
Blazor
Revealed

Building Web Applications in .NET
—
Peter Himschoot

Blazor Revealed
Building Web Applications in .NET

Peter Himschoot

Blazor Revealed: Building Web Applications in .NET

ISBN-13 (pbk): 978-1-4842-4342-8             ISBN-13 (electronic): 978-1-4842-4343-5
https://doi.org/10.1007/978-1-4842-4343-5

Library of Congress Control Number: 2019932722

Copyright © 2019 by Peter Himschoot

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484243428. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Peter Himschoot
Melle, Belgium

https://doi.org/10.1007/978-1-4842-4343-5

iii

Table of Contents

Chapter 1: Your First Blazor Project�� 1

Installing Blazor Prerequisites��� 1

.�NET Core�� 1

Visual Studio 2017�� 2

ASP.NET Core Blazor Language Services�� 3

Visual Studio Code�� 3

Installing the Blazor Templates for VS/Code��� 4

Generating Your Project with Visual Studio�� 5

Creating a Project with Visual Studio��� 6

Generating the Project with dotnet cli�� 7

Running the Project�� 8

Examining the Project’s Parts�� 10

The Solution�� 10

The Server�� 10

The Shared Project��� 12

The Client Blazor Project�� 13

Summary��� 17

About the Author�� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction to WebAssembly and Blazor��xv

iv

Chapter 2: Data Binding��� 19

A Quick Look at Razor�� 19

One-Way Data Binding��� 21

One-Way Data Binding Syntax�� 21

Conditional Attributes��� 22

Event Handling and Data Binding��� 23

Event Binding Syntax�� 23

Event Arguments�� 23

Using C# Lambda Functions��� 24

Two-Way Data Binding��� 24

Two-Way Data Binding Syntax�� 24

Formatting Dates�� 26

Reporting Changes��� 26

The Pizza Place Single Page Application��� 28

Creating the PizzaPlace Project�� 29

Adding Shared Classes to Represent the Data��� 30

Building the UI to Show the Menu�� 34

Enter the Customer��� 42

Validating the Customer Information�� 45

Summary��� 52

Chapter 3: Components and Structure for Blazor Applications������������������������������� 53

What Is a Blazor Component?�� 53

Examining the SurveyPrompt Component�� 54

Building a Simple Alert Component with Razor�� 55

Separating View and View-Model��� 58

Building a Component Library�� 66

Creating the Component Library Project�� 67

Adding Components to the Library��� 68

Refering to the Library from Your Project��� 70

Table of Contents

v

Refactoring PizzaPlace into Components�� 72

Creating a Component to Display a List of Pizzas�� 73

Updating the UI after Changing the State Object�� 75

Showing the ShoppingBasket Component��� 76

Creating a Validation Component Library��� 78

Adding the CustomerEntry Component�� 81

Component Lifecycle Hooks��� 86

OnInit and OnInitAsync��� 86

OnParametersSet and OnParametersSetAsync�� 87

OnAfterRender and OnAfterRenderAsync��� 87

IDisposable��� 88

Using Templated Components�� 89

Creating the Grid Templated Component�� 89

Using the Grid Templated Component�� 91

Specifying the Type Parameter’s Type Explicitly��� 94

Razor Templates��� 94

The Blazor Compilation Model��� 96

Summary��� 99

Chapter 4: Services and Dependency Injection��� 101

What Is Dependency Inversion?��� 101

Understanding Dependency Inversion�� 102

Using the Dependency Inversion Principle��� 103

Adding Dependency Injection��� 105

Applying an Inversion-of-Control Container��� 106

Configuring Dependency Injection��� 108

Singleton Dependencies��� 110

Transient Dependencies��� 111

Scoped Dependencies�� 111

Disposing Dependencies�� 114

Table of Contents

vi

Building Blazor Services�� 115

Adding the MenuService and IMenuService abstraction�� 116

Ordering Pizzas with a Service��� 119

Summary��� 123

Chapter 5: Data Storage and Microservices�� 125

What Is REST?�� 125

Understanding HTTP��� 125

Universal Resource Identifiers and Verbs��� 126

HTTP Status Codes��� 127

Invoking Server Functionality Using REST��� 127

HTTP Headers��� 127

JavaScript Object Notation��� 128

Some Examples of REST Calls�� 128

Building a Simple Microservice Using ASP.NET Core��� 130

Services and Single Responsibility�� 130

The Pizza Service��� 130

What Is Entity Framework Core?�� 135

Using the Code First Approach��� 136

Preparing Your Project for Code First Migrations��� 140

Creating Your First Code First Migration��� 144

Generating the Database�� 146

Enhancing the Pizza Microservice��� 149

Testing Your Microservice Using Postman��� 151

Installing Postman�� 151

Making REST Calls with Postman��� 152

Summary��� 159

Chapter 6: Communication with Microservices�� 161

Using the HttpClient Class�� 161

Examining the Server Project��� 161

Why Use a Shared Project?�� 163

Looking at the Client Project�� 164

Table of Contents

vii

Understanding the HttpClient Class��� 168

The HttpClientJsonExtensions Methods��� 168

Retrieving Data from the Server�� 173

Storing Changes��� 177

Updating the Database with Orders�� 178

Building the Order Microservice��� 183

Talking to the Order Microservice�� 184

Summary��� 186

Chapter 7: Single Page Applications and Routing��� 187

What Is a Single Page Application?�� 187

Using Layout Components��� 188

Blazor Layout Components��� 188

Selecting a @layout Component�� 190

_ViewImports.cshtml�� 191

Nested Layouts��� 192

Understanding Routing�� 194

Installing the Router��� 194

The NavMenu Component�� 195

The NavLink Component��� 197

Setting the Route Template�� 197

Using Route Parameters��� 198

Filter URIs with Route Constraints�� 199

Adding a Catchall Route Template�� 200

Redirecting to Other Pages�� 200

Navigating Using an Anchor��� 200

Navigating Using the NavLink Component��� 200

Navigating with Code��� 200

Understanding the Base Tag��� 202

Sharing State Between Components��� 203

Summary��� 212

Table of Contents

viii

Chapter 8: JavaScript Interoperability�� 213

Calling JavaScript from C#��� 213

Providing a Glue Function��� 213

Using JSRuntime to Call the Glue Function�� 214

Storing Data in the Browser with Interop��� 214

Passing a Reference to JavaScript��� 217

Calling .NET Methods from JavaScript��� 219

Adding a Glue Function Taking a .NET Instance��� 220

Adding a JSInvokable Method to Invoke�� 220

Building a Blazor Chart Component Library��� 222

Creating the Blazor Component Library�� 223

Adding the Component Library to Your Project��� 224

Adding Chart.js to the Component Library��� 226

Adding Chart.js Data and Options Classes��� 230

Registering the JavaScript Glue Function�� 233

Providing the JavaScript Interoperability Service�� 234

Implementing the LineChart Component�� 236

Using the LineChart Component��� 238

Summary��� 240

�Index�� 241

Table of Contents

ix

About the Author

Peter Himschoot works as a lead trainer, architect, and

strategist at U2U Training. Peter has a wide interest in

software development, which includes applications for

the Web, Windows, and mobile devices. Peter has trained

thousands of developers, is a regular speaker at international

conferences, and has been involved in many web and mobile

development projects as a software architect. Peter is also a

Microsoft Regional Director, a group of trusted advisors to the

developer and IT professional audiences, and to Microsoft.  

xi

About the Technical Reviewer

Gerald Versluis is a developer and Microsoft MVP from

Holland with years of experience working with Xamarin,

Azure, ASP.NET, and other .NET technologies. He has

been involved in numerous projects, in various roles. A

great number of his projects are Xamarin apps. Not only

does Gerald like to code, but he is keen on spreading his

knowledge as well as gaining some in the bargain. He

speaks, provides training sessions, and writes blogs and

articles in his spare time.  

xiii

Acknowledgments

When Jonathan Gennick from Apress asked me if I would be interested in writing a book

on Blazor, I felt honored and of course I agreed that Blazor deserves a book. Writing a

book is a group effort, so I thank Jonathan Gennick and Jill Balzano for giving me tips

on styling and writing this book, and I thank Gerald Versluis for doing the technical

review and pointing out sections that needed a bit more explaining. I also thank Magda

Thielman and Lieven Iliano from U2U Training, my employer, for encouraging me to

write this book.

I thoroughly enjoyed writing this book and I hope you will enjoy reading and

learning from it.

xv

Introduction to WebAssembly
and Blazor

I was attending the Microsoft Most Valued Professional and Regional Directors Summit

when we were introduced to Blazor for the first time by Steve Sanderson and Daniel

Roth. And I must admit I was super excited about Blazor! Blazor is a framework that

allows you to build single-page applications (SPAs) using C# and allows you to run any

standard .NET library in the browser. Before Blazor, your options for building a SPA were

JavaScript or one of the other higher-level languages like TypeScript, which get compiled

into JavaScript anyway. In this introduction, I will look at how browsers are now capable

of running .NET assemblies in the browser using WebAssembly, Mono, and Blazor.

Blazor is, at the time of writing, an EXPERIMENTAL framework. I hope by the time
you are reading this book that it has been made official by Microsoft.

�A Tale of Two Wars
Think about it. The browser is one of the primary applications on your computer. You

use it every day. Companies who build browsers know this very well and are bidding for

you to use their browser. In the beginning of mainstream Internet, everyone was using

Netscape. Microsoft wanted a share of the market, so in 1995 it built Internet Explorer 1.0,

released as part of Windows 95 Plus! pack. Newer versions were released rapidly, and

browsers started to add new features such as <blink> and <marquee> elements. This was

the beginning of the first browser war, giving people (especially designers) headaches

because some developers were building pages with blinking marque controls ☺. But

developers were also getting sore heads because of incompatibilities between browsers.

The first browser war was about having more HTML capabilities than the competition.

xvi

But all of this is now behind us with the introduction of HTML5 and modern

browsers like Google Chrome, Microsoft Edge, Firefox, and Opera. HTML5 not only

defines a series of standard HTML elements but also rules on how they should render,

making it a lot easier to build a web site that looks the same in all modern browsers.

But let’s go back to 1995, when Brendan Eich wrote a little programming language

known as JavaScript (initially called LiveScript) in 10 days (What!?). It was called

JavaScript because its syntax was very similar to Java.

JavaScript and Java are not related. Java and JavaScript have as much in
common as ham and hamster (I don’t know who formulated this first, but I love
this phrasing).

Little did Mr. Eich know how this language would impact the modern Web and

even desktop application development. In 1995, Jesse James Garett wrote a white paper

called Ajax (Asynchronous JavaScript and XML), describing a set of technologies

where JavaScript is used to load data from the server and that data is used to update

the browser’s HTML, thus avoiding full page reloads and allowing for client-side web

applications (applications written in JavaScript that run completely in the browser).

One of the first companies to apply Ajax was Microsoft, when it built Outlook Web Access

(OWA). OWA is a web application almost identical to the Outlook desktop application

but providing the power of Ajax. Soon other Ajax applications started to appear, with

Google Maps stuck in my memory as one of the other keystone applications. Google

Maps would download maps asynchronously, and with some simple mouse interactions

allowed you to zoom and pan the map. Before Google Maps, the server would do

the map rendering and a browser would display the map like any other image by

downloading a bitmap from a server.

Building an Ajax web site was a major undertaking, which only big companies

like Microsoft and Google could afford. This soon changed with the introduction of

JavaScript libraries like jQuery and knockout.js. Today we can build rich web apps with

Angular, React, and Vue.js. All of them use JavaScript or higher-level languages like

TypeScript, which get complied into JavaScript. Which brings us back to JavaScript and

the second browser war. JavaScript performance is paramount in modern browsers.

Chrome, Edge, Firefox, and Safari are all competing with one another, trying to

convince users that their browser is the fastest, with cool sounding names for their

JavaScript engine like V8 and Chakra. These engines use the latest optimization tricks

Introduction to WebAssembly and Blazor

xvii

like Just-in-Time (JIT) compilation where JavaScript gets converted into native code, as

illustrated by Figure 1.

This process takes a lot of effort because JavaScript needs to be downloaded into the

browser, where it gets parsed, then compiled into bytecode, and then JIT converted into

native code. So how can we make this process even faster?

The second browser war is all about JavaScript performance.

�Introducing WebAssembly
WebAssembly allows you to take the parsing and compiling to the server. With WebAssembly

you compile your code in a format called WASM (an abbreviation of WebASseMbly), which

gets downloaded by the browser where it gets JIT compiled into native code, as shown

in Figure 2. Open your browser and google “webassembly demo zen garden.” One of the

links is https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html

where you can see an impressive ray-trace demo of a Japanese Zen garden, shown in

Figure 3.

Figure 1.  The JavaScript execution process

Introduction to WebAssembly and Blazor

https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html

xviii

Figure 3.  Japanese Zen Garden

Figure 2.  The WebAssembly execution process

Introduction to WebAssembly and Blazor

xix

From the official site, www.webassembly.org:

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based

virtual machine. Wasm is designed as a portable target for compilation of high-level

languages like C/C++/Rust, enabling deployment on the web for client and server

applications.

So WebAssembly is a new binary format optimized for browser execution; it is NOT

JavaScript. There are compilers for languages like C++ and Rust that compile to WASM.

�Which Browsers Support WebAssembly?
WebAssembly is supported by all major browsers: Chrome, Edge, Safari, and Firefox,

including their mobile versions. As WebAssembly becomes more and more important,

we will see other modern browsers follow suit, but don’t expect Internet Explorer to

support WASM.

�WebAssembly and Mono
Mono is an open source implementation of the .NET CLI specification, meaning that

Mono is a platform for running .NET assemblies. Mono is used in Xamarin for building

mobile applications that run on the Windows, Android, and iOS mobile operating

systems. Mono also allows you to run .NET on Linux (its original purpose) and is

written in C++. This last part is important because you saw that you can compile C++ to

WebAssembly. So, what happened is that the Mono team decided to try to compile Mono

to WebAssembly, which they did successfully. There are two approaches. One is where

you take your .NET code and you compile it together with the Mono runtime into one

big WASM application. However, this approach takes a lot of time because you need to

take several steps to compile everything into WASM, which is not so practical for day-to-

day development. The other approach takes the Mono runtime, compiles it into WASM,

and this runs in the browser where it will execute .NET Intermediate Language just

like normal .NET does. The big advantage is that you can simply run .NET assemblies

without having to compile them first into WASM. This is the approach currently taken by

Blazor. But Blazor is not the only one taking this approach. For example, the Ooui project

allows you to run Xamarin.Forms applications in the browser. The disadvantage of this

is that it needs to download a lot of .NET assemblies. This can be solved by using Tree

Shaking algorithms, which remove all unused code from assemblies. These tools are not

yet available, but they are in the pipeline.

Introduction to WebAssembly and Blazor

http://www.webassembly.org/

xx

�Interacting with the Browser with Blazor
WebAssembly with Mono allows you to run .NET code in the browser. Steve Sanderson

used this to build Blazor. Blazor uses the popular ASP.NET MVC approach for building

applications that run in the browser. With Blazor, you build Razor files (Blazor = Browser

+ Razor) that execute inside the browser to dynamically build a web page. With Blazor,

you don’t need JavaScript to build a web app, which is good news for thousands of .NET

developers who want to continue using C# (or F#).

�How Does It Work?
Let’s start with a simple Razor file. See Listing 1, which you can find when you create a

new Blazor project.

Listing 1.  The Counter Razor File

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" onclick="@IncrementCount">Click me</button>

@functions {

 int currentCount = 0;

 void IncrementCount()

 {

 currentCount++;

 }

}

This file gets compiled into .NET code (you’ll find out how later in this book), which

is then executed by the Blazor engine. The result of this execution is a tree-like structure

called the render tree. The render tree is then sent to JavaScript, which updates the

DOM to reflect the render tree (creating, updating, and removing HTML elements and

attributes). Listing 1 will result in h1, p (with the value of currentCount) and button

HTML elements. When you interact with the page, for example when you click the

Introduction to WebAssembly and Blazor

xxi

button, this will trigger the button’s click event, which will invoke the IncrementCount

method from Listing 1. The render tree is then regenerated, and any changes are sent

again to JavaScript, which will update the DOM. This process is illustrated in Figure 4.

This model is very flexible. It allows you to build progressive web apps, and also can

be embedded in Electron desktop applications, of which Visual Studio Code is a prime

example.

Figure 4.  The Blazor DOM generation process

�Server-Side Blazor
On August 7, 2018, Daniel Roth introduced a new execution model for Blazor called

server-side Blazor at the ASP.NET community standup. In this model, your Blazor site

runs on the server, resulting in a much smaller download for the browser.

�The Server-Side Model
You just saw that client-side Blazor builds a render tree using the Mono runtime, which

then gets sent to JavaScript to update the DOM. With server-side Blazor, the render tree

gets built on the server and then gets serialized to the browser using SignalR. JavaScript

in the browser then deserializes the render tree to update the DOM, which is pretty

similar to the client-side Blazor model. When you interact with the site, events get

Introduction to WebAssembly and Blazor

xxii

serialized back to the server, which then executes the .NET code, updating the render

tree, which then gets serialized back to the browser. You can see this process in

Figure 5. The big difference is that there is no need to send the Mono runtime and your

Blazor assemblies to the browser. And the programming model stays the same!

Figure 5.  Server-side Blazor

�Pros and Cons of the Server-Side Model
The server-side model has a couple of benefits, but also some drawbacks. Let’s discuss

them here so you can decide which model fits your application’s needs.

�Smaller Downloads

With server-side Blazor, your application does not need to download mono.wasm nor all

your .NET assemblies. This means that the application will start a lot faster.

Introduction to WebAssembly and Blazor

xxiii

�Development Process

Blazor client-side has limited debugging capabilities, resulting in added logging. Because

your .NET code is running on the server, you can use the regular .NET debugger. You

could start building your Blazor application using the server-side model and when it’s

finished switch to the client-side model by making a small change to your code.

�.NET APIs

Because you are running your .NET code on the server you can use all the .NET APIs you

would use with regular MVC applications, for example accessing the database directly.

Note that doing this will stop you from being able to quickly convert it to a client-side

application.

�Online Only

Running the Blazor application on the server does mean that your users will always

need access to the server. This will prevent the application from running in Electron; you

also can’t run it as a progressive web application (PWA). And if the connection drops

between the browser and server, your user could lose some work because the application

will stop functioning.

�Server Scalability

All your .NET code runs on the server so if you have thousands of clients, your server(s)

will have to handle all the work. Also, Blazor uses a state-full model, which means you

must keep track of every user’s state on the server.

�Summary
In this introduction, you looked at the history of the browser wars and how they resulted

in the creation of WebAssembly. Mono allows you to run .NET assemblies; because

Mono can run on WebAssembly, you can now run .NET assemblies in the browser! All of

this resulted in the creation of Blazor, where you can build Razor files containing .NET

code, which updates the browser’s DOM, giving you the ability to build single-page

applications in .NET.

Introduction to WebAssembly and Blazor

1
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_1

CHAPTER 1

Your First Blazor Project
Getting a hands-on experience is the best way to learn. In this chapter, you’ll install the

prerequisites to developing with Blazor, which includes Visual Studio along with some

needed extensions. Then you’ll create your first Blazor project in Visual Studio, run the

project to see it work, and inspect the different aspects of the project to get a “lay of the

land” view for how Blazor applications are developed.

�Installing Blazor Prerequisites
Working with Blazor requires you to install some prerequisites, so let’s get to it.

�.NET Core
Blazor runs on top of .NET Core, providing the web server for your project, which will

serve the client files that run in the browser and run any server-side APIs that your Blazor

project needs. .NET Core is Microsoft’s cross-platform solution for working with .NET on

Windows, Linux, and OSX.

You can find the installation files at www.microsoft.com/net/download. Look for

the latest version of the .NET Core SDK. Download the installer, run it, and accept the

defaults.

Verify the installation when the installer is done by opening a new command prompt

and typing the following command:

dotnet –version

Look for the following output to indicate that you have the correct version installed.

The version number should be at least 2.1.300.

Should the command’s output show an older version (for example 2.1.200), you must

download and install a more recent version of .NET Core SDK.

http://www.microsoft.com/net/download

2

�Visual Studio 2017
Visual Studio 2017 (from now on I will refer to Visual Studio as VS) is one of the

integrated development environments (IDEs) you will use throughout this book. The

other IDE is Visual Studio Code. With either one you can edit your code, compile it, and

run it all from the same application. The code samples are also the same. However, VS

only runs on Windows, so if you’re using another OS, please continue to the section on

Visual Studio Code.

Download the latest version of Visual Studio 2017 from www.visualstudio.com/

downloads/.

Run the installer and make sure that you install the ASP.NET and web development

role, as shown in Figure 1-1.

Figure 1-1.  The Visual Studio Installer Workloads selection

After installation, run Visual Studio from the Start menu. Then open the Help menu

and select About Microsoft Visual Studio. The About Microsoft Visual Studio dialog

window should specify at least version 15.7.3, as illustrated in Figure 1-2.

Chapter 1 Your First Blazor Project

http://www.visualstudio.com/downloads/
http://www.visualstudio.com/downloads/

3

�ASP.NET Core Blazor Language Services
The Blazor Language Services plugin for Visual Studio will aid you when typing Blazor

files and will install the Blazor VS project templates. Installation of the plugin is done

directly from Visual Studio. Open Tools ➤ Extensions and Updates. Click the Online tab

and enter Blazor in the search box. You should see the ASP.NET Core Blazor Language

Services listed as shown in Figure 1-3. Select it and click the Download button to install.

Figure 1-2.  About Microsoft Visual Studio

Figure 1-3.  Installing Blazor Language Services from the Extensions and Updates
menu

�Visual Studio Code
Visual Studio Code is a free, modern, cross-platform development environment with

integrated editor, git source control, and debugger. The environment has a huge range

of extensions available, allowing you to use all kinds of languages and tools directly from

Code. So, if you don’t have access to Visual Studio 2017 (because you’re running a non-

Windows operating system or you don’t want to use it), use Code.

Chapter 1 Your First Blazor Project

4

Download the installer from www.visualstudio.com/. Run it and choose the

defaults.

After installation I do advise you install a couple of extensions for Code, especially

the C# extensions. Start Code, and on the left side, select the Extensions tab, as shown

in Figure 1-4.

Figure 1-4.  Visual Studio Code Extensions tab

You can search for extensions, so start with C#, which is the first extension from

Figure 1-4. This extension will give you IntelliSense for the C# programming language

and .NET assemblies. You will probably get a newer version listed so take the latest.

Click Install.

Another extension you want to search for is Razor+, as shown in Figure 1-5. This

extension will give you nice syntax coloring for the kind of Razor files you will use in

Blazor.

Figure 1-5.  Razor+ for Visual Studio Code

�Installing the Blazor Templates for VS/Code
Throughout this book you will create several different Blazor projects. Not all of them

can be created from Visual Studio or Code, meaning you’ll need to install the templates

for Blazor projects. This section’s example shows how to install those templates from the

Chapter 1 Your First Blazor Project

http://www.visualstudio.com/

5

.NET Core command-line interface, also known as the .NET Core CLI. You should have

this command-line interface as part of your .NET Core installation.

Open a command line on your OS, and type the following to install the templates

from NuGet:

dotnet new -i Microsoft.AspNetCore.Blazor.Templates

These templates will allow you to quickly generate projects and items. Verify the

installation by typing the following command:

dotnet new –-help

This command will list all the templates that have been installed by the command-

line interface. You will see four columns. The first shows the template’s description, the

second column displays the name, the third lists the languages for which the template

is available, and the last shows the tags, a kind of group name for the template. Among

those listed are the following:

Blazor (hosted in ASP.NET server) blazorhosted

Blazor Library blazorlib

Blazor (Server-side in ASP.NET Core) blazorserverside

Blazor (standalone) blazor

�Generating Your Project with Visual Studio
With Blazor projects you have a couple of choices. You can create a stand-alone Blazor

project (using the blazor template) that has no need for server-side code. This kind of

project has the advantage that you can simply deploy it to any web server, which will

function as a file server, allowing browsers to download your site just like any other site.

Or you can create a hosted project (using the blazorhosted template) with client, server,

and shared code. This kind of project will require you to host it where there is .NET core

2.1 support because you will execute code on the server as well. The third option is to

run all Blazor code on the server (using the blazorserverside template). In this case,

the browser will use a SignalR connection to receive UI updates from the server and

to send user interaction back to the server for processing. In this book, you will use

the second option, but the concepts you will learn in this book are the same for all

three options.

Chapter 1 Your First Blazor Project

6

�Creating a Project with Visual Studio
For your first project, start Visual Studio and select File ➤ New ➤ Project. On the left

side of the New Project dialog, select C# ➤ Web, and then select ASP.NET Core Web

Application, as illustrated by Figure 1-6.

Figure 1-6.  Visual Studio New Project dialog

Name your project MyFirstBlazor, leave the rest to the preset defaults, and click OK.

On the next screen, you can select what kind of ASP.NET Core project you want to

generate. From the top drop-downs, select .NET Core and ASP.NET Core 2.1 (or higher),

as shown in Figure 1-7. Then select Blazor (ASP.NET hosted) and click OK.

Chapter 1 Your First Blazor Project

7

Wait for Visual Studio to complete. Then build your solution.

At the time of writing this book, Blazor has very limited client-side debugging (and
only in Chrome), so running a Blazor project with a debugger just will take more
time to show the browser. From now on I will tell you to run without the debugger.

�Generating the Project with dotnet cli
To generate the project with dotnet cli, open command line and change the current

directory to wherever you want to create the project. Now execute this command to

create a new project from the blazorhosted template in the MyFirstBlazor directory:

dotnet new blazorhosted -o MyFirstBlazor

Figure 1-7.  New ASP.NET Core web application

Chapter 1 Your First Blazor Project

8

This command will take a little while because it will download a bunch of NuGet

packages from the Internet. When the command is ready, you can build your project using

cd MyFirstBlazor

dotnet build

Now open your project’s folder with Code. When Code has loaded everything, it will

pop a little question, as shown in Figure 1-8.

Figure 1-8.  Code asking to add build and debug assets

Answer Yes. This will add a folder called .vscode with configuration files adding

support for building and running the project from Code.

�Running the Project
Press Ctrl-F5 to run (this should work for both Visual Studio and Code). Your (default)

browser should open and display the home page, as shown in Figure 1-9.

Figure 1-9.  Your first application’s home page

Chapter 1 Your First Blazor Project

9

This generated single-page application has on the left side a navigation menu

allowing you to jump between different pages. On the right side you will see the selected

screen shown in Figure 1-9: the home page. And in the top right corner there is an About

link to https://blazor.net/, which is the “official” Blazor documentation web site.

