Building Single
Page Applications
in .NET Core 3

Jumpstart Coding Using
Blazor and (#

Michele Aponte

ApreSS®

Building Single Page
Applications in
.NET Core 3

Michele Aponte

Apress’

Building Single Page Applications in .NET Core 3: Jumpstart Coding
Using Blazor and C#

Michele Aponte
Torre del Greco (NA), Italy

ISBN-13 (pbk): 978-1-4842-5746-3 ISBN-13 (electronic): 978-1-4842-5747-0
https://doi.org/10.1007/978-1-4842-5747-0

Copyright © 2020 by Michele Aponte

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendons

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC, and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484257463. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5747-0

To my son, Francesco Paolo: I hope that one day you will
read this book and be as proud of me as I am of you,
especially every time you smile when you catch my eye.

Table of Contents

About the AUhOFccccmmismmmmsmsmssns s vii
Acknowledgments.......ccucsmsmmmsasmsssmsssnsssasssssssssnssssssssnssssnsssassssnsssnnsnsans ix
INtroductionccccumssmmmmsmnmnsnnmsssnmmssnnssss s xi
Chapter 1: The Case for Blazorccccerrmmmsmssssssssssssnsssssssssssssssssssssssnns 1
Why YOu Fear JaVaSCripL.......cccevvrrrrierensnsensesesssssssessesssssssessessessssessessesssssssessees 2
Code NIghtMArEScccccrerernirirerer e s 3
Mitigate the Problem with TypeScript........cccccovvinrninicnrrr e, 5
Why You Need a JavaScript Frameworkcouccerenernnesensenesenesnsesessesessssesenns 6
You Can Have Your Cake and Eat It Too with BIazorc.cccovrvnrnsesnsesenssennnne 7
Your First Blazor Applicationcccvevnininiennnnnsene s sesessssessessens 9
What You Need t0 Get Startedcovrmnnnnnnssssesessssssssenens 9
Getting Started ... ————————— 10
1] 4= O 16
Chapter 2: Blazor Server vs. Blazor WebAssemblycccccennensssnnnnes 19
How the Countdown Application WOrKSccoeevniernennescrnsesenesese s senens 19
Running the Countdown Application in the Browser.........c.ccccovvvnvnirennsnsenens 23
WebAssembly REVOIULION..........ccoereeerrcrererere e 28
Which Blazor t0 ChOOSEcceverereserrssesrssesesssessssessssessssssessssessssesssssssssssssssssnnns 30
1T 4= S 31

TABLE OF CONTENTS

Chapter 3: Create Your Single-Page Applicationccccuseenrrssssnnnnns 33
Everything IS @ COMPONENtccovevernerirccrr e 34
(0] 110 T O 35
COMPONENT SIZE....ccevierirerirerire et s 35
Reusability, Customization, and Independenceccvvevevererrersereesenserserees 36
COMPONENE LOGIC.....ererrerrererrererseressersersersesessessessessssessessesssssssessessesssssssesseses 38
Creating the Application StruCtUre.........c.cccvievrcnrni e 38
The Main Menu Component.........ccocvinininnnnssnse s sessessens 42
Page Navigation with BIazor..........cccccovvriniincnine s 47
Managing CRUD OpPErations........ccccoveeererererenmssesesessessssssessssesessesessssessesessssesenns 52
Creating @ CRUD SEIVICEcoeeerererererereerenese e se e sennes 55
Implementing CRUD SEIrVICEScccvvrermmnesenmssesesessesessssessesesesesessssessssesessesenns 60
Where to Place the Component Code...........ccoovvrvrierinnsnienienn s sessessessens 64
JavaScript Interoperabilityc.ccocvvvririninnrrr e ——— 66
1] 4= 7 70
Chapter 4: Build Your Reusable Blazor Library.........cccussemrmssnnssssnnsnsnas 73
Creating @ Component Library ... 74
Creating a Templated COmpoNent............cccvvvnininnnnnsne e 78
Creating a Generic COMPONENTccovvrerresrnsesesese s 80
Creating Custom Input COMPONENTSccccevieverrrieniens e s e 83
1] 4= 88
Chapter 5: Deploy Your Application..........cccccunsemmnmnssssnsnmssssssssssssssnnns 91
Deploying a Blazor SErVer APP.......cccccecvrererenersssesessesessesessesessssesessesessesessssesenns 91
Deploying a Blazor WebAsSSembIly AP ..o se s sessesnens 97
SUMMANY....eieeeresere s se s e nr e e 99
INA@X..ueeiiisnnnsssnnnsssannssssnnsssansnssanssssannsssansssssnsssssnnssssnnssssnnssssnnnnssnnnnsnns 101

About the Author

Michele Aponte is a programmer who has worked with Java, .NET, and
JavaScript at software and IT consulting companies in his native Italy
since 1993. Combining his training, consulting, and development skills,
in 2013 Michele founded Blexin to help customers migrate older software
and systems to new technologies to improve their businesses. Passionate
about programming, Michele embraces sharing with the community.

He founded DotNetCampania, a Microsoft User Group in 2008, and

has organized many regional conferences. He is also the founder of
Blazor Developer Italiani, the Italian developer group about the Blazor
framework. Recognized as a Microsoft MVP, he often presents on Microsoft
and JavaScript topics at tech conferences throughout Italy.

vii

Acknowledgments

Writing a book is hard work that requires a lot of time and inevitably
involves the lives of those closest to the author. I want to thank my life
partner, Raffaella, for her support for this project and her patience with me.
I also want to thank my old friend, whose name is Raffaella as well, for the
help she gave me in revising my English.

A special thanks also goes to all the employees of Blexin, my company,
who are the best team one could have and with whom I can experiment
every day with the technologies described in this book.

Finally, many thanks to the fantastic Apress team that supported me
during this project.

ix

Introduction

Blazor has garnered a great deal of enthusiasm since its initial release. I've
followed the framework from the beginning, and when teaching any new
technology, I use a practical approach. This book looks at the needs of real
applications and answers all the questions you might have when learning
how to use Blazor.

Specifically, in Chapter 1, I focus on the success of this framework and
how it solves one of the problems most felt by Microsoft programmers:
using JavaScript. Blazor allows you to use .NET directly in the browser,
using open standards so as not to repeat the mistakes of the past. In my
opinion, however, it is important to understand how Blazor works beyond
the tools made available by the development environment, so I focus on
the code in this book. I start with a simple example, without using the
templates made available by Microsoft, to highlight how it works.

In Chapter 2, you will find a detailed comparison between the
two versions of Blazor for web development: Blazor Server and Blazor
WebAssembly. Using the example from the first chapter, I compare the
two versions by highlighting what is going on behind the scenes and how
WebAssembly is revolutionizing the world of front-end development. I
explain how to choose a version based your requirements because they
both have pros and cons and must be contextualized in your environment/
situation.

In Chapter 3, I cover all the concepts necessary to create a single-page
application, starting from scratch and tackling some issues concerning
the decomposition of the interface into components. In this chapter, you
will learn how to create pages and navigate between them, you will see
how to create forms for data entry, and you will learn how to integrate the

INTRODUCTION

front end with the back-end, differentiating the approach between the
two versions of the framework but standardizing their use thanks to the
dependency injection of ASP.NET Core. Here you will discover that the
framework allows you to invoke JavaScript functions from .NET and to
invoke .NET methods from JavaScript functions.

In Chapter 4, I explain how to create libraries of reusable components,
addressing how to generalize components thanks to the framework’s
ability to use .NET Generics and content projection. What may seem
like more advanced aspects are actually necessary to avoid reinventing
the wheel on each page of your application; this also allows you to start
creating your own Blazor component library.

In Chapter 5, I cover application deployment, using both versions of
the framework. It’s important to know where your application will run,
since scalability problems must be addressed and will impact how you
write the application.

You can find the code for the first two chapters of the book in the
countdown and countdown-wasm folders of the code download; you can use
the two versions to see the differences between Blazor Server and Blazor
WebAssembly within the same small application. The code for the third
and fourth chapters, where you learn to create a small article manager, is
available for both versions of the framework in eight pieces that follow the
flow of the chapters.

e The application structure

o Pages and routing

o Components and their use in pages

e Back-end integration and shared library

e JavaScriptinteroperability

xii

INTRODUCTION

e Separation of the code into different files
e Blazor Library
e Custom input component

You can copy and execute the code that accompanies the book, but
I suggest you write it from scratch by following the instructions in the
chapters. That’s the best way to learn Blazor!

xiii

CHAPTER 1

The Case for Blazor

During the Web 2.0 revolution, we had our first opportunity to port
desktop applications to the Web. Thanks to the Ajax technology, which
allowed us to do asynchronous calls to the server for the first time, we no
longer had to suffer through a page reload every time the user updated the
interface. We could finally get to the core of and resolve the main problems
of desktop application development.

With a complete server-side application, we no longer need to install
anything because we use the application through a browser, simplifying
the release of the updates and controlling the current version used by our
clients.

Unfortunately, all that glitters is not gold! If the user interface is
entirely built on the server side, moving the application to the server has
two distinct disadvantages. First, we must always be online to contact the
server, and second, all the computational effort for the presentation layer
passes from the customer’s computer to the server.

To solve these problems, we need to move the user interface
construction to the client. But if the application runs in a browser, we need
to write a substantial part of the code in JavaScript, and if you are a .NET
developer, this task has probably given you nightmares. If it has not, in
this chapter we’ll explore why it should with a simple example that would
frighten anyone coming from a strongly typed language.

Microsoft provided developers with a solution to these problems
via a front-end technology called Silverlight, together with a simplified

© Michele Aponte 2020 1
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_1

https://doi.org/10.1007/978-1-4842-5747-0_1#ESM

CHAPTER 1 THE CASE FOR BLAZOR

Windows Communication Foundation (WCF) back-end called Rich
Internet Application (RIA) services, that allowed us to use the .NET
Framework in the browser with the installation of a plug-in. Many
companies invested in this technology, but a few years later, Microsoft
decided to abandon the project, making those who today want to
approach Blazor somewhat gun-shy.

But Blazor is different. Blazor is based on standard technologies, not
Microsoft technologies. You don’t need to install anything on your client,
because the framework provides you with everything you need to use .NET
Core in the browser, taking advantage of what is already there. If you are
a Microsoft web developer and do not want to spend your time learning
JavaScript frameworks, Blazor is the solution for you. I have helped many
companies to adopt it successfully, and it has a low learning curve and
allows you to reuse your .NET Core knowledge. In this chapter, we’ll work
to overcome your fear of JavaScript and get you on your way to creating
your first Blazor application.

Why You Fear JavaScript

Why do I, as Microsoft developer, try to avoid JavaScript? Well, there

are a few good reasons, but the driving one is the dynamic nature of the
language with its runtime type checking and some other peculiarities that
we will take a look at soon. Another important reason is the Microsoft
approach to web development, which has always discouraged developers
from using JavaScript.

With ASP.NET Web Forms, the approach was to drag and drop controls
on the form, set their properties, and write code in event handlers. The
Web Forms engine generated the HTML and JavaScript for you. Only
with ASP.NET MVC do developers finally have control over their HTML
and JavaScript, by using jQuery and its plugins for the main application
development activities such as validation. It is also possible to use HTML

CHAPTER 1 THE CASE FOR BLAZOR

helpers and data annotations with ASP.NET MVC to generate the correct
configuration for the jQuery plugin (jQuery Unobtrusive Validation).
The jQuery library can help you with simple tasks such as DOM
manipulation and asynchronous calls to the back-end, but moving the
user interface construction onto the client means writing the entire
front-end in JavaScript with all the problems of maintenance and
productivity that the language can bring with it. Let’s see why.

Code Nightmares

In all my JavaScript courses for .NET developers, I like to start the lessons
by creating an example. js file and writing the code shown in Listing 1-1.
This shows some JavaScript features that will surely impress a C# or Visual
Basic developer and immediately clarifies the difficulties of a language so
different from those .NET developers are used to using.

Listing 1-1. Some of the JavaScript Problems Summarized in a
Single Script

function computes1() {
a = 10;

}

function computes2() {
a = 'hello’

}

computes1();

computes2();

console.log(a);

Without executing the code, what is the result? Are you scared? If you
are not, you should be, because this code works, and the result is hello.
That means the variable a cannot be declared anywhere, its scope is global,

CHAPTER 1 THE CASE FOR BLAZOR

and its type can change without any problems from number to string. In
the computes2 function, I omitted the semicolon because it is not required
in JavaScript.

The language is case sensitive, so fullname and fullName are
different variables. If you cannot declare a variable and you fail to write a
variable name, the engine creates another global variable for you, with an
incredible loss of time in your debug sessions.

Note In JavaScript you can force the engine to check that variables
are declared with the "use strict"; directive (I see the smiles of
Visual Basic programmers), but it only comes in ECMAScript 5, so
some old browser will ignore it.

If you are a competent programmer, you always declare your variables.
In JavaScript you use the var keyword to do that, but let’s look at the code
of Listing 1-2. What’s wrong?

Listing 1-2. Some JavaScript Peculiarity for a .NET Developer

function computes() {

var a = 10,
if(a == "10") {
var b = 'ok';
}
console.log(b);
}
computes();

The execution result of the code is ok. Are you confused? The if
statement is true because in JavaScript the == operator executes the type
coercion between operands, converting the value of one operand to the
type of another. If you convert the value of the variable a from the number

CHAPTER 1 THE CASE FOR BLAZOR

10 to the string ‘10, the result of the condition is true. If you do not want to
allow this conversion, you can use the === operator.

The most interesting thing is that the b variable is declared in the if
block, so you could imagine that console.log(b) returns an error both if
condition is true and if it is false. Unfortunately, in JavaScript, the scope of
a declared variable is always at the function level, not at the block level, so
the b variable exists outside the if block.

Whether the if condition is false, which is the value of b? The
assignment of the ok string will be not executed, so its value will be
undefined. That is not null, but undefined, which is a possible value of a
JavaScript variable that represents the state of declared but not initialized.
I'wish I could see your face right now!

Note In ECMAScript 6 you can use the keyword let instead of var
to declare a variable with block scope, but if your browser does not
support it, an error will be generated.

Mitigate the Problem with TypeScript

Another problem with JavaScript is the adoption of the newest standard by
browsers. For example, with ECMAScript 6 (ES6), we have class support,
the let keyword, arrow functions, and some other improvements that can
help to write more maintainable code, but some older browsers do not
support ES6. This same problem will continue with the next versions, so
we need a solution that permits us not to go crazy.

TypeScript is the response from Microsoft to this problem: it
introduces a transpiler that translates the code written in a new language
(TypeScript) to a target JavaScript standard.

CHAPTER 1 THE CASE FOR BLAZOR

Note |sometimes use JavaScript standard instead of the term
ECMAScript because many developers do not know the history of
JavaScript. If you are interested in exploring the history, take a few
moments to learn about it from the legendary Douglas Crockford
in his “Crockford on JavaScript” series. (If you don’t know who he
is, take a break to learn more: https://www.youtube.com/
watch?v=R01Wnu-xKoY.)

TypeScript is a superset of JavaScript that adds features to the
language such as typing support and the ability to use all the constructs
in any version of JavaScript, improving both the maintenance and the
productivity of the application.

In short, you can write TypeScript code in a syntax that is similar to C#,
with support for the current and next versions of JavaScript, and compile
it (transpile is the correct term) in JavaScript code. In the end, it is always
JavaScript, with all the limits that we have already talked about, but with
TypeScript, you have a tool that checks the types of your variables and
converts the code to a configured JavaScript standard while applying all
the recommended best practices. (This conversion process is technically
called transpiling, and the TypeScript compiler is called the transpiler.)

