I also dedicate this book to Vivek Duneja, who taught me Python programming during my
school days; in case, if you find any issues with my review, Mr. Duneja will be responsible.

 Finally, I'd like to thank my brother, parents, and family, for being supportive.

Izabela dos Santos Guerreiro graduated in information technology management and
systems analysis and development. A machine learning enthusiast, Izabela is currently
a postgraduate in artificial intelligence, machine learning, and data science. A software
developer for 7 years, always working with Python, Izabela worked with FastAPI for about
1 year and became an enthusiast of the framework, collaborating on the translation of the
documentation to her native language, Portuguese. She has already organized PyLadies and
Django Girls events and is currently in charge of the Django Girls São Paulo organization.

Richad Becker leads data science at Revantage, a real estate shared service organization in
the Blackstone family. Richad grew his career in real estate and finance data science – first
at CoreLogic, focusing on text mining applications, then at Greystone, leading all things
data in an innovation lab, before joining Revantage. Richad is self-taught in data science and
credits his career progress to focusing on impact and deeply understanding the business
case. Richad has a BA in neuroscience and anthropology and a master's in commerce
(with a concentration in marketing and management) from the University of Virginia.

I'd like to thank my wife for her patience and support, and Jon for giving me advice on
good technical reviewing!

William Jamir Silva is a software developer with a BSc in electrical engineering with
more than 5 years of experience working in scientific software development with Python.
He is skilled in desktop development and web applications.

Table of Contents
Preface

Section 1:
Introduction to Python and FastAPI

1
Python Development Environment Setup

Technical requirements� 4
Installing a Python distribution
using pyenv� 4
Creating a Python virtual
environment� 7

Installing Python packages
with pip� 8
Installing the HTTPie
command-line utility� 9
Summary� 11

2
Python Programming Specificities

Technical requirements� 14
Basics of Python programming� 14
Running Python scripts� 14
Indentation matters� 16
Working with built-in types� 17
Working with data structures – lists,
tuples, dictionaries, and sets� 18
Performing Boolean logic and
checking for existence� 23
Controlling the flow of a program� 25
Defining functions� 29
Writing and using packages and modules� 31

Operating over sequences – list
comprehensions and generators� 34
List comprehensions� 34
Generators� 36

Writing object-oriented
programs� 39
Defining a class� 39
Implementing magic methods� 41
Reusing logic and avoiding repetition
with inheritance� 45

ii Table of Contents

Type hinting and type checking
with mypy� 48
Getting started� 48
The typing module� 50

Type function signatures with Callable� 53
Any and cast� 54

Asynchronous I/O� 56
Summary� 60

3
Developing a RESTful API with FastAPI

Technical requirements� 62

Creating the first endpoint
and running it locally� 62
Handling request parameters� 65
Path parameters� 65
Query parameters� 72
The request body� 74
Form data and file uploads� 79
Headers and cookies� 85

The request object� 87

Customizing the response� 88
Path operation parameters� 88
The response parameter� 95
Raising HTTP errors� 99
Building a custom response� 102

Structuring a bigger project
with multiple routers� 107
Summary� 111

4
Managing Pydantic Data Models in FastAPI

Technical requirements� 114
Defining models and their field
types with Pydantic� 114
Standard field types� 114
Optional fields and default values� 120
Field validation� 122
Validating email addresses and URLs
with Pydantic types� 124

Creating model variations
with class inheritance� 126
Adding custom data validation
with Pydantic� 129

Applying validation at a field level� 129
Applying validation at an object level� 130
Applying validation before
Pydantic parsing� 131

Working with Pydantic objects� 132
Converting an object into a dictionary� 132
Creating an instance from
a sub-class object� 135
Updating an instance with a partial one� 137

Summary� 139

Table of Contents iii

5
Dependency Injections in FastAPI

Technical requirements� 142
What is dependency injection?� 142
Creating and using a function
dependency� 143
Get an object or raise a 404 error� 147

Creating and using a
parameterized dependency
with a class� 148
Use class methods as dependencies� 150

Using dependencies at a path,
router, and global level� 152
Use a dependency on a path decorator� 153
Use a dependency on a whole router� 154
Use a dependency on a whole
application � 156

Summary� 157

Section 2:
Build and Deploy a Complete Web Backend
with FastAPI

6
Databases and Asynchronous ORMs

Technical requirements� 162
An overview of relational and
NoSQL databases� 162
Relational databases� 163
NoSQL databases� 164
Which one should you choose?� 165

Communicating with a SQL
database with SQLAlchemy� 166
Creating the table schema� 168
Connecting to a database� 169
Making insert queries� 171
Making select queries� 173
Making update and delete queries� 175
Adding relationships� 177

Setting up a database migration
system with Alembic� 180

Communicating with a SQL
database with Tortoise ORM� 186
Creating database models� 186
Setting up the Tortoise engine� 188
Creating objects� 190
Updating and deleting objects� 193
Adding relationships� 194
Setting up a database migration
system with Aerich� 198

Communicating with a
MongoDB database using Motor�200
Creating models compatible with
MongoDB ID� 201

iv Table of Contents

Connecting to a database� 202
Inserting documents� 203
Getting documents � 204

Updating and deleting documents� 207
Nesting documents� 208

Summary� 210

7
Managing Authentication and Security in FastAPI

Technical requirements� 212
Security dependencies
in FastAPI� 212
Storing a user and their
password securely in a
database� 216
Creating models and tables� 217
Hashing passwords� 218
Implementing registration routes� 219

Retrieving a user and
generating an access token� 220

Implementing a database access token� 220
Implementing a login endpoint� 222

Securing endpoints with
access tokens� 225
Configuring CORS and
protecting against CSRF attacks�227
Understanding CORS and
configuring it in FastAPI� 228
Implementing double-submit
cookies to prevent CSRF attacks� 233

Summary� 239

8
Defining WebSockets for Two-Way Interactive
Communication in FastAPI

Technical requirements� 242
Understanding the principles of
two-way communication with
WebSockets� 242
Creating a WebSocket with
FastAPI� 243

Handling concurrency� 247
Using dependencies� 250

Handling multiple WebSocket
connections and broadcasting
messages� 253
Summary� 260

9
Testing an API Asynchronously with pytest and HTTPX

Technical requirements� 262
Introduction to unit testing
with pytest� 263

Generating tests with parametrize� 265
Reusing test logic by creating fixtures� 267

Table of Contents v

Setting up testing tools for
FastAPI with HTTPX� 270
Writing tests for REST API
endpoints� 275
Writing tests for POST endpoints� 276

Testing with a database� 278

Writing tests for WebSocket
endpoints� 286
Summary� 289

10
Deploying a FastAPI Project

Technical requirements� 292
Setting and using environment
variables� 292
Using a .env file� 296

Managing Python dependencies� 297
Adding Gunicorn as a server process
for deployment� 299

Deploying a FastAPI application
on a serverless platform� 300

Adding database servers� 303

Deploying a FastAPI
application with Docker� 304
Writing a Dockerfile� 304
Building a Docker image� 306
Running a Docker image locally� 307
Deploying a Docker image� 307

Deploying a FastAPI application
on a traditional server� 309
Summary� 310

Section 3:
Build a Data Science API with Python and
FastAPI
11
Introduction to NumPy and pandas

Technical requirements� 314
Getting started with NumPy� 314
Creating arrays� 315
Accessing elements and sub-arrays� 318

Manipulating arrays with
NumPy – computation,
aggregations, comparisons� 320
Adding and multiplicating arrays � 322
Aggregating arrays – sum, min,
max, mean…� 324

Comparing arrays� 325

Getting started with pandas� 326
Using pandas Series for
one-dimensional data� 326
Using pandas DataFrames for
multi-dimensional data� 328
Importing and exporting CSV data� 331

Summary� 332

vi Table of Contents

12
Training Machine Learning Models with scikit-learn

Technical requirements� 334
What is machine learning?� 334
Supervised versus unsupervised
learning� 334
Model validation� 335

Basics of scikit-learn� 337
Training models and predicting� 337
Chaining pre-processors and
estimators with pipelines� 340
Validating the model with
cross-validation� 344

Classifying data with
Naive Bayes models� 346
Intuition� 346
Classifying data with Gaussian
Naive Bayes� 347
Classifying data with Multinomial
Naive Bayes� 350

Classifying data with
support vector machines� 351
Intuition� 352
Using SVM in scikit-learn� 355
Finding the best parameters� 356

Summary� 358

13
Creating an Efficient Prediction API Endpoint with FastAPI

Technical requirements� 360
Persisting a trained model
with Joblib� 360
Dumping a trained model� 360
Loading a dumped model� 362

Implementing an efficient
prediction endpoint� 363
Caching results with Joblib� 366
Choosing between standard or
async functions� 369

Summary� 372

14
Implement a Real-Time Face Detection System Using
WebSockets with FastAPI and OpenCV

Technical requirements� 374
Getting started with OpenCV� 374
Implementing an HTTP
endpoint to perform face
detection on a single image� 378

Implementing a WebSocket to
perform face detection on a
stream of images� 381

Table of Contents vii

Sending a stream of images
from the browser in a
WebSocket� 383

Showing the face detection
results in the browser� 387
Summary� 390

Other Books You May Enjoy

Index

Preface
FastAPI is a web framework for building APIs with Python 3.6 and its later versions based
on standard Python type hints. With this book, you'll be able to create fast and reliable
data science API backends using practical examples.

This book starts with the basics of the FastAPI framework and associated modern
Python programming concepts. You'll then be taken through all the aspects of the
framework, including its powerful dependency injection system and how you can use it to
communicate with databases, implement authentication, and integrate machine learning
models. Later, you will cover best practices relating to testing and deployment to run a
high-quality and robust application. You'll also be introduced to the extensive ecosystem
of Python data science packages. As you progress, you'll learn how to build data science
applications in Python using FastAPI. The book also demonstrates how to develop fast
and efficient machine learning prediction backends and test them to achieve the best
performance. Finally, you'll see how to implement a real-time face detection system using
WebSockets and a web browser as a client.

By the end of this FastAPI book, you'll have not only learned how to implement
Python in data science projects but also how to maintain and design them to meet high
programming standards with the help of FastAPI.

Who this book is for
This book is for data scientists and software developers interested in gaining knowledge
of FastAPI and its ecosystem to build data science applications. Basic knowledge
of data science and machine learning concepts and how to apply them in Python is
recommended.	

x Preface

What this book covers
Chapter 1, Python Development Environment Setup, is aimed at setting up the development
environment so that you can start working with Python and FastAPI. We'll introduce the
various tools that are commonly used in the Python community to ease development.

Chapter 2, Python Programming Specificities, introduces you to the specificities of
programming in Python, specifically, block indentation, control flow statements,
exceptions handling, and the object-oriented paradigm. We'll also cover features such as
list comprehensions and generators. Finally, we'll see how type hinting and asynchronous
I/O work.

Chapter 3, Developing a RESTful API with FastAPI, covers the basics of the creation of a
RESTful API with FastAPI: routing, parameters, request body validation, and response.
We'll also show how to properly structure a FastAPI project with dedicated modules and
separate routers.

Chapter 4, Managing pydantic Data Models in FastAPI, covers in more detail the definition
of data models with Pydantic, the underlying data validation library used by FastAPI.
We'll explain how to implement variations of the same model without repeating ourselves
thanks to class inheritance. Finally, we'll show how to implement custom data validation
logic on those models.

Chapter 5, Dependency Injections in FastAPI, explains how dependency injection works
and how we can define our own dependencies to reuse logic across different routers
and endpoints.

Chapter 6, Databases and Asynchronous ORMs, demonstrates how we can set up a
connection with a database to read and write data. We'll cover how to use two libraries to
work asynchronously with SQL databases and how they interact with the Pydantic model.
Finally, we'll also show you how to work with MongoDB, a NoSQL database.

Chapter 7, Managing Authentication and Security in FastAPI, shows us how to implement
a basic authentication system to protect our API endpoints and return the relevant data
for the authenticated user. We'll also talk about the best practices around CORS and how
to be safe from CSRF attacks.

Chapter 8, Defining WebSockets for Two-Way Interactive Communication in FastAPI, is
aimed at understanding WebSockets and how to create them and handle the messages
received with FastAPI.

To get the most out of this book xi

Chapter 9, Testing an API Asynchronously with pytest and HTTPX, shows us how to write
tests for our REST API endpoints.

Chapter 10, Deploying a FastAPI Project, covers the common configuration for running
FastAPI applications smoothly in production. We'll also explore several deployment
options: DigitalOcean App Platform, Docker, and the traditional server setup.

Chapter 11, Introduction to NumPy and pandas, introduces two core libraries for data
science in Python: NumPy and pandas. We'll see how to create and manipulate arrays with
NumPy and how we can do efficient operations on them. We'll then show how to manage
large datasets with pandas.

Chapter 12, Training Machine Learning Models with scikit-learn, gives a quick introduction
to machine learning before moving on to the scikit-learn library, a set of ready-to-
use tools to perform machine learning tasks in Python. We'll review some of the most
common algorithms and train prediction models.

Chapter 13, Creating an Efficient Prediction API Endpoint with FastAPI, shows us how we
can efficiently store a trained machine learning model using Joblib. Then, we'll integrate it
in a FastAPI backend, considering some technical details of FastAPI internals to achieve
maximum performance. Finally, we'll show a way to cache results using Joblib.

Chapter 14, Implementing a Real-Time Face Detection System Using WebSockets with FastAPI
and OpenCV, implements a simple application to perform face detection in the browser,
backed by a FastAPI WebSocket and OpenCV, a popular library for computer vision.

To get the most out of this book
In this book, we'll mainly work with the Python programming language. The first chapter
will explain how to set up a proper Python environment on your operating system. Some
examples also involve running web pages with JavaScript, so you'll need a modern browser
like Google Chrome or Mozilla Firefox.

xii Preface

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI. If there's an update to the code, it will be updated
in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801079211_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Obviously, if everything is okay, we get a Person instance and have
access to the properly parsed fields."

A block of code is set as follows:

from pydantic import BaseModel

class Person(BaseModel):

 first_name: str

 last_name: str

 age: int

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

class PostBase(BaseModel):

 title: str

 content: str

 def excerpt(self) -> str:

 return f"{self.content[:140]}..."

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801079211_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801079211_ColorImages.pdf

Get in touch xiii

Any command-line input or output is written as follows:

1 validation error for Person

birthdate

 invalid date format (type=value_error.date)

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in the
form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

http://customercare@packtpub.com
http://www.packtpub.com/support/errata
http://copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

xiv Preface

Share Your Thoughts
Once you’ve read Building Data Science Applications with FastAPI, we’d love to hear your
thoughts! Please click here to go straight to the Amazon review
page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re
delivering excellent quality content.

https://packt.link/r/1801079218
https://packt.link/r/1801079218

Section 1:
Introduction to

Python and FastAPI

After setting up the development environment, we’ll introduce the specificities of Python
before starting to explore the basic features of FastAPI and running our first REST API.

This section comprises the following chapters:

•	 Chapter 1, Python Development Environment Setup

•	 Chapter 2, Python Programming Specificities

•	 Chapter 3, Developing a RESTful API with FastAPI

•	 Chapter 4, Managing pydantic Data Models in FastAPI

•	 Chapter 5, Dependency Injections in FastAPI

1
Python

Development
Environment Setup

Before we can get started on our FastAPI journey, we need to configure a clean and
efficient Python environment. This chapter will show you the best practices and
conventions that Python developers use daily to run their projects.

By the end of this chapter, you'll be able to run Python projects and install third-party
dependencies in a contained environment that won't raise conflicts if you happen to
work on another project that uses different versions of the Python language or different
dependencies.

In this chapter, we're going to cover the following main topics:

•	 Installing a Python distribution using pyenv

•	 Creating a Python virtual environment

•	 Installing Python packages with pip

•	 Installing the HTTPie command-line utility

4 Python Development Environment Setup

Technical requirements
Throughout this book, we'll assume you have access to a Unix-based environment, such as
a Linux distribution or macOS.

If they haven't done so already, macOS users should install the Homebrew package
(https://brew.sh), which helps a lot in installing command-line tools.

If you are a Windows user, you should enable Windows Subsystem for Linux
(https://docs.microsoft.com/windows/wsl/install-win10), WSL,
and install a Linux distribution (such as Ubuntu) that will run alongside the Windows
environment, which should give you access to all the required tools. There are currently
two versions of WSL, WSL and WSL2. Depending on your Windows version, you might
not be able to install the newest version. However, we do recommend using WSL2 if your
Windows installation supports it.

Installing a Python distribution using pyenv
Python is already bundled with most Unix environments. To ensure this is the case, you can
run this command in a command line to show the version of the currently installed Python:

$ python3 --version

The output version displayed will vary depending on your system. You may think that
this is enough to get started, but it poses an important issue: you can't choose the Python
version for your project. Each Python version introduces new features and breaking
changes. Thus, it's important to be able to switch to a recent version for new projects to
take advantage of the new features but still be able to run older projects that may not be
compatible. This is why we need pyenv.

pyenv (https://github.com/pyenv/pyenv) is a tool that helps you manage and
switch between multiple Python versions on your system. It allows you to set a default
Python version for your whole system but also per project.

Beforehand, you need to install several build dependencies on your system to allow
pyenv to compile Python on your system. The official documentation provides clear
guidance on this (https://github.com/pyenv/pyenv/wiki#suggested-
build-environment), but here are the commands you should run:

1.	 Install the build dependencies:

•	 macOS users, use this:

$ brew install openssl readline sqlite3 xz zlib

https://brew.sh
https://docs.microsoft.com/windows/wsl/install-win10
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv/wiki#suggested-build-environment
https://github.com/pyenv/pyenv/wiki#suggested-build-environment

Installing a Python distribution using pyenv 5

•	 Ubuntu users, use this:

$ sudo apt-get update; sudo apt-get install --no-install-
recommends make build-essential libssl-dev zlib1g-dev
libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm
libncurses5-dev xz-utils tk-dev libxml2-dev libxmlsec1-
dev libffi-dev liblzma-dev

Package managers
Brew and APT are what are commonly known as package managers. Their role
is to automate the installation and management of software on your system.
Thus, you don't have to worry about where to download them and how to
install and uninstall them. The commands just tell the package manager to
update its internal package index and then install the list of required packages.

2.	 Install pyenv:

$ curl https://pyenv.run | bash

Tip
If you are a macOS user, you can also install it with Homebrew: brew
install pyenv.

3.	 This will download and execute an installation script that will handle everything for
you. At the end, it'll prompt you with some instructions to add some lines to your
shell scripts so that pyenv is discovered properly by your shell:

a. Open your ~/.profile script in nano, a simple command-line text editor:
$ nano ~/.profile

b. Add the following lines before the block containing ~/.bashrc:
export PYENV_ROOT="$HOME/.pyenv"

export PATH="$PYENV_ROOT/bin:$PATH"

eval "$(pyenv init --path)"

c. Save by using the keyboard shortcut Ctrl + O and confirm by pressing Enter.
Then, quit by using the keyboard shortcut Ctrl + X.

6 Python Development Environment Setup

d. Open your ~/.bashrc script in nano. If you are using zsh instead of Bash (the
default on the latest macOS), the file is named ~/.zshrc:

$ nano ~/.bashrc

e. Add the following line at the end:
eval "$(pyenv init -)"

f. Save by using the keyboard shortcut Ctrl + O and confirm by pressing Enter.
Then, quit by using the keyboard shortcut Ctrl + X.

4.	 Reload your shell configuration to apply those changes:

$ source ~/.profile && exec $SHELL

5.	 If everything went well, you should now be able to invoke the pyenv tool:

$ pyenv

pyenv 1.2.21

Usage: pyenv <command> [<args>]

6.	 We can now install the Python distribution of our choice. Even though FastAPI is
compatible with Python 3.6 and later, we'll use Python 3.7 throughout this book,
which has more mature handling of the asynchronous paradigm. All the examples
in the book were tested with this version but should work flawlessly with newer
versions. Let's install Python 3.7:

$ pyenv install 3.7.10

This may take a few minutes since your system will have to compile Python from
the source.

7.	 Finally, you can set the default Python version with the following command:

$ pyenv global 3.7.10

This will tell your system to always use Python 3.7.10 by default, unless
specified otherwise in a specific project.

8.	 To make sure everything is in order, run the following command to check the
Python version that is invoked by default:

$ python --version

Python 3.7.10

Creating a Python virtual environment 7

Congratulations! You can now handle any version of Python on your system and switch it
whenever you like!

Creating a Python virtual environment
As for many programming languages of today, the power of Python comes from the
vast ecosystem of third-party libraries, including FastAPI, of course, that help you build
complex and high-quality software very quickly. The Python Package Index (https://
pypi.org), PyPi, is the public repository that hosts all those packages. This is the default
repository that will be used by the built-in Python package manager, pip.

By default, when you install a third-party package with pip, it will install it for the whole
system. This is different from some other languages, such as Node.js' npm, which by default
creates a local directory for the current project to install those dependencies. Obviously,
this may cause issues when you work on several Python projects with dependencies
that have conflicting versions. It also makes it difficult to retrieve only the dependencies
necessary to deploy a project properly on a server.

This is why Python developers generally use virtual environments. Basically, a virtual
environment is just a directory in your project containing a copy of your Python
installation and the dependencies of your project. It's quite similar to the node_modules
directory in Node.js. This pattern is so common that the tool to create them is bundled
with Python:

1.	 Create a directory that will contain your project:

$ mkdir fastapi-data-science

$ cd fastapi-data-science

Tip
If you are on Windows with WSL, we recommend that you create your working
folder on the Windows drive rather than the virtual filesystem of the Linux
distribution. It'll allow you to edit your source code files in Windows with your
favorite text editor or IDE while running them in Linux.

To do this, you can actually access your C: drive in the Linux command
line through /mnt/c. You can thus access your personal documents
using the usual Windows path, for example, cd /mnt/c/Users/
YourUsername/Documents.

https://pypi.org
https://pypi.org

8 Python Development Environment Setup

2.	 You can now create a virtual environment:

$ python -m venv

Basically, this command tells Python to run the venv package of the standard
library to create a virtual environment in the venv directory. The name of this
directory is a convention, but you can choose another name if you wish.

3.	 Once this is done, you have to activate this virtual environment. It'll tell your shell
session to use the Python interpreter and the dependencies in the local directory
instead of the global ones. Simply run the following command:

$ source venv/bin/activate

After doing this, you may notice that the prompt adds the name of the virtual
environment:

(venv) $

Remember that the activation of this virtual environment is only available for the current
session. If you close it or open other command prompts, you'll have to activate it again.
This is quite easy to forget, but it will become natural after some practice with Python.

You are now ready to install Python packages safely in your project!

Installing Python packages with pip
As we said earlier, pip is the built-in Python package manager that will help us install
third-party libraries. To get started, let's install FastAPI and Uvicorn:

$ pip install fastapi uvicorn[standard]

We'll talk about it in later chapters, but Uvicorn is required to run a FastAPI project.

Tip
You have probably noticed the word standard inside square brackets
just after uvicorn. Sometimes, some libraries have sub-dependencies
that are not required to make the library work. Usually, they are needed for
optional features or specific project requirements. The square brackets are
here to indicate that we want to install the standard sub-dependencies
of uvicorn.

Installing the HTTPie command-line utility 9

To make sure the installation worked, we can open a Python interactive shell and try to
import the FastAPI package:

$ python

>>> from fastapi import FastAPI

If it passes without any errors, congratulations, FastAPI is installed and ready to use!

Installing the HTTPie command-line utility
Before getting into the heart of the topic, there is one last tool that we'll install. FastAPI is, as
you probably know, mainly about building REST APIs. To do so, you have several options:

•	 FastAPI automatic documentation (we'll talk about this later in the book)
•	 Postman, a GUI tool to perform HTTP requests
•	 cURL, the well-known and widely used command-line tool to perform

network requests

Even if visual tools are nice and easy to use, they sometimes lack some flexibility and
may not be as productive as command-line tools. On the other hand, cURL is a very
powerful tool with thousands of options but can be complex and verbose for testing
simple REST APIs.

This is why we'll introduce HTTPie, a command-line tool aimed at making HTTP
requests with an intuitive syntax, JSON support, and syntax highlighting. It's available to
install from most package managers:

•	 macOS users, use this:

$ brew install httpie

•	 Ubuntu users, use this:

$ sudo apt-get update; sudo apt-get install httpie

Let's see how to perform simple requests on a dummy API:

1.	 First, let's retrieve data:

$ http GET https://603cca51f4333a0017b68509.mockapi.io/
todos

HTTP/1.1 200 OK

Content-Length: 195

10 Python Development Environment Setup

Content-Type: application/json

[

 {

 "id": "1",

 "text": "Island"

 }

]

As you can see, you can invoke HTTPie with the http command and simply type
the HTTP method and the URL. It outputs both the HTTP headers and the JSON
body in a clean and formatted way.

2.	 HTTPie also supports sending JSON data in a request body very quickly without
having to format the JSON yourself:

$ http -v POST https://603cca51f4333a0017b68509.mockapi.
io/todos text="My new task"

POST /todos HTTP/1.1

Accept: application/json, */*;q=0.5

User-Agent: HTTPie/2.3.0

{

 "text": "My new task"

}

HTTP/1.1 201 Created

Content-Length: 31

Content-Type: application/json

{

 "id": "6",

 "text": "My new task"

}

By simply typing the property name and its value separated by =, HTTPie will
understand that it's part of the request body in JSON. Notice here that we specified
the -v option, which tells HTTPie to output the request before the response, which
is very useful to check that we properly specified the request.

Summary 11

3.	 Finally, let's see how we can specify request headers:

$ http -v GET https://603cca51f4333a0017b68509.mockapi.
io/todos "My-Header: My-Header-Value"

GET /todos HTTP/1.1

Accept: */*

My-Header: My-Header-Value

User-Agent: HTTPie/2.3.0

HTTP/1.1 200 OK

Content-Length: 227

Content-Type: application/json

[

 {

 "id": "1",

 "text": "Island"

 }

]

That's it! Just type your header name and value separated by a colon to tell HTTPie it's
a header.

Summary
You now have all the tools and setup required to confidently run the examples of this
book and all your future Python projects. Understanding how to work with pyenv and
virtual environments is a key skill to ensure everything goes smoothly when you switch to
another project or when you have to work on somebody else's code. You also learned how
to install third-party Python libraries using pip. Finally, you saw how to use HTTPie, a
simple and efficient way to run HTTP queries that will make you more productive while
testing your REST APIs.

In the next chapter, we'll highlight some of Python's peculiarities as a programming
language and get a grasp of what it means to be Pythonic.

2
Python

Programming
Specificities

The Python language was designed to emphasize code readability. As such, it provides
syntaxes and constructs that allow developers to quickly express complex concepts in
few and readable lines. However, this makes it quite different from other programming
languages.

The goal of this chapter is thus to get you acquainted with its specificities, but we expect
you already have some experience with programming. We'll first get started with the
basics of the language, the standard types, and the flow control syntaxes. You'll also be
introduced to the list comprehension and generator concepts, which are very powerful
ways to go through and transform sequences of data. You'll also see that Python can be
used as an object-oriented language, still through a very lightweight yet powerful syntax.
Before moving on, we'll also review the concepts of type hinting and asynchronous I/O,
which are quite new in Python but are at the core of the FastAPI framework.

14 Python Programming Specificities

In this chapter, we're going to cover the following main topics:

•	 Basics of Python programming

•	 List comprehensions and generators

•	 Classes and objects

•	 Type hinting and type checking with mypy

•	 Asynchronous I/O

Technical requirements
You'll need a Python virtual environment, as we set up in Chapter 1, Python Development
Environment Setup.

You'll find all the code examples of this chapter in the dedicated GitHub repository:
https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter2.

Basics of Python programming
First of all, let's review some of the key aspects of Python:

•	 It's an interpreted language. Contrary to languages such as C or Java, it doesn't
need to be compiled, which allows us to run Python code interactively.

•	 It's dynamically typed. The type of values is determined at runtime.

•	 It supports several programming paradigms: procedural, object-oriented, and
functional programming.

This makes Python quite a versatile language, from simple automation scripts to complex
data science projects.

Let's now write and run some Python!

Running Python scripts
As we said, Python is an interpreted language. Hence, the simplest and quickest way to
run some Python code is to launch an interactive shell. Just run the following command
to start a session:

$ python

Python 3.7.10 (default, Mar 7 2021, 10:12:14)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter2
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter2

Basics of Python programming 15

[Clang 12.0.0 (clang-1200.0.32.29)] on darwin

Type "help", "copyright", "credits" or "license" for more
information.

>>>

This shell makes it very easy to run some simple statements and make some experiments:

>>> 1 + 1

2

>>> x = 100

>>> x * 2

200

To exit the shell, use the Ctrl + D keyboard shortcut.

Obviously, this can become tedious when you start to have more statements or if you just
wish to keep your work to reuse it later. Python scripts are saved in files with the .py
extension. Let's create a file named chapter2_basics_01.py in our project directory
and add this code:

chapter2_basics_01.py

print("Hello world!")

x = 100

print(f"Double of {x} is {x * 2}")

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
basics_01.py

Quite simply, this script prints Hello world in the console, assigns the value 100 to a
variable named x, and prints a string with the value of x and its double. To run it, simply
add the path of your script as a parameter of the python command:

$ python chapter2_basics_01.py

Hello world!

Double of 100 is 200

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_01.py

16 Python Programming Specificities

f-strings
You have probably noticed the string starting with f. This syntax, called
f-strings, is a very convenient and neat way to perform string interpolation.
Within, you can simply insert variables between curly braces; they will
automatically be converted into strings to build the resulting string. We'll use it
quite often in our examples.

That's it! You are now able to write and run simple Python scripts. Let's now dive deeper
into the Python syntax.

Indentation matters
One of the most iconic aspects of Python is that code blocks are not defined using curly
braces like many other programming languages, but rather with whitespace indentation.
This may sound a bit strange, but it's at the heart of the readability philosophy of Python.
Let's see how you can write a script that finds the even numbers in a list:

chapter2_basics_02.py

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even = []

for number in numbers:

 if number % 2 == 0:

 even.append(number)

print(even) # [2, 4, 6, 8, 10]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
basics_02.py

In this script, we define numbers, a list of numbers from 1 to 10, and even, an empty list
that will contain the even numbers.

Then, we define a for loop statement to go through each element of numbers. As you
see, we open a block with a colon, :, break a line, and start writing the next statement with
an indentation.

The next line is a conditional statement to check the parity of the current number. Once
again, we open a block with a colon, :, and write the next statement with an additional
indentation level. This statement adds the even number to the even list.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_02.py

Basics of Python programming 17

After that, the next statements are not intended. This means that we are out of the for
loop block; they should be executed after the iteration is finished.

Let's run it:

$ python chapter2_basics_02.py

[2, 4, 6, 8, 10]

Indentation style and size
You can choose the indentation style (tabs or spaces) and size (2, 4, 6…) you
prefer; the only constraint is that you should be consistent within a block.
However, by convention, Python developers usually go for a four-space
indentation.

This aspect of Python may sound weird but with some practice, you'll find that it enforces
clear formatting and greatly improves the readability of your scripts.

We'll now review the built-in types and data structures.

Working with built-in types
Python is quite conventional regarding scalar types. There are six of them:

•	 int, to store integer values, such as x = 1

•	 float, for floating-point numbers, such as x = 1.5

•	 complex, for complex numbers, such as x = 1 + 2j

•	 bool, for Boolean values, either True or False

•	 str, for string values, such as x = "abc"

•	 NoneType, to indicate null values, such as x = None

It's worth noting that Python is strongly typed, meaning that the interpreter will limit
implicit type conversions. For example, trying to add an int value and a str value will
raise an error, as you can see in the following example:

>>> 1 + "abc"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

18 Python Programming Specificities

Still, adding an int value and a float value will automatically upcast the result to
float:

>>> 1 + 1.5

2.5

As you may have noticed, Python is quite traditional regarding those standard types.
Let's see now how basic data structures are handled.

Working with data structures – lists, tuples,
dictionaries, and sets
Besides the scalar types, Python also provides handy data structures: an array structure,
of course, called a list in Python, but also tuples, dictionaries, and sets, which are very
convenient in lots of cases. Let's start with lists.

Lists
Lists are the equivalent in Python of the classic array structure. Defining a list is quite
straightforward:

>>> l = [1, 2, 3, 4, 5]

As you can see, wrapping a suite of elements in square brackets denotes a list. You can of
course access single elements by index:

>>> l[0]

1

>>> l[2]

3

It also supports negative indexing, which allows retrieving elements from the end of the
list: index -1 is the last element, -2 is the second-last element, and so on:

>>> l[-1]

5

>>> l[-4]

2

Basics of Python programming 19

Another useful syntax is slicing, which quickly allows you to retrieve a sub-list:

>>> l[1:3]

[2, 3]

The first number is the start index (inclusive) and the second one is the end index
(exclusive), separated by a colon. You can omit the first one; in this case, 0 is assumed:

>>> l[:3]

[1, 2, 3]

You can also omit the second one; in this case, the length of the list is assumed:

>>> l[1:]

[2, 3, 4, 5]

Finally, this syntax also supports a third argument to specify the step size. It can be useful
to select every second element of the list:

>>> l[::2]

[1, 3, 5]

A useful trick with this syntax is to use -1 to reverse the list:

>>> l[::-1]

[5, 4, 3, 2, 1]

Lists are mutable. This means that you can reassign elements or add new ones:

>>> l[1] = 10

>>> l

[1, 10, 3, 4, 5]

>>> l.append(6)

[1, 10, 3, 4, 5, 6]

This is different from their cousin, tuples, which are immutable.

Tuples
Tuples are very similar to lists. Instead of square brackets, they are defined using
parentheses:

>>> t = (1, 2, 3, 4, 5)

20 Python Programming Specificities

They support the same syntax as lists to access elements or slicing:

>>> t[2]

3

>>> t[1:3]

(2, 3)

>>> t[::-1]

(5, 4, 3, 2, 1)

However, tuples are immutable. This means that you can't add new elements or change
existing ones. Trying to do so will raise an error:

>>> t[1] = 10

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>> t.append(6)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'tuple' object has no attribute 'append'

A common way to use them is for functions that have multiple return values. In the
following example, we define a function to compute and return both the quotient and
remainder of the Euclidean division:

chapter2_basics_03.py

def euclidean_division(dividend, divisor):

 quotient = dividend // divisor

 remainder = dividend % divisor

 return (quotient, remainder)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
basics_03.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py

Basics of Python programming 21

This function simply returns the quotient and remainder wrapped in a tuple. Let's now
compute the Euclidean division of 3 and 2:

chapter2_basics_03.py

t = euclidean_division(3, 2)

print(t[0]) # 1

print(t[1]) # 1

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
basics_03.py

In this case, we assign the result to a tuple named t, and simply retrieve the quotient and
remainder by index. However, we can do something better than that. Let's compute the
Euclidean division of 42 and 4:

chapter2_basics_03.py

q, r = euclidean_division(42, 4)

print(q) # 10

print(r) # 2

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
basics_03.py

You see here that we directly assign the quotient and remainder to the q and r variables,
respectively. This syntax is called unpacking and is very convenient to assign variables
from list or tuple elements. It's worth noting that since t is a tuple, it's immutable, so you
can't reassign the values. On the other hand, q and r are new variables and therefore are
mutable.

Dictionaries
A dictionary is also a widely used data structure in Python, to map keys to values.
It is defined using curly braces, with a list of keys and values separated by a colon:

>>> d = {"a": 1, "b": 2, "c": 3}

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_03.py

22 Python Programming Specificities

Elements can be accessed by key:

>>> d["a"]

1

Dictionaries are mutable, so you can reassign or add elements in the mapping:

>>> d["a"] = 10

>>> d

{'a': 10, 'b': 2, 'c': 3}

>>> d["d"] = 4

>>> d

{'a': 10, 'b': 2, 'c': 3, 'd': 4}

Sets
A set is a convenient data structure to store a collection of unique items. It is defined using
curly braces:

>>> s = {1, 2, 3, 4, 5}

Elements can be added to the set, but the structure ensures elements appear only once:

>>> s.add(1)

>>> s

{1, 2, 3, 4, 5}

>>> s.add(6)

{1, 2, 3, 4, 5, 6}

Convenient methods are also provided to perform operations such as unions or
intersections on two sets:

>>> s.union({4, 5, 6})

{1, 2, 3, 4, 5, 6}

>>> s.intersection({4, 5, 6})

{4, 5}

Basics of Python programming 23

That's all for this overview of the Python data structures. You'll probably use them quite
often in your programs, so take some time to get acquainted with them. Obviously, we
didn't cover all of their methods and specificities, but you can have a look at the official
Python documentation for exhaustive information: https://docs.python.org/3/
library/stdtypes.html.

Let's now talk about the different types of operators available in Python that will allow us
to perform some logic on this data.

Performing Boolean logic and checking for existence
Predictably, Python provides operators to perform Boolean logic. However, we'll also
see that there are other operators that are less common but make Python a very efficient
language to work with.

Performing Boolean logic
Boolean logic is performed with the and, or, and not keywords. Let's review some
simple examples:

>>> x = 10

>>> x > 0 and x < 100

True

>>> x > 0 or (x % 2 == 0)

True

>>> not (x > 0)

False

You'll probably use them quite often in your programs, especially with conditional blocks.
Let's now review the identity operators.

Checking whether two variables are the same
The is and is not identity operators check whether two variables refer to the same
object. This is different from the == and != comparison operators, which check whether
two variables have the same value.

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

24 Python Programming Specificities

Internally, Python stores variables in pointers. The goal of the identity operators is thus
to check whether two variables actually point to the same pointer. Let's review some
examples:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

Even though lists a and b are identical, they don't share the same pointer, so a is b is
false. However, a == b is true. Let's see what happen if we assign a to b:

>>> a = [1, 2, 3]

>>> b = a

>>> a is b

True

In this case, the b variable will now refer to the same pointer as a, that is, the same list in
memory. Thus, the identity operator is true.

is None or == None?
To check whether a variable is null, you could write a == None. While it
will work most of the time, it's generally advised to write a is None.

Why? In Python, classes can implement custom comparison operators, so the
result of a == None may be unpredictable in some cases, since a class can
choose to attach a special meaning to the None value.

We'll now review the membership operators.

Checking whether a value is present in a data structure
The membership operators, in and not in, are very useful to check whether an element
is present in data structures such as lists or dictionaries. They are idiomatic of Python and
make this operation very efficient and easy to write. Let's review some examples:

>>> l = [1, 2, 3]

>>> 2 in l

True

>>> 5 not in l

True

Basics of Python programming 25

With the membership operators, we can check in one statement whether an element is
present or not in a list. It also works with tuples and sets:

>>> t = (1, 2, 3)

>>> 2 in t

True

>>> s = {1, 2, 3}

>>> 2 in s

True

Finally, it also works with dictionaries. In this case, the membership operators check
whether the key is present, not the value:

>>> d = {"a": 1, "b": 2, "c": 3}

>>> "b" in d

True

>>> 3 in d

False

We are now clear about those common operations. We'll now put them to use with
conditional statements.

Controlling the flow of a program
A programming language would not be a programming language without its control flow
statements. Once again, you'll see that Python is a bit different from other languages. Let's
start with conditional statements.

Executing operations conditionally – if, elif, else
Classically, those statements are there to perform some logic based on some Boolean
conditions. In the following example, we'll consider a situation where we have a dictionary
containing information about an e-commerce website order. We'll write a function that
will change the order status to the next step given the current status:

chapter2_basics_04.py

def forward_order_status(order):

 if order["status"] == "NEW":

 order["status"] = "IN_PROGRESS"

 elif order["status"] == "IN_PROGRESS":

26 Python Programming Specificities

 order["status"] = "SHIPPED"

 else:

 order["status"] = "DONE"

 return order

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
basics_04.py

The first condition is noted as if, followed by a Boolean condition. We then open an
indented block, as we explained in the Indentation matters section of this chapter.

The alternate conditions are noted as elif (not else if) and the fallback block is noted
as else. Of course, those are optional if you don't need alternate or fallback conditions.

It's also worth noting that, contrary to many other languages, Python does not provide a
switch statement.

We'll now move on to another classic control flow statement: the for loop. You can repeat
operations over a sequence using the for loop statement.

We already saw an example of the for loop in action in the Indentation matters section
of this chapter. As you probably understood, this statement is useful for repeating the
execution of a code block.

You also may have noticed that it works a bit differently than other languages. Usually,
programming languages define for loops like this: for (i = 0; i <= 10; i++).
They give you the responsibility to define and control the variable used for the iteration.

Python doesn't work this way. Instead, it expects you to feed the loop with an iterator.
An iterator can be seen as a sequence of elements that you can retrieve one by one. Lists,
tuples, dictionaries, and sets can behave like an iterator and be used in a for loop. Let's
see some examples:

>>> for i in [1,2,3]:

... print(i)

...

1

2

3

>>> for k in {"a": 1, "b": 2, "c": 3}:

... print(k)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_04.py

Basics of Python programming 27

...

a

b

c

But what if you just wish to iterate a certain number of times? Luckily, Python has built-in
functions that generate some useful iterators. The most known is range, which precisely
creates a sequence of numbers. Let's see how it works:

>>> for i in range(3):

... print(i)

...

0

1

2

range will generate a sequence of the size you provided in the first argument, starting
with 0.

You could also be more precise by specifying two arguments: the start index (inclusive)
and the last index (exclusive):

>>> for i in range(1, 3):

... print(i)

...

1

2

Finally, you may even provide a step as the third argument:

>>> for i in range(0, 5, 2):

... print(i)

...

0

2

4

Note that this syntax is quite similar to the slicing syntax we saw earlier in this chapter in
the sections dedicated to Lists and Tuples.

28 Python Programming Specificities

range output is not a list
A common misconception is to think that range returns a list. It's actually a
sequence object that only stores the start, end, and step arguments. That's
why you could write range(1000000000) without blowing up your
memory; the millions of integers are not assigned in memory all at once.

As you see, the for loop syntax in Python is quite straightforward to understand and
emphasizes readability. We'll now have a word about its cousin, the while loop.

Repeating operations until a condition is met – the while loop
statement
The classical while loop is also available in Python. At the risk of disappointing you,
there is nothing truly special about this one. Classically, this statement allows you to
repeat instructions until a condition is met. We'll review an example in which we use a
while loop to retrieve paginated elements until we reach the end:

chapter2_basics_05.py

def retrieve_page(page):

 if page > 3:

 return {"next_page": None, "items": []}

 return {"next_page": page + 1, "items": ["A", "B", "C"]}

items = []

page = 1

while page is not None:

 page_result = retrieve_page(page)

 items += page_result["items"]

 page = page_result["next_page"]

print(items) # ["A", "B", "C", "A", "B", "C", "A", "B", "C"]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
basics_05.py

The retrieve_page function is a dummy function that returns a dictionary with
the items for the page passed in an argument and the next page number or None if
we reached the last page. A priori, we don't know how many pages there are. Thus, we
repeatedly call retrieve_page until page is None. At each iteration, we save the
current page items in an accumulator, items.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_05.py

Basics of Python programming 29

This kind of use case is quite common when you are dealing with third-party REST APIs
and you wish to retrieve all items available, and while loops perfectly help with this.

It may happen though that you wish for finer control of the loop behavior. This is where
break and continue come in.

Finely controlling a loop – break and continue
There are cases where you wish to prematurely end the loop or skip an iteration. To solve
this, Python implements the classic break and continue statements.

Defining functions
Now that we know how to use the common operators and control the flow of our
program, let's put it in reusable logic. As you may have guessed, we'll look at functions
and how to define them. We already saw them in some of our previous examples, but let's
introduce them more formally.

In Python, functions are defined using the def keyword followed by the name of the
function. Then, you have the list of supported arguments in parentheses, before a colon
that indicates the start of the function body. Let's see a simple example:

>>> def f(a):

... return a

...

>>> f(2)

2

That's it! Python also supports default values on arguments:

>>> def f(a, b = 1):

... return a, b

...

>>> f(2)

(2, 1)

>>> f(2, 3)

(2, 3)

When calling a function, you can specify the values of arguments using their name:

>>> f(a=2, b=3)

(2, 3)

30 Python Programming Specificities

Those arguments are called keyword arguments. They are especially useful if you have
several default arguments but only wish to set one of them:

>>> def f(a = 1, b = 2, c = 3):

... return a, b, c

...

>>> f(c=1)

(1, 2, 1)

Function naming
By convention, functions should be named using snake case: my_
wonderful_function but not MyWonderfulFunction.

But there is more! You can actually define functions accepting a dynamic number
of arguments.

Accepting arguments dynamically with *args and **kwargs
Sometimes, you may need a function that supports a dynamic number of arguments.
Those arguments are then handled in your function logic at runtime. To do this, you have
to use the *args and **kwargs syntax. Let's define a function that uses this syntax and
prints the value of those arguments:

>>> def f(*args, **kwargs):

... print("args", args)

... print("kwargs", kwargs)

...

>>> f(1, 2, 3, a=4, b=5)

args (1, 2, 3)

kwargs {'a': 4, 'b': 5}

As you see, standard arguments are placed in a tuple, in the same order as they have
been called. Keyword arguments, on the other hand, have been placed in a dictionary,
with the key being the name of the argument. It's up to you then to use this data to
perform your logic!

Basics of Python programming 31

Interestingly, you can mix both approaches so that you have hardcoded arguments and
dynamic ones:

>>> def f(a, *args):

... print("a", a)

... print("arg", args)

...

>>> f(1, 2, 3)

a 1

arg (2, 3)

Well done! You have learned how to write functions in Python to organize the logic of
your program. The next step now is to organize those functions into modules and import
them into other modules to take advantage of them!

Writing and using packages and modules
You probably already know that, apart from small scripts, your source code shouldn't live
in one big file with thousands of lines. Instead, you should split it into logical blocks of
reasonable size that are easy to maintain. That's exactly what packages and modules are
for! We'll see how they work and how you can define your own.

First of all, Python comes with its own set of modules, the standard library, that are
directly importable in a program:

>>> import datetime

>>> datetime.date.today()

datetime.date(2021, 3, 12)

With just the import keyword, you can use the datetime module and access all its
content by referring to its namespace, datetime.date, which is the built-in class to work
with dates. However, you may wish sometimes to explicitly import a part of this module:

>>> from datetime import date

>>> date.today()

datetime.date(2021, 3, 12)

Here, we explicitly import the date class to use it directly.

32 Python Programming Specificities

The same principles apply to third-party packages installed with pip, such as FastAPI.

Using existing packages and modules is nice but writing your own is even better. In
Python, a module is a single file containing declarations but can also contain instructions
that will be executed when the module is first imported. You'll find in the following
example the definition of a very simple module:

chapter2_basics_module.py

def module_function():

 return "Hello world"

print("Module is loaded")

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_
module.py

This module only contains a function, module_function, and a print statement.
Create a file containing this code at the root of your project directory and name it
module.py. Then, open a Python interpreter and run this command:

>>> import module

Module is loaded

Notice that the print statement was executed when you imported it. You can now use
the following function:

>>> module.module_function()

'Hello world'

Congratulations! You've just written your first Python module!

Now, let's see how to structure a package. A package is a way to organize modules in a
hierarchy that you can then import using its namespace.

At the root of your project, create a directory named package. Inside, create another
directory named subpackage and move module.py into it. Your project structure
should look like the one shown in Figure 2.1:

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_module.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_module.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_module.py

Basics of Python programming 33

Figure 2.1 – Python package sample hierarchy

You can then import your module using the full namespace:

>>> import package.subpackage.module

Module is loaded

It works! However, to define a proper Python package, it's strongly recommended to create
an empty __init__.py file at the root of each package and sub-package. In older
Python versions, it was compulsory to make a package recognizable by the interpreter.
This became optional in more recent versions, but there are actually some subtle
differences between a package with an __init__.py file (a package) and one without
(a namespace package). We won't explain it further in this book, but you could check the
documentation about namespace packages here if you wish for more details: https://
packaging.python.org/guides/packaging-namespace-packages/.

Therefore, you generally should always create __init__.py files. In our example, our
project structure would finally look like this:

Figure 2.2 – Python package hierarchy with __init__.py files

https://packaging.python.org/guides/packaging-namespace-packages/
https://packaging.python.org/guides/packaging-namespace-packages/

34 Python Programming Specificities

It's worth noting that even if empty __init__.py files are perfectly fine, you can
actually write some code in them. In this case, it is executed the first time you import the
package or one of its sub-modules. It's useful to perform some initialization logic for your
package. You now have a good overview of how to write some Python code. Feel free to
write some small scripts to get acquainted with its peculiar syntax. We'll now explore more
advanced topics about the language that will prove useful during our journey with FastAPI.

Operating over sequences – list
comprehensions and generators
In this section, we'll cover what are probably the most idiomatic constructions in Python:
list comprehensions and generators. You'll see that they are very useful for reading and
transforming sequences of data with very minimal syntax.

List comprehensions
In programming, a very common task is to transform a sequence (let's say a list) into
another, for example, to filter out or transform elements. Usually, you would write an
operation as we did in one of the previous examples of this chapter:

chapter2_basics_02.py

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even = []

for number in numbers:

 if number % 2 == 0:

 even.append(number)

print(even) # [2, 4, 6, 8, 10]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
basics_02.py

With this approach, we simply iterate over each element, check a condition, and add the
element in an accumulator if it passes this condition.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_basics_02.py

Operating over sequences – list comprehensions and generators 35

To go further into its readability philosophy, Python supports a neat syntax to perform
this operation in only one statement: list comprehensions. Let's see what our previous
example looks like with this syntax:

chapter2_list_comprehensions_01.py

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even = [number for number in numbers if number % 2 == 0]

print(even) # [2, 4, 6, 8, 10]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_list_
comprehensions_01.py

That's it! Basically, a list comprehension works by packing a for loop and wrapping it
with square brackets. The element to add to the result list appears first, followed by the
iteration. Optionally, we can add a condition, as we did here, to filter some elements of the
list input.

Actually, the result element can be any valid Python expression. In the following example,
we use the randint function of the random standard module to generate a list of
random integers:

chapter2_list_comprehensions_02.py

from random import randint, seed

seed(10) # Set random seed to make examples reproducible

random_elements = [randint(1, 10) for i in range(5)]

print(random_elements) # [10, 1, 7, 8, 10]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_list_
comprehensions_02.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_02.py

36 Python Programming Specificities

This syntax is widely used by Python programmers and you'll probably grow quite fond
of it. The nice thing about this syntax is that it also works for sets and dictionaries. Quite
simply, just replace the square brackets with curly braces to generate a set:

chapter2_list_comprehensions_03.py

from random import randint, seed

seed(10) # Set random seed to make examples reproducible

random_unique_elements = {randint(1, 10) for i in range(5)}

print(random_unique_elements) # {8, 1, 10, 7}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_list_
comprehensions_03.py

To create a dictionary, specify both the key and the value separated by a colon:

chapter2_list_comprehensions_04.py

from random import randint, seed

seed(10) # Set random seed to make examples reproducible

random_dictionary = {i: randint(1, 10) for i in range(5)}

print(random_dictionary) # {0: 10, 1: 1, 2: 7, 3: 8, 4: 10}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_list_
comprehensions_04.py

Generators
You might think that if you replace the square brackets with parentheses, you could obtain
a tuple. Actually, you get a generator object. The main difference between generators and
list comprehensions is that elements are generated on demand and not computed and
stored all at once in memory. You could see a generator as a recipe to generate values.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_04.py

Operating over sequences – list comprehensions and generators 37

As we said, a generator can be defined simply by using the same syntax as list
comprehensions, with parentheses:

chapter2_list_comprehensions_05.py

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even_generator = (number for number in numbers if number % 2 ==
0)

even = list(even_generator)

even_bis = list(even_generator)

print(even) # [2, 4, 6, 8, 10]

print(even_bis) # []

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_list_
comprehensions_05.py

In this example, we define even_generator to output the even numbers of the
numbers list. Then, we call the list constructor with this generator and assign it to the
variable named even. This constructor will exhaust the iterator passed in the parameter
and build a proper list. We do it a second time and assign it to even_bis.

As you see, even is a list with all the even numbers. However, even_bis is an empty list.
This simple example is here to show you that a generator can be used only once. Once all
the values have been produced, it's over.

This can be useful because you can start to iterate on the generator, stop to do something
else, and then resume iterating.

Another way to create generators is to define generator functions. In the following
example, we'll define a generator function that outputs even numbers from 2 to the limit
passed in the argument:

chapter2_list_comprehensions_06.py

def even_numbers(max):

 for i in range(2, max + 1):

 if i % 2 == 0:

 yield i

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_05.py

38 Python Programming Specificities

even = list(even_numbers(10))

print(even) # [2, 4, 6, 8, 10]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_list_
comprehensions_06.py

As you see in this function, we use the yield keyword instead of return. When the
interpreter reaches this statement, it pauses the function execution and yields the value to
the generator consumer. When the main program asks for another value, the function is
resumed in order to yield again.

This allows us to implement complex generators, even ones that will output different types
of values over their course. Another interesting property of generator functions is that
they allow us to execute some instructions when they have finished to generate values.
Let's add a print statement at the end of the function we just reviewed:

chapter2_list_comprehensions_07.py

def even_numbers(max):

 for i in range(2, max + 1):

 if i % 2 == 0:

 yield i

 print("Generator exhausted")

even = list(even_numbers(10))

print(even)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_list_
comprehensions_07.py

If you execute it in a Python interpreter, you'll get this output:

$ python chapter2_list_comprehensions_07.py

Generator exhausted

[2, 4, 6, 8, 10]

We get Generator exhausted in the output, which means that our code after the last
yield statement is well executed.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_07.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_07.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_list_comprehensions_07.py

Writing object-oriented programs 39

This is especially useful when you want to perform some cleanup operations after your
generator has been exhausted: close a connection, remove temporary files, and so on.

Writing object-oriented programs
As we said in the first section of this chapter, Python is a multi-paradigm language, and
one among those paradigms is object-oriented programming. In this section, we'll
review how you can define classes and how you can instantiate and use objects. You'll see
that Python syntax is once again very lightweight.

Defining a class
Defining a class in Python is straightforward: use the class keyword, type the name
of your class, and begin a new block. You can then define methods under it just like you
would for regular functions. Let's review an example:

chapter2_classes_objects_01.py

class Greetings:

 def greet(self, name):

 return f"Hello, {name}"

c = Greetings()

print(c.greet("John")) # "Hello, John"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_01.py

Notice that the first argument of each method must be self, which is a reference to the
current object instance (the equivalent of this in other languages).

To instantiate a class, simply call the class as you would for a function and assign it to a
variable. You can then access the methods using dot notation.

Class and method naming
By convention, classes should be named using camel case:
MyWonderfulClass but not my_wonderful_class. Methods
should use snake case like regular functions.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_01.py

40 Python Programming Specificities

Obviously, you can also set class properties. To do this, we'll implement the __init__
method, whose goal is to initialize values:

chapter2_classes_objects_02.py

class Greetings:

 def __init__(self, default_name):

 self.default_name = default_name

 def greet(self, name=None):

 return f"Hello, {name if name else self.default_name}"

c = Greetings("Alan")

print(c.default_name) # "Alan"

print(c.greet()) # "Hello, Alan"

print(c.greet("John")) # "Hello, John"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_02.py

In this example, __init__ allows us to set a default_name property, which will be
used by the greet method if no name is provided in the argument. As you see, you can
simply access this property through dot notation.

Be careful though: __init__ is not a constructor. In typical object-oriented languages,
a constructor is a method to actually create the object in memory. In Python, when __
init__ is called, the object is already created in memory (notice we have access to the
self instance). Actually, there is a method to define the constructor, __new__, but it's
rarely used in Python.

Private methods and properties
In Python, there is no such thing as private methods or properties. Everything
will always be accessible from the outside. However, by convention, you can
prefix your private methods and properties with an underscore to suggest that
they should be considered as private: _private_method.

You now know the basics of object-oriented programming in Python! We'll now focus on
magic methods, which will allow us to do clever things with objects.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_02.py

Writing object-oriented programs 41

Implementing magic methods
Magic methods are a set of predefined methods that bear a special meaning in the
language. They are easy to recognize as they start and end with two underscores. Actually,
we already saw one of those magic methods: __init__! Those methods are not called
directly but are used by the interpreter when using other constructs such as standard
functions or operators.

To understand how they are useful, we'll review the most used. Let's start with __repr__
and __str__.

Object representations – __repr__ and __str__
When you define a class, it's generally useful to be able to get a readable and clear string
representation of an instance. For this purpose, Python provides two magic methods: __
repr__ and __str__. Let's see how they work on a class representing a temperature in
either degrees Celsius or degrees Fahrenheit:

chapter2_classes_objects_03.py

class Temperature:

 def __init__(self, value, scale):

 self.value = value

 self.scale = scale

 def __repr__(self):

 return f"Temperature({self.value}, {self.scale!r})"

 def __str__(self):

 return f"Temperature is {self.value} °{self.scale}"

t = Temperature(25, "C")

print(repr(t)) # "Temperature(25, 'C')"

print(str(t)) # "Temperature is 25 °C"

print(t)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_03.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_03.py

42 Python Programming Specificities

If you run this example, you'll notice that print(t) prints the same thing as
print(str(t)). Through print, the interpreter called the __str__ method to get
the string representation of our object. This is what __str__ is for: giving a nice string
representation of an object for the end user.

On the other hand, you saw that even if very similar, we implemented __repr__ in a
different way. The purpose of this method is to give an internal representation of the object
that is unambiguous. By convention, this should give the exact statement that would allow
us to recreate the very same object.

Now that we can represent temperatures with our class, what would happen if we tried to
compare them?

Comparison methods – __eq__, __gt__, __lt__, and so on
Of course, comparing two temperatures with different units would lead to unexpected
results. Fortunately, magic methods allow us to overload the default operators to perform
meaningful comparisons. Let's expand our previous example:

chapter2_classes_objects_04.py

class Temperature:

 def __init__(self, value, scale):

 self.value = value

 self.scale = scale

 if scale == "C":

 self.value_kelvin = value + 273.15

 elif scale == "F":

 self.value_kelvin = (value - 32) * 5/9 + 273.15

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_04.py

In the __init__ method, we convert the temperature value in Kelvin given the current
scale. This will help us to make comparisons. Then, let's define __eq__ and __lt__:

chapter2_classes_objects_04.py

 def __eq__(self, other):

 return self.value_kelvin == other.value_kelvin

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py

Writing object-oriented programs 43

 def __lt__(self, other):

 return self.value_kelvin < other.value_kelvin

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_04.py

As you see, those methods simply accept another argument, which is the other object
instance to compare with. We then just have to perform our comparison logic. By doing
this, we can perform comparison just as we would for any variable:

chapter2_classes_objects_04.py

tc = Temperature(25, "C")

tf = Temperature(77, "F")

tf2 = Temperature(100, "F")

print(tc == tf) # True

print(tc < tf2) # True

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_04.py

That's it! If you wish to have all the comparison operators available, you should also
implement all the other comparison magic methods: __le__, __gt__, and __ge__.

The type of the other instance is not guaranteed
In this example, we assumed that the other variable was also a
Temperature object. In the real world, however, this is not guaranteed and
developers could try to compare Temperature with another object, which
would likely lead to errors or weird behaviors. To prevent this, you should
check the type of the other variable using isinstance to ensure we
handle Temperature, or raise a proper exception otherwise.

Operators – __add__, __sub__, __mul__, and so on
Similarly, you could also define what would happen when trying to add or multiply two
Temperature objects. We won't go into much detail here as it works exactly the same as
the comparison operators.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_04.py

44 Python Programming Specificities

Callable object – __call__
The last magic method we'll review is __call__. This one is a bit special because it
enables you to call your object instance like a regular function. Let's take an example:

chapter2_classes_objects_05.py

class Counter:

 def __init__(self):

 self.counter = 0

 def __call__(self, inc=1):

 self.counter += inc

c = Counter()

print(c.counter) # 0

c()

print(c.counter) # 1

c(10)

print(c.counter) # 11

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_05.py

__call__ can be defined like any other method, with any argument you wish. The only
difference is how you call it: you just pass the argument directly on the object instance
variable as you would do for a regular function.

This pattern can be useful if you want to define a function that maintains some kind of
local state, as we did here in our example, or in cases where you need to provide a callable
object but have to set some parameters. Actually, this is the use case we'll encounter when
defining class dependencies for FastAPI.

As we saw, magic methods are an excellent way to implement operations for our custom
classes and make them easy to use in a pure object-oriented way. We haven't covered every
magic method available but you can find the complete list on the official documentation:
https://docs.python.org/3/reference/datamodel.html#special-
method-names.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_05.py
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names

Writing object-oriented programs 45

We'll now focus on another essential characteristic of object-oriented programming:
inheritance.

Reusing logic and avoiding repetition with inheritance
Inheritance is one of the core concepts of object-oriented programming: it allows you to
derive a new class from existing ones, enabling you to reuse some logic and overload the
parts that are specific to this new one. Of course, this is supported in Python. We'll take
very simple examples to understand the mechanism underneath.

First of all, let's take an example of a very simple inheritance:

chapter2_classes_objects_06.py

class A:

 def f(self):

 return "A"

class Child(A):

 pass

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_06.py

The Child class inherits from the A class. The syntax is simple: the class we want to
inherit from is specified between parentheses after the child class name.

The pass statement
pass is a statement that does nothing. Since Python relies only on indentation
to denote blocks, it's a useful statement to create an empty block, as you would
do with curly braces in other programming languages.

In this example, we don't want to add some logic to the Child class, so we
just write pass.

Another way to do it is to add a docstring just below the class definition.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_06.py

46 Python Programming Specificities

If you wish to overload a method but still want to get the result of the parent method, you
can call the super function:

chapter2_classes_objects_07.py

class A:

 def f(self):

 return "A"

class Child(A):

 def f(self):

 parent_result = super().f()

 return f"Child {parent_result}"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_07.py

You now know how to create basic inheritance in Python. But there is more: we can also
have multiple inheritance!

Multiple inheritance
As its name suggests, multiple inheritance allows you to derive a child class from
multiple classes. This way, you can combine the logic of several classes into one.
Let's take an example:

chapter2_classes_objects_08.py

class A:

 def f(self):

 return "A"

class B:

 def g(self):

 return "B"

class Child(A, B):

 pass

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_07.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_07.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_07.py

Writing object-oriented programs 47

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_08.py

Once again, the syntax is quite straightforward: just list all the parent classes with a
comma. Now, the Child class can call both the f and g methods.

Mixins
Mixins are a common pattern in Python that take advantage of the multiple
inheritance feature. Basically, mixins are short classes containing a single
feature that you often want to reuse. You can then compose concrete classes by
combining the mixins.