�The Home Page

The home page shows the mandatory “Hello, world!” demo, and it also contains a survey

component you can click to fill out a survey (please let Microsoft know you like Blazor!).

�The Counter Page

In the navigation menu, click the Counter tab. Doing so opens a simple screen with a

number and a button, as illustrated by Figure 1-10. Clicking the button will increment

the counter. Try it!

Figure 1-10.  The Counter screen

�The Fetch Data Page

In the navigation menu, click the Fetch data tab. Here you can watch a (random and

fake) weather forecast, as shown in Figure 1-11. This forecast is generated on the server

when asked by the client. This is very important because the client (which is running in

the browser) cannot access data from a database directly, so you need a server that can

access databases and other data storage.

Chapter 1 Your First Blazor Project

https://blazor.net/

10

�Examining the Project’s Parts
Being able to play with these pages is nice but let’s have a look at how all this works. You

will start with the server project, which hosts your Blazor web site. Then you will look at

the shared project, which contains classes used by both server and client. Finally, you

will examine the client project, which is the actual Blazor implementation.

�The Solution
Visual Studio and Code use solution files to group projects that will form an application.

So a typical Blazor project consists of a server, a client, and a shared project grouped

into a single solution. This simplifies building everything since the solution allows tools

to figure out in which order to compile everything. Hey, you could even switch between

Visual Studio and Code because they both use the same project and solution files!

�The Server
Web applications are really a bunch of files that get downloaded by the browser from a

server. It is the server’s job to provide the files to the browser upon request. There is a

whole range of existing servers to choose from, for example IIS on Windows or Apache

Figure 1-11.  The Fetch data screen

Chapter 1 Your First Blazor Project

11

on Linux. ASP.NET Core has its own built-in server which you generated with the

blazorhosted template, which you can then run on Windows, Linux, or OSX.

The topic of this book is Blazor, so I’m not going to discuss all the details of the server

project that got generated using the blazorhosted template, but I do want to show you

an important thing. In the server project, look for Startup.cs. Open this file and scroll

down to the Configure method shown in Listing 1-1.

Listing 1-1.  The Server Project’s Configure Method

// This method gets called by the runtime.

// Use this method to configure the HTTP request pipeline.

public void Configure(IApplicationBuilder app,

 IHostingEnvironment env)

{

 app.UseResponseCompression();

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseMvc(routes =>

 {

 routes.MapRoute(name: "default",

 template: "{controller}/{action}/{id?}");

 });

 app.UseBlazor<Client.Program>();

}

The Configure method is responsible for installing middleware. Middleware are

little .NET components that each have a clear responsibility. When you type in a URI,

the browser sends a request to the server, which then passes it on to the middleware

components. Some of them will take the request and return a response; some of them

take the response and do something with it. Look at the first line in the Configure

method, shown in Listing 1-2.

Chapter 1 Your First Blazor Project

12

Listing 1-2.  The UseResponseCompression Middleware

app.UseResponseCompression();

Your Blazor client will download a lot of files from the server, including

.NET assemblies, so compressing these files will result in a faster download. The

UseResponseCompression middleware takes care of that.

Would you like to see a detailed error page when the server has an uncaught

exception? The UseDeveloperExceptionPage takes care of that. Of course, you don’t

need it in production (you should handle all exceptions correctly) so this middleware

is only used when running in a development environment. How does the server know

if you are running in development or release? The if statement you see here checks an

environment variable called ASPNETCORE_ENVIRONMENT, and if the environment variable

is set to Development it knows you are running in development mode.

The Fetch data screen downloads weather information from the server. These kinds

of requests will be handled by the MVC middleware. I will discuss this in more detail in

Chapter 5.

The Blazor bootstrap process requires a bunch of special files, especially mono.wasm.

They are served by the Blazor middleware, which can be found at the end of the

Configure method.

�The Shared Project
When you click on the Fetch data tab, your Blazor project fetches some data from the

server. The shape of this data needs to be described in detail (computers are picky

things); in classic projects, you describe this model’s shape twice, once for the client and

again for the server because they use different languages. Not with Blazor! In Blazor, both

client and server use C#, so you can describe the model once and share it between client

and server, as shown in Listing 1-3.

Listing 1-3.  The Shared WeatherForecast Class

public class WeatherForecast

{

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string Summary { get; set; }

Chapter 1 Your First Blazor Project

13

 public int TemperatureF

 => 32 + (int)(TemperatureC / 0.5556);

}

�The Client Blazor Project
Open the client project’s wwwroot folder and look for index.html. The contents of that

file should appear as shown in Listing 1-4. To be honest, this looks mostly like a normal

HTML page. But on closer inspection you’ll see that there is a weird <app> html tag there:

<app>Loading...</app>

The <app> html element does not exist! It is an example of a Blazor component. You

will also see a <script> element:

<script src="_framework/blazor.webassembly.js"></script>

This script will install Blazor by downloading mono.wasm and your assemblies.

Listing 1-4.  index.html

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width">

 <title>MyFirstBlazor</title>

 <base href="/" />

 <link href="css/bootstrap/bootstrap.min.css"

 rel="stylesheet" />

 <link href="css/site.css" rel="stylesheet" />

</head>

<body>

 <app>Loading...</app>

 <script src="_framework/blazor.webassembly.js"></script>

</body>

</html>

Chapter 1 Your First Blazor Project

14

�Routing

What is that <app> element? Open Startup.cs from the MyFirstBlazor.Client project

and look for the Configure method, as shown in Listing 1-5. Here you can see the App

component being associated with the app tag from index.html. A Blazor component

uses a custom tag like <app>, and the Blazor runtime replaces the tag with the

component’s markup, which is normal HTML recognized by the browser. I will discuss

Blazor components in Chapter 3.

Listing 1-5.  The Configure Method Associating the app Element to the App

Component

public void Configure(IBlazorApplicationBuilder app)

{

 app.AddComponent<App>("app");

}

The main thing the App component does is install the router, as shown in Listing 1-6.

The router is responsible for loading a Blazor component depending on the URI in the

browser. For example, if you browse to the / URI, the router will look for a component

with a matching @page directive.

Listing 1-6.  The App Component

<Router AppAssembly=typeof(Program).Assembly />

In your current MyFirstBlazor project this will match the Index component, which

you can find in the Index.cshtml file, which you can find in the Pages folder. The Index

component displays a Hello World message and the survey link, as shown in Listing 1-7.

Listing 1-7.  The Index Component

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<SurveyPrompt Title="How is Blazor working for you?" />

Chapter 1 Your First Blazor Project

15

�Layout Components

Look at Figure 1-9 and Figure 1-10. Both have the same menu. This menu is shared

among all your Blazor components and is known as a layout component. I will discuss

layout components in Chapter 7. But how does Blazor know which component is the

layout component? Open the Pages folder from the MyFirstBlazor.Client project and

look for the _ViewImports.cshtml file. In Razor you use a _ViewImports.cshtml file

to define common markup among all razor files in the same folder. If you’re familiar

with .NET Core, _ViewImports.cshtml from .NET Core is very similar. The Pages folder

contains such a file and specifies that all files use the same MainLayout component, as

shown in Listing 1-8.

Listing 1-8.  Specifying the Layout Component in _ViewImports.cshtml

@layout MainLayout

In your project, the layout component can be found in MainLayout.cshtml from the

Shared folder, which is shown in Listing 1-9.

Listing 1-9.  The MainLayout Component

@inherits BlazorLayoutComponent

<div class="sidebar">

 <NavMenu />

</div>

<div class="main">

 <div class="top-row px-4">

 <a href="http://blazor.net" target="_blank"

 class="ml-md-auto">About

 </div>

 <div class="content px-4">

 @Body

 </div>

</div>

Chapter 1 Your First Blazor Project

16

The first div with class sidebar contains a single component: NavMenu. This is where

your navigation menu gets defined. You will look in more detail at navigation and routing

in Chapter 7.

The next div with class main has two parts. The first is the About link you see on

every page. The second part contains the @Body; this is where the selected page will be

shown. For example, when you click the Counter link in the navigation menu, this is

where the Counter.cshtml Blazor component will go.

�The Blazor Bootstrap Process

Examine Listing 1-4 again. At the bottom you will find the <script> element responsible

for bootstrapping Blazor in the browser. Let’s look at this process.

Go back to your browser and open its developer tools. (Most browsers will open the

developer tools when you press F12.) Let’s look at what happens at the network layer.

All screenshots in this book use the Chrome browser, mainly because it is available
on all platforms (Windows, Linux, and OSX) and because it is very popular with a
lot of web developers. If you like another browser better, go right ahead!

Refresh your browser to see what gets downloaded from the server, as shown in

Figure 1-12. If Figure 1-12 does not match what you see, clear the browser’s cache.

Browsers use a cache to avoid reloading files from the server, but when you are

developing, you must clear the cache to ensure you are getting the latest changes from

the server. First, you will see index.html being downloaded, which in turn downloads

bootstrap.css and site.css, and then blazor.webassembly.js. A little lower you will

see that mono.js gets downloaded, which in turn will download mono.wasm. This is the

mono runtime compiled to run on WebAssembly!

Chapter 1 Your First Blazor Project

17

Now that the .NET runtime is running, you will see that MyFirstBlazor.Client.dll

gets downloaded, followed by all its dependencies, including mscorlib.dll and system.

dll. These files contain the .NET libraries containing classes such as string, used to

execute all kinds of things, and they are the same libraries you use on the server. This is

very powerful because you can reuse existing .NET libraries in Blazor that you or others

built before!

�Summary
Is this chapter, you installed the prerequisites needed for developing and running

Blazor applications. You then created your first Blazor project. This project will be used

throughout this book to explain all the Blazor concepts you need to know about. Finally,

you examined this solution, looking at the server-side project, the shared project, and

the client-side Blazor project.

Figure 1-12.  Examining the bootstrap process using the network log

Chapter 1 Your First Blazor Project

19
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_2

CHAPTER 2

Data Binding
Imagine any application that needs to display data to the user and capture changes

made by that user to save the modified data. One way you could build an application like

this is to, once you have the data, iterate over each item of data. For example, for every

member of a list you would generate the same repeating element, and then inside that

element you would generate textboxes, drop-downs, and other UI elements that present

data. Later, after the user made some changes, you would iterate over your generated

elements, and for every one you would inspect the child elements if their data was

changed. If so, you would copy the data back into the objects used for saving that data.

This is an error-prone process, and a lot of work if you want to do this with something

like jQuery (jQuery is a very popular JavaScript framework that allows you to manipulate

the browser’s Document Object Model (DOM)).

Modern frameworks like Angular and React have become popular because they

simplify this process greatly through data binding. With data binding most of this work

for generating the UI and copying data back into objects is done by the framework.

�A Quick Look at Razor
Blazor is the combination of Browser + Razor (with a lot of artistic freedom). So, to

understand Blazor you need to understand browsers and Razor. I will assume you

understand what a browser is, since the Internet has been very popular for over more

than a decade. But Razor (as a computer language) might not be that clear (yet). Razor

is a markup syntax that allows you to embed code in a web page. In ASP.NET Core MVC

the code is executed at the server-side to generate HTML that is sent to the browser. But

in Blazor this code is executed inside your browser and will dynamically update the web

page without having to go back to the server.

Remember the MyFirstBlazor solution you generated from the template in

the previous chapter? Open it again with Visual Studio or Code and have a look at

SurveyPrompt.cshtml, as shown in Listing 2-1.

20

Listing 2-1.  Examining SurveyPrompt.cshtml

<div class="alert alert-secondary mt-4" role="alert">

 @Title

 Please take our

 <a target="_blank" class="font-weight-bold"

 href="https://go.microsoft.com/fwlink/?linkid=873042">

 brief survey

 and tell us what you think.

</div>

@functions {

[Parameter]

string Title { get; set; } // Demonstrates how a parent

 component can supply parameters

}

As you can see, Razor mainly consists of HTML markup. But if you want to have some

C# properties or methods, you can embed them in the @functions section of a Razor file.

This works because the Razor file is used to generate a .NET class and everything in

@functions is embedded in that class. For example, the SurveyPrompt component allows

you to set the Title property, which is set in Index.cshtml, as shown in Listing 2-2.

Listing 2-2.  Setting the SurveyPrompt’s Title (Excerpt from index.cshtml)

<SurveyPrompt Title="How is Blazor working for you?" />

Because the Title property can be set in another component, the property becomes

a parameter, and because of that you need to apply the [Parameter] attribute, as shown

in Listing 2-1. SurveyPrompt can then embed the contents of the Title property in its

HTML markup using the @ syntax. This syntax tells Razor to switch to C#, and this will get

the property and embed its value in the markup.

Chapter 2 Data Binding

21

�One-Way Data Binding
One-way data binding is where data flows from the component to the DOM, or vice

versa, but only in one direction. Data binding from the component to the DOM is where

some data, like the customer’s name, needs to be displayed. Data binding from the DOM

to the component is where some DOM event took place, like the user clicking a button,

and you want some code to run.

�One-Way Data Binding Syntax
Let’s look at an example of one-way data binding in Razor. Open the solution you built in

Chapter 1 (MyFirstBlazor.sln), and open Counter.cshtml, repeated here in Listing 2-3.

Listing 2-3.  Examining One-Way Databinding with Counter.cshtml

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" onclick="@IncrementCount">

 Click me

</button>

@functions {

 int currentCount = 0;

 void IncrementCount()

 {

 currentCount++;

 }

}

On this page you get a simple counter, which you can increment by clicking the

button, as illustrated by Figure 2-1.

Chapter 2 Data Binding

22

Let’s look at the workings of this page. The counter field is defined in the @functions

section in Counter.cshtml. This is not a field that can be set from outside so there is no

need for the [ParameterAttribute].

To display the value of the counter in Razor, you use the @currentCount Razor syntax

shown in Listing 2-4.

Listing 2-4.  Data Binding from the Component to the DOM

<p>Current count: @currentCount</p>

Any time Blazor sees that currentCount may have been updated it will automatically

update the DOM with the latest value of currentCount.

�Conditional Attributes
Sometimes you can control the browser by adding some attributes to DOM elements.

For example, to disable a button you can simply use the disabled attribute. Look at

Listing 2-5.

Listing 2-5.  Disabling a Button Using the disabled Attribute

<button disabled>On Strike</button>

With Blazor you can data-bind an attribute to a Boolean expression (e.g. a property

or method of type bool) and Blazor will hide the attribute if the expression evaluates to

false (or null) and will show the attribute if it evaluates to true. Go back to the Counter.

cshtml and add the code from Listing 2-6.

Figure 2-1.  The Counter page

Chapter 2 Data Binding

23

Listing 2-6.  Disabling the Click Me Button

<button onclick="@IncrementCount"

 disabled="@(currentCount >= 10)">Click me</button>

Try it. Clicking the button until the currentCount becomes 10 will disable the button.

As soon as currentCount falls below 10, the button will become enabled again.

�Event Handling and Data Binding
You update currentCount using the IncrementCount() method from Listing 2-3. This

method gets called by clicking the Click Me button. This, again, is a one-way data

binding, but in the other direction, from the button to your component.

�Event Binding Syntax
Look at Listing 2-7. Now you are using the on<event> syntax; in this case, you want to

bind to the button’s click DOM-event, so you use the onclick attribute on the button

element and you pass it the method you want to call.

Listing 2-7.  Data Binding from the DOM to the Component

<button class="btn btn-primary" onclick="@IncrementCount">

 Click me

</button>

Clicking the button will cause the UI to be updated with the new value of the counter.

Whenever the user interacts with the site, for example by clicking a button, Blazor

assumes that the event will have some side-effect because a method gets called, so it

will update the UI with the latest values. Simply calling a method will not cause Blazor to

update the UI. I will discuss this later in this chapter.

�Event Arguments
In regular .NET, event handlers of type EventHandler can find out more information

about the event using the sender and EventArgs arguments. In Blazor, event handlers

don’t follow the strict event pattern from .NET, but you can declare the event handler

method to take an argument of some type derived from EventArgs, for example

UIMouseEventArgs, as shown in Listing 2-8.

Chapter 2 Data Binding

24

Listing 2-8.  A Blazor Event Handler Taking Arguments

void IncrementCount(UIMouseEventArgs e)

�Using C# Lambda Functions
Data binding to an event does not always require you to write a method. You can also use

C# lambda function syntax; see the example shown in Listing 2-9.

Listing 2-9.  Event Data Binding with Lambda Syntax

<button class="btn btn-primary"

 onclick="@(() => currentCount += increment)">

 Click me

</button>

If you want to use a lambda function, you need to wrap it into braces.

�Two-Way Data Binding
Sometimes you want to display some data to the user, and you want to allow the user to

make changes to this data. This is common in data entry forms. Let’s explore the two-

way data binding syntax.

�Two-Way Data Binding Syntax
With two-way data binding, you have the DOM update whenever the component

changes, but the component will also update because of modifications in the DOM. The

simplest example is with an <input> HTML element.

Let’s try something. Modify Counter.cshtml by adding an increment field and an

input using the bind attribute, as shown in Listing 2-10.

Listing 2-10.  Adding an increment and an input

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

Chapter 2 Data Binding

25

<button class="btn btn-primary"

 onclick="@IncrementCount">Click me</button>

<input type="number" bind="@increment" />

@functions {

int currentCount = 0;

int increment = 1;

void IncrementCount()

{

 currentCount += increment;

}

}

Build and run.

You should now be able to increment the counter with other values, as shown in

Figure 2-2.

Figure 2-2.  Adding an increment with two-way data binding

Look at the input element you just added, repeated here in Listing 2-11.

Listing 2-11.  Two-Way Data Binding with the bind Syntax

<input type="number" bind="@increment" />

Here you are using the bind syntax, which is the equivalent of two different one-way

bindings, as shown in Listing 2-12.

Chapter 2 Data Binding

26

Listing 2-12.  Data Binding in Both Directions

<input type="number"

 value="@increment"

 onchange="@((UIChangeEventArgs e) =>

 increment = int.Parse($"{e.Value}"))" />

This alternative syntax is very verbose and not that handy to use. Using bind is much

more practical. However, don’t forget about this technique; using the more verbose

syntax can sometimes be a more elegant solution!

�Formatting Dates
Data binding to a DateTime value can be formatted with the format-value attribute, as

shown in Listing 2-13.

Listing 2-13.  Formatting a Date

<input type="text" bind="@someDate"

 format-value="dd-MM-yyyy"/>

@functions {

 private DateTime someDate = DateTime.Now;

}

In this case, the date will use the European date format. Currently DateTime values

are the only one supporting the format-value attribute.

�Reporting Changes
Blazor will update the DOM whenever it thinks changes have been made to your data.

One example is when an event executes some of your code, it assumes you’ve modified

some values as a side-effect, and renders the UI. However, Blazor is not always capable

of detecting all changes, and in this case, you will have to tell Blazor to apply the changes

to the DOM. A typical example is with background threads. Let’s look at an example.

Chapter 2 Data Binding

27

Open Counter.cshtml and add another button that will automatically increment the

counter when pressed, as shown in Listing 2-14. The AutoIncrement method uses a .NET

Timer instance to increment the currentCount every second.

Listing 2-14.  Adding Another Button

@page "/counter"

@using Microsoft.AspNetCore.Blazor.Components

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" onclick="@IncrementCount">

 Click me

</button>

<input type="number" bind="@increment" />

<button class="btn btn-success" onclick="@AutoIncrement">

 Auto Increment

</button>

@functions {

 int currentCount = 0;

 int increment = 1;

 void IncrementCount()

 {

 currentCount += increment;

 }

 void AutoIncrement()

 {

 var timer = new System.Threading.Timer((_) =>

 {

 IncrementCount();

 }, null, TimeSpan.FromSeconds(1),

 TimeSpan.FromSeconds(1));

 }

}

Chapter 2 Data Binding

28

You might find the lambda function argument in the Timer’s constructor a little

strange. I use an underscore when I need to name an argument that is not used in the

body of the lambda function. Call it anything you want, for example ignore; it does not

matter. I simply like to use the underscore because then I don’t have to think of a good

name for the argument.

Run this page. Clicking the Auto Increment button will start the timer, but the

counter will not update on screen. Why? Try clicking the Increment button. The counter

has been updated, so it is a UI problem.

Blazor will rerender the page whenever an event occurs. It will also rerender

the page in case of asynchronous operations. However, some changes cannot be

detected automatically. In this case, you need to tell Blazor to update the page by

calling the StateHasChanged method, which every Blazor component inherits from

its base class.

Go back to the AutoIncrement method and add a call to StateHasChanged, as in

Listing 2-15. StateHasChanged tells Blazor that some state has changed (who would

have thought!) and that it needs to rerender the page.

Listing 2-15.  Adding StateHasChanged

void AutoIncrement()

{

 var timer = new System.Threading.Timer((_) =>

 {

 IncrementCount();

 StateHasChanged();

 }, null, TimeSpan.FromSeconds(1), TimeSpan.FromSeconds(1));

}

Run again. Pressing the Auto Increment button will now work.

As you can see, sometimes you need to tell Blazor manually to update the DOM.

�The Pizza Place Single Page Application
Let’s apply this newfound knowledge and build a nice pizza-ordering web site.

Throughout the rest of this book you will enhance this site with all kinds of features.

Chapter 2 Data Binding

29

�Creating the PizzaPlace Project
Create a new Blazor hosted project, either using Visual Studio or dotnet cli.

Refer to the explanation in the first chapter if you don’t recall how. Call the project

PizzaPlace. You get a similar project to the MyFirstBlazor project. Now let’s apply

some changes!

Out of the box, Blazor uses the popular Bootstrap 4 layout framework. However,
you can use any other layout framework, because Blazor uses standard HTML and
CSS. This book is about Blazor, not fancy layouts, so we’re not going to spend a lot
of time choosing nice colors and making the site look great. Focus!

In the server project, throw away SampleDataController.cs. You don’t need

weather forecasts to order pizzas. In the shared project, throw away

WeatherForecast.cs. Same thing. In the client project, throw away the Counter.cshtml

and FetchData.cshtml files from the Pages folder, and SurveyPrompt.cshtml from

the Shared folder.

Your solution should look like Figure 2-3.

Chapter 2 Data Binding

30

�Adding Shared Classes to Represent the Data
In Blazor, it is best to add classes holding data to the Shared project. These classes are

used to send the data from the server to the client and later to send the data back.

What do you need? Start with classes representing a pizza and how spicy it is, as shown

in Listing 2-16.

Figure 2-3.  The solution after removing unneeded files

Chapter 2 Data Binding

31

Listing 2-16.  The Spiciness and Pizza Classses

using System;

using System.Linq;

namespace PizzaPlace.Shared

{

 public enum Spiciness

 {

 None,

 Spicy,

 Hot

 }

 public class Pizza

 {

 public Pizza(int id, string name, decimal price,

 Spiciness spiciness)

 {

 this.Id = id;

 this.Name = name

 ?? throw new ArgumentNullException(nameof(name),

 "A pizza needs a name!");

 this.Price = price;

 this.Spiciness = spiciness;

 }

 public int Id { get; }

 public string Name { get; }

 public decimal Price { get; }

 public Spiciness Spiciness { get; }

 }

}

Your application is NOT about editing pizzas, so I’ve made this class immutable, so

nothing can be changed once a pizza object has been created. In C# this is easily done by

creating properties with only a getter.

Next, you need a class representing the menu you offer. Add a new class to the shared

project called Menu with the implementation from Listing 2-17.

Chapter 2 Data Binding

32

Listing 2-17.  The Menu Class

using System.Collections.Generic;

using System.Linq;

namespace PizzaPlace.Shared

{

 public class Menu

 {

 public List<Pizza> Pizzas { get; set; }

 = new List<Pizza>();

 public Pizza GetPizza(int id)

 => Pizzas.SingleOrDefault(pizza => pizza.Id == id);

 }

}

As in real life, a restaurant’s menu is a list of meals, in this case a pizza meal.

You also need a Customer class in the shared project with implementation from

Listing 2-18.

Listing 2-18.  The Customer Class

using System;

using System.Collections;

using System.ComponentModel;

namespace PizzaPlace.Shared

{

 public class Customer

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public string Street { get; set; }

 public string City { get; set; }

 }

}

Chapter 2 Data Binding

33

Each customer has a shopping basket, so add the Basket class to the shared project,

as shown in Listing 2-19.

Listing 2-19.  The Basket Class, Representing the Customer’s Order

using System.Collections.Generic;

namespace PizzaPlace.Shared

{

 public class Basket

 {

 public Customer Customer { get; set; } = new Customer();

 public List<int> Orders { get; set; } = new List<int>();

 public bool HasPaid { get; set; } = false;

 }

}

Please note that you just keep the pizza id in the Orders collection. You will learn

why later.

One more class before you group them all together. You’ll use a UI class to keep track

of some UI options, so add this class to the shared project, as shown in Listing 2-20.

Listing 2-20.  The UI Options Class

namespace PizzaPlace.Shared

{

 public class UI

 {

 public bool ShowBasket { get; set; } = true;

 }

}

Finally, you group all these classes into a single State class, again in the shared

project with implementation from Listing 2-21.

Chapter 2 Data Binding

34

Listing 2-21.  The State Class

using System.Linq;

namespace PizzaPlace.Shared

{

 public class State

 {

 public Menu Menu { get; set; } = new Menu();

 public Basket Basket { get; set; } = new Basket();

 public UI UI { get; set; } = new UI();

 }

}

There is another good reason to put all these classes into the shared project. There
is limited debugging for Blazor, and there is no unit testing framework. By putting
these classes into the shared project, you can apply unit testing best practices
on the shared classes because it is a regular .NET Core project, and even use the
debugger to examine weird behavior.

�Building the UI to Show the Menu
With the classes in place to represent the data, the next step is to build the user interface

that shows the menu. You will start by displaying the menu to the user, and then you will

enhance the UI to allow the user to order one or more pizzas.

�Displaying the Menu

The problem of displaying the menu is twofold. First, you need to display a list of data.

The menu can be thought of a list, like any another list. Second, in your application, you

need to convert the spiciness choices from their numeric values into URLs leading to the

icons used to indicate different levels of hotness.

Chapter 2 Data Binding

35

Displaying a List of Data

Open Index.cshtml. Add the @functions section to hold your restaurant’s (limited)

menu with code from Listing 2-22 by initializing the State instance with a Menu.

Listing 2-22.  Building Your Application’s Menu

@functions {

 private State State { get; } = new State()

 {

 Menu = new Menu

 {

 Pizzas = new List<Pizza>

 {

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy),

 new Pizza(2, "Margarita", 7.99M, Spiciness.None),

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot)

 }

 }

 };

}

The Pizza Place menu is a list like any other list. You can display it by adding some

Razor markup to generate the menu as HTML, as shown in Listing 2-23.