Why You Need a JavaScript Framework

TypeScript is a great help, and frameworks such as Angular and libraries
such as React have adopted it to shorten the code refactoring process.
However, think about writing your whole client with it: that would be like
writing your application in C# without the .NET Framework. OK, maybe
the comparison is a bit strong, but the concept is close to reality.

https://www.youtube.com/watch?v=RO1Wnu-xKoY
https://www.youtube.com/watch?v=RO1Wnu-xKoY

CHAPTER 1 THE CASE FOR BLAZOR

For this reason, frameworks like Angular were born. They offer you
everything you need to build your client using JavaScript. Angular provides
you with libraries to manage forms, to call a REST API back-end, to organize
your application into a manageable structure, and to provide a dependency
injection tool to improve testability and separation of concerns.

To improve the user experience, it is often necessary to create a
single-page application to allow navigation within your application
without actually navigating between physically separate pages. For this
purpose, these frameworks provide a routing engine, which dynamically
controls the navigation among different pages; the routing engine
manipulates the DOM of your single page on the fly, while also updating
the browser history.

The negative aspect of these solutions is their complexity, and in some
cases the performance provided. Moreover, if you have some view models
or data transfer objects (DTOs) provided by the API, you need to replicate
them in TypeScript and keep them aligned. If your back-end changes, no
compiler warns you that a change has happened, because you have two
separate projects with two different technologies. Luckily, if your back-end
is written in .NET Core, now you have Blazor, an attractive alternative!

You Can Have Your Cake and Eat It Too
with Blazor

Microsoft released the release-to-manufacturing (RTM) version of

Blazor with .NET Core 3, a new front-end framework that solves all the
problems previously mentioned. Thanks to it, you can use C# and the .NET
Core framework to write the front-end of your application, using all the
technologies you already know if you are a Microsoft web developer.

You can use Razor, HTML, and C# to define the user interface and use
anything you want for the rest of the application. Blazor lets you run the
front-end directly in the browser, providing all the tools you need to create
a single-page application.

CHAPTER 1 THE CASE FOR BLAZOR

Blazor was created in 2017 as a personal project of Steve Sanderson,
who presented a preview of Blazor based on DotNetAnywhere, a . NET
Intermediate Language (IL) interpreter, at NDC Oslo (https://www.
youtube.com/watch?v=MiLAE6HMr10&feature=youtu.be&t=31m45s). After
this presentation, Blazor was added to the ASP.NET GitHub repository
as an experimental project, but the enthusiasm of the community
convinced Microsoft to move the project to the ASP.NET team, replacing
DotNetAnywhere with Mono, which is the most famous open source
platform based on the .NET Framework (https://www.mono-project.com/).

With the .NET Core 3 release, Blazor has become part of the
framework, with an ambitious roadmap. As you can see in Figure 1-1,
at the moment you can create the front-end of a web application with
Blazor, but the idea is to eventually be able to build desktop and mobile
applications with it, going through a progressive web app (PWA) approach
as an intermediate step.

2019 May 2020 Previews Previews Under
; with NET 5 with NET 5 nvestigation

Blazor Server Blazor WebAssembly Blazor PWA Blazor Hybrid Blazor Native

= T e T T T R ———— # DESKTOP + MOBILE

Figure 1-1. Blazor roadmap

Blazor Server is the version that ships with .NET Core 3, and it allows
you to prerender the HTML of your application, execute the C# code on
the server side, and push the user interface changes to the page through
SignalR. Blazor WebAssembly is available from May 2020, and it executes
the C# code directly in the browser. You can use Blazor WebAssembly with
.NET Core 3.1.300 or later.

Blazor Hybrid will be a native .NET renderer to Electron and WebView,
and it will be a native app that works online and offline. Electron
(electronjs.org) is a popular open source project to create cross-platform

8

https://www.youtube.com/watch?v=MiLAE6HMr10&feature=youtu.be&t=31m45s
https://www.youtube.com/watch?v=MiLAE6HMr10&feature=youtu.be&t=31m45s
https://www.mono-project.com/
http://electronjs.org

CHAPTER 1 THE CASE FOR BLAZOR

desktop applications using web technologies. As an example, Visual Studio
Code is based on Electron. Blazor Native, on the other hand, will have the
same programming model but without HTML rendering. In this book, we
talk about Blazor Server and Blazor WebAssembly because they are the only
confirmed projects with precise dates of release, but Microsoft has long-
term plans for this technology, so there’s no time like the present to learn it.

Your First Blazor Application

“When it comes to new frameworks, I believe in a practical approach!”

Alastor Moody spoke of the dark arts in Harry Potter and the Goblet
of Fire, and for me, it is the same. We will start with a simple application
to get into the framework flow, and we'll use the minimum code that we
need. Our first step will be to install all the necessary tools.

What You Need to Get Started

Blazor is based on .NET Core 3, but you can use your favorite operating
system to follow the examples in this book (and on its GitHub repo). If you
use Visual Studio, you are tied to Microsoft Windows. The development
environment is important in a real development process, but for teaching
purposes, I generally choose tools that are available for all operating
systems supported by .NET Core.

The first step is to download and install .NET Core 3.1, from https://
dotnet.microsoft.com/download. This release contains both Blazor
Server, already available for production environments, and Blazor
WebAssembly, which has been released in preview.

For a development environment, you can download Visual Studio Code,
the free and cross-platform code editor from Microsoft. You can get it
https://code.visualstudio.com/.

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

CHAPTER 1 THE CASE FOR BLAZOR

Getting Started

Now that we are set up with the right tools, we are ready to get started
with our first Blazor application. We will use the .NET CLI, the command-
line interface provided with .NET Core that allows us to create, build,

and execute a .NET Core application. Microsoft provides some templates
to start using Blazor, but I find it is educational to start from zero, both

to learn how it is different from a classical .NET Core application and

to learn how Blazor works. In our case, we need to create an empty

web application. To do this, open the terminal window and execute the
command dotnet new web -o countdown.

The .NET Core CLI creates the countdown folder, with all the starter
code for a new application. Open the folder in Visual Studio Code to
see the project structure. If you are already familiar with .NET Core,
you will have noticed that this is the base structure of a web application
(Figure 1-2).

() Progran.cs — countdoen
@ EXPLORER C# Program.cs m -
- OPEN EDITORS C# Programes > {} countdow
® Cf Program.cs 1 using Microsoft.AspMetCore.Hosting;
+ COUNTDOWN 2 using Microsoft.Extensions.Hosting;]
3
> IR wscods 4 namespace countdown
? IF bin 5 {
> M obj p——
> W Properties public class Program

appsettings. Development.json {

appsettings json 8 public static void Main(stringl] args)

»d countdown.csproj 9 1{
Program.cs 10 CreateHostBuilder (args).Build().Runi);

Ch Startupcs o }
12
13 public static IHestBuilder CreateHostBuilder{stringl] args) ==
14 Host.CreateDefaultBuilder{args)
15 «ConfigureWebHostDefaults (webBuilder =>
16 {
17 webBuilder.UseStartup<Startup>{);
18 h;
19 }
20 X
21

3 AZURE 10T HUB
@oA0 [“LveShae @& B countdown Ln5,Col2 Spaces:d UTF-8 CRLF C# & 0O

Figure 1-2. Structure of a .NET Core 3.1 web project

10

CHAPTER 1 THE CASE FOR BLAZOR

In Blazor Server, the server-side construction of the user interface is
based on Razor Pages, an alternative approach provided by Microsoft to
the MVC pattern. It is based on the concept of pages instead of controllers
and views, and its goal is to be more productive and provide immediate
results. In the Startup.cs file, we need to load the configuration for Razor
Pages and Blazor Server, as shown in Listing 1-3.

Listing 1-3. Startup Configuration of a Blazor Server Application

public void ConfigureServices(IServiceCollection services)

{

services.AddRazorPages();
services.AddServerSideBlazor();

In the Configure() method, we need to add support for static files, the
endpoints for the Blazor Server Hub, and the fallback for the page. Look at
Listing 1-4.

Listing 1-4. Blazor Server Endpoints Configuration

public void Configure(IApplicationBuilder app,
IWebHostEnvironment env)

{
app.UseStaticFiles();
app.UseRouting();
app.UseEndpoints(endpoints =>
{
endpoints.MapBlazorHub();
endpoints.MapFallbackToPage("/ Host");
D;
}

11

CHAPTER 1 THE CASE FOR BLAZOR

The word Hub in endpoint.MapBlazorHub() should be familiar if
you already know how SignalR works, but we will go into more detail in
Chapter 2. The line endpoints.MapFallbackToPage("/ Host") sets the
page to navigate to if the specified resource is not found and also sets the
default page for our application. We need to create a file called Host.
cshtml in a folder named Pages. The folder Pages is required by default,
because the Razor Pages engine searches for pages in this location.

The Host.cshtml file contains the base HTML of the application and
the code for rendering our first Blazor component (Listing 1-5).

Listing 1-5. Blazor Server Host Page

@page "/"
@namespace countdown.Pages
<!DOCTYPE html>
<html lang="en">
<head>
<title>Countdown App</title>
</head>
<body>
@(await Html.RenderComponentAsync<Countdowny(
RenderMode.ServerPrerendered))
<script src="_ framework/blazor.server.js">
</script>
</body>
</html>

Blazor uses the same component concept as all modern Ul
frameworks, in which a set of pieces, called Blazor components, composes
the user interface like in a puzzle. A Blazor component is, therefore, a
reusable piece of your user interface that can contain both HTML (with its
C# code) and other Blazor components.

12

CHAPTER 1 THE CASE FOR BLAZOR

I will talk about components in forthcoming chapters; for
now, think of them as reusable pieces of your user interface. The
RenderComponentAsync() method renders the component indicated in
its generic parameter (Countdown in our case) with a server prerendered
modality. This method of rendering a component is a peculiarity of Blazor
Server and is not used, for example, in Blazor WebAssembly; we will talk
about the differences in depth in Chapter 2.

The script _framework/blazor.server. js loads the JavaScript code of
Blazor that permits the communication with the server. Note that to permit
the loading of the script, we need to invoke the app.UseStaticFiles()
method in the Startup class (see Listing 1-4).

It’s time to create our first Blazor component! Let’s create a file named
Countdown.razor in the root folder. Our goal is to create a component
that implements a simple countdown from 10 to 0 when the user clicks a
Start button. Let’s start with an intermediate step in which we define the
user interface and initialize the countdown when someone clicks the Start
button. See Listing 1-6.

Listing 1-6. Countdown Razor Component Start Code
@using Microsoft.AspNetCore.Components.Web

<h1>Countdown</h1>
<p>@count</p>
<button @onclick="startCountdown">Start</button>

@code {
private int count = 0;
private void startCountdown()

{

count = 10;

13

CHAPTER 1 THE CASE FOR BLAZOR

The @page directive indicates the path where this component
responds, and the using statement loads the elements of the Blazor
framework. The markup defines your interface: a title, a paragraph, and
a button. It is simple HTML with some Razor instructions. The @count
instruction writes the value of the variable count. The framework updates
the value in the paragraph for you when it changes. When the user clicks
the Start button, the startCountdown() method is called thanks to the
@onclick="startCountdown" statement.

The @code block allows you to define the C# code of the component.
A Razor file is a C# class behind the scenes, so you can create attributes
and methods to manage the status of your component. In Listing 1-6 we
set the attribute count to the value 10 when the startCountdown() method
is invoked. To implement a countdown, we need to add a timer that
decreases the count to 0. Let’s change the @code block as in Listing 1-7.

Listing 1-7. Countdown Razor Component Code

@code {
private int count = 0;

private void startCountdown()

{
count = 10;
Timer timer = new Timer(1000);
timer.Elapsed += (source, e) =» {
count--;
if(count == 0) timer.Stop();
};
timer.Start();
}

14

CHAPTER 1 THE CASE FOR BLAZOR

We created a simple Timer object that executes the callback subscribed
to the Elapsed event every second (you need to add the instruction @using
System.Timers at the top of the page to use the Timer class). It’s simple,
but it does not work because the code in the callback is executed in a
separate thread, and when the variable count decreases, the change is not
detected by the Blazor framework.

We can solve the problem by manually alerting the framework that
the component state has been modified, calling the StateHasChanged()
method. But this method must be invoked from the same thread of the
user interface, and then we need to use the classical InvokeAsync()
method. See Listing 1-8.

Listing 1-8. Countdown Razor Component Code Fixed

private void startCountdown()

{
count = 10;
Timer timer = new Timer(1000);
timer.Elapsed += (source, e) => {
count--;
InvokeAsync(() =»> StateHasChanged());
if(count == 0) timer.Stop();
};
timer.Start();
}

You can see the result in Figure 1-3.

15

CHAPTER 1 THE CASE FOR BLAZOR

B8 B cosmmowion El D Countdonn ko CO

Countdown Countdown
0 10
Countdown Countdown
9 8
i sm

Figure 1-3. Our first Blazor Server app at work

Summary

In this first chapter, I talked about why Blazor is a viable solution for .NET
developers who need to create a modern web application with a rich user
interface without taking the time to learn the JavaScript language and
frameworks.

16

CHAPTER 1 THE CASE FOR BLAZOR

You also learned that the first version of Blazor was released with .NET
Core 3 and that a library ecosystem and complex use cases are not yet
available but are forthcoming. In addition, you learned that Microsoft’s
vision for this technology is long-term, and the company is paying great
attention to the use of web standards rather than proprietary technologies.

In the next chapter, [will cover how Blazor works internally and the
main differences between Blazor Server and Blazor WebAssembly so you
know which to pick for your needs.

17

CHAPTER 2

Blazor Server vs.
Blazor WebAssembly

As I always say, there is not one tool that does everything but instead
different tools for different requirements. A good programmer chooses
his tools solely according to the requirements. You have to remember
that requirements can be functional and nonfunctional, and often
nonfunctional requirements are more important than functional ones for
the success of an application.

You might think that Microsoft released Blazor Server before Blazor
WebAssembly just because the latter was not ready yet; however, as you
will see in this chapter, Blazor Server and Blazor WebAssembly solve the
same problem with different approaches. You must choose which one will
work best for you depending on your requirements.

How the Countdown Application Works

In Chapter 1, we created a sample application with Blazor Server that
counts down from 10 to 0 when the user clicks a Start button. The code is
simple if you know .NET, but how does it work behind the scenes?

Let’s run the application and open it in your favorite browser. I use
Google Chrome, but as you probably know, the new versions of Edge

© Michele Aponte 2020 19
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_2

https://doi.org/10.1007/978-1-4842-5747-0_2#ESM

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

use Chromium, the same engine as Chrome, so you can use Edge if you
prefer it. Open the browser developer tools and go to the Network panel
(Figure 2-1).

@ Courtdom Ao +

© O localosti0 2 ¥ E 00 ddemmaHE"@+ @

HoAms o Bokewds () SubmivPacicty (] Octed OO e) Solneresgenic. @ Condhiscsamt. [bdeedDetsssse . [e sth B () « B Other Boskmaria
(] Eomerts Corsclo Soutes Mework Feron Memory Apgleaton Seculy » I ox Hosponanve ¥ 100% H

® 5 ¥ Q Proserve log Dissble cache ~ Online t *

Hide dats URLs 4_; XHR J5 CSS Img Meda Font Doc WS Manfest Other
I Py - o 00 I

= 2 = Countdown

o

Hams Stats Type Initiator Soe Tima Watertall Frl

..... 200 document Otre 1.0 KB Tms |

blazorservie I eetp [298 3me

QO TGOtaters0n. | 200 xhe Bazee sorwe 1 28 I Ll
rg-valdate.is 200 Rt conent-acnpt 24 556 KB 9ms L
_blazorficstUNmLBw WGmBLUSyIgHFGAC | 101 wershand kel biarorservecs:l 1} Servcdany

Sroguests 573 KB transfemed | 260 KB resources | Finshc 298 ms = DOMContentLoaded: 271 ms | Load: 306 ms
I Conacle What's Now x

Figure 2-1. Blazor Server application client downloads

The HTML is rendered on the server side, and the script blazor.
server.js is downloaded and executed in the browser. The script starts
the connection with the SignalR Hubs API and opens a WebSocket from
the server to the client.

