
Building Single
Page Applications
in .NET Core 3

Jumpstart Coding Using
Blazor and C#
—
Michele Aponte

Building Single Page
Applications in

.NET Core 3
Jumpstart Coding Using

Blazor and C#

Michele Aponte

Building Single Page Applications in .NET Core 3: Jumpstart Coding
Using Blazor and C#

ISBN-13 (pbk): 978-1-4842-5746-3		 ISBN-13 (electronic): 978-1-4842-5747-0
https://doi.org/10.1007/978-1-4842-5747-0

Copyright © 2020 by Michele Aponte

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendons
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC, and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484257463.� For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Michele Aponte
Torre del Greco (NA), Italy

https://doi.org/10.1007/978-1-4842-5747-0

To my son, Francesco Paolo: I hope that one day you will
read this book and be as proud of me as I am of you,

especially every time you smile when you catch my eye.

v

Chapter 1: ��The Case for Blazor��1

Why You Fear JavaScript��2

Code Nightmares���3

Mitigate the Problem with TypeScript��5

Why You Need a JavaScript Framework��6

You Can Have Your Cake and Eat It Too with Blazor���7

Your First Blazor Application��9

What You Need to Get Started��9

Getting Started���10

Summary���16

Chapter 2: ��Blazor Server vs. Blazor WebAssembly�����������������������������19

How the Countdown Application Works���19

Running the Countdown Application in the Browser��23

WebAssembly Revolution���28

Which Blazor to Choose���30

Summary���31

Table of Contents

About the Author���vii

Acknowledgments��ix

Introduction��xi

vi

Chapter 3: ��Create Your Single-Page Application���������������������������������33

Everything Is a Component��34

Component Tree��35

Component Size���35

Reusability, Customization, and Independence��36

Component Logic��38

Creating the Application Structure���38

The Main Menu Component��42

Page Navigation with Blazor���47

Managing CRUD Operations���52

Creating a CRUD Service��55

Implementing CRUD Services��60

Where to Place the Component Code���64

JavaScript Interoperability���66

Summary���70

Chapter 4: ��Build Your Reusable Blazor Library������������������������������������73

Creating a Component Library���74

Creating a Templated Component��78

Creating a Generic Component��80

Creating Custom Input Components��83

Summary���88

Chapter 5: ��Deploy Your Application���91

Deploying a Blazor Server App���91

Deploying a Blazor WebAssembly App���97

Summary���99

�Index��101

Table of ContentsTable of Contents

vii

About the Author

Michele Aponte is a programmer who has worked with Java, .NET, and

JavaScript at software and IT consulting companies in his native Italy

since 1993. Combining his training, consulting, and development skills,

in 2013 Michele founded Blexin to help customers migrate older software

and systems to new technologies to improve their businesses. Passionate

about programming, Michele embraces sharing with the community.

He founded DotNetCampania, a Microsoft User Group in 2008, and

has organized many regional conferences. He is also the founder of

Blazor Developer Italiani, the Italian developer group about the Blazor

framework. Recognized as a Microsoft MVP, he often presents on Microsoft

and JavaScript topics at tech conferences throughout Italy.

ix

Acknowledgments

Writing a book is hard work that requires a lot of time and inevitably

involves the lives of those closest to the author. I want to thank my life

partner, Raffaella, for her support for this project and her patience with me.

I also want to thank my old friend, whose name is Raffaella as well, for the

help she gave me in revising my English.

A special thanks also goes to all the employees of Blexin, my company,

who are the best team one could have and with whom I can experiment

every day with the technologies described in this book.

Finally, many thanks to the fantastic Apress team that supported me

during this project.

xi

Introduction

Blazor has garnered a great deal of enthusiasm since its initial release. I’ve

followed the framework from the beginning, and when teaching any new

technology, I use a practical approach. This book looks at the needs of real

applications and answers all the questions you might have when learning

how to use Blazor.

Specifically, in Chapter 1, I focus on the success of this framework and

how it solves one of the problems most felt by Microsoft programmers:

using JavaScript. Blazor allows you to use .NET directly in the browser,

using open standards so as not to repeat the mistakes of the past. In my

opinion, however, it is important to understand how Blazor works beyond

the tools made available by the development environment, so I focus on

the code in this book. I start with a simple example, without using the

templates made available by Microsoft, to highlight how it works.

In Chapter 2, you will find a detailed comparison between the

two versions of Blazor for web development: Blazor Server and Blazor

WebAssembly. Using the example from the first chapter, I compare the

two versions by highlighting what is going on behind the scenes and how

WebAssembly is revolutionizing the world of front-end development. I

explain how to choose a version based your requirements because they

both have pros and cons and must be contextualized in your environment/

situation.

In Chapter 3, I cover all the concepts necessary to create a single-page

application, starting from scratch and tackling some issues concerning

the decomposition of the interface into components. In this chapter, you

will learn how to create pages and navigate between them, you will see

how to create forms for data entry, and you will learn how to integrate the

xii

front end with the back-end, differentiating the approach between the

two versions of the framework but standardizing their use thanks to the

dependency injection of ASP.NET Core. Here you will discover that the

framework allows you to invoke JavaScript functions from .NET and to

invoke .NET methods from JavaScript functions.

In Chapter 4, I explain how to create libraries of reusable components,

addressing how to generalize components thanks to the framework’s

ability to use .NET Generics and content projection. What may seem

like more advanced aspects are actually necessary to avoid reinventing

the wheel on each page of your application; this also allows you to start

creating your own Blazor component library.

In Chapter 5, I cover application deployment, using both versions of

the framework. It’s important to know where your application will run,

since scalability problems must be addressed and will impact how you

write the application.

You can find the code for the first two chapters of the book in the

countdown and countdown-wasm folders of the code download; you can use

the two versions to see the differences between Blazor Server and Blazor

WebAssembly within the same small application. The code for the third

and fourth chapters, where you learn to create a small article manager, is

available for both versions of the framework in eight pieces that follow the

flow of the chapters.

•	 The application structure

•	 Pages and routing

•	 Components and their use in pages

•	 Back-end integration and shared library

•	 JavaScript interoperability

IntroductionIntroduction

xiii

•	 Separation of the code into different files

•	 Blazor Library

•	 Custom input component

You can copy and execute the code that accompanies the book, but

I suggest you write it from scratch by following the instructions in the

chapters. That’s the best way to learn Blazor!

IntroductionIntroduction

1© Michele Aponte 2020
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_1

CHAPTER 1

The Case for Blazor
During the Web 2.0 revolution, we had our first opportunity to port

desktop applications to the Web. Thanks to the Ajax technology, which

allowed us to do asynchronous calls to the server for the first time, we no

longer had to suffer through a page reload every time the user updated the

interface. We could finally get to the core of and resolve the main problems

of desktop application development.

With a complete server-side application, we no longer need to install

anything because we use the application through a browser, simplifying

the release of the updates and controlling the current version used by our

clients.

Unfortunately, all that glitters is not gold! If the user interface is

entirely built on the server side, moving the application to the server has

two distinct disadvantages. First, we must always be online to contact the

server, and second, all the computational effort for the presentation layer

passes from the customer’s computer to the server.

To solve these problems, we need to move the user interface

construction to the client. But if the application runs in a browser, we need

to write a substantial part of the code in JavaScript, and if you are a .NET

developer, this task has probably given you nightmares. If it has not, in

this chapter we’ll explore why it should with a simple example that would

frighten anyone coming from a strongly typed language.

Microsoft provided developers with a solution to these problems

via a front-end technology called Silverlight, together with a simplified

https://doi.org/10.1007/978-1-4842-5747-0_1#ESM

2

Windows Communication Foundation (WCF) back-end called Rich

Internet Application (RIA) services, that allowed us to use the .NET

Framework in the browser with the installation of a plug-in. Many

companies invested in this technology, but a few years later, Microsoft

decided to abandon the project, making those who today want to

approach Blazor somewhat gun-shy.

But Blazor is different. Blazor is based on standard technologies, not

Microsoft technologies. You don’t need to install anything on your client,

because the framework provides you with everything you need to use .NET

Core in the browser, taking advantage of what is already there. If you are

a Microsoft web developer and do not want to spend your time learning

JavaScript frameworks, Blazor is the solution for you. I have helped many

companies to adopt it successfully, and it has a low learning curve and

allows you to reuse your .NET Core knowledge. In this chapter, we’ll work

to overcome your fear of JavaScript and get you on your way to creating

your first Blazor application.

�Why You Fear JavaScript
Why do I, as Microsoft developer, try to avoid JavaScript? Well, there

are a few good reasons, but the driving one is the dynamic nature of the

language with its runtime type checking and some other peculiarities that

we will take a look at soon. Another important reason is the Microsoft

approach to web development, which has always discouraged developers

from using JavaScript.

With ASP.NET Web Forms, the approach was to drag and drop controls

on the form, set their properties, and write code in event handlers. The

Web Forms engine generated the HTML and JavaScript for you. Only

with ASP.NET MVC do developers finally have control over their HTML

and JavaScript, by using jQuery and its plugins for the main application

development activities such as validation. It is also possible to use HTML

Chapter 1 The Case for Blazor

3

helpers and data annotations with ASP.NET MVC to generate the correct

configuration for the jQuery plugin (jQuery Unobtrusive Validation).

The jQuery library can help you with simple tasks such as DOM

manipulation and asynchronous calls to the back-end, but moving the

user interface construction onto the client means writing the entire

front-end in JavaScript with all the problems of maintenance and

productivity that the language can bring with it. Let’s see why.

�Code Nightmares
In all my JavaScript courses for .NET developers, I like to start the lessons

by creating an example.js file and writing the code shown in Listing 1-1.

This shows some JavaScript features that will surely impress a C# or Visual

Basic developer and immediately clarifies the difficulties of a language so

different from those .NET developers are used to using.

Listing 1-1.  Some of the JavaScript Problems Summarized in a

Single Script

function computes1() {

 a = 10;

}

function computes2() {

 a = 'hello'

}

computes1();

computes2();

console.log(a);

Without executing the code, what is the result? Are you scared? If you

are not, you should be, because this code works, and the result is hello.

That means the variable a cannot be declared anywhere, its scope is global,

Chapter 1 The Case for Blazor

4

and its type can change without any problems from number to string. In

the computes2 function, I omitted the semicolon because it is not required

in JavaScript.

The language is case sensitive, so fullname and fullName are

different variables. If you cannot declare a variable and you fail to write a

variable name, the engine creates another global variable for you, with an

incredible loss of time in your debug sessions.

Note  In JavaScript you can force the engine to check that variables
are declared with the "use strict"; directive (I see the smiles of
Visual Basic programmers), but it only comes in ECMAScript 5, so
some old browser will ignore it.

If you are a competent programmer, you always declare your variables.

In JavaScript you use the var keyword to do that, but let’s look at the code

of Listing 1-2. What’s wrong?

Listing 1-2.  Some JavaScript Peculiarity for a .NET Developer

function computes() {

 var a = 10;

 if(a == '10') {

 var b = 'ok';

 }

 console.log(b);

}

computes();

The execution result of the code is ok. Are you confused? The if

statement is true because in JavaScript the == operator executes the type

coercion between operands, converting the value of one operand to the

type of another. If you convert the value of the variable a from the number

Chapter 1 The Case for Blazor

5

10 to the string ‘10’, the result of the condition is true. If you do not want to

allow this conversion, you can use the === operator.

The most interesting thing is that the b variable is declared in the if

block, so you could imagine that console.log(b) returns an error both if

condition is true and if it is false. Unfortunately, in JavaScript, the scope of

a declared variable is always at the function level, not at the block level, so

the b variable exists outside the if block.

Whether the if condition is false, which is the value of b? The

assignment of the ok string will be not executed, so its value will be

undefined. That is not null, but undefined, which is a possible value of a

JavaScript variable that represents the state of declared but not initialized.

I wish I could see your face right now!

Note  In ECMAScript 6 you can use the keyword let instead of var
to declare a variable with block scope, but if your browser does not
support it, an error will be generated.

�Mitigate the Problem with TypeScript
Another problem with JavaScript is the adoption of the newest standard by

browsers. For example, with ECMAScript 6 (ES6), we have class support,

the let keyword, arrow functions, and some other improvements that can

help to write more maintainable code, but some older browsers do not

support ES6. This same problem will continue with the next versions, so

we need a solution that permits us not to go crazy.

TypeScript is the response from Microsoft to this problem: it

introduces a transpiler that translates the code written in a new language

(TypeScript) to a target JavaScript standard.

Chapter 1 The Case for Blazor

6

Note  I sometimes use JavaScript standard instead of the term
ECMAScript because many developers do not know the history of
JavaScript. If you are interested in exploring the history, take a few
moments to learn about it from the legendary Douglas Crockford
in his “Crockford on JavaScript” series. (If you don’t know who he
is, take a break to learn more: https://www.youtube.com/
watch?v=RO1Wnu-xKoY.)

TypeScript is a superset of JavaScript that adds features to the

language such as typing support and the ability to use all the constructs

in any version of JavaScript, improving both the maintenance and the

productivity of the application.

In short, you can write TypeScript code in a syntax that is similar to C#,

with support for the current and next versions of JavaScript, and compile

it (transpile is the correct term) in JavaScript code. In the end, it is always

JavaScript, with all the limits that we have already talked about, but with

TypeScript, you have a tool that checks the types of your variables and

converts the code to a configured JavaScript standard while applying all

the recommended best practices. (This conversion process is technically

called transpiling, and the TypeScript compiler is called the transpiler.)

�Why You Need a JavaScript Framework
TypeScript is a great help, and frameworks such as Angular and libraries

such as React have adopted it to shorten the code refactoring process.

However, think about writing your whole client with it: that would be like

writing your application in C# without the .NET Framework. OK, maybe

the comparison is a bit strong, but the concept is close to reality.