However, what would happen if both A and B classes implemented a method named f?
Let's try it out:

chapter2_classes_objects_09.py

class A:

 def f(self):

 return "A"

class B:

 def f(self):

 return "B"

class Child(A, B):

 pass

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_
objects_09.py

If you call method f of Child, you'll get the value "A". In this simple case, Python will
consider the first matching method following the order of the parent classes. However,
for more complex hierarchies, the resolution may not be so obvious: this is the purpose of
the Method Resolution Order (MRO) algorithm. We won't go into much detail here but
just know that it follows the C3 linearization principles. If you wish to know more, you
can have a look at the official document explaining the algorithm implemented in Python:
https://www.python.org/download/releases/2.3/mro/.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_08.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_08.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_08.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_09.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_09.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_classes_objects_09.py
https://www.python.org/download/releases/2.3/mro/

48 Python Programming Specificities

If you are confused about the MRO of your class, you can call the mro method on your
class to get a list of considered classes in order:

>>> Child.mro()

[<class 'chapter2.chapter2_classes_objects_08.Child'>, <class
'chapter2.chapter2_classes_objects_08.A'>, <class 'chapter2.
chapter2_classes_objects_08.B'>, <class 'object'>]

Well done! You now have a good overview of object-oriented programming in Python.
Those concepts will be helpful when defining dependencies in FastAPI.

We'll now review some of the most recent and trending features in Python upon which
FastAPI relies heavily. We'll start with type hinting.

Type hinting and type checking with mypy
In the first section of this chapter, we said that Python was a dynamically typed language:
the interpreter doesn't check types at compile time but rather at runtime. This makes the
language a bit more flexible and the developer a bit more efficient. However, if you are
experienced with that kind of language, you probably know that it's easy to produce errors
and bugs in this context: forgetting arguments and type mismatch.

This is why Python introduced type hinting starting with version 3.5. The goal is to provide
a syntax to annotate the source code with type annotations: each variable, function, and
class can be annotated to give indications about the types they expect. This doesn't mean
that Python becomes a statically typed language. Those annotations remain completely
optional and are ignored by the interpreter. However, those annotations can be used by
static-type checkers, which will check whether your code is valid and consistent following
the annotations. Hence, it greatly helps you to reduce errors and write self-explanatory code.
One of those tools, mypy, is widely used by the community in this context.

Getting started
To understand how type annotations work, we'll review a simple annotated function:

chapter2_type_hints_01.py

def greeting(name: str) -> str:

 return f"Hello, {name}"

Type hinting and type checking with mypy 49

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_01.py

As you see here, we simply added the type of the name argument after a colon. We also
specified the return type after an arrow. For built-in types, such as str or int, we
can simply use them as type annotations. We'll see a little further in this section how to
annotate more complex types such as lists or dictionaries.

We'll now install mypy to perform a type check on this file. This can be done like any
other Python package:

$ pip install mypy

Then, you can run a type check on your source file:

$ mypy chapter2_type_hints_01.py

Success: no issues found in 1 source file

As you see, mypy tells us that everything is good with our typing. Let's try to modify our
code a bit to provoke a type error:

def greeting(name: str) -> int:

 return f"Hello, {name}"

Quite simply, we just said that the return type of our function is now int, but we are
still returning a string. If you run this code, it'll execute perfectly well: as we said, the
interpreter ignores type annotations. However, let's see what mypy tells us about it:

$ mypy chapter2_type_hints_01.py

chapter2/chapter2_type_hints_01.py:2: error: Incompatible
return value type (got "str", expected "int")

Found 1 error in 1 file (checked 1 source file)

This time, it complains. It clearly tells us what is wrong here: the return value is a string,
while an integer was expected!

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_01.py

50 Python Programming Specificities

Code editors and IDE integration
Having type checking is good, but it may be a bit tedious to run mypy
manually in the command line. Fortunately, it integrates well with the most
popular code editors and IDEs. Once configured, it'll perform type checking
while you type and show you the errors directly on the faulty lines. Type
annotations also help the IDE to perform clever things such as auto-completion.

You can check on the official documentation of mypy how to set it up for
your favorite editor: https://github.com/python/mypy#ide-
linter-integrations-and-pre-commit.

You understand the basics of type hinting in Python. We'll now review more advanced
examples, especially with non-scalar types.

The typing module
So far, we've seen how to annotate variables for scalar types such as str or int. But we've
seen that there are data structures such as lists and dictionaries that are widely used in
Python. For those and other types of utilities, Python introduced the typing module.

In the following example, we'll show how to type hint basic data structures in Python:

chapter2_type_hints_02.py

from typing import Dict, List, Set, Tuple

l: List[int] = [1, 2, 3, 4, 5]

t: Tuple[int, str, float] = (1, "hello", 3.14)

s: Set[int] = {1, 2, 3, 4, 5}

d: Dict[str, int] = {"a": 1, "b": 2, "c": 3}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_02.py

The typing module contains classes for type hinting lists, tuples, sets, and dictionaries.
You simply have to import it and use it in your annotations. In this case, those classes
expect you to provide the type of the values composing your structure. It's the same as
the well-known concept of generics in object-oriented programming. In Python, they are
defined using square brackets.

https://github.com/python/mypy#ide-linter-integrations-and-pre-commit
https://github.com/python/mypy#ide-linter-integrations-and-pre-commit
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_02.py

Type hinting and type checking with mypy 51

Built-in type annotations have changed in Python 3.9
Starting with Python 3.9, the method to annotate lists, tuples, sets, and
dictionaries shown here is deprecated. This newer version of Python actually
supports type hinting with a regular class, without the need to import another
version from typing: l: list[int] = [1, 2, 3, 4, 5].

Besides generic types, the typing module contains other utilities to cover more complex
annotations. For example, having a list with elements of different types is perfectly valid in
Python. To make this work with type checkers, we'll use the Union type:

chapter2_type_hints_03.py

from typing import List, Union

l: List[Union[int, float]] = [1, 2.5, 3.14, 5]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_03.py

Union is also a generic type accepting any number of types. In this case, our list will
accept either integers or floating-point numbers. Of course, mypy will complain if you try
to add an element to this list that is neither an int nor a float value.

There is also another case where this is useful. Quite often, you'll have function arguments or
return types that return either a value or None. Thus, you could write something like this:

chapter2_type_hints_04.py

from typing import Union

def greeting(name: Union[str, None] = None) -> str:

 return f"Hello, {name if name else 'Anonymous'}"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_04.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_04.py

52 Python Programming Specificities

The allowed value is either a string or None. This works perfectly. However, this case
is so common that typing provides a shortcut for this: Optional. So, you can write
the following:

chapter2_type_hints_05.py

from typing import Optional

def greeting(name: Optional[str] = None) -> str:

 return f"Hello, {name if name else 'Anonymous'}"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_05.py

When dealing with complex types, it may be useful to alias them and reuse them at will
without the need to rewrite them each time. To do this, you can simply assign them as you
would do for any variable:

chapter2_type_hints_06.py

from typing import Tuple

IntStringFloatTuple = Tuple[int, str, float]

t: IntStringFloatTuple = (1, "hello", 3.14)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_06.py

By convention, types should be named using camel case, like classes. Talking about classes,
let's see how type hinting works with them:

chapter2_type_hints_07.py

from typing import List

class Post:

 def __init__(self, title: str) -> None:

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_06.py

Type hinting and type checking with mypy 53

 self.title = title

 def __str__(self) -> str:

 return self.title

posts: List[Post] = [Post("Post A"), Post("Post B")]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_07.py

Actually, there is nothing special about class type hinting. You just annotate the methods
as you would for a regular function. If you need to use your class in an annotation, like
here for a list of posts, you just have to use the class name.

Sometimes, you'll have to write a function or method that accepts another function in an
argument. In this case, you'll need to give the type signature of this function. This is what
the Callable class is for.

Type function signatures with Callable
It can be useful to have types for function signatures, especially when you need to pass
functions as arguments of other functions. For this task, the typing module provides the
Callable class. In the following example, we'll implement a function called filter_
list that expects argument a list of integers and a function that returns a Boolean given
an integer:

chapter2_type_hints_08.py

from typing import Callable, List

ConditionFunction = Callable[[int], bool]

def filter_list(l: List[int], condition: ConditionFunction) ->
List[int]:

 return [i for i in l if condition(i)]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_08.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_07.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_07.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_07.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_08.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_08.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_08.py

54 Python Programming Specificities

You see here that we define a ConditionFunction type alias thanks to Callable.
Once again, this is a generic class that expects two things: first, the list of argument types,
and then the return type. Here, we expect a single integer argument and the return type is
a Boolean.

We can then use this type in the annotation of the filter_list function. mypy
will then ensure that the condition function passed in the argument conforms to this
signature. For example, we could write a simple function to check the parity of an integer,
as shown in the next sample:

chapter2_type_hints_08.py

def is_even(i: int) -> bool:

 return i % 2 == 0

filter_list([1, 2, 3, 4, 5], is_even)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_08.py

It's worth noting, however, that there is no syntax to indicate optional or keyword
arguments. In this case, you can write Callable[..., bool], the ellipsis, ...,
meaning here any number of arguments.

Any and cast
In some situations, the code is so dynamic or complicated that it won't be possible to
annotate it correctly or the type checker may not correctly infer the type. To help with
this, the typing module provides two utilities: Any and cast.

The first one is a type annotation that tells the type checker that the variable or argument
can be anything. In this case, any type of value will be valid for the type checker:

chapter2_type_hints_09.py

from typing import Any

def f(x: Any) -> Any:

 return x

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_08.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_08.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_08.py

Type hinting and type checking with mypy 55

f("a")

f(10)

f([1, 2, 3])

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_09.py

The second one, cast, is a function that lets you override the type inferred by the type
checker. It'll force the type checker to consider the type you specify:

chapter2_type_hints_10.py

from typing import Any, cast

def f(x: Any) -> Any:

 return x

a = f("a") # inferred type is "Any"

a = cast(str, f("a")) # forced type to be "str"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_type_
hints_10.py

Be careful though: the cast function is only meaningful for type checkers. As for
every other type of annotation, the interpreter completely ignores it and doesn't
perform a real cast.

While convenient, try to refrain from using those utilities too often. If everything is Any
or casted to a different type, you completely miss the benefits of static type checking.

As we saw, type hinting and type checking are really helpful to help reduce errors while
developing and keep high-quality code. But that's not all. Actually, Python allows you to
retrieve type annotations at runtime and perform some logic based on them. This enables
you to do clever things such as dependency injection: just by type hinting an argument
in a function, a library can automatically interpret it and inject the corresponding value at
runtime. This concept is at the heart of FastAPI.

Another key approach in FastAPI is asynchronous I/O. This will be the last subject we'll
cover in this chapter.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_09.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_09.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_09.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_10.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_10.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_type_hints_10.py

56 Python Programming Specificities

Asynchronous I/O
If you have already worked with JavaScript and Node.js, you have probably come across
the concepts of promises and the async/await keywords, which are characteristic of the
asynchronous I/O paradigm. Basically, this is a way to make I/O operations non-blocking
and allow the program to perform other tasks while the read or write operation is
ongoing. The main motivation behind this is that I/O operations are slow: reading from
disk, network requests are a million times slower than reading from RAM or processing
instructions. In the following example, we have a simple script that reads a file on disk:

chapter2_asyncio_01.py

with open(__file__) as f:

 data = f.read()

The program will block here until the data has been read

print(data)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
asyncio_01.py

We see that the script will block until we have retrieved the data from the disk and, as
we said, this can be long. 99% percent of the execution time of the program is spent
on waiting for the disk. Usually, it's not an issue for simple scripts like this because you
probably don't have to perform other operations in the meantime.

However, in other situations, there could have been the opportunity to perform other
tasks. The typical case that is of great interest in this book is web servers. Imagine we have
a first user that makes a request performing a 10-seconds-long database query before
sending the response. If a second user makes another request in the meantime, they'll have
to wait for the first response to finish before getting their answer.

To solve this, traditional Python web servers based on the Web Server Gateway Interface
(WSGI), such as Flask or Django, spawn several workers. Those are sub-processes of the
web server that are all able to answer requests. If one is busy processing a long request,
others can answer new coming requests.

With asynchronous I/O, a single process won't block when processing a request with a long
I/O operation. While it waits for this operation to finish, it can answer other requests. When
the I/O operation is done, it resumes the request logic and can finally answer the request.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_01.py

Asynchronous I/O 57

Technically, this is achieved through the concept of an event loop. Think of it as a
conductor that will manage all the asynchronous tasks you'll send to it. When data is
available or when the write operation is done for one of those tasks, it'll ping the main
program so that it can perform the next operations. Underneath, it relies upon the
operating system select and poll calls, which are precisely there to ask for events
about I/O operations at an operating system level. You can read very interesting details
about this in the article Async IO on Linux: select, poll, and epoll by Julia Evans: https://
jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-
epoll/.

Python first implemented asynchronous I/O in version 3.4 and has since greatly evolved,
notably with the introduction of the async/await keywords in version 3.6. All the
utilities to manage this paradigm are available through the standard asyncio module.
Not long after, the spiritual successor of WSGI for asynchronous-enabled web servers,
Asynchronous Server Gateway Interface (ASGI), was introduced. FastAPI relies on this,
and this is one of the reasons why it shows such great performance.

We'll now review the basics of asynchronous programming in Python. The following
example is a simple Hello world using asyncio:

chapter2_asyncio_02.py

import asyncio

async def main():

 print('Hello ...')

 await asyncio.sleep(1)

 print('... World!')

asyncio.run(main())

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
asyncio_02.py

When you wish to define an asynchronous function, you just have to add the async
keyword before def. This allows you to use the await keyword inside it. Such async
functions are called coroutines.

https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/
https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_02.py

58 Python Programming Specificities

Inside it, we perform a first print statement and then call the asyncio.sleep
coroutine. This is the async equivalent of time.sleep that blocks the program for a
given number of seconds. Notice that we prefixed the call with the await keyword. This
means that we want to wait for this coroutine to finish before proceeding. This is the main
benefit of async/await keywords: writing code that looks like synchronous code. If we
omitted await, the coroutine object would have been created but never executed.

Finally, notice that we use the asyncio.run function. This is the machinery that will
create a new event loop, execute your coroutine, and return its result. It should be the
main entry point of your async program.

This example is nice but not very interesting from an asynchronous point of view; since
we are waiting for only one operation, this is not very impressive. Let's see an example
where we execute two coroutines concurrently:

chapter2_asyncio_03.py

import asyncio

async def printer(name: str, times: int) -> None:

 for i in range(times):

 print(name)

 await asyncio.sleep(1)

async def main():

 await asyncio.gather(

 printer("A", 3),

 printer("B", 3),

)

asyncio.run(main())

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter2/chapter2_
asyncio_03.py

Here, we have a printer coroutine that prints its name a given number of times.
Between each print, it sleeps for 1 second.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter2/chapter2_asyncio_03.py

Asynchronous I/O 59

Then, our main coroutine uses the asyncio.gather utility, which schedules several
coroutines for concurrent execution. If you run this script, you'll get the following result:

$ python chapter2_asyncio_03.py

A

B

A

B

A

B

A succession of A and B means that our coroutines were executed concurrently and that
we didn't wait for the first one to finish before starting the second one.

You might wonder why we added the asyncio.sleep call in this example. Actually, if
we removed it, we would have obtained this result:

A

A

A

B

B

B

That doesn't look very concurrent, and indeed it's not. This is one of the main pitfalls of
asyncio: writing code in a coroutine doesn't necessarily mean that it won't block. Regular
operations such as computations are blocking and will block the event loop. Usually, this
is not a problem since those operations are fast. The only operations that won't block are
proper I/O operations that are designed to work asynchronously. This is different from
multiprocessing where operations are executed on child processes, which, by nature,
doesn't block the main one.

Because of this, you'll have to be careful when choosing a third-party library for
interacting with databases, APIs, and so on. Some have been adapted to work
asynchronously, or some alternatives have been developed in parallel to the standard ones.
We'll see some of them in the next chapters, especially when working with databases.

We'll end this quick introduction to asynchronous I/O here. There are some other
subtleties underneath but, generally, the basics we've seen here will allow you to leverage
the power of asyncio with FastAPI.

60 Python Programming Specificities

Summary
Congratulations! Through this chapter, you've discovered the basics of the Python
language, a very clean and efficient language to work with. You've then been introduced to
the more advanced concepts of list comprehensions and generators, which are idiomatic
ways of handling sequences of data. Python is also a multi-paradigm language and you've
seen how to leverage the object-oriented syntax.

Finally, you've discovered some of the most recent features of the language: type hinting,
which allows static-type checking to reduce errors and speed up development, and
asynchronous I/O, a set of new tools and syntax to maximize performance and allow
concurrency while doing I/O-bound operations.

You're now ready to begin your journey with FastAPI! You'll see that the framework
takes advantage of all those Python features to propose a fast and enjoyable development
experience. In the next chapter, you'll learn how to write your very first REST API
with FastAPI.

3
Developing a RESTful

API with FastAPI
Now it's time to begin learning about FastAPI! In this chapter, we'll cover the basics of
FastAPI. We'll go through very simple and focused examples that will demonstrate the
different features of FastAPI. Each example will lead to a working API endpoint that you'll
be able to test yourself using HTTPie. In the final section of this chapter, we'll show you
a more complex FastAPI project, with routes split across several files. It will give you an
overview of how you can structure your own application.

By the end of this chapter, you'll know how to start a FastAPI application and how to write
an API endpoint. You'll also be able to handle request data and build a response according
to your own logic. Finally, you'll learn a way to structure a FastAPI project into several
modules that will be easier to maintain and work with in the long term.

In this chapter, we'll cover the following main topics:

•	 Creating the first endpoint and running it locally

•	 Handling request parameters

•	 Customizing the response

•	 Structuring a bigger project with multiple routers

62 Developing a RESTful API with FastAPI

Technical requirements
For the examples in this chapter, you'll require a Python virtual environment, just as we
set up in Chapter 1, Python Development Environment Setup.

You can find all the code examples of this chapter in the dedicated GitHub repository
at https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter3.

Creating the first endpoint and running it
locally
FastAPI is a framework that aims at being easy to use and quick to write. In the following
example, you'll realize that this is not just a promise. In fact, creating an API endpoint
involves just a few lines:

chapter3_first_endpoint_01.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def hello_world():

 return {"hello": "world"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_first_
endpoint_01.py

In this example, we define a GET endpoint at the root path, which always returns the
{"hello": "world"} JSON response. To do this, we first instantiate a FastAPI object,
app. This will be the main application object that will wire all of the API routes.

Then, we simply define a coroutine that contains our route logic, the path operation
function. Its return value is automatically handled by FastAPI to produce a proper HTTP
response with a JSON payload.

Here, the most important part of the code is probably the line starting with @, which
can be found above the coroutine definition, the decorator. In Python, a decorator is
syntactic sugar that allows you to wrap a function or class with common logic without
compromising readability. It's roughly equivalent to app.get("/")(hello_world).

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter3
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter3
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_first_endpoint_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_first_endpoint_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_first_endpoint_01.py

Creating the first endpoint and running it locally 63

FastAPI exposes one decorator per HTTP method to add new routes to the application. The
one that is shown here adds a GET endpoint with the path as the first argument.

Now, let's run this API. Copy the example to the root of your project and run the
following command:

$ uvicorn chapter3_first_endpoint_01:app

INFO: Started server process [13300]

INFO: Waiting for application startup.

INFO: Application startup complete.

INFO: Uvicorn running on http://127.0.0.1:8000 (Press
CTRL+C to quit)

As we mentioned in the Asynchronous I/O section of Chapter 2, Python Programming
Specificities, FastAPI exposes an ASGI-compatible application. To run it, we require a web
server compatible with this protocol. Uvicorn is a good option to use. It gives a command
to quickly start a web server. In the first argument, it expects the dotted namespace of the
Python module, which contains your app instance, followed by a colon, :, and, finally, the
variable name of your ASGI app instance (in our example, this is app). Afterward, it takes
care of instantiating the application and exposing it on your local machine.

Let's try our endpoint with HTTPie:

$ http http://localhost:8000

HTTP/1.1 200 OK

content-length: 17

content-type: application/json

date: Tue, 23 Mar 2021 07:35:16 GMT

server: uvicorn

{

 "hello": "world"

}

It works! As you can see, we did get a JSON response with the payload that we wanted,
using just a few lines of Python and a command!

64 Developing a RESTful API with FastAPI

One of the most beloved features of FastAPI is the automatic interactive documentation.
If you open http://localhost:8000/docs in your browser, you should get a web
interface that looks similar to the following screenshot:

Figure 3.1 – The FastAPI automatic interactive documentation

FastAPI will automatically list all of your defined endpoints and provide documentation
about the expected inputs and outputs. You can even try each endpoint directly in this
web interface. Under the hood, it relies on the OpenAPI Specification and the associated
tools by Swagger. You can read more about this on their official website at https://
swagger.io/.

That's it! You've created your very first API with FastAPI. Of course, this is just a very
simple example, but next, you'll learn how to handle input data and start making
meaningful things!

http://localhost:8000/docs
https://swagger.io/
https://swagger.io/

Handling request parameters 65

On the shoulders of giants
It's worth noting that FastAPI is built upon two main Python libraries: Starlette,
a low-level ASGI web framework (https://www.starlette.io/),
and pydantic, a data validation library that is based on type hints (https://
pydantic-docs.helpmanual.io/).

Handling request parameters
The main goal of a REST API is to provide a structured way in which to interact with data.
As such, it's crucial for the end user to send some information to tailor the response they
need, such as path parameters, query parameters, body payloads, or headers.

To handle them, usually, web frameworks ask you to manipulate a request object to
retrieve the parts you are interested in and manually apply validation. However, that's
not necessary with FastAPI! Indeed, it allows you to define all of your parameters
declaratively. Then, it'll automatically retrieve them in the request and apply validations
based on the type hints. This is why we introduced type hinting in Chapter 2, Python
Programming Specificities; it's used by FastAPI to perform data validation!

Next, we'll explore how you can use this feature to retrieve and validate this input data
from different parts of the request.

Path parameters
The API path is the main thing that the end user will interact with. Therefore, it's a good
spot for dynamic parameters. A typical example is to put the unique identifier of an object
we want to retrieve, such as /users/123. Let's examine how to define this with FastAPI:

chapter3_path_parameters_01.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/users/{id}")

async def get_user(id: int):

 return {"id": id}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_path_
parameters_01.py

https://www.starlette.io/
https://pydantic-docs.helpmanual.io/
https://pydantic-docs.helpmanual.io/
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_01.py

66 Developing a RESTful API with FastAPI

In this example, we defined an API that expects an integer in the last part of its path. We
did this by putting the parameter name in the path around curly braces. Then, we defined
this same parameter as an argument for our path operation function. Notice that we add a
type hint to specify the parameter is an integer.

Let's run this example. You can refer to the previous section, Creating the first endpoint
and running it locally, to learn how to run a FastAPI app with uvicorn.

First, we'll try to make a request by omitting our path parameter:

$ http http://localhost:8000/users

HTTP/1.1 404 Not Found

content-length: 22

content-type: application/json

date: Wed, 24 Mar 2021 07:23:47 GMT

server: uvicorn

{

 "detail": "Not Found"

}

We get a response with a 404 status. That's expected: our route awaits a parameter
after /users, so if we omit it, it simply doesn't match any pattern.

Now, let's try it using a proper integer parameter:

$ http http://localhost:8000/users/123

HTTP/1.1 200 OK

content-length: 10

content-type: application/json

date: Wed, 24 Mar 2021 07:26:23 GMT

server: uvicorn

{

 "id": 123

}

Handling request parameters 67

It works! We get a 200 status, and the response does contain the integer we passed in the
parameter. Notice that it has been properly cast as an integer.

So, what happens if we pass a value that's not a valid integer? Let's find out:

$ http http://localhost:8000/users/abc

HTTP/1.1 422 Unprocessable Entity

content-length: 99

content-type: application/json

date: Wed, 24 Mar 2021 07:28:11 GMT

server: uvicorn

{

 "detail": [

 {

 "loc": [

 "path",

 "id"

],

 "msg": "value is not a valid integer",

 "type": "type_error.integer"

 }

]

}

We get a response with a 422 status! Since abc is not a valid integer, the validation fails
and outputs an error. Notice that we have a very detailed and structured error response
telling us exactly which element caused the error and why. All we need to do to trigger
this validation is to type hint our parameter!

68 Developing a RESTful API with FastAPI

Of course, you are not limited to just one path parameter. You can have as many as you
want, with different types. In the following example, we've added a type parameter of the
string type:

chapter3_path_parameters_02.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/users/{type}/{id}/")

async def get_user(type: str, id: int):

 return {"type": type, "id": id}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_path_
parameters_02.py

This works well, but the endpoint will accept any string as the type parameter.

Limiting allowed values
So, what if we just want to accept a limited set of values? Once again, we'll lean on type
hinting. Python has a very useful class for this: Enum. An enumeration is a way to list
all the valid values for a specific kind of data. Let's define an Enum class that will list the
different types of users:

chapter3_path_parameters_03.py

from enum import Enum

from fastapi import FastAPI

class UserType(str, Enum):

 STANDARD = "standard"

 ADMIN = "admin"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_path_
parameters_03.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_03.py

Handling request parameters 69

To define a string enumeration, we inherit from both the str type and the Enum class.
Then, we simply list the allowed values as class properties: the property name and its
actual string value. Finally, we need to type hint the type argument using this class:

chapter3_path_parameters_03.py

@app.get("/users/{type}/{id}/")

async def get_user(type: UserType, id: int):

 return {"type": type, "id": id}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_path_
parameters_03.py

If you run this example and call the endpoint with a type that is not in the enumeration,
you'll get the following response:

$ http http://localhost:8000/users/hello/123/

HTTP/1.1 422 Unprocessable Entity

content-length: 184

content-type: application/json

date: Thu, 25 Mar 2021 06:30:36 GMT

server: uvicorn

{

 "detail": [

 {

 "ctx": {

 "enum_values": [

 "standard",

 "admin"

]

 },

 "loc": [

 "path",

 "type"

],

 "msg": "value is not a valid enumeration member;

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_03.py

70 Developing a RESTful API with FastAPI

permitted: 'standard', 'admin'",

 "type": "type_error.enum"

 }

]

}

As you can see, you get a nice validation error, with the allowed values for this parameter!

Advanced validation
We can take one step further by defining more advanced validation rules, particularly for
numbers and strings. In this case, the type of hint is no longer enough. We'll rely on the
functions provided by FastAPI, allowing us to set some options on each of our parameters.
For path parameters, the function is named Path. In the following example, we'll only
allow an id argument that is greater than or equal to 1:

chapter3_path_parameters_04.py

from fastapi import FastAPI, Path

app = FastAPI()

@app.get("/users/{id}")

async def get_user(id: int = Path(..., ge=1)):

 return {"id": id}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_path_
parameters_04.py

There are several things to pay attention to here: the result of Path is used as a default
value for the id argument in the path operation function.

Additionally, you can see that we use the ellipsis syntax as the first parameter of Path.
Indeed, it expects the default value for the parameter as the first argument. In this
scenario, we don't want a default value: the parameter is required. Therefore, ellipses are
here to tell FastAPI that we don't want a default value.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_04.py

Handling request parameters 71

Then, we can add the keyword arguments that we are interested in. In our example, this
is ge, greater than or equal to, and its associated value. There are a number of validations
available, as follows:

•	 gt: Greater than

•	 ge: Greater than or equal to

•	 lt: Less than

•	 le: Less than or equal to

There are also validation options for string values, which are based on the length and the
use of a regular expression. In the following example, we want to define a path parameter
that accepts license plates in the form of AB-123-CD (French license plates). The first
approach would be to force the string to be of length 9 (that is, two letters, a dash, three
digits, a dash, and two letters):

chapter3_path_parameters_05.py

@app.get("/license-plates/{license}")

async def get_license_plate(license: str = Path(..., min_
length=9, max_length=9)):

 return {"license": license}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_path_
parameters_05.py

Now we just have to define the min_length and max_length keyword arguments, just
as we did for the number of validations. Of course, a better solution for this use case is to
use a regular expression to validate the license plate number:

chapter3_path_parameters_06.py

@app.get("/license-plates/{license}")

async def get_license_plate(license: str = Path(..., regex=r"^\
w{2}-\d{3}-\w{2}$")):

 return {"license": license}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_path_
parameters_06.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_06.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_path_parameters_06.py

72 Developing a RESTful API with FastAPI

Thanks to this regular expression, we only accept strings that exactly match the license
plate format. Notice that the regular expression is prefixed with r. Just like f-strings,
this is a Python syntax that is used to indicate that the following string should be
considered as a regular expression.

Parameter metadata
Data validation is not the only option accepted by the parameter function.
You can also set options that will add information about the parameter
in the automatic documentation, such as title, description, and
deprecated.

Now you should be able to define path parameters and apply some validation to them.
Other useful parameters to put inside the URL are query parameters. We'll discuss
them next.

Query parameters
Query parameters are a common way to add some dynamic parameters to a URL. You
find them at the end of the URL in the following form: ?param1=foo¶m2=bar.
In a REST API, they are commonly used on read endpoints to apply pagination, a filter, a
sorting order, or selecting fields.

You'll discover that they are quite straightforward to define with FastAPI. In fact, they use
the exact same syntax as path parameters:

chapter3_query_parameters_01.py

@app.get("/users")

async def get_user(page: int = 1, size: int = 10):

 return {"page": page, "size": size}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_query_
parameters_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py

Handling request parameters 73

You simply have to declare them as arguments of your path operation function. If they
don't appear in the path pattern, as they do for path parameters, FastAPI automatically
considers them to be query parameters. Let's try it:

$ http "http://localhost:8000/users?page=5&size=50"

HTTP/1.1 200 OK

content-length: 20

content-type: application/json

date: Thu, 25 Mar 2021 07:17:01 GMT

server: uvicorn

{

 "page": 5,

 "size": 50

}

Here, you can see that we have defined a default value for those arguments, which means
they are optional when calling the API. Of course, if you wish to define a required query
parameter, simply leave out the default value:

chapter3_query_parameters_01.py

from enum import Enum

from fastapi import FastAPI

class UsersFormat(str, Enum):

 SHORT = "short"

 FULL = "full"

app = FastAPI()

@app.get("/users")

async def get_user(format: UsersFormat):

 return {"format": format}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_query_
parameters_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py

74 Developing a RESTful API with FastAPI

Now, if you omit the format parameter in the URL, you'll get a 422 error response.
Additionally, notice that, in this example, we defined a UsersFormat enumeration to
limit the number of allowed values for this parameter; this is exactly what we did in the
previous section for path parameters.

We also have access to more advanced validations through the Query function. It works
in the same way that we demonstrated in the Path parameters section:

chapter3_query_parameters_01.py

@app.get("/users")

async def get_user(page: int = Query(1, gt=0), size: int =
Query(10, le=100)):

 return {"page": page, "size": size}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_query_
parameters_01.py

Here, we force the page to be greater than 0 and the size to be less than or equal to 100.
Notice how the default parameter value is the first argument of the Query function.

Naturally, when it comes to sending request data, the most obvious way is to use the
request body. Let's examine how it works with FastAPI next.

The request body
The body is the part of the HTTP request that contains raw data, representing documents,
files, or form submissions. In a REST API, it's usually encoded in JSON and used to create
structured objects in a database.

For the simplest cases, retrieving data from the body works exactly like query parameters.
The only difference is that you always have to use the Body function; otherwise, FastAPI
will look for it inside the query parameters by default. Let's explore a simple example
where we want to post some user data:

chapter3_request_body_01.py

@app.post("/users")

async def create_user(name: str = Body(...), age: int =
Body(...)):

 return {"name": name, "age": age}

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_query_parameters_01.py

Handling request parameters 75

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_request_
body_01.py

In the same way as query parameters, we define each argument with a type hint along
with the Body function with no default value to make them required. Let's try the
following endpoint:

$ http -v POST http://localhost:8000/users name="John" age=30

POST /users HTTP/1.1

Accept: application/json, */*;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Length: 29

Content-Type: application/json

Host: localhost:8000

User-Agent: HTTPie/2.4.0

{

 "age": "30",

 "name": "John"

}

HTTP/1.1 200 OK

content-length: 24

content-type: application/json

date: Sun, 28 Mar 2021 08:17:26 GMT

server: uvicorn

{

 "age": 30,

 "name": "John"

}

Here, we've shown the request payload with the -v option so that you can clearly see
the JSON payload we sent. FastAPI successfully retrieves the data for each field from
the payload. If you send a request with a missing or invalid field, you'll get a 422 status
error response.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_01.py

76 Developing a RESTful API with FastAPI

You also have access to more advanced validation through the Body function. It works in
the same way as we demonstrated in the Path parameters section.

However, defining payload validations like this has some major drawbacks. First, it's quite
verbose and makes the path operation function prototype huge, especially for bigger
models. Second, usually, you'll need to reuse the data structure on other endpoints or in
other parts of your application.

This is why FastAPI uses pydantic models for data validation. Pydantic is a Python library
for data validation and is based on classes and type hints. In fact, the Path, Query, and
Body functions that we've learned about so far use pydantic under the hood!

By defining your own pydantic models and using them as type hints in your path
arguments, FastAPI will automatically instantiate a model instance and validate the data.
Let's rewrite our previous example using this method:

chapter3_request_body_02.py

from fastapi import FastAPI

from pydantic import BaseModel

class User(BaseModel):

 name: str

 age: int

app = FastAPI()

@app.post("/users")

async def create_user(user: User):

 return user

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_request_
body_02.py

First, we import BaseModel from pydantic. This is the base class that every model
should inherit from. Then, we define our User class and simply list all of the properties as
class properties. Each one of them should have a proper type hint: this is how Pydantic
will be able to validate the type of the field.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_02.py

Handling request parameters 77

Finally, we just declare user as an argument for our path operation function with the
User class as a type hint. FastAPI automatically understands that the user data can be
found in the request payload. Inside the function, you have access to a proper User object
instance, where you can access individual properties by simply using the dot notation,
such as user.name.

Notice that if you just return the object, FastAPI is smart enough to convert it
automatically into JSON to produce the HTTP response.

In the following chapter, that is, Chapter 4, Managing pydantic Data Models in FastAPI, we'll
explore, in more detail, the possibilities of pydantic, particularly in terms of validation.

Multiple objects
Sometimes, you might find that you have several objects that you wish to send in the
same payload all at once. For example, both user and company. In this scenario, you
can simply add several arguments that have been type hinted by a pydantic model, and
FastAPI will automatically understand that there are several objects. In this configuration,
it will expect a body containing each object indexed by its argument name:

chapter3_request_body_03.py

@app.post("/users")

async def create_user(user: User, company: Company):

 return {"user": user, "company": company}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_request_
body_03.py

Here, Company is a simple pydantic model with a single string name property. In this
configuration, FastAPI expects a payload that looks similar to the following:

{

 "user": {

 "name": "John",

 "age": 30

 },

 "company": {

 "name": "ACME"

 }

}

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_03.py

78 Developing a RESTful API with FastAPI

For more complex JSON structures, it's advised that you pipe a formatted JSON into
HTTPie rather than use parameters. Let's try this as follows:

$ echo '{"user": {"name": "John", "age": 30}, "company":
{"name": "ACME"}}' | http POST http://localhost:8000/users

HTTP/1.1 200 OK

content-length: 59

content-type: application/json

date: Sun, 28 Mar 2021 08:54:11 GMT

server: uvicorn

{

 "company": {

 "name": "ACME"

 },

 "user": {

 "age": 30,

 "name": "John"

 }

}

And that's it!

You can even add singular body values with the Body function, just as we saw at the
beginning of this section. This is useful if you wish to have a single property that's not
part of any model:

chapter3_request_body_04.py

@app.post("/users")

async def create_user(user: User, priority: int = Body(...,
ge=1, le=3)):

 return {"user": user, "priority": priority}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_request_
body_04.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_body_04.py

Handling request parameters 79

The priority property is an integer between 1 and 3, which is expected beside the
user object:

$ echo '{"user": {"name": "John", "age": 30}, "priority": 1}' |
http POST http://localhost:8000/users

HTTP/1.1 200 OK

content-length: 46

content-type: application/json

date: Sun, 28 Mar 2021 09:02:59 GMT

server: uvicorn

{

 "priority": 1,

 "user": {

 "age": 30,

 "name": "John"

 }

}

You now have a good overview of how to handle JSON payload data. However, sometimes,
you'll find that you need to accept more traditional-form data or even file uploads. Let's
find out how to do this next!

Form data and file uploads
Even if REST APIs work most of the time with JSON, sometimes, you might have
to handle form-encoded data or file uploads, which have been encoded either as
application/x-www-form-urlencoded or multipart/form-data.

Once again, FastAPI allows you to implement this case very easily. However, you'll need
an additional Python dependency, python-multipart, to handle this kind of data.
As usual, you can install it with pip:

$ pip install python-multipart

Then, you can use the FastAPI features that are dedicated to form data. First, let's take a
look at how you can handle simple form data.

80 Developing a RESTful API with FastAPI

Form data
The method to retrieve form data fields is similar to the one we discussed in the The
request body section to retrieve singular JSON properties. The following example is
roughly the same as the one you explored there. However, this example expects
form-encoded data instead of JSON:

chapter3_form_data_01.py

@app.post("/users")

async def create_user(name: str = Form(...), age: int =
Form(...)):

 return {"name": name, "age": age}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_form_
data_01.py

The only difference here is that we use the Form function instead of Body. You can try
this endpoint with HTTPie and the --form option to force the data to be form-encoded:

$ http -v --form POST http://localhost:8000/users name=John
age=30

POST /users HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Length: 16

Content-Type: application/x-www-form-urlencoded; charset=utf-8

Host: localhost:8000

User-Agent: HTTPie/2.4.0

name=John&age=30

HTTP/1.1 200 OK

content-length: 24

content-type: application/json

date: Sun, 28 Mar 2021 14:50:07 GMT

server: uvicorn

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_form_data_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_form_data_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_form_data_01.py

Handling request parameters 81

{

 "age": 30,

 "name": "John"

}

Pay attention to how the Content-Type header and the body data representation have
changed in the request. You can also see that the response is still provided in JSON. Unless
specified otherwise, FastAPI will always output a JSON response by default, no matter the
form of the input data.

Of course, the validation options we saw for Path, Query, and Body are still available.
You can find a description for each of them in the Path parameters section.

It's worth noting that, contrary to JSON payloads, FastAPI doesn't allow to you define
pydantic models to validate form data. Instead, you have to manually define each field as
an argument for the path operation function.

Now, let's go on to discuss how to handle file uploads.

File uploads
Uploading files is a common requirement for web applications, whether this is images or
documents. FastAPI provides a parameter function, File, that enables this.

Let's take a look at a simple example where you can directly retrieve a file as a bytes object:

 Chapter3_file_uploads_01.py
from fastapi import FastAPI, File

app = FastAPI()

@app.post("/files")

async def upload_file(file: bytes = File(...)):

 return {"file_size": len(file)}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_file_
uploads_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_01.py

82 Developing a RESTful API with FastAPI

Once again, you can see that the approach is still the same: we define an argument for the
path operation function, file, we add a type of hint, bytes, and then we use the File
function as a default value for this argument. By doing this, FastAPI understands that it
will have to retrieve raw data in a part of the body named file and return it as bytes.

We simply return the size of this file by calling the len function on this bytes object.

In the code example repository, you should be able to find a picture of a cat: https://
github.com/PacktPublishing/Building-Data-Science-Applications-
with-FastAPI/blob/main/assets/cat.jpg.

Let's upload it on our endpoint using HTTPie. To upload a file, type in the name of the file
upload field (here, it is file), followed by @ and the path of the file you want to upload.
Don't forget to set the --form option:

$ http --form POST http://localhost:8000/files file@./assets/
cat.jpg

HTTP/1.1 200 OK

content-length: 19

content-type: application/json

date: Mon, 29 Mar 2021 06:42:02 GMT

server: uvicorn

{

 "file_size": 71457

}

It works! We have correctly got the size of the file in bytes.

One drawback to this approach is that the uploaded file is entirely stored in memory. So,
while it'll work for small files, it is likely that you'll run into issues for larger files. Besides,
manipulating a bytes object is not always convenient for file handling.

To fix this problem, FastAPI provides an UploadFile class. This class will store the data
in memory up to a certain threshold and, after this, will automatically store it on disk in
a temporary location. This allows you to accept much larger files without running out of
memory. Furthermore, the exposed object instance exposes useful metadata, such as the
content type, and a file-like interface. This means that you can manipulate it as a regular
file in Python and that you can feed it to any function that expects a file.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/cat.jpg
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/cat.jpg
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/cat.jpg

Handling request parameters 83

To use it, you simply have to specify it as a type hint instead of bytes:

chapter3_file_uploads_02.py

from fastapi import FastAPI, File, UploadFile

app = FastAPI()

@app.post("/files")

async def upload_file(file: UploadFile = File(...)):

 return {"file_name": file.filename, "content_type": file.
content_type}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_file_
uploads_02.py

Notice that, here, we return the filename and content_type properties. The content
type is especially useful for checking the type of the uploaded file and possibly rejecting it if
it's not one of the types that you expect.

Here is the result with HTTPie:

$ http --form POST http://localhost:8000/files file@./assets/
cat.jpg

HTTP/1.1 200 OK

content-length: 51

content-type: application/json

date: Mon, 29 Mar 2021 06:58:20 GMT

server: uvicorn

{

 "content_type": "image/jpeg",

 "file_name": "cat.jpg"

}

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_02.py

84 Developing a RESTful API with FastAPI

You can even accept multiple files by type hinting the argument as a list of UploadFile:

chapter3_file_uploads_03.py

@app.post("/files")

async def upload_multiple_files(files: List[UploadFile] =
File(...)):

 return [

 {"file_name": file.filename, "content_type": file.
content_type}

 for file in files

]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_file_
uploads_03.py

To upload several files with HTTPie, simply repeat the argument. It should appear
as follows:
$ http --form POST http://localhost:8000/files files@./assets/
cat.jpg files@./assets/cat.jpg

HTTP/1.1 200 OK

content-length: 105

content-type: application/json

date: Mon, 29 Mar 2021 12:52:45 GMT

server: uvicorn

[

 {

 "content_type": "image/jpeg",

 "file_name": "cat.jpg"

 },

 {

 "content_type": "image/jpeg",

 "file_name": "cat.jpg"

 }

]

Now, you should be able to handle form data and file uploads in a FastAPI application.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_file_uploads_03.py

Handling request parameters 85

So far, you've learned how to manage user-facing data. However, there are also very
interesting pieces of information that are less visible: headers. We'll explore them next.

Headers and cookies
Besides the URL and the body, another major part of the HTTP request are the headers.
They contain all sorts of metadata that can be useful when handling requests. A common
usage is to use them for authentication, for example, via the famous cookies.

Once again, retrieving them in FastAPI only involves a type hint and a parameter function.
Let's take a look at a simple example where we want to retrieve a header named Hello:

chapter3_headers_cookies_01.py

@app.get("/")

async def get_header(hello: str = Header(...)):

 return {"hello": hello}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_
cookies_01.py

Here, you can see that we simply have to use the Header function as a default value for
the hello argument. The name of the argument determines the key of the header that we
want to retrieve. Let's see this in action:

$ http GET http://localhost:8000 'Hello: World'

HTTP/1.1 200 OK

content-length: 17

content-type: application/json

date: Mon, 29 Mar 2021 13:28:36 GMT

server: uvicorn

{

 «hello»: «World»

}

FastAPI was able to retrieve the header value. Since there was no default value specified
(we put in an ellipsis), the header is required. If it's missing, once again, you'll get a 422
status error response.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_01.py

86 Developing a RESTful API with FastAPI

Additionally, notice that FastAPI automatically converts the header name to lowercase.
Besides that, since header names are separated by a hyphen, -, most of the time, it also
automatically converts it to snake case. Therefore, it works out of the box with any valid
Python variable name. The following example shows this behavior by retrieving the
User-Agent header:

chapter3_headers_cookies_02.py

@app.get("/")

async def get_header(user_agent: str = Header(...)):

 return {"user_agent": user_agent}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_
cookies_02.py

Now, let's make a very simple request. We'll keep the default user agent of HTTPie to see
what happens:

$ http -v GET http://localhost:8000

GET / HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

Connection: keep-alive

Host: localhost:8000

User-Agent: HTTPie/2.4.0

HTTP/1.1 200 OK

content-length: 29

content-type: application/json

date: Mon, 29 Mar 2021 13:37:57 GMT

server: uvicorn

{

 «user_agent»: "HTTPie/2.4.0"

}

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_02.py

Handling request parameters 87

One very special case of header is cookies. You could retrieve them by parsing the
Cookie header yourself, but that would be a bit tedious. FastAPI provides another
parameter function that automatically does it for you.

The following example simply retrieves a cookie named hello:

chapter3_headers_cookies_03.py

@app.get("/")

async def get_cookie(hello: Optional[str] = Cookie(None)):

 return {"hello": hello}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_
cookies_03.py

Notice that we type hinted the argument as Optional, and we set a default value of
None to the Cookie function. This way, even if the cookie is not set in the request,
FastAPI will proceed and not generate a 422 status error response.

Headers and cookies can be very useful tools in which to implement some authentication
features. In Chapter 7, Managing Authentication and Security in FastAPI, you'll learn
that there are built-in security functions that can help you to implement common
authentication schemes.

The request object
Sometimes, you might find that you need to access a raw request object with all of the data
associated with it. That's possible. Simply declare an argument on your path operation
function type hinted with the Request class:

chapter3_request_object_01.py

from fastapi import FastAPI, Request

app = FastAPI()

@app.get("/")

async def get_request_object(request: Request):

 return {"path": request.url.path}

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_headers_cookies_03.py

88 Developing a RESTful API with FastAPI

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_request_
object_01.py

Under the hood, this is the Request object from Starlette, which is a library that provides
all the core server logic for FastAPI. You can view a complete description of the methods
and properties of this object in the official documentation of Starlette (https://www.
starlette.io/requests/).

Congratulations! You have now learned all of the basics regarding how to handle request
data in FastAPI. As you learned, the logic is the same no matter what part of the HTTP
request you want to look at. Simply name the argument you want to retrieve, add a type
hint, and use a parameter function to tell FastAPI where it should look. You can even add
some validation logic!

In the next section, we'll explore the other side of a REST API job: returning a response.

Customizing the response
In the previous sections, you learned that directly returning a dictionary or a pydantic
object in your path operation function was enough for FastAPI to return a JSON response.

Most of the time, you'll want to customize this response a bit further; for instance, by
changing the status code, raising validation errors, and setting cookies. FastAPI offers
different ways to do this, from the simplest case to the most advanced one. First, we'll
learn how to customize the response declaratively by using path operation parameters.

Path operation parameters
In the Creating the first endpoint and running it locally section, you learned that in order to
create a new endpoint, you had to put a decorator on top of the path operation function.
This decorator accepts a lot of options, including ones to customize the response.

The status code
The most obvious thing to customize in an HTTP response is the status code. By default,
FastAPI will always set a 200 status when everything goes well during your path operation
function execution.

Sometimes, it might be useful to change this status. For example, it's good practice in a
REST API to return a 201 Created status when the execution of the endpoint ends up
in the creation of a new object.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_object_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_object_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_request_object_01.py
https://www.starlette.io/requests/
https://www.starlette.io/requests/

Customizing the response 89

To set this, simply specify the status_code argument on the path decorator:

chapter3_response_path_parameters_01.py

from fastapi import FastAPI, status

from pydantic import BaseModel

class Post(BaseModel):

 title: str

app = FastAPI()

@app.post("/posts", status_code=status.HTTP_201_CREATED)

async def create_post(post: Post):

 return post

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_
response_path_parameters_01.py

The decorator arguments come right after the path as keyword arguments. The status_
code option simply expects an integer representing the status code. So, we could
have written status_code=201, but FastAPI provides a useful list in the status
sub-module that improves code comprehensiveness, as you can see here.

We can try this endpoint to obtain the resulting status code:

$ http POST http://localhost:8000/posts title="Hello"

HTTP/1.1 201 Created

content-length: 17

content-type: application/json

date: Tue, 30 Mar 2021 07:56:22 GMT

server: uvicorn

{

 "title": "Hello"

}

We have got our 201 status code.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_01.py

90 Developing a RESTful API with FastAPI

It's important to understand that this option to override the status code is only useful
when everything goes well. Even if your input data was invalid, you would still get a
422 status error response.

Another interesting scenario for this option is when you have nothing to return, such as
when you typically delete an object. In this case, the 204 No content status code is a
good fit. In the following example, we implement a simple DELETE endpoint that sets this
response status code:

chapter3_response_path_parameters_02.py

Dummy database

posts = {

 1: Post(title="Hello", nb_views=100),

}

@app.delete("/posts/{id}", status_code=status.HTTP_204_NO_
CONTENT)

async def delete_post(id: int):

 posts.pop(id, None)

 return None

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_
response_path_parameters_02.py

Notice that you can very well return None in your path operation function. FastAPI will
take care of it and return a response with an empty body.

In the Setting the status code dynamically section, you'll learn how to customize the status
code dynamically inside the path operation logic.

The response model
With FastAPI, the main use case is to directly return a pydantic model that automatically
gets turned into properly formatted JSON. However, quite often, you'll find that there are
some differences between the input data, the data you store in your database, and the data
you want to show to the end user. For instance, perhaps some fields are private or only for
internal use, or perhaps some fields are only useful during the creation process and then
discarded afterward.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_02.py

Customizing the response 91

Now, let's consider a simple example. Assume you have a database containing blog
posts. Those blog posts have several properties, such as a title, content, or creation date.
Additionally, you store the number of views of each one, but you don't want the end user
to see any of this.

You could take the standard approach as follows:

chapter3_response_path_parameters_03.py

from fastapi import FastAPI

from pydantic import BaseModel

class Post(BaseModel):

 title: str

 nb_views: int

app = FastAPI()

Dummy database

posts = {

 1: Post(title="Hello", nb_views=100),

}

@app.get("/posts/{id}")

async def get_post(id: int):

 return posts[id]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_
response_path_parameters_03.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_03.py

92 Developing a RESTful API with FastAPI

And then call this endpoint:

$ http GET http://localhost:8000/posts/1

HTTP/1.1 200 OK

content-length: 32

content-type: application/json

date: Tue, 30 Mar 2021 08:11:11 GMT

server: uvicorn

{

 "nb_views": 100,

 "title": "Hello"

}

The nb_views property is in the output. However, we don't want this. This is exactly
what the response_model option is for: to specify another model that only outputs
the properties we want. First, let's define another pydantic model with only the title
property:

chapter3_response_path_parameters_04.py

class PublicPost(BaseModel):

 title: str

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_
response_path_parameters_04.py

Tip
You might have noticed that we repeat ourselves a lot when defining those
models. In Chapter 4, Managing pydantic Data Models in FastAPI, you'll learn
how to avoid this.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_04.py

Customizing the response 93

Then, the only change is to add the response_model option as a keyword argument for
the path decorator:

chapter3_response_path_parameters_04.py

@app.get("/posts/{id}", response_model=PublicPost)

async def get_post(id: int):

 return posts[id]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_
response_path_parameters_04.py

Now, let's try to call this endpoint:

$ http GET http://localhost:8000/posts/1

HTTP/1.1 200 OK

content-length: 17

content-type: application/json

date: Tue, 30 Mar 2021 08:29:45 GMT

server: uvicorn

{

 "title": "Hello"

}

The nb_views property is no longer there! Thanks to the response_model option,
FastAPI automatically converted our Post instance into a PublicPost instance before
serializing it. Now our private data is safe!

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_path_parameters_04.py

94 Developing a RESTful API with FastAPI

The good thing is that this option is also considered by the interactive documentation,
which will show the correct output schema to the end user, as you can see in Figure 3.2:

Figure 3.2 – The response model schema in the interactive documentation

So far, you've looked at options that can help you to quickly customize the response
generated by FastAPI. Now, we'll introduce another approach that will open up
more possibilities.

Customizing the response 95

The response parameter
The body and status code are not the only interesting parts of an HTTP response.
Sometimes, it might be useful to return some custom headers or set cookies. This can be
done dynamically using FastAPI directly within the path operation logic. How so? By
injecting the Response object as an argument of the path operation function.

Setting headers
As usual, this only involves setting the proper type hinting to the argument. The following
example shows you how to set a custom header:

chapter3_response_parameter_01.py

from fastapi import FastAPI, Response

app = FastAPI()

@app.get("/")

async def custom_header(response: Response):

 response.headers["Custom-Header"] = "Custom-Header-Value"

 return {"hello": "world"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_
response_parameter_01.py

The Response object gives you access to a set of properties, including headers. It's a
simple dictionary where the key is the name of the header, and the value is its associated
value. Therefore, it's relatively straightforward to set your own custom header.

Also, notice that you don't have to return the Response object. You can still return
JSON-encodable data and FastAPI will take care of forming a proper response, including
the headers you've set. Therefore, the response_model and status_code options we
discussed in the Path operation parameters section are still honored.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_01.py

96 Developing a RESTful API with FastAPI

Let's view the result:

$ http GET http://localhost:8000

HTTP/1.1 200 OK

content-length: 17

content-type: application/json

custom-header: Custom-Header-Value

date: Wed, 31 Mar 2021 06:22:03 GMT

server: uvicorn

{

 "hello": "world"

}

Our custom header is part of the response.

As we mentioned earlier, the good thing about this approach is that it's within your
path operation logic. That means you can dynamically set headers depending on what's
happening in your business logic.

Setting cookies
Cookies can also be particularly useful when you want to maintain the user's state within
the browser between each of their visits.

To prompt the browser to save some cookies in your response, you could, of course,
build your own Set-Cookie header and set it in the headers dictionary, just as we
saw in the preceding command block. However, since this can be quite tricky to do, the
Response object exposes a convenient set_cookie method:

chapter3_response_parameter_02.py

@app.get("/")

async def custom_cookie(response: Response):

 response.set_cookie("cookie-name", "cookie-value", max_
age=86400)

 return {"hello": "world"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_
response_parameter_02.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_02.py

Customizing the response 97

Here, we simply set a cookie, named cookie-name, with the value of cookie-value.
It'll be valid for 86'400 seconds before the browser removes it.

Let's try it:

$ http GET http://localhost:8000

HTTP/1.1 200 OK

content-length: 17

content-type: application/json

date: Wed, 31 Mar 2021 06:37:18 GMT

server: uvicorn

set-cookie: cookie-name=cookie-value; Max-Age=86400; Path=/;
SameSite=lax

{

 "hello": "world"

}

Here, you can see that we have a nice Set-Cookie header with all of the properties of
our cookie.

As you may know, cookies have a lot more options than the ones we have shown here;
for instance, path, domain, and HTTP-only. The set_cookie method supports all of
them. You can read about the full list of options in the official Starlette documentation
(since Response is also borrowed from Starlette) at https://www.starlette.io/
responses/#set-cookie.

If you're not familiar with the Set-Cookie header, we also recommend that you to refer
to MDN Web Docs, which can be accessed at https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Set-Cookie.

Of course, if you need to set several cookies, you can call this method several times.

Setting the status code dynamically
In the Path operation parameters section, we discussed a way to declaratively set the status
code of the response. The drawback to this approach is that it'll always be the same no
matter what's happening inside.

Let's assume that we have an endpoint that updates an object in the database or creates it
if it doesn't exist. A good approach would be to return a 200 OK status when the object
already exists or a 201 Created status when the object has to be created.

https://www.starlette.io/responses/#set-cookie
https://www.starlette.io/responses/#set-cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

98 Developing a RESTful API with FastAPI

To do this, you can simply set the status_code property on the Response object:

chapter3_response_parameter_03.py

Dummy database

posts = {

 1: Post(title="Hello", nb_views=100),

}

@app.put("/posts/{id}")

async def update_or_create_post(id: int, post: Post, response:
Response):

 if id not in posts:

 response.status_code = status.HTTP_201_CREATED

 posts[id] = post

 return posts[id]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_
response_parameter_03.py

First, we check whether the ID in the path exists in the database. If not, we change the
status code to 201. Then, we simply assign the post at this ID in the database.

Let's try with an existing post first:

$ http PUT http://localhost:8000/posts/1 title="Updated title"

HTTP/1.1 200 OK

content-length: 25

content-type: application/json

date: Wed, 31 Mar 2021 07:02:41 GMT

server: uvicorn

{

 "title": "Updated title"

}

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_response_parameter_03.py

Customizing the response 99

The post with an ID of 1 already exists, so we get a 200 status. Now, let's try with a
non-existing ID:

$ http PUT http://localhost:8000/posts/2 title="Updated title"

HTTP/1.1 201 Created

content-length: 25

content-type: application/json

date: Wed, 31 Mar 2021 07:03:56 GMT

server: uvicorn

{

 "title": "Updated title"

}

We get a 201 status!

Now you have a way to dynamically set the status code in your logic. Bear in mind,
though, that they won't be detected by the automatic documentation. Therefore, they won't
appear as a possible response status code in it.

You might be tempted to use this approach to set error status codes, such as 400 Bad
Request or 404 Not Found. In fact, you shouldn't do that. FastAPI provides a
dedicated way to do this: HTTPException.

Raising HTTP errors
When calling a REST API, quite frequently, you might find that things don't go very well;
you might come across the wrong parameters, invalid payloads, or objects that don't exist
anymore. Errors can happen for a lot of reasons.

That's why it's critical to detect them and raise a clear and unambiguous error message
to the end user so that they can correct their mistake. In a REST API, there are two very
important things that you can use to return an informative message: the status code and
the payload.

The status code can give you a precious hint about the nature of the error. Since HTTP
protocols provide a wide range of error status codes, your end user might not even need to
read the payload to understand what's wrong.

Of course, it's always better to provide a clear error message at the same time in order to
give further details and add some useful information regarding how the end user can solve
the issue.

100 Developing a RESTful API with FastAPI

Error status codes are crucial
Some APIs choice to always return a 200 status code with the payload
containing a property stating whether the request was successful or not,
such as {"success": false}. Don't do that. The RESTful philosophy
encourages you to use the HTTP semantic to give meaning to the data. Having
to parse the output and look for a property to determine whether the call was
successful is a bad design.

To raise an HTTP error in FastAPI, you'll have to raise a Python exception,
HTTPException. This exception class will allow us to set a status code and an error
message. It is caught by FastAPI error handlers that take care of forming a proper
HTTP response.

In the following example, we'll raise a 400 Bad Request error if the password and
password_confirm payload properties don't match:

chapter3_raise_errors_01.py

@app.post("/password")

async def check_password(password: str = Body(...), password_
confirm: str = Body(...)):

 if password != password_confirm:

 raise HTTPException(

 status.HTTP_400_BAD_REQUEST,

 detail="Passwords don't match.",

)

 return {"message": "Passwords match."}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_raise_
errors_01.py

As you can see here, if the passwords are not equal, we directly raise HTTPException.
The first argument is the status code, and the detail keyword argument lets us write an
error message.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_raise_errors_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_raise_errors_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_raise_errors_01.py

Customizing the response 101

Let's examine how it works:

$ http POST http://localhost:8000/password password="aa"
password_confirm="bb"

HTTP/1.1 400 Bad Request

content-length: 35

content-type: application/json

date: Wed, 31 Mar 2021 11:58:45 GMT

server: uvicorn

{

 "detail": "Passwords don't match."

}

Here, we do get a 400 status code and our error message has been wrapped nicely in a
JSON object with the detail key. This is how FastAPI handles errors by default.

In fact, you are not limited to a simple string for the error message: you can return a
dictionary or a list in order to get structured information about the error. For example,
take a look at the following code snippet:

chapter3_raise_errors_02.py

raise HTTPException(

 status.HTTP_400_BAD_REQUEST,

 detail={

 "message": "Passwords don't match.",

 "hints": [

 "Check the caps lock on your keyboard",

 "Try to make the password visible by clicking on
the eye icon to check your typing",

],

 },

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_raise_
errors_02.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_raise_errors_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_raise_errors_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_raise_errors_02.py

102 Developing a RESTful API with FastAPI

And that's it! You now have the power to raise errors and give meaningful information
about them to the end user.

So far, all of the methods you have seen should cover the majority of cases you'll
encounter during the development of an API. Sometimes, however, you'll have scenarios
where you'll need to build a complete HTTP response yourself. This is the subject of the
next section.

Building a custom response
Most of the time, you'll let FastAPI take care of building an HTTP response by simply
providing it with some data to serialize. Under the hood, FastAPI uses a subclass of
Response, called JSONResponse. Quite predictably, this response class takes care of
serializing some data to JSON and adding the correct Content-Type header.

However, there are other response classes that cover common cases:

•	 HTMLResponse: This can be used to return an HTML response.

•	 PlainTextResponse: This can be used to return raw text.

•	 RedirectResponse: This can be used to make a redirection.

•	 StreamingResponse: This can be used to stream a flow of bytes.

•	 FileResponse: This can be used to automatically build a proper file response
given the path of a file on the local disk.

You have two ways of using them: either setting the response_class argument on the
path decorator or directly returning a response instance.

Using the response_class argument
This is the simplest and most straightforward way to return a custom response. Indeed, by
doing this, you won't even have to create a class instance: you'll just have to return the data
as you do usually for standard JSON responses.

This is well suited for HTMLResponse and PlainTextResponse:

chapter3_custom_response_01.py

from fastapi import FastAPI

from fastapi.responses import HTMLResponse, PlainTextResponse

app = FastAPI()

Customizing the response 103

@app.get("/html", response_class=HTMLResponse)

async def get_html():

 return """

 <html>

 <head>

 <title>Hello world!</title>

 </head>

 <body>

 <h1>Hello world!</h1>

 </body>

 </html>

 """

@app.get("/text", response_class=PlainTextResponse)

async def text():

 return "Hello world!"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_
response_01.py

By setting the response_class argument on the decorator, you can change the class
that will be used by FastAPI to build the response. Then, you can simply return valid
data for this kind of response. Notice that the responses classes are imported through the
fastapi.responses module.

The nice thing about this is that you can combine this option with the ones we saw in the
Path operation parameters section. Using the Response parameter that we described in
the The response parameter section also works perfectly!

For the other response classes, however, you'll have to build the instance yourself and then
return it.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_01.py

104 Developing a RESTful API with FastAPI

Making a redirection
As mentioned earlier, RedirectResponse is a class that helps you build an HTTP
redirection, which simply is an HTTP response with a Location header pointing to
the new URL and a status code in the 3xx range. It simply expects the URL you wish to
redirect to as the first argument:

chapter3_custom_response_02.py

@app.get("/redirect")

async def redirect():

 return RedirectResponse("/new-url")

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_
response_02.py

By default, it'll use the 307 Temporary Redirect status code, but you can change
this through the status_code argument:

chapter3_custom_response_03.py

@app.get("/redirect")

async def redirect():

 return RedirectResponse("/new-url", status_code=status.
HTTP_301_MOVED_PERMANENTLY)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_
response_03.py

Serving a file
Now, let's examine how FileResponse works. This will be useful if you wish to propose
some files to download. This response class will automatically take care of opening the file
on disk and streaming the bytes along with the proper HTTP headers.

Let's take a look at how we can use an endpoint to download a picture of a cat. You'll find
this in the code examples repository at https://github.com/PacktPublishing/
Building-Data-Science-Applications-with-FastAPI/blob/main/
assets/cat.jpg.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/cat.jpg
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/cat.jpg
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/cat.jpg

Customizing the response 105

For this class to work, first, you'll need another extra dependency, aiofiles:

$ pip install aiofiles

Then, we just need to return an instance of FileResponse with the path of the file we
want to serve as the first argument:

chapter3_custom_response_04.py

@app.get("/cat")

async def get_cat():

 root_directory = path.dirname(path.dirname(__file__))

 picture_path = path.join(root_directory, "assets", "cat.
jpg")

 return FileResponse(picture_path)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_
response_04.py

The os.path module
Python provides a module to help you work with file paths, os.path. It's
the recommended way to manipulate paths, as it takes care of handling them
correctly depending on the OS you are running. You can read about the
functions of this module in the official documentation at https://docs.
python.org/3/library/os.path.html.