SignalR is a Microsoft library that allows data to be pushed from
the server to the client using the best-performing channel available.
It is popular in the Microsoft ecosystem because it solves the problem
of updating the client when something changes on the server, without
having to rely on the classic JavaScript polling that periodically calls
the server to check for changes to show in the interface. From the
developer’s point of view, it is sufficient to define a class that extends
the base Hub class, from which it is possible to invoke a JavaScript

20

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

callback in the client page. The library selects for you the best technique
to implement the communication.

When the page loading is complete, the client library starts the
negotiation with the server (the negotiate?negotiatedVersion=1 call
in Figure 2-1) to choose the best type of communication. If available,
the first choice is the use of WebSocket, a standard protocol (RFC 6455,
standardized for web browsers by the W3C) that provides a full-duplex
communication channel over a single TCP communication. A WebSocket
is the best choice in terms of performance but requires the support of
both the browser and the application server. Usually, this is not a problem
because all modern browsers support WebSocket, and looking at Microsoft
solutions for web hosting, WebSocket is supported starting from Windows
Server 2008 R2 and Windows 7; in addition, it is available on all the
Windows Azure hosting services for web applications.

If the client and the server cannot start a WebSocket connection, the
library downgrades to Server-Sent Events techniques. As with WebSocket,
a Server-Sent Events communication pushes data from the server to
the client without polling, but in this case, the communication is one
way. After a first HTTP response of type text/event-stream, the server
can send data that the client can receive with a simple callback on the
EventSource object (Listing 2-1).

Listing 2-1. The JavaScript Callback to receive data in Server-Sent
Events Communication

const eventSource = new EventSource('url');
eventSource.onmessage = (e) => {

[...]
};

If Server-Sent Events is also unavailable, SignalR downgrades to
long polling communication, an optimized variant of the type of polling
where the client sends requests to the server to check for changes.

21

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

In the simple type of polling, if you send requests periodically, for
example, every five seconds, you can have a five-second delay on the
update, and if there are no changes, your requests consume resources
without results. By contrast, long polling tries to mitigate these problems
by leaving a request suspended and pending until a change occurs.
When the client finally receives a response or the connection is lost for a
network error, it immediately makes a new request.

Blazor Server uses SignalR to push the update of the user interface to
the client. In Figure 2-1, you can see the opened WebSocket (_blazor?id=
tUNimLBwWGmBUSY3qHFgfQ). If you click the WS tab of the Network panel, as
in Figure 2-2, you can see the data exchanged in detail.

@ Courndown Aps T 5
C C ocahast 8 00 ade o8B0+ @
B! dmes ok Deckrwris) Subewit WD Astivity [OrchedCuS . Ore.) Schmareagentidl £ Condhisi senre B e Consnase . [irbetrce wih - () imternat Dreses L1 * [Ot Boskmars
& 4] Ewmets Conscls Sources Network Porommarce Memory Apclication Security ® i Aosponsive ¥ 440 X S50 100% Y
® O 7o Presevekg [Disablecache Onime * £ %
HidedstaURLs A1 XHR JS CSS img Media Font Dol (L2 [Mantest Other
| 50 ma s 150 00 e 200 |
g E . Countdown
o
Mame % Hoaders Messages Timing T,
|| _biarorlidstUNm BaWGmBUSY...| @ v Emtor mgax, for axampie: (web]isockst
Data Length Tirrs
4 Binary Meossage 1488 16:33:35.381
T Binary Mesaoge 2TE 150335382
148 B| 16:33:36.382
1 Binary Message 278 16:33:36.384
Binary Message 1480 16:33:37.306
1t Binary Messnge 7B 16:3337.387
4 Binary Massage 1468 16:3330.383
Binary Message 27R 183330385

@B00E0A: G291 601 BACO aeda S33e 5265 Ge6d 6572 ¥.Aender

BPOBO0L: 4261 T46I GBI 15c4 Tadd DOO@ B2N3 BB
DBHOBR0Z: BOE DOOD DAL 0AG0 BODY OO BRFF FIf
OPONUNI: TTRS DRO0D DDUD DEUD DODY DODR BATF FETT
ShBOBBO: (187 BBON DO 0820 BB BOOR BRIF If1
SBOODOOS: 1181 D0OD 0000 M40 BOD1 DOOD B4 BBDO ..

: BOBE BEOD D00 RS0 DODE PODD BO0D BBRD ..
SBRODE0T: B0OC BPOD 000D 0909 POR1 3362 G00R BA3E .,
BPODE0E: DOOE BE4D 0800 0OSE BODE DOSC PUPD WBEZ ..
B0000009: 2040 B892

1/ S roquests | 0B /573 KB traneberr Hax Viswir ¥ 1)

i Comecle Whats New » x

Highiights from the Chiome T8 upiato

Figure 2-2. Countdown application BlazorHub WebSocket

As you can see in Figure 2-2, when the user clicks the button, a
message is sent to the server (up arrow) that executes the request and
sends to the browser the changes to be applied to the browser DOM (down
arrow). The next messages are caused by the timer that every second

22

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

updates the counter. The countdown timer is a server thread that updates
the count variable (Listing 1-8), and when the Blazor engine detects a
change, it updates the client interface through SignalR.

Note Normally, the Blazor engine automatically detects

the changes. In Listing 1-8 we had to explicitly call the
StateHasChanged() method only because the change does not
occur in the thread in which Blazor performs the change detection.

Running the Countdown Application
in the Browser

With Blazor WebAssembly, all the application user interface code runs
in the browser, without interaction with the server. You will call the
server only if you need to use a web API to retrieve or save data, but the
presentation will run on the client side. Let’s see how it is possible.

To use Blazor WebAssembly, you only need to install .NET Core 3.1.300
or later. You can use a ready-to-run template by Microsoft without
installing any templates, but if the system did not found them, you can
run the command in Listing 2-2 and creating a sample project with the
command dotnet new blazorwasm.

Listing 2-2. .NET CLI Blazor Project Template Installation

Command

dotnet new -i Microsoft.AspNetCore.Components.WebAssembly.
Templates::3.2.0

However, to understand how the Blazor Server application is different
from the WebAssembly version, I prefer to start from the same starting point
used in Chapter 1 and then execute the command dotnet new web -o

23

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

countdown-wasm. Open the countdown. csproj file to see the basic project
configuration for a web application (Listing 2-3).

Listing 2-3. .NET Core Web Application Project File

<Project Sdk="Microsoft.NET.Sdk.Web">
<PropertyGroup>

<TargetFramework>netcoreapp3.1</TargetFramework>
</PropertyGroup>

</Project>

The first key concept you need to understand is that the result of
a Blazor WebAssembly build is not a classic .NET web application.
Instead, it is a set of files that the browser will download and execute
locally. The web server, Kestrel in our case, is just a way to expose this
set of files to the browser. The countdown.csproj file must be changed
as shown in Listing 2-4.

Listing 2-4. .NET CLI Blazor Project Template Installation
Command

<Project Sdk="Microsoft.NET.Sdk.Web">
<PropertyGroup>
<TargetFramework>netstandard2.1</TargetFramework>
<RazorLangVersion»3.0</RazorLangVexrsion>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Microsoft.AspNetCore.Components.
WebAssembly" Version="3.2.0" /»
<PackageReference Include="Microsoft.AspNetCore.Components.
WebAssembly.Build" Version="3.2.0" PrivateAssets="all" /»

24

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

<PackageReference Include="Microsoft.AspNetCore.Components.
WebAssembly.DevSexver" Version="3.2.0" PrivateAssets="all" />
</ItemGroup>
</Project>

The first difference you have to note is the change of the
TargetFramework value in netstandard2.1; this allows the build of the
project with the correct dependencies. We also need to set the language
version for Razor (RazorLangVersion) to version 3.0 to allow the build of
Razor components. Finally, with the ItemGroup element, we declare all
the dependencies for the build and execution of the Blazor WebAssembly
engine.

Now open the Program. cs file and delete the static
CreateHostBuilder() method, because the framework provides us with a
simple API to start Kestrel directly in the Main method, like in Listing 2-5.

Listing 2-5. Blazor WebAssembly Host Builder

public static async Task Main(string[] args)

{
var builder = WebAssemblyHostBuilder.CreateDefault(args);
builder.RootComponents.Add<Countdown>("countdown");
await builder.Build().RunAsync();

}

As you can see, you need only three rows of code to configure the
hosting of a WebAssembly application, create a WebAssemblyHostBuilder
with the default parameters, set the Countdown component as the Root
component, and start listening for HTTP requests in the application. You
do not need the Configure class, so you can delete it.

25

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

The file Countdown.razor is the same as the Blazor Server version, and
you need to enter a copy in the root folder. However, we also need to render
the Blazor component on the client side without the page Host.cshtml.

To do this, we can add a wwwroot folder to the project and create
an index.html file. The index file (Listing 2-6) is a classic HTMLS5 start
page, but in the body block we use the Countdown component as an XML
element. During page parsing, the browser ignores the <countdown>
element because it is not a valid HTML5 element, but after loading the
blazor.webassembly. js script, the Blazor component is recognized and
executed.

Listing 2-6. The index.html File That Hosts Our Blazor Component

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>Countdown</title>
</head>
<body>
<countdownyLoading. . .</countdowns
<script src="_framework/blazor.webassembly.js"></scripts
</body>
</html>

The Blazor component element is called countdown because in the
Main() method we have specified the “countdown” string as a
parameter for the RootComponent.Add<T>() method (Listing 2-4).

26

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

We are ready to run the application: execute the command dotnet run
in the project folder and open the address localhost:5000 in the browser
with the Developer tools active on the Network tab (Figure 2-3).

o Boumes Metwork Pedformance Memory Apcication Secarty Audty

Px
r s s Countdown

HicedataUfits) 3HR 45 €35 g Meda Fort Doc WS Mandest Other
oty $how requests weeh SameShe issoes o
U g st rows Groug by frame L
@ Srew oo Caphs
e e sare e o me w0 130
T ——
MHame 4 suts Type Intanor Stz T Watertan
blazo boot json 20 feich ey sebmmembteint 28HB 2 |
e —— P — yazKe 1 f
‘countdomn-wasn o 200 fetch blazos webassembrelat ABKE 4 | I
countdown-wessm o 20 feich blace webassembielact 14KD 8. |
onet 3.2 -previewd 201 5828 20w blazce webassemblelact SOKD)
cofret wasm 20 fetch lazcr, webassembiiac TRIKD 1 1
I E— X0 document Mhar 480 0. N |
Micosoft AsshtCoss Components.of HO teich B1AKB 7 =
Moot Aschiatow Compenints Fomms gl =m0 fatch 150HB 8. | |
Mcssoft AschietCass Components Web dil 20 st 4IKB 6. 1
Meriof AschinCom Componenn WebAssemsl.. 200 fatch HIHE & | -
Miesmioh Bol Anyncintaaces 20 teen s3KE 8 4
Microga Extensions Configuration Aberacions.dil 200 feich 1M3KE & | J
Micsmsoh Extensions Configuraion i 20 feich 14EKE & ‘
Microsoh Exiersions Dependencyinecion Absta_ 200 feich 173K8 & | |
Micrmsolt Extemsions Dependencyinscion o 20 feich neke 8 ‘
20 feich 27K T. | J
200 tetch 150K8 & 4
2O feich 207KE A | -
20 tetch s webassembeiat S2KD 0 -y
20 feich blazor webassembreinct BAKD 7 | 4
20 fatch tlazor, webassembirin 1IMEB 1, ==]
2O ek lazoswabassemblyis:] WITKE 2 | i
=0 fatch o webasemb it] 2OKB T J
Symtem Companenibedsl Arrernors ol 20 tetch flasie mebasembane ZAKE 5. | 1
Sywiem Componenthiodel Compoation ol 0 ot lagoe s WLKE & |
Sysem Componsathcdal DIAARNIERONS, o 20 tech Az wbETL HANE 1 | 1
SOmquests | 50 M8 wasferred | 162 MB rescerces | Frish: 849 ms | DOMContemLoaded: 153 ms | Load: 180 ms

Figure 2-3. Countdown Blazor WebAssembly application

The first impact is really impressive, although seeing the DLLs
downloaded in the browser can be confusing and bring up some bad
memories (can you say Silverlight?). In this case, you have not installed
any plug-in, so how does this work? The files highlighted in Figure 2-3 are
the key. Thanks to them, the browser can execute the .NET code of the
DLLs using the WebAssembly porting of the Mono framework. Specifically,
the countdown-wasm.d11 file contains our code compiled in Intermediate
Language (IL) executed by Mono in the browser with the dotnet.wasm and
dotnet. js files. The application uses various .NET DLLs also downloaded

27

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

in the browser, including Blazor, that interact with the environment
thanks to the blazor.webassembly. js script. All the DLLs libraries and
the runtime components are cached in the browser, so they will not be
downloaded in the next execution of the application.

WebAssembly Revolution

In April 2015, a W3C Community Group was formed to work on a new
standard called WebAssembly, with the aim of overcoming the limitations
of JavaScript and allowing the use of other languages in browsers. In June
2015 there was the first public announcement of the standard, but we

had to wait more than a year for a first preview (October 2016) after the
definition of the core features in March 2016.

The group included the major browser vendors, unified by the need
to allow application development with advanced performance, such as
games, video and audio editing and streaming applications, and virtual
and augmented reality applications. In August 2017, the Community
Group became the official W3C WebAssembly Working Group and in
February 2018 released the WebAssembly specification draft.

To understand what WebAssembly is and why we can consider it a
revolution in web development, let’s clarify how JavaScript works in the
browser. JavaScript code is interpreted in the browser by a sort of virtual
machine called the JavaScript runtime, in which it can interact with the
browser through specific APIs (the DOM, WebSocket, Web Storage, etc.).
WebAssembly is placed in the same JavaScript runtime (Figure 2-4), which
allows it to interact with the same browser APIs and even with JavaScript.

28

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

Browser API
(WebSocket,
DOM, File API,
Web Storage, etc)

JavaScript Runtime

Figure 2-4. JavaScript and WebAssembly in the browser

The main difference is that the JavaScript code is interpreted by the
JavaScript runtime, while the WebAssembly code is directly executed
at near-native speed, since it is compiled in a WASM binary format that
is close to the specification of the runtime. Furthermore, with the same
code, the size of the compiled WASM code is obviously smaller than the
corresponding JavaScript.

You can write WebAssembly code by yourself or use a high-level
language like C++ or C # to generate the WASM code, but this new
standard was designed to work with JavaScript, so you can call a JavaScript
script from a WebAssembly function or invoke a WebAssembly function
from a JavaScript script. This interaction can be useful in a hybrid scenario
and is a powerful tool that offers you the best of both worlds.

You do not need to install any plug-in to use WebAssembly, because it
is supported natively by the browser. Like all W3C standards, the support
for WebAssembly is guaranteed in most of the latest browser versions (but
not in all).

29

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

In Figure 2-5, you can see the support for the WebAssembly standard
from the major browsers on the market (www.caniuse.com).

Can | use webassembl 7 ¥ Setting

a2n 5 found

i WebAssembly s

WebAssembly or "wasm” Is a new portable, size- and boad-time-
efficient format suitable for compilation to the web.