Chapter 1 The Case for Blazor

https://www.youtube.com/watch?v=RO1Wnu-xKoY
https://www.youtube.com/watch?v=RO1Wnu-xKoY

7

For this reason, frameworks like Angular were born. They offer you

everything you need to build your client using JavaScript. Angular provides

you with libraries to manage forms, to call a REST API back-end, to organize

your application into a manageable structure, and to provide a dependency

injection tool to improve testability and separation of concerns.

To improve the user experience, it is often necessary to create a

single-page application to allow navigation within your application

without actually navigating between physically separate pages. For this

purpose, these frameworks provide a routing engine, which dynamically

controls the navigation among different pages; the routing engine

manipulates the DOM of your single page on the fly, while also updating

the browser history.

The negative aspect of these solutions is their complexity, and in some

cases the performance provided. Moreover, if you have some view models

or data transfer objects (DTOs) provided by the API, you need to replicate

them in TypeScript and keep them aligned. If your back-end changes, no

compiler warns you that a change has happened, because you have two

separate projects with two different technologies. Luckily, if your back-end

is written in .NET Core, now you have Blazor, an attractive alternative!

�You Can Have Your Cake and Eat It Too
with Blazor
Microsoft released the release-to-manufacturing (RTM) version of

Blazor with .NET Core 3, a new front-end framework that solves all the

problems previously mentioned. Thanks to it, you can use C# and the .NET

Core framework to write the front-end of your application, using all the

technologies you already know if you are a Microsoft web developer.

You can use Razor, HTML, and C# to define the user interface and use

anything you want for the rest of the application. Blazor lets you run the

front-end directly in the browser, providing all the tools you need to create

a single-page application.

Chapter 1 The Case for Blazor

8

Blazor was created in 2017 as a personal project of Steve Sanderson,

who presented a preview of Blazor based on DotNetAnywhere, a .NET

Intermediate Language (IL) interpreter, at NDC Oslo (https://www.

youtube.com/watch?v=MiLAE6HMr10&feature=youtu.be&t=31m45s). After

this presentation, Blazor was added to the ASP.NET GitHub repository

as an experimental project, but the enthusiasm of the community

convinced Microsoft to move the project to the ASP.NET team, replacing

DotNetAnywhere with Mono, which is the most famous open source

platform based on the .NET Framework (https://www.mono-project.com/).

With the .NET Core 3 release, Blazor has become part of the

framework, with an ambitious roadmap. As you can see in Figure 1-1,

at the moment you can create the front-end of a web application with

Blazor, but the idea is to eventually be able to build desktop and mobile

applications with it, going through a progressive web app (PWA) approach

as an intermediate step.

Blazor Server is the version that ships with .NET Core 3, and it allows

you to prerender the HTML of your application, execute the C# code on

the server side, and push the user interface changes to the page through

SignalR. Blazor WebAssembly is available from May 2020, and it executes

the C# code directly in the browser. You can use Blazor WebAssembly with

.NET Core 3.1.300 or later.

Blazor Hybrid will be a native .NET renderer to Electron and WebView,

and it will be a native app that works online and offline. Electron

(electronjs.org) is a popular open source project to create cross-platform

Figure 1-1.  Blazor roadmap

Chapter 1 The Case for Blazor

https://www.youtube.com/watch?v=MiLAE6HMr10&feature=youtu.be&t=31m45s
https://www.youtube.com/watch?v=MiLAE6HMr10&feature=youtu.be&t=31m45s
https://www.mono-project.com/
http://electronjs.org

9

desktop applications using web technologies. As an example, Visual Studio

Code is based on Electron. Blazor Native, on the other hand, will have the

same programming model but without HTML rendering. In this book, we

talk about Blazor Server and Blazor WebAssembly because they are the only

confirmed projects with precise dates of release, but Microsoft has long-

term plans for this technology, so there’s no time like the present to learn it.

�Your First Blazor Application
“When it comes to new frameworks, I believe in a practical approach!”

Alastor Moody spoke of the dark arts in Harry Potter and the Goblet

of Fire, and for me, it is the same. We will start with a simple application

to get into the framework flow, and we’ll use the minimum code that we

need. Our first step will be to install all the necessary tools.

�What You Need to Get Started
Blazor is based on .NET Core 3, but you can use your favorite operating

system to follow the examples in this book (and on its GitHub repo). If you

use Visual Studio, you are tied to Microsoft Windows. The development

environment is important in a real development process, but for teaching

purposes, I generally choose tools that are available for all operating

systems supported by .NET Core.

The first step is to download and install .NET Core 3.1, from https://

dotnet.microsoft.com/download. This release contains both Blazor

Server, already available for production environments, and Blazor

WebAssembly, which has been released in preview.

For a development environment, you can download Visual Studio Code,

the free and cross-platform code editor from Microsoft. You can get it

https://code.visualstudio.com/.

Chapter 1 The Case for Blazor

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

10

�Getting Started
Now that we are set up with the right tools, we are ready to get started

with our first Blazor application. We will use the .NET CLI, the command-

line interface provided with .NET Core that allows us to create, build,

and execute a .NET Core application. Microsoft provides some templates

to start using Blazor, but I find it is educational to start from zero, both

to learn how it is different from a classical .NET Core application and

to learn how Blazor works. In our case, we need to create an empty

web application. To do this, open the terminal window and execute the

command dotnet new web -o countdown.

The .NET Core CLI creates the countdown folder, with all the starter

code for a new application. Open the folder in Visual Studio Code to

see the project structure. If you are already familiar with .NET Core,

you will have noticed that this is the base structure of a web application

(Figure 1-2).

Figure 1-2.  Structure of a .NET Core 3.1 web project

Chapter 1 The Case for Blazor

11

In Blazor Server, the server-side construction of the user interface is

based on Razor Pages, an alternative approach provided by Microsoft to

the MVC pattern. It is based on the concept of pages instead of controllers

and views, and its goal is to be more productive and provide immediate

results. In the Startup.cs file, we need to load the configuration for Razor

Pages and Blazor Server, as shown in Listing 1-3.

Listing 1-3.  Startup Configuration of a Blazor Server Application

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

}

In the Configure() method, we need to add support for static files, the

endpoints for the Blazor Server Hub, and the fallback for the page. Look at

Listing 1-4.

Listing 1-4.  Blazor Server Endpoints Configuration

public void Configure(IApplicationBuilder app,

IWebHostEnvironment env)

{

 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapBlazorHub();

 endpoints.MapFallbackToPage("/_Host");

 });

}

Chapter 1 The Case for Blazor

12

The word Hub in endpoint.MapBlazorHub() should be familiar if

you already know how SignalR works, but we will go into more detail in

Chapter 2. The line endpoints.MapFallbackToPage("/_Host") sets the

page to navigate to if the specified resource is not found and also sets the

default page for our application. We need to create a file called _Host.

cshtml in a folder named Pages. The folder Pages is required by default,

because the Razor Pages engine searches for pages in this location.

The _Host.cshtml file contains the base HTML of the application and

the code for rendering our first Blazor component (Listing 1-5).

Listing 1-5.  Blazor Server Host Page

@page "/"

@namespace countdown.Pages

<!DOCTYPE html>

<html lang="en">

<head>

 <title>Countdown App</title>

</head>

<body>

 @(await Html.RenderComponentAsync<Countdown>(

 RenderMode.ServerPrerendered))

 <script src="_framework/blazor.server.js">

 </script>

</body>

</html>

Blazor uses the same component concept as all modern UI

frameworks, in which a set of pieces, called Blazor components, composes

the user interface like in a puzzle. A Blazor component is, therefore, a

reusable piece of your user interface that can contain both HTML (with its

C# code) and other Blazor components.

Chapter 1 The Case for Blazor

13

I will talk about components in forthcoming chapters; for

now, think of them as reusable pieces of your user interface. The

RenderComponentAsync() method renders the component indicated in

its generic parameter (Countdown in our case) with a server prerendered

modality. This method of rendering a component is a peculiarity of Blazor

Server and is not used, for example, in Blazor WebAssembly; we will talk

about the differences in depth in Chapter 2.

The script _framework/blazor.server.js loads the JavaScript code of

Blazor that permits the communication with the server. Note that to permit

the loading of the script, we need to invoke the app.UseStaticFiles()

method in the Startup class (see Listing 1-4).

It’s time to create our first Blazor component! Let’s create a file named

Countdown.razor in the root folder. Our goal is to create a component

that implements a simple countdown from 10 to 0 when the user clicks a

Start button. Let’s start with an intermediate step in which we define the

user interface and initialize the countdown when someone clicks the Start

button. See Listing 1-6.

Listing 1-6.  Countdown Razor Component Start Code

@using Microsoft.AspNetCore.Components.Web

<h1>Countdown</h1>

<p>@count</p>

<button @onclick="startCountdown">Start</button>

@code {

 private int count = 0;

 private void startCountdown()

 {

 count = 10;

 }

}

Chapter 1 The Case for Blazor

14

The @page directive indicates the path where this component

responds, and the using statement loads the elements of the Blazor

framework. The markup defines your interface: a title, a paragraph, and

a button. It is simple HTML with some Razor instructions. The @count

instruction writes the value of the variable count. The framework updates

the value in the paragraph for you when it changes. When the user clicks

the Start button, the startCountdown() method is called thanks to the

@onclick="startCountdown" statement.

The @code block allows you to define the C# code of the component.

A Razor file is a C# class behind the scenes, so you can create attributes

and methods to manage the status of your component. In Listing 1-6 we

set the attribute count to the value 10 when the startCountdown() method

is invoked. To implement a countdown, we need to add a timer that

decreases the count to 0. Let’s change the @code block as in Listing 1-7.

Listing 1-7.  Countdown Razor Component Code

@code {

 private int count = 0;

 private void startCountdown()

 {

 count = 10;

 Timer timer = new Timer(1000);

 timer.Elapsed += (source, e) => {

 count--;

 if(count == 0) timer.Stop();

 };

 timer.Start();

 }

}

Chapter 1 The Case for Blazor

15

We created a simple Timer object that executes the callback subscribed

to the Elapsed event every second (you need to add the instruction @using

System.Timers at the top of the page to use the Timer class). It’s simple,

but it does not work because the code in the callback is executed in a

separate thread, and when the variable count decreases, the change is not

detected by the Blazor framework.

We can solve the problem by manually alerting the framework that

the component state has been modified, calling the StateHasChanged()

method. But this method must be invoked from the same thread of the

user interface, and then we need to use the classical InvokeAsync()

method. See Listing 1-8.

Listing 1-8.  Countdown Razor Component Code Fixed

private void startCountdown()

{

 count = 10;

 Timer timer = new Timer(1000);

 timer.Elapsed += (source, e) => {

 count--;

 InvokeAsync(() => StateHasChanged());

 if(count == 0) timer.Stop();

 };

 timer.Start();

}

You can see the result in Figure 1-3.

Chapter 1 The Case for Blazor

16

�Summary
In this first chapter, I talked about why Blazor is a viable solution for .NET

developers who need to create a modern web application with a rich user

interface without taking the time to learn the JavaScript language and

frameworks.

Figure 1-3.  Our first Blazor Server app at work

Chapter 1 The Case for Blazor

17

You also learned that the first version of Blazor was released with .NET

Core 3 and that a library ecosystem and complex use cases are not yet

available but are forthcoming. In addition, you learned that Microsoft’s

vision for this technology is long-term, and the company is paying great

attention to the use of web standards rather than proprietary technologies.

In the next chapter, I will cover how Blazor works internally and the

main differences between Blazor Server and Blazor WebAssembly so you

know which to pick for your needs.

Chapter 1 The Case for Blazor

19© Michele Aponte 2020
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_2

CHAPTER 2

Blazor Server vs.
Blazor WebAssembly
As I always say, there is not one tool that does everything but instead

different tools for different requirements. A good programmer chooses

his tools solely according to the requirements. You have to remember

that requirements can be functional and nonfunctional, and often

nonfunctional requirements are more important than functional ones for

the success of an application.

You might think that Microsoft released Blazor Server before Blazor

WebAssembly just because the latter was not ready yet; however, as you

will see in this chapter, Blazor Server and Blazor WebAssembly solve the

same problem with different approaches. You must choose which one will

work best for you depending on your requirements.

�How the Countdown Application Works
In Chapter 1, we created a sample application with Blazor Server that

counts down from 10 to 0 when the user clicks a Start button. The code is

simple if you know .NET, but how does it work behind the scenes?

Let’s run the application and open it in your favorite browser. I use

Google Chrome, but as you probably know, the new versions of Edge

https://doi.org/10.1007/978-1-4842-5747-0_2#ESM

20

use Chromium, the same engine as Chrome, so you can use Edge if you

prefer it. Open the browser developer tools and go to the Network panel

(Figure 2-1).

The HTML is rendered on the server side, and the script blazor.

server.js is downloaded and executed in the browser. The script starts

the connection with the SignalR Hubs API and opens a WebSocket from

the server to the client.

SignalR is a Microsoft library that allows data to be pushed from

the server to the client using the best-performing channel available.

It is popular in the Microsoft ecosystem because it solves the problem

of updating the client when something changes on the server, without

having to rely on the classic JavaScript polling that periodically calls

the server to check for changes to show in the interface. From the

developer’s point of view, it is sufficient to define a class that extends

the base Hub class, from which it is possible to invoke a JavaScript

Figure 2-1.  Blazor Server application client downloads

Chapter 2 Blazor Server vs. Blazor WebAssembly

21

callback in the client page. The library selects for you the best technique

to implement the communication.