Listing 2-23.  Generating the HTML with Razor

@page "/"

@using PizzaPlace070.Shared

<!-- Menu -->

<h1>Our selection of pizzas</h1>

@foreach (var pizza in State.Menu.Pizzas)

{

 <div class="row">

 <div class="col">

 @pizza.Name

 </div>

Chapter 2 Data Binding

36

 <div class="col">

 @pizza.Price

 </div>

 <div class="col">

 <img src="@SpicinessImage(pizza.Spiciness)"

 alt="@pizza.Spiciness" />

 </div>

 <div class="col">

 <button class="btn btn-success"

 onclick="@(() => AddToBasket(pizza))">

 Add

 </button>

 </div>

 </div>

}

<!-- End menu -->

I like to use comments to show the start and end of each section in my page. This
makes it easier to find a certain part of my page when I come back to it later. In the
next chapter, you will convert each section in its own Blazor component, making
future maintenance a lot easier to do.

What you are doing here is iterating over each pizza in the menu, and generating a row

with four columns: one for the name, price, spiciness and finally one for the order button.

Converting Values

You still have a little problem. You need to convert the spiciness value to a URL, which

is done by the SpicinessImage method shown in Listing 2-24. Add this method to the

@functions area of the Index.cshtml file.

Listing 2-24.  Converting a Value with a Converter Function

private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

Chapter 2 Data Binding

37

This converter function simply converts the name of the enumeration’s value from

Listing 2-14 into the URL of an image file, which can be found in the Blazor project’s

images folder, as shown in Figure 2-4 (images courtesy from https://openclipart.org).

Add this folder (which can be found in this book’s download) to the wwwroot folder.

Figure 2-4.  The images folder

�Adding Pizzas to the Shopping Basket

Having the menu functioning leads naturally to the adding of pizzas to the shopping basket.

When you click the Add button, the AddToBasket method will be executed with the chosen

pizza. You can find the implementation of the AddToBasket method in Listing 2-25.

To make debugging easier, you add a Console.WriteLine, which will appear in the

browser’s console.

Listing 2-25.  Ordering a Pizza

private void AddToBasket(Pizza pizza)

{

 Console.WriteLine($"Added pizza {pizza.Name}");

 State.Basket.Add(pizza.Id);

}

Your Basket class now needs an Add method, shown in Listing 2-26.

Listing 2-26.  The Basket’s Add Method

public void Add(int pizzaId)

{

 Orders.Add(pizzaId);

}

Chapter 2 Data Binding

https://openclipart.org

38

Look at the onclick event handler for the button from Listing 2-23. Why is this

event handler using a lambda? When you order a pizza, you want of course to have your

chosen pizza added to the basket. So how can you pass the pizza to AddToBasket from

Listing 2-25? By using a lambda function, you can simply pass the pizza variable used in

the @foreach loop to it. Using a normal method wouldn’t work because there is no easy

way to send the selected pizza. This is also known as a closure (very similar to JavaScript

closures) and can be very practical!

Run the application. You should see Figure 2-5.

Figure 2-5.  The Pizza Place menu

Figure 2-6.  Looking at Console.WriteLine’s output

When you click the Add button you’re adding a pizza to the shopping basket. But how

can you be sure (since you’re not displaying the shopping basket yet)?

Open the browser’s debugging tools and look at the Console. Each time you click

Add, you should see some output from the Console.WriteLine in the AddToBasket

method, as shown in Figure 2-6.

Chapter 2 Data Binding

39

�Showing the Shopping Basket

The next thing on the menu (some pun intended) is displaying the shopping basket. You

are going to use a new feature from C# 7 called tuples. I will explain tuples in a moment.

This requires adding the System.ValueTuple NuGet package.

Adding a Package with Visual Studio

To add this NuGet package with Visual Studio, right-click the client project and select

Manage NuGet Package, as illustrated by Figure 2-7. Search for the package and install it.

Figure 2-7.  Installing the System.ValueTuple package with NuGet

Adding a Package with Visual Studio Code

To add the package with Visual Studio Code, select the PizzaPlace.Client.csproj file

and add a new package reference:

<PackageReference Include="System.ValueTuple"

 Version="4.5.0" />

Displaying the Shopping Basket

Now you are ready to display the shopping basket. Add Listing 2-27 after the menu from

Listing 2-21.

Listing 2-27.  Displaying the Shopping Basket

<!-- End menu -->

<!-- Shopping Basket -->

@if (State.Basket.Orders.Any())

{

 <h1>Your current order</h1>

Chapter 2 Data Binding

40

 @foreach (var (pizza, pos) in

 State.Basket.Orders.Select(

 (id, pos) => (State.Menu.GetPizza(id), pos)))

 {

 <div class="row">

 <div class="col">

 @pizza.Name

 </div>

 <div class="col">

 @pizza.Price

 </div>

 <div class="col">

 <button class="btn btn-danger"

 onclick="@(() => RemoveFromBasket(pos))">

 Remove

 </button>

 </div>

 </div>

 }

 <div class="row">

 <div class="col"> Total:</div>

 <div class="col"> @State.TotalPrice </div>

 <div class="col"> </div>

 </div>

}

<!-- End shopping basket -->

Most of this stuff is very similar, but now you are iterating over a list of tuples (a very

handy new feature in C# 7). Let’s look at this code in a little more detail with Listing 2-28.

Listing 2-28.  Converting the Shopping Basket for Easy Display

@foreach (var (pizza, pos) in

 State.Basket.Orders.Select(

 (id, pos) => (State.Menu.GetPizza(id), pos)))

Chapter 2 Data Binding

41

You are using LINQ’s Select to iterate over the list of orders (which contain pizza

ids). To display the pizza in the shopping basket, you need a pizza, so you convert the

id to a pizza with the GetPizza method from the Menu. Please add this method from

Listing 2-29 to the Menu class (and a using System.Linq).

Listing 2-29.  The GetPizza Method

public Pizza GetPizza(int id)

 => Pizzas.SingleOrDefault(pizza => pizza.Id == id);

This method converts a pizza id into a pizza using LINQ.

Let’s look at the lambda function used in the Select shown in Listing 2-30.

Listing 2-30.  Creating Tuples

(id, pos) => (State.Menu.GetPizza(id), pos)

The LINQ Select method has two overloads, and you’re using the overload, taking

an element from the collection (id) and the position in the collection (pos). You use

them to create tuples. Each tuple represents a pizza from the basket and its position in

the basket!

The pizza is used to display its name and price, while the position is used in the

Delete button. This button invokes the RemoveFromBasket method from Listing 2-31.

Listing 2-31.  Removing Items from the Shopping Basket

private void RemoveFromBasket(int pos)

{

 Console.WriteLine($"Removing pizza at pos {pos}");

 State.Basket.RemoveAt(pos);

}

And of course, you need to add the RemoveAt method to the Basket class, as shown

in Listing 2-32.

Listing 2-32.  The Basket Class’ RemoveAt Method

public void RemoveAt(int index)

{

 Orders.RemoveAt(index);

}

Chapter 2 Data Binding

42

At the bottom of the shopping basket the total order amount is shown. This is

calculated by the State class. Add the TotalPrice method from Listing 2-33 to the State

class. Don’t forget to add a using System.Linq statement to the top.

Listing 2-33.  Calculating the Total Price in the State Class

public decimal TotalPrice

=> Basket.Orders.Sum(id => Menu.GetPizza(id).Price);

Run the application and order some pizzas. You should see a current order similar to

Figure 2-8.

Figure 2-8.  Your shopping basket with a couple of pizzas

�Enter the Customer
Of course, to complete the order, you need to know a couple of things about the

customer, especially the address because you need to deliver the order.

Start by adding the Razor in Listing 2-34 to your Index.cshtml page.

Listing 2-34.  Adding Form Elements for Data Entry

<!-- End shopping basket -->

<!-- Customer entry -->

<h1>Please enter your details below</h1>

<fieldset>

 <p>

 <label for="name">Name:</label>

 <input id="name" bind="@State.Basket.Customer.Name" />

 </p>

 <p>

Chapter 2 Data Binding

43

 <label for="street">Street:</label>

 <input id="street" bind="@State.Basket.Customer.Street" />

 </p>

 <p>

 <label for="city">City:</label>

 <input id="city" bind="@State.Basket.Customer.City" />

 </p>

 <button onclick="@PlaceOrder">Checkout</button>

</fieldset>

<!-- End customer entry -->

This adds three labels and their respective inputs for name, street, and city.

You also need to add the PlaceOrder method to your functions, as shown in

Listing 2-35.

Listing 2-35.  The PlaceOrder Method

@functions {

...

private void PlaceOrder()

{

 Console.WriteLine("Placing order");

}

}

The PlaceOrder method doesn’t do anything yet; you’ll send the order to the

server later.

Run the application and enter your details, as in Figure 2-9.

Chapter 2 Data Binding

44

�Debugging Tip

Blazor has limited debugging, and you want to see the State object because it contains

the customer’s details and order. Will you send the correct information to the server

when you press the Checkout button? For this you’ll use a simple trick by displaying

the state in your page so you can review it any time. Start by adding a new class called

DebuggingExtensions to your Blazor project, as shown in Listing 2-36.

Listing 2-36.  The DebuggingExtensions Class

using Microsoft.AspNetCore.Blazor;

namespace PizzaPlace.Client

{

 public static class DebuggingExtensions

 {

 public static string ToJson(this object obj)

 => Microsoft.JSInterop.Json.Serialize(obj); }

}

And at the bottom of Index.cshtml add a simple paragraph, as shown in Listing 2-37.

Listing 2-37.  Showing State

<!-- End customer entry -->

<p>@State.ToJson()</p>

Figure 2-9.  Filling in the customer details

Chapter 2 Data Binding

45

Run your project. As you interact with the page you’ll see State change, with an

example shown in Figure 2-10.

Figure 2-10.  Watching State change

It should be obvious that you should remove this debugging feature when the page
is ready.☺

�Validating the Customer Information
But wait! Clicking the Checkout button works, even while there is no customer name,

address, or city! You need to do some validation! So, let’s start with an introduction to

.NET validation.

�Letting Entities Validate Themselves

Classes like Customer should validate themselves because they have the best

knowledge about the validity of their properties. .NET has a couple of built-in validation

mechanisms, and here you are going to use the standard System.ComponentModel.

INotifyDataErrorInfo interface shown in Listing 2-38.

Listing 2-38.  The System.ComponentModel.INotifyDataErrorInfo Interface

public interface INotifyDataErrorInfo

{

 bool HasErrors { get; }

 event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 IEnumerable GetErrors(string propertyName);

}

Chapter 2 Data Binding

46

Its main feature is the GetErrors method, which returns any validation errors for a

property as an IEnumerable. As a refresher, IEnumerable and IEnumerable<T> are used

by the C# foreach keyword to iterate. The HasErrors property checks to see if there are

any errors; it can be used to disable the Checkout button.

Let’s make Customer implement the INotifyDataErrorInfo interface. There

is one more thing you must do first, however. The HasErrors property of the

INotifyDataErrorInfo interface should return a Boolean. An easy way to do this

is to simply call the Any extension method from LINQ on the GetErrors method.

Unfortunately, this method returns an IEnumerable, and LINQ only works with the

newer generic IEnumerable<T> interface. No problem: you can easily build this yourself!

Add a new class called IEnumerableExtensions to the shared project with the Any

extension method from Listing 2-39.

Listing 2-39.  Adding the Any Extension Method to IEnumerable

using System.Collections;

namespace PizzaPlace.Shared

{

 public static class IEnumerableExtensions

 {

 public static bool Any(this IEnumerable enumerable)

 => enumerable.GetEnumerator().MoveNext() == true;

 }

}

Now implement the INotifyDataErrorInfo interface for the Customer class, as

shown in Listing 2-40.

Listing 2-40.  The Customer Class with INotifyDataErrorInfo

using System;

using System.Collections;

using System.ComponentModel;

namespace PizzaPlace.Shared

{

public class Customer : INotifyDataErrorInfo

{

 ...

Chapter 2 Data Binding

47

 public bool HasErrors => GetErrors(string.Empty).Any();

 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 public IEnumerable GetErrors(string propertyName)

 {

 if(string.IsNullOrEmpty(propertyName)

 || propertyName == nameof(Name))

 {

 if(string.IsNullOrEmpty(Name))

 {

 yield return $"A customer's name is mandatory";

 }

 else if(Name.Contains("Pizza"))

 {

 yield return $"Name should not contain \"Pizza\"";

 }

 }

 if(string.IsNullOrEmpty(propertyName)

 || propertyName == nameof(Street))

 {

 if(string.IsNullOrEmpty(Street))

 {

 yield return $"{propertyName} is mandatory";

 }

 }

 if (string.IsNullOrEmpty(propertyName)

 || propertyName == nameof(City))

 {

 if (string.IsNullOrEmpty(City))

 {

 yield return $"{propertyName} is mandatory";

 }

 }

 }

}

}

Chapter 2 Data Binding

48

I’ve implemented it to make each property mandatory, and as an extra example, that

name should not contain “Pizza” (replace with whatever validation you see fit).

Make sure that the second validation is inside an else clause; otherwise you can
get a NullReferenceException at runtime!

Note that the GetErrors method returns ALL validation errors when you call it with

an empty propertyName. The HasErrors property simply calls GetErrors with an empty

propertyName and then uses your Any extension methods to return true if the collection

is not empty.

�Showing Validation Errors

Now that Customer has validation, you can add some UI to show the validation errors

as feedback to the user. I don’t think I need to explain that this is simply a good (and

mandatory) practice! Start by adding validation UI for Name, as shown in Listing 2-41.

Listing 2-41.  Validation UI for a Customer’s Name

<p>

 <label for="name">Name:</label>

 <input id="name" bind="@State.Basket.Customer.Name" />

 @if (State.Basket.Customer

 .GetErrors(nameof(Customer.Name))

 .Any())

 {

 <ul class="validation-error">

 @foreach (string error in State.Basket.Customer

 .GetErrors(nameof(Customer.Name)))

 {

 @error

 }

 }

</p>

Chapter 2 Data Binding

49

Let’s discuss this logic. First, you don’t need to show any validation UI if there are no

validation errors. So, you start by checking if there are any errors for Name. I’ve repeated

this logic in Listing 2-42.

Listing 2-42.  Checking If There Are Any Validation Errors for a Customer’s Name

@if (State.Basket.Customer

 .GetErrors(nameof(Customer.Name))

 .Any())

You call GetErrors for the Name property and use the Any extension method to

turn it into a Boolean. If there are errors, you use an unordered list to show them, as in

Listing 2-43.

Listing 2-43.  Using an Unordered List to Show Validation Errors

<ul class="validation-error">

 @foreach (string error in State.Basket.Customer

 .GetErrors(nameof(Customer.Name)))

 {

 @error

 }

The ul element has a validation-error CSS class for styling. Look in the wwwroot

folder for the css folder and add (for example) the simple style from Listing 2-44.

Listing 2-44.  Adding Some Styling for Displaying Validation Errors

.validation-error li {

 color: red;

}

Repeat Listing 2-41 for the Street and City properties so you get Listing 2-45.

Chapter 2 Data Binding

50

Listing 2-45.  Completing the Validation for Street and City

<fieldset>

 <p>

 <label for="name">Name:</label>

 <input id="name" bind="@State.Basket.Customer.Name" />

 @if (State.Basket.Customer

 .GetErrors(nameof(Customer.Name))

 .Any())

 {

 <ul class="validation-error">

 @foreach (string error in State.Basket.Customer

 .GetErrors(nameof(Customer.Name)))

 {

 @error

 }

 }

 </p>

 <p>

 <label for="street">Street:</label>

 <input id="street" bind="@State.Basket.Customer.Street" />

 @if (State.Basket.Customer

 .GetErrors(nameof(Customer.Street))

 .Any())

 {

 <ul class="validation-error">

 @foreach (string error in State.Basket.Customer

 .GetErrors(nameof(Customer.Street)))

 {

 @error

 }

 }

 </p>

Chapter 2 Data Binding

51

 <p>

 <label for="city">City:</label>

 <input id="city" bind="@State.Basket.Customer.City" />

 @if (State.Basket.Customer

 .GetErrors(nameof(Customer.City))

 .Any())

 {

 <ul class="validation-error">

 @foreach (string error in State.Basket.Customer

 .GetErrors(nameof(Customer.City)))

 {

 @error

 }

 }

 </p>

 <button onclick="@PlaceOrder" disabled="@State.Basket.Customer.

HasErrors">Checkout</button>

</fieldset>

�Disabling the Checkout Button

Finally, you don’t want to allow the user to click the Checkout button when there are

any validation errors. An easy way is to disable the Checkout button. You will use a

conditional attribute to set the disable attribute, as shown in Listing 2-46.

Listing 2-46.  Using Attribute Binding to Enable/Disable the Checkout Button

<button onclick="@PlaceOrder"

 disabled="@State.Basket.Customer.HasErrors">

 Checkout

</button>

So as soon as there is a validation error, this button will disable, stopping the

customer from placing the order.

Run the site. Your customer should see validation errors in red, as shown in Figure 2-11.

Chapter 2 Data Binding

52

�Summary
In this chapter, you looked at data binding in Blazor. You started with one-way data

binding where you embed the value of a property of field in the UI using the

@SomeProperty syntax. You then looked at event binding where you bind an element’s

event to a method using the on<event>="@SomeMethod" syntax. Blazor also supports

two-way data binding where you update the UI with the value of a property and vice

versa using the bind="@SomeProperty" syntax. Finally, you examined validation where

you can use standard .NET validation techniques like the INotifyDataErrorInfo

interface.

Figure 2-11.  Showing validation errors

Chapter 2 Data Binding

53
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_3

CHAPTER 3

Components and
Structure for Blazor
Applications
In the previous chapter on data binding, you built a single monolithic application with

Blazor. After a while, it will become harder and harder to maintain.

In modern web development, we build applications by constructing them from

components, which typically are built from smaller components. A Blazor component is

a self-contained chunk of user interface. Blazor components are classes built from Razor

and C# with one specific purpose (also known as the principle of single responsibility)

and are easier to understand, debug, and maintain. And of course, you can use the same

component in different pages.

�What Is a Blazor Component?
To put it in a simple manner, each CSHTML file in Blazor is a component. It’s that

simple! A Razor file in Blazor contains markup and has code in the @functions section.

Each page you in the MyFirstBlazor project is a component! And components can be

built by adding other components as children.

Open the MyFirstBlazor project in Visual Studio (or Code) and let’s have a look at

some of the components in there.

Open index.cshtml (Listing 3-1).

54

Listing 3-1.  The Index Page

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<SurveyPrompt Title="How is Blazor working for you?" />

See SurveyPrompt? It is one of the components of the Blazor template. It takes one

parameter, Title, which you can set where you want to use the component. Let’s have a

good look at the SurveyPrompt component.

�Examining the SurveyPrompt Component
Open SurveyPrompt.cshtml (see Listing 3-2), which can be found in the Shared folder of

the client project.

Listing 3-2.  The SurveyPrompt Component

<div class="alert alert-secondary mt-4" role="alert">

 @Title

 Please take our

 <a target="_blank" class="font-weight-bold"

 href="https://go.microsoft.com/fwlink/?linkid=874928">

 brief survey

 and tell us what you think.

</div>

@functions {

[Parameter]

string Title { get; set; } // Demonstrates how a parent component can

supply parameters

}

Chapter 3 Components and Structure for Blazor Applications

55

Look at the Razor markup. This simple component displays an icon in front of the

Title, as shown in Figure 3-1, and then displays a link to the survey (which you should

take ☺ because it will show Microsoft that you’re interested in Blazor).

Figure 3-1.  The SurveyPrompt component

The @functions code section simply contains property Title, which uses one-

way databinding for rendering in the component. Note the [Parameter] attribute. It is

required for components that want to expose their properties to the parent component.

Parameters cannot be public properties, and the compiler will give you an error when you

try to make it so.

You might wonder why [Parameter] properties can’t be public. I asked Daniel
Roth, who’s on the Blazor team, and this is his answer: “Think of parameters as
like parameters to a method or constructor. They are not something you should
generally be able to mutate externally to the component after they have been
passed in.” Steve Sanderson, who is the key author of Blazor, explains that
changing the value of a parameter from code will not behave as expected because
change detection will not see the change. Changing the value through data binding
shows the change.

�Building a Simple Alert Component with Razor
Let’s build a simple Blazor component that will show a simple alert. Alerts are used to

draw the user’s attention to some message, for example a warning.

�Creating a New Component with Visual Studio

Open the MyFirstBlazor solution. Right-click the Pages folder and select Add > New

Item. The Add New Item window should open, as in Figure 3-2.

Chapter 3 Components and Structure for Blazor Applications

56

Select Razor View and name it Alert.cshtml. Click the Add button.

�Creating a New Component with Code

Right-click the Pages folder of the client project and select New File. Name it Alert.cshtml.

�Implement the Alert Component

Remove all existing content from Alert.cshtml and replace with Listing 3-3.

Listing 3-3.  The Alert Component

@if (Show)

{

 <div class="alert alert-secondary mt-4" role="alert">

 @ChildContent

 </div>

}

@functions {

[Parameter]

bool Show { get; set; }

Figure 3-2.  The Add New Item window

Chapter 3 Components and Structure for Blazor Applications

57

[Parameter]

RenderFragment ChildContent { get; set; }

}

The Alert component will display whatever content you nest in it (using bootstrap

styling).

The default Blazor templates use Bootstrap 4 for styling. Bootstrap (http://
getbootstrap.com) is a very popular CSS framework, originally build for Twitter,
providing easy layout for web pages. However, Blazor does not require you to use
Bootstrap, so you can use whatever styling you prefer. If you so, you must update
all the Razor files in the solution to use the other styles, just like in regular web
development. In this book, we will use Bootstrap.

The @ChildContent will hold this content and needs to be of type RenderFragment

because this is the way the Blazor engine passes it (you will look at this later in this chapter).

Go back to Index.cshtml and add the Alert element. Visual Studio is smart enough

to provide you with IntelliSense (see Figure 3-3) for the Alert component and its

parameters! Visual Studio Code unfortunately (at the time of writing this chapter) does

not offer IntelliSense yet.

Figure 3-3.  Visual Studio IntelliSense support for custom Blazor components

Complete the Alert and add a button as in Listing 3-4.

Listing 3-4.  Using the Alert Component

<Alert Show="@ShowAlert">

 Blazor is soo cool!

</Alert>

Chapter 3 Components and Structure for Blazor Applications

http://getbootstrap.com
http://getbootstrap.com

58

<button class="btn btn-default" onclick="@ToggleAlert">

 Toggle

</button>

@functions {

public bool ShowAlert { get; set; } = true;

public void ToggleAlert()

{

 ShowAlert = !ShowAlert;

}

}

Inside the <Alert> tag is a displaying a checkmark icon and a

element displaying a simple message. They will be set as the @ChildContent property of

the Alert component. Build and run your project. When you click the <button>, it calls

the ToggleAlert method, which will hide and show the Alert, as shown in Figure 3-4.

Figure 3-4.  The simple Alert component before clicking the Toggle button

�Separating View and View-Model
You might not like this mixing of markup (view) and code (view-model). If you like, you

can use two separate files, one for the view using Razor and another for the view model

using C#. The view will display the data from the view model, and event handlers in the

view will invoke methods from the view model. Some people prefer this way of working

because it’s more like the MVVM pattern. Let’s try this!

Chapter 3 Components and Structure for Blazor Applications

59

�Creating a DismissableAlert Component

If you haven’t done this yet, open the MyFirstBlazor solution. With Visual Studio,

right-click the Pages folder and select Add ➤ New Item. The Add New Item dialog

should open as shown in Figure 3-2. This time select Razor Page and name it

DismissableAlert. With Visual Studio Code, right-click the Pages folder, select New

File, and name it DismissableAlert.cshtml. Do this again to create a new file called

DismissableAlert.cshtml.cs.

A DismissableAlert is an alert with a little x-button that the user can click to dismiss

the alert. Replace the markup in the CSHTML file with Listing 3-5.

Listing 3-5.  The Markup for DismissableAlert.cshtml

@if (Show)

{

<div class="alert alert-warning alert-dismissible fade show"

 role="alert">

 @ChildContent

 <button type="button" class="close" data-dismiss="alert"

 aria-label="Close" onclick="@Dismiss">

 ×

 </button>

</div>

}

Replace the C# code in DismissableAlert.cshtml.cs with Listing 3-6.

Listing 3-6.  The Code for DismissableAlert.cshtml.cs

using System;

using Microsoft.AspNetCore.Blazor.Components;

using Microsoft.AspNetCore.Blazor;

namespace MyFirstBlazor.Client.Pages

{

 public class DismissableAlertViewModel : BlazorComponent

 {

Chapter 3 Components and Structure for Blazor Applications

60

 [Parameter]

 protected bool Show { get; set; } = true;

 [Parameter]

 protected RenderFragment ChildContent { get; set; }

 public void Dismiss()

 {

 Console.WriteLine("Dismissing alert");

 Show = false;

 }

 }

}

Note that the Show and ChildContent properties are now protected properties.

Otherwise you will not be able to reference them from the Razor file. Also important is to

inherit here from BlazorComponent. We will come back to BlazorComponent later in this

chapter.

The DismissableAlertViewModel class will serve as the base class for the Razor file,

which you need to indicate with an @inherits at the top of the markup, which you can

find in Listing 3-7.

Listing 3-7.  Making the CSHTML Inherit from the View Model

@inherits DismissableAlertViewModel

@if (Show)

{

<div class="alert alert-warning alert-dismissible fade show"

 role="alert">

 @ChildContent

 <button type="button" class="close" data-dismiss="alert"

 aria-label="Close" onclick="@Dismiss">

 ×

 </button>

</div>

}

Chapter 3 Components and Structure for Blazor Applications

61

So instead of putting your code in the @functions section of a Razor file you can put

the code in a base class and then inherit from it in the Razor file.

Which model is best? I don’t think either one is better than the other; it is more a

matter of taste. Choose the one you like.

�Referring to a Child Component

Parent and child components typically communicate through data binding. For

example, in Listing 3-8 you use DismissableAlert, which communicates with the parent

component through the parent’s ShowAlert property. Clicking the Toggle button will

hide and show the alert. You can try this by replacing the contents of Index.cshtml with

Listing 3-8.

Listing 3-8.  Using DismissableAlert

<DismissableAlert Show="@ShowAlert">

 Blazor is soo cool!

</DismissableAlert>

<button class="btn btn-default" onclick="@ToggleAlert">Toggle</button>

@functions {

public bool ShowAlert { get; set; } = true;

public void ToggleAlert()

{

 ShowAlert = !ShowAlert;

}

Instead of using data binding in the interaction between the parent and child

component, you can also directly interact with the child component. Let’s look at an

example. Say you want the alert to disappear automatically after 5 seconds.