Notes | Known issues([0) Rescurces(7) Feedback

Figure 2-5. WebAssembly browser support

Which Blazor to Choose

The question now is, which version of Blazor is the best for your
application? What criteria should you use when choosing between Blazor
Server and Blazor WebAssembly?

When we compare loading time, Blazor Server is faster than
WebAssembly because it runs on the server side, and therefore the
download size is smaller. By contrast, a Blazor WebAssembly application
runs completely in the browser, and it provides a full single-page
application user experience against a heavier initial load.

If your application is completely executed on the client side, you can
support an offline scenario, because it is not necessary to call the server for
all user interface updates. On the other hand, if you have to store sensitive

30

http://www.caniuse.com

CHAPTER 2 BLAZOR SERVER VS. BLAZOR WEBASSEMBLY

information, a server application allows you to store it more securely since
the user does not have direct access to the data.

Finally, browser support for WebAssembly may be a reason to choose
Blazor Server: there are still many applications that need to be run on
Internet Explorer, for example, where the support for the new standard is
not available.

Do we have to choose now? As you can see, only the configuration
part of our application changed between Blazor Server and Blazor
WebAssembly. There are other differences in a larger application, but you
can control them using some design patterns, which allow you to switch
from the server version to the WASM version with minimal impact. Read
on to find out how.

Summary

In this chapter, we analyzed the main differences between Blazor Server
and Blazor WebAssembly so you have all the information to choose the
correct version of the framework based on your requirements. In the next
chapter, we will get to the heart of the framework, discovering all the tools
that Blazor provides so we can create a real single-page application using
the .NET Framework and C#.

31

CHAPTER 3

Create Your Single-
Page Application

Creating a single-page application is crucial if you want to develop an
application with a well-performing and productive user experience. But
it can be complicated and hard to maintain if you do not approach the
development correctly.

Blazor can support you by providing all the necessary tools to create
a successful application, as I describe in this chapter. Still, it is essential
when designing your application to use the appropriate patterns and
choose the correct tools in the right places.

Starting with the components, the core of all modern UI frameworks,
you must learn how to separate functionalities and make them reusable.
In a business application, where you collect data from the user, it is
important to provide a good experience for data entry that includes
validation and helps the user not to make errors.

In addition, to create a single-page application, you need a single
page. The navigation between the pages takes place with the routing
functionality that allows you to show a component based on user
interaction or at the end of an operation. You also need to communicate
with the back-end, using the HTTP protocol, and exchange information
with the front-end. Last but not least, you must manage the security in
your application, authenticating users and allowing them to do only
certain operations.

© Michele Aponte 2020 33

M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_3

https://doi.org/10.1007/978-1-4842-5747-0_3#ESM

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Finally, you cannot forget to create code that is maintainable,
testable, and straightforward. Using design patterns can help you, but
they can solve only generic problems, and you still have to adapt them
to your needs.

Everything Is a Component

Everything in your user interface is a component. In the previous chapters,
you learned what a component is in Blazor, so now it is time to understand
their importance.

A component is a piece of your user interface. Imagine a typical
business application where you have a main menu, a footer, and the
central area where you show a table of items (Figure 3-1). How many
components do you see in it?

My Items

Show 10 v entries Search:
MName T Pesition Office Age Start date Salary
Briglle Williamson Integration Specialist Mew York 61 2012/12/02 $372.000
Colleen Hurst Javascript Developer San Francisco 39 2009/09/15 $205.500
Garrett Winters Accountant Tokyo 63 2011/07/25 $170,750
Herrod Chandler Sales Aszistant San Frandsco 59 2012/08/06 $137.500
Rhona Davidson Integration Specialist Tokyo 55 2010/10/14 $327.900
Tiger Nixon System Architect Edinburgh 61 2011/04/25 $320,800

Showing 1 1o 6 of 6 entries Previais . Neéxt

Figure 3-1. Typical business application structure

34

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

There are at least three main components: one for the main menu, one
for the footer, and one for the table. Do you agree? This number is probably
correct, but components in Blazor have a specific definition. A component
must have the following characteristics:

e They can be contained, or they can contain other
components.

o They can neither too big nor too small.

o They are reusable.

e They are customizable.

o They can be independent of other components.

o They must have logic.

Component Tree

From the structure of the components and their relationships, we must be
able to create a tree of components with a root from which we extend the
structure into leaves. Then we need a root component that contains our
user interface. Blazor does not limit us to a single tree, and therefore to a
single root container, but it is a good idea to manage our application from
the point of view of the navigation.

Each component can contain other components, creating a parent-
child relationship between them. Since we have to create a tree, a
component cannot contain a child that is already its own parent. This
would create a circular dependency, which would create a stack overflow,
so it is not permitted.

Component Size

The size of a component depends on its purpose, but it is easy to get it wrong.
Let’s take as an example the main menu of the application, which can be a

35

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

component. What about the menu items? We could create a component for
a single menu item and use a set of them in the main menu component. If
your menu item has an icon, should it be a component? We could continue
like this down to a single character of each string in your interface.
Choosing the size of a component requires experience and a
good knowledge of the domain, but you can use some general rules
to start with. In software engineering, there is a rule called the single
responsibility principle. It is directly connected to the separation of
concerns and says that each element of a software system should perform
only one task, which means it must have only one responsibility. When
you think about your components, think about their responsibilities and
create a component for each responsibility. Most of the time, this will be
the right choice.
For example, take the list/details management aspect of an entity in
your domain. Creating a component for the list management and one
for the details management can be a good idea, but there may be cases
where the simplicity of the data, like an entity with only one identifier
and description, makes the use of two components an example of over-
engineering. Context is king always.

Reusability, Customization, and Independence

Beyond the context, however, if you need to reuse a piece of the interface
in different use cases, you can be sure that it is a component. Returning
to the previous example, if there are other use cases in your application
where you need the details form of an entity, it is surely a component
separated from the list.

Imagine you have a list of articles and a list of article categories and
you need to create a new article in which the category is not yet present
in the list. To improve the user experience, you can show a button next to
the category field in the article form and use it to create a new category on

36

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

the fly and choose it for the article. In this case, you can reuse the details
component of the category that is already used in managing the categories.
Perhaps it would be better to show the component in a modal window
instead of in the central area of the application. See Figure 3-2.

Articles Manager Articles Manager
Qo XO | | D X} o) @)
Home | Articies Categories | Articies | Admin | i3 | | Home | Articles Cotegories | Articles | Admin | L,
| Create Category | | Create Article
L Name Name v =
1 ' I creeeoaeen
i | | Name
| | R | —
. Descnption i
| - I)|]
i | = 77| Description i
I i Description I I | |
i s Create Cancel J
| Create Concel - ..
———————————————————————

L4 #|

Figure 3-2. Reusing a component in different use cases

To allow this scenario, you need to make the component
independent of its container and make it customizable. Modal forms
generally have their owner title and buttons area, so it is necessary, for
example, to check the visibility of the title and buttons to manage it
differently in the two cases.

Being independent of the container also means controlling the
behaviors of the user interaction with the component, which means, in
the previous example, having the ability to do different actions when the
user clicks the buttons. If you are in the article categories details form,
after saving or clicking the Cancel button, you must return to the list of
categories; therefore, in the modal form, you need to close the window and
select the item created as a category for the current article.

37

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Component Logic

Creating a component requires the generation of a class instance, which
affects the performance of the application. Each component has its

own state that requires memory space, and the Blazor framework must
check each of the components for changes to update the state of the user
interface. So, if a component has no logic, it makes no sense thatitis a
component.

For example, the footer component of our example probably contains
only one string with the copyright information or the version of the
application. You can show this information directly in the container
component instead of its own component, simplifying the structure and

saving resources.

Creating the Application Structure

Following the instructions provided in the previous chapters, we can create
the basic structure of a single-page application project from scratch. You
can apply all the concepts discussed in this chapter in both Blazor Server
and Blazor WebAssembly, but we will use Blazor WebAssembly in this book;
I will point out the differences from the Server version when relevant.

Suppose you want to create an article manager, a single-page
application to manage the articles of a blog, and want to simplify the
domain to manage only the articles and its categories. Let’s start by
creating a web application with the .NET CLI, calling it article-manager
(dotnet new web -o article-manager-wasm), and referencing the
needed packages, as illustrated in Chapter 2.

To simplify the layout, you can use version 4.3 of the Bootstrap CSS
framework, referencing it by a CDN or downloading it into your project
(https://getbootstrap.com/docs/4.3/getting-started/download/).
If you prefer to have all the project dependencies offline, create a subfolder

38

https://getbootstrap.com/docs/4.3/getting-started/download/

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

of the wwwroot folder named css and place in it the bootstrap.min.css
file and an empty file named site.css, where you can place the custom
CSS rules of the project.

While the project grows, it needs to import various namespaces that we
can centralize for the Razor components in a file named Imports.razor
placed in the application’s root folder. This allows us not to repeat them in
each Razor file (Listing 3-1).

Listing 3-1. The _Imports.razor File Content, with All the
Namespaces for the Project

@using System.Net.Http

@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.Web
@using Microsoft.JSInterop

@using article manager wasm

We also need a container component, usually named App.razor, that
for now will contain a welcome message (Listing 3-2).

Listing 3-2. The Container App.razor Component Code

<div class="container">

<h2>Article Manager</h2>

<p>Welcome to the article manager app.</p>
</div>

The single page index.html, placed in the wawroot folder, references
the CSS files and the app component, as shown in Listing 3-3.

39

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Listing 3-3. The index.html File Content

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />

<meta name="viewport" content="width=device-width" />
<title>article-manager</title>

<base href="/" />

<link href="css/bootstrap.min.css" rel="stylesheet" />
<link href="css/site.css" rel="stylesheet" />

</head>

<body>

<app»Loading...</app>

<script src="_framework/blazor.webassembly.js"></script>
</body>

</html>

You can see the project structure for both Blazor Server and Blazor
WebAssembly in Figure 3-3. The Blazor Server structure is slightly
different, as described in Chapter 2. The most important difference is
the index.html in the wwwroot folder on Blazor WebAssembly versus the
corresponding Host.cshtml file in the Pages folder on Blazor Server. In
addition, for the Blazor WebAssembly project, I deleted the appsettings
files, because we do not need any server-side configuration in this kind of
project.

40

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

“ ARTICLE-MANAGER-WASM " ARTICLE-MANAGER
> P bin > I bin
> I obj > Im obj
> W Properties ~ [@= Pages
“ @ wwwroot @ _Host.cshtmil
v [css > Il Properties
= bootstrap.min.css ~ [wwwroot [css
o site.css = bootstrap.min.css
= site.css
@ _Imports.razor @ App.razor
@ App.razor appsettings.Development.json
»d article-manager-wasm.csproj appsettings.json
C# Program.cs o] article-manager.csproj
C# Program.cs
C# Startup.cs
Blazor WebAssembly Blazor Server

Figure 3-3. Project structure for Blazor WebAssembly and Blazor
Server

In Figure 3-4, you can see the result of executing the project (dotnet
run in the CLI or F5 in Visual Studio), which is the same for both Blazor
Server and Blazor WebAssembly. The user result is the same, but with the
WebAssembly version, all the code runs in the browser. By contrast, for
the Blazor Server version, the back-end provides the HTML and keeps it
updated via SignalR.

We are now ready to compose the application by creating the right
components and hosting them, starting from the app container. To simplify
this first attempt to use the components and to understand the role of the
routing for the page navigation, we will not use the routing components
yet; we will add them after learning how to structure the user interface
from scratch.

41

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

® 0@ @ aticle-manager x4
¢« C @ localhost:5000 Q % H 0O 0 8 4 © moBA" @« @ :
i Apps & Bookmarks @ Submit MVP Activity Orchard CMS - Orc.. (B, Software agenti di.. » [Other Bookmarks

Article Manager

Welcome to the article manager app.

Figure 3-4. The article manager application execution result

The Main Menu Component

The main menu of the application is an excellent candidate to be a
component: it contains a single functionality, its content depends on the
context and current user, and it can be reused in various scenarios and
applications. It is also a useful example to introduce the parametrization
of a component because you can specify the menu items and capture the
click on one of them.

Let’s create a Shared folder in the project root, which we can use for all
components shared with all sections of the application, and then create a
file named MainMenu.razor containing the markup in Listing 3-4 and the
code in Listing 3-5.

Listing 3-4. The Markup of the Main Menu Component

<nav class="navbar navbar-expand-sm bg-primary navbar-dark">
Article Manager
<ul class="navbar-nav">

42

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

@foreach (var item in MenuItems)

{

<1i class="nav-item @(item.Active ? "active" : null)">

<a class="nav-1link" href="#" @onclick="e =» OnMenuItemClick.
InvokeAsync(item)">@item.Caption

</1i>

}

</nav>

In this component, I use the navbar widget of bootstrap. The menu
items are in a public property named MenuItems and decorated with the
attribute [Parameter]. This attribute allows the container component to
pass a value for the property, leaving Blazor to keep track of any changes.

Listing 3-5. The Code of the Main Menu component

@code {

[Parameter]

public EventCallback<MenuItem> OnMenuItemClick { get; set; }
[Parameter]

public MenuItem[] MenuItems { get; set; }

}

The property MenuItems is an array of a custom MenuItem class, which
contains, for now, two properties: Caption, a string with the label of the
menu item, and Active, a Boolean value that is true if the menu item is
the current item and that is false otherwise (Listing 3-6). Usually, I place
this kind of class in a folder named Models that represents the data model
of the user interface.

43

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Listing 3-6. The Code of the Main Menu Component

public class MenuItem

{
public string Caption { get; set; }
public bool Active { get; set; }

}

We are using the MenuItems array in a foreach loop and using the
current element in the cycle to set the caption and the active class on the
<1li> element. If the user clicks the item, we capture this event (@Qonclick
on the anchor element) and raise a custom event called OnMenuItemClick,
passing the clicked item as an argument. OnMenuItemClick is
another parameter of the MainMenu component, which is of type
EventCallback<MenuItem>, an event handler delegate provided by the
framework to simplify the definition of a custom event.

We are ready to use the MainMenu component in the App component,
as shown in Listing 3-7 and Listing 3-8. All the public properties
decorated with the attribute [Parameter] are visible on the MainMenu
component, and we can use them directly in the markup (Listing 3-7).
The App component and MainMenu components are in different folders,
which means they have different namespaces. To allow the visibility of
the MainMenu namespace to the App component, you need to add the
namespace in the Imports.razor file.

Listing 3-7. The Markup of the Main Menu Component in the App
Component

<MainMenu MenuItems="MenuItems" OnMenuItemClick="MenuItemClick" /»
<div class="container mt-3">

<h2>Article Manager</h2>

<p>Welcome to the article manager app.</p>

</div>

44

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

As an example, we have used an array of MenuItems initialized statically
in a private method called loadMenuItems (). Here, there is a personal
styling choice: I prefer to improve the code readability by using private
and public methods that separate each operation in the components, but
you are free to do this initialization inline with the declaration or the class
constructor.