When the page loading is complete, the client library starts the

negotiation with the server (the negotiate?negotiatedVersion=1 call

in Figure 2-1) to choose the best type of communication. If available,

the first choice is the use of WebSocket, a standard protocol (RFC 6455,

standardized for web browsers by the W3C) that provides a full-duplex

communication channel over a single TCP communication. A WebSocket

is the best choice in terms of performance but requires the support of

both the browser and the application server. Usually, this is not a problem

because all modern browsers support WebSocket, and looking at Microsoft

solutions for web hosting, WebSocket is supported starting from Windows

Server 2008 R2 and Windows 7; in addition, it is available on all the

Windows Azure hosting services for web applications.

If the client and the server cannot start a WebSocket connection, the

library downgrades to Server-Sent Events techniques. As with WebSocket,

a Server-Sent Events communication pushes data from the server to

the client without polling, but in this case, the communication is one

way. After a first HTTP response of type text/event-stream, the server

can send data that the client can receive with a simple callback on the

EventSource object (Listing 2-1).

Listing 2-1.  The JavaScript Callback to receive data in Server-Sent

Events Communication

const eventSource = new EventSource('url');

eventSource.onmessage = (e) => {

 [...]

};

If Server-Sent Events is also unavailable, SignalR downgrades to

long polling communication, an optimized variant of the type of polling

where the client sends requests to the server to check for changes.

Chapter 2 Blazor Server vs. Blazor WebAssembly

22

In the simple type of polling, if you send requests periodically, for

example, every five seconds, you can have a five-second delay on the

update, and if there are no changes, your requests consume resources

without results. By contrast, long polling tries to mitigate these problems

by leaving a request suspended and pending until a change occurs.

When the client finally receives a response or the connection is lost for a

network error, it immediately makes a new request.

Blazor Server uses SignalR to push the update of the user interface to

the client. In Figure 2-1, you can see the opened WebSocket (_blazor?id=

tUNimLBwWGmBUSy3qHFgfQ). If you click the WS tab of the Network panel, as

in Figure 2-2, you can see the data exchanged in detail.

As you can see in Figure 2-2, when the user clicks the button, a

message is sent to the server (up arrow) that executes the request and

sends to the browser the changes to be applied to the browser DOM (down

arrow). The next messages are caused by the timer that every second

Figure 2-2.  Countdown application BlazorHub WebSocket

Chapter 2 Blazor Server vs. Blazor WebAssembly

23

updates the counter. The countdown timer is a server thread that updates

the count variable (Listing 1-8), and when the Blazor engine detects a

change, it updates the client interface through SignalR.

Note  Normally, the Blazor engine automatically detects
the changes. In Listing 1-8 we had to explicitly call the
StateHasChanged() method only because the change does not
occur in the thread in which Blazor performs the change detection.

�Running the Countdown Application
in the Browser
With Blazor WebAssembly, all the application user interface code runs

in the browser, without interaction with the server. You will call the

server only if you need to use a web API to retrieve or save data, but the

presentation will run on the client side. Let’s see how it is possible.

To use Blazor WebAssembly, you only need to install .NET Core 3.1.300

or later. You can use a ready-to-run template by Microsoft without

installing any templates, but if the system did not found them, you can

run the command in Listing 2-2 and creating a sample project with the

command dotnet new blazorwasm.

Listing 2-2.  .NET CLI Blazor Project Template Installation

Command

dotnet new -i Microsoft.AspNetCore.Components.WebAssembly.

Templates::3.2.0

However, to understand how the Blazor Server application is different

from the WebAssembly version, I prefer to start from the same starting point

used in Chapter 1 and then execute the command dotnet new web -o

Chapter 2 Blazor Server vs. Blazor WebAssembly

24

countdown-wasm. Open the countdown.csproj file to see the basic project

configuration for a web application (Listing 2-3).

Listing 2-3.  .NET Core Web Application Project File

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

<TargetFramework>netcoreapp3.1</TargetFramework>

 </PropertyGroup>

</Project>

The first key concept you need to understand is that the result of

a Blazor WebAssembly build is not a classic .NET web application.

Instead, it is a set of files that the browser will download and execute

locally. The web server, Kestrel in our case, is just a way to expose this

set of files to the browser. The countdown.csproj file must be changed

as shown in Listing 2-4.

Listing 2-4.  .NET CLI Blazor Project Template Installation

Command

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>netstandard2.1</TargetFramework>

 <RazorLangVersion>3.0</RazorLangVersion>

 </PropertyGroup>

 <ItemGroup>

 �<PackageReference Include="Microsoft.AspNetCore.Components.

WebAssembly" Version="3.2.0" />

 �<PackageReference Include="Microsoft.AspNetCore.Components.

WebAssembly.Build" Version="3.2.0" PrivateAssets="all" />

Chapter 2 Blazor Server vs. Blazor WebAssembly

25

 �<PackageReference Include="Microsoft.AspNetCore.Components.

WebAssembly.DevServer" Version="3.2.0" PrivateAssets="all" />

 </ItemGroup>

</Project>

The first difference you have to note is the change of the

TargetFramework value in netstandard2.1; this allows the build of the

project with the correct dependencies. We also need to set the language

version for Razor (RazorLangVersion) to version 3.0 to allow the build of

Razor components. Finally, with the ItemGroup element, we declare all

the dependencies for the build and execution of the Blazor WebAssembly

engine.

Now open the Program.cs file and delete the static

CreateHostBuilder() method, because the framework provides us with a

simple API to start Kestrel directly in the Main method, like in Listing 2-5.

Listing 2-5.  Blazor WebAssembly Host Builder

public static async Task Main(string[] args)

{

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<Countdown>("countdown");

 await builder.Build().RunAsync();

}

As you can see, you need only three rows of code to configure the

hosting of a WebAssembly application, create a WebAssemblyHostBuilder

with the default parameters, set the Countdown component as the Root

component, and start listening for HTTP requests in the application. You

do not need the Configure class, so you can delete it.

Chapter 2 Blazor Server vs. Blazor WebAssembly

26

The file Countdown.razor is the same as the Blazor Server version, and

you need to enter a copy in the root folder. However, we also need to render

the Blazor component on the client side without the page _Host.cshtml.

To do this, we can add a wwwroot folder to the project and create

an index.html file. The index file (Listing 2-6) is a classic HTML5 start

page, but in the body block we use the Countdown component as an XML

element. During page parsing, the browser ignores the <countdown>

element because it is not a valid HTML5 element, but after loading the

blazor.webassembly.js script, the Blazor component is recognized and

executed.

Listing 2-6.  The index.html File That Hosts Our Blazor Component

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width" />

 <title>Countdown</title>

</head>

<body>

 <countdown>Loading...</countdown>

 <script src="_framework/blazor.webassembly.js"></script>

</body>

</html>

The Blazor component element is called countdown because in the
Main() method we have specified the “countdown” string as a
parameter for the RootComponent.Add<T>() method (Listing 2-4).

Chapter 2 Blazor Server vs. Blazor WebAssembly

27

We are ready to run the application: execute the command dotnet run

in the project folder and open the address localhost:5000 in the browser

with the Developer tools active on the Network tab (Figure 2-3).

The first impact is really impressive, although seeing the DLLs

downloaded in the browser can be confusing and bring up some bad

memories (can you say Silverlight?). In this case, you have not installed

any plug-in, so how does this work? The files highlighted in Figure 2-3 are

the key. Thanks to them, the browser can execute the .NET code of the

DLLs using the WebAssembly porting of the Mono framework. Specifically,

the countdown-wasm.dll file contains our code compiled in Intermediate

Language (IL) executed by Mono in the browser with the dotnet.wasm and

dotnet.js files. The application uses various .NET DLLs also downloaded

Figure 2-3.  Countdown Blazor WebAssembly application

Chapter 2 Blazor Server vs. Blazor WebAssembly

28

in the browser, including Blazor, that interact with the environment

thanks to the blazor.webassembly.js script. All the DLLs libraries and

the runtime components are cached in the browser, so they will not be

downloaded in the next execution of the application.

�WebAssembly Revolution
In April 2015, a W3C Community Group was formed to work on a new

standard called WebAssembly, with the aim of overcoming the limitations

of JavaScript and allowing the use of other languages in browsers. In June

2015 there was the first public announcement of the standard, but we

had to wait more than a year for a first preview (October 2016) after the

definition of the core features in March 2016.

The group included the major browser vendors, unified by the need

to allow application development with advanced performance, such as

games, video and audio editing and streaming applications, and virtual

and augmented reality applications. In August 2017, the Community

Group became the official W3C WebAssembly Working Group and in

February 2018 released the WebAssembly specification draft.

To understand what WebAssembly is and why we can consider it a

revolution in web development, let’s clarify how JavaScript works in the

browser. JavaScript code is interpreted in the browser by a sort of virtual

machine called the JavaScript runtime, in which it can interact with the

browser through specific APIs (the DOM, WebSocket, Web Storage, etc.).

WebAssembly is placed in the same JavaScript runtime (Figure 2-4), which

allows it to interact with the same browser APIs and even with JavaScript.

Chapter 2 Blazor Server vs. Blazor WebAssembly

29

The main difference is that the JavaScript code is interpreted by the

JavaScript runtime, while the WebAssembly code is directly executed

at near-native speed, since it is compiled in a WASM binary format that

is close to the specification of the runtime. Furthermore, with the same

code, the size of the compiled WASM code is obviously smaller than the

corresponding JavaScript.

You can write WebAssembly code by yourself or use a high-level

language like C++ or C # to generate the WASM code, but this new

standard was designed to work with JavaScript, so you can call a JavaScript

script from a WebAssembly function or invoke a WebAssembly function

from a JavaScript script. This interaction can be useful in a hybrid scenario

and is a powerful tool that offers you the best of both worlds.

You do not need to install any plug-in to use WebAssembly, because it

is supported natively by the browser. Like all W3C standards, the support

for WebAssembly is guaranteed in most of the latest browser versions (but

not in all).

Figure 2-4.  JavaScript and WebAssembly in the browser

Chapter 2 Blazor Server vs. Blazor WebAssembly

30

In Figure 2-5, you can see the support for the WebAssembly standard

from the major browsers on the market (www.caniuse.com).

�Which Blazor to Choose
The question now is, which version of Blazor is the best for your

application? What criteria should you use when choosing between Blazor

Server and Blazor WebAssembly?

When we compare loading time, Blazor Server is faster than

WebAssembly because it runs on the server side, and therefore the

download size is smaller. By contrast, a Blazor WebAssembly application

runs completely in the browser, and it provides a full single-page

application user experience against a heavier initial load.

If your application is completely executed on the client side, you can

support an offline scenario, because it is not necessary to call the server for

all user interface updates. On the other hand, if you have to store sensitive

Figure 2-5.  WebAssembly browser support

Chapter 2 Blazor Server vs. Blazor WebAssembly

http://www.caniuse.com

31

information, a server application allows you to store it more securely since

the user does not have direct access to the data.

Finally, browser support for WebAssembly may be a reason to choose

Blazor Server: there are still many applications that need to be run on

Internet Explorer, for example, where the support for the new standard is

not available.

Do we have to choose now? As you can see, only the configuration

part of our application changed between Blazor Server and Blazor

WebAssembly. There are other differences in a larger application, but you

can control them using some design patterns, which allow you to switch

from the server version to the WASM version with minimal impact. Read

on to find out how.

�Summary
In this chapter, we analyzed the main differences between Blazor Server

and Blazor WebAssembly so you have all the information to choose the

correct version of the framework based on your requirements. In the next

chapter, we will get to the heart of the framework, discovering all the tools

that Blazor provides so we can create a real single-page application using

the .NET Framework and C#.

Chapter 2 Blazor Server vs. Blazor WebAssembly

33© Michele Aponte 2020
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_3

CHAPTER 3

Create Your Single-
Page Application
Creating a single-page application is crucial if you want to develop an

application with a well-performing and productive user experience. But

it can be complicated and hard to maintain if you do not approach the

development correctly.

Blazor can support you by providing all the necessary tools to create

a successful application, as I describe in this chapter. Still, it is essential

when designing your application to use the appropriate patterns and

choose the correct tools in the right places.

Starting with the components, the core of all modern UI frameworks,

you must learn how to separate functionalities and make them reusable.

In a business application, where you collect data from the user, it is

important to provide a good experience for data entry that includes

validation and helps the user not to make errors.

In addition, to create a single-page application, you need a single

page. The navigation between the pages takes place with the routing

functionality that allows you to show a component based on user

interaction or at the end of an operation. You also need to communicate

with the back-end, using the HTTP protocol, and exchange information

with the front-end. Last but not least, you must manage the security in

your application, authenticating users and allowing them to do only

certain operations.

https://doi.org/10.1007/978-1-4842-5747-0_3#ESM

34

Finally, you cannot forget to create code that is maintainable,

testable, and straightforward. Using design patterns can help you, but

they can solve only generic problems, and you still have to adapt them

to your needs.

�Everything Is a Component
Everything in your user interface is a component. In the previous chapters,

you learned what a component is in Blazor, so now it is time to understand

their importance.

A component is a piece of your user interface. Imagine a typical

business application where you have a main menu, a footer, and the

central area where you show a table of items (Figure 3-1). How many

components do you see in it?

Figure 3-1.  Typical business application structure

Chapter 3 Create Your Single-Page Application

35

There are at least three main components: one for the main menu, one

for the footer, and one for the table. Do you agree? This number is probably

correct, but components in Blazor have a specific definition. A component

must have the following characteristics:

•	 They can be contained, or they can contain other

components.

•	 They can neither too big nor too small.

•	 They are reusable.

•	 They are customizable.

•	 They can be independent of other components.

•	 They must have logic.

�Component Tree
From the structure of the components and their relationships, we must be

able to create a tree of components with a root from which we extend the

structure into leaves. Then we need a root component that contains our

user interface. Blazor does not limit us to a single tree, and therefore to a

single root container, but it is a good idea to manage our application from

the point of view of the navigation.

Each component can contain other components, creating a parent-

child relationship between them. Since we have to create a tree, a

component cannot contain a child that is already its own parent. This

would create a circular dependency, which would create a stack overflow,

so it is not permitted.