Let's examine what the HTTP response looks like:

$ http GET http://localhost:8000/cat

HTTP/1.1 200 OK

content-length: 71457

content-type: image/jpeg

date: Thu, 01 Apr 2021 06:50:34 GMT

etag: 243d3de0ca74453f0c2d120e2f064e58

last-modified: Mon, 29 Mar 2021 06:40:29 GMT

server: uvicorn

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_04.py
https://docs.python.org/3/library/os.path.html
https://docs.python.org/3/library/os.path.html

106 Developing a RESTful API with FastAPI

+---+

| NOTE: binary data not shown in terminal |

+---+

As you can see, we have the right Content-Length and Content-Type headers for
our image. The response even sets the Etag and Last-Modified headers so that the
browser can properly cache the resource. HTTPie doesn't show the binary data in the
body; however, if you open the endpoint in your browser, you'll see the cat appear!

Custom responses
Finally, if you really have a case that's not covered by the provided classes, you always have
the option to use the Response class to build exactly what you need. With this class, you
can set everything, including the body content and the headers.

The following example shows you how to return an XML response:

chapter3_custom_response_05.py

@app.get("/xml")

async def get_xml():

 content = """<?xml version="1.0" encoding="UTF-8"?>

 <Hello>World</Hello>

 """

 return Response(content=content, media_type="application/
xml")

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_
response_05.py

You can view the complete list of arguments in the Starlette documentation at https://
www.starlette.io/responses/#response.

Path operation parameters and response parameters won't have any effect
Bear in mind that when you directly return a Response class (or one of
its subclasses), the parameters you set on the decorator or the operations
you make on the injected Response object won't have any effect. They are
completely overridden by the Response object you return. If you need to
customize the status code or the headers, then use the status_code and
headers arguments when instantiating your class.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3/chapter3_custom_response_05.py
https://www.starlette.io/responses/#response
https://www.starlette.io/responses/#response

Structuring a bigger project with multiple routers 107

Well done! Now you have all of the knowledge required to create the response you need
for your REST API. You've learned that FastAPI comes with sensible defaults that can help
you create proper JSON responses in no time. At the same time, it also gives you access to
more advanced objects and options to allow you to make custom responses.

So far, all of the examples we've looked at have been quite short and simple. However,
when you're developing a real application, you'll probably have dozens of endpoints and
models. In the final section of this chapter, we'll examine how to organize such projects to
make them modular and easier to maintain.

Structuring a bigger project with multiple
routers
When building a real-world web application, you're likely to have lot of code and logic:
data models, API endpoints, and services. Of course, all of those can't live in a single file;
we have to structure the project so that it's easy to maintain and evolve.

FastAPI supports the concept of routers. They are "sub-parts" of your API and are usually
dedicated to a single type of object, such as users or posts, that are defined in their own file.
You can then include them in your main FastAPI app so that it can route it accordingly.

In this section, we'll explore how to use routers and how you can structure a FastAPI
project. While this structure is one way to do it, and works quite well, it's not a golden rule
and can be adapted to your own needs.

In the code examples repository, there is a folder named chapter3_project,
which contains a sample project with this structure: https://github.com/
PacktPublishing/Building-Data-Science-Applications-with-
FastAPI/tree/main/chapter3_project.

Here is the project structure:

.

└── chapter3_project/

 ├── models/

 │ ├── __init__.py

 │ ├── post.py

 │ └── user.py

 ├── routers/

 │ ├── __init__.py

 │ ├── posts.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter3_project
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter3_project
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter3_project

108 Developing a RESTful API with FastAPI

 │ └── users.py

 ├── __init__.py

 ├── app.py

 └── db.py

Here, you can see that we chose to have packages that contain pydantic models on one
side and routers on the other side. At the root of the project, we have a file named app.py
that will expose the main FastAPI application. The db.py file defines a dummy database
for the sake of the example.

The __init__.py files are there to properly define our directories as Python packages.
You can read more details about this in the Packages, modules, and imports section of
Chapter 2, Python Programming Specificities.

First, let's examine what a FastAPI router looks like:

users.py

from typing import List

from fastapi import APIRouter, HTTPException, status

from chapter3_project.models.user import User, UserCreate

from chapter3_project.db import db

router = APIRouter()

@router.get("/")

async def all() -> List[User]:

 return list(db.users.values())

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3_project/routers/
users.py

As you can see here, instead of instantiating the FastAPI class, you instantiate the
APIRouter class. Then, you can use it exactly the same way to decorate your path
operation functions.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3_project/routers/users.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3_project/routers/users.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3_project/routers/users.py

Structuring a bigger project with multiple routers 109

Also, notice that we import the pydantic models from the relevant module in the
models package.

We won't go into detail about the logic of the endpoints, but we invite you to read about it.
It uses all the FastAPI features that we've explored so far.

Now, let's take a look at how to import this router and include it within a FastAPI
application:

app.py

from fastapi import FastAPI

from chapter3_project.routers.posts import router as posts_
router

from chapter3_project.routers.users import router as users_
router

app = FastAPI()

app.include_router(posts_router, prefix="/posts",
tags=["posts"])

app.include_router(users_router, prefix="/users",
tags=["users"])

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter3_project/app.py

As usual, we instantiate the FastAPI class. Then, we use the include_router method
to add our sub-router. You can see that we simply imported the router from its relevant
module and used it as the first argument of include_router. Notice that we used the
synta as while importing. Since both users and posts routers are named
the same inside their module, this syntax allows us to alias their name and, thus, avoid
name collision.

Additionally, you can see that we set the keyword argument as prefix. This allows us
to prefix the path of all the endpoints of this router. This way, you don't have to hardcode
it in the router logic and can easily change it for the whole router. It can also be used to
provide versioned paths of your API, such as /v1.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3_project/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter3_project/app.py

110 Developing a RESTful API with FastAPI

Finally, the tags argument helps you to group endpoints in the interactive
documentation for better readability. By doing this, the posts and users endpoints will
be clearly separated in the documentation.

And that's all you need to do! You can run this whole application, as usual, with uvicorn:

$ uvicorn chapter3_project.app:app

If you open the interactive documentation at http://localhost:8000/docs,
you'll see that all the routes are there, grouped by the tags we specified when including
the router:

Figure 3.3 – Tagged routers in the interactive documentation

http://localhost:8000/docs

Summary 111

Once again, you can see that FastAPI is both powerful and very lightweight to use. The
good thing about routers is that you can even nest them, that include sub-routers in
routers that include other routers themselves. Therefore, you can have a quite complex
routing hierarchy with very low effort.

Summary
Well done! You're now acquainted with all the basic features of FastAPI. Throughout this
chapter, you've learned how to create and run API endpoints where you can validate and
retrieve data from all parts of an HTTP request: the path, the query, the parameters, the
headers, and, of course, the body. You've also learned how to tailor the HTTP response
to your needs, whether it is a simple JSON response, an error, or a file to download.
Finally, you looked at how to define separate API routers and include them in your main
application to keep a clean and maintainable project structure.

You have enough knowledge now to start building your own API with FastAPI. In the
next chapter, we'll focus on pydantic models. You now know that they are at the core of
the data validation features of FastAPI, so it's crucial to fully understand how they work
and how to manipulate them efficiently.

4
Managing Pydantic

Data Models in
FastAPI

This chapter will cover in more detail the definition of a data model with Pydantic, the
underlying data validation library used by FastAPI. We'll explain how to implement
variations of the same model without repeating the same code again and again, thanks to
class inheritance. Finally, we'll show how to implement custom data validation logic into
Pydantic models.

In this chapter, we're going to cover the following main topics:

•	 Defining models and their field types with Pydantic

•	 Creating model variations with class inheritance

•	 Adding custom data validation with Pydantic

•	 Working with Pydantic objects

114 Managing Pydantic Data Models in FastAPI

Technical requirements
To run the code examples, you'll need a Python virtual environment, which we set up in
Chapter 1, Python Development Environment Setup.

You'll find all the code examples of this chapter in the dedicated GitHub repository
at https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter4.

Defining models and their field types
with Pydantic
Pydantic is a powerful library for defining data models using Python classes and type
hints. This approach makes those classes completely compatible with static type checking.
Besides, since there are regular Python classes, we can use inheritance and also define our
very own methods to add custom logic.

In Chapter 3, Developing a RESTful API with FastAPI, you learned the basics of defining a
data model with Pydantic: you have to define a class inheriting from BaseModel and list
all the fields as class properties, each one with a proper type hint to enforce their type.

In this section, we'll focus on model definition and see all the possibilities we have to
define the fields.

Standard field types
We'll begin by defining fields with standard types, which only involve simple type hints.
Let's review a simple model representing information about a person. You can see this in
the following code sample:

chapter4_standard_field_types_01.py

from pydantic import BaseModel

class Person(BaseModel):

 first_name: str

 last_name: str

 age: int

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
standard_field_types_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter4
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter4
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_01.py

Defining models and their field types with Pydantic 115

As we said, you just have to write the name of the fields and type-hint it with the intended
type. Of course, we are not limited to scalar types: we can actually use compound types
such as lists, tuples, or datetime classes. In the following example, you can see a model
using those more complex types:

chapter4_standard_field_types_02.py

from datetime import date

from enum import Enum

from typing import List

from pydantic import BaseModel, ValidationError

class Gender(str, Enum):

 MALE = "MALE"

 FEMALE = "FEMALE"

 NON_BINARY = "NON_BINARY"

class Person(BaseModel):

 first_name: str

 last_name: str

 gender: Gender

 birthdate: date

 interests: List[str]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
standard_field_types_02.py

There are three things to notice in this example.

First, we used the standard Python Enum class as a type for the gender field. This allows
us to specify a set of valid values. If we input a value that's not in this enumeration,
Pydantic will raise an error, as illustrated in the following example:

chapter4_standard_field_types_02.py

Invalid gender

try:

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py

116 Managing Pydantic Data Models in FastAPI

 Person(

 first_name="John",

 last_name="Doe",

 gender="INVALID_VALUE",

 birthdate="1991-01-01",

 interests=["travel", "sports"],

)

except ValidationError as e:

 print(str(e))

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
standard_field_types_02.py

If you run the preceding example, you'll get this output:

1 validation error for Person

gender

 value is not a valid enumeration member; permitted:
'MALE', 'FEMALE', 'NON_BINARY' (type=type_error.enum; enum_
values=[<Gender.MALE: 'MALE'>, <Gender.FEMALE: 'FEMALE'>,
<Gender.NON_BINARY: 'NON_BINARY'>])

Actually, this is exactly what we already did in Chapter 3, Developing a RESTful API with
FastAPI, to limit the allowed values of the path parameter.

Then, we used the date Python class as a type for the birthdate field. Pydantic is
able to automatically parse dates and datetimes given as an International Organization
for Standardization (ISO) format string or a timestamp integer and instantiate a proper
date or datetime object. Of course, if the parsing fails, you'll also get an error. You can
experiment with this in the following example:

chapter4_standard_field_types_02.py

Invalid birthdate

try:

 Person(

 first_name="John",

 last_name="Doe",

 gender=Gender.MALE,

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py

Defining models and their field types with Pydantic 117

 birthdate="1991-13-42",

 interests=["travel", "sports"],

)

except ValidationError as e:

 print(str(e))

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
standard_field_types_02.py

And here is the output:

1 validation error for Person

birthdate

 invalid date format (type=value_error.date)

Finally, we defined interests as a list of strings. Once again, Pydantic will check if the
field is a valid list of strings.

Obviously, if everything is okay, we get a Person instance and have access to the properly
parsed fields. This is what we show in the following code sample:

chapter4_standard_field_types_02.py

Valid

person = Person(

 first_name="John",

 last_name="Doe",

 gender=Gender.MALE,

 birthdate="1991-01-01",

 interests=["travel", "sports"],

)

first_name='John' last_name='Doe' gender=<Gender.
MALE: 'MALE'> birthdate=datetime.date(1991, 1, 1)
interests=['travel', 'sports']

print(person)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
standard_field_types_02.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_02.py

118 Managing Pydantic Data Models in FastAPI

As you see, this is quite powerful, and we can have quite complex field types. But that's
not all: fields can be Pydantic models themselves, allowing you to have sub-objects! In the
following code example, we expand the previous one to add an address field:

chapter4_standard_field_types_03.py

class Address(BaseModel):

 street_address: str

 postal_code: str

 city: str

 country: str

class Person(BaseModel):

 first_name: str

 last_name: str

 gender: Gender

 birthdate: date

 interests: List[str]

 address: Address

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
standard_field_types_03.py

We just have to define another Pydantic model and use it as a type hint. Now, you can
either instantiate a Person instance with an already valid Address instance or, even
better, with a dictionary. In this case, Pydantic will automatically parse it and validate it
against the address model.

In the following code sample, we try to input an invalid address:

chapter4_standard_field_types_03.py

try:

 Person(

 first_name="John",

 last_name="Doe",

 gender="INVALID_VALUE",

 birthdate="1991-01-01",

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py

Defining models and their field types with Pydantic 119

 interests=["travel", "sports"],

 address={

 "street_address": "12 Squirell Street",

 "postal_code": "424242",

 "city": "Woodtown",

 # Missing country

 }

)

except ValidationError as e:

 print(str(e))

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
standard_field_types_03.py

This will generate the following validation error:

1 validation error for Person

address -> country

 field required (type=value_error.missing)

Pydantic clearly shows the missing field in the sub-object. Once again, if everything
goes well, we get a Person instance and its associated Address, as you can see in the
following extract:

chapter4_standard_field_types_03.py

Valid

person = Person(

 first_name="John",

 last_name="Doe",

 gender=Gender.MALE,

 birthdate="1991-01-01",

 interests=["travel", "sports"],

 address={

 "street_address": "12 Squirell Street",

 "postal_code": "424242",

 "city": "Woodtown",

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py

120 Managing Pydantic Data Models in FastAPI

 "country": "US",

 },

)

print(person)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
standard_field_types_03.py

Optional fields and default values
Up to now, we've assumed that each field had to be provided when instantiating the
model. Quite often, however, there are values that we want to be optional because they
may not be relevant for each object instance. Sometimes, we also wish to set a default
value for a field when it's not specified.

As you may have guessed, this is done quite simply, with the Optional typing
annotation, as illustrated in the following code sample:

chapter4_optional_fields_default_values_01.py

from typing import Optional

from pydantic import BaseModel

class UserProfile(BaseModel):

 nickname: str

 location: Optional[str] = None

 subscribed_newsletter: bool = True

user = UserProfile(nickname="jdoe")

print(user) # nickname='jdoe' location=None subscribed_
newsletter=True

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
optional_fields_default_values_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_standard_field_types_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_optional_fields_default_values_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_optional_fields_default_values_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_optional_fields_default_values_01.py

Defining models and their field types with Pydantic 121

When defining a field with the Optional type hint, it accepts a None value. As you see
in the preceding code sample, the default value can be simply assigned by putting the
value after an equals sign.

Be careful, though: don't assign default values such as this for dynamic types such as
datetimes. By doing so, the datetime instantiation will be evaluated only once when the
model is imported. The effect of this is that all the objects you'll instantiate will then
share the same value instead of having a fresh value. You can observe this behavior in the
following example:

chapter4_optional_fields_default_values_02.py

class Model(BaseModel):

 # Don't do this.

 # This example shows you why it doesn't work.

 d: datetime = datetime.now()

o1 = Model()

print(o1.d)

time.sleep(1) # Wait for a second

o2 = Model()

print(o2.d)

print(o1.d < o2.d) # False

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
optional_fields_default_values_02.py

Even though we waited for 1 second between the instantiation of o1 and o2, the d datetime
is the same! This means that the datetime is evaluated once when the class is imported.

You can have the same kind of problem if you want to have a default list, such as l:
List[str] = ["a", "b", "c"]. Notice that this is true for every Python object,
not only Pydantic models, so you should bear this in mind.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_optional_fields_default_values_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_optional_fields_default_values_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_optional_fields_default_values_02.py

122 Managing Pydantic Data Models in FastAPI

So, how to assign dynamic default values? Fortunately, Pydantic provides a Field
function that allows us to set some advanced options on our fields, including one to set
a factory for creating dynamic values. Before showing you this, we'll first introduce the
Field function.

Field validation
In Chapter 3, Developing a RESTful API with FastAPI, we showed how to apply some
validation to the request parameters to check if a number was in a certain range or if a
string was matching a regular expression (regex). Actually, those options directly come
from Pydantic! We can use the same ones to apply validation to the fields of a model.

To do this, we'll use the Field function from Pydantic and use its result as the default
value of the field. In the following example, we define a Person model with the
first_name and last_name required properties, which should be at least three
characters long, and an optional age property, which should be an integer between 0
and 120. We show the implementation of this model in the following code sample:

chapter4_fields_validation_01.py

from typing import Optional

from pydantic import BaseModel, Field, ValidationError

class Person(BaseModel):

 first_name: str = Field(..., min_length=3)

 last_name: str = Field(..., min_length=3)

 age: Optional[int] = Field(None, ge=0, le=120)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_fields_
validation_01.py

As you see, the syntax is very similar to the one we saw for Path, Query, and Body.
The first positional argument defines the default value for the field. If the field is required,
we use the ellipsis Then, the keyword arguments are there to set options for the field,
including some basic validation.

You can view a complete list of the arguments accepted by Field in the official
Pydantic documentation, at https://pydantic-docs.helpmanual.io/usage/
schema/#field-customisation.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_fields_validation_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_fields_validation_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_fields_validation_01.py
https://pydantic-docs.helpmanual.io/usage/schema/#field-customisation
https://pydantic-docs.helpmanual.io/usage/schema/#field-customisation

Defining models and their field types with Pydantic 123

Dynamic default values
In the previous section, we warned you about setting dynamic values as defaults.
Fortunately, Pydantic provides the default_factory argument on the Field
function to cover this use case. This argument expects you to pass a function that will be
called during model instantiation. Thus, the resulting object will be evaluated at runtime
each time you create a new object. You can see how to use it in the following example:

chapter4_fields_validation_02.py

from datetime import datetime

from typing import List

from pydantic import BaseModel, Field

def list_factory():

 return ["a", "b", "c"]

class Model(BaseModel):

 l: List[str] = Field(default_factory=list_factory)

 d: datetime = Field(default_factory=datetime.now)

 l2: List[str] = Field(default_factory=list)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_fields_
validation_02.py

You simply have to pass a function to this argument. Don't put arguments on it—it'll be
Pydantic that will automatically call the function for you when instantiating a new object.
If you need to call a function with specific arguments, you'll have to wrap it into your own
function, as we did for list_factory.

Notice also that the first positional argument used for the default value (such as None or
...) is completely omitted here. This makes sense: it's not consistent to have both a default
value and a factory. Pydantic will raise an error if you set those two arguments together.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_fields_validation_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_fields_validation_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_fields_validation_02.py

124 Managing Pydantic Data Models in FastAPI

Validating email addresses and URLs with
Pydantic types
For convenience, Pydantic provides some classes to use as field types to validate some
common patterns such as email addresses or Uniform Resource Locators (URLs).

In the following example, we'll use EmailStr and HttpUrl to validate an email address
and a HyperText Transfer Protocol (HTTP) URL.

For EmailStr to work, you'll need an optional dependency, email-validator,
which you can install with the following command:

$ pip install email-validator

Those classes work like any other type or class: just use them as a type hint for your field.
You can see this in the following extract:

chapter4_pydantic_types_01.py

from pydantic import BaseModel, EmailStr, HttpUrl,
ValidationError

class User(BaseModel):

 email: EmailStr

 website: HttpUrl

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
pydantic_types_01.py

In the following example, we check that the email address is correctly validated:

chapter4_pydantic_types_01.py

Invalid email

try:

 User(email="jdoe", website="https://www.example.com")

except ValidationError as e:

 print(str(e))

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
pydantic_types_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py

Defining models and their field types with Pydantic 125

You will see the following output:

1 validation error for User

email

 value is not a valid email address (type=value_error.email)

We also check that the URL is correctly parsed, as follows:

chapter4_pydantic_types_01.py

Invalid URL

try:

 User(email="jdoe@example.com", website="jdoe")

except ValidationError as e:

 print(str(e))

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
pydantic_types_01.py

You will see the following output:

1 validation error for User

website

 invalid or missing URL scheme (type=value_error.url.scheme)

If you have a look at a valid example, shown next, you'll see that the URL is parsed into an
object, giving you access to the different parts of it, such as the scheme or hostname:

chapter4_pydantic_types_01.py

Valid

user = User(email=»jdoe@example.com», website=»https://www.
example.com»)

email='jdoe@example.com' website=HttpUrl('https://www.
example.com', scheme='https', host='www.example.com',
tld='com', host_type='domain')

print(user)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_
pydantic_types_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_pydantic_types_01.py

126 Managing Pydantic Data Models in FastAPI

Pydantic provides a quite big set of types that can help you in various situations. We invite
you to review a full list of these in the official documentation, at https://pydantic-
docs.helpmanual.io/usage/types/#pydantic-types.

You now have a better view of how to define finely your Pydantic models, by using more
advanced types or leveraging the validation features. As we said, those models are at
the heart of FastAPI, and you'll probably have to define several variations for the same
entity to account for several situations. In the next section, we'll show how to do that with
minimum repetition.

Creating model variations with class
inheritance
In Chapter 3, Developing a RESTful API with FastAPI, we saw a case where we needed to
define two variations of a Pydantic model in order to split between the data we want to
store in the backend and the data we want to show to the user. This is a common pattern
in FastAPI: you define one model for creation, one for the response and one for the data to
store in the database.

We show this basic approach in the following sample:

chapter4_model_inheritance_01.py

from pydantic import BaseModel

class PostCreate(BaseModel):

 title: str

 content: str

class PostPublic(BaseModel):

 id: int

 title: str

 content: str

class PostDB(BaseModel):

 id: int

 title: str

 content: str

 nb_views: int = 0

https://pydantic-docs.helpmanual.io/usage/types/#pydantic-types
https://pydantic-docs.helpmanual.io/usage/types/#pydantic-types

Creating model variations with class inheritance 127

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_model_
inheritance_01.py

We have three models here, covering three situations. These are outlined as follows:

•	 PostCreate will be used for a POST endpoint to create a new post. We expect
the user to give the title and the content; however, the identifier (ID) will be
automatically determined by the database.

•	 PostPublic will be used when we retrieve the data of a post. We want its title and
content, of course, but also its associated ID in the database.

•	 PostDB will carry all the data we wish to store in the database. Here, we also want
to store the number of views, but we want to keep this secret to make our own
statistics internally.

You can see here that we are repeating ourselves quite a lot, especially with the title and
content fields. In bigger examples with lots of fields and lots of validation options, this
could quickly become unmanageable.

The solution here is to leverage model inheritance to avoid this. The approach is simple:
identify the fields that are common to every variation and put them in a model that will
be used as a base for every other. Then, you only have to inherit from that model to create
your variations and add the specific fields. In the following example, we see what our
previous example looks like with this method:

chapter4_model_inheritance_02.py

from pydantic import BaseModel

class PostBase(BaseModel):

 title: str

 content: str

class PostCreate(PostBase):

 pass

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_01.py

128 Managing Pydantic Data Models in FastAPI

class PostPublic(PostBase):

 id: int

class PostDB(PostBase):

 id: int

 nb_views: int = 0

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_model_
inheritance_02.py

Now, whenever you need to add a field for the whole entity, all you have to do is to add it
to the PostBase model.

It's also very convenient if you wish to define methods on your model. Remember that
Pydantic models are regular Python classes, so you can implement as many methods as
you wish!

chapter4_model_inheritance_03.py

class PostBase(BaseModel):

 title: str

 content: str

 def excerpt(self) -> str:

 return f"{self.content[:140]}..."

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_model_
inheritance_03.py

Defining the excerpt method on PostBase means that this will be available in every
model variation.

While not strictly required, this inheritance approach is strongly recommended to avoid
code duplication and, ultimately, bugs. We'll see in the next section that it'll make even
more sense with custom validation methods.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_model_inheritance_03.py

Adding custom data validation with Pydantic 129

Adding custom data validation with Pydantic
Up to now, we've seen how to apply basic validation to our models, through the Field
arguments or the custom types provided by Pydantic. In a real-world project, though,
you'll probably need to add your own custom validation logic for your specific case.
Pydantic allows this by defining validators, which are methods on the model that can be
applied at a field level or an object level.

Applying validation at a field level
This is the most common case: have a validation rule for a single field. To define it in
Pydantic, we'll just have to write a static method on our model and decorate it with
the validator decorator. As a reminder, decorators are syntactic sugar, allowing the
wrapping of a function or a class with common logic, without compromising readability.

The following example checks a birth date by verifying that the person is not more than
120 years old:

chapter4_custom_validation_01.py

from datetime import date

from pydantic import BaseModel, validator

class Person(BaseModel):

 first_name: str

 last_name: str

 birthdate: date

 @validator("birthdate")

 def valid_birthdate(cls, v: date):

 delta = date.today() - v

 age = delta.days / 365

 if age > 120:

 raise ValueError("You seem a bit too old!")

 return v

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_
validation_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_01.py

130 Managing Pydantic Data Models in FastAPI

As you see here, the validator is a static class method (the first argument, cls,
being the class itself), with the value to validate as the v argument. It's decorated by
the validator decorator, which expects the name of the argument to validate as the
first argument.

Pydantic expects two things for this method, detailed as follows:

•	 If the value is not valid according to your logic, you should raise a ValueError
error with an explicit error message.

•	 Otherwise, you should return the value that will be assigned in the model. Notice
that it doesn't need to be the same as the input value: you can very well change it
to fit your needs. That's actually what we'll do in an upcoming section, Applying
validation before Pydantic parsing.

Applying validation at an object level
It happens quite often that the validation of one field is dependent on another—for
example, to check if a password confirmation matches the password or to enforce a field
to be required in certain circumstances. To allow this kind of validation, we need to access
the whole object data. For this, Pydantic provides the root_validator decorator,
which is illustrated in the following code example:

chapter4_custom_validation_02.py

from pydantic import BaseModel, EmailStr, ValidationError,
root_validator

class UserRegistration(BaseModel):

 email: EmailStr

 password: str

 password_confirmation: str

 @root_validator()

 def passwords_match(cls, values):

 password = values.get("password")

 password_confirmation = values.get("password_
confirmation")

 if password != password_confirmation:

Adding custom data validation with Pydantic 131

 raise ValueError("Passwords don't match")

 return values

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_
validation_02.py

The usage of this decorator is similar to the validator decorator. The static class
method is called along with the values argument, which is a dictionary containing all
the fields. Thus, you can retrieve each one of them and implement your logic.

Once again, Pydantic expects two things for this method, outlined as follows:

•	 If the values are not valid according to your logic, you should raise a ValueError
error with an explicit error message.

•	 Otherwise, you should return a values dictionary that will be assigned to the
model. Notice that you could change some values in this dictionary to fit your needs.

Applying validation before Pydantic parsing
By default, your validators are run after Pydantic has done its parsing work. This means
that the value you get already conforms to the type of field you specified. If the type is
incorrect, Pydantic raises an error without calling your validator.

However, you may sometimes wish to provide some custom parsing logic that allows you
to transform input values that would have been incorrect for the type you set. In that case,
you would need to run your validator before the Pydantic parser: this is the purpose of the
pre argument on validator.

In the following example, we show how to transform a string with values separated by a
comma into a proper list:

chapter4_custom_validation_03.py

from typing import List

from pydantic import BaseModel, validator

class Model(BaseModel):

 values: List[int]

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_02.py

132 Managing Pydantic Data Models in FastAPI

 @validator("values", pre=True)

 def split_string_values(cls, v):

 if isinstance(v, str):

 return v.split(",")

 return v

m = Model(values="1,2,3")

print(m.values) # [1, 2, 3]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_
validation_03.py

You see here that our validator first checks whether we have a string. If we do, we split a
comma-separated string and return the resulting list; otherwise, we directly return the
value. Pydantic will run its parsing logic after, so you can still be sure that an error will be
raised if v is an invalid value.

Working with Pydantic objects
When developing API endpoints with FastAPI, you'll likely get a lot of Pydantic model
instances to handle. It's then up to you to implement the logic to make a link between those
objects and your services, such as your database or your machine learning (ML) model.
Fortunately, Pydantic provides methods to make this very easy. We'll review common use
cases that will be useful for you during development.

Converting an object into a dictionary
This is probably the action you'll perform the most on a Pydantic object: convert it to a
raw dictionary that'll be easy to send to another API or use in a database, for example.
You just have to call the dict method on the object instance.

The following example reuses the Person and Address models we saw in the Standard
field types section of this chapter:

chapter4_working_pydantic_objects_01.py

person = Person(

 first_name="John",

 last_name="Doe",

 gender=Gender.MALE,

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_custom_validation_03.py

Working with Pydantic objects 133

 birthdate="1991-01-01",

 interests=["travel", "sports"],

 address={

 "street_address": "12 Squirell Street",

 "postal_code": "424242",

 "city": "Woodtown",

 "country": "US",

 },

)

person_dict = person.dict()

print(person_dict["first_name"]) # "John"

print(person_dict["address"]["street_address"]) # "12 Squirell
Street"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_working_
pydantic_objects_01.py

As you see, calling dict is enough to transform the whole data into a dictionary.
Sub-objects are also recursively converted: the address key points itself to a dictionary
with the address properties.

Interestingly, the dict method supports some arguments, allowing you to select a subset
of properties to be converted. You can either state the ones you want to be included or the
ones you want to exclude, as you can see in the following sample:

chapter4_working_pydantic_objects_02.py

person_include = person.dict(include={"first_name", "last_
name"})

print(person_include) # {"first_name": "John", "last_name":
"Doe"}

person_exclude = person.dict(exclude={"birthdate",
"interests"})

print(person_exclude)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_working_
pydantic_objects_02.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_02.py

134 Managing Pydantic Data Models in FastAPI

The include and exclude arguments expect a set with the keys of the fields you want
to include or exclude.

For nested structures such as address here, you can also use a dictionary to specify
which sub-field you want to include or exclude, as illustrated in the following example:

chapter4_working_pydantic_objects_02.py

person_nested_include = person.dict(

 include={

 "first_name": ...,

 "last_name": ...,

 "address": {"city", "country"},

 }

)

{"first_name": "John", "last_name": "Doe", "address":
{"city": "Woodtown", "country": "US"}}

print(person_nested_include)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_working_
pydantic_objects_02.py

The resulting address dictionary only contains the city and the country. Notice that
when using this syntax, scalar fields such as first_name or last_name have to be
associated with the ellipsis

If you use a conversion quite often, it can be interesting to put it in a method so that you
can reuse it at will, as illustrated in the following example:

chapter4_working_pydantic_objects_03.py

class Person(BaseModel):

 first_name: str

 last_name: str

 gender: Gender

 birthdate: date

 interests: List[str]

 address: Address

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_02.py

Working with Pydantic objects 135

 def name_dict(self):

 return self.dict(include={"first_name", "last_name"})

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_working_
pydantic_objects_03.py

Creating an instance from a sub-class object
In the earlier section, Creating model variations with class inheritance, we studied
the common pattern of having specific model classes depending on the situation. In
particular, you'll have a model dedicated for the creation endpoint, with only the required
fields for creation, and a database model with all the fields we want to store.

Let's take again the Post example, as follows:

chapter4_working_pydantic_objects_04.py

class PostBase(BaseModel):

 title: str

 content: str

class PostCreate(PostBase):

 pass

class PostPublic(PostBase):

 id: int

class PostDB(PostBase):

 id: int

 nb_views: int = 0

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_working_
pydantic_objects_04.py

In our path operation function for our create endpoint, we'll thus get a PostCreate
instance with only title and content. However, we need to build a proper PostDB
instance before storing it in the database.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_04.py

136 Managing Pydantic Data Models in FastAPI

A convenient way to do this is to jointly use the dict method and the unpacking syntax.
In the following example, we implemented a creation endpoint using this approach:

chapter4_working_pydantic_objects_04.py

@app.post("/posts", status_code=status.HTTP_201_CREATED,
response_model=PostPublic)

async def create(post_create: PostCreate):

 new_id = max(db.posts.keys() or (0,)) + 1

 post = PostDB(id=new_id, **post_create.dict())

 db.posts[new_id] = post

 return post

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_working_
pydantic_objects_04.py

As you see, the path operation function would give us a valid PostCreate object. Then,
we want to transform it into a PostDB object.

We first determine the missing id property, which is given to us by the database. Here, we
use a dummy database based on a dictionary, so we simply take the maximum key already
present in the database and increment it. In a real-world situation, this would have been
automatically determined by the database.

The most interesting line here is the PostDB instantiation. You see that we first assign the
missing fields by the keyword argument and then unpack the dictionary representation
of post_create. As a reminder, the effect of ** in a function call is to transform
a dictionary such as {"title": "Foo", "content": "Bar"} into keyword
arguments such as this: title="Foo", content="Bar". It's a very convenient and
dynamic approach to set all the fields we already have into our new model.

Notice also that we set the response_model argument on the path operation
decorator. We already explained this in Chapter 3, Developing a RESTful API with
FastAPI, but basically, it prompts FastAPI to build a JSON response with only the fields of
PostPublic, even though we return a PostDB instance at the end of the function.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_04.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_04.py

Working with Pydantic objects 137

Updating an instance with a partial one
In some situations, you'll want to allow partial updates. In other words, you'll allow the
end user to only send the fields they want to change to your API and omit the ones that
shouldn't change. This is the usual way of implementing a PATCH endpoint.

To do this, you would first need a special Pydantic model with all the fields marked as
optional so that no error is raised when a field is missing. Let's see what this looks like
with our Post example, as follows:

chapter4_working_pydantic_objects_05.py

class PostBase(BaseModel):

 title: str

 content: str

class PostPartialUpdate(BaseModel):

 title: Optional[str] = None

 content: Optional[str] = None

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_working_
pydantic_objects_05.py

We are now able to implement an endpoint that will accept a subset of our Post fields.
Since it's an update, we'll retrieve an existing post in the database thanks to its ID. Then,
we'll have to find a way to only update the fields in the payload and keep the others
untouched. Fortunately, Pydantic once again has this covered, with handy methods
and options.

Let's see how the implementation of such an endpoint could look in the following example:

chapter4_working_pydantic_objects_05.py

@app.patch("/posts/{id}", response_model=PostPublic)

async def partial_update(id: int, post_update:
PostPartialUpdate):

 try:

 post_db = db.posts[id]

 updated_fields = post_update.dict(exclude_unset=True)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_05.py

138 Managing Pydantic Data Models in FastAPI

 updated_post = post_db.copy(update=updated_fields)

 db.posts[id] = updated_post

 return updated_post

 except KeyError:

 raise HTTPException(status.HTTP_404_NOT_FOUND)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter4/chapter4_working_
pydantic_objects_05.py

Our path operation function takes two arguments: the id property (from the path), and a
PostPartialUpdate instance (from the body).

The first thing to do is to check if this id property exists in the database. Since we use
a dictionary for our dummy database, accessing a non-existing key will raise a
KeyError error. If this happens, we simply raise an HTTPException exception with
the 404 status code.

Now for the interesting part: updating the existing object. You see that the first thing we
do is transform PostPartialUpdate into a dictionary with the dict method. This
time, however, we set the exclude_unset argument to True. The effect of this is that
Pydantic won't output the fields that were not provided in the resulting dictionary: we
only get the fields that the user did send in the payload.

Then, on our existing post_db database instance, we call the copy method. This is a
useful method to clone a Pydantic object into another instance. The nice thing about this
method is that it even accepts an update argument. This argument expects a dictionary
with all the fields that should be updated during the copy: that's exactly what we want to
do with our updated_fields dictionary!

And that's it! We now have an updated post instance with only the changes required in
the payload. You'll probably use the exclude_unset argument and the copy method
quite often while developing with FastAPI, so be sure to keep them in mind—they'll make
your life easier!

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_05.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter4/chapter4_working_pydantic_objects_05.py

Summary 139

Summary
Congratulations! You've learned another important aspect of FastAPI: designing and
managing data models with Pydantic. You should now be confident about creating
models and applying validation at a field level, with built-in options and types, and also
by implementing your own validation methods. You also know how to apply validation at
an object level to check consistency between several fields. You also reviewed a common
pattern, leveraging model inheritance to avoid code duplication and repetition while
defining your model variations. Finally, you learned how to correctly work with Pydantic
model instances in order to transform and update them in an efficient and readable way.

You know almost all the features of FastAPI by now. There is a last very powerful one for
you to learn: dependency injections. These will allow you to define your own logic and
values to directly inject into your path operation functions, as you do for path parameters
and payload objects, which you'll be able to reuse everywhere in your project. That's the
subject of the next chapter.

5
Dependency

Injections in FastAPI
In this chapter, we'll focus on one of the most interesting parts of FastAPI: dependency
injections. You'll see that it is a powerful and readable approach to reuse logic across
your project. Indeed, it will allow you to create complex building blocks for your project
that you'll be able to use everywhere in your logic. An authentication system, a query
parameters' validator, or a rate-limiter are typical use cases for dependencies. In FastAPI,
a dependency injection can even call another one recursively, allowing you to build
high-level blocks from basic features. By the end of this chapter, you'll be able to create
your own dependencies for FastAPI and use them at several levels of your project.

In this chapter, we're going to cover the following main topics:

•	 What is dependency injection?

•	 Creating and using a function dependency

•	 Creating and using a parameterized dependency with a class

•	 Using dependencies at a path, router, and global level

142 Dependency Injections in FastAPI

Technical requirements
You'll need a Python virtual environment, as we set up in Chapter 1, Python Development
Environment Setup.

You'll find all the code examples of this chapter in the dedicated GitHub repository:
https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter5.

What is dependency injection?
Generally speaking, dependency injection is a system able to automatically instantiate
objects and the ones they depend on. The responsibility of developers is then to only
provide a declaration of how an object should be created, and let the system resolve all
the dependency chains and create the actual objects at runtime.

FastAPI allows you to declare the objects and variables you wish to have at hand only
by declaring them in the path operation function arguments. Actually, we already used
dependency injection in the previous chapters. In the following example, we use the
Header function to retrieve the user-agent header:

chapter5_what_is_dependency_injection_01.py

from fastapi import FastAPI, Header

app = FastAPI()

@app.get("/")

async def header(user_agent: str = Header(...)):

 return {"user_agent": user_agent}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_what_is_
dependency_injection_01.py

Internally, the Header function has some logic to automatically get the request object,
check for the required header, return its value, or raise an error if it's not present. From the
developer's perspective, however, we don't know how it handled the required objects for
this operation: we just ask for the value we need. That's dependency injection.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter5
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter5
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_what_is_dependency_injection_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_what_is_dependency_injection_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_what_is_dependency_injection_01.py

Creating and using a function dependency 143

Admittedly, you could reproduce this example quite easily in the function body by picking
the user-agent property in the headers dictionary of the Request object. However,
the dependency injection approach has numerous advantages over this:

•	 The intent is clear: you know what the endpoint expects in the request data without
reading the function's code.

•	 You have a clear separation of concern between the logic of the endpoint and the more
generic logic: the header retrieval and the associated error handling doesn't pollute
the rest of the logic; it's self-contained in the dependency function. Besides, it can
be reused easily in other endpoints.

•	 In the case of FastAPI, it's used to generate the OpenAPI schema so that the automatic
documentation can clearly show which parameters are expected for this endpoint.

Put another way, whenever you need utility logic to retrieve or validate data, make
security checks or call external logic that you'll need several times across your application,
a dependency is an ideal choice.

FastAPI relies heavily on this dependency injection system and encourages developers to
use it to implement their building blocks. It may be a bit puzzling if you come from other
web frameworks such as Flask or Express, but you'll surely be quickly convinced by its
power and relevance.

To convince you, we'll now see how you can create and use your very own dependency, in
the form of a function to begin with.

Creating and using a function dependency
In FastAPI, a dependency can be defined either as a function or as a callable class. In this
section, we'll focus on the functions, which are the ones you'll probably work with most of
the time.

As we said, a dependency is a way to wrap some logic that will retrieve some sub-values
or sub-objects, make something with them, and finally return a value that will be injected
into the endpoint calling it.

144 Dependency Injections in FastAPI

Let's look at a first example where we define a function dependency to retrieve the
pagination query parameters, skip and limit:

chapter5_function_dependency_01.py

async def pagination(skip: int = 0, limit: int = 10) ->
Tuple[int, int]:

 return (skip, limit)

@app.get("/items")

async def list_items(p: Tuple[int, int] = Depends(pagination)):

 skip, limit = p

 return {"skip": skip, "limit": limit}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_
function_dependency_01.py

There are two parts of this example:

•	 First, we have the dependency definition, with the pagination function. You see
that we define two arguments, skip and limit, which are integers with default
values. Those will be the query parameters on our endpoint. We define them exactly
like we would have done on a path operation function. That's the beauty of this
approach: FastAPI will recursively handle the arguments on the dependency and
match them with the request data, such as query parameters or headers, if needed.

We simply return those values as a tuple.
•	 Secondly, we have the path operation function, list_items, that uses the

pagination dependency. You see here that the usage is quite similar to what we
have done for header or body values: we define the name of our resulting argument
and we use a function result as a default value. In the case of a dependency, we use
the Depends function. Its role is to take a function in the argument and execute
it when the endpoint is called. The sub-dependencies are automatically discovered
and executed.

In the endpoint, we have the pagination directly in the form of a tuple.
Let's run this example with the following command:

$ uvicorn chapter5.chapter5_function_dependency_01:app

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_01.py

Creating and using a function dependency 145

Now, we'll try to call the /items endpoint and see whether it's able to retrieve the query
parameters. You can try this with the following HTTPie command:

$ http "http://localhost:8000/items?limit=5&skip=10"

HTTP/1.1 200 OK

content-length: 21

content-type: application/json

date: Sat, 29 May 2021 16:03:36 GMT

server: uvicorn

{

 "limit": 5,

 "skip": 10

}

The limit and skip query parameters have correctly been retrieved thanks to our
function dependency. You can also try to call the endpoint without the query parameter
and notice that it will return you the default values.

Type hint of a dependency return value
You may have noticed that we had to type hint the result of our dependency
in the path operation arguments, even though we already type hinted the
dependency function itself. Unfortunately, this is a limitation of FastAPI and
its Depends function, which isn't able to forward the type of the dependency
function. Therefore, we have to type hint the result by hand, as we did here.

And that's it! As you see, it's very simple and straightforward to create and use a
dependency in FastAPI. Of course, you can now reuse it at will in several endpoints,
as you can see in the rest of our examples:

chapter5_function_dependency_01.py

@app.get("/items")

async def list_items(p: Tuple[int, int] = Depends(pagination)):

 skip, limit = p

 return {"skip": skip, "limit": limit}

@app.get("/things")

146 Dependency Injections in FastAPI

async def list_things(p: Tuple[int, int] =
Depends(pagination)):

 skip, limit = p

 return {"skip": skip, "limit": limit}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_
function_dependency_01.py

Of course, we can do more complex things in those dependencies, just like we would in
a regular path operation function. In the following example, we add some validation to
those pagination parameters and cap the limit at 100:

chapter5_function_dependency_02.py

async def pagination(

 skip: int = Query(0, ge=0),

 limit: int = Query(10, ge=0),

) -> Tuple[int, int]:

 capped_limit = min(100, limit)

 return (skip, capped_limit)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_
function_dependency_02.py

As you can see, our dependency starts to become more complex:

•	 We added the Query function to our arguments to add a validation constraint:
now, an error 422 will be raised if skip or limit are negative integers.

•	 We ensure that the limit is, at most, 100.

The code on our path operation functions doesn't have to change: we have a clear
separation of concern between the logic of the endpoint and the more generic logic for the
pagination parameters.

Let's see another typical use of dependencies: get an object or raise a 404 error.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_02.py

Creating and using a function dependency 147

Get an object or raise a 404 error
In a REST API, you'll typically have endpoints to get, update, and delete a single object
given its identifier in the path. On each one, you'll likely have the same logic: try to
retrieve this object in the database or raise an error 404 if it doesn't exist. That's a perfect
use case for a dependency! In the following example, you'll see how to implement it:

chapter5_function_dependency_03.py

async def get_post_or_404(id: int) -> Post:

 try:

 return db.posts[id]

 except KeyError:

 raise HTTPException(status_code=status.HTTP_404_NOT_
FOUND)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_
function_dependency_03.py

The dependency definition is simple: it takes in an argument the ID of the post we want to
retrieve. It will be pulled from the corresponding path parameter. Then, we check whether
it exists in our dummy dictionary database: if it does, we return it, otherwise, we raise an
HTTPException with the status code 404.

That's the key takeaway of this example: you can raise errors in your dependencies. It's
extremely useful to check for some pre-conditions before your endpoint logic is executed.
Another typical example for this is authentication: if the endpoint requires a user to be
authenticated, we can raise a 401 error in the dependency by checking for the token or
the cookie.

Now, we can use this dependency in each of our API endpoints, as you can see in the
following example:

chapter5_function_dependency_03.py

@app.get("/posts/{id}")

async def get(post: Post = Depends(get_post_or_404)):

 return post

@app.patch("/posts/{id}")

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_03.py

148 Dependency Injections in FastAPI

async def update(post_update: PostUpdate, post: Post =
Depends(get_post_or_404)):

 updated_post = post.copy(update=post_update.dict())

 db.posts[post.id] = updated_post

 return updated_post

@app.delete("/posts/{id}", status_code=status.HTTP_204_NO_
CONTENT)

async def delete(post: Post = Depends(get_post_or_404)):

 db.posts.pop(post.id)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_
function_dependency_03.py

As you can see, we just had to define the post argument and use the Depends function
on our get_post_or_404 dependency. Then, within the path operation logic, we are
guaranteed to have our post object at hand and we can focus on our core logic, which is
now very concise. The get endpoint, for example, just has to return the object.

In this case, the only point of attention is to not forget the ID parameter in the path of
those endpoints. According to the rules of FastAPI, if you don't set this parameter in the
path, it will automatically be regarded as a query parameter, which is not what we want
here. You can find more details about this in the Path parameters section of Chapter 3,
Developing a RESTful API with FastAPI.

That's all for the function dependencies. As we said, those are the main building blocks in
a FastAPI project. In some cases, however, you'll need to have some parameters on those
dependencies, for example, with values coming from environment variables. For this, we
can define class dependencies.

Creating and using a parameterized
dependency with a class
In the previous section, we defined dependencies as regular functions, which works well
in most cases. Still, you may need to set some parameters on a dependency to finely tune
its behavior. Since the arguments of the function are set by the dependency injection
system, we can't add an argument to the function.

In the pagination example, we added some logic to cap the limit value at 100.
If we wanted to set this maximum limit dynamically, how would we do that?

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_03.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_function_dependency_03.py

Creating and using a parameterized dependency with a class 149

The solution is to create a class that will be used as a dependency. This way, we can set class
properties, with the __init__ method, for example, and use them in the logic of the
dependency itself. This logic will be defined in the __call__ method of the class. If you
remember what we learned in the Callable object section of Chapter 2, Python Programming
Specificities, you know that it makes the object callable, meaning it can be called like a
regular function. Actually, that is all that Depends requires for a dependency: being a
callable. We'll use this property to create a parameterized dependency thanks to a class.

In the following example, we reimplemented the pagination example with a class, allowing
us to set the maximum limit dynamically:

chapter5_class_dependency_01.py

class Pagination:

 def __init__(self, maximum_limit: int = 100):

 self.maximum_limit = maximum_limit

 async def __call__(

 self,

 skip: int = Query(0, ge=0),

 limit: int = Query(10, ge=0),

) -> Tuple[int, int]:

 capped_limit = min(self.maximum_limit, limit)

 return (skip, capped_limit)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_class_
dependency_01.py

As you can see, the logic in the __call__ method is the same as in the function
we defined in the previous example. The only difference here is that we can pull our
maximum limit from our class properties that we can set at the object initialization.

Then, you can simply create an instance of this class and use it as a dependency with
Depends on your path operation function, as you can see in the following code block:

chapter5_class_dependency_01.py

pagination = Pagination(maximum_limit=50)

@app.get("/items")

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_01.py

150 Dependency Injections in FastAPI

async def list_items(p: Tuple[int, int] = Depends(pagination)):

 skip, limit = p

 return {"skip": skip, "limit": limit}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_class_
dependency_01.py

Here, we hardcoded the value 50, but we could very well pull it from a configuration file
or an environment variable.

The other advantage of a class dependency is that it can maintain local values in memory.
This property can be very useful if we have to make some heavy initialization logic, such
as loading a machine learning model, for example, that we want to do only once at startup.
Then, the callable part just has to call the loaded model to make the prediction, which
should be quite fast.

Use class methods as dependencies
Even if the __call__ method is the most straightforward way to make a class
dependency, you can directly pass a method to Depends. Indeed, as we said, it simply
expects a callable as an argument, and a class method is a perfectly valid callable!

This approach can be very useful if you have common parameters or logic that you need
to reuse in slightly different cases. For example, you could have one pre-trained machine
learning model made with Scikit-learn. Before applying the decision function, you may
want to apply different pre-process steps depending on the input data.

To do this, simply write your logic in a class method and pass it to the Depends function
through the dot notation.

You can see this in the following example, where we implement another style for our
pagination dependency, with page and size parameters instead of skip and limit:

chapter5_class_dependency_02.py

class Pagination:

 def __init__(self, maximum_limit: int = 100):

 self.maximum_limit = maximum_limit

 async def skip_limit(

 self,

 skip: int = Query(0, ge=0),

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_01.py

Creating and using a parameterized dependency with a class 151

 limit: int = Query(10, ge=0),

) -> Tuple[int, int]:

 capped_limit = min(self.maximum_limit, limit)

 return (skip, capped_limit)

 async def page_size(

 self,

 page: int = Query(1, ge=1),

 size: int = Query(10, ge=0),

) -> Tuple[int, int]:

 capped_size = min(self.maximum_limit, size)

 return (page, capped_size)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_class_
dependency_02.py

The logic of the two methods is quite similar. We just look at different query parameters.
Then, on our path operation functions, we set the /items endpoint to work with the
skip/limit style, while the /things endpoint will work with the page/size style:

chapter5_class_dependency_02.py

pagination = Pagination(maximum_limit=50)

@app.get(«/items»)

async def list_items(p: Tuple[int, int] = Depends(pagination.
skip_limit)):

 skip, limit = p

 return {"skip": skip, "limit": limit}

@app.get("/things")

async def list_things(p: Tuple[int, int] = Depends(pagination.
page_size)):

 page, size = p

 return {"page": page, "size": size}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_class_
dependency_02.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_class_dependency_02.py

152 Dependency Injections in FastAPI

As you see, we only have to pass the method we wish through the dot notation on the
pagination object.

To sum up, the class dependency approach is more advanced than the function approach
but can be very useful for cases when you need to set parameters dynamically, perform
heavy initialization logic, or reuse common logic on several dependencies.

Until now, we've assumed that we care about the return value of the dependency. While
this will probably be the case most of the time, you may occasionally need to call a
dependency to check for some conditions, but don't really need the returned value.
FastAPI allows such use cases, and that's what we'll see now.

Using dependencies at a path, router, and
global level
As we said, dependencies are the recommended way to create building blocks in a FastAPI
project, allowing you to reuse logic across endpoints while maintaining maximum code
readability. Until now, we've applied them on a single endpoint, but couldn't we expand
this approach to a whole router? Or even a whole FastAPI application? Actually, we can!

The main motivation for this is to be able to apply some global request validation or
perform side logic on several routes without the need to add the dependency on each
endpoint. Typically, an authentication method or a rate-limiter could be very good
candidates for this use case.

To show you how it works, we'll implement a simple dependency that we will use across
all the following examples. You can see it in the following example:

chapter5_path_dependency_01.py

def secret_header(secret_header: Optional[str] = Header(None))
-> None:

 if not secret_header or secret_header != "SECRET_VALUE":

 raise HTTPException(status.HTTP_403_FORBIDDEN)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_path_
dependency_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_path_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_path_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_path_dependency_01.py

Using dependencies at a path, router, and global level 153

This dependency will simply look for a header in the request named Secret-Header.
If it's missing or not equal to SECRET_VALUE, it will raise a 403 error. Please note that
this approach is only for the sake of the example; there are better ways to secure your API,
which we'll cover in Chapter 7, Managing Authentication and Security in FastAPI.

Use a dependency on a path decorator
Until now, we've assumed that we were always interested in the return value of the
dependency. As our secret_header dependency clearly shows here, this is not always
the case. This is why you can add a dependency on a path operation decorator instead of
the arguments. You can see how in the following example:

chapter5_path_dependency_01.py

@app.get("/protected-route", dependencies=[Depends(secret_
header)])

async def protected_route():

 return {"hello": "world"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_path_
dependency_01.py

The path operation decorator accepts an argument, dependencies, which expects a list
of dependencies. You see that, just like for dependencies you pass in arguments, you need
to wrap your function (or callable) with the Depends function.

Now, whenever the /protected-route route is called, the dependency will be called
and will check for the required header.

As you may have guessed, since dependencies is a list, you can add as many
dependencies as you need.

That's interesting, but what if we want to protect a whole set of endpoints? It would be a
bit cumbersome and error-prone to add it manually on each one. Fortunately, FastAPI
provides a way to do that.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_path_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_path_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_path_dependency_01.py

154 Dependency Injections in FastAPI

Use a dependency on a whole router
If you recall the Structure a bigger project with multiple routers section in Chapter 3,
Developing a RESTful API with FastAPI, you know that you can create several routers in
your project to clearly split the different parts of your API and "wire" them to your main
FastAPI application. This is done with the APIRouter class and the include_router
method of the FastAPI class.

With this approach, it can be interesting to inject a dependency on the whole router, so
that it's called for every route of this router. You have two ways of doing this:

•	 Set the dependencies argument on the APIRouter class, as you can see in the
following example:

chapter5_router_dependency_01.py

router = APIRouter(dependencies=[Depends(secret_header)])

@router.get("/route1")

async def router_route1():

 return {"route": "route1"}

@router.get("/route2")

async def router_route2():

 return {"route": "route2"}

app = FastAPI()

app.include_router(router, prefix="/router")

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_router_
dependency_01.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_router_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_router_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_router_dependency_01.py

Using dependencies at a path, router, and global level 155

•	 Set the dependencies argument on the include_router method, as you can
see in the following example:

chapter5_router_dependency_02.py

router = APIRouter()

@router.get("/route1")

async def router_route1():

 return {"route": "route1"}

@router.get("/route2")

async def router_route2():

 return {"route": "route2"}

app = FastAPI()

app.include_router(router, prefix="/router",
dependencies=[Depends(secret_header)])

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_router_
dependency_02.py

In both cases, the dependencies argument expects a list of dependencies. You see
that, just like for dependencies you pass in arguments, you need to wrap your function
(or callable) with the Depends function. Of course, since it's a list, you can add several
dependencies if you need.

Now, how to choose between the two approaches? In both cases, the effect will be exactly
the same, so we could say it doesn't really matter. Philosophically, we could say that we
should declare a dependency on the APIRouter class if it's needed in the context of this
router. Put another way, we could ask ourselves the question, Does this router work without
this dependency if we run it independently? If the answer to this question is no, then you
should probably set the dependency on the APIRouter class. Otherwise, declaring it in
the include_router method may make more sense. But again, this is an intellectual
choice that won't change the functionality of your API, so feel free to choose the one
you're more comfortable with.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_router_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_router_dependency_02.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_router_dependency_02.py

156 Dependency Injections in FastAPI

We are now able to set dependencies for a whole router. In some cases, it could also be
interesting to declare them for a whole application!

Use a dependency on a whole application
If you have a dependency that implements some logging or rate-limiting functionality, for
example, it could be interesting to execute it for every endpoint of your API. Fortunately,
FastAPI allows this, as you can see in the following example:

chapter5_global_dependency_01.py

app = FastAPI(dependencies=[Depends(secret_header)])

@app.get("/route1")

async def route1():

 return {"route": "route1"}

@app.get("/route2")

async def route2():

 return {"route": "route2"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter5/chapter5_global_
dependency_01.py

Once again, you only have to set the dependencies argument directly on the main
FastAPI class. Now, the dependency is applied to every endpoint in your API!

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_global_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_global_dependency_01.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter5/chapter5_global_dependency_01.py

Using dependencies at a path, router, and global level 157

In Figure 5.1, we propose a simple decision tree to determine at which level you should
inject your dependency:

Figure 5.1 – At which level should I inject my dependency?

158 Dependency Injections in FastAPI

Summary
Well done! You should now be comfortable with one of the most iconic features of FastAPI:
dependency injections. By implementing your own dependencies, you'll be able to keep
common logic that you wish to reuse across your API separate from the endpoints' logic.
This will make your project clean and maintainable while retaining maximum readability:
dependencies just need to be declared as arguments of the path operation functions, which
will help to understand the intent without having to read the body of the function.

Those dependencies can be both simple wrappers to retrieve and validate request
parameters, or complex services performing machine learning tasks. Thanks to the
class-based approach, you can indeed set dynamic parameters or keep a local state for
your most advanced tasks.

Finally, those dependencies can also be used at a router or global level, allowing you to
perform common logic or checks for a set of routes or a whole application.

That's the end of the first part of this book! You're now acquainted with the main
features of FastAPI and should now be able to write clean and performant REST APIs
with the framework.

In the next part, we'll take your knowledge to the next level and show you how you can
implement and deploy a robust, secure, and tested web backend. The first chapter will be
dedicated to databases, a must-have for most APIs to be able to read and write data.

Section 2:
Build and Deploy
a Complete Web

Backend with FastAPI

The goal of this section is to show you how to build a real-world backend with FastAPI
that can read and write data and authenticate users, and that is properly tested and
correctly configured for a production environment.

This section comprises the following chapters:

•	 Chapter 6, Databases and Asynchronous ORMs

•	 Chapter 7, Managing Authentication and Security in FastAPI

•	 Chapter 8, Defining WebSockets for Two-Way Interactive Communication in FastAPI

•	 Chapter 9, Testing an API Asynchronously with pytest and HTTPX

•	 Chapter 10, Deploying a FastAPI Project

6
Databases and

Asynchronous ORMs
The main goal of a REST API is, of course, to read and write data. So far, we've solely
worked with the tools given by Python and FastAPI, allowing us to build reliable
endpoints to process and answer requests. However, we haven't been able to effectively
retrieve and persist that information: we missed a database.

The goal of this chapter is to show you how you can interact with different types of
databases and related libraries inside FastAPI. It's worth noting that FastAPI is completely
agnostic regarding databases: you can use any system you want and it's your responsibility
to integrate it. This is why we'll review three different approaches to integrate a database,
that is, using basic SQL queries, using Object-Relational Mapping (ORM), and, finally,
using a NoSQL database.

In this chapter, we're going to cover the following main topics:

•	 An overview of relational and NoSQL databases

•	 Communicating with a SQL database with SQLAlchemy

•	 Communicating with a SQL database with Tortoise ORM

•	 Communicating with a MongoDB database using Motor

162 Databases and Asynchronous ORMs

Technical requirements
For this chapter, you'll require a Python virtual environment, just as we set up in Chapter
1, Python Development Environment Setup.

For the Communicating with a MongoDB database using Motor section, you'll need
a running MongoDB server on your local computer. The easiest way to do this is to run
it as a Docker container. If you've never used Docker before, we recommend that you refer
to the Getting started tutorial in the official documentation at https://docs.docker.
com/get-started/. Once you have done this, you'll be able to run a MongoDB server
using this simple command:

$ docker run -d --name fastapi-mongo -p 27017:27017 mongo:4.4

The MongoDB server instance will then be available on your local computer at port
27017.

You can find all the code examples for this chapter in the dedicated GitHub repository
at https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter6.

An overview of relational and NoSQL
databases
The role of a database is to store data in a structured way, preserve the integrity of the
data, and offer a query language that enables you to retrieve this data when an application
needs it.

Nowadays, when it comes to choosing a database for your web project, you have two main
choices: relational databases, with their associated SQL query language, and NoSQL
databases, named in opposition to the first category.

Selecting the right technology for your project is left up to you, as it greatly depends on
your needs and requirements. In this section, we'll outline the main characteristics and
features of those two database families and try to give you some insights into choosing the
right one for your project.

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter6
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter6

An overview of relational and NoSQL databases 163

Relational databases
Relational databases have existed since the 1970s, and they have proved to be very
performant and reliable over time. They are almost inseparable from the SQL query
language, which has become the de facto standard for querying such databases. Even
if there are a few differences between one database engine and another, most of the syntax
is common, simple to understand, and flexible enough to express complex queries.

Relational databases implement the relational model: each entity, or object, of the
application is stored in tables. For example, if we consider a blog application, we could
have tables that represent users, posts, and comments.

Each of those tables has several columns representing the attributes of the entity.
If we consider the posts, we could have a title, a publication date, and content. In those
tables, there will be several rows, each one representing a single entity of this type; each
post will have its own row.

One of the key points of relational databases is, as their name suggests, relationships. Each
table can be in relation to others, with rows referring to other rows in other tables. In our
example, a post could be related to the user who wrote it. In the same way, a comment
could be linked to the post that it relates to.

The main motivation behind this is to avoid duplication. Indeed, it wouldn't be very
efficient to repeat the user's name or email on each of its posts. If it needs to be modified
at some point, we would have to go through each post, which is error-prone and puts data
consistency at risk. This is why we prefer to reference the user in the posts. So, how can
we do this?

Usually, each row in a relational database has an identifier, called a primary key. This is
unique in the table and will allow you to uniquely identify this row. Therefore, it's possible
to use this key in another table to reference it. We call it a foreign key: the key is foreign in
the sense that it refers to another table.

164 Databases and Asynchronous ORMs

In Figure 6.1, you can view a representation of such database schema using an
entity-relationship diagram. Note that each table has its own primary key or id. The
Post table refers to a User, through the user_id foreign key. Similarly, the Comment
table refers to both a post and a user through the user_id and post_id foreign keys:

Figure 6.1 – A relational database schema example for a blog application

In an application, you'll likely want to retrieve a post with the comments and the user
associated. To do so, we perform a join query, which will return all the relevant records
based on the foreign keys. Relational databases are designed to perform such tasks
efficiently; however, those operations can become expensive if the schema is more
complex. This is why it's important to carefully design a relational schema and its queries.

NoSQL databases
All database engines that are not relational fall back into the NoSQL category. In fact, this
is a quite vague denomination that regroups different families of databases: key-value
stores, such as Redis; graph databases, such as Neo4j; and document-oriented databases,
such as MongoDB. That said, most of the time when we talk about "NoSQL databases",
we are implicitly referring to document-oriented databases. They are the ones that interest
us in this chapter.

Document-oriented databases move away from the relational architecture and try to store
all the information of a given object inside a single document. As such, performing a join
query is much rarer and usually more difficult.

An overview of relational and NoSQL databases 165

Those documents are stored in collections. Contrary to relational databases, documents
in a collection might not have all of the same attributes: while tables in relational
databases have a defined schema, collections accept any kind of document.