Regarding the constructor, a component provides you with many
hooks to perform operations at various times of the component lifecycle.
One of these is the OnInitialized method that you can override to do
operations as soon as the component creation is complete. You can use
itinstead of the constructor to reduce the impact on the component
creation time. It can be a useful optimization based on the complexity of
the initialization operations, because if you place the same operations
in the constructor, the component is created only at the end of them,
with a delay of the user interface visualization. You can learn more
about the component lifecycle hooks in the official documentation:
https://docs.microsoft.com/en-US/aspnet/core/blazor/
lifecycle?view=aspnetcore-3.1

Listing 3-8. The Code That Manages the Main Menu Component in
the App Component

@code {
public MenuItem[] MenuItems { get; set; }
protected override void OnInitialized()

{
this.loadMenuItems();

}
public void MenuItemClick(MenuItem item)

{

foreach (var menuItem in MenuItems)

{

45

https://docs.microsoft.com/en-US/aspnet/core/blazor/lifecycle?view=aspnetcore-3.1
https://docs.microsoft.com/en-US/aspnet/core/blazor/lifecycle?view=aspnetcore-3.1

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

menuItem.Active = false;

}

item.Active = true;

}

private void loadMenuItems() {
this.MenuItems = new MenuItem[] {
new MenuItem()
{ Caption = "Article Categories", Active = true },
new MenuItem()
{ Caption = "Articles", Active = false }
15

}

}

Note the method MenuItemClick(), called when the OnMenuItemClick
custom event is raised: the code sets the Active property of the MenuItems
array to false and also sets the Active property of the item clicked to
true. The change detection of Blazor notes this change and updates the
user interface, setting the active class on the item clicked. The fascinating
aspect is the way it executes the update: Blazor knows the state of the user
interface, so when the code wants to change it, the framework computes
the difference between the actual state and the new state and applies the
difference only to the DOM of the browser. This technique, also used by
many JavaScript frameworks, speeds up the update of the user interface
significantly.

In Figure 3-5, you can see the result of our work. Using the
OnMenuItemClick event, we can show or hide other components,
simulating the page navigation. By doing it this way, besides being too
laborious, we would also miss out on advanced navigation features, which
we can get for free by using the routing features made available by the

framework.

46

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

BO® & stickemanager x 4
€ C @ localhost:5000 a v B0 0 8ileoomoH"@« @8 :
B Apps o Bockmarks Q) Subeit MVPActvity [Orchaed CUS - O W, Software agecti i & Condivisiconme - [indewed Datatuse » | BN Other Bockmarks

Article Manager Article Categories|_Articles

Article Manager

Welcome to the article manager app.

B0 B stk x +
“« G (@ Iocalhost 500078 a % 00 dieomOoH""@O <« @ :
B Appn o Bookmads QY Subent MVPActvity [] Orchaed CUS - O B, Soltware aget o & Condivivi con e - B wutewed Datatine. » B3 Other Bockmarks

Article Manager Article Categories Articles

Article Manager

Welcome to the article manager app.

Figure 3-5. The main menu component in action

Page Navigation with Blazor

When creating a single-page application, the navigation between pages is
crucial. Blazor provides specific components for this purpose that manage
for us essential aspects of the routing, such as updating the browser
history, managing a page not being found, and updating the URL.

To introduce Blazor routing, I need to highlight the difference between
the components that are part of the page and the components that represent
a specific page of the application. Usually, in a Blazor application, there is
a folder called Pages that contains the components that are pages of the
application; meanwhile, all the other components are in a Shared folders.

47

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Let’s create a Pages folder and create a file named Index.razor that
represents your home page. Move a piece of App.razor onto this page, as
shown in Listing 3-9.

Listing 3-9. The Home Page Component

@page II/II
<h2>Article Manager</h2>
<p>Welcome to the article manager app</p>

From a syntactical point of view, the difference between a component
and a page is the directive @page, which creates the path/component pair,
called a route. You can think of the root as the URL for navigating to the page.

Now you can add two more pages in the Pages folder, Article.razor
and ArticleCategories.razor, with a simple title and the directive @page.
You can use the code in Listing 3-10, where the first two rows are for the file
Article.razor and the last two are for the file ArticleCategories.razor.

Listing 3-10. The Article Category and Articles Pages

@page "/articles"
<h2>Articles</h2>

@page "/articlecategories”
<h2>Article Categories</h2>

Now you have three pages, and it is time to decide in which area
of your application you want to show a page when the user selects the
corresponding route. In the Shared folder, create a MainLayout.razor
component and put in it the code of Listing 3-11. MainLayout is not a page
but a simple component that extends a base component of the framework,
named LayoutComponentBase, that permits the router component to use
it as a layout template. We can decide where the framework places the
current page using the @Body placeholder, in the same way that you use it
inthe _Layout.cshtml file of a classical ASP.NET MVC application.

48

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION
Listing 3-11. The Main Layout Component Markup

@inherits LayoutComponentBase
<MainMenu MenuItems="MenuItems" />
<div class="container mt-3">

@Body
</div>

We need to change the MenuItem class to add the Href property and to
indicate which path we can use for each menu item (Listing 3-12).

Listing 3-12. The Main Layout Component Code

@code {
public MenuItem[] MenuItems { get; set; }
protected override void OnInitialized()

{
this.loadMenuItems();

}
private void loadMenuItems() {
this.MenuItems = new MenuItem[] {
new MenuItem()
{ Caption = "Article Categories", Href = "articlecategories” },
new MenuItem()
{ Caption = "Articles", Href = "articles" }
};
}
}

As you can see, you no longer need the custom click event, because
the navigation and the active class management are responsibilities of the
framework. MainMenu now only has the parameter MenuItems, which is the
only thing you need.

49

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

You can use the framework’s NavLink component in MainMenu
instead of the anchor. The main difference is the ability to use the Match
property. If you need to specify whether a menu item is the current one
(with the active class applied) when the route entirely matches the
current URL, you must use the value NavLinkMatch.All. If you need it to
match any prefix of the current URL, use the value NavLinkMatch.Prefix,
which is the default value. When using NavLink, you do not need the
property Active because the component sets the class on the generated
anchor automatically (Listing 3-13). Your App.razor component now
must contain the Router component, like in Listing 3-14, so when the
application starts, the router can control the application navigation.

Listing 3-13. The MainMenu with the NavLink component

Article Manager

@foreach (var item in Menultems)
{

@item.Caption

}

Listing 3-14. The New App Component with the Router Component
Markup

<Router AppAssembly="@typeof(Program).Assembly">
<Found Context="routeData">

<RouteView RouteData="@routeData" Defaultlayout=
"@typeof(MainLayout)" />

</Found>

<NotFound>

<LayoutView Layout="@typeof(MainLayout)">
<p>Sorry, there's nothing at this address.</p>
</LayoutView>

</NotFound>

</Router>

50

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

The router inspects the current assembly (AppAssembly parameter) to
retrieve all the routes defined in the application using the @page directive.

If the router finds the requested route (Found element), it shows the
page passing the route data and the default layout (the MainLayout defined
previously); otherwise, it shows the layout with a message (NotFound
element). If you have experience using JavaScript frameworks, you will
appreciate this approach very much; the routing configuration is usually
more complicated. In Figure 3-6, you can see the results of the refactoring,
which include updating the URLs, updating the browser history, and
activating the correct menu item to navigate between the pages.

90 ® & juick-manager x e

[¢ (@ lscainast:5000 #8008 Aeo®mMOoOH "8« @ :

Article Manager

Article Manage;

Welcome to the article managerbpp

@0 ® & atice-manager l x +

€ C (@ localhost:5000/articlecategories #) B 008 i e@eom0oH""8 -« @ :

Article Manager Article Categories ({ Artic

Article Categories

@0 ® & atice-manager + ® 0 ® & aricle-manager x4+

@ localhost:5000/articles < C (@ locahost5000/articles %*

Article Manager @ article-manager

@ article-manager
@ NewTab

Articles

£ Show Full History

Figure 3-6. The Blazor routing in action

51

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Managing CRUD Operations

The base structure is ready, so it is time to implement the application
functionalities, such as the create, read, update, delete (CRUD) operations,
on the article categories. We can generalize the activities, but for now,
we'll focus on the separation of concerns, particularly on the Blazor
components’ responsibilities.

We need to show the list of categories and allow the user to add,
modify, or delete a single item. Based on the requirements, we could have
one component for the list and one for the details, or we could have one
element for both operations. We already have a page component, so we
can use it to implement all the activities. Still, I prefer to have a substantial
difference between pages and UI components, implemented by following
this simple rule: a Ul component accepts input parameters to obtain the
data to manage and raise events, with output parameters to notify the
actions. A page, instead, uses the Ul components to implement page
functionalities and manage the flow of the operations.

For the CRUD operations in the article categories, we can have a
category list component that accepts the items to show and that raises
events when the user clicks the create, update, or delete button. We can
place this component in the article category page, where we can subscribe
to the event parameters to decide when to show a details component. A
details component is a form that allows the user to change the category
data, accepts an input parameter, and raises events when the user clicks
the Save or Cancel button. It is important that the Ul components do
not perform any operations but notify the page component of the user
intentions.

Let’s change the previously created ArticleCategories.razor
to match Listing 3-15. You can see the two UI components, placed in
a folder called Components, managing the list and the details for the
article categories with their parameters. We show the list component

52

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

if an attribute currentCategory is null; otherwise, we show the
ArticleCategory component that represents the category details.

Listing 3-15. The Article Categories Page Component

@page "/articlecategories”
<h2>Article Categories</h2>
<div class="mt-3">
@if(currentCategory == null)
{
<ArticleCategorieslist
ArticleCategorylistItems="articleCategorylListItems"
OnAddClick="AddCategory"
OnEditClick="EditCategory"
OnDeleteClick="DeleteCategory">
</ArticleCategoriesList>

}

else

{
<ArticleCategory
Category="currentCategory"
OnSaveClick="SaveCategory"
OnCancelClick="ShowList">
</ArticleCategory>

}

</div>

The ArticleCategoriesList component is a simple table created with
a foreach loop on the parameter ArticleCategorylListItems, like the
MainMenu, with three buttons connected to the OnAddClick, OnEditClick,
and OnDeleteClick events (Listing 3-16). Basing on these events, the
code sets a value for the currentCategory attribute to manage the
ArticleCategory component’s visibility.

53

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Listing 3-16. The Article Categories List Component

<button class="btn btn-primary" @onclick="0OnAddClick">Add
Category</button>
<table class="table mt-3">
<thead>
<tr>
<th></th><th>Id</th><th>Name</th><th></th>
</tr>
</thead>
<tbody>
@foreach(var item in ArticleCategorylListItems)
{
<tr>
<td>
<button class="btn btn-warning" @onclick="e =>
OnEditClick.InvokeAsync(item)"> Edit</button>
</td>
<td>@item.Id</td>
<td>@item.Name</td>
<td>
<button class="btn btn-danger" @onclick="e =>
OnDeleteClick.InvokeAsync(item)"> Delete</button>
</td>
</tr>
}
</tbody>
</table>

54

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Creating a CRUD Service

Before describing how to implement these operations, we need to talk
about the single responsibility principle again. In this case, we do not
want to implement the data CRUD operations physically in the page
component. To understand the reason, you can move the data operations
somewhere else, remembering that a component is a piece of the user
interface and that a page is also a component.

The physical CRUD operations belong to the business layer, and
we are on the presentation layer. In our case, this distinction is crucial,
because if we use Blazor WebAssembly, we need to call an API to require
the operations, but if we use Blazor Server, we can have direct access to
the database context to execute the CRUD operations. The component
must not know anything about this, so we need to encapsulate the
operation invocation in a separate service class. We can abstract the
operations with a generic interface, like in Listing 3-17, using T for the list
item type and K for the detail item type. We should design the operation
to be asynchronous, using the .NET Task libraries (include the System.
Threading.Tasks namespace) to be sure that the operations do not lock
the current thread.

Listing 3-17. The CRUD Definition Interface

using System.Threading.Tasks;
public interface ICRUDService<T, K>
{

Task<T[]> GetList();

Task<K> Get(int id);

Task Create(K item);

Task Update(K item);

Task Delete(int id);

55

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

You could have more implementations of this interface. For example,
you could have an implementation based on the HTTP client that
calls the corresponding REST APIs or an implementation that uses the
entity framework database context for the Blazor Server version of the
application. For testing purposes, you could also have an implementation
that uses an in-memory collection, by registering the correct
implementation for your case and using the native .NET Core dependency
injection support in the ConfigureServices() method of the .NET Core
Startup class (Listing 3-18).

Listing 3-18. The CRUD Service Configuration for Article Categories

public void ConfigureServices(IServiceCollection services)

{
services.AddTransient <ICRUDService<ArticleCategorylListItem,
ArticleCategoryItems, ArticleCategoriesServices();

}

You can use the registered implementation of the service directly in
the Blazor component, thanks to the new @inject directive introduced
with .NET Core. In the article categories page, you can add the @inject
instruction shown in Listing 3-19, where you specify the interface with the
correct parameter for your case.

Listing 3-19. The CRUD Service Injection in the Page Component

@page "/articlecategories”
@inject ICRUDService<ArticleCategoryListItem,
ArticleCategoryItem» service

ArticleCategorylListItemand ArticleCategoryItem, placed in the
Model folder, define the data used in the list (Id and Name) and the detail
form (Id, Name, and Description). The ArticleCategoryItem class shows

56

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

a powerful way to implement the data validation, already known by .NET
programmers: .NET data annotations (Listing 3-20).

Listing 3-20. The Validation Rules Definition with .NET Data
Annotations

using System.ComponentModel.DataAnnotations;
public class ArticleCategoryItem
{
public int Id { get; set; }
[Required]
[StringLength(50, ErrorMessage = "Name is too long.")]
public string Name { get; set; }
public string Description { get; set; }

Yes, you can use .NET data annotations with the Blazor framework
to implement form validation. Let’s see them in action by creating
the component ArticleCategory.razor in the Components folder to
manage the form details. In Listing 3-21, you can see the markup of this
new component that uses specific Blazor components to simplify the

management of a form.

Listing 3-21. The Validation Rules Definition with .NET Data
Annotations

<EditForm Model="@Category" OnValidSubmit="@(e =» OnSaveClick.
InvokeAsync(Category))"»

<DataAnnotationsValidator /»

<ValidationSummary /»

<div class="form-group">

<label for="name">Name: </label>

57

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

<InputText id="name" @bind-Value="Category.Name" class="form-
control” />

<ValidationMessage For="@(() =» Category.Name)" />

</div>

<div class="form-group">

<label for="description">Description: </label>
<InputTextArea id="description" @bind-Value="Category.
Description" class="form-control" /»

</div>

<button type="submit" class="btn btn-primary">Save</button>
<button type="button" class="btn btn-warning"
@onclick="0nCancelClick">Cancel</button>
</EditForm»

In Blazor, you can define a form in the EditForm component element,
for which you can set a model and subscribe to an event raised when the
user submits the form. If you subscribe to the OnValidSubmit event, your
code runs only when the form is valid, and the validation follows the rules
of the .NET data annotations of the specified model. To enable model
validation based on data annotations, you need to include the component
DataAnnotationsValidator in the form. The framework provides you
with the ValidationSummary component to show a summary of the failed
validations, along with the ValidationMessage component to show
the validation error of a specific field. The framework provides specific
components to help you show the correct input element and bind it with
the corresponding Model property using @ind-Value.

Let’s see how to manage the events of the components in the article
categories pages. In Listing 3-22, you can see an extract of the code that
manages the currentCategory attribute

58

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Listing 3-22. The Code of the Article Categories Page

protected override async Task OnInitializedAsync()

{
await ShowList();

}
public async Task ShowList()

{
this.articleCategorylListItems = await service.GetlList();
this.currentCategory = null;

}
public void AddCategory()

{

this.currentCategory = new ArticleCategoryItem();

}
public async Task EditCategory(ArticleCategorylListItem item)

{

this.currentCategory = await service.Get(item.Id);

The ShowList() method calls the service to obtain the list of categories
and set the currentCategory to null to show the list. The service methods
are asynchronous, so we need to use the async/await keywords and the
asynchronous version of the OnInitialized component hook

When the user clicks the Add Category button or the Edit button, we
set the currentCategory attribute to a new object or to the requested item
to edit. In the solution provided with the book, you will find the rest of the
code that manages the save and delete events usinga try { ... } catch
{ ... }Dblockto show a possible error to the user. In Figure 3-7, you can
see the user interface in action.