�Component Size
The size of a component depends on its purpose, but it is easy to get it wrong.

Let’s take as an example the main menu of the application, which can be a

Chapter 3 Create Your Single-Page Application

36

component. What about the menu items? We could create a component for

a single menu item and use a set of them in the main menu component. If

your menu item has an icon, should it be a component? We could continue

like this down to a single character of each string in your interface.

Choosing the size of a component requires experience and a

good knowledge of the domain, but you can use some general rules

to start with. In software engineering, there is a rule called the single

responsibility principle. It is directly connected to the separation of

concerns and says that each element of a software system should perform

only one task, which means it must have only one responsibility. When

you think about your components, think about their responsibilities and

create a component for each responsibility. Most of the time, this will be

the right choice.

For example, take the list/details management aspect of an entity in

your domain. Creating a component for the list management and one

for the details management can be a good idea, but there may be cases

where the simplicity of the data, like an entity with only one identifier

and description, makes the use of two components an example of over-

engineering. Context is king always.

�Reusability, Customization, and Independence
Beyond the context, however, if you need to reuse a piece of the interface

in different use cases, you can be sure that it is a component. Returning

to the previous example, if there are other use cases in your application

where you need the details form of an entity, it is surely a component

separated from the list.

Imagine you have a list of articles and a list of article categories and

you need to create a new article in which the category is not yet present

in the list. To improve the user experience, you can show a button next to

the category field in the article form and use it to create a new category on

Chapter 3 Create Your Single-Page Application

37

the fly and choose it for the article. In this case, you can reuse the details

component of the category that is already used in managing the categories.

Perhaps it would be better to show the component in a modal window

instead of in the central area of the application. See Figure 3-2.

To allow this scenario, you need to make the component

independent of its container and make it customizable. Modal forms

generally have their owner title and buttons area, so it is necessary, for

example, to check the visibility of the title and buttons to manage it

differently in the two cases.

Being independent of the container also means controlling the

behaviors of the user interaction with the component, which means, in

the previous example, having the ability to do different actions when the

user clicks the buttons. If you are in the article categories details form,

after saving or clicking the Cancel button, you must return to the list of

categories; therefore, in the modal form, you need to close the window and

select the item created as a category for the current article.

Figure 3-2.  Reusing a component in different use cases

Chapter 3 Create Your Single-Page Application

38

�Component Logic
Creating a component requires the generation of a class instance, which

affects the performance of the application. Each component has its

own state that requires memory space, and the Blazor framework must

check each of the components for changes to update the state of the user

interface. So, if a component has no logic, it makes no sense that it is a

component.

For example, the footer component of our example probably contains

only one string with the copyright information or the version of the

application. You can show this information directly in the container

component instead of its own component, simplifying the structure and

saving resources.

�Creating the Application Structure
Following the instructions provided in the previous chapters, we can create

the basic structure of a single-page application project from scratch. You

can apply all the concepts discussed in this chapter in both Blazor Server

and Blazor WebAssembly, but we will use Blazor WebAssembly in this book;

I will point out the differences from the Server version when relevant.

Suppose you want to create an article manager, a single-page

application to manage the articles of a blog, and want to simplify the

domain to manage only the articles and its categories. Let’s start by

creating a web application with the .NET CLI, calling it article-manager

(dotnet new web -o article-manager-wasm), and referencing the

needed packages, as illustrated in Chapter 2.

To simplify the layout, you can use version 4.3 of the Bootstrap CSS

framework, referencing it by a CDN or downloading it into your project

(https://getbootstrap.com/docs/4.3/getting-started/download/).

If you prefer to have all the project dependencies offline, create a subfolder

Chapter 3 Create Your Single-Page Application

https://getbootstrap.com/docs/4.3/getting-started/download/

39

of the wwwroot folder named css and place in it the bootstrap.min.css

file and an empty file named site.css, where you can place the custom

CSS rules of the project.

While the project grows, it needs to import various namespaces that we

can centralize for the Razor components in a file named _Imports.razor

placed in the application’s root folder. This allows us not to repeat them in

each Razor file (Listing 3-1).

Listing 3-1.  The _Imports.razor File Content, with All the

Namespaces for the Project

@using System.Net.Http

@using Microsoft.AspNetCore.Components.Forms

@using Microsoft.AspNetCore.Components.Routing

@using Microsoft.AspNetCore.Components.Web

@using Microsoft.JSInterop

@using article_manager_wasm

We also need a container component, usually named App.razor, that

for now will contain a welcome message (Listing 3-2).

Listing 3-2.  The Container App.razor Component Code

<div class="container">

 <h2>Article Manager</h2>

 <p>Welcome to the article manager app.</p>

</div>

The single page index.html, placed in the wwwroot folder, references

the CSS files and the app component, as shown in Listing 3-3.

Chapter 3 Create Your Single-Page Application

40

Listing 3-3.  The index.html File Content

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width" />

 <title>article-manager</title>

 <base href="/" />

 <link href="css/bootstrap.min.css" rel="stylesheet" />

 <link href="css/site.css" rel="stylesheet" />

 </head>

 <body>

 <app>Loading...</app>

 <script src="_framework/blazor.webassembly.js"></script>

 </body>

</html>

You can see the project structure for both Blazor Server and Blazor

WebAssembly in Figure 3-3. The Blazor Server structure is slightly

different, as described in Chapter 2. The most important difference is

the index.html in the wwwroot folder on Blazor WebAssembly versus the

corresponding _Host.cshtml file in the Pages folder on Blazor Server. In

addition, for the Blazor WebAssembly project, I deleted the appsettings

files, because we do not need any server-side configuration in this kind of

project.

Chapter 3 Create Your Single-Page Application

41

In Figure 3-4, you can see the result of executing the project (dotnet

run in the CLI or F5 in Visual Studio), which is the same for both Blazor

Server and Blazor WebAssembly. The user result is the same, but with the

WebAssembly version, all the code runs in the browser. By contrast, for

the Blazor Server version, the back-end provides the HTML and keeps it

updated via SignalR.

We are now ready to compose the application by creating the right

components and hosting them, starting from the app container. To simplify

this first attempt to use the components and to understand the role of the

routing for the page navigation, we will not use the routing components

yet; we will add them after learning how to structure the user interface

from scratch.

Figure 3-3.  Project structure for Blazor WebAssembly and Blazor
Server

Chapter 3 Create Your Single-Page Application

42

�The Main Menu Component
The main menu of the application is an excellent candidate to be a

component: it contains a single functionality, its content depends on the

context and current user, and it can be reused in various scenarios and

applications. It is also a useful example to introduce the parametrization

of a component because you can specify the menu items and capture the

click on one of them.

Let’s create a Shared folder in the project root, which we can use for all

components shared with all sections of the application, and then create a

file named MainMenu.razor containing the markup in Listing 3-4 and the

code in Listing 3-5.

Listing 3-4.  The Markup of the Main Menu Component

<nav class="navbar navbar-expand-sm bg-primary navbar-dark">

 Article Manager

 <ul class="navbar-nav">

Figure 3-4.  The article manager application execution result

Chapter 3 Create Your Single-Page Application

43

 @foreach (var item in MenuItems)

 {

 <li class="nav-item @(item.Active ? "active" : null)">

 � OnMenuItemClick.

InvokeAsync(item)">@item.Caption

 }

</nav>

In this component, I use the navbar widget of bootstrap. The menu

items are in a public property named MenuItems and decorated with the

attribute [Parameter]. This attribute allows the container component to

pass a value for the property, leaving Blazor to keep track of any changes.

Listing 3-5.  The Code of the Main Menu component

@code {

 [Parameter]

 public EventCallback<MenuItem> OnMenuItemClick { get; set; }

 [Parameter]

 public MenuItem[] MenuItems { get; set; }

}

The property MenuItems is an array of a custom MenuItem class, which

contains, for now, two properties: Caption, a string with the label of the

menu item, and Active, a Boolean value that is true if the menu item is

the current item and that is false otherwise (Listing 3-6). Usually, I place

this kind of class in a folder named Models that represents the data model

of the user interface.

Chapter 3 Create Your Single-Page Application

44

Listing 3-6.  The Code of the Main Menu Component

public class MenuItem

{

 public string Caption { get; set; }

 public bool Active { get; set; }

}

We are using the MenuItems array in a foreach loop and using the

current element in the cycle to set the caption and the active class on the

 element. If the user clicks the item, we capture this event (@onclick

on the anchor element) and raise a custom event called OnMenuItemClick,

passing the clicked item as an argument. OnMenuItemClick is

another parameter of the MainMenu component, which is of type

EventCallback<MenuItem>, an event handler delegate provided by the

framework to simplify the definition of a custom event.

We are ready to use the MainMenu component in the App component,

as shown in Listing 3-7 and Listing 3-8. All the public properties

decorated with the attribute [Parameter] are visible on the MainMenu

component, and we can use them directly in the markup (Listing 3-7).

The App component and MainMenu components are in different folders,

which means they have different namespaces. To allow the visibility of

the MainMenu namespace to the App component, you need to add the

namespace in the _Imports.razor file.

Listing 3-7.  The Markup of the Main Menu Component in the App

Component

<MainMenu MenuItems="MenuItems" OnMenuItemClick="MenuItemClick" />

<div class="container mt-3">

 <h2>Article Manager</h2>

 <p>Welcome to the article manager app.</p>

</div>

Chapter 3 Create Your Single-Page Application

45

As an example, we have used an array of MenuItems initialized statically

in a private method called loadMenuItems(). Here, there is a personal

styling choice: I prefer to improve the code readability by using private

and public methods that separate each operation in the components, but

you are free to do this initialization inline with the declaration or the class

constructor.

Regarding the constructor, a component provides you with many

hooks to perform operations at various times of the component lifecycle.

One of these is the OnInitialized method that you can override to do

operations as soon as the component creation is complete. You can use

it instead of the constructor to reduce the impact on the component

creation time. It can be a useful optimization based on the complexity of

the initialization operations, because if you place the same operations

in the constructor, the component is created only at the end of them,

with a delay of the user interface visualization. You can learn more

about the component lifecycle hooks in the official documentation:

https://docs.microsoft.com/en-US/aspnet/core/blazor/

lifecycle?view=aspnetcore-3.1.

Listing 3-8.  The Code That Manages the Main Menu Component in

the App Component

@code {

 public MenuItem[] MenuItems { get; set; }

 protected override void OnInitialized()

 {

 this.loadMenuItems();

 }

 public void MenuItemClick(MenuItem item)

 {

 foreach (var menuItem in MenuItems)

 {

Chapter 3 Create Your Single-Page Application

https://docs.microsoft.com/en-US/aspnet/core/blazor/lifecycle?view=aspnetcore-3.1
https://docs.microsoft.com/en-US/aspnet/core/blazor/lifecycle?view=aspnetcore-3.1

46

 menuItem.Active = false;

 }

 item.Active = true;

 }

 private void loadMenuItems() {

 this.MenuItems = new MenuItem[] {

 new MenuItem()

 { Caption = "Article Categories", Active = true },

 new MenuItem()

 { Caption = "Articles", Active = false }

 };

 }

}

Note the method MenuItemClick(), called when the OnMenuItemClick

custom event is raised: the code sets the Active property of the MenuItems

array to false and also sets the Active property of the item clicked to

true. The change detection of Blazor notes this change and updates the

user interface, setting the active class on the item clicked. The fascinating

aspect is the way it executes the update: Blazor knows the state of the user

interface, so when the code wants to change it, the framework computes

the difference between the actual state and the new state and applies the

difference only to the DOM of the browser. This technique, also used by

many JavaScript frameworks, speeds up the update of the user interface

significantly.

In Figure 3-5, you can see the result of our work. Using the

OnMenuItemClick event, we can show or hide other components,

simulating the page navigation. By doing it this way, besides being too

laborious, we would also miss out on advanced navigation features, which

we can get for free by using the routing features made available by the

framework.

Chapter 3 Create Your Single-Page Application

47

�Page Navigation with Blazor
When creating a single-page application, the navigation between pages is

crucial. Blazor provides specific components for this purpose that manage

for us essential aspects of the routing, such as updating the browser

history, managing a page not being found, and updating the URL.

To introduce Blazor routing, I need to highlight the difference between

the components that are part of the page and the components that represent

a specific page of the application. Usually, in a Blazor application, there is

a folder called Pages that contains the components that are pages of the

application; meanwhile, all the other components are in a Shared folders.

Figure 3-5.  The main menu component in action

Chapter 3 Create Your Single-Page Application

48

Let’s create a Pages folder and create a file named Index.razor that

represents your home page. Move a piece of App.razor onto this page, as

shown in Listing 3-9.

Listing 3-9.  The Home Page Component

@page "/"

<h2>Article Manager</h2>

<p>Welcome to the article manager app</p>

From a syntactical point of view, the difference between a component

and a page is the directive @page, which creates the path/component pair,

called a route. You can think of the root as the URL for navigating to the page.

Now you can add two more pages in the Pages folder, Article.razor

and ArticleCategories.razor, with a simple title and the directive @page.

You can use the code in Listing 3-10, where the first two rows are for the file

Article.razor and the last two are for the file ArticleCategories.razor.

Listing 3-10.  The Article Category and Articles Pages

@page "/articles"

<h2>Articles</h2>

@page "/articlecategories"

<h2>Article Categories</h2>

Now you have three pages, and it is time to decide in which area

of your application you want to show a page when the user selects the

corresponding route. In the Shared folder, create a MainLayout.razor

component and put in it the code of Listing 3-11. MainLayout is not a page

but a simple component that extends a base component of the framework,

named LayoutComponentBase, that permits the router component to use

it as a layout template. We can decide where the framework places the

current page using the @Body placeholder, in the same way that you use it

in the _Layout.cshtml file of a classical ASP.NET MVC application.