Chapter 3 Components and Structure for Blazor Applications

62

�Adding a Timer Component

Start by adding a new class called Timer to the Pages folder as shown in Listing 3-9

(the timer will not have any visual part, so you don’t even need CSHTML to build the

view). This Timer class will invoke a delegate (Tick) after a certain number of seconds

(TimeInSeconds) have expired. The Tick parameter is of type Action, which is one of the

built-in delegate types of .NET. An Action is simply a method returning a void with no

parameters. There are other generic Action types, such as Action<T>, which is a method

returning a void with one parameter of type T.

Listing 3-9.  The Timer Class

using System;

using Microsoft.AspNetCore.Blazor.Components;

namespace MyFirstBlazor.Client.Pages

{

 public class Timer : BlazorComponent

 {

 [Parameter]

 protected double TimeInSeconds { get; set; }

 [Parameter]

 protected Action Tick { get; set; }

 protected override void OnInit()

 {

 base.OnInit();

 var timer = new System.Threading.Timer(

 (_) => Tick.Invoke(),

 null,

 TimeSpan.FromSeconds(TimeInSeconds),

 System.Threading.Timeout.InfiniteTimeSpan);

 }

 }

}

Chapter 3 Components and Structure for Blazor Applications

63

Now add the Timer component to the index page, as shown in Listing 3-10. Let’s look

at a couple of things. First, you add a reference to the dismissableAlert component

using the ref syntax. This will allow you to reference the component from your code.

Listing 3-10.  Adding the Timer Component to Dismiss the Alert

<DismissableAlert ref="dismissableAlert"

 Show="@ShowAlert">

 Blazor is soo cool!

</DismissableAlert>

<Timer TimeInSeconds="5" Tick="@DismissAlert" />

Be careful using <Timer></Timer>. Any content, even blank spaces, will be
seen as ChildContent, and since Timer doesn’t support any you might get
compiler errors. It’s better to use a single element <Timer/>.

This requires that you add a field called dismissableAlert of type

DismissableAlert to the parent, which will contain the reference to the child

component, as you can see in Listing 3-11.

Listing 3-11.  Using a Field to Refer to the Child Component

@functions {

 public DismissableAlert dismissableAlert;

 public bool ShowAlert { get; set; } = true;

 public void ToggleAlert()

 {

 ShowAlert = !ShowAlert;

 }

 public void DismissAlert()

 {

 dismissableAlert.Dismiss();

 }

}

Chapter 3 Components and Structure for Blazor Applications

64

Now, when the timer runs out of time, it invokes its Tick method, which calls

DismissAlert. DismissAlert calls the Dismiss method on the dismissableAlert

reference, which should then hide the alert.

Run the application and wait at least 5 seconds. The alert does not hide itself! Why?!

�Using Component-to-Component Data Binding

So why doesn’t your DismissableComponent hide itself after 5 seconds?

Look at the markup, which is in Listing 3-10, for DismissibleAlert again. It shows

the component based on the Show parameter, and it gets set through data binding. The

problem is that the parent Index component’s ShowAlert stays true. Changing the

value of the DismissableAlert local show field will not update the Index component’s

ShowAlert property. What you need is two-way data binding between components, and

Blazor has that.

With two-way data binding, changing the value of the Show parameter will update the

value of the ShowAlert property of the parent, and vice versa.

Open the DismissableAlertViewModel class and change the Show property

implementation, as shown in Listing 3-12. Here you add an extra parameter

that should be called <<yourproperty>>Changed and should be of type

Action<<typeofyourproperty>>.

Listing 3-12.  The DismissableAlertViewModel Class with Two-Way Binding

Support

public class DismissableAlertViewModel : BlazorComponent

{

 private bool show = true;

 [Parameter]

 protected bool Show

 {

 get => show;

 set

 {

 if (show != value)

 {

 show = value;

Chapter 3 Components and Structure for Blazor Applications

65

 ShowChanged?.Invoke(show);

 }

 }

 }

 [Parameter]

 protected Action<bool> ShowChanged { get; set; }

 [Parameter]

 protected RenderFragment ChildContent { get; set; }

 public void Dismiss()

 {

 Show = false;

 }

}

Now whenever someone or something changes the Show property’s value, the

property’s setter triggers the ShowChanged delegate. This means the parent component

can inject some code into the ShowChanged delegate property, which will invoke when

the property is changed (internally or externally).

Remember to check if the value has changed. This will help you avoid a nasty
bug where the child property updates the parent property, which triggers the child
property to update, and so on ad infinitum.

Run again. Still, the alert does not disappear. Think about this. You invoke a method

asynchronously using a Timer. When the timer fires, you set the ShowAlert property to

false. But you still need to update the UI. You could do this by calling StateHasChanged

in the DismissAlert method from Listing 3-11. But there is a better way, which is shown

in Listing 3-13. Here you call StateHasChanged whenever the ShowAlert property gets a

new value.

Chapter 3 Components and Structure for Blazor Applications

66

Listing 3-13.  Updating the UI When ShowAlert Changes Value

public bool ShowAlert

{

 get => showAlert;

 set

 {

 if (showAlert != value)

 {

 showAlert = value;

 this.StateHasChanged();

 }

 }

}

Run. Wait 5 seconds.

The alert should automatically hide, as illustrated by Figure 3-5 and Figure 3-6.

Figure 3-5.  The alert being shown

Figure 3-6.  The alert automatically hides after 5 seconds

�Building a Component Library
Components should be reusable. But you don’t want to reuse a component between

projects by copy-pasting the component between them. In this case, it is much better

to build a component library and, as you will see, this is not hard at all! What you will do

here is move the DismissableAlert and Timer component to a library and then you will

use this library in your Blazor project.

Chapter 3 Components and Structure for Blazor Applications

67

�Creating the Component Library Project
For the moment, you cannot create Blazor component libraries from Visual Studio, so

you will have to use the command-line prompt.

Open a command prompt or use the integrated terminal from Visual Studio Code

(you can use Ctrl-` as a shortcut to toggle the terminal in Code). Change the current

directory to the solution folder. Type in following command:

dotnet new blazorlib -o MyFirstBlazor.Components

The dotnet new command will create a new project based on a template. The

template you want is the blazorlib template. If you want the project to be created in a

subdirectory, you can specify it using the -o subdirectory parameter.

Executing this command should show you output like:

The template "Blazor Library" was created successfully.

Add it to your solution by typing in the next command:

dotnet sln add MyFirstBlazor.Components\MyFirstBlazor.Components.csproj

This time you want to change the solution, and dotnet sln add allows you to add a

project (which is the last argument) to the solution. When you go back to Visual Studio, it

will tell you about a file modification, as shown in Figure 3-7.

Simply press Reload to continue working.

Figure 3-7.  Visual Studio detected changes made to the solution

Chapter 3 Components and Structure for Blazor Applications

68

�Adding Components to the Library
Previously, you built a couple of components. Some of them are very reusable, so you

will move them to your library project. Start with Timer.

Drag-and-drop the Timer.cs file from your client project to the components project.

You should see a new Timer.cs file, as illustrated by Figure 3-8.

Figure 3-8.  Copying the Timer.cs file to the Components project

Visual Studio creates a copy of the file, so remove the Timer.cs file from the client

project (no need to do this with Code). Right-click the Timer.cs file in the client project

and select Delete, as in Figure 3-9.

Chapter 3 Components and Structure for Blazor Applications

69

Do the same for DismissableAlert.cshtml. Both components are still using the

client’s namespace, so update their namespace to MyFirstBlazor.Components, as shown

in Listing 3-14.

Listing 3-14.  Dismissing the Alert

@inherits DismissableAlertViewModel

@if (Show)

{

<div class="alert alert-warning alert-dismissible fade show"

 role="alert">

 @ChildContent

 <button type="button" class="close" data-dismiss="alert"

 aria-label="Close"

 onclick="@Dismiss">

 ×

 </button>

</div>

}

Figure 3-9.  Deleting a file from a project

Chapter 3 Components and Structure for Blazor Applications

70

Building the solution will still trigger compiler errors from the client project because

you need to add a reference from the client project to the component library, which you

will fix in the next part.

�Refering to the Library from Your Project
Now that your library is ready, you are going to use it in your project. The way the library

works is that you can use it in other projects. Hey, you could even make it into a NuGet

package and let the rest of the world enjoy your work!

�Referring to Another Project with Visual Studio

Start by right-clicking your client project and selecting Add ➤ Reference. Visual Studio

will show Figure 3-10.

Figure 3-10.  Adding a reference to another project

Make sure you check MyFirstBlazor.Components and click OK.

Chapter 3 Components and Structure for Blazor Applications

71

�Referring to Another Project with Code

Open the MyFirstBlazor.Client.csproj file and add another <ProjectReference>

element to it, as shown in Listing 3-15. It’s the last <ProjectReference> from Listing 3-15

you need to add.

Listing 3-15.  Adding a Reference to Another Project

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>netstandard2.0</TargetFramework>

 <OutputType>Exe</OutputType>

 <LangVersion>7.3</LangVersion>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference

 Include="Microsoft.AspNetCore.Blazor.Browser"

 Version="0.5.1" />

 <PackageReference

 Include="Microsoft.AspNetCore.Blazor.Build"

 Version="0.5.1" />

 </ItemGroup>

 <ItemGroup>

 �<ProjectReference Include="..\MyFirstBlazor.Shared\MyFirstBlazor.

Shared.csproj" />

 �<ProjectReference Include="..\MyFirstBlazor.Components\MyFirstBlazor.

Components.csproj" />

 </ItemGroup>

</Project>

Now you have added the component library to your project, but if you want to use

the components in your own CSHTML files, you must refer to your component library in

your CSHTML files.

Chapter 3 Components and Structure for Blazor Applications

72

�Understanding Tag Helpers

ASP.NET Core introduced tag helpers. Tag helpers are custom elements that get

converted to standard HTML elements at runtime. If you use regular ASP.NET Core

MVC, the server will convert the tag helpers into HTML, and in Blazor the client will

convert tag helpers. As a matter of fact, any Blazor component automatically becomes a

tag helper. Visual Studio automatically recognizes tag helpers from the current project,

but you need to give it a hand for component libraries, and you do that with

@addTagHelper.

Open _ViewImports.cshtml and add the @addTagHelper as in Listing 3-16.

Listing 3-16.  Adding Components from a Blazor Library

@layout MainLayout

@addTagHelper *, MyFirstBlazor.Components

Here you include all custom components using a wildcard (*) from the

MyFirstBlazor.Components library. From now on you can use any component from this

library as a HTML tag, for example <Timer/>.

When you build, you will still get a compile error, and this is because you are using

the DismissableAlert type in your functions. And just like any other type, you can either

refer to it using its full name including the namespace, or you can add a using statement

to Index.cshtml as in Listing 3-17.

Listing 3-17.  Adding a using Statement to Refer to Types from the Namespace

@page "/"

@using MyFirstBlazor.Components

Build and run your solution. It should look like Figure 3-5. Congratulations. You’ve

just built and consumed your first Blazor component library!

�Refactoring PizzaPlace into Components
In the previous chapter on data binding you built a web site for ordering pizzas. It used

only one component with three different sections. Let’s split up this component into

smaller, easier-to-understand components and try to maximize reuse.

Chapter 3 Components and Structure for Blazor Applications

73

�Creating a Component to Display a List of Pizzas
Open the PizzaPlace Blazor project from the previous chapter. Start by reviewing

index.cshtml. This is your main component, and it has three main sections: a menu, a

shopping basket, and customer information.

The menu lists the pizzas and displays each one with a button to order. The shopping

basket also displays a list of pizzas (but now from the shopping basket) with a button to

remove them from the order. Looks like both have something in common: they need to

display pizzas with an action you choose by clicking the button.

Add a new component to the Pages folder called PizzaItem with contents from

Listing 3-18. You can copy most of the markup from the Index component with some

changes.

Listing 3-18.  The PizzaItem Component

@using PizzaPlace.Shared

<div class="row">

 <div class="col">

 @Pizza.Name

 </div>

 <div class="col">

 @Pizza.Price

 </div>

 <div class="col">

 <img src="@SpicinessImage(Pizza.Spiciness)"

 alt="@Pizza.Spiciness" />

 </div>

 <div class="col">

 <button class="@ButtonClass"

 onclick="@(() => Selected(Pizza))">Add</button>

 </div>

</div>

@functions {

Chapter 3 Components and Structure for Blazor Applications

74

[Parameter]

protected Pizza Pizza { get; set; }

[Parameter]

protected string ButtonTitle { get; set; }

[Parameter]

protected string ButtonClass { get; set; }

[Parameter]

protected Action<Pizza> Selected { get; set; }

private string SpicinessImage(Spiciness spiciness)

=> $"images/{spiciness.ToString().ToLower()}.png";

}

The PizzaItem component will display a pizza, so it should not come as a surprise

that it has a Pizza parameter. This component also displays a button, but how this

button looks and behaves will differ depending on where you use it. And that is why it

has a ButtonTitle and ButtonClass parameter to change the button’s look, and it also

has a Selected action that gets invoked when you click the button.

You can now use this component to display the menu. Add a new component to the

Pages folder called PizzaList.cshtml as in Listing 3-19.

Listing 3-19.  The PizzaList Component

@using PizzaPlace.Shared

<h1>@Title</h1>

@foreach (var pizza in Menu.Pizzas)

{

 <PizzaItem Pizza="@pizza" ButtonTitle="Order"

 ButtonClass="btn btn-success"

 Selected="@((p) => Selected(p))" />

}

@functions {

Chapter 3 Components and Structure for Blazor Applications

75

[Parameter]

protected string Title { get; set; }

[Parameter]

protected Menu Menu { get; set; }

[Parameter]

protected Action<Pizza> Selected { get; set; }

}

The PizzaList component displays a Title and all the pizzas from the Menu, so it

takes them as parameters. It also takes a Selected action that you invoke by clicking

the button next to a pizza. Note that the PizzaList component uses the PizzaItem

component to display each pizza, and that the PizzaList Selected action is passed

directly to the PizzaItem Selected action. The Index component will set this action,

and it will be executed by the PizzaItem component.

With PizzaItem and PizzaList ready, you can use them in Index, which you can

find in Listing 3-20.

Listing 3-20.  Using the PizzaList Component in Index

<!-- Menu -->

<PizzaList Title="Our selected list of pizzas"

 Menu="@State.Menu"

 Selected="@((pizza) => AddToBasket(pizza))"/>

<!-- End menu -->

Run the application and try to order a pizza. The shopping basket does not display

when you click the Order buttons! Why? Because the UI does not get updated. You need

to fix this. You have already seen how to do so. Think about it.

�Updating the UI after Changing the State Object
Start by changing the AddToBasket method from Index, as in Listing 3-21. After you add

an item to the shopping basket, you call StateHasChanged. This method tells Blazor that

it should update the UI with new data.

Chapter 3 Components and Structure for Blazor Applications

76

Listing 3-21.  Calling StateHasChanged in AddToBasket

private void AddToBasket(Pizza pizza)

{

 Console.WriteLine($"Added pizza {pizza.Name}");

 State.Basket.Add(pizza.Id);

 StateHasChanged();

}

Run and order a couple of pizzas. It works!

Think about this. Components rerender themselves after events, but only

themselves. When a component makes a change affecting other components, you need

to call StateHasChanged on the affected components.

�Showing the ShoppingBasket Component
Add a new component called ShoppingBasket to the Pages folder and change its

contents to Listing 3-22.

Listing 3-22.  The ShoppingBasket Component

@using PizzaPlace.Shared

@if (Basket.Orders.Any())

{

 <h1>@Title</h1>

 @foreach (var (pizza, pos) in Pizzas)

 {

 <PizzaItem Pizza="@pizza" ButtonClass="btn btn-danger"

 ButtonTitle="Remove"

 Selected="@(p => Selected(pos))" />

 }

 <div class="row">

 <div class="col"> Total: </div>

 <div class="col"> @TotalPrice </div>

 <div class="col"> </div>

Chapter 3 Components and Structure for Blazor Applications

77

 <div class="col"> </div>

 </div>

}

@functions {

[Parameter]

protected string Title { get; set; }

[Parameter]

protected Basket Basket { get; set; }

[Parameter]

protected Func<int, Pizza> GetPizzaFromId { get; set; }

[Parameter]

protected Action<int> Selected { get; set; }

protected IEnumerable<(Pizza pizza, int pos)> Pizzas { get; set; }

protected decimal TotalPrice { get; set; }

protected override void OnParametersSet ()

{

 base.OnParametersSet ();

 �Pizzas = Basket.Orders.Select((id, pos) => (pizza: GetPizzaFromId(id),

pos: pos));

 TotalPrice = Pizzas.Select(tuple => tuple.pizza.Price).Sum();

}

}

The ShoppingBasket component is similar to the PizzaList component, but

there are some big differences. The basket class keeps track of the order using only

ids of pizzas, so you need something to get the pizza object. This is done through

the GetPizzaFromId delegate. Another change is the OnParametersSet method. The

OnParametersSet method gets called when the component’s parameters have been set.

Here you override it to build a list of (pizza, position) tuples that you need during data

binding, and to calculate the total price of the order.

Chapter 3 Components and Structure for Blazor Applications

78

Tuples are just another type in C#. But modern C# offers a very convenient syntax;

for example, IEnumerable<(Pizza pizza, int post)> means you have a type that is a

list of pizza and position pairs.

Using the ShoppingBasket component in Index is easy, as you can see in Listing 3-23.

Listing 3-23.  Using the ShoppingBasket Component

<!-- Shopping Basket -->

<ShoppingBasket Title="Your current order"

 Basket="@State.Basket"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@(pos => RemoveFromBasket(pos))" />

<!-- End shopping basket -->

�Creating a Validation Component Library
The third section of the Index component is about entering and validating details about

the customer. You could say that validation is a very common thing, but there is no built-

in validation in Blazor so you will create a component library for validation and then use

it for building the CustomerEntry component. The Customer class already implements

the INotifyDataErrorInfo interface, so this part does not need to change.

Open a command prompt to the folder containing your solution. Type

dotnet new blazorlib -o PizzaPlace.Extensions.Validation

This creates a new Blazor library project.

Then type

dotnet sln add PizzaPlace.Extensions.Validation\

PizzaPlace.Extensions.Validation.csproj

This adds the new project to your solution.

Go back to Visual Studio and click Reload. (No need to do this with Code.) Right-

click the PizzaPlace.Extentions.Validation project and add a new Razor View called

ValidationError and complete is as in Listing 3-24.

Chapter 3 Components and Structure for Blazor Applications

79

Listing 3-24.  The ValidationError Component

@using Microsoft.AspNetCore.Blazor

@using System.ComponentModel

@if (Errors.Any())

{

 <ul class="validation-error">

 @foreach (string error in Errors)

 {

 @error

 }

}

@functions {

[Parameter]

protected object Subject { get; set; }

[Parameter]

protected string Property { get; set; }

public IEnumerable<string> Errors

{

 get

 {

 switch (Subject)

 {

 case null:

 yield return $"{nameof(Subject)} has not been set!";

 yield break;

 case INotifyDataErrorInfo ine:

 if (Property == null)

 {

 yield return $"{nameof(Property)} has not been set!";

 yield break;

 }

Chapter 3 Components and Structure for Blazor Applications

80

 foreach (var err in ine.GetErrors(Property))

 {

 yield return (string)err;

 }

 break;

 case IDataErrorInfo ide:

 if (Property == null)

 {

 yield return $"{nameof(Property)} has not been set!";

 yield break;

 }

 string error = ide[Property];

 if (error != null)

 {

 yield return error;

 }

 else

 {

 yield break;

 }

 break;

 }

 }

}

}

You expect the Subject and Property parameters to be set to an object

implementing either the IDataErrorInfo or INotifyDataErrorInfo interface.

You use this to dynamically build the Error collection, which is then used to list

any validation errors.

Remember the validation-error style you added in the previous chapter to change

the color of validation errors? Move this CSS to the /content/styles.css file from the

component library. This concludes the validation component library.

Chapter 3 Components and Structure for Blazor Applications

81

�Adding the CustomerEntry Component
Add a reference to the PizzaPlace.Extensions.Validation library, as you saw earlier

in this chapter. Now add a new Razor view called CustomerEntry to the Pages folder, as

shown in Listing 3-25.

Listing 3-25.  The CustomerEntry Component

@using PizzaPlace.Shared

@addTagHelper *, PizzaPlace.Extensions.Validation

<h1>@Title</h1>

<fieldset>

 <p>

 <label for="name">Name:</label>

 <input id="name" bind="@Customer.Name" />

 <ValidationError Subject="@Customer"

 Property="@nameof(Customer.Name)" />

 </p>

 <p>

 <label for="street">Street:</label>

 <input id="street" bind="@Customer.Street" />

 <ValidationError Subject="@Customer"

 Property="@nameof(Customer.Street)" />

 </p>

 <p>

 <label for="city">City:</label>

 <input id="city" bind="@Customer.City" />

 <ValidationError Subject="@Customer"

 Property="@nameof(Customer.City)" />

 </p>

 <button onclick="@(()=>Submit(Customer))"

 disabled="@Customer.HasErrors">Checkout</button>

</fieldset>

@functions {

Chapter 3 Components and Structure for Blazor Applications

82

[Parameter]

protected string Title { get; set; }

[Parameter]

protected string Title { get; set; }

[Parameter]

protected Customer Customer {get; set; }

[Parameter]

protected Action<Customer> Submit { get; set; }

[Parameter]

protected Action<Customer> Submit { get; set; }

}

The CustomerEntry component uses a label and input element for each customer

property. You also use a ValidationError component from your freshly built library

to display any validation errors. Now you are ready to complete Index with this last

component. Listing 3-26 shows the whole Index.cshtml

Listing 3-26.  The Index Component

@page "/"

<!-- Menu -->

<PizzaList Title="Our selected list of pizzas"

 Menu="@State.Menu"

 Selected="@((pizza) => AddToBasket(pizza))" />

<!-- End menu -->

<!-- Shopping Basket -->

<ShoppingBasket Title="Your current order"

 Basket="@State.Basket"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@(pos => RemoveFromBasket(pos))" />

<!-- End shopping basket -->

<!-- Customer entry -->

<CustomerEntry Title="Please enter your details below"

 bind-Customer="@State.Basket.Customer"

Chapter 3 Components and Structure for Blazor Applications

83

 Submit="@((_) => PlaceOrder())"/>

<!-- End customer entry -->

@functions {

private State State { get; } = new State()

{

 Menu = new Menu

 {

 Pizzas = new List<Pizza>

{

new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy),

new Pizza(2, "Margarita", 7.99M, Spiciness.None),

new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot)

}

 }

};

private void AddToBasket(Pizza pizza)

{

 Console.WriteLine($"Added pizza {pizza.Name}");

 State.Basket.Add(pizza.Id);

 StateHasChanged();

}

private void RemoveFromBasket(int pos)

{

 Console.WriteLine($"Removing pizza at pos {pos}");

 State.Basket.RemoveAt(pos);

 StateHasChanged();

}

private void PlaceOrder()

{

 Console.WriteLine($"Placing order {State.Basket.Customer.ToJson()}");

}

}

Chapter 3 Components and Structure for Blazor Applications

84

Build and run the PizzaPlace application. Things should work like before, except for

one thing. Remember the debugging tip from the previous chapter? When you change

the name of the customer, this tip does not update correctly. Let’s fix this. The problem is

as follows: when you change the name of the customer, the CustomerEntry component

does change the customer’s name, but the Index component does not see this change.

You can fix this by registering for changes in the customer. To register for changes in

objects .NET has the INotifyPropertyChanged interface, which has been part of .NET

since .NET 2.0 so you might be familiar with it. This interface is shown in Listing 3-27

and it only has the PropertyChanged event.

Listing 3-27.  The INotifyPropertyChanged Interface

namespace System.ComponentModel

{

 public interface INotifyPropertyChanged

 {

 event PropertyChangedEventHandler PropertyChanged;

 }

}

Whenever a property of customer changes, it should trigger this event. Make the

Customer class implement this interface, like in Listing 3-28.

Listing 3-28.  The Customer Class Implements INotifyPropertyChanged

public class Customer : INotifyDataErrorInfo,

 INotifyPropertyChanged

Now change the Customer's class Name property, as shown in Listing 3-29.

Listing 3-29.  The Customer Class’ Name Property

using System.Runtime.CompilerServices;

...

private string name;

Chapter 3 Components and Structure for Blazor Applications

85

 public string Name

 {

 get { return name; }

 set { name = value; OnPropertyChanged(); }

 }

Whenever the property is modified, you trigger the PropertyChanged event using the

OnPropertyChanged method from Listing 3-30.

Listing 3-30.  The OnPropertyChanged Method

private void OnPropertyChanged(

 [CallerMemberName] string propertyName = "")

{

 PropertyChanged?.Invoke(this,

 new PropertyChangedEventArgs(propertyName));

}

I’ll explain the implementation a bit. You should pass the name of the property in the

PropertyChanged event. You could pass this name as a string to the OnPropertyChanged

method, but when you change the name of the property there is a large chance you will

forget to update this string. It’s better to pass nothing and have the compiler figure out

the name of the property. This can be done using the CallerMemberName attribute, which

will make the compiler figure out the name of the caller, in this case the name of the

property!

Which kind of code is the most maintainable and bug-free code you can write?
Code you did not write!

Implement the Street and City properties in the same way.

Almost there. Open Index.cshtml. Add an OnInit method as in Listing 3-31. This

method registers for changes in the customer and calls StateHasChanged, which will

update the UI. This way you don’t need to worry about calling StateHasChanged when a

Customer property gets modified.

Chapter 3 Components and Structure for Blazor Applications

86

Listing 3-31.  The OnInit Method

protected override void OnInit() {

 this.State.Basket.Customer.PropertyChanged +=

 (sender, e) => this.StateHasChanged();

}

Build and run. Now when you make a change to the customer the debugging tip

will update. You might think, “So what?” The customer could also be used by another

component that needs to see changes.

�Component Lifecycle Hooks
Every component has a couple of methods you can override to capture the lifecycle of

the component. In this section, you will look at these lifecycle hooks because it’s very

important to understand them very well. Putting code in the wrong lifecycle hook will

likely break your component.

�OnInit and OnInitAsync
When your component has been completely initialized, the OnInit and OnInitAsync

methods are called. Implement one of these methods if you want to do some extra

initialization after the component has been created, such as fetching some data from a

server, like the FetchData component from the MyFirstBlazor project.

Use OnInit for synchronous code, as shown in Listing 3-32.

Listing 3-32.  The OnInit Lifecycle Hook

protected override void OnInit()

{

}

Use OnOnitAsync (Listing 3-33) to call asynchronous methods, for example making

REST calls (you will look at making REST calls in the next two chapters).