59

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

S0 ® B amcerurse x|+

Article Manager Article Categories 2

Article Categories

« C O kcahostSo00iaticlecate.. ® B O O o 4 & o §

Article Manager Adicle Categories A

Article Categories
= The Name fiedd is required.
Mame:

The Narne fisld is required.

OO0 O wncwmansge x o+

Article Manager Article Categories £

Article Categories
id Hame
m]

« C QOoahossooanckcte. * & O 0 g 4 © © ‘ H

> @ :

Figure 3-7. The article category CRUD in action

If you already know Microsoft web frameworks, all this information will

seem familiar to you. This is the real power of Blazor for .NET developers.

Implementing CRUD Services

For testing purposes, I have created an in-memory implementation of the

CRUD services. In a real application, you would need to store information

in persistent storage, like a database. If you use Blazor Server, this is

an effortless task, because you can inject the Entity Framework data

context (or your preferred data access layer solution) in the CRUD service

implementation and use it to execute all the operations.

60

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

If you use Blazor WebAssembly, you need to call REST APIs to allow
the client to request the data storage. In this case, we have to create a
CRUD service implementation that uses HttpClient (Listing 3-23).

Listing 3-23. The Code of the CRUD Service That Uses the
HttpClient

using System.Net.Http.Json;
using System.Net.Http;
public class ArticleCategoriesService:
ICRUDService<ArticleCategorylListItenm,
ArticleCategoryItem>

private readonly HttpClient httpClient;
private string baseUrl = "http://localhost:5002";

public ArticleCategoriesService(HttpClient httpClient)

{
this.httpClient = httpClient;

}

public Task<ArticleCategorylListItem[]> GetlList()
{
return this.httpClient
.GetFromJsonAsync<ArticleCategoryListItem[]>
($"{baseUrl}/api/articlecategories");

To use HttpClient, we must add the System.Net.Http.Json NuGet
packages to our solution and add the System.Net.Http namespace to
our CRUD service implementation. The Blazor framework provides
some HttpClient extensions (the HttpClientJsonExtensions class

61

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

in the System.Net.Http.Json namespace) that help to send and
receive .NET classes, converting them to JSON format. In Listing 3-23,
we can see GetFromJsonAsync, which receives from the API the

JSON array of the article categories and converts it to a .NET array of
ArticleCategorylListItem.

We also need to add HttpClient manually to the services because it is
no longer added for you by the framework. Then, in the Main method of the
Program class, use the AddTransient () method (Listing 3-24) to properly
configure the HTTP client.

Listing 3-24. The Configuration of the HttpClient as a Dependency
Service

public static async Task Main(string[] args)

{
var builder = WebAssemblyHostBuilder.CreateDefault(args);
builder.RootComponents.Add<App>("app");
builder.Services.AddTransient <ICRUDService<ArticleCategoryl
istItem, ArticleCategoryItem>, ArticleCategoriesService>();
builder.Services.AddTransient <ICRUDService<ArticlelListItem,
ArticleItem>, ArticlesService>();

builder.Services.AddTransient<HttpClients();

await builder.Build().RunAsync();

If we move the Model classes in a separate DLL and share this library
with both the back-end and the front-end, the ASP.NET Core API on the
back-end and the HTTP Client on the front-end will execute all the work
for us, using JSON as the exchange format.

62

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

I suppose you already know how to save an entity with Entity Framework
and how to create an API REST with .NET Core. In Listing 3-25, you can
see the corresponding code of the API, but you can find the complete
codebase used in these examples in the code provided with the book.

Listing 3-25. The Code of the ASP.NET Core API Used in Listing 3-23

[ApiController]

[Route("api/[controller]")]

public class ArticleCategoriesController :
ControllerBase

private readonly ApplicationDbContext db;

public ArticleCategoriesController(
ApplicationDbContext db)
{ this.db = db; }

[HttpGet]
public IActionResult Get()
{
return Ok(this.db.ArticleCategories
.Select(x => new ArticleCategorylListItem()
{

Id = x.Id, Name = x.Name
}).TolList());

The impressive aspect is that the components are agnostic about these
implementations. We need only to register the correct version of the CRUD
service in the .NET Core dependency injection engine.

63

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Where to Place the Component Code

So far, we have seen the component code in the Razor file, using the @code
section. For small components, like our components here, this can be a
useful solution, but if you have enough code to handle and want to keep
the system separate from the markup, you can place the component code
in a different C# class.

For example, if you want to separate the code of the ArticleCategories
page component from its markup, you have two ways to do this. The first
way is to create a base class file with a name different from the page name,
but I advise you to use a convention that retains the link between them.
We can use, for example, ArticleCategoriesBase.cs, which contains a
class named ArticleCategoriesBase that extends the framework class
ComponentBase (Listing 3-26).

Listing 3-26. The Class Containing the Article Categories Code

using Microsoft.AspNetCore.Components
public class ArticleCategoriesBase : ComponentBase

{

This class is now our base class for the Razor component, thanks to the
@inherits directive (Listing 3-27).

Listing 3-27. The Component Markup Change to Inherit the Code
Class

@inherits ArticleCategoriesBase
@page "/articlecategories”

64

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Now we can move the content of the @code section in the
ArticleCategoriesBase class, with only two changes: the private
properties must be protected, and the injection of the CRUD service
happens with the Inject attribute on a specific property (Listing 3-28).

Listing 3-28. The Changes You Must Apply to the Code When
Moving It into a Separate Class

public class ArticleCategoriesBase : ComponentBase

{
protected ArticleCategorylistItem[] articleCategorylListItems;

protected ArticleCategoryltem currentCategory;

[Inject]
private ICRUDService<ArticleCategoryListItem,
ArticleCategoryItemy» service { get; set; }

Note You cannot use the constructor to inject dependencies in a
ComponentBase because the framework constructs the components
for you. At the moment, the framework needs a constructor without
parameters, so it provides the Inject attribute to solve the problem.

Another way to separate the code and markup of the component is to
create a partial class. If you explore the obj folder generated during the
build process, you will find a class for each component of your application.
This class, generated by the compiler, is a partial class, so another partial
class can be placed next to it. You can try this option with the Articles
page, remembering that all the partial classes in the .NET Framework must
have the same name (Listing 3-29) and you do not need to modify the

65

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

visibility of the attributes used (at build time, partial classes with the same
name become the same class). When you use a partial class to separate
the code from the markup, it is common to name the file with the same
name of the page, adding the .cs extension at the end. In this case, the file
isnamed Article.razor.cs. Visual Studio uses this convention to show
this file as a child of the page, grouping the two files as the same element.
Visual Studio Code, instead, is not so smart.

Listing 3-29. The Class That Contains the Articles Code

public partial class Articles
{
private ArticlelListItem[] articlelListItems = new
ArticlelListItem[0];
private ArticleItem currentArticle;
private string error;
[Inject]
private ICRUDService<ArticleListItem, ArticleItem» service {
get; set; }

In this case, you must add only the code for the injection of the CRUD
services and remove the @inject directive from the markup file.

JavaScript Interoperability

Until there is a complete ecosystem that supports all the possible
functionality for an application, sooner or later you will need to invoke a
JavaScript function. You will probably also need to invoke a .NET function
from JavaScript. These scenarios are both supported in Blazor and resolve
all the main problems with legacy code integration for your application.

66

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

To call a JavaScript function from Blazor, we must define it on the
browser window object. Adding the jQuery and Bootstrap JavaScript
libraries to the project, you can create a js folder in wawroot and add the
references in the file. These libraries allow us to use the bootstrap widgets,
such as the Modal component (see the official documentation at https://
getbootstrap.com/docs/4.0/components/modal/).

Let’s add two JavaScript functions to the browser window object that
open and hide a bootstrap modal, as shown in Listing 3-30. To simplify
the example, I placed them in the index.html file, but in a real project you
could place the JavaScript functions in a separate file and link to it.

Listing 3-30. JavaScript Functions to Show and Hide a Bootstrap
Modal

<script src="js/jquery.min.js"></script>
<script src="js/bootstrap.min.js"></script>
<script>
window.showConfirmDelete = (id) =» {
$('#" + id).modal('show');
};
window.hideConfirmDelete = (id) = {
$('#" + id).modal('hide');
}s

</script>

Add the markup of a modal to the ArticleCategoriesList
component, and set the modal to require the delete confirmation from the
user (Listing 3-31).

67

https://getbootstrap.com/docs/4.0/components/modal/
https://getbootstrap.com/docs/4.0/components/modal/

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Listing 3-31. Bootstrap Modal to Require Category Deletion

<div class="modal" id="deletecategorymodal">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<h4 class="modal-title">Delete Category</h4>
<button type="button" class="close" data-
dismiss="modal">×</button>
</div>
<div class="modal-body">
Do you want to delete the category?
</div>
<div class="modal-footer">
<button type="button" class="btn btn-danger"
@onclick="0nYesClick">Yes</button>
<button type="button" class="btn btn-default"
data-dismiss="modal" >No</button>
</div>
</div>
</div>
</div>

To call the JavaScript functions previously defined, you need to inject
the framework’s IJSRuntime interface in the component. You can do this
by adding the directive @inject IJSRuntime JSRuntime at the top of the
component definition. See Listing 3-32.

68

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Listing 3-32. The Component Code That Calls the JavaScript
Functions

private ArticleCategorylListItem itemToDelete;
private async Task ShowConfirm(ArticleCategorylListItem item)

{

this.itemToDelete = item;

await JSRuntime.InvokeVoidAsync ("showConfirmDelete",
"deletecategorymodal™);

}

private async Task OnYesClick()

{
await OnDeleteClick.InvokeAsync (this.itemToDelete);
await JSRuntime.InvokeVoidAsync ("hideConfirmDelete",
"deletecategorymodal");

}

The JSRuntime provides the method InvokeVoidAsync that we can use
to call the JavaScript function and pass it the right parameters.

If the user clicks the Yes button, we invoke the event to require the
category deletion and invoke the hideConfirmDelete JavaScript function.
In Figure 3-8, you can see the confirmation modal in action.

69

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

® 0@ @ aticle-manager ®x +

<« C @ localhost5000/articleca... % B © 0 8 4 © o M O H ~ @ «~ @ :

Article Manager Article Categories Articles

Article Categories

Add Category

Edit 6 category 1 { Delete)

@ article-manager x +

@ localhost5000/articleca.. * B © O 8 4 © p M O H ~ @ «~ @ ¢

Delete Category

Do you want to delete the category?

Figure 3-8. The modal that confirms the deletion modal in action

Summary

In this chapter, you learned how to build a single-page application with
Blazor to perform CRUD operations on business entities. You saw how to
generalize the code, using the .NET Core dependency injection to quickly
adapt everything to be used with both Blazor WebAssembly and Blazor

70

CHAPTER 3 CREATE YOUR SINGLE-PAGE APPLICATION

Server. You also learned how to integrate JavaScript into Blazor, how to
manage legacy scenarios, and how to take advantage of features that are
not yet available in Blazor.

Much of the code in this chapter was deliberately repetitive, and some
implementations are a little crude for educational reasons. Still, in the next
chapter, you will see how to optimize the code, making the components
even more generic, so that they can also be reused in different applications
by packaging them in libraries of components.

71

CHAPTER 4

Build Your Reusable
Blazor Library

Some components will be specific to your application, and others will not
be. Think about the table of two CRUD operations that you created for the
article-manager application in the previous chapter, or a Bootstrap modal
for your front-end; also, some form component can be specific or not, such
as an advanced select control or date picker.

In this chapter, I show you how to extract components from the project
to a reusable library so you can potentially use them in different projects.
Following this approach, your next project will start from a collection of
your own ready-to-use component libraries.

You can extract a component from a project to put it in a library, or you
can create a component directly in a library and use it in a project. In the
first case, you probably need to generalize the component; in the second
case, you need to design it outside of the specific use, profiting from the
parametrization and principles learned in the previous chapter. You can
also choose to create a component library to simplify the front-end. In a
large project, this helps you to divide the job among different members of a
team and to create a more maintainable project structure.

Many large companies and independent developers are creating
generic components to add to the Blazor ecosystem. You can choose their
libraries, creating a dependency on them, or you can create your own

© Michele Aponte 2020 73
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_4

https://doi.org/10.1007/978-1-4842-5747-0_4#ESM

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

libraries. There are pros and cons in both cases, but if you know how to
build a library, then you can decide whether to create one or pick a ready-
made one.

While extracting a component from a library, you will see some
advanced features of the Blazor framework that are available for both the
Server and WebAssembly version. Some of these features are useful but
could complicate your codebase. The rule is always the same: follow the
single responsibility principle and try to create value for your project and
customer.

Creating a Component Library

The first step is to create a component library. The .NET CLI provides a
template to create a Razor class library, which is perfect for us: launch the
command dotnet new razorclasslib -o frontendlib in the root folder
of the article-manager project. The -0 option specifies the output of the
command and creates a folder named frontendlib with the project inside
it. Now we can go inside the frontendlib folder and add the library to the
project with the dotnet add reference ../frontendlib command.

The razorclasslib template creates a sample component, with an
example of the JavaScript interoperability with Blazor, and a wwwroot folder
that contains static files. You do not need these files, so delete all of them
except for the wwwroot folder and the Imports.razor file.

Let’s begin with the List component to generalize the entity list
visualization. Our goal is to reuse the interface that lists one entity (for
example, the article category) for each entity of your application. If you
analyze the code of ArticleCategorylist, you can see that there is a
simple HTML table with a fixed-column definition and a loop on an array
of ArticleCategorylListItem. For the columns, you could use a parameter
like a simple array of strings that contains the column headers; for the array,
you can use a .NET object or a .NET generic. Let’s start with a .NET object.

74

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

Create two folders, Components and Models, to contain the component
files and the model classes to support them. In the Models folder, create a
class to collect all the parameters for the List component, which simplifies
the use of the component and its evolution with the creation of a unique
parameter. In Listing 4-1, you can see an example of this class, named
ItemListModel, that contains a string with the name of the entity, a
collection of headers, and an array of objects.

Listing 4-1. The List Component Model Class Definition

public class ItemListModel

{
public string ItemName { get; set; }
public string[] Headers { get; set; }
public object[] Items { get; set; }

}

At this point, you can create a new component in the Components
folder, called ItemList.razor, in which you will copy the
ArticleCategorylList code and define a parameter of type ItemListModel
in place of the category array. Now, you need to edit the markup as in
Listing 4-2 to create the table headers based on the ItemListModel
headers, assuming that the collection is ordered based on the visualization

preferences.

Listing 4-2. Extracting the List Component That Renders the Table
Headers

<table>
<thead>
<tr>
<th></th>
@foreach (var header in Model.Headers)

75

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

{
<th>@header</th»

}
<th></th>
</tr>
</thead>

Regarding the row, you can use .NET Reflection to inspect the object
type and retrieve the properties, from which you can extract the values
(Listing 4-3).

Listing 4-3. Extracting the List Component That Renders the Table
Rows

<tbody>

@foreach (var item in Model.Items)

{

<tr>

<td><button class="btn btn-warning" @onclick="e =>
OnEditClick.InvokeAsync(item)">Edit</button></td>
@foreach(var property in item.GetType().GetProperties())
{

<tds@property.GetValue(item)</td>

}

<td><button class="btn btn-danger" @onclick="e =>
ShowConfirm(item)">Delete</button></td>

</tr>

}

</tbody>
</table>

In Chapter 3, I added the code to manage the user confirmation
during the delete operation, by using the Bootstrap modal and taking

76

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

advantage of the Blazor JavaScript interoperability functionality to
open and close the modal with the jQuery functions. You can do the
same in the component library: adding a JavaScript file in the wawroot
folder of the library and naming it, for example, frontendlib. js. You
can copy the showConfirmDelete and hideConfirmDelete functions
from the index.html file (the library compilation adds this file in the
DLL). You can reference this file by appending the path _content/<DLL
name>/<filename> in the index.html script. In this case, the reference is
<script src="_content/frontendlib/frontendlib.js"> </script>.
This new component permits you to delete the article and article
categories components on the front-end, and it allows you to create the list
visualization for any entities of your application (Listing 4-4).