Chapter 3 Create Your Single-Page Application

49

Listing 3-11.  The Main Layout Component Markup

@inherits LayoutComponentBase

<MainMenu MenuItems="MenuItems" />

<div class="container mt-3">

 @Body

</div>

We need to change the MenuItem class to add the Href property and to

indicate which path we can use for each menu item (Listing 3-12).

Listing 3-12.  The Main Layout Component Code

@code {

 public MenuItem[] MenuItems { get; set; }

 protected override void OnInitialized()

 {

 this.loadMenuItems();

 }

 private void loadMenuItems() {

 this.MenuItems = new MenuItem[] {

 new MenuItem()

{ Caption = "Article Categories", Href = "articlecategories" },

 new MenuItem()

{ Caption = "Articles", Href = "articles" }

 };

 }

}

As you can see, you no longer need the custom click event, because

the navigation and the active class management are responsibilities of the

framework. MainMenu now only has the parameter MenuItems, which is the

only thing you need.

Chapter 3 Create Your Single-Page Application

50

You can use the framework’s NavLink component in MainMenu

instead of the anchor. The main difference is the ability to use the Match

property. If you need to specify whether a menu item is the current one

(with the active class applied) when the route entirely matches the

current URL, you must use the value NavLinkMatch.All. If you need it to

match any prefix of the current URL, use the value NavLinkMatch.Prefix,

which is the default value. When using NavLink, you do not need the

property Active because the component sets the class on the generated

anchor automatically (Listing 3-13). Your App.razor component now

must contain the Router component, like in Listing 3-14, so when the

application starts, the router can control the application navigation.

Listing 3-13.  The MainMenu with the NavLink component

Article Manager

 @foreach (var item in MenuItems)

 {

 @item.Caption

 }

Listing 3-14.  The New App Component with the Router Component

Markup

<Router AppAssembly="@typeof(Program).Assembly">

 <Found Context="routeData">

 �<RouteView RouteData="@routeData" DefaultLayout=

"@typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

Chapter 3 Create Your Single-Page Application

51

The router inspects the current assembly (AppAssembly parameter) to

retrieve all the routes defined in the application using the @page directive.

If the router finds the requested route (Found element), it shows the

page passing the route data and the default layout (the MainLayout defined

previously); otherwise, it shows the layout with a message (NotFound

element). If you have experience using JavaScript frameworks, you will

appreciate this approach very much; the routing configuration is usually

more complicated. In Figure 3-6, you can see the results of the refactoring,

which include updating the URLs, updating the browser history, and

activating the correct menu item to navigate between the pages.

Figure 3-6.  The Blazor routing in action

Chapter 3 Create Your Single-Page Application

52

�Managing CRUD Operations
The base structure is ready, so it is time to implement the application

functionalities, such as the create, read, update, delete (CRUD) operations,

on the article categories. We can generalize the activities, but for now,

we’ll focus on the separation of concerns, particularly on the Blazor

components’ responsibilities.

We need to show the list of categories and allow the user to add,

modify, or delete a single item. Based on the requirements, we could have

one component for the list and one for the details, or we could have one

element for both operations. We already have a page component, so we

can use it to implement all the activities. Still, I prefer to have a substantial

difference between pages and UI components, implemented by following

this simple rule: a UI component accepts input parameters to obtain the

data to manage and raise events, with output parameters to notify the

actions. A page, instead, uses the UI components to implement page

functionalities and manage the flow of the operations.

For the CRUD operations in the article categories, we can have a

category list component that accepts the items to show and that raises

events when the user clicks the create, update, or delete button. We can

place this component in the article category page, where we can subscribe

to the event parameters to decide when to show a details component. A

details component is a form that allows the user to change the category

data, accepts an input parameter, and raises events when the user clicks

the Save or Cancel button. It is important that the UI components do

not perform any operations but notify the page component of the user

intentions.

Let’s change the previously created ArticleCategories.razor

to match Listing 3-15. You can see the two UI components, placed in

a folder called Components, managing the list and the details for the

article categories with their parameters. We show the list component

Chapter 3 Create Your Single-Page Application

53

if an attribute currentCategory is null; otherwise, we show the

ArticleCategory component that represents the category details.

Listing 3-15.  The Article Categories Page Component

@page "/articlecategories"

<h2>Article Categories</h2>

<div class="mt-3">

@if(currentCategory == null)

{

 <ArticleCategoriesList

 ArticleCategoryListItems="articleCategoryListItems"

 OnAddClick="AddCategory"

 OnEditClick="EditCategory"

 OnDeleteClick="DeleteCategory">

 </ArticleCategoriesList>

}

else

{

 <ArticleCategory

 Category="currentCategory"

 OnSaveClick="SaveCategory"

 OnCancelClick="ShowList">

 </ArticleCategory>

}

</div>

The ArticleCategoriesList component is a simple table created with

a foreach loop on the parameter ArticleCategoryListItems, like the

MainMenu, with three buttons connected to the OnAddClick, OnEditClick,

and OnDeleteClick events (Listing 3-16). Basing on these events, the

code sets a value for the currentCategory attribute to manage the

ArticleCategory component’s visibility.

Chapter 3 Create Your Single-Page Application

54

Listing 3-16.  The Article Categories List Component

<button class="btn btn-primary" @onclick="OnAddClick">Add

Category</button>

<table class="table mt-3">

 <thead>

 <tr>

 <th></th><th>Id</th><th>Name</th><th></th>

 </tr>

 </thead>

 <tbody>

 @foreach(var item in ArticleCategoryListItems)

 {

 <tr>

 <td>

 �<button class="btn btn-warning" @onclick="e =>

OnEditClick.InvokeAsync(item)"> Edit</button>

 </td>

 <td>@item.Id</td>

 <td>@item.Name</td>

 <td>

 �<button class="btn btn-danger" @onclick="e =>

OnDeleteClick.InvokeAsync(item)"> Delete</button>

 </td>

 </tr>

 }

 </tbody>

</table>

Chapter 3 Create Your Single-Page Application

55

�Creating a CRUD Service
Before describing how to implement these operations, we need to talk

about the single responsibility principle again. In this case, we do not

want to implement the data CRUD operations physically in the page

component. To understand the reason, you can move the data operations

somewhere else, remembering that a component is a piece of the user

interface and that a page is also a component.

The physical CRUD operations belong to the business layer, and

we are on the presentation layer. In our case, this distinction is crucial,

because if we use Blazor WebAssembly, we need to call an API to require

the operations, but if we use Blazor Server, we can have direct access to

the database context to execute the CRUD operations. The component

must not know anything about this, so we need to encapsulate the

operation invocation in a separate service class. We can abstract the

operations with a generic interface, like in Listing 3-17, using T for the list

item type and K for the detail item type. We should design the operation

to be asynchronous, using the .NET Task libraries (include the System.

Threading.Tasks namespace) to be sure that the operations do not lock

the current thread.

Listing 3-17.  The CRUD Definition Interface

using System.Threading.Tasks;

public interface ICRUDService<T, K>

{

 Task<T[]> GetList();

 Task<K> Get(int id);

 Task Create(K item);

 Task Update(K item);

 Task Delete(int id);

}

Chapter 3 Create Your Single-Page Application

56

You could have more implementations of this interface. For example,

you could have an implementation based on the HTTP client that

calls the corresponding REST APIs or an implementation that uses the

entity framework database context for the Blazor Server version of the

application. For testing purposes, you could also have an implementation

that uses an in-memory collection, by registering the correct

implementation for your case and using the native .NET Core dependency

injection support in the ConfigureServices() method of the .NET Core

Startup class (Listing 3-18).

Listing 3-18.  The CRUD Service Configuration for Article Categories

public void ConfigureServices(IServiceCollection services)

{

 �services.AddTransient <ICRUDService<ArticleCategoryListItem,

ArticleCategoryItem>, ArticleCategoriesService>();

}

You can use the registered implementation of the service directly in

the Blazor component, thanks to the new @inject directive introduced

with .NET Core. In the article categories page, you can add the @inject

instruction shown in Listing 3-19, where you specify the interface with the

correct parameter for your case.

Listing 3-19.  The CRUD Service Injection in the Page Component

@page "/articlecategories"

@inject ICRUDService<ArticleCategoryListItem,

ArticleCategoryItem> service

ArticleCategoryListItem and ArticleCategoryItem, placed in the

Model folder, define the data used in the list (Id and Name) and the detail

form (Id, Name, and Description). The ArticleCategoryItem class shows

Chapter 3 Create Your Single-Page Application

57

a powerful way to implement the data validation, already known by .NET

programmers: .NET data annotations (Listing 3-20).

Listing 3-20.  The Validation Rules Definition with .NET Data

Annotations

using System.ComponentModel.DataAnnotations;

public class ArticleCategoryItem

{

 public int Id { get; set; }

 [Required]

 [StringLength(50, ErrorMessage = "Name is too long.")]

 public string Name { get; set; }

 public string Description { get; set; }

}

Yes, you can use .NET data annotations with the Blazor framework

to implement form validation. Let’s see them in action by creating

the component ArticleCategory.razor in the Components folder to

manage the form details. In Listing 3-21, you can see the markup of this

new component that uses specific Blazor components to simplify the

management of a form.

Listing 3-21.  The Validation Rules Definition with .NET Data

Annotations

<EditForm Model="@Category" OnValidSubmit="@(e => OnSaveClick.

InvokeAsync(Category))">

 <DataAnnotationsValidator />

 <ValidationSummary />

 <div class="form-group">

 <label for="name">Name: </label>

Chapter 3 Create Your Single-Page Application

58

 �<InputText id="name" @bind-Value="Category.Name" class="form-

control" />

 <ValidationMessage For="@(() => Category.Name)" />

 </div>

 <div class="form-group">

 <label for="description">Description: </label>

 �<InputTextArea id="description" @bind-Value="Category.

Description" class="form-control" />

 </div>

 <button type="submit" class="btn btn-primary">Save</button>

 �<button type="button" class="btn btn-warning"

@onclick="OnCancelClick">Cancel</button>

</EditForm>

In Blazor, you can define a form in the EditForm component element,

for which you can set a model and subscribe to an event raised when the

user submits the form. If you subscribe to the OnValidSubmit event, your

code runs only when the form is valid, and the validation follows the rules

of the .NET data annotations of the specified model. To enable model

validation based on data annotations, you need to include the component

DataAnnotationsValidator in the form. The framework provides you

with the ValidationSummary component to show a summary of the failed

validations, along with the ValidationMessage component to show

the validation error of a specific field. The framework provides specific

components to help you show the correct input element and bind it with

the corresponding Model property using @bind-Value.

Let’s see how to manage the events of the components in the article

categories pages. In Listing 3-22, you can see an extract of the code that

manages the currentCategory attribute.

Chapter 3 Create Your Single-Page Application

59

Listing 3-22.  The Code of the Article Categories Page

protected override async Task OnInitializedAsync()

{

 await ShowList();

}

public async Task ShowList()

{

 this.articleCategoryListItems = await service.GetList();

 this.currentCategory = null;

}

public void AddCategory()

{

 this.currentCategory = new ArticleCategoryItem();

}

public async Task EditCategory(ArticleCategoryListItem item)

{

 this.currentCategory = await service.Get(item.Id);

}

The ShowList() method calls the service to obtain the list of categories

and set the currentCategory to null to show the list. The service methods

are asynchronous, so we need to use the async/await keywords and the

asynchronous version of the OnInitialized component hook.

When the user clicks the Add Category button or the Edit button, we

set the currentCategory attribute to a new object or to the requested item

to edit. In the solution provided with the book, you will find the rest of the

code that manages the save and delete events using a try { ... } catch

{ ... } block to show a possible error to the user. In Figure 3-7, you can

see the user interface in action.

Chapter 3 Create Your Single-Page Application

60

If you already know Microsoft web frameworks, all this information will

seem familiar to you. This is the real power of Blazor for .NET developers.

�Implementing CRUD Services
For testing purposes, I have created an in-memory implementation of the

CRUD services. In a real application, you would need to store information

in persistent storage, like a database. If you use Blazor Server, this is

an effortless task, because you can inject the Entity Framework data

context (or your preferred data access layer solution) in the CRUD service

implementation and use it to execute all the operations.

Figure 3-7.  The article category CRUD in action

Chapter 3 Create Your Single-Page Application

61

If you use Blazor WebAssembly, you need to call REST APIs to allow

the client to request the data storage. In this case, we have to create a

CRUD service implementation that uses HttpClient (Listing 3-23).

Listing 3-23.  The Code of the CRUD Service That Uses the

HttpClient

using System.Net.Http.Json;

using System.Net.Http;

public class ArticleCategoriesService:

 ICRUDService<ArticleCategoryListItem,

 ArticleCategoryItem>

{

 private readonly HttpClient httpClient;

 private string baseUrl = "http://localhost:5002";

 public ArticleCategoriesService(HttpClient httpClient)

 {

 this.httpClient = httpClient;

 }

 public Task<ArticleCategoryListItem[]> GetList()

 {

 return this.httpClient

 .GetFromJsonAsync<ArticleCategoryListItem[]>

 ($"{baseUrl}/api/articlecategories");

 }

 ...

}

To use HttpClient, we must add the System.Net.Http.Json NuGet

packages to our solution and add the System.Net.Http namespace to

our CRUD service implementation. The Blazor framework provides

some HttpClient extensions (the HttpClientJsonExtensions class

Chapter 3 Create Your Single-Page Application

62

in the System.Net.Http.Json namespace) that help to send and

receive .NET classes, converting them to JSON format. In Listing 3-23,

we can see GetFromJsonAsync, which receives from the API the

JSON array of the article categories and converts it to a .NET array of

ArticleCategoryListItem.