In Figure 6.2, you can view a representation of our previous blog example, which has
been adapted into a document-oriented database structure. In this configuration, we have
chosen to have a collection for users and another one for posts. However, notice that the
comments are now part of a post, that is, they are included as a list:

Figure 6.2 — A document-oriented schema example for a blog application

To retrieve a post and all of its comments, you don't need to perform a join query: all
the data comes in one query. This was the main motivation behind the development of
document-oriented databases: increase the query performance by limiting the need to
look at several collections. In particular, this has been adapted for applications with huge
data scales and less structured data, such as social networks.

Which one should you choose?
As we mentioned in the introduction to this section, the choice of database engine
greatly depends on your application and needs. A detailed comparison between relational
and document-oriented databases is beyond the scope of this book, but here are some
elements for you to think about.

Relational databases are very good for storing structured data with a lot of relationships
between the entities. Besides, they maintain data consistency at all costs, even in the event
of errors or hardware failures. However, you'll have to precisely define your schema and
consider a migration system to update your schema if your needs evolve.

166 Databases and Asynchronous ORMs

On the other hand, document-oriented databases don't require you to define a schema:
they accept any document structure, so it can be convenient if your data is highly variable
or if your project is not mature enough. The downside of this is that they are far less picky
in terms of data consistency, which could result in data loss or inconsistencies.

For small and medium-sized applications, the choice doesn't really matter: both relational
databases and document-oriented databases are very optimized and will deliver awesome
performance at such scales.

Now, we'll show you how to work with those different kinds of databases using FastAPI.
When we introduced asynchronous I/O in Chapter 2, Python Programming Specificities,
we mentioned that it was important to carefully select the libraries you use to perform
I/O operations. Of course, databases are particularly important in this context!

While working with classic non-async libraries is perfectly possible in FastAPI, you
could miss out one of the key aspects of the framework and might not reach the best
performance it can offer. That's why, in this chapter, we'll only focus on async libraries.

Communicating with a SQL database with
SQLAlchemy
To begin, we'll discuss how to work with a relational database using the SQLAlchemy
library. SQLAlchemy has been around for years and is the most popular library in Python
when you wish to work with SQL databases.

In this chapter, it's worth noting that we'll only consider the core part of the library, which
only provides the tools to abstract communication with a SQL database. We won't
consider the ORM part, as, in the next section, we'll focus on another ORM: Tortoise.
As such, in this section, we'll pay very close attention to the SQL language.

Recently, async support has been added in version 1.4 but is not yet considered stable.
That's why, for now, we'll combine it with the databases library by Encode, the same team
behind Starlette, which provides an asynchronous connection layer for SQLAlchemy.
In Figure 6.3, we have presented a schema for you to better visualize the interaction
between the different libraries:

Communicating with a SQL database with SQLAlchemy 167

Figure 6.3 – The interaction between SQLAlchemy Core and the Encode databases

The first step is to install this library:

$ pip install databases[sqlite]

This will install the databases library, SQLAlchemy, and the required drivers to work
with SQLite databases. SQLite is a very convenient relational engine that stores all of the
data inside a single file on your computer, which is perfect for testing and experimenting.
Unlike PostgreSQL or MySQL, you don't need to install and run a complex server.

 Each type of SQL server will require its own driver, which provides specific instructions
on which to communicate with them. Of course, the ones for PostgreSQL and MySQL are
provided by databases, which will be useful when building a real-world project. You
can check the installation instructions in the official documentation at https://www.
encode.io/databases/.

Now, we'll show you, step by step, how to set up a complete database interaction. Figure
6.4 shows you the structure of the project:

Figure 6.4 – The FastAPI and SQLAlchemy project structure

https://www.encode.io/databases/
https://www.encode.io/databases/

168 Databases and Asynchronous ORMs

Creating the table schema
First, you need to define the SQL schema for your tables: the name, the columns, and their
associated types and properties. SQLAlchemy provides a full set of classes and functions
to help you in this task. In the following example, you can view the definition of the
posts table:

models.py

metadata = sqlalchemy.MetaData()

posts = sqlalchemy.Table(

 "posts",

 metadata,

 sqlalchemy.Column("id", sqlalchemy.Integer, primary_
key=True, autoincrement=True),

 sqlalchemy.Column("publication_date", sqlalchemy.
DateTime(), nullable=False),

 sqlalchemy.Column("title", sqlalchemy.String(length=255),
nullable=False),

 sqlalchemy.Column("content", sqlalchemy.Text(),
nullable=False),

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/
models.py

First, let's create a metadata object. Its role is to keep all the information of a database
schema together. This is why you should create it only once in your whole project and
always use the same one throughout.

Next, we will define a table using the Table class. The first argument is the name of the
table, followed by the metadata object. Then, we list all of the columns that should be
defined in our table, thanks to the Column class. The first argument is the name of the
column, followed by its type and a certain number of options. For example, we define
our id column as a primary key with auto-increment, which is quite common in
a SQL database.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/models.py

Communicating with a SQL database with SQLAlchemy 169

Note that we won't go through all the types and options provided by SQLAlchemy.
Just know that they closely follow the ones that are usually provided by SQL databases.
You can check the complete list in the official documentation, as follows:

•	 You can find the list of types at https://docs.sqlalchemy.org/en/13/
core/type_basics.html#generic-types

•	 You can find the list of Column arguments at https://docs.sqlalchemy.
org/en/13/core/metadata.html#:~:text=sqlalchemy.schema.
Column.__init__

If you take a look at the code above the table definition, you'll see that we also defined the
corresponding Pydantic models for our post entity. Since they will be used by FastAPI to
validate the request payload, they must match the SQL definition to avoid any errors from
the database when we try to insert a new row later.

Connecting to a database
Now that our table is ready, we have to set up the connection between our FastAPI app
and the database engine. To begin, we'll instantiate several objects, as shown in the
following example:

database.py

DATABASE_URL = "sqlite:///chapter6_sqlalchemy.db"

database = Database(DATABASE_URL)

sqlalchemy_engine = sqlalchemy.create_engine(DATABASE_URL)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/
database.py

Here, you can see that we have set our connection string inside the DATABASE_URL
variable. Generally, it consists of the database engine, followed by authentication
information and the hostname of the database server. You can find an overview of this
format in the official SQLAlchemy documentation at https://docs.sqlalchemy.
org/en/13/core/engines.html#database-urls. In the case of SQLite,
we simply have to give the path of the file that will store all of the data.

Then, we instantiate a Database instance using this URL. This is the connection layer
provided by databases that will allow us to perform asynchronous queries.

https://docs.sqlalchemy.org/en/13/core/type_basics.html#generic-types
https://docs.sqlalchemy.org/en/13/core/type_basics.html#generic-types
https://docs.sqlalchemy.org/en/13/core/metadata.html#:~:text=sqlalchemy.schema.Column.__init__
https://docs.sqlalchemy.org/en/13/core/metadata.html#:~:text=sqlalchemy.schema.Column.__init__
https://docs.sqlalchemy.org/en/13/core/metadata.html#:~:text=sqlalchemy.schema.Column.__init__
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/database.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/database.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/database.py
https://docs.sqlalchemy.org/en/13/core/engines.html#database-urls
https://docs.sqlalchemy.org/en/13/core/engines.html#database-urls

170 Databases and Asynchronous ORMs

We also define sqlalchemy_engine, which is the standard synchronous connection
object provided by SQLAlchemy. You might think that it constitutes an overlap with
database, and you would be absolutely right. We'll clarify why we need it in our
example later.

Then, we define a simple function whose role is to simply return the database instance.
This is shown in the following example:

database.py

def get_database() -> Database:

 return database

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/
database.py

We'll use this function as a dependency to easily retrieve this instance in our path
operation functions.

Using a dependency to retrieve a database instance
You might be wondering why we don't just import the database instance into
our app and use it directly rather than passing it through a dependency. In fact,
it would totally work. However, it would make our life very hard when trying to
implement unit tests. Indeed, it would be very difficult to replace this instance
with a mock or test database. With a dependency, FastAPI makes it very easy
to swap it with another function. We'll view this in more detail in Chapter 9,
Testing an API Asynchronously with pytest and HTTPX.

Now, we need to tell FastAPI to open the connection with the database when it starts
the application and then close it when exiting. Fortunately, FastAPI provides two
special decorators to perform tasks at startup and shutdown, as you can see in the
following example:

app.py

@app.on_event("startup")

async def startup():

 await database.connect()

 metadata.create_all(sqlalchemy_engine)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/database.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/database.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/database.py

Communicating with a SQL database with SQLAlchemy 171

@app.on_event("shutdown")

async def shutdown():

 await database.disconnect()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

Decorating functions with the on_event decorators allows us to trigger some useful
logic when FastAPI starts or stops. In this case, we simply call the connect and
disconnect methods of the database accordingly. This will ensure that the database
connection is open and ready to process requests.

Additionally, you can see that we call the create_all method on the metadata object.
This is the same metadata object we defined in the previous section and that we have
imported here. The goal of this method is to create the table's schema inside our database.
If we don't do that, our database would be empty and we wouldn't be able to save
or retrieve data. This method is designed to work with a standard SQLAlchemy engine;
this is why we instantiated it earlier. It has no other use in the application.

However, we only created a schema like this to simplify our example. In a real-world
application, you should have a proper migration system whose role is to make sure
your database schema is in sync. We'll learn how to set one up for SQLAlchemy later in
the chapter.

Making insert queries
Now we're ready to make queries! Let's start with the INSERT queries to create new rows
in our database. In the following example, you can view an implementation of an endpoint
to create a new post:

app.py

@app.post("/posts", response_model=PostDB, status_code=status.
HTTP_201_CREATED)

async def create_post(

 post: PostCreate, database: Database = Depends(get_
database)

) -> PostDB:

 insert_query = posts.insert().values(post.dict())

 post_id = await database.execute(insert_query)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

172 Databases and Asynchronous ORMs

 post_db = await get_post_or_404(post_id, database)

 return post_db

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

You shouldn't be surprised by the look of it: it's a POST endpoint that accepts a payload
following the PostCreate model. It also injects the database thanks to our get_
database dependency.

Interesting things begin in the body of the function:

•	 On the first line, we build our INSERT query. Rather than writing SQL queries by
hand, we rely on the SQLAlchemy expression language, which consists of chained
method calls. Under the hood, SQLAlchemy will build a proper SQL query for
our database engine. This is one of the greatest benefits of such libraries: since it
produces the SQL query for you, you won't have to modify your source code if you
change your database engine.

•	 This query is built directly from the posts object, which is the Table instance that
we defined earlier. By using this object, SQLAlchemy directly understands that the
query concerns this table and builds the SQL accordingly.

•	 We start by calling the insert method. Then, we move ahead with the values
method. This simply accepts a dictionary that associates the names of the columns
with their values. Hence, we just need to call dict() on our Pydantic object. This
is why it's important that our model matches the database schema.

•	 On the second line, we'll actually perform the query. Thanks to database, we can
execute it asynchronously. For an insert query, we'll use the execute method,
which expects the query in an argument.

An INSERT query will return the id of the newly inserted row. This is very important
because, since we allow the database to automatically increment this identifier, we don't
know the id of our new post beforehand.

In fact, we need it to retrieve this new row from the database afterward. By doing this,
we ensure we have an exact representation of the current object in the database before
returning it in the response. For this, we use the get_post_or_404 function, which
we'll talk about next.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

Communicating with a SQL database with SQLAlchemy 173

Making select queries
Now that we can insert new data into our database, we must be able to read it! Typically,
you'll have two kinds of read endpoints in your API: one to list objects and one to get
a single object.

Let's start with the endpoint to list our blog posts. You can view it in the
following example:

app.py

@app.get("/posts")

async def list_posts(

 pagination: Tuple[int, int] = Depends(pagination),

 database: Database = Depends(get_database),

) -> List[PostDB]:

 skip, limit = pagination

 select_query = posts.select().offset(skip).limit(limit)

 rows = await database.fetch_all(select_query)

 results = [PostDB(**row) for row in rows]

 return results

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

Once again, making a query is a two-step operation: first, we build the query thanks to
the SQLAlchemy query language. Then, we execute it asynchronously using database.
In this case, we perform a SELECT query using the corresponding method on the posts
table. Notice how we use the OFFSET and LIMIT clauses to paginate our list of posts
using the variables provided by the pagination dependency. It's the same dependency that
we defined in Chapter 5, Dependency Injections in FastAPI.

Then, we execute this query with the fetch_all method of database. This method
will return a list of rows that match our query.

Each row is returned in the form of a dictionary that associates column names and their
values. Therefore, for each of them, we simply have to instantiate them back to a PostDB
model by unpacking the dictionary.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

174 Databases and Asynchronous ORMs

The other typical endpoint in a REST API is to get a single object. In the following
example, you can see how we implemented this endpoint to retrieve a single post:

app.py

@app.get("/posts/{id}", response_model=PostDB)

async def get_post(post: PostDB = Depends(get_post_or_404)) ->
PostDB:

 return post

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

Predictably, this is a GET endpoint that accepts an id in the path parameter. The
implementation itself is very light. Indeed, since the logic of retrieving a post by its id
or raising a 404 error if it doesn't exist will be reused many times, it makes sense to put
it in a dependency, get_post_or_404. You can view its implementation in the
following example:

app.py

async def get_post_or_404(

 id: int, database: Database = Depends(get_database)

) -> PostDB:

 select_query = posts.select().where(posts.c.id == id)

 raw_post = await database.fetch_one(select_query)

 if raw_post is None:

 raise HTTPException(status_code=status.HTTP_404_NOT_
FOUND)

 return PostDB(**raw_post)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

Once again, we start by building a SQL query. This time, we have a WHERE clause, which
only retrieves the row for the id we need. The clause itself might look strange.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

Communicating with a SQL database with SQLAlchemy 175

The first part is to set the actual column we want to compare. Each column is accessible
via its name from the c attribute of the table object, that is, posts.c.id.

Then, we use the equality operator to compare with our actual id variable. It looks like
a standard comparison that would result in a Boolean, not a SQL statement! In a general
Python context, it would. However, SQLAlchemy developers have done something clever
here: they overloaded the standard operators so that they produce SQL expressions
instead of comparing objects. This is exactly what we saw in the Magic methods section
of Chapter 2, Python Programming Specificities.

Then, we simply call fetch_one on the database object. It's a convenient shortcut
when we only expect one row at most.

Two things can happen: if no row matches our query, the result is None.
In this case, we can raise a 404 error. Otherwise, we get the data in the form of
a dictionary. All we have to do is to instantiate it back into a PostDB model.

Dependencies are like functions
In our POST endpoint, we used get_post_or_404 as a regular function
to retrieve our newly created blog post. This is perfectly okay: dependencies
don't have hidden or magic logic inside, so you can reuse them at will. The only
thing to remember is that you have to provide every argument manually since
you are outside of the dependency injection context.

Making update and delete queries
Finally, let's examine how to update and delete rows in our database. The main
difference is how you build the query using SQLAlchemy expressions, but the rest of the
implementation is always the same.

In the following example, let's take a look at how to update a blog post:

app.py

@app.patch("/posts/{id}", response_model=PostDB)

async def update_post(

 post_update: PostPartialUpdate,

 post: PostDB = Depends(get_post_or_404),

 database: Database = Depends(get_database),

) -> PostDB:

 update_query = (

176 Databases and Asynchronous ORMs

 posts.update()

 .where(posts.c.id == post.id)

 .values(post_update.dict(exclude_unset=True))

)

 post_id = await database.execute(update_query)

 post_db = await get_post_or_404(post_id, database)

 return post_db

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

In this case, we start with an UPDATE statement. Upon this, we add a WHERE clause to
only match the post we want to update. Finally, we set the values we want to update in the
form of a dictionary. As we explained in Chapter 4, Managing pydantic Data Models in
FastAPI, since we are doing a partial update here, you can see that we use the exclude_
unset option to only get the values to update.

Deleting an object is not very different, as you can see in the following example:

app.py

@app.delete("/posts/{id}", status_code=status.HTTP_204_NO_
CONTENT)

async def delete_post(

 post: PostDB = Depends(get_post_or_404), database: Database
= Depends(get_database)

):

 delete_query = posts.delete().where(posts.c.id == post.id)

 await database.execute(delete_query)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

It mainly consists of a DELETE statement followed by the adequate WHERE clause.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy/app.py

Communicating with a SQL database with SQLAlchemy 177

Now you know how to perform the most common SQL queries using the SQLAlchemy
expression language and databases. We recommend that you go through the SQLAlchemy
expression language tutorial to learn about all the features and the more advanced usage
of this powerful tool. You can find the official documentation at https://docs.
sqlalchemy.org/en/13/core/tutorial.html.

Adding relationships
As we mentioned at the beginning of this chapter, relational databases are all about data
and its relationships. Quite often, you'll need to create entities that are linked to others.
For example, in a blog application, comments are linked to the post they relate to. In this
section, we'll examine how you can set up such relationships with SQLAlchemy. Since
it's very close to SQL, you'll discover that there's nothing truly surprising about it.

First, we need to define the table for the comments, which has a foreign key toward the
posts table. You can view its definition in the following example:

models.py

comments = sqlalchemy.Table(

 "comments",

 metadata,

 sqlalchemy.Column("id", sqlalchemy.Integer, primary_
key=True, autoincrement=True),

 sqlalchemy.Column(

 "post_id", sqlalchemy.ForeignKey("posts.id",
ondelete="CASCADE"), nullable=False

),

 sqlalchemy.Column("publication_date", sqlalchemy.
DateTime(), nullable=False),

 sqlalchemy.Column("content", sqlalchemy.Text(),
nullable=False),

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_
relationship/models.py

https://docs.sqlalchemy.org/en/13/core/tutorial.html
https://docs.sqlalchemy.org/en/13/core/tutorial.html
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/models.py

178 Databases and Asynchronous ORMs

The important point here is the post_id column, which is of the ForeignKey type.
This is a special type that tells SQLAlchemy to automatically handle the type of the
column and the associated constraint. We simply have to give the table and column names
it refers to. Note that we can also specify the ON DELETE action.

We won't go into the details of the Pydantic models for the comments since they are quite
straightforward. However, we want to highlight a new model we created for the posts, that
is, PostPublic. This is shown in the following example:

models.py

class PostPublic(PostDB):

 comments: List[CommentDB]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_
relationship/models.py

Here, you can see that we added a comments attribute, which is a list of CommentDB.
Indeed, in a REST API, there are some cases where it makes sense to automatically
retrieve the associated objects of an entity. Here, it'll be convenient to get the comments
of a post in a single request. We'll use this model when getting a single post to serialize the
comments along with the post data.

Now, we'll implement an endpoint to create a new comment. This is shown in the
following example:

app.py

@app.post("/comments", response_model=CommentDB, status_
code=status.HTTP_201_CREATED)

async def create_comment(

 comment: CommentCreate, database: Database = Depends(get_
database)

) -> CommentDB:

 select_post_query = posts.select().where(posts.c.id ==
comment.post_id)

 post = await database.fetch_one(select_post_query)

 if post is None:

 raise HTTPException(

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/models.py

Communicating with a SQL database with SQLAlchemy 179

 status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Post {id} does not exist"

)

 insert_query = comments.insert().values(comment.dict())

 comment_id = await database.execute(insert_query)

 select_query = comments.select().where(comments.c.id ==
comment_id)

 raw_comment = cast(Mapping, await database.fetch_
one(select_query))

 return CommentDB(**raw_comment)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_
relationship/app.py

Note that the endpoint parameters and most of the implementations are very close to
the create post endpoint. The only difference here is the first part of the function logic
where we check for the existence of the post before proceeding with the comment
creation. This is important because, since the end user can send any post ID, we could
have a situation where we try to create a comment for a post that doesn't exist, which
could cause a constraint error at the database level. This is why we are trying to get the
post first and then show a clear error to prevent this situation.

Earlier, we mentioned that we wanted to retrieve a post and its comments at the same
time. To do this, we'll have to make a second query to retrieve the comments and then
merge all the data together in a PostPublic instance. We added this logic in the
get_post_or_404 dependency, as you can see in the following example:

app.py

async def get_post_or_404(

 id: int, database: Database = Depends(get_database)

) -> PostPublic:

 select_post_query = posts.select().where(posts.c.id == id)

 raw_post = await database.fetch_one(select_post_query)

 if raw_post is None:

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/app.py

180 Databases and Asynchronous ORMs

 raise HTTPException(status_code=status.HTTP_404_NOT_
FOUND)

 select_post_comments_query = comments.select().
where(comments.c.post_id == id)

 raw_comments = await database.fetch_all(select_post_
comments_query)

 comments_list = [CommentDB(**comment) for comment in raw_
comments]

 return PostPublic(**raw_post, comments=comments_list)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_
relationship/app.py

Here, you can see that we simply add a fetch_all query with the correct WHERE
statement to collect the comments associated with the post. Then, we only have to
transform them into a list of CommentDB and set it during PostPublic initialization.

Why not make a JOIN query?
Admittedly, by making a JOIN query, we could retrieve the post and the
comments data in one query instead of two. The problem with JOIN queries
is that they return as many rows as there are comments, all concatenated with
the post data. While this is possible, clever logic is required to separate the post
data and create a list of comments. For the simplicity of this example, we have
chosen to perform two queries.

Essentially, that's it for working with relationships with SQLAlchemy. You can see that,
since we are very close to SQL, it's up to you to build the right queries to shape the data as
needed and resolve the relations.

Setting up a database migration system with Alembic
When developing an application, you'll likely make changes to your database schema to
add new tables, add new columns, or modify existing ones. Of course, if your application
is already in production, you don't want to erase all your data to recreate the schema from
scratch: you want them to be migrated to the new schema. Tools for this task have been
developed, and in this section, we'll learn how to set up Alembic, from the creators of
SQLAlchemy. Let's install this library:

$ pip install alembic

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/app.py

Communicating with a SQL database with SQLAlchemy 181

Once this has been completed, you'll have access to the alembic command to manage
this migration system. When starting a new project, the first thing to do is to initialize
the migration environment, which includes a set of files and directories where Alembic
will store its configuration and migration files. At the root of your project, run the
following command:

$ alembic init alembic

This will create a directory, named alembic, at the root of your project. You can view the
result of this command in the example repository shown in Figure 6.5:

Figure 6.5 – The Alembic migration environment structure

This folder will contain all the configurations for your migrations and your migration
scripts themselves. It should be committed along with your code to keep a record of the
versions of those files.

182 Databases and Asynchronous ORMs

Additionally, note that it created an alembic.ini file, which contains all the
configuration options of Alembic. We'll review two important settings of this file:
script_location and sqlalchemy.url. You can view the first one in the
following example:

alembic.ini

path to migration scripts

script_location = chapter6/sqlalchemy_relationship/alembic

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_
relationship/alembic.ini

This setting expects the path of the alembic directory containing the migration files.
In most of your projects, this will just be alembic, because it'll simply be at the root of
your project. Here, since we have several projects in our example repository, we had to set
a sub-folder path.

The second important option is sqlalchemy.url, which you can view in the
following example:

alembic.ini

sqlalchemy.url = sqlite:///chapter6_sqlalchemy_relationship.db

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_
relationship/alembic.ini

Predictably, this is the connection string of your database that will receive the
migration queries. It follows the same convention that we saw earlier. Here, we set
our SQLite database.

Next, we'll focus on the env.py file. This is a Python script containing all the logic
executed by Alembic to initialize the migration engine and execute the migrations. Being
a Python script allows us to finely customize the execution of Alembic. For the time being,
we'll keep the default one except for one thing: we'll import our metadata object. You
can view this in the following example:

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic.ini
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic.ini
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic.ini
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic.ini
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic.ini
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic.ini

Communicating with a SQL database with SQLAlchemy 183

env.py

from chapter6.sqlalchemy_relationship.models import metadata

this is the Alembic Config object, which provides

access to the values within the .ini file in use.

config = context.config

Interpret the config file for Python logging.

This line sets up loggers basically.

fileConfig(config.config_file_name)

add your model's MetaData object here

for 'autogenerate' support

from myapp import mymodel

target_metadata = mymodel.Base.metadata

target_metadata = metadata

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_
relationship/alembic/env.py

By default, the file defines a variable named target_metadata, which is set to None.
Here, we changed it so that it refers to the metadata object that we just imported
from our models module. But why do we do that? Well, remember that metadata is
a SQLAlchemy object that contains all the table definitions. By providing it to Alembic,
the migration system will be able to automatically generate the migration scripts just
by looking at your schema! This way, you won't have to write them from scratch.

When you have made changes to your database schema, you can run the following
command to generate a new migration script:

$ alembic revision --autogenerate -m "Initial migration"

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic/env.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic/env.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic/env.py

184 Databases and Asynchronous ORMs

It'll create a new script in the version's directory with the commands reflecting your schema
changes. You can view how it looks in the following example:

a12742852e8c_initial_migration.py

def upgrade():

 # ### commands auto generated by Alembic - please adjust!
###

 op.create_table(

 "posts",

 sa.Column("id", sa.Integer(), autoincrement=True,
nullable=False),

 sa.Column("publication_date", sa.DateTime(),
nullable=False),

 sa.Column("title", sa.String(length=255),
nullable=False),

 sa.Column("content", sa.Text(), nullable=False),

 sa.PrimaryKeyConstraint("id"),

)

 op.create_table(

 "comments",

 sa.Column("id", sa.Integer(), autoincrement=True,
nullable=False),

 sa.Column("post_id", sa.Integer(), nullable=False),

 sa.Column("publication_date", sa.DateTime(),
nullable=False),

 sa.Column("content", sa.Text(), nullable=False),

 sa.ForeignKeyConstraint(["post_id"], ["posts.id"],
ondelete="CASCADE"),

 sa.PrimaryKeyConstraint("id"),

)

 # ### end Alembic commands ###

def downgrade():

 # ### commands auto generated by Alembic - please adjust!
###

 op.drop_table("comments")

Communicating with a SQL database with SQLAlchemy 185

 op.drop_table("posts")

 # ### end Alembic commands ###

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_
relationship/alembic/versions/a12742852e8c_initial_migration.py

Here, we have the required operations to create our posts and comments table, with
all of their columns and constraints. Notice that we have two functions: upgrade and
downgrade. The first one is used to apply the migration and the second one is used to roll
it back. This is very important because if something goes wrong during the migration,
or if you need to revert to an older version of your application, you'll be able to do so
without breaking your data.

Autogenerate doesn't detect everything
Bear in mind that, even though autogeneration is very helpful, it's not always
accurate, and, sometimes, it's not able to detect ambiguous changes. For
example, if you rename a column, it will delete the old one and create another.
As a result, the data for this column will be lost! This is why you should always
carefully review the migration scripts and make the required changes for edge
cases like this.

Finally, you can apply the migrations to your database using the following command:

$ alembic upgrade head

This will run all the migrations that have not yet been applied to your database until the
latest. It's interesting to know that, in the process, Alembic creates a table in your database
so that it can remember all the migrations it has applied: this is how it detects which
scripts to run.

Generally speaking, you should be extremely careful when you run such commands on
your database, especially on a production one. Very bad things can happen if you make
a mistake, and you can lose precious data. You should always test your migrations in
a test environment and have fresh and working backups before running them on your
production database.

This is a very quick introduction to Alembic and its powerful migration system.
We strongly encourage you to go through its documentation to understand all of its
mechanisms, especially regarding migration script operations. Please refer to https://
alembic.sqlalchemy.org/en/latest/index.html.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic/versions/a12742852e8c_initial_migration.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic/versions/a12742852e8c_initial_migration.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/sqlalchemy_relationship/alembic/versions/a12742852e8c_initial_migration.py
https://alembic.sqlalchemy.org/en/latest/index.html
https://alembic.sqlalchemy.org/en/latest/index.html

186 Databases and Asynchronous ORMs

That's it for the SQLAlchemy part of this chapter! If you are used to relational databases
and SQL, you shouldn't have been too surprised by its usage; it's very close to SQL.
However, sometimes, it's quicker and more convenient to move slightly away from SQL
and let libraries do the querying for us. This is exactly what ORM is for.

Communicating with a SQL database with
Tortoise ORM
When dealing with relational databases, you might wish to abstract away the SQL
concepts and only deal with proper objects from the programming language. That's
the main motivation behind ORM tools. In this section, we'll examine how to work
with Tortoise ORM, which is a modern and asynchronous ORM that fits nicely within
a FastAPI project. It's greatly inspired by the Django ORM; so, if you've ever worked with
it, you'll probably be on familiar ground.

As usual, the first step is to install the library using the following command:

$ pip install tortoise-orm

If you need drivers for database engines such as PostgreSQL or MySQL, you can
install them, as explained in the documentation at https://tortoise-orm.
readthedocs.io/en/latest/getting_started.html#installation.
We're now ready to work!

Creating database models
The first step is to create the Tortoise model for your entity. This is a Python class whose
attributes represent the columns of your table. This class will provide you static methods
in which to perform queries, such as retrieving or creating data. Moreover, the actual
entities of your database will be instances of this class, giving you access to its data like any
other object. Under the hood, the role of Tortoise is to make the link between this Python
object and the row in the database. Let's take a look at the definition of our blog post
model in the following example:

models.py

class PostTortoise(Model):

 id = fields.IntField(pk=True, generated=True)

 publication_date = fields.DatetimeField(null=False)

 title = fields.CharField(max_length=255, null=False)

https://tortoise-orm.readthedocs.io/en/latest/getting_started.html#installation
https://tortoise-orm.readthedocs.io/en/latest/getting_started.html#installation

Communicating with a SQL database with Tortoise ORM 187

 content = fields.TextField(null=False)

 class Meta:

 table = "posts"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/models.py

Our model is a class that is inheriting from the tortoise.models.Model base class.
Each field (or column) is an instance of a class corresponding to the type of the field. Each
one has its own set of arguments to finely tune the definition in the database. For example,
our id field is a primary key that is automatically generated. We won't go through every
field's class, but you can find the complete list in the official Tortoise documentation at
https://tortoise-orm.readthedocs.io/en/latest/fields.html.

Notice that we also have a sub-class called Meta, which allows us to set some options for
our table. Here, the table attribute allows us to control the name of the table.

If you look at the code above the table definition, you'll see that we have also defined
the corresponding Pydantic models for our post entity. They will be used by FastAPI to
perform data validation and serialization. As you can see in the following example,
we added a Config sub-class and set an attribute called orm_mode:

models.py

class PostBase(BaseModel):

 title: str

 content: str

 publication_date: datetime = Field(default_
factory=datetime.now)

 class Config:

 orm_mode = True

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/models.py

This option will allow us to transform an ORM object instance into a Pydantic object
instance. This is essential because FastAPI is designed to work with Pydantic models,
not ORM models.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/models.py
https://tortoise-orm.readthedocs.io/en/latest/fields.html
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/models.py

188 Databases and Asynchronous ORMs

Here, we hit what is maybe the most confusing part about working with FastAPI and an
ORM: we'll have to work with both ORM objects and Pydantic models and find ways to
transform them back and forth.

If you refer to the Tortoise documentation, you'll find that it tries to solve this by
providing tools to automatically generate Pydantic models from Tortoise ones. We won't
show this approach in this book because it comes with some pitfalls and is less flexible
than pure Pydantic models. Nevertheless, once you are confident with the concepts we are
showing here, we encourage you to try this approach and see if it fits your needs.

Setting up the Tortoise engine
Now that we have our model ready, we have to configure the Tortoise engine to set the
database connection string and the location of our models. To do this, Tortoise comes
with a utility function for FastAPI that does all the required tasks for you. In particular,
it automatically adds event handlers to open and close the connection at startup and
shutdown; this is something we had to do by hand with SQLAlchemy.
You can see what it looks like in the following example:

app.py

TORTOISE_ORM = {

 "connections": {"default": "sqlite://chapter6_tortoise.
db"},

 "apps": {

 "models": {

 "models": ["chapter6.tortoise.models"],

 "default_connection": "default",

 },

 },

}

register_tortoise(

 app,

 config=TORTOISE_ORM,

 generate_schemas=True,

 add_exception_handlers=True,

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

Communicating with a SQL database with Tortoise ORM 189

As you can see, we put the main configuration options in a variable named TORTOISE_
ORM. Let's review its different fields:

•	 The connections key contains a dictionary associating a database alias to
a connection string, which gives access to your database. It follows the standard
convention, as explained in the documentation at https://tortoise-orm.
readthedocs.io/en/latest/databases.html?highlight=db_
url#db-url.

 In most projects, you'll probably have one database named default, but it allows
you to set several databases if needed.

•	 In the apps key, you'll be able to declare all your modules containing your Tortoise
models. The first key just below apps, that is, models, will be the prefix with
which you'll be able to refer to the associated models. You can name it how you
want, but if you place all your models under the same scope, then models is
a good candidate. This prefix is especially important when defining foreign keys.
For example, with this configuration, our PostTortoise model can be referred to
by the name models.PostTortoise. It's not the actual path to your module.

Underneath it, you have to list all the modules containing your models.
Additionally, we set the corresponding database connection with the alias
we defined earlier.

Then, we call the register_tortoise function that'll take care of setting up Tortoise
for FastAPI. Let's explain its arguments:

•	 The first one is your FastAPI app instance.

•	 Then, we have the configuration that we defined earlier.

•	 Setting generate_schemas to True will automatically create the table's schema
in the database. Otherwise, our database will be empty and we won't be able to
insert any rows.

While this is useful for testing purposes, in a real-world application, you should
have a proper migration system whose role is to make sure your database schema
is in sync. We'll examine how to set one up for Tortoise later in the chapter.

•	 Finally, the add_exception_handlers option adds custom exception handlers
to FastAPI, allowing you to nicely catch Tortoise errors and return proper
error responses.

https://tortoise-orm.readthedocs.io/en/latest/databases.html?highlight=db_url#db-url
https://tortoise-orm.readthedocs.io/en/latest/databases.html?highlight=db_url#db-url
https://tortoise-orm.readthedocs.io/en/latest/databases.html?highlight=db_url#db-url

190 Databases and Asynchronous ORMs

And that's all! Always make sure that you call this function at the end of your application
file, to ensure everything has been correctly imported. Apart from that, Tortoise handles
everything for us. We're now ready to go!

Creating objects
Let's start by inserting new objects inside our database. The main challenge is to transform
the Tortoise object instance into a Pydantic model. Let's review this in the following
example:

app.py

@app.post("/posts", response_model=PostDB, status_code=status.
HTTP_201_CREATED)

async def create_post(post: PostCreate) -> PostDB:

 post_tortoise = await PostTortoise.create(**post.dict())

 return PostDB.from_orm(post_tortoise)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

Here, we have our POST endpoint, which accepts our PostCreate model. The core logic
consists then of two operations.

First, we create the object in the database. We directly use the PostTortoise class
and its static create method. Conveniently, it accepts a dictionary that maps fields to
their values, so we just have to call dict on our input object. Of course, this operation
is natively asynchronous!

As a result, we get an instance of a PostTortoise object. This is why the second
operation we need to perform is to transform it into a Pydantic model. To do this,
we use the from_orm method, which is available because we enabled orm_mode.
We get a proper PostDB instance, which we can return directly.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

Communicating with a SQL database with Tortoise ORM 191

Can we return a PostTortoise object directly?
Technically, yes, we can. In the case of a Tortoise model, it implements the
magic methods to be transformed into a dictionary, which is the last fallback
of FastAPI when it doesn't recognize the object you have returned. However,
doing this would deprive us of all the goodness of using Pydantic models, such
as field exclusion or automatic documentation. This is why we recommend here
that you always go back to a Pydantic model.

Here, you can see that the implementation is quite straightforward. Now, let's retrieve
this data!

Getting and filtering objects
Usually, a REST API provides two types of endpoints to read data: one to list objects
and one to get a specific object. This is exactly what we'll review next!

In the following example, you can see how we implemented the endpoint to list objects:

app.py

@app.get("/posts")

async def list_posts(pagination: Tuple[int, int] =
Depends(pagination)) -> List[PostDB]:

 skip, limit = pagination

 posts = await PostTortoise.all().offset(skip).limit(limit)

 results = [PostDB.from_orm(post) for post in posts]

 return results

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

Once again, this is an operation in two steps: first, we retrieve Tortoise objects using the
query language. Notice that we use the all method, which gives us every object in the
table. Additionally, we're able to apply our pagination parameters through offset
and limit.

Then, we have to transform this list of PostTortoise objects into a list of PostDB
objects. Again, thanks to from_orm and a list comprehension, we can do this very easily.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

192 Databases and Asynchronous ORMs

Now, in the following example, we'll take a look at the endpoint to retrieve a single post:

app.py

@app.get("/posts/{id}", response_model=PostDB)

async def get_post(post: PostTortoise = Depends(get_post_
or_404)) -> PostDB:

 return PostDB.from_orm(post)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

This is a simple GET endpoint that expects the ID of the post in the path parameter.
The implementation is itself very light: we just have to transform our PostTortoise
object into a PostDB. Most of the logic is in the get_post_or_404 dependency,
which we'll reuse often in our application. The following example shows
its implementation:

app.py

async def get_post_or_404(id: int) -> PostTortoise:

 return await PostTortoise.get(id=id)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

The role of this dependency is to take the id in the path parameter and retrieve
a single object from the database that corresponds to this identifier. The get
method is a convenient shortcut for this: if no matching record is found, it raises
the DoesNotExist exception. If there is more than one matching record, it raises
MultipleObjectsReturned.

You might be wondering where our exception handler is to raise a proper 404 error.
In fact, it's already there, at a global level! Remember that we set up Tortoise with
the add_exception_handlers option: under the hood, it adds a handler that
automatically catches DoesNotExist and builds a proper 404 error. So, we don't have
to do anything more!

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

Communicating with a SQL database with Tortoise ORM 193

Updating and deleting objects
We'll finish by showing you how to update and delete existing objects. The logic is always
the same; we just have to adapt the methods we call on our Tortoise object.

In the following example, you can view the implementation of the update endpoint:

app.py

@app.patch("/posts/{id}", response_model=PostDB)

async def update_post(

 post_update: PostPartialUpdate, post: PostTortoise =
Depends(get_post_or_404)

) -> PostDB:

 post.update_from_dict(post_update.dict(exclude_unset=True))

 await post.save()

 return PostDB.from_orm(post)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

Here, the main point of attention is that we'll operate directly on the post we want to
modify. This is one of the key aspects when working with ORM: entities are objects that
can be modified as you wish. When you are happy with the data, you can persist it in the
database. This is exactly what we do here: we get a fresh representation of our post thanks
to get_post_or_404 and apply the update_from_dict utility method to change
the fields that we want. Then, we can persist the changes in the database using save.

The same concept is applied when you wish to delete an object: when you have an
instance, you can call delete to physically remove it from the database. You can view
this in action in the following example:

app.py

@app.delete("/posts/{id}", status_code=status.HTTP_204_NO_
CONTENT)

async def delete_post(post: PostTortoise = Depends(get_post_
or_404)):

 await post.delete()

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

194 Databases and Asynchronous ORMs

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py

That's almost it for the basics of working with Tortoise ORM. Of course, we only covered
the most basic queries, but you can do far more complex things. You can find a thorough
overview of the query language in the official documentation at https://tortoise-
orm.readthedocs.io/en/latest/query.html#query-api.

Adding relationships
Now, let's take a look at how to work with relationships. Once again, we'll examine how
to implement comments that are linked to posts. One of the main tasks of Tortoise, and
ORM in general, is to ease the process of working with related entities, by automatically
making the required JOIN queries and instantiating sub-objects. However, once again,
there are some things that we need to take care of to make sure everything works
smoothly with Pydantic.

We'll begin by creating a model for our comment entity, as shown in the
following example:

models.py

class CommentTortoise(Model):

 id = fields.IntField(pk=True, generated=True)

 post = fields.ForeignKeyField(

 "models.PostTortoise", related_name="comments",
null=False

)

 publication_date = fields.DatetimeField(null=False)

 content = fields.TextField(null=False)

 class Meta:

 table = "comments"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise_
relationship/models.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise/app.py
https://tortoise-orm.readthedocs.io/en/latest/query.html#query-api
https://tortoise-orm.readthedocs.io/en/latest/query.html#query-api
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py

Communicating with a SQL database with Tortoise ORM 195

The main point of interest here is the post field, which is purposely defined as a foreign
key. The first argument is the reference to the associated model. Notice that we use the
models prefix; this is the same one we defined in the Tortoise configuration that we saw
earlier. Additionally, we set the related_name. This is a typical and convenient feature
of ORM. By doing this, we'll be able to get all the comments of a given post simply by
accessing its comments property. The action of querying the related comments, therefore,
becomes completely implicit.

In the next example, we'll look at the base Pydantic model for a comment,
CommentBase:

models.py

class CommentBase(BaseModel):

 post_id: int

 publication_date: datetime = Field(default_
factory=datetime.now)

 content: str

 class Config:

 orm_mode = True

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise_
relationship/models.py

Here, you can see that we have defined a post_id attribute. This attribute will be used in
the request payload to set the post that we want to attach this new comment to. When you
provide this attribute to Tortoise, it automatically understands that you are referring to the
identifier of the foreign key field, called post.

In a REST API, sometimes, it makes sense to automatically retrieve the associated objects
of an entity in one request. Here, we'll ensure that the comments of a post are returned in
the form of a list along with the post data. To do this, we introduce a new Pydantic model,
PostPublic. You can view this in the following example:

models.py

class PostPublic(PostDB):

 comments: List[CommentDB]

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py

196 Databases and Asynchronous ORMs

 @validator("comments", pre=True)

 def fetch_comments(cls, v):

 return list(v)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise_
relationship/models.py

Predictably, we simply added a comments attribute, which is a list of CommentDB.
However, here, you can see something unexpected: a validator for this attribute. Earlier,
we mentioned that thanks to Tortoise, we can retrieve the comments of a post by simply
doing post.comments. This is convenient, but this attribute is not directly a list of data:
it's a query set object. If we don't do anything, then, when we try to transform the ORM
object into a PostPublic, Pydantic will try to parse this query set and fail. However,
calling list on this query set forces it to output the data. That is the purpose of this
validator. Notice that we set it with pre=True to make sure it's called before the built-in
Pydantic validation.

We'll now implement an endpoint to create a new comment. This is shown in the
following example:

app.py

@app.post("/comments", response_model=CommentDB, status_
code=status.HTTP_201_CREATED)

async def create_comment(comment: CommentBase) -> CommentDB:

 try:

 await PostTortoise.get(id=comment.post_id)

 except DoesNotExist:

 raise HTTPException(

 status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Post {id} does not exist"

)

 comment_tortoise = await CommentTortoise.create(**comment.
dict())

 return CommentDB.from_orm(comment_tortoise)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/models.py

Communicating with a SQL database with Tortoise ORM 197

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise_
relationship/app.py

Most of the logic is very similar to the create post endpoint. The main difference is that
we first check for the existence of the post before proceeding with the comment creation.
Indeed, we want to avoid the foreign key constraint error that could occur at the database
level and show a clear and helpful error message to the end user instead.

As we mentioned earlier, our objective is to output the comments when retrieving a single
post. To do this, we made a small change to the get_post_or_404 dependency,
as follows:

app.py

async def get_post_or_404(id: int) -> PostTortoise:

 try:

 return await PostTortoise.get(id=id).prefetch_
related("comments")

 except DoesNotExist:

 raise HTTPException(status_code=status.HTTP_404_NOT_
FOUND)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise_
relationship/app.py

The only difference here is that we called the prefetch_related method on our query.
By passing in the name of the related entities, it allows you to preload them upfront when
getting the main object. By default, Tortoise is lazy and doesn't make the additional query.
In our case, it's not just an optimization: it's important to ensure our code is working.
Indeed, if our validator tries to call list on a query set that hasn't been prefetched,
it'll raise an error. This is because of the asynchronous nature of the ORM: you have to
retrieve the data asynchronously, with a proper await statement, before you can operate
over the data normally.

Other than that, there is nothing more you need to do. The key takeaway here is that you
have to pay attention when trying to work with relationships and make sure you resolve
them correctly before feeding them to Pydantic.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py

198 Databases and Asynchronous ORMs

Setting up a database migration system with Aerich
In the Setting up a database migration system with Alembic section of this chapter,
we already mentioned the need for a database migration system. When you make changes
to your database schema, you want to migrate your existing data in production in a safe
and reproducible manner. In this section, we'll demonstrate how to install and configure
Aerich, which is a database migration tool from the creators of Tortoise. As usual,
we'll start by installing the library:

$ pip install aerich

Once this is done, you'll have access to the aerich command to manage this
migration system.

The first thing you need to do is declare the Aerich models in your Tortoise configuration.
Indeed, Aerich stores some migration state information in your database. You can view
what the configuration looks like in the following example:

app.py

TORTOISE_ORM = {

 "connections": {"default": "sqlite://chapter6_tortoise_
relationship.db"},

 "apps": {

 "models": {

 "models": ["chapter6.tortoise_relationship.models",
"aerich.models"],

 "default_connection": "default",

 },

 },

}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/tortoise_
relationship/app.py

Then, you can initialize the migration environment, which is a set of files and directories
where Aerich will store its configuration and migration files. The command looks like this:

$ aerich init -t chapter6.tortoise_relationship.app.TORTOISE_
ORM

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/tortoise_relationship/app.py

Communicating with a SQL database with Tortoise ORM 199

The -t option should refer to the dotted path of your TORTOISE_ORM configuration
variable. This is how Aerich is able to retrieve your database connection information and
the definition of your models. Then, you have to call the following command:

$ aerich init-db

Following this, your project structure should look similar to the one shown in Figure 6.5:

Figure 6.6 – The Aerich migration environment structure

The migrations folder will contain all of the migration scripts. Notice that it creates
a sub-directory for each of the "apps" defined in the configuration. As you can see, we have
a first migration script that creates all the tables that have already been defined.

It also adds the aerich.ini configuration file, which essentially sets the path to your
configuration variable and migrations folder.

To apply the migrations to your database, simply run the following command:

$ aerich upgrade

During the life of your project, when you have made changes to your table's schema,
you'll have to generate new migration scripts to reflect the changes. This is done quite
easily using the following command:

$ aerich migrate --name added_new_tables

The --name option allows you to set a name for your migration. It will automatically
generate a new migration file that reflects your changes.

200 Databases and Asynchronous ORMs

Aerich migration scripts are not cross-database compatible
Contrary to Alembic, Aerich doesn't abstract migration operations through
cross-compatible Python scripts. Instead, it directly generates SQL files that are
compatible with the engine you are working with. Since there are significant
differences between the various SQL implementations, you can't work, for
example, on a SQLite database during development and have a PostgreSQL
for production: the migration scripts generated locally wouldn't work on your
production server. This is why you should have the same database engine both
in local and in production.

Just as with any automated migration system, you should always review the generated
scripts to make sure they correctly reflect your changes and that you don't lose data in the
process. Always test your migrations in a test environment and have fresh and working
backups before running them in production.

That's it for this introduction to Tortoise ORM. If you have ever used an ORM before, you
should be already confident with it. The main challenge to tackle with FastAPI is to make
it work together with Pydantic models to get the benefit of both worlds. We'll now leave
the world of relational databases to explore how we can work with a document-oriented
database, MongoDB.

Communicating with a MongoDB database
using Motor
As we mentioned at the beginning of this chapter, working with a document-oriented
database, such as MongoDB, is quite different from a relational database. First and
foremost, you don't need to configure a schema upfront: it follows the structure of the data
that you insert into it. In the case of FastAPI, it makes our life slightly easier since we'll
only have to work with Pydantic models. However, there are some subtleties around the
document identifiers that we need to take into account. We'll review this next.

To begin, we'll install Motor, which is a library that is used to communicate
asynchronously with MongoDB and is officially supported by the MongoDB organization.
You can run the following command:

$ pip install motor

Once this is done, we can start working!

Communicating with a MongoDB database using Motor 201

Creating models compatible with MongoDB ID
As we mentioned in the introduction to this section, there are some difficulties with the
identifiers that MongoDB uses to store documents. Indeed, by default, MongoDB assigns
every document an _id property that acts as a unique identifier in a collection. This
causes two issues:

•	 In a Pydantic model, if a property starts with an underscore, it's considered to be
private and, thus, is not used as a data field for our model.

•	 _id is encoded as a binary object, called ObjectId, instead of a simple
integer or string. It's usually represented in the form of a string such as
608d1ee317c3f035100873dc. This type of object is not supported out of the
box by Pydantic or FastAPI.

This is why we'll need some boilerplate code to ensure those identifiers work
with Pydantic and FastAPI. To begin, in the following example, we have created
a MongoBaseModel base class that takes care of defining the id field:

models.py

class MongoBaseModel(BaseModel):

 id: PyObjectId = Field(default_factory=PyObjectId, alias="_
id")

 class Config:

 json_encoders = {ObjectId: str}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/models.py

First, we need to define an id field, which is of type PyObjectId. This is a custom
type that has been defined in the preceding code. We won't go into the details of its
implementation, but just know that it's a class that makes ObjectId a compatible type
for Pydantic. We define this same class as a default factory for this field. Interestingly, that
kind of identifier allows us to generate them on the client side, contrary to traditional
auto-incremented integers of relational databases, which could be useful in some cases.

The most interesting argument is alias. It's a Pydantic option allowing us to change the
name of the field during serialization. In this example, when we call the dict method on
one instance of MongoBaseModel, the identifier will be set on the _id key; this is the
name expected by MongoDB. That solves the first issue.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/models.py

202 Databases and Asynchronous ORMs

Then, we add the Config sub-class and set the json_encoders option. By default,
Pydantic is completely unaware of our PyObjectId type, so it won't be able to correctly
serialize it to JSON. This option allows us to map custom types with a function that will
be called to serialize them. Here, we simply transform it into a string (it works because
ObjectId implements the __str__ magic method). That solves the second issue
for Pydantic.

Our base model for Pydantic is complete! We can now use it as a base class
instead of BaseModel for our actual data models. Notice, however, that the
PostPartialUpdate doesn't inherit from it. Indeed, we don't want the id field in
this model; otherwise, a PATCH request might be able to replace the ID of the document,
which could lead to weird issues.

Connecting to a database
Now that our models are ready, we can set up the connection with a MongoDB
server. This is quite easy and only involves a class instantiation, as shown in the
following example:

app.py

motor_client = AsyncIOMotorClient("mongodb://localhost:27017")
Connection to the whole server

database = motor_client["chapter6_mongo"] # Single database
instance

def get_database() -> AsyncIOMotorDatabase:

 return database

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

Here, you can see that AsyncIOMotorClient simply expects a connection string to
your database. Generally, it consists of the scheme, followed by authentication information
and the hostname of the database server. You can find an overview of this format in
the official MongoDB documentation at https://docs.mongodb.com/manual/
reference/connection-string/.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

Communicating with a MongoDB database using Motor 203

However, be careful. Contrary to the libraries we've discussed so far, the client instantiated
here is not bound to any database, that is, it's only a connection to a whole server. That's
why we need the second line to set the database that we want to work upon directly by its
key. It's worth noting that MongoDB doesn't require you to create the database upfront:
it'll create it automatically if it doesn't exist.

Then, we create a simple function to return this database instance. We'll use this
function as a dependency to retrieve this instance in our path operation functions.
We explained the benefits of this pattern in the Communicating with a SQL database
with SQLAlchemy section.

That's it! We can now make queries to our database!

Inserting documents
We'll start by demonstrating how to implement an endpoint to create posts. Essentially,
we just have to insert our Pydantic model that has been transformed into a dictionary:

app.py

@app.post("/posts", response_model=PostDB, status_code=status.
HTTP_201_CREATED)

async def create_post(

 post: PostCreate, database: AsyncIOMotorDatabase =
Depends(get_database)

) -> PostDB:

 post_db = PostDB(**post.dict())

 await database["posts"].insert_one(post_db.dict(by_
alias=True))

 post_db = await get_post_or_404(post_db.id, database)

 return post_db

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

Classically, this is a POST endpoint that accepts a payload in the form of a PostCreate
model. Additionally, we inject the database instance with the dependency we wrote earlier.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

204 Databases and Asynchronous ORMs

In the path operation itself, you can see that we start by instantiating a PostDB from the
PostCreate data. This is usually a good practice if you only have fields in PostDB that
need to be initialized.

Then, we have the query. To retrieve a collection in our MongoDB database, we simply
have to get it by name, like a dictionary. Once again, MongoDB will take care of creating
it if it doesn't exist. As you can see, document-oriented databases are much more
lightweight regarding schema than relational databases! In this collection, we can call
the insert_one method to insert a single document. It expects a dictionary to map
fields to their values. Therefore, the dict method of Pydantic objects is once again our
friend. However, here, we see something new: we call it with the by_alias argument
set to True. By default, Pydantic will serialize the object with the real field name, not the
alias name. However, we do need the identifier named as _id in our MongoDB database.
Using this option, Pydantic will use the alias as a key in the dictionary.

To ensure we have a true and fresh representation of our document in the dictionary,
we retrieve it back from the database thanks to our get_post_or_404 function.
We'll examine how it works in the next section.

Getting documents
Of course, retrieving the data from the database is an important part of the job of a REST
API. Now, we'll demonstrate how to implement two classic endpoints, that is, to list posts
and get a single post. Let's start with the first one and take a look at its implementation in
the following example:

app.py

@app.get("/posts")

async def list_posts(

 pagination: Tuple[int, int] = Depends(pagination),

 database: AsyncIOMotorDatabase = Depends(get_database),

) -> List[PostDB]:

 skip, limit = pagination

 query = database["posts"].find({}, skip=skip, limit=limit)

 results = [PostDB(**raw_post) async for raw_post in query]

 return results

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

Communicating with a MongoDB database using Motor 205

The most interesting part is the second line where we define the query. After retrieving
the posts collection, we call the find method. The first argument should be the
filtering query, following the MongoDB syntax. Since we want every document,
we leave it empty. Then, we have keyword arguments that allow us to apply our
pagination parameters.

MongoDB returns us a result in the form of a list of dictionaries, which maps fields to
their values. This is why we added a list comprehension construct to transform them back
into PostDB instances so that FastAPI can serialize them properly.

You might have noticed something quite surprising here: contrary to what we do usually,
we didn't wait for the query directly. Instead, we added the async keyword to our list
comprehension. Indeed, in this case, Motor returns an asynchronous generator. It's the
asynchronous counterpart of the classic generator. It works in the same way, aside from
the async keyword we have to add when iterating over it.

Now, let's take a look at the endpoint to retrieve a single post. The following example
shows its implementation:

app.py

@app.get("/posts/{id}", response_model=PostDB)

async def get_post(post: PostDB = Depends(get_post_or_404)) ->
PostDB:

 return post

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

As you can see, it's a simple GET endpoint that accepts the id post as a path parameter.
Most of the logic implementation is in the reusable get_post_or_404 dependency.
You can view how it looks like in the next example:

App.py

async def get_post_or_404(

 id: ObjectId = Depends(get_object_id),

 database: AsyncIOMotorDatabase = Depends(get_database),

) -> PostDB:

 raw_post = await database["posts"].find_one({"_id": id})

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

206 Databases and Asynchronous ORMs

 if raw_post is None:

 raise HTTPException(status_code=status.HTTP_404_NOT_
FOUND)

 return PostDB(**raw_post)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

The logic is quite similar to what we saw for the list endpoint. This time, however, we call
the find_one method with a query to match the post identifier: the key is the name of
the document attribute we want to filter on, and the value is the one we are looking for.

This method returns the document in the form of a dictionary or None if it doesn't exist.
In this case, we raise a proper 404 error.

Finally, we transform it back into a PostDB model before returning it.

You might have noticed that we got the id through a dependency, get_object_id.
Indeed, FastAPI will return a string from the path parameter. If we try to make a query
with the id in the form of a string, MongoDB will not match with the actual binary IDs.
That's why we use another dependency that transforms the identifier represented as
a string (such as 608d1ee317c3f035100873dc) to a proper ObjectId.

On a side note, here, you have a very nice example of nested dependencies: endpoints use
the get_post_or_404 dependency, which itself gets a value from get_object_id.
You can view the implementation of this dependency in the following example:

app.py

async def get_object_id(id: str) -> ObjectId:

 try:

 return ObjectId(id)

 except (errors.InvalidId, TypeError):

 raise HTTPException(status_code=status.HTTP_404_NOT_
FOUND)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

Communicating with a MongoDB database using Motor 207

Here, we simply retrieve the id string from the path parameters and try to instantiate
it back into an ObjectId. If it's not a valid value, we catch the corresponding errors and
consider it as a 404 error.

With this, we have solved every challenge posed by the MongoDB identifiers format.
Let's now discuss how to update and delete documents.

Updating and deleting documents
We'll now review the endpoints to update and delete documents. The logic is still the same
and only involves building the proper query from the request payload.

Let's start with the PATCH endpoint, which you can view in the following example:

app.py

@app.patch("/posts/{id}", response_model=PostDB)

async def update_post(

 post_update: PostPartialUpdate,

 post: PostDB = Depends(get_post_or_404),

 database: AsyncIOMotorDatabase = Depends(get_database),

) -> PostDB:

 await database["posts"].update_one(

 {"_id": post.id}, {"$set": post_update.dict(exclude_
unset=True)}

)

 post_db = await get_post_or_404(post.id, database)

 return post_db

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

Here, you can see that we use the update_one method to update one document. The
first argument is the filtering query and the second one is the actual operation to apply to
the document. Once again, it follows the MongoDB syntax: the $set operation allows
us to only modify the fields we want to change by passing the update dictionary.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

208 Databases and Asynchronous ORMs

The DELETE endpoint is even simpler: it's just a single query, as you can see in the
following example:

app.py

@app.delete("/posts/{id}", status_code=status.HTTP_204_NO_
CONTENT)

async def delete_post(

 post: PostDB = Depends(get_post_or_404),

 database: AsyncIOMotorDatabase = Depends(get_database),

):

 await database["posts"].delete_one({"_id": post.id})

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

The delete_one method expects the filtering query as the first argument.

That's it! Of course, here, we've only demonstrated the simplest queries, but MongoDB
has a very powerful query language that'll allow you to do more complex things. If
you're not used to it, we recommend you to read the nice introduction from the official
documentation. You can find this at https://docs.mongodb.com/manual/crud.

Nesting documents
At the beginning of this chapter, we mentioned that document-based databases, contrary
to relational databases, aim to store all the data related to an entity in a single document.
In our current example, if we wish to store the comments along with the post, we simply
have to add a list containing information regarding each comment.

In this section, we'll implement this behavior. You should see that the functioning of
MongoDB makes it very easy and straightforward.

We'll start by adding a new comments attribute on our PostDB model. You can view this
in the following example:

models.py

class PostDB(PostBase):

 comments: List[CommentDB] = Field(default_factory=list)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://docs.mongodb.com/manual/crud

Communicating with a MongoDB database using Motor 209

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb_
relationship/models.py

This field is simply a list of CommentDB. We won't go into the details of the comment
models, since they are quite straightforward. Notice here that we use the list function
as the default factory for this attribute. This instantiates an empty list by default when
we create a PostDB without setting any comments.

Now that we have our models, we can implement an endpoint to create a new comment.
You can view it in the following example:

app.py

@app.post(

 "/posts/{id}/comments", response_model=PostDB, status_
code=status.HTTP_201_CREATED

)

async def create_comment(

 comment: CommentCreate,

 post: PostDB = Depends(get_post_or_404),

 database: AsyncIOMotorDatabase = Depends(get_database),

) -> PostDB:

 await database["posts"].update_one(

 {"_id": post.id}, {"$push": {"comments": comment.
dict()}}

)

 post_db = await get_post_or_404(post.id, database)

 return post_db

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb_
relationship/app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb_relationship/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb_relationship/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb_relationship/app.py

210 Databases and Asynchronous ORMs

This one is slightly different from what we've seen so far. Indeed, instead of making
comments a "first-class" resource with their own paths, such as for relational databases,
here, we chose to nest it under the path of a single post. The motivation behind this is that,
since those comments are designed to be nested under posts, it doesn't really make sense
to consider them as single entities that you can work with independently.

Since we have the post ID in the path parameter, you can reuse our get_post_or_404
dependency to retrieve the post.

Then, we trigger an update_one query; this time, using the $push operation. This is
a useful operator for adding elements to a list attribute. Operators to remove elements
from a list are also available. You can find a description of every update operator in the
official documentation at https://docs.mongodb.com/manual/reference/
operator/update/.

And that's it! In fact, we don't even have to modify the rest of our code. Because the
comments are included in the whole document, we'll always retrieve them when querying
for a post in the database. Besides, our PostDB model now expects a comments
attribute, so Pydantic will take care of serializing them automatically.

That concludes this part regarding MongoDB. You've seen that its integration into
a FastAPI application is very quick, especially because of its very flexible schema.

Summary
Congratulations! You've reached another big milestone in your mastering of building
a REST API with FastAPI. As you know, databases are an essential part of every system;
they allow you to save data in a structured way and retrieve it precisely and reliably
thanks to powerful query languages. You are now able to leverage their power in FastAPI,
whether they are relational databases or document-oriented databases. Additionally,
you've seen the differences between working with and without an ORM to manage
relational databases, and you have also learned about the importance of a good migration
system when working with such databases.

Serious things can now happen: users can send and retrieve data to and from your system.
However, this poses a new challenge to tackle. This data needs to be protected so that
it can remain private and secure. This is exactly what we'll discuss in our next chapter:
how to authenticate users and set up FastAPI for maximum security.

https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/

7
Managing

Authentication and
Security in FastAPI

Most of the time, you don't want everyone on the internet to have access to your API,
without any restrictions on the data they can create or read. That's why you'll need to
at least protect your application with a private token or have a proper authentication
system to manage rights per user. In this chapter, we'll see that FastAPI provides security
dependencies to help us retrieve credentials following different standards that are directly
integrated into the automatic documentation. We'll also build a basic user registration and
authentication system to secure our API endpoints.

Finally, we'll cover security challenges you must tackle when you want to call your API
from a web application in a browser – in particular, CORS and CSRF attacks.

212 Managing Authentication and Security in FastAPI

In this chapter, we're going to cover the following main topics:

•	 Security dependencies in FastAPI

•	 Retrieving a user and generating an access token

•	 Securing API endpoints for authenticated users

•	 Securing endpoints with access tokens

•	 Configuring CORS and protecting against CSRF attacks

Technical requirements
For this chapter, you'll need the Python virtual environment that we set up in Chapter 1,
Python Development Environment Setup.

You can find all the code examples for this chapter in this book's dedicated GitHub
repository: https://github.com/PacktPublishing/Building-Data-
Science-Applications-with-FastAPI/tree/main/chapter7.

Security dependencies in FastAPI
To protect a REST API and, more generally, HTTP endpoints, lots of standards have been
proposed. Here is a non-exhaustive list of the most common ones:

•	 Basic HTTP authentication: In this scheme, user credentials (usually, an identifier
such as an email address and password) are put into an HTTP header called
Authorization. The value consists of the Basic keyword, followed by the user
credentials encoded in Base64. This is a very simple scheme to implement but not
very secure since the password appears in every request.

•	 Cookies: Cookies are a useful way to store static data on the client side, usually on
web browsers, that is sent in each request to the server. Typically, a cookie can contain
a session token that can be verified by the server and linked to a specific user.

•	 Tokens in the Authorization header: Probably the most used header in a REST
API context, this simply consists of sending a token in an HTTP Authorization
header. The token is often prefixed by a method keyword, such as Bearer. On the
server side, this token can be verified and linked to a specific user.