Listing 4-4. Extracting the ArticleCategories Page That Shows the
Use of the New ItemList Component

@inherits ArticleCategoriesBase

@page "/articlecategories"

<h2>Article Categories</h2>

<div class="mt-3">
@if(categoryModel.Item == null)

{
<ItemList
Model="categoriesModel"
OnAddClick="AddCategory"
OnEditClick="EditCategory"
OnDeleteClick="DeleteCategory">
</ItemList>
}
else { ... }
</div>

77

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

Creating a Templated Component

There are a few occasions when using parameters can be too complex to
generalize the content of a component. Moreover, you may need to show a
piece of markup specified by the parent component to provide maximum
flexibility for the user of your library. Blazor offers the ability to project
markup into a component, creating parameters of RenderFragment type.
Components that use parameters of RenderFragment type, are called
templated components, allowing the use of one or more templates

in them.

This ability is the perfect way to create a container component,
where the specific markup is always the same. Check out the application
details components called Article.razor and ArticleCategory.razor.
Both of these components use different fields inside the EditForm, but
DataAnnotationValidator, ValidationSummary, and the submit and
cancel buttons are the same. You could create a model and use .NET
Reflection to generate the fields like in the List component, but in my
experience, the autogenerated details forms work fine for the user of the
library only in simple cases. A templated component provides significant
flexibility, and Blazor provides a simple way to implement them.

Let’s create an I'temDetails.razor file in the Components folder of
the components library and use the code in Listing 4-5. The parameter
FieldsTemplate receives the markup that Blazor places at the
@FieldTemplate position. You are not limited to one parameter of
type RenderFragment, so you can make more parts of your component
replaceable with custom markup using the father component.

78

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

Listing 4-5. Extracting the Details Component that uses a template
definition

<EditForm Model="@Model.Item" OnValidSubmit="@(e =>
OnSaveClick.InvokeAsync(Model.Item))">
<DataAnnotationsValidator />
<ValidationSummary />
@FieldsTemplate
<button type="submit" class="btn btn-primary">Save</button>
<button type="button" class="btn btn-warning"
@onclick="0nCancelClick">Cancel</button>
</EditForm>

@code {
[Parameter]
public RendexFragment FieldsTemplate { get; set; }
[Parameter]
public ItemDetailsModel Model { get; set; }

In Listing 4-6, you can see how to use the component. Between the
opening and closing ItemDetails tags, you can create a new element
with the name of the parameter, in this case <FieldsTemplate>. You can
put whatever you want in this parameter. Blazor projects the content of
this element into the component ItemDetails. If you have more than
one RenderFragment parameter, you can create more elements with the
respective names in the ItemDetails elements.

79

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY
Listing 4-6. Using the Details Component

<ItemDetails
ItemType="ArticleCategoryItem"
Model="categoryModel"
OnSaveClick="SaveCategory"
OnCancelClick="ShowList">
<FieldsTemplate>
¢!-- place here your markup --»
</FieldsTemplate»

</ItemDetails>

This is a fantastic feature that allows you to go more in-depth with the
generalization of a component. But Blazor can do more.

Creating a Generic Component

If the content of a project needs to access some data of a component,

you can use the generic version of RenderFragment and pass to it an
instance of the generic type. In our case, we need to pass the model of the
details form to the RenderFragment, so we create a specific type called
ItemDetailsModel, and then we can use it as the generic type for the
RenderFragment.

However, we cannot use the type Object for the item, like we did for
the item array of the List component, because the binding of the form
elements requires us to know the item fields. For example, if we have to
bind the field Name of the Category with an InputText component, we
must have access to the field, and an Object does not allow this. Moreover,
in the component, we do not know that the object is a category because
it must work with any entity of the project. The best way to solve this
problem in the .NET Framework is to use a generic type in the definition,
which means creating a generic ItemDetailsModel (Listing 4-7).

80

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

Listing 4-7. Defining the Generic Item Details Model

public class ItemDetailsModel<TItem>

{
public string ItemName { get; set; }
public TItem Item { get; set; }

}

We can, therefore, kill two birds with one stone and take advantage
of another peculiar characteristic of the Blazor components: the generic
components. Still, thanks to the @typeparam directive, we can create
an ItemType and use it as a generic type everywhere in the component
and then, in the ItemDetailsModel and RenderFragment too, obtain the
maximum possible generalization (Listing 4-8).

Listing 4-8. Defining the Item Details Component with a Generic Type

@typeparam ItemType
<EditForm Model="@Model.Item" OnValidSubmit="@(e =>
OnSaveClick.InvokeAsync(Model.Item))">
<DataAnnotationsValidator />
<ValidationSummary />
@FieldsTemplate(Model.Item)
<button type="submit" class="btn btn-primary">Save</button>
<button type="button" class="btn btn-warning"
@onclick="0nCancelClick">Cancel</button>
</EditForm>

@code {
[Parameter]
public RenderFragment<ItemType> FieldsTemplate { get; set; }
[Parameter]
public ItemDetailsModel<ItemType> Model { get; set; }

81

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

When you use a generic component, you must specify the concrete
type, using the name of the generic type name as a parameter. In this
case, we called the generic type ItemType (@typeparam ItemType), so, for
example, in the ArticleCategory component, we use the ItemDetails
component with the ItemType parameter set to ArticleCategoryItem
(Listing 4-9).

Listing 4-9. Using the Item Details Component in the
ArticleCategories Page

<ItemDetails

ItemType="ArticleCategoryItem"
Model="categoryModel"

OnSaveClick="SaveCategory"
OnCancelClick="ShowList">

<FieldsTemplate Context="Category">

<div class="form-group">

<label for="name">Name: </label>

<InputText id="name" @bind-Value="Category.Name"
class="form-control” />

<ValidationMessage For="@(() => Category.Name)" />
</div>

<div class="form-group">

<label for="description">Description: </label>
<InputTextArea id="description" @bind-Value="Category.
Description” class="form-control" />

</div>

</FieldsTemplate>

</ItemDetails>

82

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

We can access the RenderFragment context by specifying the
Context parameter, as shown in Listing 4-9, where we set the
Context of the FieldsTemplate to Category. So, the word Category
represents the instance of the item passed to the RenderFragment
(@FieldsTemplate(Model.Item)).

Using a specific context makes the code clearer, but it is not
mandatory: you could use the reserved word context. For example,
in Listing 4-9, you can omit Context="Category" and use @bind-
Value="context.Name" in the InputText component. In the code provided
with the book, I use both approaches as possible examples of use.

Creating Custom Input Components

Another good idea to simplify and make your code more maintainable is
to customize the collection of the input components. Taking a look at the
article category and article details forms, you will note that there is a lot of
repeated code, such as the bootstrap layout structure and the parameters
passed to the Blazor form components. If you need to change the layout or
the way you display a single field, you must change all this code. Using a
custom input component, you can create your Ul components library and
reuse it in all your projects.

An input component inherits from the InputBase class, which accepts
a generic argument to specify the type of value managed. In many cases,
the value managed is a string, like for the InputText and InputTextArea.
In Listing 4-10, you can see the markup and the code to generalize the use
of an InputText. You can create a component named FieldInputText and
show the label for the input only if the user provides the value.

83

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY
Listing 4-10. The Custom Input Text Component Definition

@inherits InputBase<string»
<div class="form-group">
@if (!string.IsNullOrWhiteSpace(Label))

{
<label for="@Id">@Label: </label>

}
<InputText id="@Id" @bind-Value="@CurrentValue" class="form-
control” />
<ValidationMessage For="@Validation" />
</div>
@code
{
[Parameter] public string Id { get; set; }
[Parameter] public string Label { get; set; }
[Parameter] public Expression<Func<string>> Validation { get;
set; }

protected override bool TryParseValueFromString(string value,
out string result, out string validationErrorMessage)

{

result = value;

validationErrorMessage = null;

return true;

}
}

The Input base abstract class requires us to implement the
TryParseValueFromString method because, in case our input manages
avalue of a type different from the string, we must provide the correct
conversion from the string value. The current value is available in the
@CurrentValue property of the base class, which is the same type of the

84

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

generic for the class (in our case a string). You can do the same work for
the InputTextArea and use it and the InputText component to simplify
the article category page (Listing 4-11).

Listing 4-11. Using the Custom Input Components

<ItemDetails ...>
<FieldsTemplate Context="Category">
<FieldInputText
Id="name" Label="Name"
@bind-Value="Category.Name"
Validation="@(() =» Category.Name)" />
<FieldInputTextArea
Id="description" Label="Description"
@bind-Value="Category.Description"
Validation="@(() =» Category.Description)" /»
</FieldsTemplate>
</ItemDetails>

If the value is always a string and the component parameters are
always the same (Id, Label, and Validation), we can create a base class
that inherits from the InputBase to collect the parameters and implement
the conversion method. We can name this class FieldInputBase and use it
to simplify the specific component code (Listing 4-12).

Listing 4-12. The Base Class Definition for the Custom Input Text
Components

public abstract class FieldInputBase : InputBase<string>
{
[Parameter] public string Id { get; set; }
[Parameter] public string Label { get; set; }
[Parameter] public Expression<Func<string>> Validation { get;
set; }

85

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

protected override bool TryParseValueFromString(string value,
out string result, out string validationErrorMessage)
{

result = value;

validationErrorMessage = null;

return true;

Thanks to this class, in many cases we only need to create the specific
markup, as shown in Listing 4-13.

Listing 4-13. The Input Text Component Definition Simplified by
the FieldInputBase Class

@inherits FieldInputBase
<div class="form-group">
@if (!string.IsNullOrWhiteSpace(Label))

{
<label for="@Id">@Label: </label>

}

<InputTextArea id="@Id" @bind-Value="@CurrentValue"
class="form-control” />

<ValidationMessage For="@Validation" />
</div>

The Blazor form components have some limitations, like the ability
to work with a string value only. Generally, this is not a problem, but
sometimes it is required that you convert the current string to a specific
value. This is the case of the InputSelect, where the value of the selection
must be a string. We are using the InputSelect for the category of an
article, and, to solve the problem, we used a string value on the front-end
and converted it to an integer on the back-end.

86

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

With a custom component, you can also solve this problem thanks to
the generic implementation of the base class InputBase. In Listing 4-12,
we are using a string for the generic parameter, but we can require the
generic type of each component, including the InputSelect (Listing 4-14).

Listing 4-14. The Generic Implementation of the FieldInputBase

public class FieldInputBase<T» : InputBase<T»

{

protected override bool TryParseValueFromString(string value,
out T result, out string validationErrorMessage)
{

Type paramType = typeof(T);

switch (paramType.FullName)

{
case "System.String":
result = (T)(object)value; break;
case "System.Int32":
result = (T)(object)int.Parse(value); break;
default:
throw new NotSupportedException($"FieldInputBase
does not support the type {paramType}");
}

validationErrorMessage = null;
return true;

}
}

The code gets a little complicated because we need to use .NET
Reflection to understand the current type and correctly convert the value
in the TryParseValueFromString method. We used a switch to allow the
addition of other cases, like Boolean, Guid, and enumeration.

87

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

With this change, your FieldSelectInput needs only an additional
parameter for the selected items; the rest is handled by the base class
(Listing 4-15).

Listing 4-15. The Field Select Component Implementation

@inherits FieldInputBase<inty

<InputSelect id="@Id" @bind-Value="@CurrentValueAsString"
class="form-control">
@foreach(var item in SelectItems)

{

<option value="@item.Value">@item.Label</option>

}
@code {

[Parameter] public InputSelectItem[] SelectItems { get; set; }
}

Note that the bind-Value uses CurrentValueAsString (defined in the
InputBase class) instead of CurrentValue: the InputSelect needs a string,
not an integer. Without this change, Blazor treats the integer like a string,
and all the internal comparisons when the value changes do not work.

Summary

Creating a library of components greatly simplifies the code of your
project, allows you to divide the work between components, and reuse
what you have done in other projects. However, it requires you to analyze
the requirements to better generalize the components, without going

overboard with generalization.

88

CHAPTER 4 BUILD YOUR REUSABLE BLAZOR LIBRARY

In this chapter, you saw how to use the power of the .NET Framework
in a single-page application using .NET Reflection and the generic types.
You can make something similar in JavaScript, supported by powerful tools
like TypeScript, but in the .NET Framework you have a strict typing system
that makes these techniques less prone to errors.

When starting your project, spend a lot of time to make your
components reusable and collect them into a library. If you don’t
go overboard with generalizations, you will save a lot of time when
maintaining your project by investing a little more in the beginning.

89

CHAPTER 5

Deploy Your
Application

Your application is ready, so it is time to make it available to your users.
The deployment process is different between Blazor Server and Blazor
WebAssembly, and it also depends on the scalability that you would like
your application to have.

The word scalability is a simple concept, but it is not simple to
implement. Scalability refers to the ability of a system to keep its
performance constant by dynamically increasing its available resources
as the number of users increases. Scalability is a requirement in today’s
world; you must address it at the beginning of the development process,
because it impacts how the application will be developed.

In this chapter, you will see some of the choices you have to deploy
your application, and we will look at some considerations based on the
typical requirements of a business application.

Deploying a Blazor Server App

A Blazor Server app is a .NET Core application that uses SignalR to keep
the user interface up-to-date. We can prepare the package to be published
from a terminal window, using the dotnet publish -c Release
command of the .NET CLI. The CLI creates a publish folder with the build

© Michele Aponte 2020 91
M. Aponte, Building Single Page Applications in .NET Core 3,
https://doi.org/10.1007/978-1-4842-5747-0_5

https://doi.org/10.1007/978-1-4842-5747-0_5#ESM

CHAPTER 5 DEPLOY YOUR APPLICATION

artifact, but you can change this default folder using the -0 option of the
dotnet publish command. If you use Visual Studio, you can use the Build
» Publish menu and select a target folder.

After the build operation, you have to deploy the package, and you
have to choose where to place the application. Any deployment option that
supports ASP.NET Core 3 is available for Blazor; the most commonly used
are IIS, an Azure web app, and a Docker image.

To use IIS, you need Windows 8 (or later) or Windows Server 2012 R2
(or later). To host the ASP.NET Core application, IIS needs the .NET Core
Hosting Bundle, which installs the .NET Core Runtime, the .NET Core
Library, and the ASP.NET Core Module.

The ASP.NET Core Module allows the use of .NET Core in IIS, but you
can decide how it must work by choosing between two hosting models:
in-process and out-of-process. All the HTTP requests to your application
are handled by the w3wp . exe process and passed to the ASP.NET Core
Module. If you choose the in-process models, the ASP.NET Core Module
passes the request to your code, creating the HttpContext and using the
same IIS worker process. If you choose the out-of-process hosting models,
your code runs in a separate process, so the ASP.NET Core Module needs
to forward the HTTP request to Kestrel (Figure 5-1).

IN-PROCESS HOSTING MODEL
IS (w3wp.exe) ASP.NET Core Application (w3wp.exe)

N B

OUT-OF-PROCESS HOSTING MODEL
;\‘/
% 1IS (w3wp.exe) ASP.NET Core Application (dotnet.exe)

Figure 5-1. ASP.NET Core in-process and out-of-process hosting
models

92

CHAPTER 5 DEPLOY YOUR APPLICATION

The in-process hosting model is more efficient and should be your first
choice (this is why it is the default hosting model). Use out-of-process only
for deployment compatibility reasons.