Chapter 3 Components and Structure for Blazor Applications

87

Listing 3-33.  The OnInitAsync Lifecycle Hook

protected override async Task OnInitAsync()

{

}

�OnParametersSet and OnParametersSetAsync
When you need one or more parameters for initialization, use OnParametersSet or

OnParametersSetAsync instead of the OnInit/OnInitAsync methods. These methods get

called after the component has been initialized and after the parameters have been data-

bound. For example, you could have a DepartmentSelector component that allows the

user to select a department from a company, and another EmployeeList component that

takes the selected department as a parameter. The EmployeeList component can then

fetch the employees for that department in its OnParametersSetAsync method.

Use OnParametersSet (Listing 3-34) if you are only calling synchronous methods.

Listing 3-34.  The OnParametersSet Method

protected override void OnParametersSet()

{

}

Use OnParametersSetAsync (Listing 3-35) if you need to call asynchronous methods.

Listing 3-35.  The OnParametersSetAsync Method

protected override async Task OnParametersSetAsync()

{

}

�OnAfterRender and OnAfterRenderAsync
The OnAfterRender and OnAfterRenderAsync methods are called after Blazor has

completely rendered the component. This means that the browser’s DOM has been

updated with changes made to your Blazor component. You can use these methods to

invoke JavaScript code that needs access to elements from the DOM (which we will cover

in the JavaScript chapter).

Chapter 3 Components and Structure for Blazor Applications

88

Use OnAfterRender (Listing 3-36) to call synchronous methods, for example in

JavaScript.

Listing 3-36.  The OnAfterRender Lifecycle Hook

protected override void OnAfterRender()

{

}

Use OnAfterRenderAsync (Listing 3-37) to call asynchronous methods, for example

JavaScript methods that return promises.

Listing 3-37.  The OnAfterRenderAsync Lifecycle Hook

protected override async Task OnAfterRenderAsync()

{

}

�IDisposable
If you need to run some cleanup code when your component is removed from the UI,

implement IDisposable. You can implement this interface in Razor using @implements, as

shown in Listing 3-38. Normally you put the @implements at the top of the CSHTML file.

Most of the time, dependency injection will take care of calling Dispose, so
generally you won’t need to implement IDisposable if you only need to dispose
your dependencies.

Listing 3-38.  Implementing the IDisposable Interface in a Component

@implements IDisposable

The IDisposable interface requires you to implement a Dispose method, which
you put in @functions, as in Listing 3-39.

Chapter 3 Components and Structure for Blazor Applications

89

Listing 3-39.  Implementing the Dispose Method

@functions {

 public void Dispose()

 {

 // Cleanup resources here

 }

}

If you’ve separated the view and view model, you implement this interface on the

view model.

�Using Templated Components
Components are Blazor’s building blocks for reuse. Blazor also supports templated

components where you can specify one or more UI templates as parameters, making

templated components even more reusable! For example, your application could be

using grids all over the place. You can now build a templated component for a Grid

taking the type used in the grid as a parameter (very much like you can build a generic

type in .NET) and specify the UI used for each item separately! Let’s look at an example.

�Creating the Grid Templated Component
Open the MyFirstBlazor project you have been using. Now add a new component (a

Razor view) to the MyFirstBlazor.Client project’s Pages folder and name it Grid as

in Listing 3-40. This is a templated component because it states the TItem as a type

parameter using the @typeparam TItem syntax. This is like a generic type stated in C#

with public class List<T> where T is a type parameter.

You can have more than one type parameter. Simply list each type parameter using
the @typeparam syntax.

Chapter 3 Components and Structure for Blazor Applications

90

Listing 3-40.  The Grid Templated Component

@typeparam TItem

<table border="1">

 <thead>

 <tr>@Header</tr>

 </thead>

 <tbody>

 @foreach (var item in Items)

 {

 <tr>@Row(item)</tr>

 }

 </tbody>

 <tfoot>

 <tr>@Footer</tr>

 </tfoot>

</table>

@functions {

[Parameter]

RenderFragment Header { get; set; }

[Parameter]

RenderFragment<TItem> Row { get; set; }

[Parameter]

RenderFragment Footer { get; set; }

[Parameter]

IReadOnlyList<TItem> Items { get; set; }

}

Chapter 3 Components and Structure for Blazor Applications

91

The Grid component has four parameters. The Header and Footer parameter are

of type RenderFragment, which represents some HTML that you can specify when

you use the Grid component (you will look at an example right after exploring the

Grid component further). Look for the <thead> element in Listing 3-40 in the Grid

component. Here you use the @Header razor syntax to tell the Grid component to put the

HTML for the Header parameter here (same thing for the Footer).

The Row parameter is of type RenderFragment<TItem>, which is a generic version of

RenderFragment. In this case you can specify HTML with access to the TItem allowing

you access to properties and methods of the TItem. The Items parameter is an

IReadOnlyList<TItem> which can be data-bound to any class with the IReadOnlyList<TItem>

interface. Look for the <tbody> element in Listing 3-40. You iterate over all the items (of

type TItem) of the IReadOnlyList<TItem> and you use the @Row(element) Razor syntax

to apply the Row parameter, passing the current item as an argument.

�Using the Grid Templated Component
Now let’s look at an example of using the Grid templated component. Open the

FetchData.cshtml component in the MyFirstBlazor.Client project. Replace the

<table> (comment the <table> because you will come back to it in later chapters) with

the Grid component in Listing 3-41.

The FetchData component uses a couple of things such as @page and @inject.
I will discuss them in later chapters, so bear with the example.

The FetchData component uses the Grid component, specifying the Items parameter

as the forecasts array of WeatherForecast instances. The compiler is smart enough to

infer from this that the Grid’s type parameter (TItem) is the WeatherForecast type.

Listing 3-41.  The FetchData Component

@using MyFirstBlazor.Shared

@page "/fetchdata"

@inject HttpClient Http

Chapter 3 Components and Structure for Blazor Applications

92

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)

{

 <p>Loading...</p>

}

else

{

 <Grid Items="@forecasts">

 <Header>

 <th>Date</th>

 <th>Temp (Celcius)</th>

 <th>Summary</th>

 </Header>

 <Row Context="forecast">

 <!-- by default called context-->

 <td>@forecast.Date</td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.Summary</td>

 </Row>

 <Footer>

 <td colspan="3">Spring is in the air!</td>

 </Footer>

 </Grid>

 @*<table class="table">

 ...

 </table>*@

}

@functions {

WeatherForecast[] forecasts;

Chapter 3 Components and Structure for Blazor Applications

93

protected override async Task OnInitAsync()

{

 forecasts = await Http.GetJsonAsync<WeatherForecast[]>("api/SampleData/

WeatherForecasts");

}

}

Now look at the <Header> parameter of the Grid component in Listing 3-41. This

syntax binds whatever is inside the <Header> to the Grid’s Header parameter. In this

example, you specify some table headers. The Grid puts them inside the <tr> element

from Listing 3-40. Again, the <Footer> is similar.

Examine the <Row> parameter in Listing 3-41. Inside the <Row> you want to use the

current item from the iteration in Listing 3-40. But how should you access the current

item? By default, Blazor will pass the item as the context argument (of type TItem), so

you access the date of the forecast instance as @context.Date. But you can override the

name of the argument, and this is what you do with the Context parameters (provided

by Blazor) using <Row Context="forecast">. Now the item from the iteration can be

accessed using the forecast argument.

Run your solution and select the Fetch data link from the navigation menu. Admire

your new templated component, shown in Figure 3-11!

Figure 3-11.  Showing forecasts with the Grid templated component

Chapter 3 Components and Structure for Blazor Applications

94

Now you have a reusable Grid component that you can use to show any list of items

by passing the list to the Items parameters and specifying what should be shown in the

Header, Row, and Footer parameters! But there’s more!

�Specifying the Type Parameter’s Type Explicitly
Normally the compiler can infer the type of the type parameter, but if this does not work

as you expect you can specify the type explicitly. Simply specify the type of your type

parameter by specifying it when you use the component, as shown in Listing 3-42.

Listing 3-42.  Explicitly Specifying the Type Parameter

<Grid Items="@forecasts" TItem="WeatherForecast">

�Razor Templates
You can also specify a RenderFragment or RenderFragment<TItem> using Razor syntax.

A Razor template is a way to define a UI snippet, for example @<Row>...</Row>. In this

case, you specify a RenderFragment without any arguments. But if you need to pass the

argument to the Razor template, you use a lambda function. Let’s look at an example.

Start by adding a new component called ListView, as shown in Listing 3-43. This will

show an unordered list of items (of type TItem) using and HTML elements.

Listing 3-43.  The ListView Templated Component

@typeparam TItem

 @foreach (var item in Items)

 {

 @ItemTemplate(item)

 }

@functions {

[Parameter] RenderFragment<TItem> ItemTemplate { get; set; }

[Parameter] IReadOnlyList<TItem> Items { get; set; }

}

Chapter 3 Components and Structure for Blazor Applications

95

Now update the FetchData component as in Listing 3-44. Here you specify the

<ListView>’s <ItemTemplate>, which is of type RenderFragment<TItem>, using a Razor

template. Look at the forecastTemplate in Listing 3-44. It uses a lambda function,

taking the forecast as an argument, which returns a RenderFragment<TItem> using

the @... Razor syntax. In the <ListView> component’s <ItemTemplate> you

simply invoke the lambda function.

Listing 3-44.  Using Razor Templates to Specify the Render Fragment

@using MyFirstBlazor.Shared

@page "/fetchdata"

@inject HttpClient Http

@{

 RenderFragment<WeatherForecast> forecastTemplate =

 �(forecast) => @@forecast.Date.ToLongDateString() - @forecast.

Summary;

}

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)

{

 <p>Loading...</p>

}

else

{

 <Grid Items="@forecasts" TItem="WeatherForecast">

 ...

 </Grid>

 <ListView Items="@forecasts" TItem="WeatherForecast">

 <ItemTemplate>

 @forecastTemplate(context)

 </ItemTemplate>

 </ListView>

}

Chapter 3 Components and Structure for Blazor Applications

96

@functions {

WeatherForecast[] forecasts;

protected override async Task OnInitAsync()

{

 forecasts = await Http.GetJsonAsync<WeatherForecast[]>("api/SampleData/

WeatherForecasts");

}

}

Razor templates are a great way to reuse a UI snippet because you can invoke it in

different components.

You can also call a Razor template directly in your component as in Listing 3-45.

Listing 3-45.  Invoking a Razor Template in Your Component

@forecastTemplate(new WeatherForecast {

 Date = DateTime.Now,

 TemperatureC = 26,

 Summary = "Nice!"

 })

�The Blazor Compilation Model
Every Razor (CSHTML) file gets compiled into C# code and it is very interesting to have a

look at them. These files get generated in the obj subfolder of your project, and you can

look at these generated files from Visual Studio. Select the PizzaPlace.Client project in

Solution Explorer and click the Show All Files button shown in Figure 3-12.

Figure 3-12.  The Show All Files button

Now open the obj/Debug/netstandard2.0/Pages folder in Solution Explorer. Open

PizzaItem.g.cs, which you can find in Listing 3-46. (I have left out some of the less

important details.)

Chapter 3 Components and Structure for Blazor Applications

97

Listing 3-46.  The PizzaItem.g.cs Generated File

namespace PizzaPlace.Client.Pages

{

 public class PizzaItem : BlazorComponent

 {

 protected override void BuildRenderTree(RenderTreeBuilder builder)

 {

 base.BuildRenderTree(builder);

 builder.OpenElement(0, "div");

 builder.AddAttribute(1, "class", "row");

 builder.AddContent(2, "\n ");

 builder.OpenElement(3, "div");

 builder.AddAttribute(4, "class", "col");

 builder.AddContent(5, "\n ");

 builder.AddContent(6, Pizza.Name);

 builder.AddContent(7, "\n ");

 builder.CloseElement();

 builder.AddContent(8, "\n ");

 builder.OpenElement(9, "div");

 builder.AddAttribute(10, "class", "col");

 builder.AddContent(11, "\n ");

 builder.AddContent(12, Pizza.Price);

 builder.AddContent(13, "\n ");

 builder.CloseElement();

 builder.AddContent(14, "\n ");

 builder.OpenElement(15, "div");

 builder.AddAttribute(16, "class", "col");

 builder.AddContent(17, "\n ");

 builder.OpenElement(18, "img");

 builder.AddAttribute(19, "src", SpicinessImage(Pizza.Spicyness));

 builder.AddAttribute(20, "alt", Pizza.Spicyness);

 builder.CloseElement();

 builder.AddContent(21, "\n ");

 builder.CloseElement();

Chapter 3 Components and Structure for Blazor Applications

98

 builder.AddContent(22, "\n ");

 builder.OpenElement(23, "div");

 builder.AddAttribute(24, "class", "col");

 builder.AddContent(25, "\n ");

 builder.OpenElement(26, "button");

 builder.AddAttribute(27, "class", ButtonClass);

 �builder.AddAttribute(28, "onclick", Microsoft.AspNetCore.Blazor.

Components.BindMethods.GetEventHandlerValue<Microsoft.AspNetCore.

Blazor.UIMouseEventArgs>(() => Selected(Pizza)));

 builder.AddContent(29, ButtonTitle);

 builder.CloseElement();

 builder.AddContent(30, "\n ");

 builder.CloseElement();

 builder.AddContent(31, "\n");

 builder.CloseElement();

 }

[Parameter]

protected Pizza Pizza { get; set; }

[Parameter]

protected string ButtonTitle { get; set; }

[Parameter]

protected string ButtonClass { get; set; }

[Parameter]

protected Action<Pizza> Selected { get; set; }

private string SpicinessImage(Spiciness spiciness)

=> $"images/{spiciness.ToString().ToLower()}.png";

 }

}

As you can see, the bulk of the generated code is the BuildRenderTree method.

This method creates elements, attributes, content, and event handlers. For example, the

original CSHTML file contains Listing 3-47, which gets generated as Listing 3-48.

Chapter 3 Components and Structure for Blazor Applications

99

Listing 3-47.  The Original Razor

<div class="col">

 @Pizza.Name

</div>

Listing 3-48.  The Generated Code from Razor

builder.OpenElement(3, "div");

builder.AddAttribute(4, "class", "col");

builder.AddContent(5, "\n ");

builder.AddContent(6, Pizza.Name);

builder.AddContent(7, "\n ");

builder.CloseElement();

If you really want, you can directly inherit from BlazorComponent and override the

BuildRenderTree method and generate your custom HTML directly here. This is only

interesting in some very advanced scenarios which I don’t cover in this book.

�Summary
In this chapter, you explored building Blazor components and component libraries. You

also learned how components can communicate with each other through parameters

and data binding. You applied this learning by dividing the monolithic Index component

of the PizzaPlace application into smaller components. You also saw that in Blazor you

can build templated components, which resemble generic classes. These templated

components can be parameterized to render different UIs, which makes them quite

reusable! Finally, you had a look at component lifecycle hooks (which you will need in

further chapters) and how Razor components get compiled into good old C# code.

Chapter 3 Components and Structure for Blazor Applications

101
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_4

CHAPTER 4

Services and Dependency
Injection
Dependency inversion is one of the basic principles of good object-oriented design. The

big enabler is dependency injection. In this chapter, you will look into dependency

inversion and injection and why they are fundamental parts of Blazer. You will explore

them by building a service that encapsulates where the data gets retrieved and stored.

�What Is Dependency Inversion?
Currently your Blazor PizzaPlace app retrieves its data from hard-coded sample data.

But in a real-life situation this data will be stored in a database on the server. Retrieving

and storing this data can be done in the component itself, but this is a bad idea. Why?

Because technology changes quite often, and different customers of your application

might want to use their own specific technology, requiring you to update your app for

every customer.

Instead you will put this logic into a service object. A service object’s role is to

encapsulate specific business rules, especially how data is communicated between

the client and server. A service object is also a lot easier to test since you can write unit

tests that run on their own, without requiring a user to interact with the application for

testing.

But first, let’s talk about the dependency inversion principle and how dependency

injection allows us to apply this principle.

102

�Understanding Dependency Inversion
Imagine a component that uses a service. The component creates the service using the

new operator, as in Listing 4-1.

Listing 4-1.  A Component Using a ProductsService

@using MyFirstBlazor.Client.Services

<div>

 @foreach(var product in productsService.GetAllProducts())

 {

 <div>@product.Name</div>

 <div>@product.Description</div>

 <div>@product.UnitPrice</div>

 }

</div>

@functions {

 ProductsService productsService = new ProductsService();

}

This component is now completely dependent on the ProductsService! You cannot

replace the ProductsService without walking over every line of code in your application

where the ProductsService is used and replacing it with another class. This is also

known as tight coupling (see Figure 4-1).

ProductList ProductService

Figure 4-1.  Traditional layered approach with tight coupling

Now you want to test the ProductList component. ProductsService requires a

server on the network to talk to. In this case, you must set up a server just to run the

test. And if the server is not ready yet (the developer in charge of the server hasn’t come

around to it), you cannot test your component! Or say you are using ProductsService in

Chapter 4 Services and Dependency Injection

103

several places in your location, and you need to replace ProductsService with another

class. Now you need to find every use of the ProductsService and replace the class.

Maintenance nightmare!

�Using the Dependency Inversion Principle
The Dependency Inversion Principle states

	 A.	 High-level modules should not depend on low-level modules.

Both should depend on abstractions.

	 B.	 Abstractions should not depend on details. Details should depend

on abstractions.

What this means is that the ProductsList component (the higher-level module)

should not directly depend on ProductsService (the lower-level module). Instead,

it should rely on an abstraction. It should rely on an interface describing what a

ProductsService should be able to do, not a class describing how it should work.

The IProductsService interface looks like Listing 4-2.

Listing 4-2.  The Abstraction as Described in an Interface

public interface IProductsService

{

 List<Product> GetAllProducts();

}

So change the ProductsList component to rely on this abstraction shown in Listing 4-3.

Listing 4-3.  The ProductList Component Using the IProductsService Interface

@using MyFirstBlazor.Client.Services

<div>

 @foreach(var product in productsService.GetAllProducts())

 {

 <div>@product.Name</div>

 <div>@product.Description</div>

 <div>@product.UnitPrice</div>

 }

Chapter 4 Services and Dependency Injection

104

</div>

@functions {

 IProductsService productsService;

}

Now the ProductList component only relies on the IProductsService interface, an

abstraction. Of course, you now make the ProductsService implement the interface as

in Listing 4-4.

Listing 4-4.  The ProductsService Implementing the IProductsService Interface

public class ProductsService : IProductsService

{

 public List<Product> GetAllProducts()

 {

 // some implementation

 }

}

If you want to test the ProductList component with dependency inversion in place,

you can simply build a hard-coded version of ProductsService and run the test without

needing a server, as in Listing 4-5. And if you use ProductsService in different places

in your application, all you need to do to replace its implementation is to build another

class that implements the IProductsService interface and tell dependency injection to

use the other class! This is also known as the Open/Closed Principle from SOLID.

Listing 4-5.  A Hard-Coded ProductsService Used for Testing

public class HardCodedProductsService : IProductsService

{

 public static List<Product> products = new List<Product>

 {

 new Product {

 Id =1,

 Name = "Isabelle's Homemade Marmelade",

Chapter 4 Services and Dependency Injection

105

 Description = "...",

 UnitPrice = 1.99M }

 };

 public List<Product> GetAllProducts()

 {

 return products;

 }

}

By applying the Principle of Dependency Inversion (see Figure 4-2), you gained a lot

more flexibility.

ProductList IProductService

ProductService

Figure 4-2.  Loosely coupled objects through dependency inversion

�Adding Dependency Injection
If you run your application, now you will get a NullReferenceException. Why?

Because the ProductsList component still needs an instance of a class implementing

IProductsService! You could pass the ProductsService in the constructor of the

ProductList component, for example in Listing 4-6.

Chapter 4 Services and Dependency Injection

106

Listing 4-6.  Passing the ProductService in the Constructor

new ProductList(new ProductService())

But if the ProductsService also depends on another class, it quickly becomes like

Listing 4-7.

Listing 4-7.  Creating a Deep Chain of Dependencies Manually

new ProductList(new ProductService(new Dependency()))

This is, of course, not a practical way of working! Because of that, you will use an

Inversion-of-Control Container (I didn’t invent this name!).

�Applying an Inversion-of-Control Container
An Inversion-of-Control Container (IoCC) is just another object that specializes in

creating objects for you. You simply ask it to create an instance of a class and it will take

care of creating any dependencies required.

It is a little bit like in a movie when a surgeon, in the middle of an operation, needs

a scalpel. The surgeon holds out his or her hand and asks for “scalpel number 5.” The

nurse (the Inversion-of-Control Container) who is assisting simply hands the surgeon

the scalpel. The surgeon doesn’t care where the scalpel comes from or how it was built.

So, how can the IoCC know which dependencies your component needs? There are

two ways.

�Constructor Dependency Injection

Classes that need a dependency can simply state their dependencies in their constructor.

The IoCC will examine the constructor and instantiate the dependencies before calling

the constructor. And if these dependencies have their own dependencies, then the IoCC

will also build them! For example, if the ProductsService has a constructor that takes

an argument of type Dependency, as in Listing 4-8, then the IoCC will create an instance

of type Dependency and will then call the ProductsService’s constructor with that

instance. The ProductsService constructor then stores a reference to the dependency

in some field, as in Listing 4-8. Should the ProductsService's constructor take multiple

arguments, then the IoCC will create an instance for each argument. Constructor

injection is normally used for required dependencies.

Chapter 4 Services and Dependency Injection

107

Listing 4-8.  The ProductsService’s Contructor with Arguments

public class ProductsService {

 private Dependency dep;

 public ProductsService(Dependency dep) {

 this.dep = dep;

 }

}

�Property Dependency Injection

If the class that the IoCC needs to build has properties that indicate a dependency, then

these properties are filled in by the IoCC. The way a property does this depends on the

IoCC (in .NET there are a couple of different IoCC frameworks), but in Blazor you can

have the IoCC inject an instance with the @inject directive in your Razor file, as in the

third line of code in Listing 4-9.

Listing 4-9.  Injecting a Dependency with the @inject Directive

@using MyFirstBlazor.Client.Services

@inject IProductsService productsService

<div>

 @foreach(var product in productsService.GetAllProducts())

 {

 <div>@product.Name</div>

 <div>@product.Description</div>

 <div>@product.UnitPrice</div>

 }

</div>

@functions {

}

If you’re using code separation, you can add a property to your class and apply the

[Inject] attribute as in Listing 4-10.

Chapter 4 Services and Dependency Injection

108

Listing 4-10.  Using the Inject Attribute for Property Injection

using System;

using Microsoft.AspNetCore.Blazor.Components;

using MyFirstBlazor.Client.Services;

namespace MyFirstBlazor.Client.Pages

{

 public class ProductListViewModel : BlazorComponent

 {

 [Inject]

 public IProductsService ProductsService { get; set; }

 }

}

You can then use this property directly in your Razor file, as in Listing 4-11.

Listing 4-11.  Using the ProductsService Property That Was Dependency Injected

@inherits ProductListViewModel

<div>

@foreach (var product in ProductsService.GetAllProducts())

{

 <div>@product.Name</div>

 <div>@product.Description</div>

 <div>@product.UnitPrice</div>

}

</div>

�Configuring Dependency Injection
There is one more thing I need to discuss. When your dependency is a class, the IoCC

can easily know that it needs to create an instance of the class with the class’ constructor.

But if your dependency is an interface, which it generally needs to be if you are applying

the Principle of Dependency Inversion, then which class does it use to create the

instance? Without your help it cannot know.

Chapter 4 Services and Dependency Injection

109

An IoCC has a mapping between interfaces and classes, and it is your job to

configure this mapping. You configure the mapping in your Blazor project’s Startup

class, just like in ASP.NET Core. So open Startup.cs, as in Listing 4-12.

Listing 4-12.  The Startup Class

using Microsoft.AspNetCore.Blazor.Builder;

using Microsoft.Extensions.DependencyInjection;

namespace MyFirstBlazor.Client

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 // Configure dependencies here

 }

 public void Configure(IBlazorApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

See the comment? The idea is that you configure the mapping from the interface

to the class here, and you use extension methods on the serviceProvider. Which

extension method you call from Figure 4-3 depends on the lifetime you want to give

the dependency. There are three options for the lifetime of an instance, which I will

discuss next.

Chapter 4 Services and Dependency Injection

110

�Singleton Dependencies
Singleton classes are classes that only have one instance. They are typically used to

manage some global state; for example, you could have a class that keeps track of how

many times people have clicked a certain product. Having multiple instances of this

class would complicate things because they would have to start communicating with

each other to keep tracks of the clicks. Singleton classes can also be classes that don’t

have any state, that only have behavior (utility classes such as one that does conversions

between imperial and metric units). You configure dependency injection to reuse the

same instance all the time with the AddSingleton extension method, as in Listing 4-13.

Listing 4-13.  Adding a Singleton to Dependency Injection

public void ConfigureServices(IServiceCollection services)

{

 services.AddSingleton<IProductsService, ProductsService>();

}

Figure 4-3.  Configuring dependency injection

Chapter 4 Services and Dependency Injection

111

Why not use static methods instead of singletons? Static methods and properties
are very hard to replace with fake implementations during testing. (Have you ever
tried to test a method that uses a date with DateTime.Now, and you want to test
it with February 29 of some quantum leap year?) However, during testing you can
easily replace the real class with a fake class because it implements an interface!

�Transient Dependencies
When you configure dependency injection to use a transient class, each time an instance

needs to be created by the IoCC it will create a fresh instance. The IoCC will also Dispose

of the instance (when your class implements the IDisposable interface) when it is no

longer needed. Most server-side classes should be transient because each request on a

server should not depend on previous requests.

However, in Blazor you are working client side, and in that case the UI stays put for

the entire interaction. This means that you will have components that only have one

created instance and only one instance of the dependency. You might think in this case

transient and singleton will do the same thing. But there can be another component that

needs the same type of dependency. If you are using a singleton, then both components

will share the same instance of the dependency, while with transient each gets their own

instance! You should be aware of this.

You configure dependency injection to use transient instances with the

AddTransient extension method, as in Listing 4-14.

Listing 4-14.  Adding a Transient Class to Dependency Injection

public void ConfigureServices(IServiceCollection services)

{

 services.AddTransient<IProductsService, ProductsService>();

}

�Scoped Dependencies
When you configure dependency injection to use a scoped dependency, the IoCC

will reuse the same instance per request but will use new instances between different

requests. This is especially useful if you use repository objects. Repository objects

Chapter 4 Services and Dependency Injection

112

keep track of all changes made to its objects and then allow you to save (or discard)

all changes at the end of the request. If you use transient instancing for repositories, a

single request might lose some changes, which would result in subtle bugs. Let’s look at

an example. Imagine you have a DebitService and another CreditService. Both make

changes to a bank account and both use a BankRepository object as a dependency.