Each standard has its pros and cons and is suitable for a specific use case.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter7
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter7

Security dependencies in FastAPI 213

As you already know, FastAPI is mainly about dependency injection and callables that are
automatically detected and called at runtime. Authentication methods are no exception:
FastAPI provides most of them out of the box as security dependencies.

First, let's learn how to retrieve an access token in an arbitrary header. For this, we can use
the ApiKeyHeader dependency, as shown in the following example:

chapter7_api_key_header.py

from fastapi import Depends, FastAPI, HTTPException, status

from fastapi.params import Depends

from fastapi.security import APIKeyHeader

API_TOKEN = "SECRET_API_TOKEN"

app = FastAPI()

api_key_header = APIKeyHeader(name="Token")

@app.get("/protected-route")

async def protected_route(token: str = Depends(api_key_
header)):

 if token != API_TOKEN:

 raise HTTPException(status_code=status.HTTP_403_
FORBIDDEN)

 return {"hello": "world"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/chapter7_api_key_
header.py

In this simple example, we hardcoded a token, API_TOKEN, and checked if the one that
was passed in the header is equal to this token, before authorizing the endpoint to be
called. To do this, we used the APIKeyHeader security dependency, which is designed
to retrieve a value from a header. It's a class dependency that can be instantiated with
arguments. It also accepts the name argument, which will be the name of the header it'll
look for.

Then, in our endpoint, we injected this dependency to get the token's value. If it's equal to
our token constant, we proceed with the endpoint logic. Otherwise, we raise a 403 error.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/chapter7_api_key_header.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/chapter7_api_key_header.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/chapter7_api_key_header.py

214 Managing Authentication and Security in FastAPI

Our example from the Path, router, and global dependencies section of Chapter 5,
Dependency Injections in FastAPI, is not very different from this one. We are simply
retrieving a value from an arbitrary header and making an equality check. So, why bother
with a dedicated dependency? There are two reasons:

•	 First, the logic to check if the header exists and retrieve its value is included in
APIKeyHeader. When you reach the endpoint, you are sure that a token value
was retrieved; otherwise, a 403 error will be thrown.

•	 The second, and probably most important thing, is that it's detected by the
OpenAPI schema and included in its interactive documentation. This means that
endpoints, including this dependency will display a lock icon, showing that it's a
protected endpoint. Furthermore, you'll have access to an interface to input your
token, as shown in the following screenshot. The token will then be automatically
included in the requests you are making from the documentation:

Figure 7.1 – Token authorization in interactive documentation

Security dependencies in FastAPI 215

Of course, you can wrap the logic that checks the token value in its own dependency to
reuse it across your endpoints, as shown in the following example:

chapter7_api_key_header_dependency.py

async def api_token(token: str =
Depends(APIKeyHeader(name="Token"))):

 if token != API_TOKEN:

 raise HTTPException(status_code=status.HTTP_403_
FORBIDDEN)

@app.get("/protected-route", dependencies=[Depends(api_token)])

async def protected_route():

 return {"hello": "world"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/chapter7_api_key_
header_dependency.py

Remember that these kinds of dependencies are very good candidates to be used as router
or global dependencies to protect whole sets of routes, as we saw in Chapter 5, Dependency
Injections in FastAPI.

This is a very basic example of adding authorization to your API. In this example, we don't
have any user management; we are only checking that a token corresponds to a constant
value. While it could be useful for private microservices that are not intended to be called
by end users, don't consider this approach as a very secure one. First, make sure your API
is always served using HTTPS to ensure your token is not exposed in the headers.

Then, if it's a private microservice, you should also consider not exposing it publicly on
the internet and making sure only trusted servers can call it. Since you don't need users to
make requests to this service, it's much safer than a simple token key that could be stolen.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/chapter7_api_key_header_dependency.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/chapter7_api_key_header_dependency.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/chapter7_api_key_header_dependency.py

216 Managing Authentication and Security in FastAPI

Of course, most of the time, you'll want to authenticate real users with their own
individual access token so that they can access their own data. You have probably already
used a service that implements this very typical pattern:

•	 First, you must register an account on this service, usually by providing your email
address and a password.

•	 Next, you can log into the service using the same email address and password.
The service checks if the email address exists and that the password is valid.

•	 In exchange, the service provides you with a session token that can be used on
subsequent requests to authenticate yourself. This way, you don't have to provide
your email address and password on each request, which would be annoying and
dangerous. Usually, such session tokens have a limited lifetime, which means you'll
have to log in again after some time. This mitigates any security risks if the session
token is stolen.

In the next section, you'll learn how to implement such a system.

Storing a user and their password securely in
a database
Storing a user entity in a database is no different from storing any other entity, and you
can implement this in the same way as we saw in Chapter 6, Databases and Asynchronous
ORMs. The only thing you must be extremely cautious about is password storage. You
must not store the password as plain text in your database. Why? If, unfortunately, a
malicious person manages to get into your database, they'll be able to get the passwords
of all your users. Since many people use the same password several times, the security of
their accounts on other applications and websites would be seriously compromised.

To avoid a disaster like this, we can apply cryptographic hash functions to the password.
The goal of those functions is to transform the password string into a hash value. They are
designed to make it near impossible to retrieve the original data from the hash. Hence,
even if your database is compromised, the passwords are still safe.

When users try to log in, we simply compute the hash of the password they input and
compare it with the hash we have in our database. If they match, this means it's the
right password.

Now, let's learn how to implement such a system with FastAPI and Tortoise ORM.

Storing a user and their password securely in a database 217

Creating models and tables
The first thing we must do is create the Pydantic models, as shown in the
following example:

models.py

class UserBase(BaseModel):

 email: EmailStr

 class Config:

 orm_mode = True

class UserCreate(UserBase):

 password: str

class User(UserBase):

 id: int

class UserDB(User):

 hashed_password: str

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
models.py

To keep this example simple, we're only considering the email address and password in
our user model. As you can see, there is a major difference between UserCreate and
UserDB: the former accepts the plain text password we'll hash during registration, while
the second will only keep the hashed password in the database.

Now, we can define the corresponding Tortoise model, as shown in the following example:

models.py

class UserTortoise(Model):

 id = fields.IntField(pk=True, generated=True)

 email = fields.CharField(index=True, unique=True,

 null=False, max_length=255)

 hashed_password = fields.CharField(null=False,

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py

218 Managing Authentication and Security in FastAPI

 max_length=255)

 class Meta:

 table = "users"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
models.py

Note that we added a unique constraint to the email column to ensure we can't have
duplicate emails in our database.

Hashing passwords
Before we look at the registration endpoint, let's implement some important utility
functions for hashing passwords. Fortunately, libraries exist that provide the most secure
and efficient algorithms for this task. Here, we'll use passlib. You can install it with
its optional bcrypt dependency, which is one of the safest hash functions at the time
of writing:

$ pip install 'passlib[bcrypt]'

Now, we'll just instantiate the passlib classes and wrap some of their functions to make
our lives easier:

password.py

from passlib.context import CryptContext

pwd_context = CryptContext(schemes=["bcrypt"],

 deprecated="auto")

def get_password_hash(password: str) -> str:

 return pwd_context.hash(password)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
password.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/password.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/password.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/password.py

Storing a user and their password securely in a database 219

CryptContext is a very useful class since it allows us to work with different hash
algorithms. If, one day, a better algorithm than bcrypt emerges, we can just add it to our
allowed schemes. New passwords will be hashed using the new algorithm, but existing
passwords will still be recognized (and optionally upgraded to the new algorithm).

Implementing registration routes
Now, we have all the elements to create a proper registration route. Once again, it'll be
very similar to what we saw earlier. The only thing we must remember is to hash the
password before inserting it into our database.

Let's look at the implementation:

app.py

@app.post("/register", status_code=status.HTTP_201_CREATED)

async def register(user: UserCreate) -> User:

 hashed_password = get_password_hash(user.password)

 try:

 user_tortoise = await UserTortoise.create(

 **user.dict(), hashed_password=hashed_password

)

 except IntegrityError:

 raise HTTPException(

 status_code=status.HTTP_400_BAD_REQUEST,
detail="Email already exists"

)

 return User.from_orm(user_tortoise)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py

220 Managing Authentication and Security in FastAPI

As you can see, we are calling get_password_hash on the input password before
inserting the user into the database thanks to Tortoise. Note that we are catching a
possible IntegrityError exception, which means we're trying to insert an email
that already exists.

Also, notice that we took care to return the user with the User model, not the UserDB
model. By doing this, we're ensuring that hashed_password is not part of the output.
Even hashed, it's generally not advised to leak it into the API responses.

Great! We now have a proper user model and users can create a new account with our
API. The next step is to allow them to log in and give them an access token.

Retrieving a user and generating an access
token
After successful registration, the next step is being able to log in: the user will send
their credentials and receive an authentication token to access the API. In this section,
we'll implement the endpoint that allows this. Basically, we'll get the credentials from
the request payload, retrieve the user with the given email, and verify their password.
If the user exists and their password is valid, we'll generate an access token and return
it in the response.

Implementing a database access token
First, let's think about the nature of this access token. It should be a data string that
uniquely identifies a user that is impossible to forge by a malicious third party. In this
example, we will take a simple but reliable approach: we'll generate a random string and
store it in a dedicated table in our database, with a foreign key referring to the user.

This way, when an authenticated request arrives, we simply have to check whether it exists
in the database and look for the corresponding user. The advantage of this approach is that
tokens are centralized and can easily be invalidated if they are compromised; we only need
to delete them from the database.

The first step is to implement the Pydantic and Tortoise models for this new entity. Let's
have a look at the Pydantic model first:

models.py

class AccessToken(BaseModel):

 user_id: int

 access_token: str = Field(default_factory=generate_token)

Retrieving a user and generating an access token 221

 expiration_date: datetime = Field(default_factory=get_
expiration_date)

 class Config:

 orm_mode = True

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
models.py

Here, we have three fields:

•	 user_id, which will let us identify the user that corresponds to this token.

•	 access_token, the string that will be passed in the requests to authenticate them.
Notice that we defined the generate_token function as the default factory;
it's a simple function living in password.py that generates a random secure
passphrase. Under the hood, it relies on the standard secrets module.

•	 expiration_date, which is the date and time when the access token won't be
valid anymore. It's always a good idea to make access tokens expire to mitigate the
risk if they are stolen. Here, the get_expiration_date factory sets a default
validity of 24 hours.

Now, let's have a look at the corresponding Tortoise model:

models.py

class AccessTokenTortoise(Model):

 access_token = fields.CharField(pk=True,

 max_length=255)

 user = fields.ForeignKeyField("models.UserTortoise",

 null=False)

 expiration_date = fields.DatetimeField(null=False)

 class Meta:

 table = "access_tokens"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
models.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/models.py

222 Managing Authentication and Security in FastAPI

The implementation here is quite straightforward. Notice that we chose to directly use
access_token as a primary key.

Implementing a login endpoint
Now, let's think about the login endpoint. Its goal is to take credentials in the request
payload, retrieve the corresponding user, check the password, and generate a new access
token. Its implementation is quite straightforward, apart from one thing: the model that's
used to handle the request. You'll see why thanks to the following example:

app.py

@app.post("/token")

async def create_token(

 form_data: OAuth2PasswordRequestForm =
Depends(OAuth2PasswordRequestForm),

):

 email = form_data.username

 password = form_data.password

 user = await authenticate(email, password)

 if not user:

 raise HTTPException(status_code=status.HTTP_401_
UNAUTHORIZED)

 token = await create_access_token(user)

 return {"access_token": token.access_token,

 "token_type": "bearer"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py

Retrieving a user and generating an access token 223

As you can see, we retrieve the request data thanks to the
OAuth2PasswordRequestForm module, which is provided by FastAPI in its security
module. It expects several fields, especially username and password, in a form
encoding rather than JSON.

Why do we use this class? The main benefit of using this class is that it's completely
integrated into the OpenAPI schema. This means that the interactive documentation will
be able to automatically detect it and present a proper authentication form behind the
Authorize button, as shown in the following screenshot:

Figure 7.2 – OAuth2 authorization in interactive documentation

But that's not all: it will be able to automatically retrieve the returned access token and
set the proper authorization header in subsequent requests. The authentication process is
handled transparently by the interactive documentation.

224 Managing Authentication and Security in FastAPI

This class follows the OAuth2 protocol, which means you also have fields for the client
ID and secret. We won't learn how to implement the complete OAuth2 protocol here, but
note that FastAPI provides all the tools needed to do so properly. For our project, we'll
just stick with a username and a password. Notice that, following the protocol, the field is
named username, regardless of whether we are using an email address to identify the user.
This isn't a big deal; we just have to remember it while retrieving it.

The rest of the path operation function is quite simple: first, we try to retrieve a user
from this email and password. If no corresponding user is found, we raise a 401
error. Otherwise, we generate a new access token before returning it. Notice that the
response structure also includes the token_type property. This allows the interactive
documentation to automatically sets the authorization headers.

In the following example, we'll look at the implementation of the authenticate and
create_access_token functions. We won't go into too much detail here as they are
quite simple:

authentication.py

async def authenticate(email: str, password: str) ->
Optional[UserDB]:

 try:

 user = await UserTortoise.get(email=email)

 except DoesNotExist:

 return None

 if not verify_password(password, user.hashed_password):

 return None

 return UserDB.from_orm(user)

async def create_access_token(user: UserDB) -> AccessToken:

 access_token = AccessToken(user_id=user.id)

 access_token_tortoise = await AccessTokenTortoise.
create(**access_token.dict())

 return AccessToken.from_orm(access_token_tortoise)

Securing endpoints with access tokens 225

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
authentication.py

Notice that we defined a function called verify_password to check the validity of the
password. Once again, it uses passlib under the hood, which takes care of comparing
the hashes of the passwords.

Password Hash Upgrade
To keep this example simple, we implemented a simple password comparison.
Usually, it's good practice to implement a mechanism to upgrade the password
hash at this stage. Imagine that a new and more robust hash algorithm has
been introduced. We can take this opportunity to hash the password with
this new algorithm and store it in a database. passlib includes a function
for verifying and upgrading the hash with one operation. You can learn
more about this in the following documentation: https://passlib.
readthedocs.io/en/stable/narr/context-tutorial.
html#integrating-hash-migration.

We've almost achieved our goal! Users can now log in and get a new access token. All we
need to do now is implement a dependency to retrieve the Authorization header and
verify this token!

Securing endpoints with access tokens
Previously, we learned how to implement a simple dependency to protect an endpoint with
a header. Here, we'll also retrieve a token from a request header, but then, we'll have to check
the database to see if it's valid. If it is, we'll be able to return the corresponding user.

Let's see what our dependency looks like:

app.py

async def get_current_user(

 token: str = Depends(OAuth2PasswordBearer(tokenUrl="/
token")),

) -> UserTortoise:

 try:

 access_token: AccessTokenTortoise = await
AccessTokenTortoise.get(

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/authentication.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/authentication.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/authentication.py
https://passlib.readthedocs.io/en/stable/narr/context-tutorial.html#integrating-hash-migration
https://passlib.readthedocs.io/en/stable/narr/context-tutorial.html#integrating-hash-migration
https://passlib.readthedocs.io/en/stable/narr/context-tutorial.html#integrating-hash-migration

226 Managing Authentication and Security in FastAPI

 access_token=token, expiration_date__gte=timezone.
now()

).prefetch_related("user")

 return cast(UserTortoise, access_token.user)

 except DoesNotExist:

 raise HTTPException(status_code=status.HTTP_401_
UNAUTHORIZED)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
app.py

The first thing to notice is that we used the OAuth2PasswordBearer dependency from
FastAPI. It goes hand in hand with OAuth2PasswordRequestForm, which we saw in
the previous section. It not only checks for the access token in the Authorization header,
but it also informs the OpenAPI schema that the endpoint to get a fresh token is /token.
This is the purpose of the tokenUrl argument. This is how the automatic documentation
can automatically call the access token endpoint in the login form we saw earlier.

Then we performed a database query with Tortoise. We applied two clauses: one to
match the token we got and another to ensure that the expiration date is in the future.
The __gte syntax is a filter modifier: it allows us to specify the comparison operator to
apply when comparing values. Here, gte means "greater than or equal to." You can find
a list of every filter that's available in Tortoise in the official documentation: https://
tortoise-orm.readthedocs.io/en/latest/query.html#filtering.
Notice that we also prefetched the related user so that we can directly return it. However,
if no corresponding record is found in the database, we raise a 401 error.

And that's it! Our whole authentication system is complete. Now, we can protect our
endpoints simply by injecting this dependency. We even have access to the user data
so that we can tailor the response according to the current user. You can see this in the
following example:

app.py

@app.get("/protected-route", response_model=User)

async def protected_route(user: UserDB = Depends(get_current_
user)):

 return User.from_orm(user)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://tortoise-orm.readthedocs.io/en/latest/query.html#filtering
https://tortoise-orm.readthedocs.io/en/latest/query.html#filtering

Configuring CORS and protecting against CSRF attacks 227

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/authentication/
app.py

With that, you've learned how to implement a whole registration and authentication
system from scratch. We voluntarily kept it simple to focus on the most important points,
but it's a good base you can expand.

The patterns we showed here are good candidates for a REST API, which is called
externally by other client programs. However, you may wish to call your API from a very
common piece of software: the browser. In this case, there are some additional security
considerations to take care of.

Configuring CORS and protecting against CSRF
attacks
Nowadays, lot of software are designed to be used in a browser through an interface built
with HTML, CSS, and JavaScript. Traditionally, web servers were responsible for handling
browser requests and returning an HTML response, ready to be shown. This is a common
use case for frameworks such as Django.

For a few years now, there has been a shift in that pattern. With the emergence of
JavaScript frameworks, such as Angular, React, and Vue, we tend to have a clear
separation between the frontend, a highly interactive user interface powered by JavaScript,
and the backend. Thus, those backends are now only responsible for data storage and
retrieving and executing business logic. This is a task that REST APIs are very good at!
From the JavaScript code, the user interface can then just spawn requests to your API and
handle the result to present it.

However, we must still handle authentication: we want our user to be able to log in on
the frontend application and be able to make authenticated requests to the API. While an
Authorization header, as we've seen so far, could work, there is a better way to handle
authentication when working in browsers: cookies!

Cookies are designed to store user information in browser memory and are sent
automatically in every request made to your server. They have been supported for years,
and browsers integrate lots of mechanisms to make them safe and reliable.

However, this comes with some security challenges. Websites are very common targets for
hackers and lots of attacks have emerged over the years.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/authentication/app.py

228 Managing Authentication and Security in FastAPI

One of the most typical is Cross-Site Request Forgery (CSRF). In this scenario, an
attacker on another website tries to trick a user who is currently authenticated with your
application to perform a request on your server. Since browsers tend to send cookies with
every request, your server wouldn't be able to tell that the request was actually forged.
Since it's the users themselves who unintentionally launched the malicious request, these
kinds of attacks don't aim to steal data but execute operations that change the state of the
application, such as changing an email address or making a money transfer.

Obviously, we should be prepared for these kinds of risks and have measures in place to
mitigate them.

Understanding CORS and configuring it in FastAPI
When you have a clearly separated frontend application and a REST API backend, they
typically are not served from the same sub-domain. For example, the frontend may be
available from www.myapplication.com, while the REST API may be available from
api.myapplication.com. As we mentioned in the introduction, we would like to
make requests to this API from our frontend application, in JavaScript.

However, browsers don't allow cross-origin HTTP requests, meaning domain A can't
make requests to domain B. This follows what is called a same-origin policy. This is a
good thing in general as it's the first barrier to preventing CSRF attacks.

To experience this behavior, we'll run a simple example. In our example repository, the
chapter7/cors folder contains a FastAPI app called app_without_cors.py and
a simple HTML file called index.html that contains some JavaScript for performing
HTTP requests.

First, let's run the FastAPI application using the usual uvicorn command:

$ uvicorn chapter7.cors.app_without_cors:app

This will launch the FastAPI application on port 8000 by default. On another terminal,
we'll serve the HTML file using the built-in Python HTTP server. It's a simple server,
but it's ideal for quickly serving static files. We can launch it on port 9000 thanks to the
following command:

$ python -m http.server --directory chapter7/cors 9000

http://www.myapplication.com
http://api.myapplication.com

Configuring CORS and protecting against CSRF attacks 229

Starting Several Terminals
On Linux and macOS, you should be able to simply start a new terminal by
creating a new window or tab. On Windows and WSL, you can also have
several tabs if you're using the Windows terminal application: https://
www.microsoft.com/en-us/p/windows-terminal/9n0dx20
hk701?activetab=pivot:overviewtab.

Otherwise, you can simply click on the Ubuntu shortcut in your Start menu to
start another terminal.

We now have two running servers – one on localhost:8000 and one on
localhost:9000. Strictly speaking, since they are on different ports, they are of
different origins; so, it's a good setup to try out cross-origin HTTP requests.

In your browser, go to http://localhost:9000. You'll see the simple application
implemented in index.html, as shown in the following screenshot:

Figure 7.3 – Simple application for trying out CORS policies

There are two buttons that initiate GET and POST requests to our FastAPI application
on port 8000. If you click on either of those, you'll have a message in the error area stating
Failed to fetch. If you look at the browser console in the development tools section,
you'll see that the request has failed because there isn't a CORS policy, as shown in the
following screenshot. That's what we wanted – by default, browsers block cross-origin
HTTP requests:

Figure 7.4 – CORS error in a browser console

https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?activetab=pivot:overviewtab
http://localhost:9000

230 Managing Authentication and Security in FastAPI

However, if you look at the terminal running the FastAPI application, you'll see an output
similar to the following:

Figure 7.5 – Uvicorn output when performing simple requests

Clearly, both the GET and POST requests have been received and processed: we even
returned a 200 status. So, what does this mean? In this case, the browser does send the
request to the server. The lack of a CORS policy only forbids it to read the response; the
request is still executed.

It happens for requests that the browser considers as simple requests. Simply put, simple
requests are the ones using the methods GET, POST or HEAD that don't set custom
headers or unusual content types. You can learn more about simple requests and their
conditions by going to the following MDN page about CORS: https://developer.
mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests.

This means that, for simple requests, the same-origin policy is not enough to protect us
against CSRF attacks.

You may have noticed that our simple web application has a toggle to Enable JSON
content-type. Enable it and perform the GET and POST requests again. On your FastAPI
terminal, you should have an output similar to the following:

Figure 7.6 – Uvicorn output when receiving preflight requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests

Configuring CORS and protecting against CSRF attacks 231

As you can see, our server received two strange requests with the OPTIONS method.
This is what we call preflight requests in the context of CORS policies. Those requests
are initiated by the browser before it performs the actual request when it doesn't consider
it a "simple request." Here, we added the Content-Type header with a value of
application/json, which is against the conditions of simple requests.

By performing this preflight request, the browser expects the server to provide
information about what it is and isn't allowed to do in terms of cross-origin HTTP
requests. Since we've not implemented anything here, our server can't provide a response
to this preflight request. Hence, the browser stops there and doesn't proceed with the
actual request.

And that's basically CORS: the server answers preflight queries with a set of HTTP
headers that provide information to the browser about whether it's allowed to make the
request or not. In that sense, CORS doesn't make your application more secure, it's quite
the contrary: it allows to relax some rules so that a frontend application can make requests
to a backend living on another domain. That's why it's crucial to configure them properly,
so that they don't expose you to dangerous attacks.

Fortunately, it's fairly easy to do this with FastAPI. All we need to do is import and add
the CORSMiddleware class provided by Starlette. You can see what it looks like in the
following example:

app_with_cors.py

app.add_middleware(

 CORSMiddleware,

 allow_origins=["http://localhost:9000"],

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

 max_age=-1, # Only for the sake of the example.

Remove this in your own project.

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/cors/app_with_
cors.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/cors/app_with_cors.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/cors/app_with_cors.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/cors/app_with_cors.py

232 Managing Authentication and Security in FastAPI

A middleware is a special class that adds global logic to an ASGI application performing
things before the request is handled by your path operation functions, and also after to
possibly alter the response. FastAPI provides the add_middleware method for wiring
such middleware into your application.

Here, CORSMiddleware will catch preflight requests sent by the browser and return the
appropriate response with the CORS headers corresponding to your configuration. You
can see that there are options to finely tune the CORS policy to your needs.

The most important one is probably allow_origins, which is the list of origins allowed
to make requests to your API. Since our HTML application is served from http://
localhost:9000, this is what we put here in this argument. If the browser tries to
make requests from any other origin, it will stop as it's not authorized to do so by
CORS headers.

The other interesting argument is allow_credentials. By default, browsers don't
send cookies for cross-origin HTTP requests. If we wish to make authenticated requests to
our API, we need to allow this via this option.

We can also finely tune the allowed methods and headers that are sent in the request.
You can find a complete list of arguments for this middleware in the official Starlette
documentation: https://www.starlette.io/middleware/#corsmiddleware.

Let's quickly talk about the max_age parameter. This parameter allows you to control the
cache duration of the CORS responses. Having to perform a preflight request before the
actual one is an expensive operation. To improve performance, browsers can cache the
response so that they don't have to do this every time. Here, we are disabling caching with
a value of -1 to make sure you see the behavior of the browser in this example. In your
projects, you can remove this argument so that you have a proper cache value.

Now, let's see how our web application behaves with this CORS-enabled application.
Stop the previous FastAPI app and run this one using the usual command:

$ uvicorn chapter7.cors.app_with_cors:app

Now, if you try to perform the requests from the HTML application, you should see a
working response in each case, both with and without a JSON content type. If you look at
the FastAPI terminal, you should see an output similar to the following:

https://www.starlette.io/middleware/#corsmiddleware

Configuring CORS and protecting against CSRF attacks 233

Figure 7.7 – Uvicorn output with CORS headers

The two first requests are the "simple requests," which don't need a preflight request
according to the browser rules. Then, we can see the requests that were performed with
the JSON content type enabled. Before the GET and POST requests, an OPTIONS request
was performed: the preflight request!

Thanks to this configuration, you can now make cross-origin HTTP requests between
your frontend application and your backend living on another origin. Once again, it's not
something that'll improve the security of your application, but it allows you to make this
specific scenario work while keeping it secure from the rest of the web.

Even if those policies can be a first layer of defense against CSRF, this doesn't mitigate the
risk completely. Indeed, the "simple requests" are still an issue: POST requests are allowed
and, even if the response cannot be read, it's actually executed on the server.

Now, let's learn how to implement a pattern so that we're completely safe from such
attacks: the double-submit cookie.

Implementing double-submit cookies to prevent
CSRF attacks
As we mentioned previously, when relying on cookies to store user credentials, we are
exposed to CSRF attacks since browsers will automatically send the cookies to your server.
This is especially true for what the browser considers "simple requests", which don't
enforce the CORS policy before the request is executed. There are also other attack vectors
involving traditional HTML form submissions or even the src attribute of the image tag.

234 Managing Authentication and Security in FastAPI

For all these reasons, we need to have another layer of security to mitigate this risk. Once
again, this is only necessary if you plan to use your API from a browser application and
use cookies for authentication.

To help you understand this, we've built a new example application that uses a cookie
to store the user access token. It's very similar to the one we saw at the beginning of this
chapter; we only modified it so that it looks for the access token in a cookie rather than in
a header.

To make this example work, you'll have to install the starlette-csrf library. We'll
explain what it does a bit later in this section. For now, just run the following command:

$ pip install starlette-csrf

In the following example, you can see the login endpoint that sets a cookie with the access
token value:

app.py

@app.post("/login")

async def login(response: Response, email: str = Form(...),
password: str = Form(...)):

 user = await authenticate(email, password)

 if not user:

 raise HTTPException(status_code=status.HTTP_401_
UNAUTHORIZED)

 token = await create_access_token(user)

 response.set_cookie(

 TOKEN_COOKIE_NAME,

 token.access_token,

 max_age=token.max_age(),

 secure=True,

 httponly=True,

 samesite="lax"

)

Configuring CORS and protecting against CSRF attacks 235

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/csrf/app.py

Notice that we used the Secure and HttpOnly flags for the resulting cookie. This
ensures that it's sent only through HTTPS connection and that its value can't be read
from JavaScript, respectively. While this is not enough to prevent every kind of attack,
it's crucial for such sensitive information.

Besides, we also set the SameSite flag to lax. It's a quite recent flag that allows us to
control how the cookie is sent in a cross-origin context. lax is the default value in most
browsers and allows the cookie to be sent to sub-domains of the cookie domain but
prevent it for other sites. In a sense, it's designed to be the built-in and standard protection
against CSRF. However, other CSRF mitigation techniques, like the one we'll implement
here, are still needed currently. Indeed, older browsers that are not compatible with the
SameSite flag are still vulnerable.

Now, when checking for the authenticated user, we'll just have to retrieve the token
from the cookie that was sent in the request. Once again, FastAPI provides a security
dependency to help with this called APIKeyCookie. You can see it in the following
example:

app.py

async def get_current_user(

 token: str = Depends(APIKeyCookie(name=TOKEN_COOKIE_NAME)),

) -> UserTortoise:

 try:

 access_token: AccessTokenTortoise = await
AccessTokenTortoise.get(

 access_token=token, expiration_date__gte=timezone.
now()

).prefetch_related("user")

 return cast(UserTortoise, access_token.user)

 except DoesNotExist:

 raise HTTPException(status_code=status.HTTP_401_
UNAUTHORIZED)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/csrf/app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/csrf/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/csrf/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/csrf/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/csrf/app.py

236 Managing Authentication and Security in FastAPI

And that's basically it! The rest of the code remains the same. Now, let's implement an
endpoint that allows us to update the email address of the authenticated user. You can see
this in the following example:

app.py

@app.post("/me", response_model=User)

async def update_me(

 user_update: UserUpdate, user: UserTortoise = Depends(get_
current_user)

):

 user.update_from_dict(user_update.dict(exclude_unset=True))

 await user.save()

 return User.from_orm(user)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/csrf/app.py

The implementation is not very surprising and follows what we've seen so far. However,
it exposes us to a CSRF threat. As you can see, it uses the POST method. If we make a
request in the browser to this endpoint, without any special header, it will consider it as a
simple request and execute it. Therefore, an attacker could change the email of a currently
authenticated user, which is a major threat.

This is exactly why we need CSRF protection here. In the context of a REST API, the most
straightforward technique is the double submit cookie pattern. Here is how it works:

1.	 The user makes a first request with a method that's considered safe. Typically,
this is a GET request.

2.	 In response, it receives a cookie containing a secret random value; that is,
the CSRF token.

3.	 When making an unsafe request, such as POST, the user will read the CSRF token
in the cookies and put the exact same value in a header. Since the browser also
sends the cookies it has in memory, the request will contain the token both in the
cookie and the header. That's why it's called double submit.

4.	 Before processing the request, the server will compare the CSRF token provided
in the header with the one present in the cookie. If they match, it can process the
request. Otherwise, it'll throw an error.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/csrf/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/csrf/app.py

Configuring CORS and protecting against CSRF attacks 237

This is safe for two reasons:

•	 An attacker on a third-party website can't read the cookies for a domain they don't
own. Thus, they have no way of retrieving the CSRF token value.

•	 Adding a custom header is against the conditions of "simple requests". Hence, the
browser will have to make a preflight request before sending the request, enforcing
the CORS policy.

This is a widely used pattern that works well to prevent such risks. This is why we installed
starlette-csrf at the beginning of this section: it provides a piece of middleware for
implementing it.

We can use it just like any other middleware, as shown in the following example:

app.py

app.add_middleware(

 CSRFMiddleware,

 secret=CSRF_TOKEN_SECRET,

 sensitive_cookies={TOKEN_COOKIE_NAME},

 cookie_domain="localhost",

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter7/csrf/app.py

We set several important arguments here. First, we have the secret, which should be
a strong passphrase that's used to sign the CSRF token. Then, we have sensitive_
cookies, which is a set of cookie names that should trigger the CSRF protection. If no
cookie is present or if the provided ones are not critical, we can bypass the CSRF check.
It's also useful if you have other authentication methods available that don't rely on
cookies, such as Authorization headers, that are not vulnerable to CSRF. Finally, setting
a cookie domain will allow you to retrieve the cookie containing the CSRF token, even if
you are on a different subdomain; this is necessary in a cross-origin situation.

That's all you need to have the necessary protection ready. To ease the process of getting
a fresh CSRF token, we implemented a minimal GET endpoint called /csrf. Its sole
purpose is to provide us with a simple way to set the CSRF token cookie. We can call it
directly when we load our frontend application.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/csrf/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter7/csrf/app.py

238 Managing Authentication and Security in FastAPI

Now, let's try it out in our situation. As we did in the previous section, we'll run the
FastAPI application and the simple HTML application on two different ports. To do this,
just run the following commands:

$ uvicorn chapter7.csrf.app:app

This will run the FastAPI application on port 8000. Now, run the following command:

$ python -m http.server --directory chapter7/csrf 9000

The frontend application is now live on http://localhost:9000. Open it in your
browser. You should see an interface similar to the following:

Figure 7.8 – Simple application to try out the CSRF protected API

Here, we've added forms to interact with our API endpoints: register, login, get
authenticated user, and update them. If you try them out, they should work without
any issue. If you have a look at the requests that were sent in the network tab of the
development tools section, you'll see that the CSRF token is present in the cookies
and in a header called x-csrftoken.

At the top, there is a toggle to prevent the application from sending the CSRF token in the
header. If you disable it, you'll see that all POST operations will result in an error.

http://localhost:9000

Summary 239

Great! We are now safe from CSRF attacks! Most of the work here is done by the
middleware, but it's interesting to understand how it works under the hood and how
it protects your application. Bear in mind, however, that it comes with a drawback: it
will break the interactive documentation. Indeed, it's not designed to retrieve the CSRF
token from the cookie and put it in the headers in each request. Unless you plan of
authenticating in another way (through a token in a header, for example), you won't be
able to directly call your endpoints in the documentation.

Summary
That's all for this chapter, which covered authentication and security in FastAPI. We saw
that implementing a basic authentication system is quite easy thanks to the tools provided
by FastAPI. We've shown you one way to do this, but there are plenty of other good
patterns out there to tackle this challenge. However, when working on this matter, always
keep security in mind and be sure that you don't expose your application and your users'
data to dangerous threats. In particular, you've seen that CSRF attacks have to be taken
care of when designing a REST API that will be used in a browser application. A good
source to understand all the security risks involved in a web application is the OWASP
Cheat Sheet Series: https://cheatsheetseries.owasp.org.

With that, we've covered most of the important subjects concerning FastAPI application
development. In the next chapter, we'll learn how to work with a recent technology that's
integrated with FastAPI that allows to have real time two-way communication between
the client and the server: websockets.

https://cheatsheetseries.owasp.org

8
Defining

WebSockets for
Two-Way Interactive

Communication in
FastAPI

The HyperText Transfer Protocol (HTTP) is a simple yet powerful technique to send or
receive data to and from a server. As we've seen, the principles of request and response
are at the core of this protocol: when developing our application programming interface
(API), our goal is to process the incoming request and build a response for the client.
Thus, in order to get data from the server, the client always has to initiate a request first.
In some contexts, however, this may not be very convenient. Imagine a typical chat
application: when a user receives a new message, we would like them to be notified
immediately by the server. Working only with HTTP, we would have to make requests
every second to check if new messages have arrived, which would be a massive waste of
resources. This is why a new protocol has emerged: WebSocket. The goal of this protocol
is to open a communication channel between a client and a server so that they can
exchange data in real time, in both directions.

242 Defining WebSockets for Two-Way Interactive Communication in FastAPI

In this chapter, we're going to cover the following main topics:

•	 Understanding the principles of two-way communication with WebSockets

•	 Creating a WebSocket with FastAPI

•	 Handling multiple WebSocket connections and broadcasting messages

Technical requirements
You'll need a Python virtual environment, as we set up in Chapter 1, Python Development
Environment Setup.

For the Handling multiple WebSocket connections and broadcasting messages section, you'll
need a running Redis server on your local computer. The easiest way is to run it as a Docker
container. If you've never used Docker before, we recommend you read the Getting started
tutorial in the official documentation at https://docs.docker.com/get-started/.
Once done, you'll be able to run a Redis server with this simple command:

$ docker run -d --name fastapi-redis -p 6379:6379 redis

This will make it available on your local computer on port 6379.

You'll find all the code examples of this chapter in the dedicated GitHub repository
at https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter8.

Understanding the principles of two-way
communication with WebSockets
You have probably noticed that the name WebSockets is a direct reference to the
traditional concept of sockets in Unix systems. While technically unrelated, they achieve
the same goal: to open a communication channel between two applications. As we said in
the introduction, HTTP works only on a request-response principle, which makes the
implementation of applications that need real-time communication between the client
and the server difficult and inefficient.

WebSockets try to solve that by opening a full-duplex communication channel, meaning
that messages can be sent in both directions and possibly at the same time. Once the
channel is opened, the server can send messages to the client without having to wait for
a request from the client.

https://docs.docker.com/get-started/
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter8
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter8

Creating a WebSocket with FastAPI 243

Even if HTTP and WebSocket are different protocols, WebSockets have been designed
to work with HTTP. Indeed, when opening a WebSocket, the connection is first
initiated using an HTTP request and then upgraded to a WebSocket tunnel. This makes
it compatible out of the box with traditional 80 and 443 ports, which is extremely
convenient because we can easily add this feature over existing web servers without the
need for an extra process.

WebSockets also share another similarity with HTTP: Uniform Resource Identifiers
(URIs). As with HTTP, WebSockets are identified through classic URIs, with a host,
a path, and query parameters. Furthermore, we also have two schemes: ws (WebSocket)
for unsecure connections and wss (WebSocket Secure) for Secure Sockets Layer/
Transport Layer Security (SSL/TLS)-encrypted connections.

Finally, this protocol is nowadays well supported in browsers, and opening a connection
with a server involves just a few lines of JavaScript, as we'll see in this chapter.

However, handling this two-way communication channel is quite different from handling
traditional HTTP requests. Since things happen in real time and in both directions,
we'll see that we have to think differently from what we are used to. In FastAPI, the
asynchronous nature of the WebSocket implementation will greatly help us in finding our
way through that.

Creating a WebSocket with FastAPI
Thanks to Starlette, FastAPI has built-in support to serve WebSockets. As we'll see,
defining a WebSocket endpoint is quick and easy, and we'll be able to get started in
minutes. However, things will get more complex as we try to add more features to our
endpoint logic. Let's start simple, with a WebSocket that waits for messages and simply
echoes them back.

In the following example, you'll see the implementation of such a simple case:

app.py

from fastapi import FastAPI, WebSocket

from starlette.websockets import WebSocketDisconnect

app = FastAPI()

@app.websocket("/ws")

244 Defining WebSockets for Two-Way Interactive Communication in FastAPI

async def websocket_endpoint(websocket: WebSocket):

 await websocket.accept()

 try:

 while True:

 data = await websocket.receive_text()

 await websocket.send_text(f"Message text was:
{data}")

 except WebSocketDisconnect:

 await websocket.close()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter8/echo/app.py

The code is quite understandable by itself, but let's focus on the important parts that differ
from classic HTTP endpoints.

First of all, you see that FastAPI provides a special websocket decorator to create a
WebSocket endpoint. As for regular endpoints, it takes as an argument the path at which
it'll be available. However, other arguments not making sense in this context, such as the
status code or response model, are not available.

Then, in the path operation function, we can inject a WebSocket object, which will
provide us all the methods to work with the WebSocket, as we'll see.

The first method we are calling in the implementation is accept. This method should be
called first as it tells the client that we agree to open the tunnel.

After that, you see that we start an infinite loop. That's the main difference with an HTTP
endpoint: since we are opening a communication channel, it'll remain open until the client
or the server decides to close it. While it's open, they can exchange as many messages as
they need, hence the infinite loop is here to keep it open and repeat the logic until the
tunnel is closed.

Inside the loop, we make a first call to the receive_text method. As you may have
guessed, this returns us the data sent by the client in plain text format. It's important here
to understand that this method will block until data is received from the client. Until that
event, we won't proceed with the rest of the logic.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/echo/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/echo/app.py

Creating a WebSocket with FastAPI 245

We see here the importance of asynchronous input/output, as we presented in Chapter 2,
Python Programming Specificities. By creating an infinite loop waiting for incoming data,
we could have blocked the whole server process in a traditional blocking paradigm. Here,
thanks to the event loop, the process is able to answer other requests made by other clients
while we are waiting for this one.

When data is received, the method returns the text data and we can proceed with the next
line. Here, we simply send back the message to the client thanks to the send_text method.
Once done, we are going back to the beginning of the loop to wait for another message.

You probably noticed that the whole loop is wrapped inside a try..except statement.
This is necessary to handle client disconnection. Indeed, our server will most of the time
be blocked at the receive_text line, waiting for client data. If the client decides
to disconnect, the tunnel will be closed and the receive_text call will fail, with a
WebSocketDisconnect exception. That's why it's important to catch it to break the
loop and properly call disconnect on the server side.

Let's try it! You can run the FastAPI application, as usual, thanks to the Uvicorn server.
Here's the command you'll need:

$ uvicorn chapter8.echo.app:app

Our client will be a simple HyperText Markup Language (HTML) page with some
JavaScript code to interact with the WebSocket. We'll quickly go through this code after
the demonstration. To run it, we can simply serve it with the built-in Python server,
as follows:

$ python -m http.server --directory chapter8/echo 9000

Starting several terminals
On Linux and macOS, you should be able to simply start a new terminal by
creating a new window or tab. On Windows and Windows Subsystem for
Linux (WSL), you can also have several tabs if you use the Windows terminal
application (see https://www.microsoft.com/en-us/p/
windows-terminal/9n0dx20hk701?activetab=pivot:ove
rviewtab for more information). Otherwise, you can simply click again on
the Ubuntu shortcut in your Start menu to start another terminal.

https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?activetab=pivot:overviewtab

246 Defining WebSockets for Two-Way Interactive Communication in FastAPI

This will serve our HTML page on port 9000 of your local machine. If you open
the http://localhost:9000 address, you'll see a simple interface like the one
shown here:

Figure 8.1 – Simple application to try WebSocket

You have a simple input form, allowing you to send messages to the server through the
WebSocket. They appear in green in the list below. The server echoes back your messages,
which then appear in yellow in the list.

You can see what's happening under the hood by opening the Network tab in the
developer tools of your browser. Reload the page to force the WebSocket to reconnect.
You should then see a row for the WebSocket connection. If you click on it, you'll see a
Messages tab where you can see all the messages passing through the WebSocket.

In the following example, you'll see the JavaScript code used to open the WebSocket
connection and to send and receive messages:

script.js

const socket = new WebSocket('ws://localhost:8000/ws');

// Connection opened

socket.addEventListener('open', function (event) {

 // Send message on form submission

 document.getElementById('form').addEventListener('submit',

http://localhost:9000

Creating a WebSocket with FastAPI 247

(event) => {

 event.preventDefault();

 const message = document.getElementById('message').value;

 addMessage(message, 'client');

 socket.send(message);

 event.target.reset();

 });

});

// Listen for messages

socket.addEventListener('message', function (event) {

 addMessage(event.data, 'server');

});

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter8/echo/script.js

As you can see, modern browsers provide a very simple API to interact with WebSockets.
You just have to instantiate a new WebSocket object with the Uniform Resource
Locator (URL) of your endpoint and wire some event listeners: open when the
connection is ready and message when data is received from the server. Finally, the
send method allows you to send data to the server. You can view more details on the
WebSocket API in the Mozilla Developer Network (MDN) documentation at https://
developer.mozilla.org/en-US/docs/Web/API/WebSockets_API.

Handling concurrency
In the previous example, we've assumed that the client was always sending a message first:
we wait for its message before sending it back. Once again, it's the client that takes the
initiative in the conversation.

However, in usual scenarios, the server can have data to send to the client without being
at the initiative. In a chat application, another user can typically send one or several
messages that we want to forward to the first user immediately. In this context, the
blocking call to receive_text we showed in the previous example is a problem:
while we are waiting, the server could have messages to forward to the client.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/echo/script.js
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/echo/script.js
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

248 Defining WebSockets for Two-Way Interactive Communication in FastAPI

To solve this, we'll rely on more advanced tools of the asyncio module. Indeed, it
provides functions that allow us to schedule several coroutines concurrently and wait
until one of them is complete. In our context, we can have a coroutine that waits for client
messages and another one that sends data to it when it arrives. The first one being fulfilled
wins and we can start again with another loop iteration.

To make this clearer, let's build another example, in which the server will once again echo
back the message of the client. Besides that, it'll regularly send the current time to the
client. You can see the implementation in the following code snippet:

app.py

async def echo_message(websocket: WebSocket):

 data = await websocket.receive_text()

 await websocket.send_text(f"Message text was: {data}")

async def send_time(websocket: WebSocket):

 await asyncio.sleep(10)

 await websocket.send_text(f"It is: {datetime.utcnow().
isoformat()}")

@app.websocket("/ws")

async def websocket_endpoint(websocket: WebSocket):

 await websocket.accept()

 try:

 while True:

 echo_message_task = asyncio.create_task(echo_
message(websocket))

 send_time_task = asyncio.create_task(send_
time(websocket))

 done, pending = await asyncio.wait(

 {echo_message_task, send_time_task},

 return_when=asyncio.FIRST_COMPLETED,

)

 for task in pending:

 task.cancel()

 for task in done:

Creating a WebSocket with FastAPI 249

 task.result()

 except WebSocketDisconnect:

 await websocket.close()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter8/concurrency/app.py

As you can see, we defined two coroutines: the first one, echo_message, waits for
text messages from the client and sends them back, while the second one, send_time,
waits for 10 seconds before sending the current time to the client. Both of them expect a
WebSocket instance in the argument.

The most interesting part lives under the infinite loop: as you can see, we call our two
functions, wrapped by the create_task function of asyncio. This transforms the
coroutine into a Task object. Under the hood, a task is how the event loop manages the
execution of the coroutine. Put more simply, it gives us full control over the execution of
the coroutine, to retrieve its result or even cancel it.

Those task objects are necessary to work with asyncio.wait. This function is
especially useful to run tasks concurrently. It expects in the first argument a set of tasks to
run. By default, this function will block until all given tasks are completed. However, we
can control that thanks to the return_when argument: in our case, we want it to block
until one of the tasks is completed, which corresponds to the FIRST_COMPLETED value.
The effect is the following: our server will launch the coroutines concurrently. The first
one will block waiting for a client message, while the other one will block for 10 seconds.
If the client sends a message before 10 seconds, it'll send the message back and complete.
Otherwise, the send_time coroutine will send the current time and complete.

At that point, asyncio.wait will return us two sets: the first one, done, contains a set of
completed tasks, while the other one, pending, contains a set of tasks not yet completed.

We want to now go back to the start of the loop to start again. However, we need to first
cancel all the tasks that have not been completed; otherwise, they would pile up at each
iteration, hence the iteration over the pending set to cancel those tasks.

Finally, we also make an iteration over the done tasks and call the result method on
them. This method returns the result of the coroutine but also re-raises an exception
that could have been raised inside. This is especially useful to handle once again the
disconnection of the client: when waiting for client data, if the tunnel is closed, an
exception is raised. Thus, our try..except statement can catch it to properly close
the WebSocket.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/concurrency/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/concurrency/app.py

250 Defining WebSockets for Two-Way Interactive Communication in FastAPI

If you try this example as we did previously, you'll see that the server will regularly send
you the current time but is also able to echo the messages you send.

This send_time example shows you how you can implement a process to send data to
the client when an event happens on the server: new data is available in the database, an
external process has finished a long computation, and so on. In the next section, we'll see
how we can properly handle the case of multiple clients sending messages to the server,
which then broadcasts them to all the clients.

That's basically how you can handle concurrency with asyncio tools. So far, everyone
is able to connect to those WebSocket endpoints without any restriction. Of course,
as with classic HTTP endpoints, you'll likely need to authenticate a user before opening
the connection.

Using dependencies
Just as with regular endpoints, you can use dependencies in WebSocket endpoints.
However, since they are designed with HTTP in mind, this comes with a few drawbacks.

First of all, you can't use security dependencies, as we showed in Chapter 7, Managing
Authentication and Security in FastAPI. Indeed, under the hood, most of them work
by injecting the Request object, which only works for HTTP requests (we saw that
WebSockets are injected in a WebSocket object instead). Trying to inject those
dependencies in a WebSocket context will result in an error.

Similarly, basic dependencies such as Query, Header, or Cookie have their quirks.
Indeed, FastAPI is perfectly able to solve them in a WebSocket context. However, if they
are required, FastAPI will throw an error when they are missing. Contrary to the HTTP
validation error that is handled globally to render a proper 422 error, there is no handler
for this WebSocket equivalent at the time of writing. This comes from a limitation of
Starlette, the underlying server layer, that may be solved in future releases. You can follow
the work on this subject at the following GitHub pull request: https://github.com/
encode/starlette/pull/527.

Meanwhile, it's recommended to make all your WebSocket dependencies optional and
handle missing values yourself.

That's what we'll see in our next example. In this one, we'll inject two dependencies,
as follows:

•	 A username query parameter, which we'll use to greet the user on connection.

https://github.com/encode/starlette/pull/527
https://github.com/encode/starlette/pull/527

Creating a WebSocket with FastAPI 251

•	 A token cookie, which we'll compare with a static value, to keep the example
simple. Of course, a proper strategy would be to have a proper user lookup, as we
implemented in Chapter 7, Managing Authentication and Security in FastAPI. If
this cookie is missing or doesn't have the required value, we'll close the WebSocket
immediately with an error code.

Let's see the implementation in the following sample:

dependencies.py

@app.websocket("/ws")

async def websocket_endpoint(

 websocket: WebSocket,

 username: str = "Anonymous",

 token: Optional[str] = Cookie(None),

):

 if token != API_TOKEN:

 await websocket.close(code=status.WS_1008_POLICY_
VIOLATION)

 return

 await websocket.accept()

 await websocket.send_text(f"Hello, {username}!")

 try:

 while True:

 data = await websocket.receive_text()

 await websocket.send_text(f"Message text was:
{data}")

 except WebSocketDisconnect:

 await websocket.close()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter8/dependencies/app.py

As you can see, injecting dependencies is no different from standard HTTP endpoints.
Notice that we take care of providing a default value or making them optional,
as we said before.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/dependencies/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/dependencies/app.py

252 Defining WebSockets for Two-Way Interactive Communication in FastAPI

Then, we can have our dummy authentication logic. If it fails, we immediately close the
socket with a status code. WebSockets have their own set of status codes. You can view
a complete list of these on this MDN documentation page: https://developer.
mozilla.org/fr/docs/Web/API/CloseEvent. The most generic one when an
error occurs is 1008.

If it passes, we can start our classic echo server. Notice that we can use the username value
as we wish in our logic. Here, we send a first message to greet the user on connection.
If you try this with the HTML application, you'll see this message first, as shown in the
following screenshot:

 Figure 8.2 – Greeting message on connection

With the browser WebSocket API, query parameters can be passed into the URL and
the browser automatically forwards the cookies. However, there is no way to pass custom
headers. This means that if you rely on headers for authentication, you'll have to either add
one using cookies or implement an authentication message mechanism in the WebSocket
logic itself. However, if you don't plan to use your WebSocket with a browser, you can still
rely on headers since most WebSocket clients support them.

You now have a good overview of how to add WebSockets to your FastAPI application. As
we said, they are generally useful when several users are involved in real time and we need
to broadcast messages to all of them. We'll see in the next section how to implement this
pattern reliably.

https://developer.mozilla.org/fr/docs/Web/API/CloseEvent
https://developer.mozilla.org/fr/docs/Web/API/CloseEvent

Handling multiple WebSocket connections and broadcasting messages 253

Handling multiple WebSocket connections and
broadcasting messages
As we said in the introduction to this chapter, a typical use case for WebSockets is to
implement real-time communication across multiple clients, such as a chat application.
In this configuration, several clients have an open WebSocket tunnel with the server. Thus,
the role of the server is to manage all the client connections and broadcast messages to all
of them: when a user sends a message, the server has to send it to all other clients in their
WebSockets. We show you a schema of this principle here:

Figure 8.3 – Multiple clients connected through WebSocket to a server

A first approach could be simply to keep a list of all WebSocket connections and iterate
through them to broadcast messages. This would work but would quickly become
problematic in a production environment. Indeed, most of the time, server processes
run multiple workers when deployed. This means that instead of having only one
process serving requests, we can have several ones so that we can answer more requests
concurrently. We could also think of deployments on multiple servers spread in several
data centers.

254 Defining WebSockets for Two-Way Interactive Communication in FastAPI

Hence, nothing guarantees you that two clients opening a WebSocket are served by the
same process. Our simple approach would fail in this configuration: since connections
are kept in the process memory, the process receiving the message would not be able to
broadcast the message to clients served by another process. We schematize this problem
in the following diagram:

Figure 8.4 – Multiple server workers without a message broker

To solve this, we generally rely on message brokers. Message brokers are pieces of
software whose role is to receive messages published by a first program and broadcast
them to programs that are subscribed to it. Usually, this publish-subscribe (pub-sub)
pattern is organized into different channels so that messages are clearly organized
following their topic or usage. Some of the best-known message broker software includes
Apache Kafka, RabbitMQ, or cloud-based implementations from Amazon Web Services
(AWS), Google Cloud Platform (GCP) and Microsoft Azure: Amazon MQ, Cloud Pub/
Sub and Service Bus, respectively.

Handling multiple WebSocket connections and broadcasting messages 255

Hence, our message broker will be unique in our architecture, and several server
processes will connect to it to either publish or subscribe to messages. This architecture
is schematized in the following diagram:

Figure 8.5 – Multiple server workers with a message broker

In this chapter, we'll see how to set up a simple system using the broadcaster library
from Encode (the creators of Starlette) and Redis, which will act as a message broker.

A word on Redis
As its core, Redis is a data store designed to achieve maximum performance.
It's widely used in the industry for storing temporary data that we want to
access very quickly, such as cache or distributed locks. It also supports a
basic pub/sub paradigm, which makes it a good candidate to be used as a
message broker. You can learn more about this technology at its official website
https://redis.io.

First of all, let's install the library with the following command:

$ pip install "broadcaster[redis]"

This library will abstract away all the complexities of publishing and subscribing with
Redis for us.

https://redis.io

256 Defining WebSockets for Two-Way Interactive Communication in FastAPI

Let's see the details of the implementation. In the following example, you'll see the
instantiation of the Broadcaster object:

app.py

broadcast = Broadcast("redis://localhost:6379")

CHANNEL = "CHAT"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py

As you can see, it only expects a URL to our Redis server. Notice also that we define a
CHANNEL constant. This will be the name of the channel to publish and subscribe to
messages. We choose a static value here for the sake of the example, but you could have
dynamic channel names in a real-world application—to support several chat rooms,
for example.

Then, we define two functions: one to subscribe to new messages and send them to the
client and another one to publish messages received in the WebSocket. You can see these
functions in the following sample:

app.py

class MessageEvent(BaseModel):

 username: str

 message: str

async def receive_message(websocket: WebSocket, username: str):

 async with broadcast.subscribe(channel=CHANNEL) as
subscriber:

 async for event in subscriber:

 message_event = MessageEvent.parse_raw(event.
message)

 # Discard user's own messages

 if message_event.username != username:

 await websocket.send_json(message_event.dict())

async def send_message(websocket: WebSocket, username: str):

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py

Handling multiple WebSocket connections and broadcasting messages 257

 data = await websocket.receive_text()

 event = MessageEvent(username=username, message=data)

 await broadcast.publish(channel=CHANNEL, message=event.
json())

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py

First of all, notice that we defined a Pydantic model, MessageEvent, to help us structure
the data contained in a message. Instead of just passing raw strings as we've been doing up
to now, we have an object bearing both the message and the username.

The first function, receive_message, subscribes to the broadcast channel and waits
for messages called event. The data of the message contains serialized JavaScript Object
Notation (JSON) that we deserialize to instantiate a MessageEvent object. Notice that
we use the parse_raw method of the Pydantic model, allowing us to parse the JSON
string into an object in one operation.

Then, we check if the message username is different from the current username. Indeed,
since all users are subscribed to the channel, they will also receive the messages they sent
themselves. That's why we discard them based on the username to avoid this. Of course, in
a real-world application, you'll likely want to rely on a unique user identifier (UID) rather
than a simple username.

Finally, we can send the message through the WebSocket thanks to the send_json
method, which takes care of serializing the dictionary automatically.

The second function, send_message, is there to publish a message to the broker. Quite
simply, it waits for new data in the socket, structures it into a MessageEvent object, and
then publishes it.

That's about it for the broadcaster part. We then have the WebSocket implementation in
itself, which is very similar to what we saw in the previous sections. You can see it in the
following sample:

app.py

@app.websocket("/ws")

async def websocket_endpoint(websocket: WebSocket, username:
str = "Anonymous"):

 await websocket.accept()

 try:

 while True:

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py

258 Defining WebSockets for Two-Way Interactive Communication in FastAPI

 receive_message_task = asyncio.create_task(

 receive_message(websocket, username)

)

 send_message_task = asyncio.create_task(

 send_message(websocket, username)

)

 done, pending = await asyncio.wait(

 {receive_message_task, send_message_task},

 return_when=asyncio.FIRST_COMPLETED,

)

 for task in pending:

 task.cancel()

 for task in done:

 task.result()

 except WebSocketDisconnect:

 await websocket.close()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py

Notice that username is retrieved from the query parameters.

Finally, we need to tell FastAPI to open the connection with the broker when it starts the
application and to close it when exiting, as you can see in the following extract:

app.py

@app.on_event("startup")

async def startup():

 await broadcast.connect()

@app.on_event("shutdown")

async def shutdown():

 await broadcast.disconnect()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter8/broadcast/app.py

Handling multiple WebSocket connections and broadcasting messages 259

The on_event decorators allow us to trigger some useful logic when FastAPI starts
or stops.

Let's now try this application! First, we'll run the Uvicorn server. Be sure that your Redis
container is running before starting, as we explained in the Technical requirements section.
Here's the code you'll need:

$ uvicorn chapter8.broadcast.app:app

We also provided a simple HTML client in the examples. To run it, we can simply serve it
with the built-in Python server, as follows:

$ python -m http.server --directory chapter8/broadcast 9000

You can now access it through http://localhost:9000. If you open it twice in your
browser, in two different windows, you can see whether the broadcasting is working. Input
a username in the first window and click on Connect. Do the same in the second window
with a different username. You can now send messages and see that they are broadcasted
to the other client, as depicted in the following screenshot:

Figure 8.6 – Multiple WebSocket clients broadcasting messages

That was a very quick overview of how you can implement broadcasting systems involving
message brokers. Of course, we only covered the basics here, and much more complex
things can be done with those powerful technologies. Once again, we see that FastAPI
gives us access to powerful building bricks without locking us inside specific technologies
or patterns: it's very easy to include new libraries to expand our possibilities.

http://localhost:9000

260 Defining WebSockets for Two-Way Interactive Communication in FastAPI

Summary
In this chapter, you've learned how to work with one of the latest web technologies
available: WebSocket. You are now able to open a two-way communication channel
between a client and a server, allowing you to implement applications with real-time
constraints. As you've seen, FastAPI makes it very easy to add such endpoints. Still,
the way of thinking inside a WebSocket logic is quite different from traditional HTTP
endpoints: managing an infinite loop and handling several tasks at a time are completely
new challenges. Fortunately, the asynchronous nature of the framework makes our life
easier in this matter and helps us write concurrent code that is easily understandable.

Finally, we also had a quick overview of the challenges to solve when handling multiple
clients that share messages between them. You saw that message broker software such
as Apache Kafka or RabbitMQ is necessary to make this use case reliable across several
server processes.

You are now acquainted with all the features of FastAPI. Up to now, we've shown very
simple examples focused on a specific point. In the real world, however, you'll likely
develop big applications that can do a lot of things and grow larger over time. To make
them reliable, maintainable, and keep high-quality code, it's necessary to test them to
make sure they behave as intended and that you don't introduce bugs when adding
new things.

In the next chapter, you'll see how to set up an efficient test environment for FastAPI.

9
Testing an API

Asynchronously
with pytest and

HTTPX
In software development, a significant part of the developer's work should be dedicated to
writing tests. At first, you may be tempted to manually test your application by running
it, making a few requests, and arbitrarily deciding that "everything works". However, this
approach is flawed and can't guarantee that your program works in every circumstance
and that you didn't break things along the way.

That's why several disciplines have emerged regarding software testing: unit tests,
integration tests, E2E tests, acceptance tests, and more. These techniques aim to validate
the functionality of the software from a micro level, where we test single functions
(unit tests), to a macro level, where we test a global feature that delivers value to the
user (acceptance tests). In this chapter, we'll focus on the first level: unit testing.

262 Testing an API Asynchronously with pytest and HTTPX

Unit tests are short programs designed to verify that our code behaves the way it should
in every circumstance. You may think that tests are time-consuming to write and that
they don't add value to your software, but this will save you time in the long run: first of
all, tests can be run automatically in a few seconds, ensuring that all your software works,
without you needing to manually go over every feature. Secondly, when you introduce
new features or refactor the code, you're ensuring that you don't introduce bugs to existing
parts of the software. In conclusion, tests are just as important as the program itself, and
they help you deliver reliable and high-quality software.

In this chapter, you'll learn how to write tests for your FastAPI application, both for
HTTP endpoints and WebSockets. To help with this, you'll learn how to configure pytest,
a well-known Python test framework, and HTTPX, an asynchronous HTTP client
for Python.

In this chapter, we're going to cover the following main topics:

•	 Introduction to unit testing with pytest

•	 Setting up the testing tools for FastAPI with HTTPX

•	 Writing tests for REST API endpoints

•	 Writing tests for WebSocket endpoints

Technical requirements
For this chapter, you'll need a Python virtual environment, similar to the one we set up in
Chapter 1, Python Development Environment Setup.

For the Testing with a database section, you'll need a running MongoDB server on your
local computer. The easiest way to do this is to run it as a Docker container. If you've never
used Docker before, we recommend that you read the Get Started tutorial in the official
documentation: https://docs.docker.com/get-started/. Once done, you'll be
able to run a MongoDB server with this simple command:

$ docker run -d --name fastapi-mongo -p 27017:27017 mongo:4.4

The MongoDB server instance will then be available on your local computer on
port 27017.

You can find all the code examples for this chapter in its dedicated GitHub repository:
https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter9.

https://docs.docker.com/get-started/
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter9
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter9

Introduction to unit testing with pytest 263

Introduction to unit testing with pytest
As we mentioned in the introduction, writing unit tests is an essential task in software
development to deliver high-quality software. To help us be productive and efficient, lot of
libraries exist that provide tools and shortcuts dedicated to testing. In the Python standard
library, a module exists for unit testing called unittest. Even though it's quite common
in Python code bases, many Python developers tend to prefer pytest, which provides a
more lightweight syntax and powerful tools for advanced use cases.

In the following examples, we'll write a unit test for a function called add, both with
unittest and pytest, so that you can see how they compare on a basic use case. First,
we'll install pytest:

$ pip install pytest

Now, let's see our simple add function, which simply performs an addition:

chapter9_introduction.py

def add(a: int, b: int) -> int:

 return a + b

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
introduction.py

Now, let's implement a test that checks that 2 + 3 is indeed equal to 5 with unittest:

chapter9_introduction_unittest.py

import unittest

from chapter9.chapter9_introduction import add

class TestChapter9Introduction(unittest.TestCase):

 def test_add(self):

 self.assertEqual(add(2, 3), 5)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
introduction_unittest.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_unittest.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_unittest.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_unittest.py

264 Testing an API Asynchronously with pytest and HTTPX

As you can see, unittest expects us to define a class inheriting from TestCase.
Then, each test lives in its own method. To assert that two values are equal, we must use
the assertEqual method.