Blazor Server uses SignalR, so you need to support it. To improve the
performance of the application, you have to reduce the latency between
the client and the server. To do that, adding WebSocket support is the best
choice. When you use IIS, support for WebSocket is already enabled, so
if the application forces the use of the long polling, you must check the
configuration.

If you need to scale the application instances to support more users,
you have to configure your cluster to ensure that all requests are received
by the same node that starts the SignalR communication. On-premises,
you can do this using sticky sessions (better known as session affinity by
some load balancers).

If you use Microsoft Azure, you can deploy your Blazor Server
application to an Azure Web App, the most popular Azure service that
provides you with scalable hosting that supports both Windows and Linux.
It is part of the platform as a service (PaaS) offered by Microsoft and allows
you to create and manage a web application from the Azure Portal and use
the integrated tools for Visual Studio and Visual Studio Code.

You can try this service by signing up for an Azure account for free.
From the Azure Portal, you can create a new web app, configuring the few
requested fields (Figure 5-2).

93

CHAPTER 5 DEPLOY YOUR APPLICATION

Figure 5-2. The creation panel of an Azure web app and the
configuration for a Blazor Server application

The WebSocket support is set to false by default, so you need to go
to the Configuration » General settings and turn on the “Web sockets”
option. In this panel, you can also see the “ARR affinity” option, already
turned on, that allows sticky sessions when you request the web app to
manually or automatically scale the nodes of the cluster.

You can deploy a Blazor Server app to an Azure web app with different
automation tools, but to simplify the process, you can use the Publish
menu of Visual Studio to start a step-by-step wizard (Figure 5-3).

94

CHAPTER 5 DEPLOY YOUR APPLICATION

L e e I . L)
T ol eyl < PR ot £ (00 B WP T 0| e amou b Gl B W, Wi

T

o Pick a publish target =

Agure App Serdce

B T T ———————— EEE e - [—— 2 - a
WeeaP 90 owg - o c - G- A, CIC e-aig, Wi =02l oy -lamou -G AR, Bt
i 1 [——— - e =
= B cogk-a-new
o [".’anpsﬂmc 3 3 AL Pt ™ e]
1 L“J AT o et el Pt e ateis, RTAT APY, st wuiee o A I 2 ' 5 bt st g (1 04 | g
- - T R — B -pehpsing
P
i e [=|| ==
N omon dne - s [———— I ey
Ve Pagee
@ e
e iy Summary Ao B g
LT ppssmnge e
] B i
ey L .
. St ke e =
EX D
trae o gt e e e
e | e e, e s .
s ot

Figure 5-3. Visual Studio 2019 deploy wizard for an existing Azure
web app

I prefer Visual Studio Code, which provides a fantastic plug-in to
manage Azure services: right-click the Publish folder, choose the target
Web App, and confirm the deploy (Figure 5-4).

95

CHAPTER 5

DEPLOY YOUR APPLICATION

EXPLORER Select Web App

> B vscod!
~ [bin

> Debug

~ [@ Release / netcorea

> I Properties

D b e Vs
article-managerVie...

12 web.config
appsettings.Develop...
appsettings.json

M article-manager
article-manager.dep...

13 article-manager.dil

cCcCcCccCcCcCcCccCcCccCcCccCcccoccoccoccoccoccocg

article-manager.pdb
» AZURE IOT HUB

M0 [ALiveShare &

1* start*

Figure 5-4. Deploying an application to an existing Azure web app

Jfrom Visual Studio Code

If you have a large number of users, Azure provides you with a separate

~ OPENEDITORI 4 Create new Web App...
“ ARTICLE-MAN —+ Create new Web App... Advanced

TERMINAL 1: bash R + M @ ~

Micheles-MBP:article-manager micheleaponte$ dotnet publish
-c_Release

Flarticle-manager § Azure: admin@blexincloud.onmicrosoft.com

Microsoft (R) Build Engine version 16.4.@+e901837fe for .NE
T Core
Copyright (C) Microsoft Corporation. All rights reserved.

Restore completed in 27.78 ms for /Users/micheleaponte/bo
ok/blazor/article-manager/article-manager.csproj.

article-manager —> /Users/micheleaponte/book/blazor/artic
le-manager/bin/Release/netcoreapp3. 1/article-manager.dill

article-manager —> /Users/micheleaponte/book/b

lazor/article-manager/bin/Release/netcoreapp3. 1/article-man
ager.Views.dll

article-manager -> /Users/micheleaponte/book/blazor/artic
le-manager/bin/Release/netcoreapp3.1/publish/
Micheles-MBP:article-manager micheleaponte$ dotnet publish
-c Release
Microsoft (R) Build Engine version 16.4.0+2901037fe for .NE
T Core
Copyright (C) Microsoft Corperation. A1l rights reserved.

Restore completed in 26 ms for /Users/micheleaponte/book/
blazor/article-manager/
article-manager.csproj.

service called Azure SignalR Service to manage SignalR connections.

All .NET Core applications support the integration of this service and

therefore Blazor Server application. Check the official documentation for

*

the configuration steps (https://docs.microsoft.com/en-US/aspnet/
core/host-and-deploy/blazor/server?view=aspnetcore-3.1).

96

https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/blazor/server?view=aspnetcore-3.1
https://docs.microsoft.com/en-US/aspnet/core/host-and-deploy/blazor/server?view=aspnetcore-3.1

CHAPTER 5 DEPLOY YOUR APPLICATION

Deploying a Blazor WebAssembly App

Performing a build of a Blazor WebAssembly app produces static files
that the browser downloads and executes. These files can be developed
anywhere that you can make them available for download via HTTP
protocol; then, you can choose to expose them standalone by any web
server you want. For example, you can use IIS, Azure Web App, Azure
Storage (which allows you to configure a BLOB container as a static web
site hosting space), Nginx (with Docker or not), and even GitHub Pages.
The command to build a Blazor WebAssembly app is the same
as a Blazor Server: dotnet publish -c Release.Thebin/Release/
netstandard2.1/publish folder contains a folder with the name of the
project and a subfolder called dist, which includes the static files that you
can deploy, for example, to BLOB storage configured as a static web site
(Figure 5-5).

SR © S rmcousces, uarvions, aad doct (4]

e F [T e S W me deploytlazcouam - Static website

a Stormgh écoount E deployblazorwasm - Static website

king Advanced Tags Review + creste

Azure 0 rage s highty avadable, secure. Suratie, scalsble. and
gare Bioks fobyectal, Anure [torage Gend, Asure Fies, Azure Quea, and Ature e

i, oL Mg ScEUSE depench on e L and the DECS YOu ChOONE beOW.
ors 80wt AZure IDAID BECOE

¥ Geo-neplication

Project details & CoRs

i Fedcers b Srgarice and manage sl & Configuration

Encryption

Shared access sgraten

§ Finpwals and

1 Private encipoiet hions [

© Advanced purey

T Stic webiite

Properties

Locks
B Export template
ot wevvice
[l Contsiness.
B Custom domain

@ Data Protection

& Anse CON

Figure 5-5. Configuration of a static web site with Azure Storage

97

CHAPTER 5 DEPLOY YOUR APPLICATION

This static web site is a BLOB named $web where you can upload the
files of the dist folder; you can do this via the Azure Portal or the Microsoft
Azure Storage Explorer, a free tool to manage Azure Storage accounts
(Figure 5-6).

[] [] Mictoso!l Azure Storage Exploner

Callapse AB Reboen Al Uoked Downced Open MewFokde CopyLFL Gelect
i Ouick Accass
4 4 Local & Arached
+ B Strege Accounss
b & Cotmos DB Accounts (Proviow)
¢] Dara Lake Storage Gen1 (Preview)
Microsol AZure (DO EIRETNCouU CFmIcrs
+ [Sworage Accounts
a [deplyblarormass
+ [Bicb Containers
™ Sogs

™ Swed
» & File Shares
* W Ouewes
v W Tables

4 g Diks
[¥] Bazor

#

Figure 5-6. Blazor WebAssembly app uploaded with Azure Storage
Explorer

This operation deploys only the front-end, so if you have a
back-end, you need to deploy it and allow calls from the domain of
the front-end (technically called CORS policies; you can read more
here: https://docs.microsoft.com/en-US/aspnet/core/security/
cors?view=aspnetcore-3.1).

Another possibility is to serve the front-end with an ASP.NET Core
application, using ASP.NET Core hosting. Which is the best way for your
app depends on the scalability and security requirements you have. If your
application structure includes an ASP.NET Core back-end that exposes
REST APIs and a front-end that is a Blazor WebAssembly app, you can

98

https://docs.microsoft.com/en-US/aspnet/core/security/cors?view=aspnetcore-3.1
https://docs.microsoft.com/en-US/aspnet/core/security/cors?view=aspnetcore-3.1

CHAPTER 5 DEPLOY YOUR APPLICATION

deploy them in the same project, copying the dist folder of the Blazor
project into the wwwroot folder on the ASP.NET Core API project. In this
case, the domains of the API and the front-end are the same, so you do
not need to configure CORS policies. The negative aspect is that you

must scale both the back-end and the front-end if you need to scale your
application to manage more users. If the front-end does not change, the
users do not download it again, but the front-end continues to call the APIs
during application usage. You could probably scale only the back-end if
you separated it from the front-end. The same problem occurs if you need
to update the user interface without any impact on the back-end: if you
separate the two layers, you can scale only the front-end for a short period
to allow all the clients to download the new versions.

Summary

With the deployment of a Blazor application, our journey to create
single-page applications with Blazor has come to an end. As you saw in
this chapter, the deployment scenarios are different depending on whether
you use Blazor Server or Blazor WebAssembly. But more important are the
requirements you have: based on them, you can choose how to distribute
your application, which inevitably, in the simplest cases, consists of both

a front-end layer and a back-end layer. The complexity of deployment
often increases with the scalability that you want to achieve, but there may
also be security requirements that can lead you to different choices. Never
underestimate them.

Except for some advanced aspects, such as content protection or
optimization tips provided by the framework, you now have all the
necessary knowledge to develop your business application with .NET Core.
As always, practice is your best teacher!

99

Index

A

Application structure creation
App.razor component code, 39
article manager, 38
execution result, 42
index.html file, 40
project structure, 40-41
Razor file, 39

ASP.NET Web Forms, 2

Azure web app, 96

B

Blazor server application

app.UseStaticFiles()
method, 13

client downloads, 20

component, 12

countdown code, 13

creation, 7

definition, 2

deployment (see Deployment
process)

DotNetAnywhere, 8

download option, 9

endpoint.MapBlazorHub()
method, 12

© Michele Aponte 2020

EventSource object, 21

GitHub repo, 9

InvokeAsync() method, 15

long polling communication, 21

.NET Core 3.1 web project, 10

RenderComponentAsync()
method, 13

roadmap, 8

server result, 15, 16

server-sent result, 21

startCountdown() method, 14

startup configuration, 11

StateHasChanged() method, 15

WebSocket, 21

Bootstrap modal, 67, 73, 76

Code nightmares, 3-5
Component library

ArticleCategories page, 77

class definition, 75

components and models
folders, 75

Razor class library, 74

row creation, 76

table headers, 75

101

M. Aponte, Building Single Page Applications in .NET Core 3,

https://doi.org/10.1007/978-1-4842-5747-0

https://doi.org/10.1007/978-1-4842-5747-0#ESM

INDEX

Countdown application
BlazorHub WebSocket, 22
server app (see Blazor server

application)
WebAssembly
countdown.csproj file, 24
CreateHostBuilder()
method, 25
index.html File, 26
network tab, 27
project template
installation, 23-24
web application, 24
working process, 19-23

CRUD operations, 52
article categories, 52-54
categories, 52
dependency service, 62
in-memory implementation,

60-63
list component, 54
page component, 53
service creation
add category button, 59
article categories page, 59
article category, 60
ConfigureServices()
method, 56
definition interface, 55
page component, 56
physical operations, 55
ShowList() method, 59
validation rules
definition, 57

102

D

Data transfer objects (DTOs), 7
Deployment process
Server app
Azure web app, 96
creation panel, 94
HTTP request-Kestrel, 92
in-process/out-of-process
hosting models, 92
publish menu, 94, 95
SignalR, 91
sticky sessions, 93
Web sockets option, 94
scalability, 91
WebAssembly app, 97-99
Desktop application
development, 1
DotNetAnywhere, 8
DTOs7, see Data transfer
objects (DTOs)

E,F

ECMAScript 6 (ES6), 5

GH

Generic component, 80-83

Input components
base class definition, 85
FieldInputBase class, 86

FieldSelectInput class, 88

generic implementation, 87

input text definition, 84

source code, 85

TryParseValueFromString
method, 84

Ul library/reuse, 83

JJK L MN,O
JavaScript
ASP.NET Web Forms, 2
code nightmares, 3-5
frameworks, 6
jQuery library, 3
TypeScript, 5, 6
JavaScript function, 66-70

P,Q

Page navigation
Article.razor file, 48
layout component markup, 49
page folder, 47-48
results of, 51
router component markup, 50

R

Release-to-manufacturing
(RTM), 7
Reusable library, 73
component (See Component
library)

INDEX

generic components,
73, 80-83
input components, 83-88
templated components,
78-80
Rich Internet Application
(RIA), 2
RTM, see Release-to-manufacturing
(RTM)

S

Scalability, 91, 98
Server-side application, 1
Server vs. WebAssembly
countdown application (see
Countdown application)
differences, 30, 31
functional/nonfunctional
reqirements, 19
.NET Core 3, 8
WebAssembly, 28-30
Silverlight, 1
Single-page application, 33
application structure (see
Application structure
creation)
components, 33
business application
structure, 34
characteristics, 35
component code, 64-66
customization, 36
independent, 37

103

INDEX

Single-page application (cont.)
logic creation, 38
reusing, 37, 38
single responsibility

principle, 36
size of, 35
tree of, 35
CRUD (see CRUD operations)
JavaScript function, 66-70
main menu component
app component, 44
markup file, 42
official documentation, 45
Onlnitialized
method, 45
OnMenultemClick
method, 46
result of, 46, 47
source code, 43
navigation, 33
page navigation (see Page
navigation)

104

T

Templated component
creation, 78-80

Transpile, 6

TypeScript, 5, 6

u,Vv

User interface, 1

W XY, Z
WebAssembly
browser support, 30
definition, 28
deployment process, 97-99
JavaScript runtime, 28, 29
.NET Core 3,9
Server (see Server vs.
WebAssembly)
Windows Communication
Foundation (WCF), 2

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: The Case for Blazor
	Why You Fear JavaScript
	Code Nightmares
	Mitigate the Problem with TypeScript
	Why You Need a JavaScript Framework
	You Can Have Your Cake and Eat It Too with Blazor
	Your First Blazor Application
	What You Need to Get Started
	Getting Started

	Summary

	Chapter 2: Blazor Server vs. Blazor WebAssembly
	How the Countdown Application Works
	Running the Countdown Application in the Browser
	WebAssembly Revolution
	Which Blazor to Choose
	Summary

	Chapter 3: Create Your Single-Page Application
	Everything Is a Component
	Component Tree
	Component Size
	Reusability, Customization, and Independence
	Component Logic

	Creating the Application Structure
	The Main Menu Component
	Page Navigation with Blazor

	Managing CRUD Operations
	Creating a CRUD Service

	Implementing CRUD Services
	Where to Place the Component Code
	JavaScript Interoperability
	Summary

	Chapter 4: Build Your Reusable Blazor Library
	Creating a Component Library
	Creating a Templated Component
	Creating a Generic Component
	Creating Custom Input Components
	Summary

	Chapter 5: Deploy Your Application
	Deploying a Blazor Server App
	Deploying a Blazor WebAssembly App
	Summary

	Index