A TransferService uses a DebitService to debit one account, and the CreditService

credits an account, all using the BankRepository. Look at Listing 4-15.

Listing 4-15.  Implementing a TransferService

public class TransferService {

 private DebitService ds;

 private CreditService cs;

 private BankRepository br;

 public TransferService(

 DebitService ds, CreditService cs, BankRepository br)

 {

 this.ds = ds;

 this.cs = cs;

 this.br = br;

 }

 public Transfer(decimal amount, Account from, Account to) {

 ds.Debit(from, amount);

 cs.Credit(to, amount);

 br.Commit();

 }

}

If all three services use the same instance of BankRepository, then this should work

fine, as in Figure 4-4.

Chapter 4 Services and Dependency Injection

113

But if each receives their own new instance of BankRepository, the Commit method

will do nothing because no changes were made to the BankRepository instance of the

TransferService, as in Figure 4-5.

Figure 4-4.  Using a scoped repository

Chapter 4 Services and Dependency Injection

114

Using scoped dependencies in Blazor will generally be of no practical use, but in the

next chapter you will use a scoped instance to implement the microservice.

Never use scoped dependencies inside singletons. The scoped dependency will
probably have an incorrect state after the first request.

�Disposing Dependencies
One of the nice extras you get with dependency injection is that it takes care of calling

the Dispose method of instances that implement IDisposable. If the BankRepository

class of the previous example implements IDisposable, cleanup will occur at the end

of the lifetime of the instance. In the case of a singleton, this would be at the end of the

program; for scoped instances, this would be at the end of the request; and for transient

instances, this would normally be when your component is removed from the UI. In

general, if your classes implement IDisposable correctly, you don’t have to take care of

anything else.

Figure 4-5.  Using a transient repository

Chapter 4 Services and Dependency Injection

115

�Building Blazor Services
Let’s go back to your PizzaPlace project and introduce it to some services. I can think of

at least two services: one to retrieve the menu and one to place the order when the user

clicks the Order button.

Start by reviewing the Index component, which is shown in Listing 4-16 with the

methods left out for conciseness.

Listing 4-16.  The Index Component

@page "/"

<!-- Menu -->

<PizzaList Title="Our selected list of pizzas"

 Menu="@State.Menu"

 Selected="@((pizza) => AddToBasket(pizza))" />

<!-- End menu -->

<!-- Shopping Basket -->

<ShoppingBasket Title="Your current order"

 Basket="@State.Basket"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@(pos => RemoveFromBasket(pos))" />

<!-- End shopping basket -->

<!-- Customer entry -->

<CustomerEntry Title="Please enter your details below"

 Customer="@State.Basket.Customer"

 Submit="@((_) => PlaceOrder())"/>

<!-- End customer entry -->

<p>@State.ToJson()</p>

@functions {

private State State { get; } = new State()

{

 Menu = new Menu

 {

 Pizzas = new List<Pizza> {

Chapter 4 Services and Dependency Injection

116

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy),

 new Pizza(2, "Margarita", 7.99M, Spiciness.None),

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot)

 }

 }

};

...

}

Pay special attention to the State property. You will initialize the State.Menu

property from a service, and you will use dependency injection to pass the service.

�Adding the MenuService and IMenuService abstraction
If you are using Visual Studio, right-click the PizzaPlace.Shared project and select

Add ➤ New Item. If you are using Code, right-click the PizzaPlace.Shared project and

select Add File. Add a new interface class called IMenuService and complete it as shown

in Listing 4-17.

Listing 4-17.  The IMenuService Interface

using System.Threading.Tasks;

namespace PizzaPlace.Shared

{

 public interface IMenuService

 {

 Task<Menu> GetMenu();

 }

}

This interface allows you to retrieve a menu. Note that the GetMenu method returns

a Task<Menu>; this is because you expect the service to retrieve your menu from a server

(you will build this in following chapters) and you want the method to support an

asynchronous call.

Chapter 4 Services and Dependency Injection

117

Let’s elaborate on this. Have a look at the OnInitAsync method from Listing 4-20.

It is an asynchronous method using the async keyword in its declaration. Inside the

OnInitAsync method you call the GetMenu method using the await keyword, which

requires GetMenu to return a Task<Menu>. Thanks to the async/await syntax this is easy

to do but it does require that you return a task.

Now add the HardCodedMenuService class to the PizzaPlace.Shared project, as in

Listing 4-18.

Listing 4-18.  The HardCodedMenuService Class

using System.Collections.Generic;

using System.Threading.Tasks;

namespace PizzaPlace.Shared

{

 public class HardCodedMenuService : IMenuService

 {

 public Task<Menu> GetMenu()

 {

 return Task.FromResult<Menu>(new Menu {

 Pizzas = new List<Pizza> {

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy),

 new Pizza(2, "Margarita", 7.99M, Spiciness.None),

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot)

 }

 });

 }

 }

}

Now you are ready to use the IMenuService in your Index component. Start by

adding the dependency on IMenuService using the @inject syntax, as in Listing 4-19.

Chapter 4 Services and Dependency Injection

118

Listing 4-19.  Stating That the Index Component Depends on an IMenuService

@page "/"

@using PizzaPlace.Shared;

@inject IMenuService menuService

<!-- Menu -->

...

You initialize the State.Menu property in the OnInitAsync lifecycle method, as in

Listing 4-20. You already have an OnInit method from the previous chapter that you

don’t need any more so don’t forget to remove it.

Listing 4-20.  Initializing the Index Component’s Menu

@functions {

 private State State { get; } = new State();

 protected override async Task OnInitAsync()

 {

 State.Menu = await menuService.GetMenu();

 this.State.Basket.Customer.PropertyChanged +=

 (sender, e) => this.StateHasChanged(); }

...

}

Never call asynchronous services in your Blazor component’s constructor; always
use OnInitAsync or OnParametersSetAsync.

Now you are ready to configure dependency injection, so open Startup.cs from the

client project. You’ll use a transient object, as stated in Listing 4-21.

Listing 4-21.  Configuring Dependency Injection for the MenuService

using Microsoft.AspNetCore.Blazor.Builder;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Shared;

Chapter 4 Services and Dependency Injection

119

namespace PizzaPlace.Client

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddTransient<IMenuService,

 HardCodedMenuService>();

 }

 public void Configure(IBlazorApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

Run your Blazor project. Everything should still work!

�Ordering Pizzas with a Service
When the user makes a selection of pizzas and fills in the customer information, you

want to send the order to the server so they can warm up the oven and send some nice

pizzas to the customer’s address. Start by adding an IOrderService interface to the

PizzaPlace.Shared project as in Listing 4-22.

Listing 4-22.  The IOrderService Abstraction as a C# Interface

using System.Threading.Tasks;

namespace PizzaPlace.Shared

{

 public interface IOrderService

 {

 Task PlaceOrder(Basket basket);

 }

}

Chapter 4 Services and Dependency Injection

120

To place an order, you just send the basket to the server. In the next chapter, you

will build the actual server-side code to place an order; for now, you will use a fake

implementation that simply writes the order to the browser’s console. Add a class called

ConsoleOrderService to the PizzaPlace.Shared project as in Listing 4-23.

Listing 4-23.  The ConsoleOrderService

using System;

using System.Threading.Tasks;

namespace PizzaPlace.Shared

{

 public class ConsoleOrderService : IOrderService

 {

 public Task PlaceOrder(Basket basket)

 {

 Console.WriteLine($"Placing order for {basket.Customer.Name}");

 return Task.CompletedTask;

 }

 }

}

The PlaceOrder method simply writes the basket to the console. However, this

method implements the asynchronous pattern from .NET, so you need to return a

Task instance. This is easily done using the Task.CompletedTask property. Task.

CompletedTask is simply a “no nothing” task and is very handy if you need to implement

a method that needs to return a Task instance.

Inject the IOrderService into the Index component as in Listing 4-24.

Listing 4-24.  Injecting the IOrderService

@page "/"

@using PizzaPlace.Shared;

@inject IMenuService menuService

@inject IOrderService orderService

Chapter 4 Services and Dependency Injection

121

Use the order service when the user clicks on the Order button by replacing the

implementation of the PlaceOrder method in the Index component. Since the orderService

is asynchronous, you need to invoke it in an asynchronous way, as in Listing 4-25.

Listing 4-25.  The Asynchronous PlaceOrder Method

private async Task PlaceOrder()

{

 await orderService.PlaceOrder(State.Basket);

}

As the final step, configure dependency injection. Again, make the orderService

transient as in Listing 4-26.

Listing 4-26.  Configuring Dependency Injection for the orderService

using Microsoft.AspNetCore.Blazor.Builder;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Shared;

namespace PizzaPlace.Client

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddTransient<IMenuService,

 HardCodedMenuService>();

 services.AddTransient<IOrderService,

 ConsoleOrderService>();

 }

 public void Configure(IBlazorApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

Chapter 4 Services and Dependency Injection

122

Think about this. How hard will it be to replace the implementation of one of the

services? There is only one place that says which class you will be using, and that is in

Listing 4-26. In the next chapter, you will build the server-side code needed to store the

menu and the orders, and in the chapter after that you will replace these services with

the real deal!

Build your project. You will get a warning about making a call to an asynchronous

method. This is because the IOrderService’s PlaceOrder method is now asynchronous.

Fix it by changing the CustomerEntry’s Submit property to use an asynchronous lambda

function as in Listing 4-27.

Listing 4-27.  Changing to an Asynchronous Lambda Function

<!-- Customer entry -->

<CustomerEntry Title="Please enter your details below"

 Customer="@State.Basket.Customer"

 Submit="@(async (_) => await PlaceOrder())"/>

<!-- End customer entry -->

Build and run your project again, open your browser’s debugger, and open the

console tab. Order some pizzas and click the Order button. You should see some

feedback, as shown in Figure 4-6.

Figure 4-6.  The brower’s console showing that an order was placed

Chapter 4 Services and Dependency Injection

123

�Summary
In this chapter you learned about dependency inversion, which is a best practice for

building easily maintainable and testable object-oriented applications. You also saw that

dependency injection makes it very easy to create objects with dependencies, especially

objects that use dependency inversion. When you configure dependency injection, you

need to be careful with the lifetime of your instances, so let’s repeat that again:

•	 Transient objects are always different; a new instance is provided to

every component and every service.

•	 Scoped objects are the same within a request but different across

different requests.

•	 Singleton objects are the same for every object and every request.

Chapter 4 Services and Dependency Injection

125
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_5

CHAPTER 5

Data Storage and
Microservices
In general, client-side browser applications need to store some of their data. In some

cases, such as games, the application can store its data in the browser itself, using

browser local storage. But in most cases storage will happen on the server, which has

access to database engines such as SQL Server. In this chapter, you will learn the basics

of storing data using Entity Framework Core and exposing that data using REST and

microservices built on top of ASP.NET Core.

�What Is REST?
Storing data on the Web is ubiquitous. But how can applications communicate with one

another? Representational State Transfer (REST) is a protocol built on top of the HTTP

protocol for invoking functionality on servers, such as retrieving and storing data from/

in a database.

�Understanding HTTP
Before talking about REST, you should have a good understanding of the Hypertext

Transfer Protocol, better known as HTTP. HTTP was created by Tim Berners-Lee at CERN

in 1989. CERN is a center for elementary physics research, and what do researchers do

when they have completed their research? They publish papers with their research’s

findings. Before the Internet, publishing a paper was done literally on paper (hence the

name) and it took a lot of time between writing the paper and getting it published in a

research magazine. Instead, Tim Berners-Lee devised a way to put papers on a server

and allow users to read these papers using a browser.

126

Also, scientific papers contain a lot of references, and when you want to read a

paper like this it helps to be able to access the referenced papers. The Internet facilitates

reading papers through the use to Hypertext Markup Language (HTML). Hypertext is an

electronic document format that can contain links to other documents. You simply click

the link to read the other paper and you can go back to the first paper simply by clicking

the back button in your browser.

�Universal Resource Identifiers and Verbs
Browsers are applications that know how to talk HTTP, and the first thing you do after

opening a browser is you type in a Universal Resource Identifier (URI). A URI allows a

browser to talk to a server, but more is needed. As the name suggests, a URI identifies

some resource universally, but you also need to use a verb to instruct the server to do

something with the URI. The most common verb is GET. As Figure 5-1 shows, when you

type in a URI in the browser, it will do a GET on the server.

Figure 5-1.  The browser uses the GET verb to retrieve a document

Each time you click a hyperlink in the HTML document, the browser repeats this

process with another URI.

But there are other verbs. If you want to publish a new paper, you can use the POST

verb to send the paper to the server, supplying it with a URI. In this case, the server will

store the paper at the requested URI. If you want to make a change to your paper, for

example to correct a spelling mistake, you can use the PUT verb. Now the server will

overwrite the URI contents. And finally, you can delete the paper using the DELETE verb

and its URI.

Chapter 5 Data Storage and Microservices

127

�HTTP Status Codes
What happens when you ask a server about something it doesn’t have? What should

the server return? Servers not only return HTML, they also return a status code about

the result. When the server can process the request successfully, it will in general

return status code 200 (other successful status codes exist). When the server can’t find

the resource, it will return a status code 404. Status code 404 simply means not found.

The client will receive this status code and can react appropriately. When the browser

receives a status code 200, it displays the HTML; when it receives a 404, it displays a not

found screen, etc.

�Invoking Server Functionality Using REST
Think about these verbs we just talked about. With POST you can CREATE something

on a server; with GET you can READ it back; with PUT you can UPDATE something

on the server; and with DELETE you can DELETE something on the server. They are

also known as CRUD operations (CREATE-READ-UPDATE-DELETE). Roy Fielding, the

inventor of REST, realized that using the HTTP protocol you can also use HTTP to work

with data stored in a database. For example, if you use the GET verb with a URI http://

someserver/categories, the server can execute some code to retrieve data from the

categories relational table and return it. Of course, the server would use a format more

appropriate for transferring data, such as XML or JSON. Because there are many different

formats for data, the server also needs a way to convey which format it is sending. (In the

beginning of the Web only HTML was used as the format.) This is done through HTTP

headers.

�HTTP Headers
HTTP headers are instructions exchanged between the client and the server. Headers are

key-value pairs, where client and server agree on the key. Many standard HTTP headers

exist. For example, a server can use the Content-Type header to tell the client to expect

a specific format. Another header is the Accept header, which is sent by the client to the

server to politely ask the server to send the content in that format; this is also known

as content negotiation. Currently the most popular format is JavaScript Object Notation

(JSON). And this is the exchange format you will use with Blazor.

Chapter 5 Data Storage and Microservices

128

�JavaScript Object Notation
JSON is a compact format for transferring data. Look at the example in Listing 5-1.

Listing 5-1.  An Example of JSON

{ "book" : {

 "title" : "Blazor Revealed",

 "chapters" : ["Your first Blazor project", "Data Binding"]

 }

}

This JSON format describes a book, an object in memory. Objects are denoted using

curly braces. Inside the book are two properties; each property uses a key : value

notation. The book’s title is "Blazor Revealed." Note that the property name is also

transferred as a string. And finally, the chapters property is an array of strings, where

you use square brackets to indicate an array.

The JSON format is used for transferring data between two machines, but today is

also heavily used for configuring tools such as ASP.NET Core. JSON today is way more

popular on the Web than XML, probably because of its simplicity.

�Some Examples of REST Calls
You need a list of pizzas from a server, and the server exposes the pizzas at URI http://

someserver/pizzas. To get a list of pizzas, you use the GET verb, and you use the Accept

header with value application/json to request the JSON format. Look at Figure 5-2 for

this example.

Figure 5-2.  Using REST to retrieve a list of pizzas

Chapter 5 Data Storage and Microservices

129

Maybe your client wants to display the details of a pizza with id number 5. In this

case, it can append the id to the URI and perform a GET. Should the server not have any

pizza with that id, it can return a status code 404, as illustrated in Figure 5-3.

Figure 5-3.  Using REST to retrieve a specific pizza through its unique id

As a last example, let’s send some data from the client to the server. Imagine that

the customer has filled in all the details for the order and clicks the Order button. You

then send the order as JSON to the server using the POST verb (remember POST means

insert). The server can then process the order in any way it likes; for instance, it can

insert the order into its database and return a 201: Created status code, as in Figure 5-4.

REST recommends returning a 201 status code with the Location header set to the URI

for the newly created resource.

Figure 5-4.  POSTing an order to the server

Chapter 5 Data Storage and Microservices

130

�Building a Simple Microservice Using ASP.NET Core
So, how do you build a REST service? Your Blazor project uses ASP.NET Core for hosting

the Blazor client and adding a service to your project is easy. But first, let’s do a little intro

to microservices.

�Services and Single Responsibility
A service is a piece of software that listens for requests; when it receives a request, the

service handles the request and returns with a response. In real life, you also encounter

services and they are very similar. Consider a bank. You step into a bank and you give

the teller your account number, some ID, and request $100. The teller will check your

account; if you have enough money in your account, the teller will deduct the money

and give you the cash. Should your account be too low, the teller will refuse. In both

cases, you got a response.

Services should also adhere to the principle of single responsibility. They should

do one thing very well, and that’s it. For example, the pizza service will allow clients to

retrieve pizzas, add, update, and delete pizzas. That’s it. A single responsibility, in this

case PIZZAS.

You can have other services too, each with their own responsibility. Services that take

care of one thing are known as microservices.

�The Pizza Service
Open the PizzaPlace solution you worked on in previous chapters. In this chapter, you

will focus on the PizzaPlace.Server project, shown in Figure 5-5.

Chapter 5 Data Storage and Microservices

131

The only role this project currently has is to host your Blazor client application, but

now you will enhance this role by adding some microservices.

Open Startup.cs and look at the Configure method, as in Listing 5-2.

Listing 5-2.  The Startup Class’ Configure Method

public void Configure(IApplicationBuilder app,

 IHostingEnvironment env)

{

 app.UseResponseCompression();

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseMvc(routes =>

 {

Figure 5-5.  The PizzaPlace.Server project

Chapter 5 Data Storage and Microservices

132

 routes.MapRoute(name: "default",

 template: "{controller}/{action}/{id?}");

 });

 app.UseBlazor<Client.Program>();

}

The last line with the UseBlazor method takes care of your Blazor Client project. But

right before it you see the UseMvc method that it used for hosting your services.

How the UseMvc method works is not the topic of this book, but I will cover what

you need to know. If you want to learn more about ASP.NET Core, there are many good

books about this topic, such as Pro ASP.NET Core MVC by Adam Freeman.

Next in line is the Controllers folder. In Figure 5-5 this folder is empty, and the

idea is that you put your service classes here. In ASP.NET, service classes are known

as controllers. If you are using Visual Studio, right-click this folder and select Add ➤

Controller. Select API Controller - Empty from Figure 5-6 and click Add.

Figure 5-6.  Adding a new controller

Chapter 5 Data Storage and Microservices

133

Type PizzasController as in Figure 5-7 and click Add again.

Figure 5-7.  Naming the controller

If you are using Code, simply right-click the Controllers folder and select Add File.

Name it PizzasController.cs.

This will add a new class called PizzasController, inheriting from ControllerBase,

which you can see in Listing 5-3. Please note that the Route attribute indicates that the

URI you should use is api/pizzas. The [controller] part of the route is a placeholder

for the name of the controller, but without the Controller part.

Listing 5-3.  The Empty PizzasController

namespace PizzaPlace.Server.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 public class PizzasController : ControllerBase

 {

 }

}

Let’s add a method to retrieve a list of pizzas. For the moment you will hard-

code the list, but in the next section you will retrieve it from a database. Modify the

PizzasController as shown in Listing 5-4.

Listing 5-4.  Adding a Method to the PizzaController to Retrieve a List of Pizzas

using System.Collections.Generic;

using System.Linq;

using Microsoft.AspNetCore.Mvc;

using PizzaPlace.Shared;

Chapter 5 Data Storage and Microservices

134

namespace PizzaPlace.Server.Controllers

{

 [ApiController]

 public class PizzasController : ControllerBase

 {

 private static List<Pizza> pizzas = new List<Pizza>

 {

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy),

 new Pizza(2, "Margarita", 7.99M, Spiciness.None),

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot)

 };

 [HttpGet("pizzas")]

 public IQueryable<Pizza> GetPizzas()

 {

 return pizzas.AsQueryable();

 }

 }

}

Let’s walk through this implementation. First, you declare a hard-coded static list

of pizzas. Next is the GetPizzas method, which has an attribute of HttpGet("pizzas").

This attribute says that when you perform a GET on the server with the pizzas URI the

server should call the GetPizzas method.

The GetPizzas method returns an IQueryable<Pizza> and ASP.NET Core will send

this result back to the client with the requested format. The IQueryable<Pizza> interface

is used in .NET to represent data that can be queried, such as database data, and is

returned by LINQ queries.

Note that the GetPizzas method contains nothing about HOW the data will be
transferred to the client. This is all taken care of for you by ASP.NET Core! By default,
your implementation in ASP.NET Core will use JSON, which is what you want.

Chapter 5 Data Storage and Microservices

135

Time to see if it works. First, ensure that the PizzaPlace.Server project is the startup

project. Right-click the PizzaPlace.Server project and select Set as Startup Project from

the drop-down menu. The PizzaPlace.Server project should be shown as bold, as in

Figure 5-5.

Now run your project and wait for the browser to open because you will perform

a GET; you can use the browser but for other verbs you will later use a nice tool called

Postman.

Change the URI in the browser to http://localhost:xxxx/pizzas where xxxx is the

original port number in your browser (the port number gets selected by Visual Studio

and will be different than mine). You should see the result shown in Figure 5-8.

A JSON-encoded list of pizzas! It works!

Figure 5-8.  The results of getting a list of pizzas from the pizza service

Now you are ready to retrieve the data from a real database using Entity Framework

Core.

�What Is Entity Framework Core?
Entity Framework Core is the framework Microsoft recommends for working with

databases. It allows you to write classes as normal C# classes and then store and retrieve

.NET objects from a database without having to be an SQL expert. It will take care of this

for you. This is also known as persistence ignorance, where your code does not need to

know how and where data gets stored!

Chapter 5 Data Storage and Microservices

136

�Using the Code First Approach
But of course, you need to explain to Entity Framework Core what kind of data you want

to store. Entity Framework Core uses a technique called code first, where you write

code to describe the data and how it should be stored in the database. Then, you can

use this to generate the database, the tables and constraints. If you want to make changes

to the database, you can update the database schema with code first migrations. If you

already have a database, you can also generate the code from the database, but this is not

the target of this book.

In the code first approach, you describe the classes (also known as entities) that

will map to database tables. You already have the Pizza class (which you can find in the

PizzaPlace.Shared project) to describe the Pizza table in the database. But you need to

do more.

In this part you will be using SQL Server. If you installed Visual Studio on your
Windows machine, SQL Server was installed too. If you don’t have SQL Server on
your machine, you can install a free version of SQL Server, or use a SQL Server
instance in the cloud, for example SQL Server on Azure (https://azure.
microsoft.com/en-us/get-started/).

You need to add Entity Framework Core to the PizzaPlace.Server project. If you are

using Visual Studio, right-click the server project and select Manage NuGet Packages, as

shown in Figure 5-9.

Figure 5-9.  Adding NuGet packages to your project

Chapter 5 Data Storage and Microservices

https://azure.microsoft.com/en-us/get-started/
https://azure.microsoft.com/en-us/get-started/

137

The NuGet window will open in Visual Studio. NuGet is a very practical way for

installing dependencies such as Entity Framework Core to your project. It will not

only install the Microsoft.EntityFrameworkCore.SqlServer library, but also all its

dependencies.

Select the Browse tab and type Microsoft.EntityFrameworkCore.SqlServer in the

search box. You should see this library as the top search result. Select it, then select the

Latest stable version from the Version drop-down, and click the Install button, as shown

in Figure 5-10.

By the time you read this book, Microsoft might have deployed a more recent
version, so although Figure 5-10 shows version 2.1.1, you should select the latest
stable version.

Figure 5-10.  Adding Entity Framework Core using NuGet

With Code you open the command prompt and type in the following command after

changing the current directory of your PizzaPlace.Server project:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

With this dependency installed you are ready to make some code changes. Entity

Framework Core requires that entity classes have a default constructor and that

properties are read-write. Update the Pizza class by adding a default constructor and

adding setters for the properties, as shown in Listing 5-5.

Chapter 5 Data Storage and Microservices

138

Listing 5-5.  Modifying the Pizza Class for Entity Framework Core

public class Pizza

{

 public Pizza() { }

 public Pizza(int id, string name,

 decimal price, Spiciness spicyness)

 {

 this.Id = id;

 this.Name = name ?? throw new ArgumentNullException(

 nameof(name), "A pizza needs a name!");

 this.Price = price;

 this.Spicyness = spicyness;

 }

 public int Id { get; set; }

 public string Name { get; set; }

 public decimal Price { get; set; }

 public Spiciness Spicyness { get; set; }

}

Add a new class called PizzaPlaceDbContext to the PizzaPlace.Server project,

as shown in Listing 5-6. This class represents the database, and you do need to give a

couple of hints about how you want your data to be stored in SQL Server (or some other

database engine; this uses the same code).

Listing 5-6.  The PizzaPlaceDbContext Class

using Microsoft.EntityFrameworkCore;

using PizzaPlace.Shared;

namespace PizzaPlace.Server

{

 public class PizzaPlaceDbContext : DbContext

 {

Chapter 5 Data Storage and Microservices

139

 public PizzaPlaceDbContext(

 DbContextOptions<PizzaPlaceDbContext> options)

 : base(options)

 { }

 public DbSet<Pizza> Pizzas { get; set; }

 protected override void OnModelCreating(

 ModelBuilder modelBuilder)

 {

 base.OnModelCreating(modelBuilder);

 var pizzaEntity = modelBuilder.Entity<Pizza>();

 pizzaEntity.HasKey(pizza => pizza.Id);

 pizzaEntity.Property(pizza => pizza.Price)

 .HasColumnType("money");

 }

 }

}

First, you need to create a constructor for the PizzaPlaceDbContext class taking

an DbContextOptions<PizzaPlaceDbContext> argument. This is used to pass the

connection to the server, which you will do later in this section.

Next, you add a table to the database to represent your pizzas using a public property

of type DbSet<Pizza>. DbSet<T> is the collection class used by Entity Framework Core,

but you can think of it as a List<T>. Entity Framework Core will use the DbSet<T> to map

this collection to a table, in this case the Pizzas table.