To run this test, we can call the unittest module from the command line and pass it
through the dotted path to our test module:

$ python -m unittest chapter9.chapter9_introduction_unittest

.

--

Ran 1 test in 0.000s

OK

In the output, each successful test is represented by a dot. If one or several tests are not
successful, you will get a detailed error report for each, highlighting the failing assertion.
You can try it by changing the assertion in the test.

Now, let's write the same test with pytest:

chapter9_introduction_unittest.py

from chapter9.chapter9_introduction import add

def test_add():

 assert add(2, 3) == 5

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
introduction_unittest.py

As you can see, it's much shorter! Indeed, with pytest, you don't necessarily have to
define a class: a simple function is enough. The only constraint to making it work is that
the function name has to start with test_. This way, pytest can automatically discover
the test functions. Secondly, it relies on the built-in assert statement instead of specific
methods, allowing you to write comparisons more naturally.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_unittest.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_unittest.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_unittest.py

Introduction to unit testing with pytest 265

To run this test, we must simply call the pytest executable with the path to our test file:

$ pytest chapter9/chapter9_introduction_pytest.py

================== test session starts ==================

platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0,
pluggy-0.13.1

rootdir: /Users/fvoron/Google Drive/Livre FastAPI/Building-
Data-Science-Applications-with-FastAPI, configfile: setup.cfg

plugins: asyncio-0.15.1, cov-2.12.0, mock-3.6.1, repeat-0.9.1

collected 1 item

chapter9/chapter9_introduction_pytest.py . [100%]

=================== 1 passed in 0.01s ===================

Once again, the output represents each successful test with a dot. Of course, if you change
the test to make it fail, you'll get a detailed error for the failing assertion.

It's worth noting that if you run pytest without any arguments, it'll automatically
discover all the test files living in your folder, as long as their name starts with test_.

Here, we made a small comparison between unittest and pytest. For the rest of this
chapter, we'll stick with pytest, which should give you a more productive experience
while writing tests.

At the beginning of this section, we said that pytest provides powerful tools to help
us write tests. Before focusing on FastAPI testing, we'll review two of them:
parametrize and fixtures.

Generating tests with parametrize
In our previous example with the add function, we only tested one addition test, 2 + 3.
Most of the time, we'll want to check for more cases to ensure our function works in every
circumstance. Our first approach could be to add more assertions to our test, like so:

def test_add():

 assert add(2, 3) == 5

 assert add(0, 0) == 0

 assert add(100, 0) == 100

 assert add(1, 1) == 2

266 Testing an API Asynchronously with pytest and HTTPX

While working, this method has two drawbacks: first, it may be a bit cumbersome to
write the same assertion several times with only some parameters changing. In this
example, it's not too bad, but tests can be way more complex, as we'll see with FastAPI.
Secondly, we still only have one test: the first failing assertion will stop the test and the
following ones won't be executed. Thus, we'll only know the result if we fix the failing
assertion first and run the test again.

To help with this specific task, pytest provides the parametrize marker. In pytest,
a marker is a special decorator that's used to easily pass metadata to the test. Special
behaviors can then be implemented, depending on the markers used by the test.

Here, parametrize allows us to pass several sets of variables that will be passed as
arguments to the test function. At runtime, each set will generate a new and independent
test. To understand this better, let's look at how to use this marker to generate several tests
for our add function:

chapter9_introduction_pytest_parametrize.py

import pytest

from chapter9.chapter9_introduction import add

@pytest.mark.parametrize("a,b,result", [(2, 3, 5), (0, 0, 0),
(100, 0, 100), (1, 1, 2)])

def test_add(a, b, result):

 assert add(a, b) == result

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
introduction_pytest_parametrize.py

Here, you can see that we simply decorated our test function with the parametrize
marker. The basic usage is as follows: the first argument is a string with the name of each
parameter separated by a comma. Then, the second argument is a list of tuples. Each tuple
contains the values of the parameters in order.

Our test function receives those parameters in arguments, each one named the way
you specified previously. Thus, you can use them at will in the test logic. As you can see,
the great benefit here is that we only have to write the assert statement once. Besides,
it's very quick to add a new test case: we just have to add another tuple to the
parametrize marker.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_pytest_parametrize.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_pytest_parametrize.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_pytest_parametrize.py

Introduction to unit testing with pytest 267

Now, let's run this test to see what happens by using the following command:

$ pytest chapter9/chapter9_introduction_pytest_parametrize.py

==================== test session starts ====================

platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0,
pluggy-0.13.1

rootdir: /Users/fvoron/Google Drive/Livre FastAPI/Building-
Data-Science-Applications-with-FastAPI, configfile: setup.cfg

plugins: asyncio-0.15.1, cov-2.12.0, mock-3.6.1, repeat-0.9.1

collected 4 items

chapter9/chapter9_introduction_pytest_parametrize.py
[100%]

===================== 4 passed in 0.01s =====================

As you can see, pytest executed four tests instead of one! This means that it generated
four independent tests, along with their own sets of parameters. If several tests are failing,
we'll be informed, and the output will tell us which set of parameters caused the error.

To conclude, parametrize is a very convenient way to test different outcomes when
it's given a different set of parameters.

While writing unit tests, you'll often need variables and objects several times across
your tests, such as in an app instance, as some fake data, and so on. To avoid having to
repeat the same things over and over across your tests, pytest proposes an interesting
feature: fixtures.

Reusing test logic by creating fixtures
When testing a large application, tests tend to become quite repetitive: lots of them will
share the same boilerplate code before their actual assertion. Let's consider using Pydantic
models to represent a person and their postal address:

chapter9_introduction_fixtures.py

from datetime import date

from enum import Enum

from typing import List

268 Testing an API Asynchronously with pytest and HTTPX

from pydantic import BaseModel

class Gender(str, Enum):

 MALE = "MALE"

 FEMALE = "FEMALE"

 NON_BINARY = "NON_BINARY"

class Address(BaseModel):

 street_address: str

 postal_code: str

 city: str

 country: str

class Person(BaseModel):

 first_name: str

 last_name: str

 gender: Gender

 birthdate: date

 interests: List[str]

 address: Address

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
introduction_fixtures.py

This example may look familiar: it was taken from Chapter 4, Managing pydantic Data
Models in FastAPI. Now, let's say that we want to write tests with some instances of those
models. Obviously, it would be a bit annoying to instantiate them in each test, filling them
with fake data.

Fortunately, fixtures allow us to write them in one go. The following example shows how
to use them:

chapter9_introduction_fixtures_test.py

import pytest

from chapter9.chapter9_introduction_fixtures import Address,
Gender, Person

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_fixtures.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_fixtures.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_fixtures.py

Introduction to unit testing with pytest 269

@pytest.fixture

def address():

 return Address(

 street_address="12 Squirell Street",

 postal_code="424242",

 city="Woodtown",

 country="US",

)

@pytest.fixture

def person(address):

 return Person(

 first_name="John",

 last_name="Doe",

 gender=Gender.MALE,

 birthdate="1991-01-01",

 interests=["travel", "sports"],

 address=address,

)

def test_address_country(address):

 assert address.country == "US"

def test_person_first_name(person):

 assert person.first_name == "John"

def test_person_address_city(person):

 assert person.address.city == "Woodtown"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
introduction_fixtures_test.py

Once again, pytest makes it very straightforward: fixtures are simple functions decorated with
the fixture decorator. Inside, you can write any logic and return the data you'll need in your
tests. Here, in address, we instantiate an Address object with fake data and return it.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_fixtures_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_fixtures_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_introduction_fixtures_test.py

270 Testing an API Asynchronously with pytest and HTTPX

Now, how can we use this fixture? If you look at the test_address_country test,
you'll see some magic happening: by setting an address argument on the test function,
pytest automatically detects that it corresponds to the address fixture, executes it, and
passes its return value. Inside the test, we have our Address object ready to use. pytest
calls this requesting a fixture.

You may have noticed that we also defined another fixture, person. Once again,
we instantiate a Person model with dummy data. The interesting thing to note, however,
is that we actually requested the address fixture to use it inside! That's what makes this
system so powerful: fixtures can depend on other fixtures, which can also depend on
others, and so on. In some way, it's quite similar to dependency injection, as we discussed
in Chapter 5, Dependency Injections in FastAPI.

With that, our quick introduction to pytest has come to an end. Of course, there are so
many more things to say, but this will be enough for you to get started. If you want to
explore this topic further, you can read the official pytest documentation, which includes
tons of examples showing you how you can benefit from all its features: https://docs.
pytest.org/en/latest/.

Now, let's focus on FastAPI. We'll start by setting up the tools for testing our applications.

Setting up testing tools for FastAPI with HTTPX
If you look at the FastAPI documentation regarding testing, you'll see that it recommends
that you use TestClient provided by Starlette. In this book, we'll show you a different
approach involving an HTTP client, called HTTPX.

Why? The default TestClient is implemented in a way that makes it completely
synchronous, meaning you can write tests without worrying about async and await.
This might sound nice, but we found that it causes some problems in practice: since
your FastAPI app is designed to work asynchronously, you'll likely have lots of services
working asynchronously, such as the database drivers we saw in Chapter 6, Databases and
Asynchronous ORMs. Thus, in your tests, you'll probably need to perform some actions on
those asynchronous services, such as filling a database with dummy data, which will make
your tests asynchronous anyway. Melting the two approaches often leads to strange errors
that are hard to debug.

Fortunately, HTTPX, an HTTP client created by the same team as Starlette, allows us to
have a pure asynchronous HTTP client able to make requests to our FastAPI app. To make
this approach work, we'll need three libraries:

•	 HTTPX, the client that will perform HTTP requests

https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/

Setting up testing tools for FastAPI with HTTPX 271

•	 asgi-lifepsan, a library for managing the startup and shutdown events
of your FastAPI app programmatically

•	 pytest-asyncio, an extension of pytest that allows us to write
asynchronous tests

Let's install these libraries using the following command:

$ pip install httpx asgi-lifespan pytest-asyncio

Great! Now, let's write some fixtures so that we can easily get an HTTP test client for
a FastAPI application. This way, when writing a test, we'll only have to request the fixture
and we'll be able to make a request right away.

In the following example, we are considering a simple FastAPI application that we want
to test:

chapter9_app.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def hello_world():

 return {"hello": "world"}

@app.on_event("startup")

async def startup():

 print("Startup")

@app.on_event("shutdown")

async def shutdown():

 print("Shutdown")

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_app.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app.py

272 Testing an API Asynchronously with pytest and HTTPX

In a separate test file, we'll implement two fixtures.

The first one, event_loop, will ensure that we always work with the same event
loop instance. It's automatically requested by pytest-asyncio before executing
asynchronous tests. While not strictly required, experience has shown us that it greatly
helps us avoid errors that may occur when several event loops are launched. You can see
its implementation in the following example:

chapter9_app_test.py

@pytest.fixture(scope="session")

def event_loop():

 loop = asyncio.get_event_loop()

 yield loop

 loop.close()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_app_
test.py

Here, you can see that we simply get the current event loop before yielding it. As
we discussed in Chapter 2, Python Programming Specificities, using a generator allows
us to "pause" the function's execution and get back to the execution of its caller. This way,
when the caller is done, we can execute cleanup operations, such as closing the loop. pytest
is smart enough to handle this correctly in fixtures, so this is a very common pattern for
setting up test data, using it, and destroying it after.

Of course, this function is decorated with the fixture decorator to make it a fixture
for pytest. You may have noticed that we added an argument called scope with a value
of session. This argument controls at which level the fixture should be instantiated.
By default, it's recreated at the beginning of each single test function. The session value
is the highest level, meaning that the fixture is only created once at the beginning of the
whole test run, which is relevant for our event loop. You can find out more about this
more advanced feature in the official documentation: https://docs.pytest.org/
en/latest/how-to/fixtures.html#scope-sharing-fixtures-across-
classes-modules-packages-or-session.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py
https://docs.pytest.org/en/latest/how-to/fixtures.html#scope-sharing-fixtures-across-classes-modules-packages-or-session
https://docs.pytest.org/en/latest/how-to/fixtures.html#scope-sharing-fixtures-across-classes-modules-packages-or-session
https://docs.pytest.org/en/latest/how-to/fixtures.html#scope-sharing-fixtures-across-classes-modules-packages-or-session

Setting up testing tools for FastAPI with HTTPX 273

Next, we'll implement our test_client fixture, which will create an instance of
HTTPX for our FastAPI application. We must also remember to trigger the app events
with asgi-lifespan. You can see what it looks like in the following example:

chapter9_app_test.py

@pytest.fixture

async def test_client():

 async with LifespanManager(app):

 async with httpx.AsyncClient(app=app, base_url="http://
app.io") as test_client:

 yield test_client

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_app_
test.py

Only three lines are needed. Notice that the app variable is our FastAPI application
instance is the one we imported from its module, from chapter9.chapter9_app
import app.

Up until now, we haven't had the opportunity to talk about the with syntax. In Python,
this is what's called a context manager. Simply put, it's a convenient syntax for objects
that need to execute setup logic when they are used and teardown logic when they are not
needed anymore. When you enter the with block, the object automatically executes the
setup logic. When you exit the block, it executes its teardown logic. You can read more
about context managers in the Python documentation: https://docs.python.
org/3/reference/datamodel.html#with-statement-context-managers.

In our case, both LifespanManager and httpx.AsyncClient work as context
managers, so we simply have to nest their blocks. The first one ensures startup and
shutdown events are executed, while the second one ensures that an HTTP session
is ready.

Notice that we once again used a generator here, with yield. This is important because,
even if we don't have any more code after, we have to give the context managers the
opportunity to exit: after the yield statement, we implicitly exit the with blocks.

That's it! We now have all the fixtures ready to write tests for our REST API endpoints.
That's what we'll do in the next section.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py
https://docs.python.org/3/reference/datamodel.html#with-statement-context-managers
https://docs.python.org/3/reference/datamodel.html#with-statement-context-managers

274 Testing an API Asynchronously with pytest and HTTPX

Organizing tests and global fixtures in projects
In larger projects, you'll likely have several test files to keep your tests
organized. Usually, those files are placed in a tests folder at the root of your
project. If your test files are prefixed with test_, they will be automatically
discovered by pytest. Figure 9.1 shows an example of this.

Besides this, you'll need the fixtures we defined in this section for all your tests.
Rather than repeating them again and again in all your test files, pytest allows
you to write global fixtures in a file named conftest.py. After putting
it in your tests folder, it will automatically be imported, allowing you to
request all the fixtures you define inside it. You can read more about this in the
official documentation at https://docs.pytest.org/en/latest/
reference/fixtures.html#conftest-py-sharing-
fixtures-across-multiple-files:

Figure 9.1 – Structure of a project containing tests

https://docs.pytest.org/en/latest/reference/fixtures.html#conftest-py-sharing-fixtures-across-multiple-files
https://docs.pytest.org/en/latest/reference/fixtures.html#conftest-py-sharing-fixtures-across-multiple-files
https://docs.pytest.org/en/latest/reference/fixtures.html#conftest-py-sharing-fixtures-across-multiple-files

Writing tests for REST API endpoints 275

Writing tests for REST API endpoints
All the tools we need to test our FastAPI application are now ready. All these tests boil
down to performing an HTTP request and checking the response to see if it corresponds
to what we expect.

Let's start simple with a test for our hello_world path operation function. You can see
it in the following code:

chapter9_app_test.py

@pytest.mark.asyncio

async def test_hello_world(test_client: httpx.AsyncClient):

 response = await test_client.get("/")

 assert response.status_code == status.HTTP_200_OK

 json = response.json()

 assert json == {"hello": "world"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_app_
test.py

First of all, notice that the test function is defined as async. As we mentioned previously,
to make it work with pytest, we had to install pytest-asyncio. This extension provides
the asyncio marker: each asynchronous test should be decorated with this marker to
make it work properly.

Next, we requested our test_client fixture, which we defined earlier. It gives us an
HTTPX client instance ready to make requests to our FastAPI app. Note that we manually
type hinted the fixture. While not strictly required, it'll greatly help you if you use an IDE
such as Visual Studio Code, which uses type hints to provide you with convenient auto-
completion features.

Then, in the body of our test, we performed the request. Here, it's a simple GET request
to the / path. It returns an HTTPX Response object (which is different from the
Response class of FastAPI) containing all the data of the HTTP response: the status
code, the headers, and the body.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_test.py

276 Testing an API Asynchronously with pytest and HTTPX

Finally, we made assertions based on this data. As you can see, we verified that the status
code was indeed 200. We also checked the content of the body, which is a simple JSON
object. Notice that the Response object has a convenient method called json for
automatically parsing JSON content.

Great! We wrote our first FastAPI test! Of course, you'll likely have more complex tests,
typically ones for POST endpoints.

Writing tests for POST endpoints
Testing a POST endpoint is not very different from what we've seen earlier. The difference
is that we'll likely have more cases to check if data validation is working. In the following
example, we are implementing a POST endpoint that accepts a Person model in
the body:

chapter9_app_post.py

class Person(BaseModel):

 first_name: str

 last_name: str

 age: int

@app.post("/persons", status_code=status.HTTP_201_CREATED)

async def create_person(person: Person):

 return person

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_app_
post.py

An interesting test could be to ensure that an error is raised if some fields are missing
in the request payload. In the following extract, we wrote two tests: one with an invalid
payload and another with a valid one:

chapter9_app_post_test.py

@pytest.mark.asyncio

class TestCreatePerson:

 async def test_invalid(self, test_client: httpx.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_post.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_post.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_post.py

Writing tests for REST API endpoints 277

AsyncClient):

 payload = {"first_name": "John", "last_name": "Doe"}

 response = await test_client.post("/persons",
json=payload)

 assert response.status_code == status.HTTP_422_
UNPROCESSABLE_ENTITY

 async def test_valid(self, test_client: httpx.AsyncClient):

 payload = {"first_name": "John", "last_name": "Doe",
"age": 30}

 response = await test_client.post("/persons",
json=payload)

 assert response.status_code == status.HTTP_201_CREATED

 json = response.json()

 assert json == payload

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_app_
post_test.py

The first thing you may have noticed is that we wrapped our two tests inside a class. While
not required in pytest, it could help you organize your tests; for example, to regroup tests
that concern a single endpoint. Notice that, in this case, we only have to decorate the class
with the asyncio marker; it will be automatically applied on single tests. Also, ensure
that you add the self argument to each test: since we are now inside a class, they
become methods.

These tests are not very different from our first example. As you can see, the HTTPX client
makes it very easy to perform POST requests with a JSON payload: you just have to pass
a dictionary to the json argument.

Of course, HTTPX helps you build all kinds of HTTP requests with headers, query
parameters, and so on. Be sure to check its official documentation to learn more about
its usage: https://www.python-httpx.org/quickstart/.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_post_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_post_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_post_test.py
https://www.python-httpx.org/quickstart/

278 Testing an API Asynchronously with pytest and HTTPX

Testing with a database
Your application will likely have a database connection to read and store data. In this
context, you'll need to work with a fresh test database at each run to have a clean and
predictable set of data to write your tests.

For this, we'll use two things. The first one, dependency_overrides, is a FastAPI
feature that allows us to replace some dependencies at runtime. For example, we can
replace the dependency that returns the database instance with another one that returns
a test database instance. The second one is, once again, fixtures, which will help us create
fake data in the test database before we run the tests.

To show you a working example, we'll consider the same example we built in the
Communicating with a MongoDB database with Motor section of Chapter 6, Databases
and Asynchronous ORMs. In this example, we built REST endpoints to manage blog posts.
As you may recall, we had a get_database dependency that returned the database
instance. As a reminder, we'll show it again here:

app.py

motor_client = AsyncIOMotorClient("mongodb://localhost:27017")

database = motor_client["chapter6_mongo"]

def get_database() -> AsyncIOMotorDatabase:

 return database

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

Path operation functions and other dependencies would then use this dependency to
retrieve the database instance.

For our tests, we'll create a new instance of AsyncIOMotorDatabase that points to
another database. Then, we'll create a new dependency, directly in our test file, that returns
this instance. You can see this in the following example:

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter6/mongodb/app.py

Writing tests for REST API endpoints 279

chapter9_db_test.py

motor_client = AsyncIOMotorClient("mongodb://localhost:27017")

database_test = motor_client["chapter9_db_test"]

def get_test_database():

 return database_test

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py

Then, in our test_client fixture, we'll override the default get_database
dependency by using our current get_test_database dependency. The following
example shows how this is done:

chapter9_db_test.py

@pytest.fixture

async def test_client():

 app.dependency_overrides[get_database] = get_test_database

 async with LifespanManager(app):

 async with httpx.AsyncClient(app=app, base_url="http://
app.io") as test_client:

 yield test_client

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_db_
test.py

FastAPI provides a property called dependency_overrides, which is a dictionary
that maps original dependency functions with substitutes. Here, we directly used the
get_database function as a key. The rest of the fixture doesn't have to change. Now,
whenever the get_database dependency is injected into the application code, FastAPI
will automatically replace it with get_test_database. As a result, our endpoints will
now work with the test database instance.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py

280 Testing an API Asynchronously with pytest and HTTPX

To test some behaviors, such as retrieving a single post, it's usually convenient to have
some base data in our test database. To allow this, we'll create a new fixture that will
instantiate dummy PostDB objects and insert them into the test database. You can see
this in the following example:

chapter9_db_test.py

@pytest.fixture(autouse=True, scope="module")

async def initial_posts():

 initial_posts = [

 PostDB(title="Post 1", content="Content 1"),

 PostDB(title="Post 2", content="Content 2"),

 PostDB(title="Post 3", content="Content 3"),

]

 await database_test["posts"].insert_many(

 [post.dict(by_alias=True) for post in initial_posts]

)

 yield initial_posts

 await motor_client.drop_database("chapter9_db_test")

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_db_
test.py

Here, you can see that we just had to make an insert_many request to the MongoDB
database to create the posts.

Notice that we used the autouse and scope arguments of the fixture decorator. The
first one tells pytest to automatically call this fixture even if it's not requested in any test.
In this case, it's convenient because we'll always ensure that the data has been created in
the database, without the risk of forgetting to request it in the tests. The other one, scope,
allows us, as we mentioned previously, to not run this fixture at the beginning of each test.
With the module value, the fixture will create the objects only once, at the beginning of
this particular test file. It helps us keep the test fast because in this case, it doesn't make
sense to recreate the posts before each test.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py

Writing tests for REST API endpoints 281

Once again, we yield the posts instead of returning them. This pattern allows us to delete
the test database after the tests run. By doing this, we're making sure that we always start
with a fresh database when we've run the tests.

And we are done! We can now write tests while knowing exactly what we have in the
database. In the following example, you can see tests that are used to verify the behavior
of the endpoint retrieving a single post:

chapter9_db_test.py

@pytest.mark.asyncio

class TestGetPost:

 async def test_not_existing(self, test_client: httpx.
AsyncClient):

 response = await test_client.get("/posts/abc")

 assert response.status_code == status.HTTP_404_NOT_
FOUND

 async def test_existing(

 self, test_client: httpx.AsyncClient, initial_posts:
List[PostDB]

):

 response = await test_client.get(f"/posts/{initial_
posts[0].id}")

 assert response.status_code == status.HTTP_200_OK

 json = response.json()

 assert json["_id"] == str(initial_posts[0].id)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_db_
test.py

Notice that we requested the initial_posts fixture in the second test to retrieve the
identifier of the truly existing post in our database.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py

282 Testing an API Asynchronously with pytest and HTTPX

Of course, we can also test our endpoints by creating data and checking if they correctly
insert this data into the database. You can see this in the following example:

chapter9_db_test.py

@pytest.mark.asyncio

class TestCreatePost:

 async def test_invalid_payload(self, test_client: httpx.
AsyncClient):

 payload = {"title": "New post"}

 response = await test_client.post("/posts",
json=payload)

 assert response.status_code == status.HTTP_422_
UNPROCESSABLE_ENTITY

 async def test_valid_payload(self, test_client: httpx.
AsyncClient):

 payload = {"title": "New post", "content": "New post
content"}

 response = await test_client.post("/posts",
json=payload)

 assert response.status_code == status.HTTP_201_CREATED

 json = response.json()

 post_id = ObjectId(json["_id"])

 post_db = await database_test["posts"].find_one({"_id":
post_id})

 assert post_db is not None

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_db_
test.py

In the second test, we used the database_test instance to perform a request and check
that the object was inserted correctly. This shows the benefit of using asynchronous tests:
we can use the same libraries and tools inside our tests. That's all you need to know about
dependency_overrides.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_db_test.py

Writing tests for REST API endpoints 283

This feature is also very helpful when you need to write tests for logic involving external
services, such as external APIs. Instead of making real requests to those external services
during your tests, which could cause issues or incur costs, you'll be able to replace them
with another dependency that fakes the requests. To understand this, we've built another
example application with an endpoint for retrieving data from an external API:

chapter9_app_external_api.py
from typing import Any, Dict

import httpx

from fastapi import FastAPI, Depends

app = FastAPI()

class ExternalAPI:

 def __init__(self) -> None:

 self.client = httpx.AsyncClient(

 base_url="https://dummy.restapiexample.com/api/v1/"

)

 async def __call__(self) -> Dict[str, Any]:

 async with self.client as client:

 response = await client.get("employees")

 return response.json()

external_api = ExternalAPI()

@app.get("/employees")

async def external_employees(employees: Dict[str, Any] =
Depends(external_api)):

 return employees

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_app_
external_api.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_external_api.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_external_api.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_external_api.py

284 Testing an API Asynchronously with pytest and HTTPX

To call our external API, we've built a class dependency, as we saw in the Creating and
using a parameterized dependency with a class section of Chapter 5, Dependency Injections
in FastAPI. We use HTTPX as an HTTP client to make a request to the external API and
retrieve the data. This external API is a dummy API containing fake data, very useful for
experiments like this: https://dummy.restapiexample.com/.

The /employees endpoint is simply injected with this dependency and directly returns
the data provided by the external API.

Of course, to test this endpoint, we don't want to make real requests to the external API:
it may take time and could be subject to rate limiting. Besides, you may want to test
behavior that is not easy to reproduce in the real API, such as errors.

Thanks to dependency_overrides, it's very easy to replace our ExternalAPI
dependency class with another one that returns static data. In the following example,
you can see how we implemented such a test:

chapter9_app_external_api_test.py

class MockExternalAPI:

 mock_data = {

 "data": [

 {

 "employee_age": 61,

 "employee_name": "Tiger Nixon",

 "employee_salary": 320800,

 "id": 1,

 "profile_image": "",

 }

],

 "status": "success",

 "message": "Success",

 }

 async def __call__(self) -> Dict[str, Any]:

 return MockExternalAPI.mock_data

@pytest.fixture(scope="session")

def event_loop():

https://dummy.restapiexample.com/

Writing tests for REST API endpoints 285

 loop = asyncio.get_event_loop()

 yield loop

 loop.close()

@pytest.fixture

async def test_client():

 app.dependency_overrides[external_api] = MockExternalAPI()

 async with LifespanManager(app):

 async with httpx.AsyncClient(app=app, base_url="http://
app.io") as test_client:

 yield test_client

@pytest.mark.asyncio

async def test_get_employees(test_client: httpx.AsyncClient):

 response = await test_client.get("/employees")

 assert response.status_code == status.HTTP_200_OK

 json = response.json()

 assert json == MockExternalAPI.mock_data

 return response.json()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_app_
external_api_test.py

Here, you can see that we wrote a simple class called MockExternalAPI that returns
hardcoded data. All we have to do then is override the original dependency with this one:
during the tests, the external API won't be called; we'll only work with the static data.

With the guidelines we've seen so far, you can now write tests for any HTTP endpoints
in your FastAPI app. However, there is another kind of endpoint that behaves differently:
WebSockets. As we'll see in the next section, unit testing WebSockets is also quite different
from what we described for REST endpoints.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_external_api_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_external_api_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_app_external_api_test.py

286 Testing an API Asynchronously with pytest and HTTPX

Writing tests for WebSocket endpoints
In Chapter 8, Defining WebSockets for Two-Way Interactive Communication in FastAPI,
we explained how WebSockets work and how you can implement such endpoints in
FastAPI. As you may have guessed, writing unit tests for WebSockets endpoints is quite
different from what we've seen so far.

Unfortunately, we won't be able to reuse HTTPX since, at the time of writing, this client
can't communicate with WebSockets. For the time being, our best bet is to use the default
TestClient provided by Starlette.

 To show you this, we'll consider the following WebSocket example:

chapter9_websocket.py

from fastapi import FastAPI, WebSocket

from starlette.websockets import WebSocketDisconnect

app = FastAPI()

@app.websocket("/ws")

async def websocket_endpoint(websocket: WebSocket):

 await websocket.accept()

 try:

 while True:

 data = await websocket.receive_text()

 await websocket.send_text(f"Message text was:
{data}")

 except WebSocketDisconnect:

 await websocket.close()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
websocket.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket.py

Writing tests for WebSocket endpoints 287

You may have recognized this "echo" example from Chapter 8, Defining WebSockets
for Two-Way Interactive Communication in FastAPI. To test this endpoint, we'll create
a new fixture that will instantiate a test client for this application. You can review
its implementation in the following example:

chapter9_websocket_test.py

import asyncio

import pytest

from fastapi.testclient import TestClient

from chapter9.chapter9_websocket import app

@pytest.fixture(scope="session")

def event_loop():

 loop = asyncio.get_event_loop()

 yield loop

 loop.close()

@pytest.fixture

def websocket_client():

 with TestClient(app) as websocket_client:

 yield websocket_client

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
websocket_test.py

As you can see, we once again took care of defining the event_loop fixture,
as we explained in the Setting up testing tools for FastAPI with HTTPX section.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket_test.py

288 Testing an API Asynchronously with pytest and HTTPX

Then, we implemented the websocket_client fixture. The TestClient class
behaves as a context manager and simply expects the FastAPI application to test the
argument. Since we opened a context manager, we once again yielded the value to ensure
the exit logic is executed after the test. Notice that we don't have to manually take care
of the lifespan events, contrary to what we did in the previous sections: TestClient
is designed to trigger them on its own.

Now, let's write a test for our WebSocket using this fixture:

chapter9_websocket_test.py

@pytest.mark.asyncio

async def test_websocket_echo(websocket_client: TestClient):

 with websocket_client.websocket_connect("/ws") as
websocket:

 websocket.send_text("Hello")

 message = websocket.receive_text()

 assert message == "Message text was: Hello"

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter9/chapter9_
websocket_test.py

The first thing to notice is that we still define our test as async, with the associated
asyncio marker, even if TestClient works synchronously. Once again, this is useful
if you need to call asynchronous services during your tests and limit the issues you may
encounter with event loops.

As you can see, the test client exposes a websocket_connect method to open
a connection to a WebSocket endpoint. It also works as a context manager, giving you the
websocket variable. It's an object that exposes several methods to either send or receive
data. Each of those methods will block until a message has been sent or received.

Here, to test our "echo" server, we send a message thanks to the send_text method.
Then, we retrieve a message with receive_text and assert that it corresponds to what
we expect. Equivalent methods also exist for sending and receiving JSON data directly:
send_json and receive_json.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket_test.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter9/chapter9_websocket_test.py

Summary 289

This is what makes WebSocket testing a bit special: you have to think about the sequence
of sent and received messages and implement them programmatically to test the behavior
of your WebSocket.

Other than that, all the things we've seen so far regarding testing are applicable, especially
dependency_overrides, when you'll need to use a test database.

Summary
Congratulations! You are now ready to build high-quality FastAPI applications that have
been well tested. In this chapter, you learned how to use pytest, a powerful and efficient
testing framework for Python. Thanks to pytest fixtures, you saw how to create a reusable
test client for your FastAPI application that can work asynchronously. Using this client,
you learned how to make HTTP requests to assert the behavior of your REST API. Finally,
we reviewed how to test WebSocket endpoints, which involves a fairly different way
of thinking.

Now that you can build a reliable and efficient FastAPI application, it's time to
bring it to the whole world! In the next chapter, we'll review the best practices and
patterns for preparing a FastAPI application for the world before studying several
deployment methods.

10
Deploying a

FastAPI Project
Building a good application is great, but it's even better if customers can enjoy it. In this
chapter, you'll look at different techniques and the best practices for deploying your
FastAPI application to make it available on the web. First, you'll learn how to structure
your project to make it ready for deployment by using environment variables to set the
configuration options you need, as well as by managing your dependencies properly with
pip. Once done, we'll show you three ways to deploy your application: with a serverless
cloud platform, with a Docker container, and with a traditional Linux server.

In this chapter, we're going to cover the following main topics:

•	 Setting and using environment variables

•	 Managing Python dependencies

•	 Deploying a FastAPI application on a serverless platform

•	 Deploying a FastAPI application with Docker

•	 Deploying a FastAPI application on a traditional server

292 Deploying a FastAPI Project

Technical requirements
For this chapter, you'll need a Python virtual environment, similar to the one we set up in
Chapter 1, Python Development Environment Setup.

You can find all the code examples for this chapter in its dedicated GitHub repository:
https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter10.

Setting and using environment variables
Before deep diving into the different deployment techniques, we need to structure our
application to enable reliable, fast, and secure deployments. One of the key things in
this process is handling configuration variables: a database URL, an external API token,
a debug flag, and so on. When handling those variables, it's necessary to handle them
dynamically instead of hardcoding them in your source code. Why?

First of all, those variables will likely be different in your local environment and
in production. Typically, your database URL will point to a local database on your
computer while developing but will point to a proper production database in production.
This is even more true if you want to have other environments such as a staging or
pre-production environment. Furthermore, if we need to change one of the values, we'll
have to change the code, commit it, and deploy it again. Thus, we need a convenient
mechanism to set those values.

Secondly, it's unsafe to write those values in your code. Values such as database
connection strings or API tokens are extremely sensitive. If they appear in your code,
they'll likely be committed into your repository: they can be read by anyone who has
access to your repository, which causes obvious security issues.

To solve this, we usually use environment variables. Environment variables are values
that aren't set in the program itself but on the whole system. Most programming
languages have the required functions to read those variables from the system. You can try
this very easily in a Unix command line:

$ export MY_ENVIRONMENT_VARIABLE="Hello" # Set a temporary
variable on the system

$ python

>>> import os

>>> os.getenv("MY_ENVIRONMENT_VARIABLE") # Get it in Python

'Hello'

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter10
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter10

Setting and using environment variables 293

In the Python source code, we can get the value dynamically from the system. During
deployment, we'll only have to make sure that we set the correct environment variables
on the server. This way, we can easily change a value without redeploying the code and
have several deployments of our application containing different configurations sharing
the same source code. However, bear in mind that sensitive values that have been set in
environment variables could still leak if you don't pay attention; for example, in log files
or error stack traces.

To help us with this task, we'll use a very convenient feature of Pydantic: settings
management. This allows us to structure and use our configuration variables as we do
for any other data model. It even takes care of automatically retrieving the values from
environment variables!

For the rest of this chapter, we'll work with an application you can find in chapter10/
project of our example repository. It's a simple FastAPI application that uses Tortoise
ORM, very similar to the one we reviewed in the Communicating with a SQL database
with the Tortoise ORM section of Chapter 6, Databases and Asynchronous ORMs.

Running the commands from the project directory
If you cloned the examples repository, be sure to run the commands shown in
this chapter from the project directory. In a command line, simply type cd
chapter10/project.

To structure a settings model, all you need to do is create a class that inherits from
pydantic.BaseSettings. The following example shows a configuration class
with a debug flag, an environment name, and a database URL:

settings.py

from pydantic import BaseSettings

class Settings(BaseSettings):

 debug: bool = False

 environment: str

 database_url: str

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter10/project/app/
settings.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/settings.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/settings.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/settings.py

294 Deploying a FastAPI Project

As you can see, creating this class is very similar to creating a standard Pydantic model. We
can even define default values, as we did for debug here. The good thing with this model is
that it works just like any other Pydantic model: it automatically parses the values it finds in
environment variables and raises an error if one value is missing in your environment. This
way, you can ensure you don't forget any values directly when the app starts.

To use it, we only have to create an instance of this class, as shown in the following
code extract:

app.py

from app.settings import Settings

settings = Settings()

app = FastAPI()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter10/project/app/
app.py

Then, you can use it whenever you need one of the variables. In this application, we added
a startup event handler that prints all the settings when debug is True. Besides this, the
Tortoise database URL has been set thanks to the settings object. You can see this in
the following example:

app.py

@app.on_event("startup")

async def startup():

 if settings.debug:

 print(settings)

TORTOISE_ORM = {

 "connections": {"default": settings.database_url},

 "apps": {

 "models": {

 "models": ["chapter10.project.models"],

 "default_connection": "default",

 },

 },

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/app.py

Setting and using environment variables 295

}

register_tortoise(

 app,

 config=TORTOISE_ORM,

 generate_schemas=True,

 add_exception_handlers=True,

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter10/project/app/
app.py

You can use settings like any other object in your Python code. If you run this
application, you'll likely get the following kind of output:

$ uvicorn app.app:app

pydantic.error_wrappers.ValidationError: 2 validation errors
for Settings

environment

 field required (type=value_error.missing)

database_url

 field required (type=value_error.missing)

As we mentioned previously, if one value is missing in your environment, Pydantic will
raise an error and the application won't start. Let's set those variables and try again:

$ export DEBUG="true" ENVIRONMENT="development" DATABASE_
URL="sqlite://chapter10_project.db"

$ uvicorn app.app:app

INFO: Started server process [1572]

INFO: Waiting for application startup.

debug=True environment='development' database_url='sqlite://
chapter10_project.db'

INFO: Application startup complete.

INFO:uvicorn.error:Application startup complete.

INFO: Uvicorn running on http://127.0.0.1:8000 (Press
CTRL+C to quit)

INFO:uvicorn.error:Uvicorn running on http://127.0.0.1:8000
(Press CTRL+C to quit)

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/app/app.py

296 Deploying a FastAPI Project

The application started! You can even see that our startup event handler printed our
settings values. Notice that Pydantic is case-insensitive (by default) when retrieving
environment variables. By convention, environment variables are usually set in all caps
on the system.

Using a .env file
In local development, it's a bit annoying to set environment variables by hand, especially
if you're working on several projects at the same time on your machine. To solve this,
Pydantic allows you to read the values from a .env file. This file contains a simple
list of environment variables and their associated values. It's usually easier to edit and
manipulate during development.

To make this work, we'll need a new library, python-dotenv, whose task is to parse
those .env files. You can install it as usual with the following command:

$ pip install python-dotenv

Then, you can edit your Settings class, like this:

class Settings(BaseSettings):

 debug: bool = False

 environment: str

 database_url: str

 class Config:

 env_file = ".env"

You simply have to add a Config class and set the env_file property to the path of
your .env file.

Finally, you can create your .env file at the root of the project with the following content:

DEBUG=true

ENVIRONMENT=development

DATABASE_URL=sqlite://chapter10_project.db

And that's it! settings will now be read from this .env file. If the file is missing,
Settings will try to read them from the environment variables as usual. Of course, this
is only for convenience while developing: this file shouldn't be committed and you should
rely on properly set environment variables in production. To ensure you don't commit this
file by accident, it's usually recommended that you add it to your .gitignore file.

Managing Python dependencies 297

Creating hidden files such as .env files
In Unix systems, files starting with a dot, such as .env, are considered hidden
files. If you try to create them from the operating system's file explorer, it might
show you warnings or even prevent you from doing so. Thus, it's usually more
convenient to create them from your IDE, such as Visual Studio Code, or from
the command line by using the touch.env command, for example.

Great! Our application now supports dynamic configuration variables, which are now easy
to set and change on our deployment platforms. Another important thing to take care of is
dependencies: we've installed quite a lot of them at this point, but we must make sure they
are installed properly during deployments!

Managing Python dependencies
Throughout this book, we've installed libraries using pip to add some useful features to
our application: FastAPI, of course, but also SQLAlchemy, Tortoise ORM, Pytest, and so
on. When deploying a project to a new environment, such as a production server, we have
to make sure all those dependencies are installed for our application to work properly.
This is also true if you have colleagues that also need to work on the project: they need to
know the dependencies they must install on their machines.

Fortunately, pip comes with a solution for this so that we don't have to remember all this
in our heads. Indeed, most Python projects define a requirements.txt file, which
contains a list of all Python dependencies. It usually lives at the root of your project. pip
has a special option for reading this file and installing all the needed dependencies.

When you already have a working environment, such as the one we've used since the
beginning of this book, people usually recommend that you run the following command:

$ pip freeze

aerich==0.5.3

aiofiles==0.7.0

aiosqlite==0.16.1

alembic==1.6.3

appdirs==1.4.4

asgi-lifespan==1.0.1

asgiref==3.3.4

async-asgi-testclient==1.4.6

asyncio-redis==0.16.0

...

298 Deploying a FastAPI Project

The result of pip freeze is a list of every Python package currently installed in your
environment, along with their corresponding versions. This list can be directly used in the
requirements.txt file.

The problem with this approach is that it lists every package, including the sub-dependencies
of the libraries you install. Said another way, in this list, you'll see packages that you don't
directly use but that are needed by the ones you installed. If, for some reason, you decide to
not use a library anymore, you'll be able to remove it, but it'll be very hard to guess which
sub-dependencies it has installed. In the long term, your requirements.txt file will
grow larger and larger, with lots of dependencies that are useless in your project.

To solve this, some people recommend that you manually maintain your
requirements.txt file. With this approach, you have to list yourself all the libraries
you use, along with their respective versions. During installation, pip will take care of
installing the sub-dependencies, but they'll never appear in requirements.txt. This
way, when you remove one of your dependencies, you make sure any useless packages are
not kept.

In the following example, you can see the requirements.txt file for the project we are
working on in this chapter:

requirements.txt

fastapi==0.65.2

tortoise-orm[asyncpg]==0.17.4

uvicorn[standard]==0.14.0

gunicorn==20.1.0

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter10/project/
requirements.txt

As you can see, the list is much shorter! Now, whenever we install a new dependency,
our responsibility is to add it manually to requirements.txt.

A word on alternate package managers such as Poetry, Pipenv and Conda
While exploring the Python community, you may hear about alternate package
managers such as Poetry, Pipenv, and Conda. These managers were created
to solve some issues posed by pip, especially around sub-dependencies
management. While they are very good tools, lots of cloud platforms expect
a traditional requirements.txt file to specify the dependencies, rather
than those more modern tools. Therefore, they may not be the best choice for a
FastAPI application.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/requirements.txt
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/requirements.txt
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/requirements.txt

Managing Python dependencies 299

The requirements.txt file should be committed along with your source code. When
you need to install the dependencies on a new computer or server, you'll simply need to
run this command:

$ pip install -r requirements.txt

Of course, make sure that you're working on proper virtual environments when doing
this, as we described in Chapter 1, Python Development Environment Setup.

You have probably noticed the gunicorn dependency in requirements.txt.
Let's look at what it is and why it's needed.

Adding Gunicorn as a server process for deployment
In Chapter 2, Python Programming Specificities, we briefly introduced WSGI and ASGI
protocols. They define the norm and data structure for building web servers in Python.
Traditional Python web frameworks, such as Django and Flask, rely on the WSGI
protocol. ASGI appeared recently and is presented as the "spiritual successor" of WSGI,
providing a protocol for developing web servers running asynchronously. This protocol is
at the heart of FastAPI and Starlette.

As we mentioned in Chapter 3, Developing RESTful APIs with FastAPI, we use Uvicorn
to run our FastAPI applications: its role is to accept HTTP requests, transform them
according to the ASGI protocol, and pass them to the FastAPI application, which returns
an ASGI-compliant response object. Then, Uvicorn can form a proper HTTP response
from this object.

In the WSGI world, the most widely used server is Gunicorn. It has the same role in the
context of a Django or Flask application. Why are we talking about it, then? Gunicorn
has lots of refinements and features that make it more robust and reliable in production
than Uvicorn. However, Gunicorn is designed to work for WSGI applications. So, what
can we do?

Actually, we can use both: Gunicorn will be used as a robust process manager for our
production server. However, we'll specify a special worker class provided by Uvicorn,
which will allow us to run ASGI applications such as FastAPI. This is the recommended
way of doing deployments in the official Uvicorn documentation: https://www.
uvicorn.org/deployment/#using-a-process-manager.

https://www.uvicorn.org/deployment/#using-a-process-manager
https://www.uvicorn.org/deployment/#using-a-process-manager

300 Deploying a FastAPI Project

So, let's install Gunicorn to our dependencies by using the following command
(remember to add it to your requirements.txt file):

$ pip install gunicorn

If you wish, you can try to run our FastAPI project using Gunicorn by using the
following command:

$ gunicorn -w 4 -k uvicorn.workers.UvicornWorker app.app:app

Its usage is quite similar to Uvicorn, except that we tell it to use a Uvicorn worker.
Once again, this is necessary to make it work with an ASGI application. Also, notice the
-w option. It allows us to set the number of workers to launch for our server. Here, we
launch four instances of our application. Then, Gunicorn takes care of load balancing the
incoming requests between each worker. This is what makes Gunicorn more robust: if, for
any reason, your application blocks the event loop with a synchronous operation, other
workers will be able to process other requests while this is happening.

Now, we are ready to deploy our FastAPI application! In the next section, you'll learn how
to deploy one on a serverless platform.

Deploying a FastAPI application on a serverless
platform
In recent years, serverless platforms have gained a lot of popularity and have become
a very common way to deploy web applications. Those platforms completely hide the
complexity of setting up and managing a server, giving you the tools to automatically
build and deploy your application in minutes. Google App Engine, Heroku, and Azure
App Service are among the most popular. Even though they have their own specificities,
all these serverless platforms work on the same principles. This is why, in this section, we'll
outline the common steps you should follow.

Usually, serverless platforms expect you to provide the source code in the form of a
GitHub repository, which you push directly to their servers or that they pull automatically
from GitHub. Here, we'll assume that you have a GitHub repository with the source code
structured like so:

Deploying a FastAPI application on a serverless platform 301

Figure 10.1 – Project structure for serverless deployment

1.	 Create an account on a cloud platform of your choice. You must do this before you
can start any work. It's worth noting that most cloud platforms offer free credits
when you are getting started so that you can try their services for free.

2.	 Install the necessary command-line tools. Most cloud providers supply a complete
CLI for managing their services. Typically this is required for deploying your
application. Here are the relevant documentation pages for the most popular
cloud providers:

	� Google Cloud: https://cloud.google.com/sdk/gcloud

	� Microsoft Azure: https://docs.microsoft.com/en-us/cli/azure/
install-azure-cli

	� Heroku: https://devcenter.heroku.com/articles/heroku-cli

3.	 Set up the application configuration. Depending on the platform, you'll either have
to create a configuration file or use the CLI or the web interface to do this. Here are
the relevant documentation pages for the most popular cloud providers:

	� Google App Engine (configuration file): https://cloud.google.com/
appengine/docs/standard/python3/configuring-your-app-
with-app-yaml

	� Azure App Service (web interface and CLI): https://docs.microsoft.
com/en-us/azure/app-service/quickstart-python and
https://docs.microsoft.com/en-us/azure/app-service/
configure-language-python

	� Heroku (configuration file): https://devcenter.heroku.com/
articles/getting-started-with-python#define-a-procfile

https://cloud.google.com/sdk/gcloud
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://devcenter.heroku.com/articles/heroku-cli
https://cloud.google.com/appengine/docs/standard/python3/configuring-your-app-with-app-yaml
https://cloud.google.com/appengine/docs/standard/python3/configuring-your-app-with-app-yaml
https://cloud.google.com/appengine/docs/standard/python3/configuring-your-app-with-app-yaml
https://docs.microsoft.com/en-us/azure/app-service/quickstart-python
https://docs.microsoft.com/en-us/azure/app-service/quickstart-python
https://docs.microsoft.com/en-us/azure/app-service/configure-language-python
https://docs.microsoft.com/en-us/azure/app-service/configure-language-python
https://devcenter.heroku.com/articles/getting-started-with-python#define-a-procfile
https://devcenter.heroku.com/articles/getting-started-with-python#define-a-procfile

302 Deploying a FastAPI Project

The key point in this step is to correctly set the startup command. As we saw in the
previous section, it's essential to set the Uvicorn worker class using the Gunicorn
command, as well as set the correct path to your application.

4.	 Set the environment variables. Depending on the cloud provider, you should be
able to do so during configuration or deployment. Remember that they are key for
your application to work. Here are the relevant documentation pages for the most
popular cloud providers:

	� Google App Engine (configuration file): https://cloud.google.com/
appengine/docs/standard/python/config/appref

	� Azure App Service (web interface): https://docs.microsoft.com/
en-us/azure/app-service/configure-common#configure-app-
settings

	� Heroku (CLI or web interface): https://devcenter.heroku.com/
articles/config-vars

5.	 Deploy the application. Some platforms can automatically deploy when they detect
changes on a hosted repository, such as GitHub. Others require that you start a
deployment from the command-line tools. Here are the relevant documentation
pages for the most popular cloud providers:

	� Google App Engine (CLI): https://cloud.google.com/appengine/
docs/standard/python3/testing-and-deploying-your-
app#deploying_your_application

	� Azure App Service (continuous deployment or manual Git deployment):
https://docs.microsoft.com/en-us/azure/app-service/
deploy-continuous-deployment?tabs=github and https://
docs.microsoft.com/en-us/azure/app-service/deploy-
local-git?tabs=cli

	� Heroku (CLI): https://devcenter.heroku.com/articles/
getting-started-with-python#deploy-the-app

Your application should now be live on the platform. Most cloud platforms actually
automatically build and deploy Docker containers while following the configuration
you provide.

https://cloud.google.com/appengine/docs/standard/python/config/appref
https://cloud.google.com/appengine/docs/standard/python/config/appref
https://docs.microsoft.com/en-us/azure/app-service/configure-common#configure-app-settings
https://docs.microsoft.com/en-us/azure/app-service/configure-common#configure-app-settings
https://docs.microsoft.com/en-us/azure/app-service/configure-common#configure-app-settings
https://devcenter.heroku.com/articles/config-vars
https://devcenter.heroku.com/articles/config-vars
https://cloud.google.com/appengine/docs/standard/python3/testing-and-deploying-your-app#deploying_your_application
https://cloud.google.com/appengine/docs/standard/python3/testing-and-deploying-your-app#deploying_your_application
https://cloud.google.com/appengine/docs/standard/python3/testing-and-deploying-your-app#deploying_your_application
https://docs.microsoft.com/en-us/azure/app-service/deploy-continuous-deployment?tabs=github
https://docs.microsoft.com/en-us/azure/app-service/deploy-continuous-deployment?tabs=github
https://docs.microsoft.com/en-us/azure/app-service/deploy-local-git?tabs=cli
https://docs.microsoft.com/en-us/azure/app-service/deploy-local-git?tabs=cli
https://docs.microsoft.com/en-us/azure/app-service/deploy-local-git?tabs=cli
https://devcenter.heroku.com/articles/getting-started-with-python#deploy-the-app
https://devcenter.heroku.com/articles/getting-started-with-python#deploy-the-app

Deploying a FastAPI application on a serverless platform 303

They will make your application available on generic subdomain such as
myapplication.herokuapp.com. Of course, they also provide mechanisms for
binding it to your own domain or subdomain. Here are the relevant documentation pages
for the most popular cloud providers:

•	 Google App Engine: https://cloud.google.com/appengine/docs/
standard/python3/mapping-custom-domains

•	 Azure App Service: https://docs.microsoft.com/en-us/azure/
app-service/manage-custom-dns-migrate-domain

•	 Heroku: https://devcenter.heroku.com/articles/custom-domains

Adding database servers
Most of the time, your application will be backed by a database engine, such as
PostgreSQL. Fortunately, cloud providers propose fully managed databases, billed
according to the computing power, memory, and storage you need. Once created, you'll
have access to a connection string to connect to the database instance. All you have to
do then is set it in the environment variables of your application. Here are the relevant
documentation pages for getting started with managed databases with the most popular
cloud providers:

•	 Google Cloud SQL: https://cloud.google.com/sql/docs/postgres/
create-instance

•	 Azure Database for PostgreSQL: https://docs.microsoft.com/en-us/
azure/postgresql/quickstart-create-server-database-portal

•	 Amazon RDS: https://docs.aws.amazon.com/AmazonRDS/latest/
UserGuide/CHAP_GettingStarted.html

•	 Heroku Postgres: https://devcenter.heroku.com/articles/heroku-
postgresql

Managing Database Migrations
In Chapter 6, Databases and Asynchronous ORMs, we presented you with
some tools you can use to manage database migrations: Alembic and Aerich.
When working with a cloud database, we advise you to still run them from
your local machine so that you have full control of how they are executed, as
well as to check if everything goes well. Just be sure to set the correct database
connection string.

https://cloud.google.com/appengine/docs/standard/python3/mapping-custom-domains
https://cloud.google.com/appengine/docs/standard/python3/mapping-custom-domains
https://docs.microsoft.com/en-us/azure/app-service/manage-custom-dns-migrate-domain
https://docs.microsoft.com/en-us/azure/app-service/manage-custom-dns-migrate-domain
https://devcenter.heroku.com/articles/custom-domains
https://cloud.google.com/sql/docs/postgres/create-instance
https://cloud.google.com/sql/docs/postgres/create-instance
https://docs.microsoft.com/en-us/azure/postgresql/quickstart-create-server-database-portal
https://docs.microsoft.com/en-us/azure/postgresql/quickstart-create-server-database-portal
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html
https://devcenter.heroku.com/articles/heroku-postgresql
https://devcenter.heroku.com/articles/heroku-postgresql

304 Deploying a FastAPI Project

As we've seen, serverless platforms are the quickest and easiest way to deploy a FastAPI
application. However, in some situations, you may wish to have more control of how
things are deployed, or you may need system packages that are not available on serverless
platforms. In those cases, it may be worthwhile using a Docker container.

Deploying a FastAPI application with Docker
Docker is a widely used technology for containerization. Containers are small,
self-contained systems running on a computer. Each container contains all the files
and configurations necessary for running a single application: a web server, a database
engine, a data processing application, and so on. The main goal is to be able to run those
applications without worrying about dependency and version conflicts that often happen
when trying to install and configure them on the system.

Besides, Docker containers are designed to be portable and reproducible: to create a
Docker container, you simply have to write a Dockerfile containing all the necessary
instructions to build the small system, along with all the files and configuration you need.
Those instructions are executed during a build, which results in a Docker image. This
image is a package containing your small system, ready to use, that you can easily share on
the internet through registries. Any developer who has a working Docker installation can
then download this image and run it on their system in a container.

Docker has been quickly adopted by developers as it greatly eases the setup of complex
development environments, allowing them to have several projects with different system
package versions, all without worrying about their installation on their local machine.

However, Docker is not only for local development: it's also widely used for deploying
applications to production. Since the builds are reproducible, we can ensure that the
environments in local and in production remain the same; which limits issues when
passing to production.

In this section, we'll learn how to write a Dockerfile for a FastAPI application, how to
build an image, and how to deploy it on a cloud platform.

Writing a Dockerfile
As we mentioned in the introduction to this section a Dockerfile is a set of instructions for
building your Docker image, a self-contained system containing all the required components
to run your applications. To begin with, all Dockerfiles derive from a base image; usually,
this is a standard Linux installation, such as Debian or Ubuntu. From this base, we can copy
files from our local machine into the image (usually, the source code of our application) and
execute Unix commands; for example, to install packages or execute scripts.

Deploying a FastAPI application with Docker 305

In our case, the creator of FastAPI has created a base Docker image that contains all the
necessary tools to run a FastAPI app! All we have to do is start from this image, copy our
source files, and install our dependencies! Let's learn how to do that!

First of all, you'll need a working Docker installation on your machine. Follow the official
getting started tutorial, which should guide you in this process: https://docs.
docker.com/get-started/.

To create a Docker image, we simply have to create a file named Dockerfile at the root
of our project. The following example shows the content of this file for our current project:

Dockerfile
FROM tiangolo/uvicorn-gunicorn-fastapi:python3.7

ENV APP_MODULE app.app:app

COPY requirements.txt /app

RUN pip install --upgrade pip && \

 pip install -r /app/requirements.txt

COPY ./ /app

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter10/project/
Dockerfile

Let's go through each instruction. The first instruction, FROM, is the base image we derive
from. Here, we took the uvicorn-gunicorn-fastapi image, which was created
by the creator of FastAPI. Docker images have tags, which can be used to pick a specific
version of the image. Here, we chose Python version 3.7. Lots of variations exist for this
image, including ones with newer versions of Python. You can check them out in the
official README: https://github.com/tiangolo/uvicorn-gunicorn-
fastapi-docker.

Then, we set the APP_MODULE environment variable thanks to the ENV instruction.
In a Docker image, environment variables can be set at build time, as we did here, or at
runtime. APP_MODULE is an environment variable defined by the base image. It should
point to the path of your FastAPI application: it's the same argument that we set at the end
of Uvicorn and Gunicorn commands to launch the application. You can find the list of all
the accepted environment variables for the base image in the official README.

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/Dockerfile
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/Dockerfile
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter10/project/Dockerfile
https://github.com/tiangolo/uvicorn-gunicorn-fastapi-docker
https://github.com/tiangolo/uvicorn-gunicorn-fastapi-docker

306 Deploying a FastAPI Project

Next, we have our first COPY statement. As you may have guessed, this instruction
will copy a file from your local system to the image. Here, we only copied our
requirements.txt file. We'll explain why shortly. Notice that we copied the file into the
/app directory of the image; it's the main working directory defined by the base image.

We then have a RUN statement. This instruction is used to execute Unix commands. In our
case, we ran pip to install our dependencies, following the requirements.txt file we
just copied. This is essential to make sure all our Python dependencies are present.

Finally, we copied the rest of our source code files into the /app directory. Now, let's
explain why we separately copied requirements.txt. The important thing to
understand is that Docker images are built using layers: each instruction will create a new
layer in the build system. To improve performance, Docker does its best to reuse layers it
has already built. Therefore, if it detects no changes from the previous build, it'll reuse the
ones it has in memory without rebuilding them.

By copying the requirements.txt file alone and installing the Python dependencies
before the rest of the source code, we allow Docker to reuse the layer where the
dependencies have been installed. If we edit our source code but not requirements.
txt, the Docker build will only execute the last COPY instruction, reusing all the previous
layers. Thus, the image is built in a few seconds instead of minutes.

Most of the time, Dockerfiles end with a CMD instruction, which should be the command
to execute when the container is started. In our case, we would have used the Gunicorn
command we saw in the Adding Gunicorn as a server section. However, in our case, the
base image is already handling this for us.

Building a Docker image
We can now build our Docker image! From the root of your project, just run the
following command:

$ docker build -t fastapi-app .

The dot (.) denotes the path of the root context to build your image – in this case, the
current directory. The -t option is here to tag the image and give it a practical name.

Docker will then perform the build. You'll see that it'll download the base image and
sequentially run your instructions. This should take a few minutes. If you run the
command again, you'll experience what we explained earlier about layers: if there is no
change, layers are reused and the build takes only a few seconds.

Deploying a FastAPI application with Docker 307

Running a Docker image locally
Before deploying it to production, you can try to run your image locally. To do this, run
the following command:

$ docker run -p 8000:80 -e ENVIRONMENT=production -e DATABASE_
URL=sqlite://./app.db fastapi-app

Here, we used the run command with the name of the image we just built. There are, of
course, a few options here:

•	 -p allows you to publish ports on your local machine. By default, Docker containers
are not accessible on your local machine. If you publish ports, they will be available
through localhost. On the container side, the FastAPI application is executed on
port 80. We publish it on port 8000 on our local machine; that is, 8000:80.

•	 -e is used to set environment variables. As we mentioned in the Setting and using
environment variables section, we need those variables to configure our application.
Docker allows us to set them easily and dynamically at runtime. Notice that we set
a simple SQLite database for testing purposes. However, in production, it should
point to a proper database.

•	 You can review the numerous options of this command in the official Docker
documentation: https://docs.docker.com/engine/reference/
commandline/run/#options.

This command will run your application, which will be accessible through
http://localhost:8000. Docker will show you the logs in the terminal.

Deploying a Docker image
Now that you have a working Docker image, you can deploy it on virtually any machine
that runs Docker. This can be your own server or a dedicated platform. Lots of serverless
platforms have emerged to help you deploy container images automatically: Google Cloud
Run, Amazon Elastic Container Service, and Microsoft Azure Container Instances are just
a few.

https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.docker.com/engine/reference/commandline/run/#options
http://localhost:8000

308 Deploying a FastAPI Project

Usually, what you have to do is upload (push, in Docker jargon) your image to a registry.
By default, Docker pulls and pushes images from Docker Hub, the official Docker registry,
but lots of services and platforms propose their own registries. Usually, using the private
cloud registry proposed by the cloud platform is necessary to deploy it on this platform.
Here are the relevant documentation pages for getting started with private registries with
the most popular cloud providers:

•	 Google Artifact Registry: https://cloud.google.com/artifact-
registry/docs/docker/quickstart

•	 Amazon ECR: https://docs.aws.amazon.com/AmazonECR/latest/
userguide/getting-started-console.html

•	 Microsoft Azure Container Registry: https://docs.microsoft.com/
en-us/azure/container-registry/container-registry-get-
started-docker-cli?tabs=azure-cli

If you followed the relevant instructions, you should have a private registry for storing
Docker images. The instructions probably showed you how to authenticate your local
Docker command line with it and how to push your first image. Basically, all you have to
do is tag the image you built with the path to your private registry:

$ docker tag fastapi-app aws_account_id.dkr.ecr.region.
amazonaws.com/fastapi-app

Then, you need to push it to the registry:

$ docker push fastapi-app aws_account_id.dkr.ecr.region.
amazonaws.com/fastapi-app

Your image is now safely stored in the cloud platform registry. You can now use their
serverless container platform to deploy it automatically. Here are the relevant documentation
pages for getting started with private registries with the most popular cloud providers:

•	 Google Cloud Run: https://cloud.google.com/run/docs/
quickstarts/build-and-deploy/python

•	 Amazon Elastic Container Service: https://docs.aws.amazon.com/
AmazonECS/latest/developerguide/getting-started-ecs-ec2.
html

•	 Microsoft Azure Container Instances: https://docs.microsoft.com/
en-us/azure/container-instances/container-instances-
tutorial-deploy-app

https://cloud.google.com/artifact-registry/docs/docker/quickstart
https://cloud.google.com/artifact-registry/docs/docker/quickstart
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-console.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-console.html
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-docker-cli?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-docker-cli?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-docker-cli?tabs=azure-cli
https://cloud.google.com/run/docs/quickstarts/build-and-deploy/python
https://cloud.google.com/run/docs/quickstarts/build-and-deploy/python
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-ecs-ec2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-ecs-ec2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-ecs-ec2.html
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-tutorial-deploy-app
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-tutorial-deploy-app
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-tutorial-deploy-app

Deploying a FastAPI application on a traditional server 309

Of course, you'll be able to set the environment variables just like you can for fully
managed apps. Those environments also provide lots of options for tuning the scalability
of your containers, both vertically (using more powerful instances) and horizontally
(spawn more instances).