We also need to add HttpClient manually to the services because it is

no longer added for you by the framework. Then, in the Main method of the

Program class, use the AddTransient() method (Listing 3-24) to properly

configure the HTTP client.

Listing 3-24.  The Configuration of the HttpClient as a Dependency

Service

public static async Task Main(string[] args)

{

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("app");

 �builder.Services.AddTransient <ICRUDService<ArticleCategoryL

istItem, ArticleCategoryItem>, ArticleCategoriesService>();

 �builder.Services.AddTransient <ICRUDService<ArticleListItem,

ArticleItem>, ArticlesService>();

builder.Services.AddTransient<HttpClient>();

 await builder.Build().RunAsync();

}

If we move the Model classes in a separate DLL and share this library

with both the back-end and the front-end, the ASP.NET Core API on the

back-end and the HTTP Client on the front-end will execute all the work

for us, using JSON as the exchange format.

Chapter 3 Create Your Single-Page Application

63

I suppose you already know how to save an entity with Entity Framework

and how to create an API REST with .NET Core. In Listing 3-25, you can

see the corresponding code of the API, but you can find the complete

codebase used in these examples in the code provided with the book.

Listing 3-25.  The Code of the ASP.NET Core API Used in Listing 3-23

[ApiController]

[Route("api/[controller]")]

public class ArticleCategoriesController :

 ControllerBase

{

 private readonly ApplicationDbContext db;

 public ArticleCategoriesController(

 ApplicationDbContext db)

 { this.db = db; }

 [HttpGet]

 public IActionResult Get()

 {

 return Ok(this.db.ArticleCategories

 .Select(x => new ArticleCategoryListItem()

 {

 Id = x.Id, Name = x.Name

 }).ToList());

 }

 ...

}

The impressive aspect is that the components are agnostic about these

implementations. We need only to register the correct version of the CRUD

service in the .NET Core dependency injection engine.

Chapter 3 Create Your Single-Page Application

64

�Where to Place the Component Code
So far, we have seen the component code in the Razor file, using the @code

section. For small components, like our components here, this can be a

useful solution, but if you have enough code to handle and want to keep

the system separate from the markup, you can place the component code

in a different C# class.

For example, if you want to separate the code of the ArticleCategories

page component from its markup, you have two ways to do this. The first

way is to create a base class file with a name different from the page name,

but I advise you to use a convention that retains the link between them.

We can use, for example, ArticleCategoriesBase.cs, which contains a

class named ArticleCategoriesBase that extends the framework class

ComponentBase (Listing 3-26).

Listing 3-26.  The Class Containing the Article Categories Code

using Microsoft.AspNetCore.Components

public class ArticleCategoriesBase : ComponentBase

{

 ...

}

This class is now our base class for the Razor component, thanks to the

@inherits directive (Listing 3-27).

Listing 3-27.  The Component Markup Change to Inherit the Code

Class

@inherits ArticleCategoriesBase

@page "/articlecategories"

Chapter 3 Create Your Single-Page Application

65

Now we can move the content of the @code section in the

ArticleCategoriesBase class, with only two changes: the private

properties must be protected, and the injection of the CRUD service

happens with the Inject attribute on a specific property (Listing 3-28).

Listing 3-28.  The Changes You Must Apply to the Code When

Moving It into a Separate Class

public class ArticleCategoriesBase : ComponentBase

{

 protected ArticleCategoryListItem[] articleCategoryListItems;

 protected ArticleCategoryItem currentCategory;

 [Inject]

 �private ICRUDService<ArticleCategoryListItem,

ArticleCategoryItem> service { get; set; }

 ...

}

Note  You cannot use the constructor to inject dependencies in a
ComponentBase because the framework constructs the components
for you. At the moment, the framework needs a constructor without
parameters, so it provides the Inject attribute to solve the problem.

Another way to separate the code and markup of the component is to

create a partial class. If you explore the obj folder generated during the

build process, you will find a class for each component of your application.

This class, generated by the compiler, is a partial class, so another partial

class can be placed next to it. You can try this option with the Articles

page, remembering that all the partial classes in the .NET Framework must

have the same name (Listing 3-29) and you do not need to modify the

Chapter 3 Create Your Single-Page Application

66

visibility of the attributes used (at build time, partial classes with the same

name become the same class). When you use a partial class to separate

the code from the markup, it is common to name the file with the same

name of the page, adding the .cs extension at the end. In this case, the file

is named Article.razor.cs. Visual Studio uses this convention to show

this file as a child of the page, grouping the two files as the same element.

Visual Studio Code, instead, is not so smart.

Listing 3-29.  The Class That Contains the Articles Code

public partial class Articles

{

 �private ArticleListItem[] articleListItems = new

ArticleListItem[0];

 private ArticleItem currentArticle;

 private string error;

 [Inject]

 �private ICRUDService<ArticleListItem, ArticleItem> service {

get; set; }

}

In this case, you must add only the code for the injection of the CRUD

services and remove the @inject directive from the markup file.

�JavaScript Interoperability
Until there is a complete ecosystem that supports all the possible

functionality for an application, sooner or later you will need to invoke a

JavaScript function. You will probably also need to invoke a .NET function

from JavaScript. These scenarios are both supported in Blazor and resolve

all the main problems with legacy code integration for your application.

Chapter 3 Create Your Single-Page Application

67

To call a JavaScript function from Blazor, we must define it on the

browser window object. Adding the jQuery and Bootstrap JavaScript

libraries to the project, you can create a js folder in wwwroot and add the

references in the file. These libraries allow us to use the bootstrap widgets,

such as the Modal component (see the official documentation at https://

getbootstrap.com/docs/4.0/components/modal/).

Let’s add two JavaScript functions to the browser window object that

open and hide a bootstrap modal, as shown in Listing 3-30. To simplify

the example, I placed them in the index.html file, but in a real project you

could place the JavaScript functions in a separate file and link to it.

Listing 3-30.  JavaScript Functions to Show and Hide a Bootstrap

Modal

<script src="js/jquery.min.js"></script>

<script src="js/bootstrap.min.js"></script>

<script>

 window.showConfirmDelete = (id) => {

 $('#' + id).modal('show');

 };

 window.hideConfirmDelete = (id) => {

 $('#' + id).modal('hide');

 };

 </script>

Add the markup of a modal to the ArticleCategoriesList

component, and set the modal to require the delete confirmation from the

user (Listing 3-31).

Chapter 3 Create Your Single-Page Application

https://getbootstrap.com/docs/4.0/components/modal/
https://getbootstrap.com/docs/4.0/components/modal/

68

Listing 3-31.  Bootstrap Modal to Require Category Deletion

<div class="modal" id="deletecategorymodal">

 <div class="modal-dialog">

 <div class="modal-content">

 <div class="modal-header">

 <h4 class="modal-title">Delete Category</h4>

 �<button type="button" class="close" data-

dismiss="modal">×</button>

 </div>

 <div class="modal-body">

 Do you want to delete the category?

 </div>

 <div class="modal-footer">

 �<button type="button" class="btn btn-danger"

@onclick="OnYesClick">Yes</button>

 �<button type="button" class="btn btn-default"

data-dismiss="modal" >No</button>

 </div>

 </div>

 </div>

</div>

To call the JavaScript functions previously defined, you need to inject

the framework’s IJSRuntime interface in the component. You can do this

by adding the directive @inject IJSRuntime JSRuntime at the top of the

component definition. See Listing 3-32.

Chapter 3 Create Your Single-Page Application

69

Listing 3-32.  The Component Code That Calls the JavaScript

Functions

private ArticleCategoryListItem itemToDelete;

private async Task ShowConfirm(ArticleCategoryListItem item)

{

 this.itemToDelete = item;

 �await JSRuntime.InvokeVoidAsync ("showConfirmDelete",

"deletecategorymodal");

 }

 private async Task OnYesClick()

 {

 await OnDeleteClick.InvokeAsync (this.itemToDelete);

 �await JSRuntime.InvokeVoidAsync ("hideConfirmDelete",

"deletecategorymodal");

 }

The JSRuntime provides the method InvokeVoidAsync that we can use

to call the JavaScript function and pass it the right parameters.

If the user clicks the Yes button, we invoke the event to require the

category deletion and invoke the hideConfirmDelete JavaScript function.

In Figure 3-8, you can see the confirmation modal in action.

Chapter 3 Create Your Single-Page Application

70

�Summary
In this chapter, you learned how to build a single-page application with

Blazor to perform CRUD operations on business entities. You saw how to

generalize the code, using the .NET Core dependency injection to quickly

adapt everything to be used with both Blazor WebAssembly and Blazor

Figure 3-8.  The modal that confirms the deletion modal in action

Chapter 3 Create Your Single-Page Application

71

Server. You also learned how to integrate JavaScript into Blazor, how to

manage legacy scenarios, and how to take advantage of features that are

not yet available in Blazor.

Much of the code in this chapter was deliberately repetitive, and some

implementations are a little crude for educational reasons. Still, in the next

chapter, you will see how to optimize the code, making the components

even more generic, so that they can also be reused in different applications

by packaging them in libraries of components.

Chapter 3 Create Your Single-Page Application

73© Michele Aponte 2020
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_4

CHAPTER 4

Build Your Reusable
Blazor Library
Some components will be specific to your application, and others will not

be. Think about the table of two CRUD operations that you created for the

article-manager application in the previous chapter, or a Bootstrap modal

for your front-end; also, some form component can be specific or not, such

as an advanced select control or date picker.

In this chapter, I show you how to extract components from the project

to a reusable library so you can potentially use them in different projects.

Following this approach, your next project will start from a collection of

your own ready-to-use component libraries.

You can extract a component from a project to put it in a library, or you

can create a component directly in a library and use it in a project. In the

first case, you probably need to generalize the component; in the second

case, you need to design it outside of the specific use, profiting from the

parametrization and principles learned in the previous chapter. You can

also choose to create a component library to simplify the front-end. In a

large project, this helps you to divide the job among different members of a

team and to create a more maintainable project structure.

Many large companies and independent developers are creating

generic components to add to the Blazor ecosystem. You can choose their

libraries, creating a dependency on them, or you can create your own

https://doi.org/10.1007/978-1-4842-5747-0_4#ESM

74

libraries. There are pros and cons in both cases, but if you know how to

build a library, then you can decide whether to create one or pick a ready-

made one.

While extracting a component from a library, you will see some

advanced features of the Blazor framework that are available for both the

Server and WebAssembly version. Some of these features are useful but

could complicate your codebase. The rule is always the same: follow the

single responsibility principle and try to create value for your project and

customer.

�Creating a Component Library
The first step is to create a component library. The .NET CLI provides a

template to create a Razor class library, which is perfect for us: launch the

command dotnet new razorclasslib -o frontendlib in the root folder

of the article-manager project. The -o option specifies the output of the

command and creates a folder named frontendlib with the project inside

it. Now we can go inside the frontendlib folder and add the library to the

project with the dotnet add reference ../frontendlib command.

The razorclasslib template creates a sample component, with an

example of the JavaScript interoperability with Blazor, and a wwwroot folder

that contains static files. You do not need these files, so delete all of them

except for the wwwroot folder and the _Imports.razor file.

Let’s begin with the List component to generalize the entity list

visualization. Our goal is to reuse the interface that lists one entity (for

example, the article category) for each entity of your application. If you

analyze the code of ArticleCategoryList, you can see that there is a

simple HTML table with a fixed-column definition and a loop on an array

of ArticleCategoryListItem. For the columns, you could use a parameter

like a simple array of strings that contains the column headers; for the array,

you can use a .NET object or a .NET generic. Let’s start with a .NET object.

Chapter 4 Build Your Reusable Blazor Library

75

Create two folders, Components and Models, to contain the component

files and the model classes to support them. In the Models folder, create a

class to collect all the parameters for the List component, which simplifies

the use of the component and its evolution with the creation of a unique

parameter. In Listing 4-1, you can see an example of this class, named

ItemListModel, that contains a string with the name of the entity, a

collection of headers, and an array of objects.

Listing 4-1.  The List Component Model Class Definition

public class ItemListModel

{

 public string ItemName { get; set; }

 public string[] Headers { get; set; }

 public object[] Items { get; set; }

}

At this point, you can create a new component in the Components

folder, called ItemList.razor, in which you will copy the

ArticleCategoryList code and define a parameter of type ItemListModel

in place of the category array. Now, you need to edit the markup as in

Listing 4-2 to create the table headers based on the ItemListModel

headers, assuming that the collection is ordered based on the visualization

preferences.

Listing 4-2.  Extracting the List Component That Renders the Table

Headers

<table>

 <thead>

 <tr>

 <th></th>

 @foreach (var header in Model.Headers)

Chapter 4 Build Your Reusable Blazor Library

76

 {

 <th>@header</th>

 }

 <th></th>

 </tr>

 </thead>

Regarding the row, you can use .NET Reflection to inspect the object

type and retrieve the properties, from which you can extract the values

(Listing 4-3).

Listing 4-3.  Extracting the List Component That Renders the Table

Rows

<tbody>

 @foreach (var item in Model.Items)

 {

 <tr>

 �<td><button class="btn btn-warning" @onclick="e =>

OnEditClick.InvokeAsync(item)">Edit</button></td>

 @foreach(var property in item.GetType().GetProperties())

 {

 <td>@property.GetValue(item)</td>

 }

 �<td><button class="btn btn-danger" @onclick="e =>

ShowConfirm(item)">Delete</button></td>

 </tr>

 }

 </tbody>

</table>

In Chapter 3, I added the code to manage the user confirmation

during the delete operation, by using the Bootstrap modal and taking

Chapter 4 Build Your Reusable Blazor Library

77

advantage of the Blazor JavaScript interoperability functionality to

open and close the modal with the jQuery functions. You can do the

same in the component library: adding a JavaScript file in the wwwroot

folder of the library and naming it, for example, frontendlib.js. You

can copy the showConfirmDelete and hideConfirmDelete functions

from the index.html file (the library compilation adds this file in the

DLL). You can reference this file by appending the path _content/<DLL

name>/<filename> in the index.html script. In this case, the reference is

<script src="_content/frontendlib/frontendlib.js"> </script>.