Finally, you override the OnModelCreating method, which takes a modelBuilder

argument. In the OnModelCreating method, you can describe how each DbSet<T>

should be mapped to the database; for example, you can tell it which table to use, how

each column should be called, which type to use, etc. This modelBuilder has a bunch of

methods that allow you to describe how the classes should be mapped to your database.

In this case, you tell the modelBuilder that the Pizza table should have a primary key,

the Id property of the Pizza class. You also need to tell how the Pizza.Price property

should be mapped to SQL Server. You will use the SQL Server MONEY type for that. For the

moment, this is enough for your current implementation.

Chapter 5 Data Storage and Microservices

140

�Preparing Your Project for Code First Migrations
Now you are ready to tell the PizzaPlaze.Server project to use SQL Server as the

database. You do this with dependency injection. In ASP.NET Core, you configure

dependency injection in the Startup class’ ConfigureServices method. Let’s have a

look at this method which is shown in Listing 5-7.

Listing 5-7.  The Startup.ConfigureServices Method

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc().AddJsonOptions(options =>

 {

 options.SerializerSettings.ContractResolver =

 new DefaultContractResolver();

 });

 services.AddResponseCompression(options =>

 {

 options.MimeTypes = ResponseCompressionDefaults.MimeTypes

 .Concat(new[] {

 MediaTypeNames.Application.Octet,

 WasmMediaTypeNames.Application.Wasm,

 });

 });

}

Remember IServiceCollection from the chapter on dependency injection?

Here dependencies for ASP.NET Core are added, such as dependencies for Mvc and

ResponseCompression, which are required for your service.

Start by adding a constructor to the Startup class as in Listing 5-8.

Listing 5-8.  The Startup Class’ Constructor

using Microsoft.Extensions.Configuration;

...

public Startup(IConfiguration configuration)

Chapter 5 Data Storage and Microservices

141

{

 Configuration = configuration;

}

public IConfiguration Configuration { get; }

You need this constructor to have access to the projects configuration file. The

configuration will contain the connection string for the database to talk to.

In the ConfigureServices you need to add any additional dependencies your

implementation requires. Add the following code from Listing 5-9 at the end of the method.

Listing 5-9.  Adding Entity Framework Dependencies

services.AddDbContext<PizzaPlaceDbContext>(options

 => options.UseSqlServer(

 Configuration.GetConnectionString("PizzaDb")));

This single statement tells ASP.NET Core that you will be using the

PizzaPlaceDbContext and that you will be storing it in SQL Server. This code also looks

up the connection string for the database in configuration, which you still need to add.

Right-click the PizzaPlace.Server project and select Add ➤ New Item. Type json

in the search box and select App Settings File, as shown in Figure 5-11. Keep the default

name of appsettings.json and click Add.

Figure 5-11.  Adding the application configuration file

Chapter 5 Data Storage and Microservices

142

With Code, simply add a new file called appsettings.json. Double-click the new

appsettings.json file to open it. ASP.NET Core uses a JSON file for configuration and

you need to add a connection string to the database. A database connection string

tells your code where to find the database server, which database to use, and which

credentials should be used to log in. Visual Studio added a configuration file such as in

Listing 5-10. This connection string uses the (localdb)\\MSSQLLocalDB server, which

is the server installed with Visual Studio. The only things you need to do are to set the

database name by replacing _CHANGE_ME into a more suitable name for your database

and to change the name of the connection. Of course, if you are using another database

server you will also have to change the server name too. Or read on to find out how to get

the connection string with Visual Studio.

Listing 5-10.  The appsettings.json Configuration File

{

 "ConnectionStrings": {

 �"PizzaDb": "Server=(localdb)\\MSSQLLocalDB;Database=_CHANGE_ME;Trusted_

Connection=True;MultipleActiveResultSets=true"

 }

}

�Finding Your Database Server’s Connection String

If you are not sure which connection string to use, you can find the connection string in

Visual Studio by selecting View ➤ SQL Server Object Explorer.

You can connect to a database by clicking the server icon with the little green + sign,

shown in Figure 5-12.

Figure 5-12.  SQL Server Object Explorer

Chapter 5 Data Storage and Microservices

143

You can look for available database servers by expanding the Local, Network, or

Azure as in Figure 5-13. I recommend that you try to find the MSSQLLocalDB database

server. If you use another database server, you might need to change how to log in to

your database. When you’re ready, click Connect.

Figure 5-13.  Finding the connection string for a database

Chapter 5 Data Storage and Microservices

144

Next, expand SQL Server from Figure 5-13 and select your server. Right-click it and

select Properties. Now copy the connection string from the properties window and

change the database name to PizzaDb.

�Creating Your First Code First Migration
You are almost ready to generate the database from the code. But first you need to create

a migration. A migration is a C# class that contains the changes that need to be made to

the database to bring it up (or down) to the schema your application needs. This is done

through a tool.

Start by selecting from the Visual Studio menu View ➤ Other Windows ➤ Package

Manager Console, which you can see in Figure 5-14.

Figure 5-14.  The Package Manager Console

Make sure that the default project is set to PizzaPlace.Server. This will make your

commands target the selected project.

If you are using Code, use the integrated terminal or open a command prompt.

You must run the next command in the PizzaPlace.Server directory, so make sure

you are in the correct directory. Optionally, type the following command to change the

current directory to the PizzaPlace.Server project’s directory:

cd PizzaPlace.Server

Now execute the following command to create the migration:

dotnet ef migrations add CreatingPizzaDb

Chapter 5 Data Storage and Microservices

145

Here you use the dotnet command to run the ef (Entity Framework) tool to add a

new migration called CreatingPizzaDb. You should see following output (please ignore

any differences in versions being shown):

info: Microsoft.EntityFrameworkCore.Infrastructure[10403]

 Entity Framework Core 2.1.0-rtm-30799 initialized

'PizzaPlaceDbContext' using provider 'Microsoft.EntityFrameworkCore.

SqlServer' with options: None

Done. To undo this action, use 'ef migrations remove'

Should you get an error or warnings, please review the code for the Pizza and the

PizzaPlaceDbContext classes and try again.

This tool created a new Migrations folder in the PizzaPlace.Server project with

two files similar to Figure 5-15 but with a different timestamp.

Figure 5-15.  The result of adding the first migration

Open the CreatingPizzaDb.cs file from Listing 5-11 and look what the tool did.

Listing 5-11.  The CreatingPizzaDb.cs File

public partial class CreatingPizzaDb : Migration

{

 protected override void Up(

 MigrationBuilder migrationBuilder)

 {

 migrationBuilder.CreateTable(

 name: "Pizzas",

 columns: table => new

 {

 Id = table.Column<int>(nullable: false)

 .Annotation("SqlServer:ValueGenerationStrategy",

Chapter 5 Data Storage and Microservices

146

 SqlServerValueGenerationStrategy.IdentityColumn),

 Name = table.Column<string>(nullable: true),

 Price = table.Column<decimal>(type: "money",

 nullable: false),

 Spiciness = table.Column<int>(nullable: false)

 },

 constraints: table =>

 {

 table.PrimaryKey("PK_Pizzas", x => x.Id);

 });

 }

 protected override void Down(

 MigrationBuilder migrationBuilder)

 {

 migrationBuilder.DropTable(

 name: "Pizzas");

 }

}

A migration class has two methods: Up and Down. The Up method will upgrade the

database schema. In this case, it will create a new table called Pizzas with Id, Name,

Price, and Spiciness columns.

The Down method downgrades the database schema, in this case by dropping the

column.

�Generating the Database
Now you are ready to generate the database from your migrations. With Visual Studio,

go back to the Package Manager Console window (View ➤ Other Windows ➤ Package

Manager Console), or with Code open the integrated terminal (View ➤ Terminal) and

type the following command:

dotnet ef database update --verbose

Chapter 5 Data Storage and Microservices

147

Because you asked the tool to be verbose this will generate a lot of output, among

which you will find the DDL statements executed, such as in Listing 5-12.

Listing 5-12.  An Extract from the Database Generation Tool’s Output

CREATE TABLE [Pizzas] (

 [Id] int NOT NULL IDENTITY,

 [Name] nvarchar(max) NULL,

 [Price] money NOT NULL,

 [Spicyness] int NOT NULL,

 CONSTRAINT [PK_Pizzas] PRIMARY KEY ([Id])

);

This just created the database for you!

Let’s have a look at the database. From Visual Studio, open View ➤ SQL Server

Object Explorer and expand the tree for the PizzaDb database as in Figure 5-16 (on my

system I have some other databases; just ignore them).

Chapter 5 Data Storage and Microservices

148

Figure 5-16.  SQL Server Object Explorer showing the PizzaDb Database

If you don’t have Visual Studio, you can download SQL Operations Studio from

www.microsoft.com/en-us/sql-server/developer-tools. After installation ends, SQL

Operations Studio will start. Enter your server name and select PizzaDb from the

drop-down list, as shown in Figure 5-17.

Chapter 5 Data Storage and Microservices

http://www.microsoft.com/en-us/sql-server/developer-tools

149

�Enhancing the Pizza Microservice
Let’s add some functionality to the Pizza microservice so it uses the database instead of

hard-coded data and add a method to insert a pizza in your database.

Open the PizzaController class, which sits in the Controllers folder of

the PizzaPlace.Server project. Start by adding a constructor that takes the

PizzaPlaceDbContext as an argument, as in Listing 5-13.

Figure 5-17.  Connection with SQL Operations Studio

Chapter 5 Data Storage and Microservices

150

Listing 5-13.  Injecting a PizzaPlaceDbContext Instance into the Controller

public class PizzasController : ControllerBase

{

 private PizzaPlaceDbContext db;

 public PizzasController(PizzaPlaceDbContext db)

 {

 this.db = db;

 }

To talk to the database, the PizzasController needs a PizzaPlaceDbContext

instance, and as you learned in the chapter on dependency injection, you can use a

constructor to do this. The constructor only needs to save the reference in a local field

(for now).

You don’t need the hardcoded list of pizzas, so remove the static field, and update

the GetPizza method to use the PizzaPlaceDbContext instead, as in Listing 5-14. To get

all the pizzas you can simply use the Pizzas property of the PizzaPlaceDbContext. The

Entity Framework will access the database when it accesses the Pizzas property.

Listing 5-14.  Retrieving the Pizzas from the Database

[HttpGet("pizzas")]

public IQueryable<Pizza> GetPizzas()

{

 return db.Pizzas;

}

Now let’s add a method to insert a new pizza in the database. Add the InsertPizza

method from Listing 5-15 to the PizzasController class. This method will receive a

pizza instance from the client as part of the POST request body, so you add the HttpPost

attribute with the URI that you should post to. The pizza object will be posted in the

request body, and this is why the InsertPizza method’s pizza argument has the

FromBody attribute to tell ASP.NET MVC Core to convert the body to a pizza instance.

The method adds the pizza to the PizzaPlaceDbContext Pizzas table and then saves it

to the database. The InsertPizza method then returns a 201 Created status code with

the URI of the pizza as the response. You will examine this response with Postman in the

next part of this chapter.

Chapter 5 Data Storage and Microservices

151

Listing 5-15.  The InsertPizza Method

[HttpPost("pizzas")]

public IActionResult InsertPizza([FromBody] Pizza pizza)

{

 db.Pizzas.Add(pizza);

 db.SaveChanges();

 return Created($"pizzas/{pizza.Id}", pizza);

}

This is an introduction to REST services. Building real services with all the
different approaches and best practices can take up a whole book. The idea of this
chapter is to get you up and running.

�Testing Your Microservice Using Postman
So now you have your first microservice. But how do you test it? Previously you used to

browser to test the GetPizzas method, but for other verbs you need a better tool. Here

you will use Postman, which is a tool specifically for testing REST services.

�Installing Postman
Open your favorite browser and go to www.getpostman.com. Download the application

(click the Download the App button from Figure 5-18 and choose your platform) and

install it.

Chapter 5 Data Storage and Microservices

http://www.getpostman.com

152

Figure 5-18.  The Postman web page

By the time you read this book the installation procedure may have changed a bit,
so please follow the instructions from the installer.

After it has installed, run Postman.

�Making REST Calls with Postman
Postman will open, and it will ask you what you want to do. Select Request, as shown in

Figure 5-19.

Chapter 5 Data Storage and Microservices

153

Then it will ask you where to save the request, so pick a name and a folder, as shown

in Figure 5-20.

Figure 5-19.  Select Request to get started with Postman

Chapter 5 Data Storage and Microservices

154

Figure 5-20.  Saving the request

Chapter 5 Data Storage and Microservices

155

Figure 5-21.  Making a GET request with Postman

�Making a GET Request

Now run the PizzaPlace solution and copy the URL from the browser. Paste it in

Postman’s “Enter the Request URL” field and append /pizzas as in Figure 5-21. Don’t

forget that you most likely will have a different port number!

Figure 5-22.  Adding headers to the request in Postman

Before you click SEND, let’s add the Accept header. Click the Headers tab and enter

Accept as the key and application/json as the value. Please refer to Figure 5-22 for

reference.

Chapter 5 Data Storage and Microservices

156

Now you can click Send. You should receive an empty list as in Figure 5-23 (which is

normal because you haven’t added any rows to the pizza table yet).

Figure 5-23.  Receiving an empty list of pizzas from the server

Figure 5-24.  Starting with the POST request

�Inserting Pizzas with POST

Let’s add a couple of pizzas to the database. At the top of Postman, you will find a tab

with a plus sign. Click it to add another tab. Select POST as the verb and copy the URI

from the previous tab, as shown in Figure 5-24.

Now select the Headers section and add a new header with key Content-Type and

value application/json like in Figure 5-25.

Chapter 5 Data Storage and Microservices

157

Now select the Body section, click the raw format radio button, and enter a pizza

object using JSON. Please refer to Figure 5-26. Note that this raw string contains the

pizza’s properties serialized as JSON, and that you don’t need to send the Id property

because the server will generate the id when it gets inserted into the database.

Figure 5-25.  Adding the Content-Type header for the POST request

Figure 5-26.  Entering a pizza using JSON

Chapter 5 Data Storage and Microservices

158

Figure 5-27.  The POST response in Postman

Click the first tab where you created the GET request and click Send again. Now you

should have a list of pizzas (a list of one). Try creating a couple of other pizzas. Figure 5-28

is my result after adding three pizzas.

Click the Send button. If all is well, you should receive a positive 201 Created

response. In the response area of Postman, select the Headers tab as in Figure 5-27.

Look for the Location header. It will show the new URI given to this pizza. This Location

header is returned by the Created method you called as the last line of Listing 5-15.

Chapter 5 Data Storage and Microservices

159

�Summary
In this chapter, you had a look at how to store data on the server using Entity Framework

Core and how to expose that data using REST and microservices. You added a pizza

service to the PizzaPlace application and then went on testing it with Postman.

Figure 5-28.  A list of pizzas stored in the database

Chapter 5 Data Storage and Microservices

161
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_6

CHAPTER 6

Communication
with Microservices
In the previous chapter, you build a microservice using ASP.NET Core and Entity

Framework Core to retrieve the menu of pizzas from the server. In this chapter, you will

add support to the Blazor client to talk to that microservice. You will also complete the

project by adding support for completing the order.

�Using the HttpClient Class
Start by opening the MyFirstBlazor solution you created in the first chapter. You will use

this project to examine the template that was created for you. You will start by looking at

the server side of the solution, then the shared project’s code, and then the client side.

�Examining the Server Project
Look at the MyFirstBlazor.Server project and look for the SampleDataController

class, which is in Listing 6-1.

Listing 6-1.  The SampleDataController Class

using MyFirstBlazor.Shared;

using Microsoft.AspNetCore.Mvc;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

namespace MyFirstBlazor.Server.Controllers

162

{

 [Route("api/[controller]")]

 public class SampleDataController : Controller

 {

 private static string[] Summaries = new[]

 {

 "Freezing", "Bracing", "Chilly", "Cool", "Mild",

 "Warm", "Balmy", "Hot", "Sweltering", "Scorching"

 };

 [HttpGet("[action]")]

 public IEnumerable<WeatherForecast> WeatherForecasts()

 {

 var rng = new Random();

 return Enumerable.Range(1, 5)

 .Select(index => new WeatherForecast

 {

 Date = DateTime.Now.AddDays(index),

 TemperatureC = rng.Next(-20, 55),

 Summary = Summaries[rng.Next(Summaries.Length)]

 });

 }

 }

}

The SampleDataController class exposes one REST endpoint at /api/SampleData/

WeatherForecasts to retrieve a list of WeatherForecast objects. This time the

SampleDataController uses the [Route("api/[controller]")] attribute to set up the

endpoint to generically listen to an URI that contains the name of the controller (without

the suffix “Controller”) and then uses the [HttpGet("[action]")] attribute to expect the

method name as the third part of the URI.

To invoke this method, you should use a GET on the api/SampleData/

WeatherForecasts URI, which you can try with your browser (or if you prefer, Postman).

Run the solution and type the URI in your browser (don’t forget you will have a different

port number) which will result in Figure 6-1 (expect different weather).

Chapter 6 Communication with Microservices

163

The WeatherForecasts method from Listing 6-1 uses a random choice of

temperatures and summaries to generate these forecasts, which is great for a demo.

�Why Use a Shared Project?
Now open the WeatherForecast class from the MyFirstBlazor.Shared project, which is

in Listing 6-2.

Listing 6-2.  The Shared WeatherForecast Class

using System;

namespace MyFirstBlazor.Shared

{

 public class WeatherForecast

 {

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string Summary { get; set; }

 public int TemperatureF

 => 32 + (int)(TemperatureC / 0.5556);

 }

}

This WeatherForecast class is straightforward, containing the Date of the forecast,

the temperature in Celsius and Fahrenheit, and a Summary, but I want to draw your

attention to the fact that this class lives in the Shared project. This shared project is used

both by the server and the client project.

Figure 6-1.  Invoking the service using the browser

Chapter 6 Communication with Microservices

164

If you ever created a web app with JavaScript you should be familiar with the

experience of building a class for the server project, for example in C#, and building

another class in JavaScript (or Typescript) for the client. You must make sure that both

classes serialize to the same JSON format; otherwise you will get runtime errors, or even

worse, lose data! If the model grows, you must update both classes again. This is a HUGE

maintenance problem in these kinds of projects, because you run the risk of updating

only one side on a busy workday.

With Blazor, you don’t suffer from this because both server and client use C#. And

that is why there is a Shared project. You put your classes here and they are shared

between the server and client, and then you use them by simply adding a reference to

the Shared project. Adding another piece of data means updating a shared class, which

works easily! No longer must you update two pieces of code.

�Looking at the Client Project
Now look at the MyFirstBlazor.Client project. Inside the Pages folder you will find the

FetchData component from Listing 6-3.

Listing 6-3.  The FetchData Component

@using MyFirstBlazor.Shared

@page "/fetchdata"

@inject HttpClient Http

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)

{

<p>Loading...</p>

}

else

{

<table class="table">

 <thead>

 <tr>

 <th>Date</th>

Chapter 6 Communication with Microservices

165

 <th>Temp. (C)</th>

 <th>Temp. (F)</th>

 <th>Summary</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var forecast in forecasts)

 {

 <tr>

 <td>@forecast.Date.ToShortDateString()</td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.TemperatureF</td>

 <td>@forecast.Summary</td>

 </tr>

 }

 </tbody>

</table>

}

@functions {

WeatherForecast[] forecasts;

protected override async Task OnInitAsync()

{

 forecasts = await Http.GetJsonAsync<WeatherForecast[]>

 ("api/SampleData/WeatherForecasts");

}

}

Let’s look at this line by line. The first line in Listing 6-3 adds a Razor @using

statement for the Shared project’s namespace to the component. You need this because

you use the WeatherForecast class from the Shared project. Just like in C#, you use

using statements in Razor to refer to classes from another namespace.

The second line adds the path for routing. You will look at routing in the next chapter.

For the moment you should know that when the URI is /fetchdata the FetchData

component will be shown in the browser.

Chapter 6 Communication with Microservices

166

On the third line you inject the HttpClient instance using the @inject syntax from

Razor. The HttpClient class is the one you will use to talk to the server. You will learn

about the HttpClient class in detail later in this chapter.

I do want to point out that you should never instantiate an instance of the
HttpClient class yourself. Blazor sets up the HttpClient class in a special
way, and if you create an instance yourself, it simply will not work as expected!
Another reason not to create an instance yourself is that this is a dependency of
the FetchData component and components should never create dependencies
themselves!

A little lower down in Listing 6-3 you will find an @if statement. Because you fetch

the data from the server using an asynchronous way, the forecasts field will initially

hold a null reference. So, if the forecasts field has not been set, you tell the user to wait.

If you have a slow network, you can see this happening. When you test your Blazor

application on your own machine, the network is fast, but you can emulate a slow

network using the browser (in this case using Google Chrome).

�How to Emulate a Slow Network in Chrome

Start your Blazor project so the browser opens the home page. Now open the debugger

tools from the browser (on Windows you do this by pressing F12) and select the Network

tab as in Figure 6-2. On the right side, you should see a drop-down list that allows you to

select which kind of network to emulate. Select Slow 3G.

Figure 6-2.  Using the Chrome browser debugger to emulate a slow network

Chapter 6 Communication with Microservices

167

Next, select the Fetch data tab on your Blazor site (should you already be on this

tab, select another tab and then the Fetch data tab). Because you now are using a slow

network the Loading… feedback will appear, as shown in Figure 6-3.

Figure 6-3.  The Loading… feedback with a slow network

After testing your Blazor website with a slow network, don’t forget to select
Online from the drop-down from Figure 6-2 to restore your network to its
normal speed.

If the forecasts field holds data, your Razor file will show a table with the forecasts

by iterating over them, as you can see in the else part of Listing 6-3.

Onto the @functions section of the FetchData Razor file. First, you declare a

field called forecasts to hold an array of WeatherForecast instances. Initially the

forecasts field will hold a null value. You then override the OnInitAsync method.

Blazor components have two methods that get called when the component has been

initialized: OnInit and OnInitAsync. Because you fetch the data from the server using an

asynchronous API you need to put your code in OnInitAsync. The OnInitAsync method

is prefixed with C#’s async keyword, which makes it a breeze to call async APIs with the

await keyword.

Asynchronous communication means that the client needs to wait a fair amount
for the result to be returned. Instead of using a call that will stop Blazor from
completing other request (freezing the user interface), you use the OnInitAsync
method, which will wait in the background for the result.

Chapter 6 Communication with Microservices

168

You use the Http.GetJsonAsync<WeatherForecast[]>("SOME URI") to invoke the

server’s GET endpoint at the URI and you tell the GetJsonAsync method (using generics)

to expect an array of WeatherForecast objects. When the result comes back from the

server, you put the result into the forecasts field and Blazor will take care of rerendering

the UI with your new data, as shown in Figure 6-4.

Figure 6-4.  Displaying the WeatherForecast objects

�Understanding the HttpClient Class
All communication between the client and server passes through the HttpClient class.

This is the same class other .NET frameworks use and its role is to make the HTTP

request to the server and to expose the result from the server. It also allows you to

exchange binary or other formatted data, but in Blazor we normally use JSON.

Google has defined a more efficient protocol called protocol buffers, which is also
supported by Blazor. If you need to send a lot of data, you might want to look at
protocol buffers.

�The HttpClientJsonExtensions Methods
To make it a lot easier to talk to JSON microservices, Blazor provides you with a bunch of

handy extension methods that take care of converting between .NET objects and JSON,

which you can find in the HttpClientJsonExtensions class. I advise you use these

methods, so you don’t have to worry about serializing and deserializing JSON.

Chapter 6 Communication with Microservices

169

�GetJsonAsync

The GetJsonAsync extension method makes an asynchronous GET request to the

specified URI. Its signature is in Listing 6-4.

Listing 6-4.  The GetJsonAsync Extension Method Signature

public static Task<T> GetJsonAsync<T>(

 this HttpClient httpClient,

 string requestUri)

Because it is an extension method you call it as a normal instance method on the

HttpClient class, as shown in Listing 6-5.

This is also true for the other extension methods.

Listing 6-5.  Using the GetJsonAsync Extension Method

forecasts = await Http.GetJsonAsync<WeatherForecast[]>

 ("api/SampleData/WeatherForecasts");

GetJsonAsync<T> will expect the response to contain JSON as specified by the

generic argument. For example, in Listing 6-5 it expects an array of WeatherForecast

instances. You invoke the GetJsonAsync method by prefixing it with the await keyword,

which makes it asynchronous. Don’t forget that you can only use the await keyword in

methods and lambda functions that are async.

You can always inspect the request and response using your browser’s debugger. Run

your Blazor project and open the browser’s debugger on the Network tab. Now select the

Fetch data tab in your Blazor web site to make it load the data and look at the browser’s

Network tab, as shown in Figure 6-5.

Chapter 6 Communication with Microservices

170

You can always clear the Network tab from previous requests before making the
request using the clear button, which in Chrome looks like a circle with a slash
through it (the forbidden sign).

See the WeatherForecasts entry in Figure 6-5? Now you can click that entry to look

at the request and response. Let’s start with the request preview shown in Figure 6-6.

Figure 6-5.  Inspecting the network using the browser’s debugger

Figure 6-6.  Using the Preview tab to look at the response

Using the Preview tab, you can see the server’s response.

If you want to look at the request and response headers you can click the Headers

tab, as shown in Figure 6-7.

Chapter 6 Communication with Microservices

171

Here you can see the request’s URL and GET verb (the request method). It also

shows the HTTP status code 200 OK. Scroll down to look at the headers. One of the

response headers is Content-Type with a value of application/json, which was set by the

server telling the client to expect JSON.

�PostJsonAsync

The PostJsonAsync extension method makes a POST request with the content argument

serialized in the request body as JSON to the specified URI. Its signature is in Listing 6-6.

Listing 6-6.  The PostJsonAsync Method’s Signature

public static Task PostJsonAsync(this HttpClient httpClient,

 string requestUri,

 object content)

You use this method if you don’t expect any data back from the server. There is

also a generic version of this method which expects a JSON response. Its signature is in

Listing 6-7. This method will take the JSON response and deserialize it as a T.

Listing 6-7.  The PostJsonAsync<T> Method’s Signature

public static Task<T> PostJsonAsync<T>(

 this HttpClient httpClient,

 string requestUri,

 object content)

Figure 6-7.  Using the Headers tab to look at the request and the request/response
headers

Chapter 6 Communication with Microservices

172

�PutJsonAsync

The PutJsonAsync extension method makes a PUT request with the content argument

serialized as JSON in the request body to the specified URI. Its signature is in Listing 6-8.

Its usage is very similar to PostJsonAsync; the only difference is that it uses the PUT verb.