Once done, your application should be live on the web! The great thing about deploying
Docker images compared to automated serverless platforms is that you are not limited
to the features supported by the platform: you can deploy anything, even complex
applications that require a lot of exotic packages, without worrying about compatibility.

At this point, we've seen the easiest and most efficient ways to deploy a FastAPI
application. However, you may wish to deploy one the old-fashioned way and manually
set up your server. In the next section, we'll provide some guidelines to do so.

Deploying a FastAPI application on a
traditional server
In some situations, you may not have the chance to use a serverless platform to deploy
your application. Some security or regulatory policies may force you to deploy on physical
servers with specific configurations. In this case, it's worth knowing some basic things so
that you can deploy your application on traditional servers.

In this section, we'll consider you are working on a Linux server:

1.	 First of all, make sure a recent version of Python has been installed on your server,
ideally with the version matching the one you used in development. The easiest
way to do this is to set up pyenv, as we saw in Chapter 1, Python Development
Environment Setup.

2.	 To retrieve your source code and keep it in sync with your latest developments,
you can clone your Git repository on your server. This way, you only have to pull the
changes and restart the server process to deploy a new version.

3.	 Set up a Python virtual environment, as we explained in Chapter 1, Python
Development Environment Setup. You can install the dependencies with pip thanks
to your requirements.txt file.

4.	 At that point, you should be able to run Gunicorn and start serving your FastAPI
application. However, some improvements are strongly recommended.

5.	 Use a process manager to ensure your Gunicorn process is always running and
restarted when the server is restarted. A good option for this is Supervisor. The
Gunicorn documentation provides good guidelines for this: https://docs.
gunicorn.org/en/stable/deploy.html#supervisor.

https://docs.gunicorn.org/en/stable/deploy.html#supervisor
https://docs.gunicorn.org/en/stable/deploy.html#supervisor

310 Deploying a FastAPI Project

6.	 It's also recommended to put Gunicorn behind an HTTP proxy instead of directly
putting it on the front line. Its role is to handle SSL connections, perform load
balancing, and serve static files such as images or documents. The Gunicorn
documentation recommends using Nginx for this task and provides a basic
configuration: https://docs.gunicorn.org/en/stable/deploy.
html#nginx-configuration.

As you can see, in this context, there's quite a lot of configurations and decisions to
make regarding your server configuration. Of course, you should also pay attention to
security and make sure your server is well-protected against the usual attacks. In the
following DigitalOcean tutorial, you'll find some guidelines for securing your server:
https://www.digitalocean.com/community/tutorials/recommended-
security-measures-to-protect-your-servers.

If you're not an experienced system administrator, we recommend that you favor serverless
platforms: professional teams handle security, system updates, and server scalability for
you, letting you focus on what matters most for you: developing a great application!

Summary
Your application is now live on the web! In this chapter, we covered the best practices to
apply before deploying your application to production: use environment variables to set
configuration options, such as database URLs, and manage your Python dependencies
with a requirements.txt file. Then, we showed you how to deploy your application
to a serverless platform, which handles everything for you by retrieving your source code,
packaging it with its dependencies, and serving it on the web. Next, you learned how to
build a Docker image for FastAPI using the base image created by the creator of FastAPI.
As you've seen, it allows you to be flexible while configuring the system, but you can still
deploy it in a few minutes with a serverless platform that's compatible with containers.
Finally, we provided you with some guidelines for manual deployment on a traditional
Linux server.

This marks the end of the second part of this book. You should now be confident in
writing efficient, reliable FastAPI applications and be able to deploy them on the web.

In the next chapter, we will begin some data science tasks and integrate them efficiently in
a FastAPI project.

https://docs.gunicorn.org/en/stable/deploy.html#nginx-configuration
https://docs.gunicorn.org/en/stable/deploy.html#nginx-configuration
https://www.digitalocean.com/community/tutorials/recommended-security-measures-to-protect-your-servers
https://www.digitalocean.com/community/tutorials/recommended-security-measures-to-protect-your-servers

Section 3:
Build a Data Science
API with Python and

FastAPI

This section will introduce the most common libraries used in Python to perform data
science-related tasks. We'll see how to integrate those tools in a FastAPI backend with
performance and maintainability in mind.

 This section comprises the following chapters:

•	 Chapter 11, Introduction to NumPy and pandas

•	 Chapter12, Train Machine Learning Models with scikit-learn

•	 Chapter13, Create an Efficient Prediction API Endpoint with FastAPI

•	 Chapter 14, Implement a Real-Time Face Detection System Using WebSockets with
FastAPI and OpenCV

11
Introduction to

NumPy and pandas
In recent years, Python has gained a lot of popularity in the data science field. Its very
efficient and readable syntax makes the language a very good choice for scientific research,
while still being suitable for production workloads: it's very easy to deploy research
projects into real applications that will bring value to users. Thanks to this growing
interest, a lot of specialized Python libraries have emerged. The most well known are
probably NumPy and pandas. Their goal is to provide a set of tools to manipulate a big set
of data in an efficient way, much more than what we could actually achieve with standard
Python, and we'll show how and why in this chapter. NumPy and pandas are at the heart
of most data science applications in Python; knowing them is therefore the first step on
your journey into Python for data science.

In this chapter, we're going to cover the following main topics:

•	 Getting started with NumPy

•	 Manipulating arrays with NumPy: computation, aggregations, comparisons

•	 Getting started with pandas

314 Introduction to NumPy and pandas

Technical requirements
You'll need a Python virtual environment, as we set up in Chapter 1, Python Development
Environment Setup.

You'll find all the code examples of this chapter in the dedicated GitHub repository:
https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter11.

Getting started with NumPy
In Chapter 2, Python Programming Specificities, we stated that Python is a dynamically
typed language. This means that the interpreter automatically detects the type of a variable
at runtime, and this type can even change throughout the program. For example, you can
do something like this in Python:

$ python

>>> x = 1

>>> type(x)

<class 'int'>

>>> x = "hello"

>>> type(x)

<class 'str'>

The interpreter was able to determine the type of x at each assignation.

Under the hood, the standard implementation of Python, CPython, is written in C.
The C language is a compiled and statically typed language. This means that the nature
of the variables is fixed at compile time, and they can't change during execution. Thus,
in the Python implementation, a variable doesn't only consist in its value: it's actually
a structure containing information about the variable, including its type and size, in
addition to its value.

Thanks to this, we can manipulate variables very dynamically in Python. However,
it comes at a cost: each variable has a significantly higher memory footprint to store all its
metadata than just the plain value.

This is particularly true for data structures. Say we consider a simple list like this:

$ python

>>> l = [1, 2, 3, 4, 5]

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter11
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter11

Getting started with NumPy 315

Each item of the list is a Python integer, with all the metadata associated. In a statically
typed language such as C, the same list would only be a suite of values in memory sharing
the same type.

Let's now imagine a big set of data, like the kind we usually encounter in data science:
the cost of storing it in memory would be huge. That's exactly the purpose of NumPy:
provide a powerful and efficient array structure to manipulate a big set of data. Under the
hood, it uses a fixed-type array, meaning all elements of the structure are of the same type,
which allows NumPy to get rid of the costly metadata of every single element. Moreover,
common arithmetic operations, such as additions or multiplications, are much faster.
In the Manipulating arrays with NumPy – computation, aggregations, comparisons section
of this chapter, we'll make a speed comparison to show you the difference with standard
Python lists.

To get started, let's install NumPy using the following command:

$ pip install numpy

In a Python interpreter, we can now import the library:

$ python

>>> import numpy as np

Notice that, by convention, NumPy is always imported with the alias np. Let's now discover
its basic features!

Creating arrays
To create an array with NumPy, we can simply use the array function and pass it
a Python list:

>>> np.array([1, 2, 3, 4, 5])

array([1, 2, 3, 4, 5])

NumPy will detect the nature of the Python list. However, we can force the resulting type
by using the dtype argument:

>>> np.array([1, 2, 3, 4, 5], dtype=np.float64)

array([1., 2., 3., 4., 5.])

316 Introduction to NumPy and pandas

All elements were upcasted to the specified type. It is key to remember that a NumPy
array is of a fixed type. This means that every element will have the same type and
NumPy will silently cast a value to the array type. For example, let's consider an integer
list in which we want to insert a floating-point value:

>>> l = np.array([1, 2, 3, 4, 5])

>>> l[0] = 13.37

>>> l

array([13, 2, 3, 4, 5])

The value 13.37 has been truncated to fit into an integer.

If the value cannot be cast to the type of array, an error is raised. For example, let's try to
change the first element by using a string:

>>> l[0] = "a"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: 'a'

As we said in the introduction to this section, Python lists are not very efficient for large
datasets. This is why it's generally more efficient to use NumPy functions to create arrays.
The most commonly used ones are generally the following:

•	 np.zeros, to create an array filled with zeros

•	 np.ones, to create an array filled with ones

•	 np.empty, to create an empty array of the desired size in memory,
without initializing the values

•	 np.arange, to create an array with a range of elements

Let's see them in action:

>>> np.zeros(5)

array([0., 0., 0., 0., 0.])

>>> np.ones(5)

array([1., 1., 1., 1., 1.])

>>> np.empty(5)

array([1., 1., 1., 1., 1.])

>>> np.arange(5)

array([0, 1, 2, 3, 4])

Getting started with NumPy 317

Notice that the result of np.empty can vary: since the values in the array are not
initialized, they take whatever value there is currently in this memory block. The main
motivation behind this function is speed, allowing you to quickly allocate memory; but
don't forget to fill every element after.

By default, NumPy create arrays with a floating-point type (float64). Once again,
by using the dtype argument, you can force another type to be used:

>>> np.ones(5, dtype=np.int32)

array([1, 1, 1, 1, 1], dtype=int32)

NumPy provides a wide range of types, allowing you to finely optimize the memory
consumption of your program by selecting the right type for your data. You can find
the whole list of types supported by NumPy in the official documentation: https://
numpy.org/doc/stable/reference/arrays.scalars.html#sized-
aliases.

NumPy also proposes a function to create an array with random values:

>>> np.random.seed(0) # Set the random seed to make examples
reproducible

>>> np.random.randint(10, size=5)

array([5, 0, 3, 3, 7])

The first argument is the maximum range of the random value, and the size argument
sets the number of values to generate.

Until now, we showed how to create one-dimensional arrays. However, the great strength
of NumPy is that it natively handles multi-dimensional arrays! For example, let's create
a 3 x 4 matrix:

>>> m = np.ones((3,4))

>>> m

array([[1., 1., 1., 1.],

 [1., 1., 1., 1.],

 [1., 1., 1., 1.]])

https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases
https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases
https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases

318 Introduction to NumPy and pandas

NumPy did create an array with three rows and four columns! All we had to do was to
pass a tuple to the NumPy function to specify our dimensions. When having such an
array, NumPy gives us access to properties to know the number of dimensions, as well as
the shape and size of it:

>>> m.ndim

2

>>> m.shape

(3, 4)

>>> m.size

12

Accessing elements and sub-arrays
NumPy arrays closely follow the standard Python syntax to manipulate lists. Therefore,
to access an element in a one-dimensional array, just do the following:

>>> l = np.arange(5)

>>> l[2]

2

For multi-dimensional arrays, we just have to add another index:

>>> np.random.seed(0)

>>> m = np.random.randint(10, size=(3,4))

>>> m

array([[5, 0, 3, 3],

 [7, 9, 3, 5],

 [2, 4, 7, 6]])

>>> m[1][2]

3

Of course, this can be used to re-assign elements:

>>> m[1][2] = 42

>>> m

array([[5, 0, 3, 3],

 [7, 9, 42, 5],

 [2, 4, 7, 6]])

Getting started with NumPy 319

But that's not all. Thanks to the slicing syntax, we can access sub-arrays with a start
and end index and even a step. For example, on a one-dimensional array, we can do
the following:

>>> l = np.arange(5)

>>> l

array([0, 1, 2, 3, 4])

>>> l[1:4] # From index 1 (inclusive) to 4 (exclusive)

array([1, 2, 3])

>>> l[::2] # Every second element

array([0, 2, 4])

This is exactly what we saw for standard Python lists in Chapter 2, Python Programming
Specificities. Of course, it also works for multi-dimensional arrays, with one slice for
each dimension:

>>> np.random.seed(0)

>>> m = np.random.randint(10, size=(3,4))

>>> m

array([[5, 0, 3, 3],

 [7, 9, 3, 5],

 [2, 4, 7, 6]])

>>> m[1:, 0:2] # From row 1 to end and column 0 to 2

array([[7, 9],

 [2, 4]])

>>> m[::, 3:] # Every row, only last column

array([[3],

 [5],

 [6]])

You can assign those sub-arrays to variables. However, for performance reasons, NumPy
doesn't copy the values by default: it's only a view (or shallow copy), a representation of
the existing data. This is important to bear in mind because if you change a value on the
view, it will also change the value on the original array:

>>> v = m[::, 3:]

>>> v[0][0] = 42

>>> v

array([[42],

320 Introduction to NumPy and pandas

 [5],

 [6]])

>>> m

array([[5, 0, 3, 42],

 [7, 9, 3, 5],

 [2, 4, 7, 6]])

If you need to deep copy the values, you just have to use the copy method on the array:

>>> v = m[::, 3:].copy()

v is now a separate copy of m, and changes on its values won't change the values in m.

You now have the basics of handling arrays with NumPy. As we've seen, the syntax is very
similar to standard Python. The key points to remember when working with NumPy are
the following:

•	 NumPy arrays are of fixed types, meaning every item in the array are of the
same type.

•	 NumPy natively handles multi-dimensional arrays and allows us to subset them
using the standard slicing notation.

Of course, NumPy can do much more than that: actually, it can apply common
computations to those arrays in a very performant way.

Manipulating arrays with NumPy –
computation, aggregations, comparisons
As we said, NumPy is all about manipulating large arrays with great performance and
controlled memory consumption. Let's say, for example, that we want to compute
the double of each element in a large array. In the following example, you can see an
implementation of such a function with a standard Python loop:

chapter11_compare_operations.py

import numpy as np

np.random.seed(0) # Set the random seed to make examples
reproducible

Manipulating arrays with NumPy – computation, aggregations, comparisons 321

m = np.random.randint(10, size=1000000) # An array with a
million of elements

def standard_double(array):

 output = np.empty(array.size)

 for i in range(array.size):

 output[i] = array[i] * 2

 return output

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter11/chapter11_
compare_operations.py

We instantiate an array with a million random integers. Then, we have our function
building an array with the double of each element. Basically, we first instantiate an empty
array of the same size before looping over each element to set the double.

Let's measure the performance of this function. In Python, there is a standard module,
timeit, dedicated to this purpose. We can use it directly from the command line and
pass in argument-valid Python statements that we want to measure performance. The
following command will measure the performance of standard_double with our
big array:

$ python -m timeit "from chapter11.chapter11_compare_operations
import m, standard_double; standard_double(m)"

1 loop, best of 5: 315 msec per loop

The results will vary depending on your machine, but the magnitude should be equivalent.
What timeit does is to repeat your code a certain number of times and measure its
execution time. Here, our function took around 300 milliseconds to compute the double
of each element in our array. For such simple computations on a modern computer,
that's not very impressive.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter11/chapter11_compare_operations.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter11/chapter11_compare_operations.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter11/chapter11_compare_operations.py

322 Introduction to NumPy and pandas

Let's compare this with the equivalent operation using NumPy syntax. You can see it in
the next sample:

chapter11_compare_operations.py

def numpy_double(array):

 return array * 2

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter11/chapter11_
compare_operations.py

The code is much shorter! NumPy implements the basic arithmetic operations and can
apply them to each element of the array. By multiplying the array by a value directly,
we implicitly tell NumPy to multiply each element by this value. Let's measure the
performance with timeit:

$ python -m timeit "from chapter11.chapter11_compare_operations
import m, numpy_double; numpy_double(m)"

500 loops, best of 5: 667 usec per loop

Here, the best loop achieved the computation in 600 microseconds! That's almost a
thousand times faster than the previous function! How can we explain such a variation?
In a standard loop, Python, because of its dynamic nature, has to check for the type of
value at each iteration to apply the right function for this type, which adds significant
overhead. With NumPy, the operation is deferred to an optimized and compiled loop
where types are known ahead of time, which saves a lot of useless checks.

We once again see here the benefits of NumPy arrays over standard lists when working on
a large dataset: it implements operations natively to help you make computations very fast.

Adding and multiplicating arrays
As you saw in the previous example, NumPy supports the arithmetic operators to make
operations over arrays.

This means that you can operate directly over two arrays of the same dimensions:

>>> np.array([1, 2, 3]) + np.array([4, 5, 6])

array([5, 7, 9])

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter11/chapter11_compare_operations.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter11/chapter11_compare_operations.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter11/chapter11_compare_operations.py

Manipulating arrays with NumPy – computation, aggregations, comparisons 323

In this case, NumPy applies the operation element-wise. But it also works in certain
situations if one of the operands is not of the same shape:

>>> np.array([1, 2, 3]) * 2

array([2, 4, 6])

NumPy automatically understands that it should multiply each element by two. This is
called broadcasting: NumPy "expands" the smaller array to match the shape of the larger
array. The previous example is equivalent to this one:

>>> np.array([1, 2, 3]) * np.array([2, 2, 2])

array([2, 4, 6])

Note that even if those two examples are conceptually equivalent, the first one is more
memory-efficient and computationally efficient: NumPy is smart enough to use only one
value, "two", without having to create a full array of "two".

More generally, broadcasting works if the rightmost dimensions of the arrays are of the
same size or if one of them is one. For example, we can add an array of dimensions 4 x 3 to
an array of dimensions 1 x 3:

>>> a1 = np.ones((4, 3))

>>> a1

array([[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.]])

>>> a2 = np.ones((1, 3))

>>> a2

array([[1., 1., 1.]])

>>> a1 + a2

array([[2., 2., 2.],

 [2., 2., 2.],

 [2., 2., 2.],

 [2., 2., 2.]])

324 Introduction to NumPy and pandas

However, adding an array of dimensions 4 x 3 to an array of dimensions 1 x 4 is
not possible:

>>> a3 = np.ones((1, 4))

>>> a3

array([[1., 1., 1., 1.]])

>>> a1 + a3

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with
shapes (4,3) (1,4)

If this sounds complicated or confusing, that's normal; it takes time to understand it
conceptually, especially in three or more dimensions. For a more detailed explanation
of the concept, take time to read the related article in the official documentation:
https://numpy.org/doc/stable/user/theory.broadcasting.html.

Aggregating arrays – sum, min, max, mean…
When working with arrays, we often need to summarize the data to extract some
meaningful statistics: the mean, the minimum, the maximum... Fortunately, NumPy also
provides those operations natively. Quite simply, they are provided as methods that you
can call directly from an array:

>>> np.arange(10).mean()

4.5

>>> np.ones((4,4)).sum()

16.0

You can find the whole list of aggregating operations in the official documentation:
https://numpy.org/doc/stable/reference/arrays.ndarray.
html#calculation.

By default, those operations will aggregate every value in the array. However, you can
apply them per axis for multi-dimensional arrays:

>>> m = np.array(

 [[6, 5, 1, 1],

 [8, 9, 3, 2],

 [9, 3, 8, 5],

 [1, 0, 1, 9]]

https://numpy.org/doc/stable/user/theory.broadcasting.html
https://numpy.org/doc/stable/reference/arrays.ndarray.html#calculation
https://numpy.org/doc/stable/reference/arrays.ndarray.html#calculation

Manipulating arrays with NumPy – computation, aggregations, comparisons 325

)

>>> m.sum(axis=0) # Sum on the rows axis (the first dimension)

array([24, 17, 13, 17])

>>> m.sum(axis=1) # Sum on the columns axis (the second
dimension)

array([13, 22, 25, 11])

Comparing arrays
NumPy also implements the standard comparison operators to compare arrays. As with
arithmetic operators, which we saw in the Adding and multiplicating arrays section,
broadcasting rules apply. This means that you can compare an array with a single value:

>>> l = np.array([1, 2, 3, 4])

>>> l < 3

array([True, True, False, False])

And you can also compare arrays with arrays, given that they are compatible on the basis
of the broadcasting rules:

>>> m = np.array(

 [[1., 5., 9., 13.],

 [2., 6., 10., 14.],

 [3., 7., 11., 15.],

 [4., 8., 12., 16.]]

)

>>> m <= np.array([1, 5, 9, 13])

array([[True, True, True, True],

 [False, False, False, False],

 [False, False, False, False],

 [False, False, False, False]])

The resulting array is filled with the Boolean result of the comparison for each element.

That's it for this very quick introduction to NumPy. There is a lot more to know and
discover with this library, so we strongly encourage you to read the official user guide:
https://numpy.org/doc/stable/user/index.html.

For the rest of this book, this should be enough for you to understand the future examples.
Let's now have a look at a library often cited and used alongside NumPy: pandas.

https://numpy.org/doc/stable/user/index.html

326 Introduction to NumPy and pandas

Getting started with pandas
In the previous section, we introduced NumPy and its ability to efficiently store and work
with a large array of data. We'll now introduce another widely used library in data science:
pandas. This library is built on top of NumPy to provide convenient data structures able to
efficiently store large datasets with labeled rows and columns. This is, of course, especially
handy when working with most datasets representing real-world data that we want to
analyze and use in data science projects.

To get started, we will, of course, install the library with the usual command:

$ pip install pandas

Once done, we can start to use it in a Python interpreter:

$ python

>>> import pandas as pd

Just like we alias numpy as np, the convention is to alias pandas as pd when
importing it.

Using pandas Series for one-dimensional data
The first pandas data structure we'll introduce is Series. This data structure behaves very
similarly to a one-dimensional array in NumPy. To create one, we can simply initialize
it with a list of values:

>>> s = pd.Series([1, 2, 3, 4, 5])

>>> s

0 1

1 2

2 3

3 4

4 5

dtype: int64

Under the hood, pandas create a NumPy array. As such, it uses the same data types to
store the data. You can verify this by accessing the values property of the Series
object and check its type:

>>> type(s.values)

<class 'numpy.ndarray'>

Getting started with pandas 327

Indexing and slicing work exactly the same way as in NumPy:

>>> s[0]

1

>>> s[1:3]

1 2

2 3

dtype: int64

So far, this is not very different from a regular NumPy array. As we said, the main purpose
of pandas is to label the data. To allow this, pandas data structures maintain an index to
allow this data labeling. It is accessible through the index property:

>>> s.index

RangeIndex(start=0, stop=5, step=1)

Here, we have a simple range integer index, but we can actually have any arbitrary index.
In the next example, we create the same series, labeling each value with a letter:

>>> s = pd.Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d",
"e"])

>>> s

a 1

b 2

c 3

d 4

e 5

The index argument on the Series initializer allows us to set the list of labels.
We can now access values with those labels instead:

>>> s["c"]

3

Surprisingly, even slicing notation works with those kinds of labels:

>>> s["b":"d"]

b 2

c 3

d 4

dtype: int64

328 Introduction to NumPy and pandas

Under the hood, pandas keep the order of the index to allow such useful notations.
Notice, however, that with this notation, the last index is inclusive (d is included in the
result), unlike standard index notation, where the last index is exclusive:

>>> s[1:3]

b 2

c 3

dtype: int64

To avoid confusion between those two styles, pandas exposes two special notations to
explicitly indicate which indexing style you wish to use: loc (label notation with the last
index being inclusive) and iloc (standard index notation). You can read more about
this in the official documentation: https://pandas.pydata.org/docs/user_
guide/indexing.html#different-choices-for-indexing.

Series can also be instantiated directly from dictionaries:

>>> s = pd.Series({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5})

>>> s

a 1

b 2

c 3

d 4

e 5

dtype: int64

In this case, the keys of the dictionaries are used as labels.

Of course, in the real world, you'll more likely have to work with two-dimensional
(or more!) datasets. This is exactly what DataFrames are for!

Using pandas DataFrames for multi-dimensional data
Most of the time, datasets consist of two-dimensional data, where you have several
columns for each row, as in a classic spreadsheet application. In pandas, DataFrames are
designed to work this kind of data. As for Series, it can work with a large set of data that
is labeled both by rows and columns.

https://pandas.pydata.org/docs/user_guide/indexing.html#different-choices-for-indexing
https://pandas.pydata.org/docs/user_guide/indexing.html#different-choices-for-indexing

Getting started with pandas 329

The following examples will use a tiny dataset representing the number of tickets
(paid and free) delivered in French museums in 2018. Let's consider we have this data
in the form of two dictionaries:

>>> paid = {"Louvre Museum": 5988065, "Orsay Museum": 1850092,
"Pompidou Centre": 2620481, "National Natural History Museum":
404497}

>>> free = {"Louvre Museum": 4117897, "Orsay Museum": 1436132,
"Pompidou Centre": 1070337, "National Natural History Museum":
344572}

Each key in those dictionaries is a label for a row. We can build a DataFrame directly
from those two dictionaries like this:

>>> museums = pd.DataFrame({"paid": paid, "free": free})

>>> museums

 paid free

Louvre Museum 5988065 4117897

Orsay Museum 1850092 1436132

Pompidou Centre 2620481 1070337

National Natural History Museum 404497 344572

The DataFrame initializer accepts a dictionary of dictionaries, where keys represent the
label for the columns.

We can have a look at the index property, storing the rows index, and the columns
property, storing the columns index:

>>> museums.index

Index(['Louvre Museum', 'Orsay Museum', 'Pompidou Centre',

 'National Natural History Museum'],

 dtype='object')

>>> museums.columns

Index(['paid', 'free'], dtype='object')

330 Introduction to NumPy and pandas

Once again, we can now use indexing and slicing notation to get subsets of columns
or rows:

>>> museums["free"]

Louvre Museum 4117897

Orsay Museum 1436132

Pompidou Centre 1070337

National Natural History Museum 344572

Name: free, dtype: int64

>>> museums["Louvre Museum":"Orsay Museum"]

 paid free

Louvre Museum 5988065 4117897

Orsay Museum 1850092 1436132

>>> museums["Louvre Museum":"Orsay Museum"]["paid"]

Louvre Museum 5988065

Orsay Museum 1850092

Name: paid, dtype: int64

Something that is even more powerful, you can write a Boolean condition inside the
brackets to match some data. This operation is called masking:

>>> museums[museums["paid"] > 2000000]

 paid free

Louvre Museum 5988065 4117897

Pompidou Centre 2620481 1070337

Finally, you can easily set new columns with this very same indexing notation:

>>> museums["total"] = museums["paid"] + museums["free"]

>>> museums

 paid free total

Louvre Museum 5988065 4117897 10105962

Orsay Museum 1850092 1436132 3286224

Pompidou Centre 2620481 1070337 3690818

National Natural History Museum 404497 344572 749069

As you can see, just like NumPy arrays, pandas fully supports arithmetic operations over
two series or DataFrames.

Getting started with pandas 331

Of course, all the basic aggregation operations are supported, including mean and sum:

>>> museums["total"].sum()

17832073

>>> museums["total"].mean()

4458018.25

You can find the whole list of operations available in the official documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/
basics.html#descriptive-statistics.

Importing and exporting CSV data
One very common way of sharing datasets is through CSV files. This format is very
convenient because it only consists of a simple text file, each line representing a row of
data, with each column separated by a comma. Our simple museums dataset is available
in the examples repository as a CSV file, which you can see in the next sample:

museums.csv

name,paid,free

Louvre Museum,5988065,4117897

Orsay Museum,1850092,1436132

Pompidou Centre,2620481,1070337

National Natural History Museum,404497,344572

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter11/museums.csv

Importing CSV files is so common that pandas provides a function to load a CSV file into
a DataFrame directly:

>>> museums = pd.read_csv("./chapter11/museums.csv", index_
col=0)

>>> museums

 paid free

name

Louvre Museum 5988065 4117897

Orsay Museum 1850092 1436132

Pompidou Centre 2620481 1070337

https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#descriptive-statistics
https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#descriptive-statistics
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter11/museums.csv
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter11/museums.csv

332 Introduction to NumPy and pandas

National Natural History Museum 404497 344572

The function simply expects the path to the CSV file. Several arguments are available
to finely control the operation: here, we used index_col to specify the index of the
column that should be used as row labels. You can find the whole list of arguments in the
official documentation: https://pandas.pydata.org/pandas-docs/stable/
reference/api/pandas.read_csv.html.

Of course, the opposite operation exists to export a DataFrame to a CSV file:

>>> museums["total"] = museums["paid"] + museums["free"]

>>> museums.to_csv("museums_with_total.csv")

We will conclude this very quick introduction to pandas here. Of course, we've only
covered the tip of the iceberg here and we recommend that you go through the official
user guide to know more: https://pandas.pydata.org/pandas-docs/
stable/user_guide/index.html.

Still, you should now be able to perform basic operations and operate efficiently on
large datasets.

Summary
Great! You now have a grasp of the ins and outs of NumPy and pandas. Basically, those
libraries are the essential tool for data scientists in Python. By relying on optimized and
compiled code, they allow you to load and manipulate large set of data in Python, without
sacrificing performance. To allow this, they define fixed-type data structures, meaning
each value in the dataset should be of the same type. This is what enables efficient memory
consumption and fast computations.

Even though those basics should be enough for you to get started, we recommend that
you spend some time on the official user guides and tinker with those a bit to discover
all their aspects.

As we said in the introduction, NumPy and pandas are at the heart of most data science
applications in Python. In the next chapter, we'll see how they will help us in machine
learning tasks, along with the well-known machine learning library scikit-learn.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html

12
Training Machine
Learning Models
with scikit-learn

As we mentioned in the introduction of the previous chapter, Python has gained a
lot of popularity in the data science field. We've seen that libraries such as NumPy and
pandas have emerged to handle big datasets efficiently in Python. Those libraries are
the foundation for libraries dedicated to machine learning (ML), such as the famous
scikit-learn library, a complete toolset for implementing most of the algorithms and
techniques that are used daily by data scientists. In this chapter, we'll provide a quick
introduction to ML, what it is about, what it tries to solve, and how. Then, we'll learn
how to use scikit-learn to train and test ML models. We'll also have a deeper look at two
classical ML models, Naive Bayes models and support vector machines, both of which can
perform surprisingly well if used correctly.

In this chapter, we're going to cover the following main topics:

•	 What is machine learning?

•	 Basics of scikit-learn

•	 Classifying data with Naive Bayes models

•	 Classifying data with support vector machines

334 Training Machine Learning Models with scikit-learn

Technical requirements
You'll need a Python virtual environment, similar to the one we set up in Chapter 1,
Python Development Environment Setup.

You can find all the code examples for this chapter in this book's dedicated GitHub
repository: https://github.com/PacktPublishing/Building-Data-
Science-Applications-with-FastAPI/tree/main/chapter12.

What is machine learning?
ML is often seen as a sub-field of artificial intelligence. While this categorization is a subject
of debate, ML has had lot of exposure in recent years due to its vast and visible field of
applications, such as spam filters, natural language processing, and autonomous driving.

ML is a field where we build mathematical models from existing data so that the machine
can understand this data by itself. The machine is "learning" in the sense that the
developer doesn't have to program a step-by-step algorithm to solve the problem, which
would be impossible for complex tasks. Once a model has been "trained" on existing data,
it can be used to predict new data or understand new observations.

Consider the spam filter example: if we have a sufficiently large collection of emails
manually labeled "spam" or "not spam," we can use ML techniques to build a model that
can tell us if a new incoming email is spam or not.

Before we look at this with scikit-learn, we'll review the most fundamental concepts of ML.

Supervised versus unsupervised learning
ML techniques can be divided into two main categories: supervised learning and
unsupervised learning.

With supervised learning, the existing dataset is already labeled, which means we have
both the inputs (the characteristics of an observation), known as features, and the
outputs. If we consider the spam filter example here, the features could be the frequencies
of each word and the label could be the category; that is, "spam" or "not-spam".
Supervised learning is subdivided into two groups:

•	 Classification problems, to classify data with a finite set of categories; for example,
the spam filter

•	 Regression problems, to predict continuous numerical values; for example,
the number of rented electric scooters, given the day of the week, the weather,
and the location

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter12
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter12

What is machine learning? 335

Unsupervised learning, on the other hand, operates on data without any reference to
a label. The goal here is to discover interesting patterns from the features themselves.
The two main problems that unsupervised learning tries to solve are as follows:

•	 Clustering, where we want to find groups of similar data points; for example,
a recommender system to suggest products that you might like, given what other
people similar to you like.

•	 Dimensionality reduction, where the goal is to find a more compact representation
of datasets that contain a lot of different features. Doing this will allow us to keep
only the most meaningful and discriminant features while working with smaller
dataset dimensions.

Model validation
One of the key aspects of ML is evaluating whether your model is performing well or
not. How can you say that your model will perform well on newly observed data? When
building your model, how can you tell if one algorithm performs better than another?
All of these questions can and should be answered with model validation techniques.

As we mentioned previously, ML methods start with an existing set of data that we'll use
to train a model.

Intuitively, we may want to use all the data we have to train our model. Once done, what
can we do to test it? We could apply our model to the same data and see if the output is
correct... and we would get a surprisingly good result! Here, we are testing the model
with the same data we used to train it. Obviously, the model will overperform on this
data because it has already seen it. As you may have guessed, this is not a reliable way to
measure the accuracy of our model.

The right way to validate a model is to split the data into two: we keep one part for
training the data and another for testing it. This is known as the holdout set. This way,
we'll test the model on data that it has never seen before and compare the result that's
predicted by the model with the real value. Hence, the accuracy we are measuring is much
more sensible.

336 Training Machine Learning Models with scikit-learn

This technique works well; however, it poses a problem: by retaining some data, we
are losing precious information that could have helped us build a better model. This is
especially true if our initial dataset is small. To solve this, we can use cross-validation.
With this method, we once again split the data into two sets. This time, we are training
the model twice, using each set as training and testing sets. You can see a schematic
representation of this operation in the following diagram:

Figure 12.1 – Two-fold cross-validation

At the end of the operation, we obtain two accuracies, which will give us a better overview
of how our model performs on the whole dataset. This technique can be applied to help us
perform more trials with a smaller testing set, as shown in the following diagram:

Figure 12.2 – Five-fold cross-validation

We'll stop here regarding this very quick introduction to ML. We've barely scratched
the surface: ML is a vast and complex field, and there are lots of books dedicated to this
subject. Still, this information should be sufficient to help you understand the basic
concepts of scikit-learn, which we'll show throughout the rest of this chapter.

Basics of scikit-learn 337

Basics of scikit-learn
Now, let's focus on scikit-learn, an essential ML library for Python. It implements dozens
of classic ML models, but also numerous tools to help you while training them, such as
pre-processing methods and cross-validation.

The first thing you must do to get started is install it in your Python environment:

$ pip install scikit-learn

We can now start our scikit-learn journey!

Training models and predicting
In scikit-learn, ML models and algorithms are called estimators. Each is a Python class
that implements the same methods. In particular, we have fit, which is used to train a
model, and predict, which is used to run the trained model on new data.

To try this, we'll load a sample dataset. scikit-learn comes with a few toy datasets that are
very useful for performing experiments. You can find out more about them in the official
documentation: https://scikit-learn.org/stable/datasets.html.

Here, we'll use the digits dataset, a collection of pixels matrices representing handwritten
digits. As you may have guessed, the goal of this dataset is to train a model to automatically
recognize handwritten digits. The following example shows how to load this dataset:

chapter12_load_digits.py

from sklearn.datasets import load_digits

digits = load_digits()

data = digits.data

targets = digits.target

print(data[0].reshape((8, 8))) # First handwritten digit 8 x 8
matrix

print(targets[0]) # Label of first handwritten digit

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_load_
digits.py

https://scikit-learn.org/stable/datasets.html
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_load_digits.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_load_digits.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_load_digits.py

338 Training Machine Learning Models with scikit-learn

Notice that the toy dataset's functions are imported from the datasets package of
scikit-learn. The load_digits function returns an object that contains the data and
some metadata.

The most interesting parts of this object are data, which contains the handwritten digits
pixels matrices, and targets, which contains the corresponding label for those digits.
Both are NumPy arrays.

To get a grasp of what this looks like, we will take the first digit in the data and reshape it
into an 8 x 8 matrix; this is the size of the source images. Each value represents a pixel on
a grayscale, from 0 to 16.

Then, we print the label of this first digit, which is a 0. If you run this code, you'll get the
following output:

$ python chapter12/chapter12_load_digits.py

[[0. 0. 5. 13. 9. 1. 0. 0.]

 [0. 0. 13. 15. 10. 15. 5. 0.]

 [0. 3. 15. 2. 0. 11. 8. 0.]

 [0. 4. 12. 0. 0. 8. 8. 0.]

 [0. 5. 8. 0. 0. 9. 8. 0.]

 [0. 4. 11. 0. 1. 12. 7. 0.]

 [0. 2. 14. 5. 10. 12. 0. 0.]

 [0. 0. 6. 13. 10. 0. 0. 0.]]

0

Somehow, we can guess the shape of the zero from the matrix.

Now, let's try to build a model that recognizes handwritten digits. To start simple, we'll
use a Gaussian Naive Bayes model, which we'll cover in more detail in the Classifying data
with Naive Bayes models section. The following example shows the entire process:

chapter12_fit_predict.py

from sklearn.datasets import load_digits

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

digits = load_digits()

Basics of scikit-learn 339

data = digits.data

targets = digits.target

Split into training and testing sets

training_data, testing_data, training_targets, testing_targets
= train_test_split(

 data, targets, random_state=0

)

Train the model

model = GaussianNB()

model.fit(training_data, training_targets)

Run prediction with the testing set

predicted_targets = model.predict(testing_data)

Compute the accuracy

accuracy = accuracy_score(testing_targets, predicted_targets)

print(accuracy)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_fit_
predict.py

Now that we've loaded the dataset, we can see that it takes care of splitting it into a
training and a testing set. As we mentioned in the Model validation section, this is
essential for computing meaningful accuracy scores to check how our model performs.

To do this, we can rely on the train_test_split function, which is provided in
the model_selection package. It selects random instances from our dataset to form
the two sets. By default, it keeps 25% percent of the data to create a testing set, but this
can be customized. The random_state argument allows us to set the random seed to
make the example reproducible. You can find out more about this function in the official
documentation: https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.train_test_split.html#sklearn-model-
selection-train-test-split.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_fit_predict.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_fit_predict.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_fit_predict.py
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn-model-selection-train-test-split
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn-model-selection-train-test-split
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn-model-selection-train-test-split

340 Training Machine Learning Models with scikit-learn

Then, we must instantiate the GaussianNB class. This class is one of the numerous
ML estimators that's implemented in scikit-learn. Each has its own set of parameters, to
finely tune the behavior of the algorithm. However, scikit-learn is designed to provide
sensible defaults for all the estimators, so it's usually good to start with the defaults before
tinkering with them.

After that, we must call the fit method to train our model. It expects an argument and
two arrays: the first one is the actual data, with all its features, while the second one is the
corresponding labels. And that's it! You've trained your first ML model!

Now, let's see how it behaves: we'll call predict on our model with the testing set so that
it automatically classifies the digits of the testing set. The result of this is a new array with
the predicted labels.

All we have to do now is compare it with the actual labels of our testing set. Once again,
scikit-learn helps by providing the accuracy_score function in the metrics package.
The first argument is the true labels, while the second is the predicted labels.

If you run this code, you'll get an accuracy score of around 83%. That isn't too bad for
a first approach! As you have seen, training and running prediction on an ML model is
straightforward with scikit-learn.

In practice, we often need to perform pre-processing steps on the data before feeding
it to an estimator. Rather than doing this sequentially by hand, scikit-learn proposes a
convenient feature that can automate this process: pipelines.

Chaining pre-processors and estimators with pipelines
Quite often, you'll need to pre-process your data so that it can be used by the estimator
you wish to use. Typically, you'll want to transform an image into an array of pixel values
or, as we'll see in the following example, transform raw text into numerical values so that
we can apply some math to them.

Rather than writing those steps by hand, scikit-learn proposes a feature that can
automatically chain pre-processors and estimators: pipelines. Once created, they
expose the very same interfaces as any other estimator, allowing you to run training and
prediction in one operation.

To show you what this looks like, we'll look at an example of another classic dataset; that
is, the 20 newsgroups text dataset. It consists of 18,000 newsgroup articles categorized into
20 topics. The goal of this dataset is to build a model that will automatically categorize an
article in one of those topics.

Basics of scikit-learn 341

The following example shows how we can load this data thanks to the
fetch_20newsgroups function:

chapter12_pipelines.py

import pandas as pd

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics import accuracy_score, confusion_matrix

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

Load some categories of newsgroups dataset

categories = [

 "soc.religion.christian",

 "talk.religion.misc",

 "comp.sys.mac.hardware",

 "sci.crypt",

]

newsgroups_training = fetch_20newsgroups(

 subset="train", categories=categories, random_state=0

)

newsgroups_testing = fetch_20newsgroups(

 subset="test", categories=categories, random_state=0

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_
pipelines.py

Since the dataset is rather large, we can only load some of the categories. Here, we'll only
use four categories. Also, notice that it's already been split into training and testing sets,
so we only have to load them with the corresponding argument. You can find out more
about the functionality of this dataset in the official documentation: https://scikit-
learn.org/stable/datasets/real_world.html#the-20-newsgroups-
text-dataset.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py
https://scikit-learn.org/stable/datasets/real_world.html#the-20-newsgroups-text-dataset
https://scikit-learn.org/stable/datasets/real_world.html#the-20-newsgroups-text-dataset
https://scikit-learn.org/stable/datasets/real_world.html#the-20-newsgroups-text-dataset

342 Training Machine Learning Models with scikit-learn

Before moving on, it's important to understand what the underlying data is. Actually, this
is the raw text of an article. You can check this by printing one of the samples in the data:

>>> newsgroups_training.data[0]

"From: sandvik@newton.apple.com (Kent Sandvik)\nSubject:
Re: Ignorance is BLISS, was Is it good that Jesus died?\
nOrganization: Cookamunga Tourist Bureau\nLines: 17\n\
nIn article <f1682Ap@quack.kfu.com>, pharvey@quack.kfu.com
(Paul Harvey)\nwrote:\n> In article <sandvik-170493104859@
sandvik-kent.apple.com> \n> sandvik@newton.apple.com (Kent
Sandvik) writes:\n> >Ignorance is not bliss!\n \n> Ignorance
is STRENGTH!\n> Help spread the TRUTH of IGNORANCE!\n\nHuh,
if ignorance is strength, then I won't distribute this piece\
nof information if I want to follow your advice (contradiction
above).\n\n\nCheers,\nKent\n---\nsandvik@newton.apple.com.
ALink: KSAND -- Private activities on the net.\n"

So, we need to extract some features from this text before feeding it to an estimator. A
common approach for this when working with textual data is to use the Term Frequency-
Inverse Document Frequency (TF-IDF). Without going into too much detail, this
technique will count the occurrences of each word in all the documents (term frequency),
weighted by the importance of this word in every document (inverse document
frequency). The idea is to give more weight to rarer words, which should convey more
sense than frequent words such as "the." You can find out more about this in the scikit-
learn documentation: https://scikit-learn.org/dev/modules/feature_
extraction.html#tfidf-term-weighting.
This operation consists of splitting each word in the text samples and counting them.
Usually, we apply a lot of techniques to refine this, such as removing stop words; common
words such as "and" or "is" that don't bring much information. Fortunately, scikit-learn
provides an all-in-one tool for this: TfidfVectorizer.
This pre-processor can take an array of text, tokenize each word, and compute the TF-IDF
for each of them. A lot of options are available for finely tuning its behavior, but the
defaults are a good start for English text. The following example shows how to use it with
an estimator in a pipeline:

chapter12_pipelines.py

Make the pipeline

model = make_pipeline(

 TfidfVectorizer(),

 MultinomialNB(),

)

https://scikit-learn.org/dev/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/dev/modules/feature_extraction.html#tfidf-term-weighting

Basics of scikit-learn 343

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_
pipelines.py

The make_pipeline function accepts any number of pre-processors and an estimator
in its argument. Here, we're using the Multinomial Naive Bayes classifier, which is suitable
for features representing frequency.

Then, we can simply train our model and run prediction to check its accuracy, as we did
previously. You can see this in the following example:

chapter12_pipelines.py

Train the model

model.fit(newsgroups_training.data, newsgroups_training.target)

Run prediction with the testing set

predicted_targets = model.predict(newsgroups_testing.data)

Compute the accuracy

accuracy = accuracy_score(newsgroups_testing.target, predicted_
targets)

print(accuracy)

Show the confusion matrix

confusion = confusion_matrix(newsgroups_testing.target,
predicted_targets)

confusion_df = pd.DataFrame(

 confusion,

 index=pd.Index(newsgroups_testing.target_names,
name="True"),

 columns=pd.Index(newsgroups_testing.target_names,
name="Predicted"),

)

print(confusion_df)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_
pipelines.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_pipelines.py

344 Training Machine Learning Models with scikit-learn

Notice that we also printed a confusion matrix, which is a very convenient representation
of the global results. scikit-learn has a dedicated function for this called confusion_
matrix. Then, we wrap the result in a pandas DataFrame so that we can set the axis
labels to improve readability. If you run this example, you'll get an output similar to what's
shown in the following screenshot. Depending on your machine and system, it could take
a couple of minutes to run:

Figure 12.3 – Using a confusion matrix on 20 newsgroups dataset

Here, you can see that our results weren't too bad for our first try. Notice that there is one
big area of confusion between the soc.religion.christian and talk.religion.misc categories,
which is not very surprising, given their similarity.

As you've seen, building a pipeline with a pre-processor is very straightforward. The nice
thing about this is that it automatically applies it to the training data, but also when you're
predicting the results.

Before moving on, let's look at one more important feature of scikit-learn:
cross-validation.

Validating the model with cross-validation
In the Model validation section, we introduced the cross-validation technique, which
allows us to use data in training or testing sets. As you may have guessed, this technique
is so common that it's implemented natively in scikit-learn!

Basics of scikit-learn 345

Let's take another look at the handwritten digit example and apply cross-validation:

chapter12_cross_validation.py

from sklearn.datasets import load_digits

from sklearn.model_selection import cross_val_score

from sklearn.naive_bayes import GaussianNB

digits = load_digits()

data = digits.data

targets = digits.target

Create the model

model = GaussianNB()

Run cross-validation

score = cross_val_score(model, data, targets)

print(score)

print(score.mean())

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_cross_
validation.py

This time, we don't have to split the data ourselves: the cross_val_score function
performs the folds automatically. In argument, it expects the estimator, data, which
contains the handwritten digits' pixels matrices, and targets, which contains the
corresponding label for those digits. By default, it performs five folds.

The result of this operation is an array that provides the accuracy score of the five folds.
To get a global overview of this result, we can take, for example, the mean. If you run this
example, you'll get the following output:

$ python chapter12/chapter12_cross_validation.py

[0.78055556 0.78333333 0.79387187 0.8718663 0.80501393]

0.8069281956050759

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_cross_validation.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_cross_validation.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_cross_validation.py

346 Training Machine Learning Models with scikit-learn

As you can see, our mean accuracy is around 80%, which is a bit lower than the 83% we
obtained with single training and testing sets. That's the main benefit of cross-validation:
we obtain a more statistically accurate metric regarding the performance of our model.

With that, we have learned the basics of working with scikit-learn. Before going back
to FastAPI, we'll review two categories of ML models: Naive Bayes models and support
vector machines.

Classifying data with Naive Bayes models
Even though you probably hear a lot about super-advanced ML methods such as deep
learning, it's important to say that simpler methods have existed for years and have
proven to be very efficient in many situations. Generally, it's always a good idea when you
start with a data science problem to try out simpler models that have fewer parameters
and are easier to tune. This will quickly give you a baseline to compare with more
advanced techniques.

In this section, we'll review Naive Bayes models, a group of fast and simple classification
algorithms.

Intuition
Naive Bayes models rely on Bayes' theorem, which defines an equation to describe the
probability of an event, given the probability of related events. In the context of
classification, it gives us an equation to describe the probability of a label, 𝐿𝐿 , given a set of
features. In our handwritten digit recognition problem, this would translate to "the
probability of this observation being the digit zero, given the pixel's matrix values."
This equation looks like this:

The notation 𝑃𝑃(𝐿𝐿 | features) means "the probability of 𝐿𝐿 , given features ."

In practice, our classifier will have to decide if an observation has a higher probability
of being 𝐿𝐿1 or 𝐿𝐿2 : "does it look more like a zero or an eight?" To do this, we can compute
the ratio of the two probabilities, which, thanks to the previous equation, gives us
the following:

(| features) =
(features

|

)

×

()
features()

(| features)
(| features)

=
(features

|

)

×

 ()
(features |

))
)))×

Classifying data with Naive Bayes models 347

The raw probability of and , () and () , is the relative frequency of and
in the training set. If our training set contains 100 samples and we have 15 samples of zero,
the probability of the label being zero is 0.15.

Now, we have to find a way to compute the probability of the features given a label,
(features |) and (features |) . What we'll do here is make assumptions about the

distribution of the data by finding simple statistical rules. This is why those models are
called "naïve."

One of the first classical assumptions regarding those models is Gaussian distribution.

Classifying data with Gaussian Naive Bayes
As we mentioned previously, Naive Bayes models work by making "naive" assumptions
about the distribution of the underlying data. In the case of Gaussian Naive Bayes,
we assume that the data is drawn from a Gaussian distribution (or normal distribution).
The following is a graphical representation of such a distribution:

Figure 12.4 – Curve of a Gaussian distribution

The intuition behind this is that, for data following a Gaussian distribution, the probability
is high around the mean, μ, and the standard deviation, σ. It then decreases rapidly when
it moves away from the mean. This is computed using the following formula:

1
σ√2π

exp −
1
2

− μ
σ

348 Training Machine Learning Models with scikit-learn

Then, all we need to do to train our model is compute the mean and standard deviation for
each feature in each label. This will give us, for each label, a simple formula to compute the
probability of having features, given . Once we have them, all we need to do is apply the
preceding formula to get the probability of this observation, given .

This is exactly what happens when we train the GaussianNB estimator in scikit-learn.
If we consider the same example we showed in the Training models and predicting section,
we can retrieve the mean and standard deviation that was computed for each pixel for
each possible digit. In the following example, you can see that we are training a Gaussian
Naive Bayes model with the handwritten digits set, before printing the mean and standard
deviation for the digit zero:

chapter12_gaussian_naive_bayes.py

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

digits = load_digits()

data = digits.data

targets = digits.target

Split into training and testing sets

training_data, testing_data, training_targets, testing_targets
= train_test_split(

 data, targets, random_state=0

)

Train the model

model = GaussianNB()

model.fit(training_data, training_targets)

Print mean and standard deviation of digit zero

print("Mean of each pixel for digit zero")

print(model.theta_[0])

Classifying data with Naive Bayes models 349

print("Standard deviation of each pixel for digit zero")

print(model.sigma_[0])

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_
gaussian_naive_bayes.py

If you run this example, you'll get the following output:

$ python chapter12/chapter12_gaussian_naive_bayes.py

Mean of each pixel for digit zero

[0.00000000e+00 2.83687943e-02 4.12765957e+00 1.29716312e+01

 1.13049645e+01 2.96453901e+00 3.54609929e-02 0.00000000e+00

 0.00000000e+00 9.50354610e-01 1.25035461e+01 1.37021277e+01

 1.16453901e+01 1.12765957e+01 9.00709220e-01 0.00000000e+00

 0.00000000e+00 3.79432624e+00 1.43758865e+01 5.57446809e+00

 2.13475177e+00 1.23049645e+01 3.43971631e+00 0.00000000e+00

 0.00000000e+00 5.31205674e+00 1.27517730e+01 2.06382979e+00

 1.34751773e-01 9.26241135e+00 6.45390071e+00 0.00000000e+00

 0.00000000e+00 5.78723404e+00 1.16737589e+01 1.00000000e+00

 5.67375887e-02 8.89361702e+00 7.10638298e+00 0.00000000e+00

 0.00000000e+00 3.41843972e+00 1.33687943e+01 1.82269504e+00

 1.69503546e+00 1.12127660e+01 5.90070922e+00 0.00000000e+00

 0.00000000e+00 7.80141844e-01 1.29787234e+01 1.02056738e+01

 1.06382979e+01 1.32340426e+01 2.53191489e+00 0.00000000e+00

 0.00000000e+00 7.09219858e-03 4.15602837e+00 1.35602837e+01

 1.33049645e+01 5.46099291e+00 2.83687943e-01 0.00000000e+00]

Standard deviation of each pixel for digit zero

[4.30146180e-08 5.59328432e-02 9.13263925e+00 5.40345057e+00

 1.19566421e+01 1.10838489e+01 3.42035539e-02 4.30146180e-08

 4.30146180e-08 3.62164885e+00 1.24060158e+01 8.98928630e+00

 1.66827625e+01 1.22284594e+01 3.08233997e+00 4.30146180e-08

 4.30146180e-08 7.09954232e+00 5.32679447e+00 2.42870077e+01

 1.03435441e+01 1.03112520e+01 7.16835174e+00 4.30146180e-08

 4.30146180e-08 6.08701780e+00 1.01298728e+01 1.13505357e+01

 3.57728527e-01 1.27609276e+01 5.38262667e+00 4.30146180e-08

 4.30146180e-08 5.03274487e+00 1.11843469e+01 5.54609933e+00

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_gaussian_naive_bayes.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_gaussian_naive_bayes.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_gaussian_naive_bayes.py

350 Training Machine Learning Models with scikit-learn

 1.38624861e-01 1.46624416e+01 7.28655505e+00 4.30146180e-08

 4.30146180e-08 5.17951818e+00 5.96328157e+00 9.69196725e+00

 8.97791866e+00 1.45362910e+01 1.38482974e+01 4.30146180e-08

 4.30146180e-08 1.80272626e+00 7.62366082e+00 1.54257835e+01

 1.74365475e+01 1.00516071e+01 1.00503999e+01 4.30146180e-08

 4.30146180e-08 7.04194232e-03 7.77707363e+00 4.30310351e+00

 7.87153568e+00 1.51846487e+01 9.83350981e-01 4.30146180e-08]

All those numbers represent the means and standard deviations of the 64 pixels of the 8x8
pixel matrix, for the digit zero.

If you want to learn more about the mathematics behind this, you can read a very detailed
introduction in the following PennState online course: https://online.stat.psu.
edu/stat414/lesson/16.

This is why training and running prediction on a Gaussian Naive Bayes model is so fast:
it only involves simple mathematical computations. Of course, its accuracy only depends on
the correctness of the assumption: if our data doesn't conform to a Gaussian distribution,
the model won't perform very well. Still, its simplicity and efficiency always make it a good
basis before we consider more complex algorithms.

Classifying data with Multinomial Naive Bayes
Another assumption we can make about the data is that it follows a multinomial
distribution. This is particularly suited for datasets with features representing counts,
such as the number of times they appear in the dataset, such as word frequencies.

If we consider some text and we compute the frequency of each word (or the TF-IDF,
as we saw in the Chaining pre-processors and estimators with pipelines section), how do
we compute its probability of being in the category; that is, our famous (features |) ?
The multinomial law says that it can be computed using this formula:

Here, is the total number of occurrences, , , ... is the number of occurrences of
the word 1, 2... , and , , ... is the probability of the word 1, 2... .

!
! ! … !

…

https://online.stat.psu.edu/stat414/lesson/16
https://online.stat.psu.edu/stat414/lesson/16

Classifying data with support vector machines 351

All we need to do now is find the probability of each word in each category:
this is the purpose of the training phase. It's computed as follows:

Here, is the frequency of the word in category , is the total number of
occurrences of every word in category , and the number of different words. α is a
smoothing parameter to prevent some probabilities from being equal to zero, which
would then propagate in the multinomial formula. It's usually set to 1 by default, but this
can be tuned.

If you want to learn more about the mathematics behind this, you can read a very detailed
introduction to it in the following PennState online course: https://online.stat.
psu.edu/stat504/lesson/1/1.7.

When training a MultinomialNB estimator with scikit-learn, this is exactly what the
algorithm does: it computes the probability of each word in each category.

When predicting the category of a new piece of text, it simply has to count the
frequency of each word and apply the first formula with the probabilities it computed
during training.

That's it for the theory behind Naive Bayes models. The key thing to remember is that
they are very fast to train and generally provide quite a good basis when starting with a
classification problem. Besides, they tend to work quite well if the number of features
is large.

In the next section, we'll review another type of model that's quite powerful both for
classification and regression: support vector machines.

Classifying data with support vector machines
Support Vector Machines (SVM) are another group of classification and regression
models that have proven to be quite powerful in many situations. The intuition behind
them is quite straightforward to understand, but we'll see that their power comes mostly
from a mathematical technique that's used in many other ML algorithms, called the
kernel trick.

=
+ α

+ α

https://online.stat.psu.edu/stat504/lesson/1/1.7
https://online.stat.psu.edu/stat504/lesson/1/1.7

352 Training Machine Learning Models with scikit-learn

Intuition
Let's consider a simple classification problem where we want to classify samples into
two categories. The following is a graph containing some randomly generated data for
this problem:

Figure 12.5 – Simple classification problem data

Intuitively, with such data, finding a straight line to cleanly separate the two categories
seems simple. However, we quickly see that there are a lot of different solutions, as shown
in the following graph:

Figure 12.6 – Three possible linear classifiers

Classifying data with support vector machines 353

So, how do we find the one that will yield the best results to predict the category of a
new point?

What SVM does is draw a margin around each of those possible classifiers, up to the
nearest point. The classifier that maximizes the margin is the one that'll be selected for our
model. If we train an SVM on our sample dataset, we'll obtain the classifier shown in the
following graph. This graph also shows the margin for better visualization:

Figure 12.7 – Three possible linear classifiers

The two samples that are touching the margin are the support vectors.

Of course, in the real world, having such nicely separated data is very rare, and a linear
classifier may not exist. The following graph shows some randomly generated data that is
not linearly separable:

Figure 12.8 – Non-linearly separable data

354 Training Machine Learning Models with scikit-learn

To solve this, SVM projects the dataset to a higher dimension by applying a kernel
function to the data. We won't go into the mathematical details of this, but kernel
functions can compute the similarity between each pair of points: in the new dimension,
similar points are close, while dissimilar points are distant.

Metaphorically, imagine that we draw the data shown in the preceding graph on a sheet of
paper. The goal of the kernel is to find a way to fold or bend this paper so that the yellow
and purple dots can be linearly separated by a plane.

Several kernel functions exist, such as the Radial Basis Function (RBF), which is applied
by default when using SVM with scikit-learn.

The following graph shows the result of performing such an operation on our sample data:

Figure 12.9 – Data projected in a third dimension that's now linearly separable

Here, we can see that there is a clear linear classifier in three dimensions that can separate
the data.

You can read more about the mathematics behind this in the following scikit-learn
documentation: https://scikit-learn.org/stable/modules/svm.
html#mathematical-formulation.

https://scikit-learn.org/stable/modules/svm.html#mathematical-formulation
https://scikit-learn.org/stable/modules/svm.html#mathematical-formulation

Classifying data with support vector machines 355

Using SVM in scikit-learn
Now that we have a good grasp of the functionality of SVM, we can try using it in
scikit-learn. As you'll see, it's not very different from what we've seen so far with
Naive Bayes models.

It comes in different flavors, with slight adaptations depending on your use case.
Typically, the SVC estimator is suitable for classification problems, while SVR is usually
adapted to regression.

In the following example, once again, we're taking our handwritten digit recognition
example and applying the SVC estimator. We will evaluate it using the cross-validation
method:

chapter12_svm.py

from sklearn.datasets import load_digits

from sklearn.model_selection import cross_val_score

from sklearn.svm import SVC

digits = load_digits()

data = digits.data

targets = digits.target

Create the model

model = SVC()

Run cross-validation

score = cross_val_score(model, data, targets)

print(score)

print(score.mean())

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_svm.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_svm.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_svm.py

356 Training Machine Learning Models with scikit-learn

As you can see, we simply instantiate the SVC class and keep the default parameters. If you
run this example, you'll get the following output:

$ python chapter12/chapter12_svm.py

[0.96111111 0.94444444 0.98328691 0.98885794 0.93871866]

0.9632838130609718

The mean accuracy of our model is 96%! That's quite impressive, given that we didn't even
have to tune the parameters.

Finding the best parameters
With Naive Bayes models, we almost had no parameters to tune. In the case of SVM,
however, there are quite a few of them – most notably, there's the kernel function, which
is RBF by default, and the C parameter. C defines the "hardness" of the margin around the
linear classifier: if C is high, no point can creep inside the margin. A lower C will relax this
constraint and, in some cases, allow a better fit for the data.

However, finding the best set of parameters is not always intuitive and it would be quite
time-consuming to do so by hand. What can we do, then? scikit-learn can help us with this!

The model_selection package provides a useful class called GridSearchCV that
allows us to automatically search for the best parameters for our estimator. Here, we
set the different parameters we want to try and it trains the model with every possible
combination. At the end of this process, it returns the parameters that achieved the
best accuracy.

In the following example, we implemented a grid search to find the best parameters for C
and the kernel function for our handwritten digit recognition problem:

chapter12_finding_parameters.py

from sklearn.datasets import load_digits

from sklearn.model_selection import GridSearchCV

from sklearn.svm import SVC

digits = load_digits()

data = digits.data

targets = digits.target

Classifying data with support vector machines 357

Create the grid of parameters

param_grid = {

 "C": [1, 10, 100, 1000],

 "kernel": ["linear", "poly", "rbf", "sigmoid"]

}

grid = GridSearchCV(SVC(), param_grid)

grid.fit(data, targets)

print("Best params", grid.best_params_)

print("Best score", grid.best_score_)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter12/chapter12_
finding_parameters.py

As you can see, we only have to create a dictionary for mapping the name of the parameter
to the list of values we want to try for this parameter. GridSearchCV is then initialized
with the estimator instance and this parameter grid.

Calling the fit method with the dataset will run the search. Once done, you'll have
access to the best_params_ and best_score_ properties, which will give you the
best results.

If you run this example, you'll get the following result:

$ python chapter12/chapter12_finding_parameters.py

Best params {'C': 10, 'kernel': 'rbf'}

Best score 0.9738502011761063

Here, we achieved 97% accuracy with the C parameter set to 10 and the
RBF kernel function.

Of course, the larger your grid is, the more time you'll need to compute all the
possibilities. If you have a very large set of parameters to try, have a look at
RandomizedSearchCV, which works similarly but only tests a few combinations by
picking some randomly. You can learn more about this in the scikit-learn documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.RandomizedSearchCV.html.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_finding_parameters.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_finding_parameters.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter12/chapter12_finding_parameters.py
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

358 Training Machine Learning Models with scikit-learn

Summary
Congratulations! You've discovered the basics concepts of ML and scikit-learn. Now, you
should be able to explore your first data science problems in Python. Of course, this was
by no means a complete lesson on ML: the field is vast and there are tons of algorithms
and techniques to explore. However, I hope that this has sparked your curiosity and that
you'll deepen your knowledge of this subject.

Now, it's time to get back to FastAPI! With our new ML tools at hand, we'll be able to
leverage the power of FastAPI to serve our estimators and propose a reliable and efficient
prediction API for our users.