This new component permits you to delete the article and article

categories components on the front-end, and it allows you to create the list

visualization for any entities of your application (Listing 4-4).

Listing 4-4.  Extracting the ArticleCategories Page That Shows the

Use of the New ItemList Component

@inherits ArticleCategoriesBase

@page "/articlecategories"

<h2>Article Categories</h2>

<div class="mt-3">

 @if(categoryModel.Item == null)

 {

 <ItemList

 Model="categoriesModel"

 OnAddClick="AddCategory"

 OnEditClick="EditCategory"

 OnDeleteClick="DeleteCategory">

 </ItemList>

 }

 else { ... }

</div>

Chapter 4 Build Your Reusable Blazor Library

78

�Creating a Templated Component
There are a few occasions when using parameters can be too complex to

generalize the content of a component. Moreover, you may need to show a

piece of markup specified by the parent component to provide maximum

flexibility for the user of your library. Blazor offers the ability to project

markup into a component, creating parameters of RenderFragment type.

Components that use parameters of RenderFragment type, are called

templated components, allowing the use of one or more templates

in them.

This ability is the perfect way to create a container component,

where the specific markup is always the same. Check out the application

details components called Article.razor and ArticleCategory.razor.

Both of these components use different fields inside the EditForm, but

DataAnnotationValidator, ValidationSummary, and the submit and

cancel buttons are the same. You could create a model and use .NET

Reflection to generate the fields like in the List component, but in my

experience, the autogenerated details forms work fine for the user of the

library only in simple cases. A templated component provides significant

flexibility, and Blazor provides a simple way to implement them.

Let’s create an ItemDetails.razor file in the Components folder of

the components library and use the code in Listing 4-5. The parameter

FieldsTemplate receives the markup that Blazor places at the

@FieldTemplate position. You are not limited to one parameter of

type RenderFragment, so you can make more parts of your component

replaceable with custom markup using the father component.

Chapter 4 Build Your Reusable Blazor Library

79

Listing 4-5.  Extracting the Details Component that uses a template

definition

<EditForm Model="@Model.Item" OnValidSubmit="@(e =>

OnSaveClick.InvokeAsync(Model.Item))">

 <DataAnnotationsValidator />

 <ValidationSummary />

 @FieldsTemplate

 <button type="submit" class="btn btn-primary">Save</button>

 �<button type="button" class="btn btn-warning"

@onclick="OnCancelClick">Cancel</button>

</EditForm>

@code {

 [Parameter]

 public RenderFragment FieldsTemplate { get; set; }

 [Parameter]

 public ItemDetailsModel Model { get; set; }

 ...

}

In Listing 4-6, you can see how to use the component. Between the

opening and closing ItemDetails tags, you can create a new element

with the name of the parameter, in this case <FieldsTemplate>. You can

put whatever you want in this parameter. Blazor projects the content of

this element into the component ItemDetails. If you have more than

one RenderFragment parameter, you can create more elements with the

respective names in the ItemDetails elements.

Chapter 4 Build Your Reusable Blazor Library

80

Listing 4-6.  Using the Details Component

<ItemDetails

 ItemType="ArticleCategoryItem"

 Model="categoryModel"

 OnSaveClick="SaveCategory"

 OnCancelClick="ShowList">

 <FieldsTemplate>

 <!-- place here your markup -->

 </FieldsTemplate>

</ItemDetails>

This is a fantastic feature that allows you to go more in-depth with the

generalization of a component. But Blazor can do more.

�Creating a Generic Component
If the content of a project needs to access some data of a component,

you can use the generic version of RenderFragment and pass to it an

instance of the generic type. In our case, we need to pass the model of the

details form to the RenderFragment, so we create a specific type called

ItemDetailsModel, and then we can use it as the generic type for the

RenderFragment.

However, we cannot use the type Object for the item, like we did for

the item array of the List component, because the binding of the form

elements requires us to know the item fields. For example, if we have to

bind the field Name of the Category with an InputText component, we

must have access to the field, and an Object does not allow this. Moreover,

in the component, we do not know that the object is a category because

it must work with any entity of the project. The best way to solve this

problem in the .NET Framework is to use a generic type in the definition,

which means creating a generic ItemDetailsModel (Listing 4-7).

Chapter 4 Build Your Reusable Blazor Library

81

Listing 4-7.  Defining the Generic Item Details Model

public class ItemDetailsModel<TItem>

{

 public string ItemName { get; set; }

 public TItem Item { get; set; }

}

We can, therefore, kill two birds with one stone and take advantage

of another peculiar characteristic of the Blazor components: the generic

components. Still, thanks to the @typeparam directive, we can create

an ItemType and use it as a generic type everywhere in the component

and then, in the ItemDetailsModel and RenderFragment too, obtain the

maximum possible generalization (Listing 4-8).

Listing 4-8.  Defining the Item Details Component with a Generic Type

@typeparam ItemType

<EditForm Model="@Model.Item" OnValidSubmit="@(e =>

OnSaveClick.InvokeAsync(Model.Item))">

 <DataAnnotationsValidator />

 <ValidationSummary />

 @FieldsTemplate(Model.Item)

 <button type="submit" class="btn btn-primary">Save</button>

 �<button type="button" class="btn btn-warning"

@onclick="OnCancelClick">Cancel</button>

</EditForm>

@code {

 [Parameter]

 public RenderFragment<ItemType> FieldsTemplate { get; set; }

 [Parameter]

 public ItemDetailsModel<ItemType> Model { get; set; }

 ...

}

Chapter 4 Build Your Reusable Blazor Library

82

When you use a generic component, you must specify the concrete

type, using the name of the generic type name as a parameter. In this

case, we called the generic type ItemType (@typeparam ItemType), so, for

example, in the ArticleCategory component, we use the ItemDetails

component with the ItemType parameter set to ArticleCategoryItem

(Listing 4-9).

Listing 4-9.  Using the Item Details Component in the

ArticleCategories Page

<ItemDetails

 ItemType="ArticleCategoryItem"

 Model="categoryModel"

 OnSaveClick="SaveCategory"

 OnCancelClick="ShowList">

 <FieldsTemplate Context="Category">

 <div class="form-group">

 <label for="name">Name: </label>

 �<InputText id="name" @bind-Value="Category.Name"

class="form-control" />

 <ValidationMessage For="@(() => Category.Name)" />

 </div>

 <div class="form-group">

 <label for="description">Description: </label>

 �<InputTextArea id="description" @bind-Value="Category.

Description" class="form-control" />

 </div>

 </FieldsTemplate>

 </ItemDetails>

Chapter 4 Build Your Reusable Blazor Library

83

We can access the RenderFragment context by specifying the

Context parameter, as shown in Listing 4-9, where we set the

Context of the FieldsTemplate to Category. So, the word Category

represents the instance of the item passed to the RenderFragment

(@FieldsTemplate(Model.Item)).

Using a specific context makes the code clearer, but it is not

mandatory: you could use the reserved word context. For example,

in Listing 4-9, you can omit Context="Category" and use @bind-

Value="context.Name" in the InputText component. In the code provided

with the book, I use both approaches as possible examples of use.

�Creating Custom Input Components
Another good idea to simplify and make your code more maintainable is

to customize the collection of the input components. Taking a look at the

article category and article details forms, you will note that there is a lot of

repeated code, such as the bootstrap layout structure and the parameters

passed to the Blazor form components. If you need to change the layout or

the way you display a single field, you must change all this code. Using a

custom input component, you can create your UI components library and

reuse it in all your projects.

An input component inherits from the InputBase class, which accepts

a generic argument to specify the type of value managed. In many cases,

the value managed is a string, like for the InputText and InputTextArea.

In Listing 4-10, you can see the markup and the code to generalize the use

of an InputText. You can create a component named FieldInputText and

show the label for the input only if the user provides the value.

Chapter 4 Build Your Reusable Blazor Library

84

Listing 4-10.  The Custom Input Text Component Definition

@inherits InputBase<string>

<div class="form-group">

 @if (!string.IsNullOrWhiteSpace(Label))

 {

 <label for="@Id">@Label: </label>

 }

 �<InputText id="@Id" @bind-Value="@CurrentValue" class="form-

control" />

 <ValidationMessage For="@Validation" />

</div>

@code

{

 [Parameter] public string Id { get; set; }

 [Parameter] public string Label { get; set; }

 �[Parameter] public Expression<Func<string>> Validation { get;

set; }

 �protected override bool TryParseValueFromString(string value,

out string result, out string validationErrorMessage)

 {

 result = value;

 validationErrorMessage = null;

 return true;

 }

}

The Input base abstract class requires us to implement the

TryParseValueFromString method because, in case our input manages

a value of a type different from the string, we must provide the correct

conversion from the string value. The current value is available in the

@CurrentValue property of the base class, which is the same type of the

Chapter 4 Build Your Reusable Blazor Library

85

generic for the class (in our case a string). You can do the same work for

the InputTextArea and use it and the InputText component to simplify

the article category page (Listing 4-11).

Listing 4-11.  Using the Custom Input Components

<ItemDetails ...>

 <FieldsTemplate Context="Category">

 <FieldInputText

 Id="name" Label="Name"

 @bind-Value="Category.Name"

 Validation="@(() => Category.Name)" />

 <FieldInputTextArea

 Id="description" Label="Description"

 @bind-Value="Category.Description"

 Validation="@(() => Category.Description)" />

 </FieldsTemplate>

</ItemDetails>

If the value is always a string and the component parameters are

always the same (Id, Label, and Validation), we can create a base class

that inherits from the InputBase to collect the parameters and implement

the conversion method. We can name this class FieldInputBase and use it

to simplify the specific component code (Listing 4-12).

Listing 4-12.  The Base Class Definition for the Custom Input Text

Components

public abstract class FieldInputBase : InputBase<string>

{

 [Parameter] public string Id { get; set; }

 [Parameter] public string Label { get; set; }

 �[Parameter] public Expression<Func<string>> Validation { get;

set; }

Chapter 4 Build Your Reusable Blazor Library

86

 �protected override bool TryParseValueFromString(string value,

out string result, out string validationErrorMessage)

 {

 result = value;

 validationErrorMessage = null;

 return true;

 }

}

Thanks to this class, in many cases we only need to create the specific

markup, as shown in Listing 4-13.

Listing 4-13.  The Input Text Component Definition Simplified by

the FieldInputBase Class

@inherits FieldInputBase

<div class="form-group">

 @if (!string.IsNullOrWhiteSpace(Label))

 {

 <label for="@Id">@Label: </label>

 }

 �<InputTextArea id="@Id" @bind-Value="@CurrentValue"

class="form-control" />

 <ValidationMessage For="@Validation" />

</div>

The Blazor form components have some limitations, like the ability

to work with a string value only. Generally, this is not a problem, but

sometimes it is required that you convert the current string to a specific

value. This is the case of the InputSelect, where the value of the selection

must be a string. We are using the InputSelect for the category of an

article, and, to solve the problem, we used a string value on the front-end

and converted it to an integer on the back-end.

Chapter 4 Build Your Reusable Blazor Library

87

With a custom component, you can also solve this problem thanks to

the generic implementation of the base class InputBase. In Listing 4-12,

we are using a string for the generic parameter, but we can require the

generic type of each component, including the InputSelect (Listing 4-14).

Listing 4-14.  The Generic Implementation of the FieldInputBase

public class FieldInputBase<T> : InputBase<T>

{

 ...

 �protected override bool TryParseValueFromString(string value,

out T result, out string validationErrorMessage)

 {

 Type paramType = typeof(T);

 switch (paramType.FullName)

 {

 case "System.String":

 result = (T)(object)value; break;

 case "System.Int32":

 result = (T)(object)int.Parse(value); break;

 default:

 �throw new NotSupportedException($"FieldInputBase

does not support the type {paramType}");

 }

 validationErrorMessage = null;

 return true;

 }

 }

The code gets a little complicated because we need to use .NET

Reflection to understand the current type and correctly convert the value

in the TryParseValueFromString method. We used a switch to allow the

addition of other cases, like Boolean, Guid, and enumeration.

Chapter 4 Build Your Reusable Blazor Library

88

With this change, your FieldSelectInput needs only an additional

parameter for the selected items; the rest is handled by the base class

(Listing 4-15).

Listing 4-15.  The Field Select Component Implementation

@inherits FieldInputBase<int>

 ...

 �<InputSelect id="@Id" @bind-Value="@CurrentValueAsString"

class="form-control">

 @foreach(var item in SelectItems)

 {

 <option value="@item.Value">@item.Label</option>

 }

...

@code {

 [Parameter] public InputSelectItem[] SelectItems { get; set; }

}

Note that the bind-Value uses CurrentValueAsString (defined in the

InputBase class) instead of CurrentValue: the InputSelect needs a string,

not an integer. Without this change, Blazor treats the integer like a string,

and all the internal comparisons when the value changes do not work.

�Summary
Creating a library of components greatly simplifies the code of your

project, allows you to divide the work between components, and reuse

what you have done in other projects. However, it requires you to analyze

the requirements to better generalize the components, without going

overboard with generalization.

Chapter 4 Build Your Reusable Blazor Library

89

In this chapter, you saw how to use the power of the .NET Framework

in a single-page application using .NET Reflection and the generic types.

You can make something similar in JavaScript, supported by powerful tools

like TypeScript, but in the .NET Framework you have a strict typing system

that makes these techniques less prone to errors.

When starting your project, spend a lot of time to make your

components reusable and collect them into a library. If you don’t

go overboard with generalizations, you will save a lot of time when

maintaining your project by investing a little more in the beginning.