13
Creating an Efficient

Prediction API
Endpoint with

FastAPI
In the previous chapters, we introduced the most common data science techniques and
libraries largely used in the Python community. Thanks to those tools, we can now build
machine learning models that can make efficient predictions and classify data. Of course,
we now have to think about a convenient interface so that we can take advantage of their
intelligence. This way, microservices or frontend applications can ask our model to make
predictions to improve the user experience or business operations.

In this chapter, we'll learn how to do that with FastAPI. As we've seen throughout this
book, FastAPI allows us to implement very efficient REST APIs with clear and lightweight
syntax. In this chapter, you'll learn how to do this as efficiently as possible so that it can serve
thousands of prediction requests. To help us with this task, we'll introduce another library,
Joblib, that provides tools to help us serialize a trained model and cache predicted results.

360 Creating an Efficient Prediction API Endpoint with FastAPI

In this chapter, we're going to cover the following main topics:

•	 Persisting a trained model with Joblib

•	 Implementing an efficient prediction endpoint

•	 Caching results with Joblib

Technical requirements
You'll need a Python virtual environment, similar to the one we set up in Chapter 1,
Python Development Environment Setup.

You can find all the code examples for this chapter in this book's dedicated GitHub
repository: https://github.com/PacktPublishing/Building-Data-
Science-Applications-with-FastAPI/tree/main/chapter13.

Persisting a trained model with Joblib
In the previous chapter, you learned how to train an estimator with scikit-learn. When
building such models, you'll likely obtain a rather complex Python script to load your
training data, pre-process it, and train your model with the best set of parameters. However,
when deploying your model in a web application, such as FastAPI, you don't want to repeat
this script and run all those operations when the server is starting. Instead, you need a
ready-to-use representation of your trained model that you can just load and use.

This is what Joblib does. This library aims to provide tools for efficiently saving Python
objects to disk, such as large arrays of data or function results: this operation is generally
called dumping. Joblib is already a dependency of scikit-learn, so we don't even need to
install it. scikit-learn uses it internally to load the bundled toy datasets.

As we'll see, dumping a trained model involves just one line of code with Joblib.

Dumping a trained model
In this example, we're using the newsgroups example we saw in the Chaining
pre-processors and estimators with pipelines section of Chapter 12, Training Machine
Learning Models with scikit-learn. As a reminder, we load four categories of the 20
newsgroups dataset and build a model to automatically categorize news articles into those
categories. Once we've done this, we dump the model into a file called newsgroups_
model.joblib:

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter13
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter13

Persisting a trained model with Joblib 361

chapter13_dump_joblib.py

Make the pipeline

model = make_pipeline(

 TfidfVectorizer(),

 MultinomialNB(),

)

Train the model

model.fit(newsgroups_training.data, newsgroups_training.target)

Serialize the model and the target names

model_file = "newsgroups_model.joblib"

model_targets_tuple = (model, newsgroups_training.target_names)

joblib.dump(model_targets_tuple, model_file)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter13/chapter13_dump_
joblib.py

As you can see, Joblib exposes a function called dump, which simply expects two
arguments: the Python object to save and the path of the file.

Notice that we don't dump the model variable alone: instead, we wrap it in a tuple, along
with the name of the categories, target_names. This allows us to retrieve the actual
name of the category after the prediction has been made, without us having to reload the
training dataset.

If you run this script, you'll see that the newsgroups_model.joblib file was created:

$ python chapter13/chapter13_dump_joblib.py

$ ls -lh *.joblib

-rw-r--r-- 1 fvoron staff 3,2M 10 jul 10:41 newsgroups_
model.joblib

Notice that this file is rather large: it's more than 3 MB! It stores all the probabilities of
each word in each category, as computed by the Multinomial Naive Bayes model.

That's all we need to do. This file now contains a static representation of our Python
model, which will be easy to store, share, and load. Now, let's learn how to load it and
check that we can run predictions on it.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_dump_joblib.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_dump_joblib.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_dump_joblib.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_dump_joblib.py

362 Creating an Efficient Prediction API Endpoint with FastAPI

Loading a dumped model
Now that we have our dumped model file, let's learn how to load it again using Joblib
and check that everything is working. In the following example, we're loading the Joblib
dump present in the chapter13 directory of the examples repository and running
a prediction:

chapter13_load_joblib.py

import os

from typing import List, Tuple

import joblib

from sklearn.pipeline import Pipeline

Load the model

model_file = os.path.join(os.path.dirname(__file__),
"newsgroups_model.joblib")

loaded_model: Tuple[Pipeline, List[str]] = joblib.load(model_
file)

model, targets = loaded_model

Run a prediction

p = model.predict(["computer cpu memory ram"])

print(targets[p[0]])

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter13/chapter13_load_
joblib.py

All we need to do here is call the load function from Joblib and pass it a valid path to a
dump file. The result of this function is the very same Python object we dumped. Here,
it's a tuple composed of the scikit-learn estimator and a list of categories.

Notice that we added some type hints: while not necessary, it helps mypy or your IDE
identify the nature of the objects you loaded and benefit from type-checking and
auto-completion.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_load_joblib.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_load_joblib.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_load_joblib.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_load_joblib.py

Implementing an efficient prediction endpoint 363

Finally, we ran a prediction on the model: it's a true scikit-learn estimator, with all the
necessary training parameters.

That's it! As you've seen, Joblib is straightforward to use. Nevertheless, it's an essential
tool for exporting your scikit-learn models and being able to use them in external
services without repeating the training phase. Now, we can use those dump files in
FastAPI projects.

Implementing an efficient prediction endpoint
Now that we have a way to save and load our machine learning models, it's time to use
them in a FastAPI project. As you'll see, the implementation shouldn't be too much of
a surprise if you've followed this book. The main part of the implementation is the class
dependency, which will take care of loading the model and making predictions. If you
need a refresher on class dependencies, check out Chapter 5, Dependency Injections
in FastAPI.

Let's go! Our example will be based on the newgroups model we dumped in the previous
section. We'll start by showing you how to implement the class dependency, which will
take care of loading and making predictions:

chapter13_prediction_endpoint.py

class PredictionInput(BaseModel):

 text: str

class PredictionOutput(BaseModel):

 category: str

class NewsgroupsModel:

 model: Optional[Pipeline]

 targets: Optional[List[str]]

 def load_model(self):

 """Loads the model"""

 model_file = os.path.join(os.path.dirname(__file__),
"newsgroups_model.joblib")

 loaded_model: Tuple[Pipeline, List[str]] = joblib.

364 Creating an Efficient Prediction API Endpoint with FastAPI

load(model_file)

 model, targets = loaded_model

 self.model = model

 self.targets = targets

 async def predict(self, input: PredictionInput) ->
PredictionOutput:

 """Runs a prediction"""

 if not self.model or not self.targets:

 raise RuntimeError("Model is not loaded")

 prediction = self.model.predict([input.text])

 category = self.targets[prediction[0]]

 return PredictionOutput(category=category)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter13/chapter13_
prediction_endpoint.py

First, we start by defining two Pydantic models: PredictionInput and
PredictionOutput. In a pure FastAPI philosophy, they will help us validate the
request payload and return a structured JSON response. Here, as input, we simply expect
a text property containing the text we want to classify; in terms of the output, we expect
a category property containing the predicted category.

The most interesting part of this extract is the NewsgroupsModel class. It implements
two methods: load_model and predict.

The load_model method loads the model using Joblib, as we saw in the previous
section, and stores the model and the targets in class properties. Hence, they will be
available for use by the predict method.

On the other hand, the predict method will be injected into the path operation
function. As you can see, it directly accepts a PredictionInput that will be injected
by FastAPI. Inside this method, we are making a prediction, as we usually do with
scikit-learn. We return a PredictionOutput object with the category we predicted.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_prediction_endpoint.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_prediction_endpoint.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_prediction_endpoint.py

Implementing an efficient prediction endpoint 365

You may have noticed that, first, we check if the model and its targets have been
assigned in the class properties before performing the prediction. Of course, we need to
ensure load_model was called at some point before making a prediction. You may be
wondering why we are not putting this logic in an initializer, __init__, so that we can
ensure the model is loaded at class instantiation. This would work perfectly fine; however,
it would cause some issues. As we'll see, we are instantiating a NewsgroupsModel
instance right after FastAPI so that we can use it in our routes. If the loading logic was
in __init__, the model would be loaded whenever we import some variables (such
as the app instance) from this file, such as in unit tests. In most cases, this would incur
unnecessary I/O operations and memory consumption. As we'll see, it's better to use the
startup event of FastAPI to load the model when the app is run.

The following extract shows the rest of the implementation, along with the actual FastAPI
route for handling predictions:

chapter13_prediction_endpoint.py

app = FastAPI()

newgroups_model = NewsgroupsModel()

@app.post("/prediction")

async def prediction(

 output: PredictionOutput = Depends(newgroups_model.
predict),

) -> PredictionOutput:

 return output

@app.on_event("startup")

async def startup():

 newgroups_model.load_model()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter13/chapter13_
prediction_endpoint.py

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_prediction_endpoint.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_prediction_endpoint.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_prediction_endpoint.py

366 Creating an Efficient Prediction API Endpoint with FastAPI

As we mentioned previously, we are creating an instance of NewsgroupsModel so
that we can inject it into our path operation function. Moreover, we are implementing a
startup event handler to call load_model. This way, we are making sure that the model
is loaded during application startup and is ready to use.

The prediction endpoint is quite straightforward: as you can see, we directly depend on
the predict method, which will take care of injecting the payload and validating it.
We only have to return the output.

That's it! Once again, FastAPI makes our life very easy by allowing us to write very simple
and readable code, even for complex tasks. We can run this application using Uvicorn,
as usual:

$ uvicorn chapter13.chapter13_prediction_endpoint:app

Now, we can try to run some predictions with HTTPie:

$ http POST http://localhost:8000/prediction text="computer cpu
memory ram"

HTTP/1.1 200 OK

content-length: 36

content-type: application/json

date: Tue, 13 Jul 2021 06:34:58 GMT

server: uvicorn

{

 "category": "comp.sys.mac.hardware"

}

Our machine learning classifier is alive! To push this further, let's see how we can
implement a simple caching mechanism using Joblib.

Caching results with Joblib
If your model takes time to make predictions, it may be interesting to cache the results:
if the prediction for a particular input has already been done, it makes sense to return the
same result we saved on disk, rather than running the computations again. In this section,
we'll learn how to do this with the help of Joblib.

Joblib provides us with a very convenient and easy-to-use tool to do this, so the
implementation is quite straightforward. The main concern will be about whether we
should choose standard or async functions to implement the endpoints and dependencies.
This will allow us to explain some of the technical details of FastAPI in more detail.

Caching results with Joblib 367

We'll build upon the example we provided in the previous section. The first thing we must
do is initialize a Joblib Memory class, which is the helper for caching functions results.
Then, we can add a decorator to the functions we want to cache. You can see this in the
following example:

chapter13_caching.py

memory = joblib.Memory(location="cache.joblib")

@memory.cache(ignore=["model"])

def predict(model: Pipeline, text: str) -> int:

 prediction = model.predict([text])

 return prediction[0]

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter13/chapter13_
caching.py

When initializing memory, the main argument is location, which is the directory path
where Joblib will store the results. Joblib automatically saves cached results on the hard disk.

Then, you can see that we implemented a predict function that accepts our scikit-
learn model, some text input, and then returns the predicted category index. This
is the same prediction operation we've seen so far. Here, we extracted it from the
NewsgroupsModel dependency class because Joblib caching is primarily designed to
work with regular functions. Caching class methods is not recommended. As you can see,
we simply have to add a @memory.cache decorator on top of this function to enable
Joblib caching.

Whenever this function is called, Joblib will check if it has the result on disk for the
same arguments. If it does, it returns it directly. Otherwise, it proceeds with the regular
function call.

As you can see, we added an ignore argument to the decorator, which allows us to tell
Joblib to not take into account some arguments in the caching mechanism. Here, we
excluded the model argument. Joblib cannot dump complex objects, such scikit-learn
estimators. This isn't a problem, though: the model is not changing between several
predictions, so we don't care about having it cached. If we make improvements to our
model and deploy a new one, all we have to do is clear the whole cache so that older
predictions are made again with the new model.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py

368 Creating an Efficient Prediction API Endpoint with FastAPI

Now, we can tweak the NewsgroupsModel dependency class so that it works with this
new predict function. You can see this in the following example:

chapter13_caching.py

class NewsgroupsModel:

 model: Optional[Pipeline]

 targets: Optional[List[str]]

 def load_model(self):

 """Loads the model"""

 model_file = os.path.join(os.path.dirname(__file__),
"newsgroups_model.joblib")

 loaded_model: Tuple[Pipeline, List[str]] = joblib.
load(model_file)

 model, targets = loaded_model

 self.model = model

 self.targets = targets

 def predict(self, input: PredictionInput) ->
PredictionOutput:

 """Runs a prediction"""

 if not self.model or not self.targets:

 raise RuntimeError("Model is not loaded")

 prediction = predict(self.model, input.text)

 category = self.targets[prediction]

 return PredictionOutput(category=category)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter13/chapter13_
caching.py

In the predict method, we are calling the external predict function instead of
doing so directly inside the method, taking care to pass the model and the input text as
arguments. All we have to do after is retrieve the corresponding category name and build
a PredictionOutput object.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py

Caching results with Joblib 369

Finally, we have the REST API endpoints. Here, we added a DELETE/cache route so
that we can clear the whole Joblib cache with an HTTP request. This can be seen in the
following example:

chapter13_caching.py

@app.post("/prediction")

def prediction(

 output: PredictionOutput = Depends(newgroups_model.
predict),

) -> PredictionOutput:

 return output

@app.delete("/cache", status_code=status.HTTP_204_NO_CONTENT)

def delete_cache():

 memory.clear()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter13/chapter13_
caching.py

The clear method of the memory object removes all the Joblib cache files on the disk.

Our FastAPI application is now caching prediction results. If you make a request with the
same input twice, the second response will show you the cached result. In this example,
our model is fast, so you won't notice a difference in terms of execution time; however,
this could be interesting with more complex models.

Choosing between standard or async functions
You may have noticed that we changed the predict method and the prediction and
delete_cache path operation functions so that they're standard, non-async functions.

Since the beginning of this book, we've shown you how FastAPI completely embraces
asynchronous I/O and why it's good for the performance of your applications. We've
also recommended libraries that also work asynchronously, such as database drivers,
to leverage that power.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_caching.py

370 Creating an Efficient Prediction API Endpoint with FastAPI

In some cases, however, that's not always possible. In this case, Joblib is implemented to
work synchronously. Nevertheless, it's performing long I/O operations: it reads and writes
cache files on the hard disk. Hence, it will block the process and won't be able to answer
other requests while this is happening, as we've explained in the Asynchronous I/O section
of Chapter 2, Python Programming Specificities.

To solve this, FastAPI implements a neat mechanism: if you define a path operation
function or a dependency as a standard, non-async function, it'll run it in a separate thread.
This means that blocking operations, such as synchronous file reading, won't block the
main process. In a sense, we could say that it mimics an asynchronous operation.

To understand this, we'll perform a simple experiment. In the following example, we are
building a dummy FastAPI application with three endpoints:

•	 /fast, which directly returns a response.

•	 /slow-async, a path operation defined as async, which makes a synchronous
blocking operation that takes 10 seconds to run.

•	 /slow-sync, a path operation that's defined as a standard method, which makes a
synchronous blocking operation that takes 10 seconds to run:

chapter13_async_not_async.py

import time

from fastapi import FastAPI

app = FastAPI()

@app.get("/fast")

async def fast():

 return {"endpoint": "fast"}

@app.get("/slow-async")

async def slow_async():

 """Runs in the main process"""

 time.sleep(10) # Blocking sync operation

 return {"endpoint": "slow-async"}

Caching results with Joblib 371

@app.get("/slow-sync")

def slow_sync():

 """Runs in a thread"""

 time.sleep(10) # Blocking sync operation

 return {"endpoint": "slow-sync"}

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter13/chapter13_async_
not_async.py

With this simple application, the goal is to see how those blocking operations block the
main process. Let's run this application with Uvicorn:

$ uvicorn chapter13.chapter13_async_not_async:app

Next, open two new terminals. In the first one, make a request to the /
slow-async endpoint:

$ http GET http://localhost:8000/slow-async

Without waiting for the response, in the second terminal, make a request to the /
fast endpoint:

$ http GET http://localhost:8000/fast

You'll see that you have to wait 10 seconds before you get the response for the /fast
endpoint. This means that /slow-async blocked the process and prevented the server
for answering the other request while this was happening.

Now, let's perform the same experiment with the /slow-sync endpoint:

$ http GET http://localhost:8000/slow-sync

And again, run the following command:

$ http GET http://localhost:8000/fast

You'll immediately get /fast as a response, without having to wait for /slow-sync to
finish. Since it's defined as a standard, non-async function, FastAPI will run it in a thread
to prevent blocking. However, bear in mind that sending the task to a separate thread
implies a small overhead, so it's important to think about the best approach for your
current problem.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_async_not_async.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_async_not_async.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter13/chapter13_async_not_async.py

372 Creating an Efficient Prediction API Endpoint with FastAPI

So, when developing with FastAPI, how can you choose between standard or async
functions for path operations and dependencies? The rules of thumb for this are
as follows:

•	 If it's not making long I/O operations (file reading, network requests, and so on),
define them as async.

•	 If you are making I/O operations, do the following:

a. Try to choose libraries that are compatible with asynchronous I/O, as we saw for
databases or HTTP clients. In this case, your functions will be async.

b. If it's not possible, which is the case for Joblib caching, define them as standard
functions. FastAPI will run them in a separate thread.

Since Joblib is completely synchronous at making I/O operations, we switched the path
operations and the dependency method so that they're synchronous, standard methods.

In this example, the difference is not very noticeable because the I/O operations are
small and fast. However, it's good to keep this in mind if you have to implement slower
operations, such as for performing file uploads to cloud storage.

Summary
Congratulations! You're now able to build a fast and efficient REST API to serve your
machine learning models. Thanks to Joblib, you've learned how to dump a trained
scikit-learn estimator into a file that's easy to load and use inside your application. We've
also seen an approach to caching prediction results using Joblib. Finally, we discussed how
FastAPI handles synchronous operations by sending them to a separate thread to prevent
blocking. While this was a bit technical, it's important to bear this aspect in mind when
dealing with blocking I/O operations.

We're near the end of our FastAPI journey. Before letting you build awesome data science
applications by yourself, we have provided one last chapter to push this a bit further:
using WebSockets and a library dedicated to computer vision, OpenCV, we'll learn how to
implement an application that can perform real-time face detection.

14
Implement a Real-

Time Face Detection
System Using

WebSockets with
FastAPI and OpenCV

In the previous chapter, you learned how to create efficient REST API endpoints to make
predictions with trained machine learning models. This approach covers a lot of use cases,
given that we have a single observation we want to work on. In some cases, however,
we may need to continuously perform predictions on a stream of input, for instance, a
face detection system that works in real time with video input. This is exactly what we'll
build in this chapter. How? If you remember, besides HTTP endpoints, FastAPI also has
the ability to handle WebSockets endpoints, which allow us to send and receive streams
of data. In this case, the browser will send into the WebSocket a stream of images from
the webcam, and our application will run a face detection algorithm and send back the
coordinates of the detected face in the image. For this face detection task, we'll rely on
OpenCV, which is a library dedicated to computer vision.

374 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

In this chapter, we're going to cover the following main topics:

•	 Getting started with OpenCV

•	 Implementing an HTTP endpoint to perform face detection on a single image

•	 Implementing a WebSocket to perform face detection on a stream of images

•	 Sending a stream of images from the browser in a WebSocket

•	 Showing the face detection results in a browser

Technical requirements
You'll need a Python virtual environment, as we set up in Chapter 1, Python Development
Environment Setup.

You'll also need a webcam on your computer to be able to run the examples.

You'll find all the code examples of this chapter in the dedicated GitHub repository:
https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/tree/main/chapter14.

Getting started with OpenCV
Computer vision is a field related to machine learning that aims at developing algorithms
and systems to analyze images and videos automatically. A typical example of computer
vision's application is face detection: a system automatically detecting human faces in an
image. This is the kind of system we'll build in this chapter.

To help us in this task, we'll use OpenCV, which is one of the most popular computer
vision libraries. It's written in C and C++ but has bindings to make it usable in many other
programming languages, including Python. We could have used scikit-learn to develop a
face detection model, but we'll see that OpenCV already includes all the necessary tools to
perform this task without having to manually train and tune machine learning estimators.

To begin with OpenCV, we'll implement a simple Python script to perform face detection
locally using a computer webcam:

1.	 The first step is, of course, to install the OpenCV library for Python:

$ pip install opencv-python

Now, all we need to do is to use the tools provided by OpenCV to implement a
simple face detection program. As you'll see, everything is bundled in the library.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter14
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/tree/main/chapter14

Getting started with OpenCV 375

2.	 In the following example, you can see the whole implementation:

chapter14_opencv.py

import cv2

Load the trained model

face_cascade = cv2.CascadeClassifier(

 cv2.data.haarcascades + "haarcascade_frontalface_default.
xml"

)

You may need to change the index depending on your computer
and camera

video_capture = cv2.VideoCapture(0)

while True:

 # Get an image frame

 ret, frame = video_capture.read()

 # Convert it to grayscale and run detection

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 faces = face_cascade.detectMultiScale(gray)

 # Draw a rectangle around the faces

 for (x, y, w, h) in faces:

 cv2.rectangle(

 img=frame,

 pt1=(x, y),

 pt2=(x + w, y + h),

 color=(0, 255, 0),

 thickness=2,

)

 # Display the resulting frame

 cv2.imshow("Chapter 14 – OpenCV", frame)

376 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

 # Break when key "q" is pressed

 if cv2.waitKey(1) == ord("q"):

 break

video_capture.release()

cv2.destroyAllWindows()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter14/chapter14_
opencv.py

You can simply run this script by invoking it with Python:
$ python chapter14/chapter14_opencv.py

A window similar to the one shown in Figure 14.1 will open and start streaming
images from your webcam.

3.	 When the algorithm detects a face, it draws a green rectangle around it. Press the q
key on your keyboard to stop the script:

Figure 14.1 – Face detection script with OpenCV

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/chapter14_opencv.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/chapter14_opencv.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/chapter14_opencv.py

Getting started with OpenCV 377

4.	 Let's go through the implementation. The first thing we do is instantiate a
CascadeClassifier class with an XML file bundled with the library. This class
is actually a machine learning algorithm using the Haar cascade principle. You can
read more about the theory behind this algorithm in the OpenCV documentation:
https://docs.opencv.org/master/db/d28/tutorial_cascade_
classifier.html.

The nice thing here is that OpenCV comes with pre-trained models, provided in the
form of XML files, including ones for face detection. Hence, we only have to load
them to start working on images.

5.	 Then, we instantiate a VideoCapture class. It'll allow us to stream images from a
webcam. The integer argument in the initializer is the index of the camera you want
to use. If you have several cameras, you may need to adjust this argument.

6.	 After that, we start an infinite loop so that we can continuously run detections on
the stream of images. Inside it, we start by retrieving an image, frame, from the
video_capture instance. This image is then fed to the classifier thanks to the
detectMultiScale method. Notice that we first convert it to grayscale, which is
a requirement for Haar cascade classifiers.

The result of this operation is a list of tuples containing the characteristics of the
rectangles around the detected faces: x and y are the coordinates of the starting
point; w and h are the width and height of this rectangle. All we have to do is draw
each rectangle on the image using the rectangle function.

7.	 Finally, we can display the image in a window. Notice that before ending the loop,
we give it a chance to break by listening for a keypress on the keyboard: if the q key
is pressed, we break the loop.

And that's it! Fewer than 40 lines of code to have a working face detection system!
As you can see, OpenCV makes our life very easy by providing trained classifiers.
Besides, it comes with all the tools to capture and work on images.

Of course, our goal in this chapter is to put all this intelligence on a remote server so
that we can serve this experience to thousands of users. Once again, FastAPI will be
our ally here.

https://docs.opencv.org/master/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/master/db/d28/tutorial_cascade_classifier.html

378 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

Implementing an HTTP endpoint to perform
face detection on a single image
Before working with WebSockets, we'll start simple and implement, using FastAPI, a
classic HTTP endpoint for accepting image uploads and performing face detection on
them. As you'll see, the main difference from the previous example is in how we acquire
the image: instead of streaming it from the webcam, we get it from a file upload that we
have to convert into an OpenCV image object.

You can see the whole implementation in the following code:

chapter14_api.py

from typing import List, Tuple

import cv2

import numpy as np

from fastapi import FastAPI, File, UploadFile

from pydantic import BaseModel

app = FastAPI()

cascade_classifier = cv2.CascadeClassifier()

class Faces(BaseModel):

 faces: List[Tuple[int, int, int, int]]

@app.post("/face-detection", response_model=Faces)

async def face_detection(image: UploadFile = File(...)) ->
Faces:

 data = np.fromfile(image.file, dtype=np.uint8)

 image = cv2.imdecode(data, cv2.IMREAD_UNCHANGED)

 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 faces = cascade_classifier.detectMultiScale(gray)

 if len(faces) > 0:

 faces_output = Faces(faces=faces.tolist())

Implementing an HTTP endpoint to perform face detection on a single image 379

 else:

 faces_output = Faces(faces=[])

 return faces_output

@app.on_event("startup")

async def startup():

 cascade_classifier.load(

 cv2.data.haarcascades + "haarcascade_frontalface_
default.xml"

)

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter14/chapter14_api.py

As you can see, we start with a rather simple FastAPI application. At the top of the file, we
instantiate a CascadeClassifier class. Notice, however, that contrary to the previous
example, we load the trained model inside the startup event instead of doing it right away.
This is for the same reason we explained in Chapter 13, Creating an Efficient Prediction
API Endpoint with FastAPI, when we loaded our dumped Joblib model: we want to load it
only when the application is actually starting, not when we are importing the module.

Then, we define a face_detection endpoint that expects FileUpload. If you need
a refresher on file uploads, you can check out Chapter 3, Developing a RESTful API with
FastAPI. Once we have the file, you can see that we are performing two operations using
NumPy and OpenCV. Indeed, the images need to be loaded into a NumPy matrix that is
usable by OpenCV.

If we had a file path, we could have directly used the imread function of OpenCV to
load it. Here, we have an UploadFile object that has a file property pointing to a file
descriptor. Using NumPy, we can load the binary data into an array of pixels, data. This
can be used afterward by the imdecode function to create a proper OpenCV matrix.

Finally, we can run the prediction using the classifier, as we saw in the previous section.
Notice that we structure the result into a structured Pydantic model. When OpenCV
detects faces, it returns the result as a nested NumPy array. The goal of the tolist
method is just to transform it into a standard list of lists.

You can run this example using the usual Uvicorn command:

$ uvicorn chapter14.chapter14_api:app

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/chapter14_api.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/chapter14_api.py

380 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

In the code example repository, you'll find a picture of a group of people: https://
github.com/PacktPublishing/Building-Data-Science-Applications-
with-FastAPI/blob/main/assets/people.jpg.

Let's upload it on our endpoint with HTTPie:

$ http --form POST http://localhost:8000/face-detection
image@./assets/people.jpg

HTTP/1.1 200 OK

content-length: 43

content-type: application/json

date: Wed, 21 Jul 2021 07:58:17 GMT

server: uvicorn

{

 "faces": [

 [

 237,

 92,

 80,

 80

],

 [

 426,

 75,

 115,

 115

]

]

}

The classifier was able to detect two faces in the image.

Great! Our face detection system is now available as a web server. However, our goal is
still to make a real-time system: thanks to WebSockets, we'll be able to handle a stream
of images.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/people.jpg
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/people.jpg
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/assets/people.jpg

Implementing a WebSocket to perform face detection on a stream of images 381

Implementing a WebSocket to perform face
detection on a stream of images
One of the main benefits of WebSockets, as we saw in Chapter 8, Defining WebSockets
for Two-Way Interactive Communication in FastAPI, is that it opens a full-duplex
communication channel between the client and the server. Once the connection is
established, messages can be passed quickly without having to go through all the steps of the
HTTP protocol. Therefore, it's much more suited to sending lots of messages in real time.

The point here will be to implement a WebSocket endpoint that is able to both accept
image data and run OpenCV detection on it. The main challenge here will be to handle
a phenomenon known as backpressure. Put simply, we'll receive more images from the
browser than the server is able to handle, because of the time needed to run the detection
algorithm. Thus, we'll have to work with a queue (or buffer) of limited size and drop some
images along the way to handle the stream in near real time.

You can read the implementation in the following sample:

app.py

async def receive(websocket: WebSocket, queue: asyncio.Queue):

 bytes = await websocket.receive_bytes()

 try:

 queue.put_nowait(bytes)

 except asyncio.QueueFull:

 pass

async def detect(websocket: WebSocket, queue: asyncio.Queue):

 while True:

 bytes = await queue.get()

 data = np.frombuffer(bytes, dtype=np.uint8)

 img = cv2.imdecode(data, 1)

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 faces = cascade_classifier.detectMultiScale(gray)

 if len(faces) > 0:

 faces_output = Faces(faces=faces.tolist())

 else:

 faces_output = Faces(faces=[])

382 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

 await websocket.send_json(faces_output.dict())

@app.websocket("/face-detection")

async def face_detection(websocket: WebSocket):

 await websocket.accept()

 queue: asyncio.Queue = asyncio.Queue(maxsize=10)

 detect_task = asyncio.create_task(detect(websocket, queue))

 try:

 while True:

 await receive(websocket, queue)

 except WebSocketDisconnect:

 detect_task.cancel()

 await websocket.close()

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter14/websocket_face_
detection/app.py

As we said, we have two tasks: receive and detect. The first one is for reading raw
bytes from the WebSocket, while the second one is for performing the detection and
sending the result, exactly as we saw in the last section.

The key here is to use the asyncio.Queue object. This is a convenient structure
allowing us to queue some data in memory and retrieve it in a first in, first out (FIFO)
strategy. We are able to set a limit on the number of elements we store in the queue: this is
how we'll be able to limit the number of images we handle.

The receive function is receiving data and putting it at the end of the queue. When
working with Queue, we have two methods to put a new element in the queue: put and
put_nowait. If the queue is full, the first one will wait until there is room in the queue.
This is not what we want here: we want to drop images that we won't be able to handle in
time. With put_nowait, the QueueFull exception is raised if the queue is full. In this
case, we just pass and drop the data.

On the other hand, the detect function is pulling the first message from the queue
and runs its detection before sending the result. In the previous section, we used the
fromfile function to read the image data. Here, we directly have bytes data, so
frombuffer is more appropriate.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/app.py
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/app.py

Sending a stream of images from the browser in a WebSocket 383

The implementation of the WebSocket itself is a bit different from what we saw in
Chapter 8, Defining WebSockets for Two-Way Interactive Communication in FastAPI.
Indeed, we don't want the two tasks to be concurrent here: we want to accept new images
and continuously run detections on images as they come in.

This is why the detect function has its own infinite loop. By using create_task on this
function, we schedule it in the event loop so that it starts to handle the images in the queue.
Then, we have the regular WebSocket loop, which calls the receive function. In a sense,
we could say that that detect runs "in the background." Notice that we ensure that this
task is canceled when the WebSocket is closed so that the infinite loop is correctly stopped.

The rest of the implementation is similar to what we saw in the previous section. Our
backend is now ready! Let's now see how to use its power from a browser.

Sending a stream of images from the browser
in a WebSocket
In this section, we'll see how you can capture images from the webcam in the browser and
send it through a WebSocket. Since it mainly involves JavaScript code, it's admittedly a bit
beyond the scope of this book, but it's necessary to make the application work fully:

1.	 The first step is to enable a camera input in the browser, open the WebSocket
connection, pick a camera image, and send it through the WebSocket. Basically,
it'll work like this: thanks to the MediaDevices browser API, we'll be able to
list all the camera inputs available on the device. With this, we'll build a selection
form using which the user can select the camera they want to use. You can see the
concrete JavaScript implementation in the following code:

script.js

window.addEventListener('DOMContentLoaded', (event) => {

 const video = document.getElementById('video');

 const canvas = document.getElementById('canvas');

 const cameraSelect = document.getElementById('camera-
select');

 let socket;

 // List available cameras and fill select

 navigator.mediaDevices.enumerateDevices().then((devices) => {

 for (const device of devices) {

384 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

 if (device.kind === 'videoinput' && device.deviceId) {

 const deviceOption = document.createElement('option');

 deviceOption.value = device.deviceId;

 deviceOption.innerText = device.label;

 cameraSelect.appendChild(deviceOption);

 }

 }

 });

 // Start face detection on the selected camera on submit

 document.getElementById('form-connect').
addEventListener('submit', (event) => {

 event.preventDefault();

 // Close previous socket is there is one

 if (socket) {

 socket.close();

 }

 const deviceId = cameraSelect.selectedOptions[0].value;

 socket = startFaceDetection(video, canvas, deviceId);

 });

});

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter14/websocket_face_
detection/script.js

2.	 Once the user submits the form, the MediaDevices API will allow us to start
capturing video and display the output in an HTML <video> element. You can
read all the details about the MediaDevices API in the MDN documentation:
https://developer.mozilla.org/en-US/docs/Web/API/
MediaDevices.

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices

Sending a stream of images from the browser in a WebSocket 385

3.	 In parallel, we'll also establish a connection with the WebSocket. Once it's
established, we'll launch a repetitive task that captures an image from the video
input and sends it to the server. To do this, we have to use a <canvas> element,
an HTML tag dedicated to graphics drawing. It comes with a complete JavaScript
API so that we can programmatically draw images in it. There, we'll be able to draw
the current video image and convert it to valid JPEG bytes. If you want to know
more about this, MDN gives a very detailed tutorial on <canvas>: https://
developer.mozilla.org/en-US/docs/Web/API/Canvas_API/
Tutorial.

The concrete JavaScript implementation of this is as follows:

script.js

const startFaceDetection = (video, canvas, deviceId) => {

 const socket = new WebSocket('ws://localhost:8000/face-
detection');

 let intervalId;

 // Connection opened

 socket.addEventListener('open', function () {

 // Start reading video from device

 navigator.mediaDevices.getUserMedia({

 audio: false,

 video: {

 deviceId,

 width: { max: 640 },

 height: { max: 480 },

 },

 }).then(function (stream) {

 video.srcObject = stream;

 video.play().then(() => {

 // Adapt overlay canvas size to the video size

 canvas.width = video.videoWidth;

 canvas.height = video.videoHeight;

 // Send an image in the WebSocket every 160 ms

 intervalId = setInterval(() => {

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial

386 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

 // Create a virtual canvas to draw current video
image

 const canvas = document.createElement('canvas');

 const ctx = canvas.getContext('2d');

 canvas.width = video.videoWidth;

 canvas.height = video.videoHeight;

 ctx.drawImage(video, 0, 0);

 // Convert it to JPEG and send it to the WebSocket

 canvas.toBlob((blob) => socket.send(blob), 'image/
jpeg');

 }, IMAGE_INTERVAL_MS);

 });

 });

 });

 // Listen for messages

 socket.addEventListener('message', function (event) {

 drawFaceRectangles(video, canvas, JSON.parse(event.data));

 });

 // Stop the interval and video reading on close

 socket.addEventListener('close', function () {

 window.clearInterval(intervalId);

 video.pause();

 });

 return socket;

};

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter14/websocket_face_
detection/script.js

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js

Showing the face detection results in the browser 387

Notice that we limit the size of the video input to 640 by 480 pixels, so that we don't blow
up the server with too big images. Besides, we set the interval to run every 42 milliseconds
(the value is set in the IMAGE_INTERVAL_MS constant), which is roughly equivalent to
24 images per second.

As you can see, we also wire the event listener to handle the messages received from
the WebSocket. It calls the drawFaceRectangles function, which we'll detail in the
next section.

Showing the face detection results in the
browser
Now that we are able to send input images to the server, we have to show the result of the
detection in the browser. In a similar way to what we showed in the Getting started with
OpenCV section, we'll draw a green rectangle around the detected faces. Thus, we have to
find a way to take the rectangle coordinates sent by the server and draw them in the browser:

1.	 To do this, we'll once again use a <canvas> element. This time, it'll be visible to the
user and we'll draw the rectangles using it. The trick here is to use CSS positioning
so that this element overlays the video: this way, the rectangles will be shown right
on top of the video and the corresponding faces. You can see the HTML code here:

index.html

<body>

 <div class="container">

 <h1 class="my-3">Chapter 14 – Real time face detection</h1>

 <form id="form-connect">

 <div class="input-group mb-3">

 <select id="camera-select"></select>

 <button class="btn btn-success" type="submit"
id="button-start">Start</button>

 </div>

 </form>

 <div class="position-relative">

 <video id="video"></video>

 <canvas id="canvas" class="position-absolute top-0
start-0"></canvas>

 </div>

388 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

 </div>

 <script src="script.js"></script>

</body>

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter14/websocket_face_
detection/index.html

The CSS class we are using is utilities, provided by Bootstrap, a very common CSS
library. Basically, we set the canvas with absolute positioning and put it at the top
left so that it covers the video element.

2.	 The key now is to use the Canvas API to draw the rectangles according to the
received coordinates. This is the purpose of the drawFaceRectangles function,
which is shown in the next sample code block:

script.js

const drawFaceRectangles = (video, canvas, faces) => {

 const ctx = canvas.getContext('2d');

 ctx.width = video.videoWidth;

 ctx.height = video.videoHeight;

 ctx.beginPath();

 ctx.clearRect(0, 0, ctx.width, ctx.height);

 for (const [x, y, width, height] of faces.faces) {

 ctx.strokeStyle = "#49fb35";

 ctx.beginPath();

 ctx.rect(x, y, width, height);

 ctx.stroke();

 }

};

https://github.com/PacktPublishing/Building-Data-Science-
Applications-with-FastAPI/blob/main/chapter14/websocket_face_
detection/script.js

https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/index.html
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/index.html
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/index.html
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js
https://github.com/PacktPublishing/Building-Data-Science-Applications-with-FastAPI/blob/main/chapter14/websocket_face_detection/script.js

Showing the face detection results in the browser 389

With the canvas element, we can use a 2D context to draw things in the object.
Notice that we first clean everything to remove the rectangles from the previous
detection. Then, we simply have to loop through all the detected faces and draw a
rectangle with the given x, y, width, and height values.

3.	 Our system is now ready and it's time to give it a try! As in Chapter 8, Defining
WebSockets for Two-Way Interactive Communication in FastAPI, we'll start two
servers: one with Uvicorn to serve the FastAPI application and another that uses
the built-in Python server to serve the HTML and JavaScript files.

•	 In one terminal, launch the FastAPI application:

$ uvicorn chapter14.websocket_face_detection.app:app

•	 In another terminal, serve the HTML application with the built-in Python server:

$ python -m http.server --directory chapter14/websocket_
face_detection 9000

The HTML application is now ready on port 9000. You can access it in your
browser with the address http://localhost:9000. You'll see an interface
inviting you to choose the camera you want to use, as shown in Figure 14.2:

Figure 14.2 – Webcam selection for the face detection web application

http://localhost:9000

390 Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV

4.	 Select the webcam you wish to use and click on Start. The video output will show
up, face detection will start via the WebSocket and green rectangles will be drawn
around the detected faces. We show this in Figure 14.3:

Figure 14.3 – Running the face detection web application

It works! We brought the intelligence of our Python system right into the user's web
browser. This is just an example of what you could achieve using WebSockets and machine
learning algorithms, but this definitely enables you to create near real-time experiences for
your users.

Summary
In this chapter, we showed how WebSockets can help us bring a more interactive
experience to users. Thanks to OpenCV, we were able to quickly implement a face
detection system. Then, we integrated it into a WebSocket endpoint with the help of
FastAPI. Finally, by using a modern JavaScript API, we sent video input and displayed
algorithm results directly in the browser. All in all, a project like this might sound complex
to make at first, but we saw that powerful tools such as FastAPI enable us to get results in a
very short time and with very comprehensible source code.

Summary 391

This is the end of the book and our FastAPI journey together. We sincerely hope that you
liked it and that you learned a lot along the way. We covered many subjects, sometimes
just by scratching the surface, but you should now be ready to build your own projects
with FastAPI and serve up smart data science algorithms. Be sure to check out all the
external resources we mentioned along the way, as they will give you all the insights you
need for mastery.

In recent years, Python has gained a lot of popularity, especially in the data science
community, and FastAPI, even though it's still very young, is already a game-changer and
has seen an unprecedented adoption rate. It'll likely be at the heart of many data science
systems in the coming years... And if you've read this book, you'll probably be one of the
developers behind them. Cheers!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
http://customercare@packtpub.com
http://www.packt.com

394 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits
Tarek Amr
ISBN: 9781838826048

•	 Understand when to use supervised, unsupervised, or reinforcement learning
algorithms

•	 Find out how to collect and prepare your data for machine learning tasks
•	 Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff
•	 Apply supervised and unsupervised algorithms to overcome various machine

learning challenges
•	 Employ best practices for tuning your algorithm's hyper parameters
•	 Discover how to use neural networks for classification and regression
•	 Build, evaluate, and deploy your machine learning solutions to production

https://packt.link/9781838826048

Other Books You May Enjoy 395

Automated Machine Learning with AutoKeras

Luis Sobrecueva

ISBN: 9781800567641

•	 Set up a deep learning workstation with TensorFlow and AutoKeras
•	 Automate a machine learning pipeline with AutoKeras
•	 Create and implement image and text classifiers and regressors using AutoKeras
•	 Use AutoKeras to perform sentiment analysis of a text, classifying it as negative

or positive
•	 Leverage AutoKeras to classify documents by topics
•	 Make the most of AutoKeras by using its most powerful extensions

https://packt.link/9781800567641

396

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Building Data Science Applications with FastAPI, we’d love to hear
your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback
or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801079218
https://packt.link/r/1801079218

Index

Symbols
.env file

creating 297
using 296

A
Aerich

database migration system,
setting up 198-200

aggregating operations
reference link 324

Alembic
database migration system,

setting up 180-185
Amazon ECR

reference link 308
Amazon Elastic Container Service

reference link 308
Amazon RDS

reference link 303
Amazon Web Services (AWS) 254
Any, typing module 54, 55
API endpoint

creating 62-65
running, locally 62-65

application programming
interface (API) 132

arguments
accepting, with *args 30, 31
accepting, with **kwargs 30, 31

array broadcasting
reference link 324

arrays
adding 322-324
aggregating 324
comparing 325
creating, with NumPy 315-317
manipulating, with NumPy 320-322
multiplying 323, 324

async functions
versus standard functions 369-372

asynchronous generator 205
asynchronous I/O 56-59
Asynchronous Server Gateway

Interface (ASGI) 57
Azure App Service, CLI

reference link 301
Azure App Service, continuous

deployment/manual Git deployment
reference link 302

Azure App Service, web interface
reference link 301, 302

398 Index

Azure CLI
installation link 301

Azure Database for PostgreSQL
reference link 303

B
backpressure 381
best parameters

finding, with SVM 356, 357
Boolean logic

performing 23
break statement

in Python 29
broadcasting 323
browser

face detection results,
displaying 387-390

built-in types, Python
programming 17, 18

C
Callable class

type function signatures with 53, 54
Callable object 44
camel case 39
canvas tutorial

reference link 385
cast, typing module 54, 55
C language 314
class

defining 39, 40
classification problems 334
class inheritance

used, for creating model
variations 126-128

class methods
using, as dependencies 150-152

clustering 335
computer vision 374
concurrency

handling 247-250
Conda, package managers 298
conditional statements, in Python

elif statement 26
else statement 26
executing 25-27
if statement 26

containers 304
context manager 273
continue statement

in Python 29
control flow statements

in Python 25
coroutines 57
CORS

about 228-233
configuring, in FastAPI 228-233
protecting, against CSRF

attacks 227, 228
CPython 314
cross-origin HTTP requests 228
Cross-Site Request Forgery (CSRF) 228
cross-validation 336
cryptographic hash functions 216
CSRF attacks

double-submit cookies, implementing
to prevent 233-239

CSV data
exporting 331, 332
importing 331, 332

custom data validation
adding, with pydantic 129

Index 399

custom response
about 106, 107
building 102
file, serving 104, 105
redirection, making 104
response_class argument, using 102, 103

D
data

classifying, with Gaussian
Naive Bayes 347-350

classifying, with multinomial
Naive Bayes 350, 351

classifying, with Naive Bayes models 346
classifying, with Support Vector

Machines (SVM) 351
database

models and tables, creating 217, 218
passwords, hashing 218, 219
registration routes,

implementing 219, 220
user entity, storing 216
using, for testing 278-285

database access token
endpoints, securing with 225-227
implementing 220, 221
login endpoint, implementing 222-225

database migrations
managing 303

database migration system
setting up, with Aerich 198-200
setting up, with Alembic 180-185

database servers
adding 303

dataset, loading utilities
reference link 337

data structures, Python programming
dictionaries 21
lists 18, 19
sets 22
tuples 19-21
working with 18

decorator 62
deep copy 320
dependencies

404 error, raising 147, 148
class methods, using as 150-152
object, retrieving 147, 148
using, in WebSocket endpoints 250-252
using, on path decorator 153
using, on whole application 156, 157
using, on whole router 154, 155

dependency injection
about 55, 142
advantages 143

dependency return value 145
dictionary

about 21
object, converting into 132-134

DigitalOcean tutorial
reference link 310

dimensionality reduction 335
Docker

download and installation link 305
FastAPI application, deploying 304

Dockerfile
about 304
writing, for FastAPI application 304-306

Docker image
about 304
building 306
deploying 307-309
locally, running 307

400 Index

Docker, run
reference link 307

double submit 236
double-submit cookies

implementing, to prevent
CSRF attacks 233-239

dumping 360

E
email addresses

validating, with pydantic types 124-126
endpoints

securing, with access tokens 225-227
environment variables

setting 292-296
using 292-296

estimators
about 337
chaining, with pipelines 340-344

event loop 57

F
face detection

results, displaying in browser 387-390
face detection, on single image

implementing, with HTTP
endpoint 378-380

face detection, on stream of images
implementing, with WebSocket 381-383

FastAPI
about 7, 142
CORS, configuring in 228-233
security dependencies 212-216
used, for creating WebSocket 243-247

FastAPI application
deploying, on serverless

platform 300-302
deploying, on traditional server 309
deploying, with Docker 304

features 334
field level

validation, applying at 129, 130
filter modifier 226
first in, first out (FIFO) 382
foreign key 163
four-space indentation 17
f-strings 16
function dependency

creating 143-146
using 144-146

functions
arguments, accepting with *args 30
arguments, accepting with **kwargs 30
defining 29, 30

G
Gaussian Naive Bayes

data, classifying with 347-350
gcloud CLI

reference link 301
generator

functions 37
in Python 36-39

generics 50
Google App Engine, CLI

reference link 302
Google App Engine, configuration file

reference link 301, 302
Google Artifact Registry

reference link 308

Index 401

Google Cloud Platform (GCP) 254
Google Cloud Run

reference link 308
Google Cloud SQL

reference link 303
Gunicorn

adding, as server process for
deployment 299, 300

reference link 309

H
Heroku

installation link 301
Heroku, CLI

reference link 302
Heroku, CLI/web interface

reference link 302
Heroku, configuration file

reference link 301
Heroku Postgres

reference link 303
hidden files

creating 297
holdout set 335
HTTP endpoint

implementing, to perform face
detection on single image 378-380

HTTP errors
raising 99-102

HTTPie command-line utility
installing 9-11

HTTPX
testing tools, setting up for

FastAPI 270-273
HyperText Markup Language

(HTML) 245
HyperText Transfer Protocol (HTTP) 124

I
indexing data

reference link 328
inheritance, object-oriented programming

logic, reusing with 45, 46
multiple inheritance 46-48
repetition, avoiding with 45, 46

input/output (I/O) 245
instance

creating, from sub-class object 135, 136
updating, with partial one 137, 138

International Organization for
Standardization (ISO) 116

iterator 26

J
JavaScript Object Notation

(JSON) 136, 257
Joblib

results, caching with 366-369
trained model, persisting with 360

join query 164
JSONResponse 102

K
kernel trick 351
keyword arguments 30

L
label 334
Linux server

FastAPI application, deploying on 309
list comprehensions

in Python 34-36

402 Index

lists 18, 19
login endpoint

implementing 222-225

M
machine learning (ML)

about 334
model validation 335, 336
supervised, versus unsupervised

learning 334, 335
magic methods, object-oriented

programming
__add__ operator 43
__call__ method 44, 45
__eq__ method 42, 43
__gt__ method 42, 43
__lt__ method 42, 43
__mul__ operator 43
__repr__ method 41, 42
__str__ method 41, 42
__sub__ operator 43
implementing 41

marker 266
masking 330
MediaDevices

reference link 384
message brokers 254
messages

broadcasting 253-259
Method Resolution Order (MRO) 47
Microsoft Azure Container Instances

reference link 308
Microsoft Azure Container Registry

reference link 308
mixins 47

model
creating, compatible with

MongoDB ID 201
defining, with pydantic 114
training 337-340
validating, with cross-

validation 344, 345
validating, with ML 335, 336

models, field types
defining, with pydantic 114

model variations
creating, with class inheritance 126-128

Motor, used for communicating
with MongoDB database

about 200
database, connecting to 202
documents, deleting 207, 208
documents, inserting 203, 204
documents, nesting 208-210
documents, retrieving 204-207
documents, updating 207, 208
models, creating compatible

with MongoDB ID 201
Mozilla Developer Network (MDN)

reference link 247
multi-dimensional data

pandas DataFrames, using for 329, 330
multinomial Naive Bayes

data, classifying with 350, 351
multiple inheritance 46-48
multiple WebSocket connections

handling 253-259
mypy

type checking 48
type hinting 48

Index 403

N
naïve 347
Naive Bayes models

data, classifying with 346
intuition 346

name collision 109
namespace package 33
newsgroups text dataset

reference link 341
NoSQL databases

about 162, 164, 165
selecting 165

NumPy
about 315
arrays, manipulating with 320-322
installing 315
using, to create arrays 315-317

NumPy arrays
considerations 320
elements, accessing 318

NumPy documentation
reference link 317

NumPy user guide
reference link 325

O
object

converting, into dictionary 132-134
object level

validation, applying at 130, 131
object-oriented programming

class, defining 39, 40
logic, reusing with inheritance 45, 46
magic methods, implementing 41
repetition, avoiding with

inheritance 45, 46

writing 39
one-dimensional data

pandas Series, using for 326-328
OpenCV

reference link 377
using 374-377

operators, Python programming
about 23
Boolean logic, performing 23
value, checking in data structure 24, 25
variables, checking 23, 24

P
pandas 326
pandas DataFrames

using, for multi-dimensional
data 328-330

pandas Series
using, for one-dimensional

data 326, 327
pandas user guide

reference link 332
parameterized dependency

creating 148
using 149, 150

parametrize marker
used, for generating tests 265-267

path decorator
dependencies, using on 153

path operation function 62
path operation parameters

used, for customizing response 88
path parameters

about 65-67
advanced validation rules 70-72
values, limiting 68-70

404 Index

PennState online course
reference link 350, 351

pipelines
about 340
estimators, chaining with 340-344

Pipenv, package managers 298
Poetry, package managers 298
pointer 24
POST endpoints

tests, writing for 276, 277
prediction

running, on ML model 337-340
prediction endpoint

implementing 363-366
preflight requests 231
pre-processors

chaining 340-344
primary key 163
projects

structuring, with multiple
routers 107-111

publish-subscribe (pub-sub) 254
push

in Docker jargon 308
pydantic

custom data validation, adding with 129
models, defining with 114

pydantic data models
default values 120-122
dynamic default values 123
field validation 122
optional fields 120-122
standard field types 114-119

pydantic objects
working with 132

pydantic parsing
validation, applying before 131, 132

pydantic types
used, for validating email

addresses 124-126
used, for validating URLs 124-126

pyenv
reference link 4
used, for installing Python

distribution 4-7
PyPi

URL 7
pytest

unit testing 263-265
Python 314
Python dependencies

managing 297-299
Python distribution

installing, with pyenv 4-7
Python modules

using 31-34
writing 31-34

Python packages
installing, with pip 8
using 31-34
writing 31-34

Python programming
about 14
break statement 29
built-in types 17, 18
continue statement 29
control flow statements 25
data structures 18
generator 36-39
indentation 16, 17
list comprehensions 34-36
scripts, running 14, 15
while loop statement 28

Python virtual environment
creating 7, 8

Index 405

Q
query parameters 72-74

R
Radial Basis Function (RBF) 354
RandomizedSearchCV

reference link 357
Redis

about 255
reference link 255

registries 304
regression problems 334
regular expression (regex) 122
relational databases

about 162-164
selecting 165

request body
about 74-77
multiple objects 77-79

request parameters
cookies 85-87
file uploads 79-84
form data 79-81
handling 65
headers 85-87
path parameters 65-67
query parameters 72-74
request body 74-77
request object 87

response
customizing, with path

operation parameters 88
response_class argument

using 102, 103

response, customizing with path
operation parameters

response model 90-94
status code 88-90

response model 90-94
response parameter

about 95
cookies, setting 96, 97
headers, setting 95, 96
status code, setting dynamically 97-99

REST API endpoints
tests, writing for 275

results
caching, with Joblib 366-369

routers
about 107
project, structuring with 107-109, 111

S
same-origin policy 228
scikit-learn

basics 337
estimators, chaining with

pipelines 340-344
models, training 337-340
model, validating with cross-

validation 344, 345
prediction, running 337-340
pre-processors, chaining 340-344
Support Vector Machines

(SVM), using 355, 356
Secure Sockets Layer/Transport Layer

Security (SSL/TLS) 243
security dependencies

in FastAPI 212-216

406 Index

serverless platform
FastAPI application, deploying 300-302

sets 22
singular body values 78
snake case 30
sockets 242
SQLAlchemy, used for communicating

with SQL database
about 166, 167
database, connecting to 169-171
database migration system, setting

up with Alembic 180-185
delete queries, making 175-177
insert queries, making 171, 172
relationships, adding 177-180
select queries, making 173-175
table schema, creating 168, 169
update queries, making 175-177

standard functions
versus async functions 369-372

Starlette
URL 65

static-type checkers 48
status code 88-90
stop words 342
stream of images

sending, from browser in
WebSocket 383-387

sub-arrays
accessing 319

sub-class object
instance, creating from 135, 136

supervised learning 334
Support Vector Machines (SVM)

about 351
best parameters, finding 356, 357
data, classifying with 351
intuition 352-354

using, in scikit-learn 355, 356
Support Vector Machines (SVM),

mathematical formulation
reference link 354

T
Term Frequency-Inverse Document

Frequency (TF-IDF) 342
testing

with database 278-285
testing tools

setting up, for FastAPI with
HTTPX 270-273

test logic
reusing, by creating fixtures 267-270

tests
generating, with parametrize 265-267
writing, for POST endpoints 276, 277
writing, for REST API endpoints 275
writing, for WebSocket

endpoints 286-289
TF-IDF term weighting

reference link 342
Tortoise ORM, used for communicating

with SQL database
about 186
database migration system, setting

up with Aerich 198-200
database models, creating 186-188
objects, creating 190
objects, deleting 193, 194
objects, filtering 191, 192
objects, retrieving 191, 192
objects, updating 193, 194
relationships, adding 194-197
Tortoise engine, setting up 188, 189

Index 407

trained model
dumping 360, 361
loading 362, 363
persisting, with Joblib 360

train_test_split function
reference link 339

tuples 19-21
two-way communication

principles, with WebSockets 242
type annotations 48
type checking

with mypy 48
type function signatures

with Callable 53, 54
type hinting

with mypy 48
type hinting, in Python

working with 48-50
typing module

about 50-53
Any 54, 55
cast 54, 55

U
Uniform Resource Identifiers (URIs) 243
Uniform Resource Locators (URLs)

about 247
validating, with pydantic types 124-126

unit testing
with pytest 263-265

unsupervised learning 334
user identifier (UID) 257
Uvicorn 8
Uvicorn documentation

reference link 299

V
validation

applying, at field level 129, 130
applying, at object level 130, 131
applying, before pydantic

parsing 131, 132
validators 129

W
Web Server Gateway Interface (WSGI) 56
WebSocket

about 242
creating, with FastAPI 243-247
implementing, to perform face detection

on stream of images 381-383
stream of images, sending

from browser 383-387
two-way communication, principles 242

WebSocket endpoints
tests, writing for 286-289

while loop statement
in Python 28

whitespace indentation 16
Windows Subsystem for Linux (WSL) 245
Windows terminal application

reference link 245
wss (WebSocket Secure) 243

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction to Python and FastAPI
	Chapter 1: Python Development Environment Setup
	Technical requirements
	Installing a Python distribution using pyenv
	Creating a Python virtual environment
	Installing Python packages with pip
	Installing the HTTPie command-line utility
	Summary

	Chapter 2: Python Programming Specificities
	Technical requirements
	Basics of Python programming
	Running Python scripts
	Indentation matters
	Working with built-in types
	Working with data structures – lists, tuples, dictionaries, and sets
	Performing Boolean logic and checking for existence
	Controlling the flow of a program
	Defining functions
	Writing and using packages and modules

	Operating over sequences – list comprehensions and generators
	List comprehensions
	Generators

	Writing object-oriented programs
	Defining a class
	Implementing magic methods
	Reusing logic and avoiding repetition with inheritance

	Type hinting and type checking with mypy
	Getting started
	The typing module
	Type function signatures with Callable
	Any and cast

	Asynchronous I/O
	Summary

	Chapter 3: Developing a RESTful API with FastAPI
	Technical requirements
	Creating the first endpoint and running it locally
	Handling request parameters
	Path parameters
	Query parameters
	The request body
	Form data and file uploads
	Headers and cookies
	The request object

	Customizing the response
	Path operation parameters
	The response parameter
	Raising HTTP errors
	Building a custom response

	Structuring a bigger project with multiple routers
	Summary

	Chapter 4: Managing Pydantic Data Models in FastAPI
	Technical requirements
	Defining models and their field types
with Pydantic
	Standard field types
	Optional fields and default values
	Field validation
	Validating email addresses and URLs with
Pydantic types

	Creating model variations with class inheritance
	Adding custom data validation with Pydantic
	Applying validation at a field level
	Applying validation at an object level
	Applying validation before Pydantic parsing

	Working with Pydantic objects
	Converting an object into a dictionary
	Creating an instance from a sub-class object
	Updating an instance with a partial one

	Summary

	Chapter 5: Dependency Injections in FastAPI
	Technical requirements
	What is dependency injection?
	Creating and using a function dependency
	Get an object or raise a 404 error

	Creating and using a parameterized dependency with a class
	Use class methods as dependencies

	Using dependencies at a path, router, and global level
	Use a dependency on a path decorator
	Use a dependency on a whole router
	Use a dependency on a whole application

	Summary

	Section 2:
Build and Deploy a Complete Web Backend with FastAPI
	Chapter 6: Databases and Asynchronous ORMs
	Technical requirements
	An overview of relational and NoSQL databases
	Relational databases
	NoSQL databases
	Which one should you choose?

	Communicating with a SQL database with SQLAlchemy
	Creating the table schema
	Connecting to a database
	Making insert queries
	Making select queries
	Making update and delete queries
	Adding relationships
	Setting up a database migration system with Alembic

	Communicating with a SQL database with Tortoise ORM
	Creating database models
	Setting up the Tortoise engine
	Creating objects
	Updating and deleting objects
	Adding relationships
	Setting up a database migration system with Aerich

	Communicating with a MongoDB database using Motor
	Creating models compatible with MongoDB ID
	Connecting to a database
	Inserting documents
	Getting documents
	Updating and deleting documents
	Nesting documents

	Summary

	Chapter 7: Managing Authentication and Security in FastAPI
	Technical requirements
	Security dependencies in FastAPI
	Storing a user and their password securely in a database
	Creating models and tables
	Hashing passwords
	Implementing registration routes

	Retrieving a user and generating an access token
	Implementing a database access token
	Implementing a login endpoint

	Securing endpoints with access tokens
	Configuring CORS and protecting against CSRF attacks
	Understanding CORS and configuring it in FastAPI
	Implementing double-submit cookies to prevent
CSRF attacks

	Summary

	Chapter 8: Defining WebSockets for
Two-Way Interactive Communication in FastAPI
	Technical requirements
	Understanding the principles of two-way communication with WebSockets
	Creating a WebSocket with FastAPI
	Handling concurrency
	Using dependencies

	Handling multiple WebSocket connections and broadcasting messages
	Summary

	Chapter 9: Testing an API Asynchronously with pytest and HTTPX
	Technical requirements
	Introduction to unit testing with pytest
	Generating tests with parametrize
	Reusing test logic by creating fixtures

	Setting up testing tools for FastAPI with HTTPX
	Writing tests for REST API endpoints
	Writing tests for POST endpoints
	Testing with a database

	Writing tests for WebSocket endpoints
	Summary

	Chapter 10: Deploying a
FastAPI Project
	Technical requirements
	Setting and using environment variables
	Using a .env file

	Managing Python dependencies
	Adding Gunicorn as a server process for deployment

	Deploying a FastAPI application on a serverless platform
	Adding database servers

	Deploying a FastAPI application with Docker
	Writing a Dockerfile
	Building a Docker image
	Running a Docker image locally
	Deploying a Docker image

	Deploying a FastAPI application on a traditional server
	Summary

	Section 3:
Build a Data Science API with Python and FastAPI
	Chapter 11: Introduction to NumPy and pandas
	Technical requirements
	Getting started with NumPy
	Creating arrays
	Accessing elements and sub-arrays

	Manipulating arrays with NumPy – computation, aggregations, comparisons
	Adding and multiplicating arrays
	Aggregating arrays – sum, min, max, mean…
	Comparing arrays

	Getting started with pandas
	Using pandas Series for one-dimensional data
	Using pandas DataFrames for multi-dimensional data
	Importing and exporting CSV data

	Summary

	Chapter 12: Training Machine Learning Models with scikit-learn
	Technical requirements
	What is machine learning?
	Supervised versus unsupervised learning
	Model validation

	Basics of scikit-learn
	Training models and predicting
	Chaining pre-processors and estimators with pipelines
	Validating the model with cross-validation

	Classifying data with Naive Bayes models
	Intuition
	Classifying data with Gaussian Naive Bayes
	Classifying data with Multinomial Naive Bayes

	Classifying data with support vector machines
	Intuition
	Using SVM in scikit-learn
	Finding the best parameters

	Summary

	Chapter 13: Creating an Efficient Prediction API Endpoint with FastAPI
	Technical requirements
	Persisting a trained model with Joblib
	Dumping a trained model
	Loading a dumped model

	Implementing an efficient prediction endpoint
	Caching results with Joblib
	Choosing between standard or async functions

	Summary

	Chapter 14: Implement a Real-Time Face Detection System Using WebSockets with FastAPI and OpenCV
	Technical requirements
	Getting started with OpenCV
	Implementing an HTTP endpoint to perform face detection on a single image
	Implementing a WebSocket to perform face detection on a stream of images
	Sending a stream of images from the browser in a WebSocket
	Showing the face detection results in the browser
	Summary

	Other Books You May Enjoy
	Index