Chapter 4 Build Your Reusable Blazor Library

91© Michele Aponte 2020
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_5

CHAPTER 5

Deploy Your
Application
Your application is ready, so it is time to make it available to your users.

The deployment process is different between Blazor Server and Blazor

WebAssembly, and it also depends on the scalability that you would like

your application to have.

The word scalability is a simple concept, but it is not simple to

implement. Scalability refers to the ability of a system to keep its

performance constant by dynamically increasing its available resources

as the number of users increases. Scalability is a requirement in today’s

world; you must address it at the beginning of the development process,

because it impacts how the application will be developed.

In this chapter, you will see some of the choices you have to deploy

your application, and we will look at some considerations based on the

typical requirements of a business application.

�Deploying a Blazor Server App
A Blazor Server app is a .NET Core application that uses SignalR to keep

the user interface up-to-date. We can prepare the package to be published

from a terminal window, using the dotnet publish -c Release

command of the .NET CLI. The CLI creates a publish folder with the build

https://doi.org/10.1007/978-1-4842-5747-0_5#ESM

92

artifact, but you can change this default folder using the -o option of the

dotnet publish command. If you use Visual Studio, you can use the Build

➤ Publish menu and select a target folder.

After the build operation, you have to deploy the package, and you

have to choose where to place the application. Any deployment option that

supports ASP.NET Core 3 is available for Blazor; the most commonly used

are IIS, an Azure web app, and a Docker image.

To use IIS, you need Windows 8 (or later) or Windows Server 2012 R2

(or later). To host the ASP.NET Core application, IIS needs the .NET Core

Hosting Bundle, which installs the .NET Core Runtime, the .NET Core

Library, and the ASP.NET Core Module.

The ASP.NET Core Module allows the use of .NET Core in IIS, but you

can decide how it must work by choosing between two hosting models:

in-process and out-of-process. All the HTTP requests to your application

are handled by the w3wp.exe process and passed to the ASP.NET Core

Module. If you choose the in-process models, the ASP.NET Core Module

passes the request to your code, creating the HttpContext and using the

same IIS worker process. If you choose the out-of-process hosting models,

your code runs in a separate process, so the ASP.NET Core Module needs

to forward the HTTP request to Kestrel (Figure 5-1).

Figure 5-1.  ASP.NET Core in-process and out-of-process hosting
models

Chapter 5 Deploy Your Application

93

The in-process hosting model is more efficient and should be your first

choice (this is why it is the default hosting model). Use out-of-process only

for deployment compatibility reasons.

Blazor Server uses SignalR, so you need to support it. To improve the

performance of the application, you have to reduce the latency between

the client and the server. To do that, adding WebSocket support is the best

choice. When you use IIS, support for WebSocket is already enabled, so

if the application forces the use of the long polling, you must check the

configuration.

If you need to scale the application instances to support more users,

you have to configure your cluster to ensure that all requests are received

by the same node that starts the SignalR communication. On-premises,

you can do this using sticky sessions (better known as session affinity by

some load balancers).

If you use Microsoft Azure, you can deploy your Blazor Server

application to an Azure Web App, the most popular Azure service that

provides you with scalable hosting that supports both Windows and Linux.

It is part of the platform as a service (PaaS) offered by Microsoft and allows

you to create and manage a web application from the Azure Portal and use

the integrated tools for Visual Studio and Visual Studio Code.

You can try this service by signing up for an Azure account for free.

From the Azure Portal, you can create a new web app, configuring the few

requested fields (Figure 5-2).

Chapter 5 Deploy Your Application

94

The WebSocket support is set to false by default, so you need to go

to the Configuration ➤ General settings and turn on the “Web sockets”

option. In this panel, you can also see the “ARR affinity” option, already

turned on, that allows sticky sessions when you request the web app to

manually or automatically scale the nodes of the cluster.

You can deploy a Blazor Server app to an Azure web app with different

automation tools, but to simplify the process, you can use the Publish

menu of Visual Studio to start a step-by-step wizard (Figure 5-3).

Figure 5-2.  The creation panel of an Azure web app and the
configuration for a Blazor Server application

Chapter 5 Deploy Your Application

95

I prefer Visual Studio Code, which provides a fantastic plug-in to

manage Azure services: right-click the Publish folder, choose the target

Web App, and confirm the deploy (Figure 5-4).

Figure 5-3.  Visual Studio 2019 deploy wizard for an existing Azure
web app

Chapter 5 Deploy Your Application

96

If you have a large number of users, Azure provides you with a separate

service called Azure SignalR Service to manage SignalR connections.

All .NET Core applications support the integration of this service and

therefore Blazor Server application. Check the official documentation for

the configuration steps (https://docs.microsoft.com/en-US/aspnet/

core/host-and-deploy/blazor/server?view=aspnetcore-3.1).

Figure 5-4.  Deploying an application to an existing Azure web app
from Visual Studio Code

Chapter 5 Deploy Your Application

https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/blazor/server?view=aspnetcore-3.1
https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/blazor/server?view=aspnetcore-3.1

97

�Deploying a Blazor WebAssembly App
Performing a build of a Blazor WebAssembly app produces static files

that the browser downloads and executes. These files can be developed

anywhere that you can make them available for download via HTTP

protocol; then, you can choose to expose them standalone by any web

server you want. For example, you can use IIS, Azure Web App, Azure

Storage (which allows you to configure a BLOB container as a static web

site hosting space), Nginx (with Docker or not), and even GitHub Pages.

The command to build a Blazor WebAssembly app is the same

as a Blazor Server: dotnet publish -c Release. The bin/Release/

netstandard2.1/publish folder contains a folder with the name of the

project and a subfolder called dist, which includes the static files that you

can deploy, for example, to BLOB storage configured as a static web site

(Figure 5-5).

Figure 5-5.  Configuration of a static web site with Azure Storage

Chapter 5 Deploy Your Application

98

This static web site is a BLOB named $web where you can upload the

files of the dist folder; you can do this via the Azure Portal or the Microsoft

Azure Storage Explorer, a free tool to manage Azure Storage accounts

(Figure 5-6).

This operation deploys only the front-end, so if you have a

back-end, you need to deploy it and allow calls from the domain of

the front-end (technically called CORS policies; you can read more

here: https://docs.microsoft.com/en-US/aspnet/core/security/

cors?view=aspnetcore-3.1).

Another possibility is to serve the front-end with an ASP.NET Core

application, using ASP.NET Core hosting. Which is the best way for your

app depends on the scalability and security requirements you have. If your

application structure includes an ASP.NET Core back-end that exposes

REST APIs and a front-end that is a Blazor WebAssembly app, you can

Figure 5-6.  Blazor WebAssembly app uploaded with Azure Storage
Explorer

Chapter 5 Deploy Your Application

https://docs.microsoft.com/en-US/aspnet/core/security/cors?view=aspnetcore-3.1
https://docs.microsoft.com/en-US/aspnet/core/security/cors?view=aspnetcore-3.1

99

deploy them in the same project, copying the dist folder of the Blazor

project into the wwwroot folder on the ASP.NET Core API project. In this

case, the domains of the API and the front-end are the same, so you do

not need to configure CORS policies. The negative aspect is that you

must scale both the back-end and the front-end if you need to scale your

application to manage more users. If the front-end does not change, the

users do not download it again, but the front-end continues to call the APIs

during application usage. You could probably scale only the back-end if

you separated it from the front-end. The same problem occurs if you need

to update the user interface without any impact on the back-end: if you

separate the two layers, you can scale only the front-end for a short period

to allow all the clients to download the new versions.

�Summary
With the deployment of a Blazor application, our journey to create

single-page applications with Blazor has come to an end. As you saw in

this chapter, the deployment scenarios are different depending on whether

you use Blazor Server or Blazor WebAssembly. But more important are the

requirements you have: based on them, you can choose how to distribute

your application, which inevitably, in the simplest cases, consists of both

a front-end layer and a back-end layer. The complexity of deployment

often increases with the scalability that you want to achieve, but there may

also be security requirements that can lead you to different choices. Never

underestimate them.

Except for some advanced aspects, such as content protection or

optimization tips provided by the framework, you now have all the

necessary knowledge to develop your business application with .NET Core.

As always, practice is your best teacher!

Chapter 5 Deploy Your Application

101© Michele Aponte 2020
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0

Index

A
Application structure creation

App.razor component code, 39
article manager, 38
execution result, 42
index.html file, 40
project structure, 40–41
Razor file, 39

ASP.NET Web Forms, 2
Azure web app, 96

B
Blazor server application

app.UseStaticFiles()
method, 13

client downloads, 20
component, 12
countdown code, 13
creation, 7
definition, 2
deployment (see Deployment

process)
DotNetAnywhere, 8
download option, 9
endpoint.MapBlazorHub()

method, 12

EventSource object, 21
GitHub repo, 9
InvokeAsync() method, 15
long polling communication, 21
.NET Core 3.1 web project, 10
RenderComponentAsync()

method, 13
roadmap, 8
server result, 15, 16
server-sent result, 21
startCountdown() method, 14
startup configuration, 11
StateHasChanged() method, 15
WebSocket, 21

Bootstrap modal, 67, 73, 76

C
Code nightmares, 3–5
Component library

ArticleCategories page, 77
class definition, 75
components and models

folders, 75
Razor class library, 74
row creation, 76
table headers, 75

https://doi.org/10.1007/978-1-4842-5747-0#ESM

102

Countdown application
BlazorHub WebSocket, 22
server app (see Blazor server

application)
WebAssembly

countdown.csproj file, 24
CreateHostBuilder()

method, 25
index.html File, 26
network tab, 27
project template

installation, 23–24
web application, 24

working process, 19–23
CRUD operations, 52

article categories, 52–54
categories, 52
dependency service, 62
in-memory implementation,

60–63
list component, 54
page component, 53
service creation

add category button, 59
article categories page, 59
article category, 60
ConfigureServices()

method, 56
definition interface, 55
page component, 56
physical operations, 55
ShowList() method, 59
validation rules

definition, 57

D
Data transfer objects (DTOs), 7
Deployment process

Server app
Azure web app, 96
creation panel, 94
HTTP request-Kestrel, 92
in-process/out-of-process

hosting models, 92
publish menu, 94, 95
SignalR, 91
sticky sessions, 93
Web sockets option, 94

scalability, 91
WebAssembly app, 97–99

Desktop application
development, 1

DotNetAnywhere, 8
DTOs7, see Data transfer

objects (DTOs)

E, F
ECMAScript 6 (ES6), 5

G, H
Generic component, 80–83

I
Input components

base class definition, 85
FieldInputBase class, 86

INDEX

103

FieldSelectInput class, 88
generic implementation, 87
input text definition, 84
source code, 85
TryParseValueFromString

method, 84
UI library/reuse, 83

J, K, L, M, N, O
JavaScript

ASP.NET Web Forms, 2
code nightmares, 3–5
frameworks, 6
jQuery library, 3
TypeScript, 5, 6

JavaScript function, 66–70

P, Q
Page navigation

Article.razor file, 48
layout component markup, 49
page folder, 47–48
results of, 51
router component markup, 50

R
Release-to-manufacturing

(RTM), 7
Reusable library, 73

component (See Component
library)

generic components,
73, 80–83

input components, 83–88
templated components,

78–80
Rich Internet Application

(RIA), 2
RTM, see Release-to-manufacturing

(RTM)

S
Scalability, 91, 98
Server-side application, 1
Server vs. WebAssembly

countdown application (see
Countdown application)

differences, 30, 31
functional/nonfunctional

reqirements, 19
.NET Core 3, 8
WebAssembly, 28–30

Silverlight, 1
Single-page application, 33

application structure (see
Application structure
creation)

components, 33
business application

structure, 34
characteristics, 35
component code, 64–66
customization, 36
independent, 37

INDEX

104

logic creation, 38
reusing, 37, 38
single responsibility

principle, 36
size of, 35
tree of, 35

CRUD (see CRUD operations)
JavaScript function, 66–70
main menu component

app component, 44
markup file, 42
official documentation, 45
OnInitialized

method, 45
OnMenuItemClick

method, 46
result of, 46, 47
source code, 43

navigation, 33
page navigation (see Page

navigation)

T
Templated component

creation, 78–80
Transpile, 6
TypeScript, 5, 6

U, V
User interface, 1

W, X, Y, Z
WebAssembly

browser support, 30
definition, 28
deployment process, 97–99
JavaScript runtime, 28, 29
.NET Core 3, 9
Server (see Server vs.

WebAssembly)
Windows Communication

Foundation (WCF), 2

Single-page application (cont.)

INDEX

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: The Case for Blazor
	Why You Fear JavaScript
	Code Nightmares
	Mitigate the Problem with TypeScript
	Why You Need a JavaScript Framework
	You Can Have Your Cake and Eat It Too with Blazor
	Your First Blazor Application
	What You Need to Get Started
	Getting Started

	Summary

	Chapter 2: Blazor Server vs. Blazor WebAssembly
	How the Countdown Application Works
	Running the Countdown Application in the Browser
	WebAssembly Revolution
	Which Blazor to Choose
	Summary

	Chapter 3: Create Your Single-Page Application
	Everything Is a Component
	Component Tree
	Component Size
	Reusability, Customization, and Independence
	Component Logic

	Creating the Application Structure
	The Main Menu Component
	Page Navigation with Blazor

	Managing CRUD Operations
	Creating a CRUD Service

	Implementing CRUD Services
	Where to Place the Component Code
	JavaScript Interoperability
	Summary

	Chapter 4: Build Your Reusable Blazor Library
	Creating a Component Library
	Creating a Templated Component
	Creating a Generic Component
	Creating Custom Input Components
	Summary

	Chapter 5: Deploy Your Application
	Deploying a Blazor Server App
	Deploying a Blazor WebAssembly App
	Summary

	Index