Listing 6-8.  The PutJsonAsync Method’s Signature

public static Task PutJsonAsync(this HttpClient httpClient,

 string requestUri,

 object content)

You use this method if you don’t expect any data back from the server. There is

also a generic version of this method which expects a JSON response. Its signature is in

Listing 6-9. This method will take the JSON response and deserialize it as a T.

Listing 6-9.  The PutJsonAsync<T> Method’s Signature

public static Task<T> PutJsonAsync<T>(

 this HttpClient httpClient,

 string requestUri,

 object content)

�SendJsonAsync

With SendJsonAsync you can use any other verb that HTTP supports for making a request.

Its signature is in Listing 6-10. The idea is that you pass the verb as the method parameter.

Listing 6-10.  The SendJsonAsync Method’s Signature

public static Task SendJsonAsync(this HttpClient httpClient,

 HttpMethod method,

 string requestUri,

 object content)

You use this method if you don’t expect any data back from the server. There is

also a generic version of this method which expects a JSON response. Its signature is in

Listing 6-11. This method will take the JSON response and deserialize it as a T.

Chapter 6 Communication with Microservices

173

Listing 6-11.  The SendJsonAsync<T> Method’s Signature

public static Task<T> SendJsonAsync<T>(

 this HttpClient httpClient,

 HttpMethod method,

 string requestUri,

 object content)

�Retrieving Data from the Server
So now you are ready to implement the services you introduced earlier. Open the

PizzaPlace solution and look in the Blazor.Client project for Startup.cs, which is

shown in Listing 6-12.

Listing 6-12.  Your Blazor Project’s Startup Class

using Microsoft.AspNetCore.Blazor.Builder;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Shared;

namespace PizzaPlace.Client

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddTransient<IMenuService,

 HardCodedMenuService>();

 services.AddTransient<IOrderService,

 ConsoleOrderService>();

 }

 public void Configure(IBlazorApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

Chapter 6 Communication with Microservices

174

In the ConfigureServices method you added two services, HardCodedMenuService

and ConsoleOrderService. Let’s replace these fake implementations with real services

that talk to the server.

With Visual Studio, right-click the PizzaPlace.Client project and select Add ➤ New

Folder from the drop-down menu. With Code, right-click the PizzaPlace.Client project

and select New Folder. Name this folder Services. Now add a new class to this folder

called MenuService, which can be found in Listing 6-13.

Again, you are applying the principle of single responsibility where you encapsulate
how you talk to the server in a service. This way you can easily replace this
implementation with another one should the need occur.

Listing 6-13.  The MenuService Class

using Microsoft.AspNetCore.Blazor;

using PizzaPlace.Shared;

using System.Linq;

using System.Net.Http;

using System.Threading.Tasks;

namespace PizzaPlace.Client.Services

{

 public class MenuService : IMenuService

 {

 private HttpClient httpClient;

 public MenuService(HttpClient httpClient)

 {

 this.httpClient = httpClient;

 }

 public async Task<Menu> GetMenu()

 {

 var pizzas =

 await httpClient.GetJsonAsync<Pizza[]>("/pizzas");

 return new Menu { Pizzas = pizzas.ToList() };

 }

 }

}

Chapter 6 Communication with Microservices

175

You start by adding a constructor to this class taking the MenuService’s dependency

on HttpClient, and you store it in a field named httpClient. Then you implement

the IMenuService interface’s GetMenu method where you talk to the server calling the

GetJsonAsync on the server’s /pizza endpoint. Note that the /pizza endpoint is relative

to the site’s base (<base href="/" />), which can be found in the index.html file.

Because the MenuService service returns a menu, and not a list of pizzas, you wrap the

list of pizzas you got from the server into a Menu object. That’s it!

Using the Principle of Single Responsibility results in many small classes, which
are easier to understand, maintain, and test.

You have the service; now you need to tell dependency injection to use the MenuService.

In the Startup class’s ConfigureServices method, replace it as shown in Listing 6-14.

Listing 6-14.  Replacing the HardCodedMenuService with the MenuService

using Microsoft.AspNetCore.Blazor.Builder;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Client.Services;

using PizzaPlace.Shared;

namespace PizzaPlace.Client

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddTransient<IMenuService, MenuService>();

 services.AddTransient<IOrderService,

 ConsoleOrderService>();

 }

 public void Configure(IBlazorApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

Chapter 6 Communication with Microservices

176

Run your project. You should see the list of pizzas (retrieved from your database) as

in Figure 6-8!

Figure 6-8.  The PizzaPlace app showing the pizzas from the database

You will probably first see an empty menu, especially on a slow network. This might

confuse some customers so let’s add some UI to tell the customer to wait a bit. Update

pizzalist.cshtml to look like Listing 6-15.

Listing 6-15.  Adding a Loading UI to the PizzaList Component

<h1>@Title</h1>

@if (Menu == null || Menu.Pizzas == null

 || Menu.Pizzas.Count == 0)

{

 <div style="height:20vh;" class="pt-3">

 <div class="mx-left pt-3" style="width:200px">

 <div class="progress">

 <div class="progress-bar bg-danger

 progress-bar-striped

 progress-bar-animated w-100"

 role="progressbar"

 aria-valuenow="100" aria-valuemin="0"

 aria-valuemax="100"></div>

 </div>

 </div>

Chapter 6 Communication with Microservices

177

 </div>

}

else

{

 @foreach (var pizza in Menu.Pizzas)

 {

 <PizzaItem Pizza="@pizza" ButtonTitle="Order"

 ButtonClass="btn btn-success" Selected="@((p) => Selected(p))" />

 }

}

@functions {

[Parameter]

protected string Title { get; set; }

[Parameter]

protected Menu Menu { get; set; }

[Parameter]

protected Action<Pizza> Selected { get; set; }

}

If the menu has not been loaded yet, it will display a progress bar like in Figure 6-9.

Figure 6-9.  Showing a loading progress bar while loading the menu

�Storing Changes
Now onto storing the order from the customer. Because you don’t have a microservice

yet for storing the order, you will build this first, and then you will implement the client

service to send the order to the server.

Chapter 6 Communication with Microservices

178

�Updating the Database with Orders
What is an order? Every customer has an order, and each order has one or more pizzas.

A pizza can belong to more than one order, which can result in a specific problem: you

need a many-to-many relation between pizzas and orders. In relational databases,

this is done by adding a table between orders and pizzas, which you will map using a

PizzaOrder class, as shown in Figure 6-10.

Customer Order PizzaOrder Pizza
1 1 1 * 1*

Figure 6-10.  Modelling the relationships

Entity Framework Core 2.1 does not have support for hiding this extra table, so
you need to do this manually. In future versions Microsoft will (hopefully) add
this feature.

Add a new class to the PizzaPlace.Shared project called PizzaOrder, as shown in

Listing 6-16.

Listing 6-16.  The PizzaOrder Class

namespace PizzaPlace.Shared

{

 public class PizzaOrder

 {

 public int Id { get; set; }

 public Order Order { get; set; }

 public Pizza Pizza { get; set; }

 }

}

Next, add a new class named Order to the PizzaPlace.Shared project, as shown in

Listing 6-17.

Chapter 6 Communication with Microservices

179

Listing 6-17.  The Order Class

using System.Collections.Generic;

namespace PizzaPlace.Shared

{

 public class Order

 {

 public int Id { get; set; }

 public Customer Customer { get; set; }

 public int CustomerId { get; set; }

 public List<PizzaOrder> PizzaOrders { get; set; }

 public decimal TotalPrice { get; set; }

 }

}

Update the Customer class from the PizzaPlace.Shared project by adding an Order

to it, as in Listing 6-18.

Listing 6-18.  The Customer Class

using System;

using System.Collections;

using System.ComponentModel;

using System.Runtime.CompilerServices;

namespace PizzaPlace.Shared

{

 public class Customer : INotifyDataErrorInfo,

 INotifyPropertyChanged

 {

 public int Id { get; set; }

 private string name;

 public string Name

 {

Chapter 6 Communication with Microservices

180

 get { return name; }

 set { name = value; OnPropertyChanged(); }

 }

 private string street;

 public string Street

 {

 get { return street; }

 set { street = value; OnPropertyChanged(); }

 }

 private string city;

 public string City

 {

 get { return city; }

 set { city = value; OnPropertyChanged(); }

 }

 public Order Order { get; set; }

 // The rest of the class omitted for clarity

}

And you need to add a new PizzaOrders property to the Pizza class as in Listing 6-19.

Listing 6-19.  The Pizza Class

public class Pizza

{

 public Pizza() { }

 public Pizza(int id, string name, decimal price,

 Spiciness spicyness)

 {

 ...

 }

 public int Id { get; set; }

 public string Name { get; set; }

Chapter 6 Communication with Microservices

181

 public decimal Price { get; set; }

 public Spiciness Spicyness { get; set; }

 public List<PizzaOrder> PizzaOrders { get; set; }

}

Now you can add these tables to the PizzaPlaceDbContext class, which can be found

in Listing 6-20.

Listing 6-20.  The Updated PizzaPlaceDbContext Class

using Microsoft.EntityFrameworkCore;

using PizzaPlace.Shared;

namespace PizzaPlace.Server

{

 public class PizzaPlaceDbContext : DbContext

 {

 public PizzaPlaceDbContext(

 DbContextOptions<PizzaPlaceDbContext> options)

 : base(options)

 { }

 public DbSet<Pizza> Pizzas { get; set; }

 public DbSet<Customer> Customers { get; set; }

 public DbSet<Order> Orders { get; set; }

 public DbSet<PizzaOrder> PizzaOrders { get; set; }

 protected override void OnModelCreating(

 ModelBuilder modelBuilder)

 {

 base.OnModelCreating(modelBuilder);

 var pizzaEntity = modelBuilder.Entity<Pizza>();

 pizzaEntity.HasKey(pizza => pizza.Id);

 pizzaEntity.Property(pizza => pizza.Price)

 .HasColumnType("money");

Chapter 6 Communication with Microservices

182

 var customerEntity = modelBuilder.Entity<Customer>();

 customerEntity.HasKey(customer => customer.Id);

 customerEntity.HasOne(customer => customer.Order)

 .WithOne(order => order.Customer)

 .HasForeignKey<Order>(

 order => order.CustomerId);

 var orderEntity = modelBuilder.Entity<Order>();

 orderEntity.HasKey(order => order.Id);

 orderEntity.HasMany(order => order.PizzaOrders)

 .WithOne(pizzaOrder => pizzaOrder.Order);

 pizzaEntity.HasMany(pizza => pizza.PizzaOrders)

 .WithOne(pizzaOrder => pizzaOrder.Pizza);

 }

 }

}

Here you have added the Customers, Orders and PizzaOrders tables, and in the

OnModelCreating method you explain to Entity Framework Core how things should be

mapped.

A Customer has a primary key Id and a one-to-one relation with an Order. When

using a one-to-one relation, Entity Framework Core needs to know which side is the

master in the relation, and that is why you need to add a foreign key to the Order class

with the HasForeighKey<Order> method.

An Order has a primary key Id, and it has a many-to-one relationship with a

PizzaOrder (one Order can have many PizzaOrders, and each PizzaOrder belongs to

one Order).

Finally, you indicate that a Pizza can belong to many PizzaOrders, and a

PizzaOrder has one Pizza. This way every Order can have many Pizza instances, and

every Pizza can have many Order instances.

Build your project and fix any compiler error(s) you might have.

Now it is time to create another migration. This migration will update your database

with your new tables. In Visual Studio, open the Package Manager Console (which you

can find via View ➤ Other Windows ➤ Package Manager Console). With Code, open the

integrated terminal.

Change the directory to the PizzaPlace.Server project

Chapter 6 Communication with Microservices

183

Now type following command:

dotnet ef migrations add HandlingOrders

This will create a migration for your new database schema.

Apply the migration to your database by typing following command:

dotnet ef database update

This concludes the database part.

�Building the Order Microservice
Time to build the microservice for taking orders. With Visual Studio, right-click the

Controllers folder of the PizzaPlace.Server project and select New ➤ Controller.

Select an Empty API Controller and name it OrdersController. With Code, right-click

the Controllers folder of the PizzaPlace.Shared project and select New File, naming it

OrdersController. This class can be found in Listing 6-21.

Listing 6-21.  The OrdersController Class

using System.Collections.Generic;

using System.Linq;

using Microsoft.AspNetCore.Mvc;

using PizzaPlace.Shared;

namespace PizzaPlace.Server.Controllers

{

 [ApiController]

 public class OrdersController : ControllerBase

 {

 private PizzaPlaceDbContext db;

 public OrdersController(PizzaPlaceDbContext db)

 {

 this.db = db;

 }

 [HttpPost("/orders")]

 public IActionResult CreateOrder([FromBody] Basket basket)

 {

Chapter 6 Communication with Microservices

184

 var customer = basket.Customer;

 var order = new Order() {

 PizzaOrders = new List<PizzaOrder>()

 };

 customer.Order = order;

 foreach (var pizzaId in basket.Orders)

 {

 var pizza = db.Pizzas.Single(p => p.Id == pizzaId);

 order.PizzaOrders.Add(new PizzaOrder {

 Pizza = pizza, Order = order

 });

 }

 order.TotalPrice =

 order.PizzaOrders.Sum(po => po.Pizza.Price);

 db.Customers.Add(customer);

 db.SaveChanges();

 return Ok();

 }

 }

}

Your OrdersController needs a PizzaPlaceContextDb, so you add a constructor

taking the instance and you let dependency injection take care of the rest. To create a

new order, you use the POST verb for the CreateOrder method taking a Basket instance

in the request body. Upon receipt of a basket instance, you create the customer and

order. You then set the customer’s order. There is no need to set the order’s Customer

property; Entity Framework Core will take care of the inverse relationship for you.

Next, you fill up the order’s PizzaOrders collection with pizzas. Then you calculate the

total price for the order and you save the whole Customer ➤ Order ➤ PizzaOrders ➤

Pizza chain by adding the root entity Customer to PizzaPlaceDbContext and calling

SaveChanges. That’s it. Entity Framework Core does all the work of storing the data!

�Talking to the Order Microservice
Add a new class called OrderService to the Services folder of the PizzaPlace.Client

project. This OrderService uses a POST request to the server, as shown in Listing 6-22.

Chapter 6 Communication with Microservices

185

Listing 6-22.  The OrderService Class

using PizzaPlace.Shared;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Blazor;

using System.Net.Http;

namespace PizzaPlace.Client.Services

{

 public class OrderService : IOrderService

 {

 private HttpClient httpClient;

 public OrderService(HttpClient httpClient)

 {

 this.httpClient = httpClient;

 }

 public async Task PlaceOrder(Basket basket)

 {

 await httpClient.PostJsonAsync("/orders", basket);

 }

 }

}

First, you add a constructor to the OrderService class, taking the HttpClient

dependency, which you store in the httpClient field of the OrderService class. Next,

you implement the IOrderService interface by adding the PlaceOrder method, taking

a Basket as a parameter. Finally, you invoke the asynchronous PostJsonAsync method

using the await keyword.

Now open the Startup class from the PizzaPlace.Client project and replace the

ConsoleOrderService class with your new OrderService class, as shown in Listing 6-23.

Listing 6-23.  Configuring Dependency Injection to Use the OrderService Class

using Microsoft.AspNetCore.Blazor.Builder;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Client.Services;

using PizzaPlace.Shared;

namespace PizzaPlace.Client

Chapter 6 Communication with Microservices

186

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddTransient<IMenuService, MenuService>();

 services.AddTransient<IOrderService, OrderService>();

 }

 public void Configure(IBlazorApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

Run your PizzaPlace application and place an order for a couple of pizzas. Now

open SQL Server Object Explorer in Visual Studio (or SQL Operations Studio) and

examine the Customers, Orders, and PizzaOrders tables. They should contain your

new order.

�Summary
In this chapter, you learned that in Blazor you talk to the server using the HttpClient

class, calling the GetJsonAsync and PostJsonAsync extension methods. You also learned

that you should encapsulate calling the server using a client-side service class so you

can easily change the implementation by switching the service type using dependency

injection.

Chapter 6 Communication with Microservices

187
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_7

CHAPTER 7

Single Page Applications
and Routing
Blazor is a .NET framework you use for building single-page applications, just like you

can use popular JavaScript frameworks such as Angular, React and VueJs. But what is a

SPA? In this chapter, you will use routing to jump between different sections of a SPA and

send data between different components.

�What Is a Single Page Application?
In the beginning of the Web there were only static pages. A static page is a HTML file

somewhere on the server that gets send back to the browser upon request. Later came the

rise of dynamic pages. When a browser requests a dynamic page, the server runs a program

to build the HTML in memory and sends the HTML back to the browser (this HTML never

gets stored to disk; of course, the server can store the generated HTML in its cache for fast

retrieval later). Dynamic pages are flexible in the way that the same code can generate

thousands of different pages by retrieving data from a database and using it to construct

the page. But there is still a usability problem. Every time your user clicks on a link, the server

must generate the next page from scratch and send it to the browser for rendering. This

results in a noticeable wait period and of course the browser rerenders the whole page.

Then web pages started to use JavaScript to retrieve parts of the page when the user

interacts with the UI. One of the first examples of this technique was Microsoft’s Outlook

Web Application. This web application looks and feels like Outlook, a desktop application,

with support for all user interactions you expect from a desktop application. Google’s

Gmail is another example. They are now known as single-page applications. With

SPAs certain sections of the web page are replaced at runtime depending on the user’s

interaction. If you click an e-mail, the main section of the page is replaced by the e-mail’s

view. If you click your inbox, the main section gets replaced by a list of e-mails, etc.

188

A SPA is a web application that replaces certain parts of the UI without reloading

the complete page. SPAs use JavaScript to implement this manipulation of the browser’s

control tree (also known as the DOM) and most of them consist of a fixed UI and a

placeholder element where the contents gets overwritten depending on where the user

clicks. One of the main advantages of using a SPA is that you can make a SPA state-full.

This means that you can keep information loaded by the application in memory. You will

look at an example in this chapter.

�Using Layout Components
Let’s start with the fixed part of a SPA. Every web application contains UI elements that

you can find on every page, such as a header, footer, copyright, menu, etc. Copy-pasting

these elements to every page would be a lot of work and would require updating every

page if one of these elements needed to change. Developers don’t like to do that so

every framework for building web sites has had a solution of this. For example, ASP.

NET WebForms uses master pages, ASP.NET MVC has layout pages. Blazor also has a

mechanism for this called layout components.

�Blazor Layout Components
Layout components are Blazor components. Anything you can do with a regular

component you can do with a layout component, like dependency injection, data

binding, and nesting other components. The only difference is that they must inherit

from the BlazorLayoutComponent class.

The BlazorLayoutComponent class defines a Body property as in Listing 7-1.

Listing 7-1.  The BlazorLayoutComponent Class

namespace Microsoft.AspNetCore.Blazor.Layouts

{

 public abstract class BlazorLayoutComponent

 : BlazorComponent

 {

 protected BlazorLayoutComponent();

Chapter 7 Single Page Applications and Routing

189

 [Parameter]

 protected RenderFragment Body { get; }

 }

}

As you can see from Listing 7-1, the BlazorLayoutComponent class inherits from

the BlazorComponent class. This is why you can do the same things as with normal

components. Let’s look at an example. Open the MyFirstBlazor solution from previous

chapters. Now look at the MainLayout.cshtml component in the MyFirstBlazor.

Client’s Shared folder, which you’ll find in Listing 7-2.

Listing 7-2.  MainLayout.cshtml

@inherits BlazorLayoutComponent

<div class="sidebar">

 <NavMenu />

</div>

<div class="main">

 <div class="top-row px-4">

 <a href="http://blazor.net" target="_blank"

 class="ml-md-auto">About

 </div>

 <div class="content px-4">

 @Body

 </div>

</div>

On the first line the MainLayout component declares that it inherits from

BlazorLayoutComponent. Then you see a sidebar and main <div> element, with the main

element data-binding to the inherited Body property.

In Figure 7-1 you can see the sidebar on the left side (containing the links to the

different components) and the main area on the right side with the @Body emphasized

with a black rectangle (which I added to the figure). Clicking the Home, Counter, or Fetch

Data link in the sidebar will replace the Body property with the selected component,

updating the UI without reloading the whole page.

Chapter 7 Single Page Applications and Routing

190

�Selecting a @layout Component
Every component can select which layout to use by stating the name of the layout

component with the @layout directive. For example, start by copying the MainLayout.

cshtml file to MainLayout2.cshtml. This will generate a new layout component called

MainLayout2, inferred from the file name. Change the About link’s text to Layout as in

Listing 7-3.

Listing 7-3.  A Second Layout Component

@inherits BlazorLayoutComponent

<div class="sidebar">

 <NavMenu />

</div>

<div class="main">

 <div class="top-row px-4">

 <a href="http://blazor.net" target="_blank"

 class="ml-md-auto">Layout

 </div>

Figure 7-1.  The MainLayout component

Chapter 7 Single Page Applications and Routing

191

 <div class="content px-4">

 @Body

 </div>

</div>

Now open the Counter component and add a @layout as in Listing 7-4.

Listing 7-4.  Choosing a Different Layout with @layout

@page "/counter"

@layout MainLayout2

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" onclick="@IncrementCount">Click me</button>

@functions {

 int currentCount = 0;

 void IncrementCount()

 {

 currentCount++;

 }

}

Run the application and watch the layout change (the text of the link in the top right

corner) as you alternate between Home and Counter.

You can also use the LayoutAttribute if you’re building your component
completely in code.

�_ViewImports.cshtml
Most components will use the same layout. Instead of copying the same @layout

directive to every page, you can also add a _ViewImports.cshtml file to the same folder

as your components. Open the Pages folder from the MyFirstBlazor.Client project and

look at the _ViewImports.cshtml file, which can be found in Listing 7-5.

Chapter 7 Single Page Applications and Routing

192

Listing 7-5.  _ViewImports.cshtml

@layout MainLayout

Any component that does not explicitly declare a @layout component will use the

MainLayout component. Anything that is shared between all your components can be

put in _ViewImports.cshtml, especially @using statements. A component can always

override the @layout by explicitly adding the layout as in Listing 7-4.

�Nested Layouts
Layout components can also be nested. You could define the MainLayout to contain

all the UI that is shared between all components, and then define a nested layout to

be used by a subset of these components. For example, add a new Razor View called

NestedLayout.cshtml to the Shared folder and replace its contents with Listing 7-6.

Listing 7-6.  A Simple Nested Layout

@inherits BlazorLayoutComponent

@layout MainLayout

<div class="container-fluid">

 <div class="row bg-primary text-white">

 <div class="col-sm-12">

 <h2>This is a nested layout</h2>

 </div>

 </div>

 <div class="row">

 <div class="col-sm-12">

 @Body

 </div>

 </div>

</div>

Chapter 7 Single Page Applications and Routing

193

To build a nested layout you @inherit from BlazorLayoutComponent and set its

@layout to another layout, for example MainLayout. Now make the Counter component

use this nested layout as in Listing 7-7.

Listing 7-7.  The Counter Component Is Using the Nested Layout.

@page "/counter"

@layout NestedLayout

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" onclick="@IncrementCount">Click me</button>

@functions {

int currentCount = 0;

void IncrementCount()

{

 currentCount++;

}

protected override void OnInit()

{

 base.OnInit();

}

}

Run your application and select the Counter component, as shown in Figure 7-2.

Chapter 7 Single Page Applications and Routing

194

�Understanding Routing
Single page applications use routing to select which component gets picked to fill in the

layout component’s Body property. Routing is the process of matching the browser’s URI

to a collection of route templates and is used to select the component to be shown on

screen. That is why every component uses a @page directive to define the route template

to tell the router which component to pick.

�Installing the Router
When you create a Blazor solution from scratch the router is already installed but let’s

have a look at how this is done. Open App.cshtml. This App component only has one

component, the Router component, as shown in Listing 7-8.

Listing 7-8.  The App Component Containing the Router

<Router AppAssembly=typeof(Program).Assembly />

The router will look for all components that have the RouteAttribute (the @page

directive gets compiled into a RouteAttribute) and pick the component that matches

the current browser’s URI. You will look at setting this RouteAttribute a little later in this

chapter, but first you need to look at the NavMenu component.

Figure 7-2.  The Counter component using the nested layout

Chapter 7 Single Page Applications and Routing

195

�The NavMenu Component
Review the MasterLayout component from Listing 7-2. On the fourth line you will

see the NavMenu component. This component contains the links to navigate between

components. Open the MyFirstBlazor solution and look for the NavMenu component in

the Shared folder, which is repeated in Listing 7-9.

Listing 7-9.  The NavMenu Component

<div class="top-row pl-4 navbar navbar-dark">

 MyFirstBlazor

 <button class="navbar-toggler" onclick=@ToggleNavMenu>

 </button>

</div>

<div class=@(collapseNavMenu ? "collapse" : null) onclick=@ToggleNavMenu>

 <ul class="nav flex-column">

 <li class="nav-item px-3">

 <NavLink class="nav-link" href=""

 Match=NavLinkMatch.All>

 Home

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 Counter

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"

 aria-hidden="true">

 Fetch data

 </NavLink>

Chapter 7 Single Page Applications and Routing

196

</div>

@functions {

bool collapseNavMenu = true;

void ToggleNavMenu()

{

 collapseNavMenu = !collapseNavMenu;

}

}

The first part of Listing 7-9 contains a toggle button which allows you to hide and show

the navigation menu. This button is only visible on displays with a narrow width (for example,

mobile displays). If you want to look at it, run your application and make the browser width

smaller until you see the hamburger button in the top right corner, as in Figure 7-3. Click the

button to show the navigation menu and click it again to hide the menu again.

Figure 7-3.  Your application on a narrow display shows the toggle button

The remaining markup contains the navigation menu, which consists of NavLink

components. Let’s look at the NavLink component.

Chapter 7 Single Page Applications and Routing

197

�The NavLink Component
The NavLink component is a specialized version of an anchor element <a/> used for

creating navigation links. When the browser’s URI matches the href property of the

NavLink it applies a CSS style (the active CSS class if you want to customize it) to itself

to let you know it is the current route. For example, look at Listing 7-10.

Listing 7-10.  The Counter Route’s NavLink

<NavLink class="nav-link" href="counter">

 Counter

</NavLink>

When the browser’s URI ends with /counter (ignoring things like query strings) this

NavLink will apply the active style. Let’s look at another one in Listing 7-11.

Listing 7-11.  The Default Route’s NavLink

<NavLink class="nav-link" href="" Match=NavLinkMatch.All>

 Home

</NavLink>

When the browser’s URI is empty (except for the site’s URL) the NavLink from

Listing 7-11 will be active. But here you have a special case. Normally NavLink

components only match the end of the URI. For example, /counter/55 matches the

NavLink from Listing 7-10. But with an empty URI this would match everything! This is

why in the special case of an empty URI you need to tell the NavLink to match the whole

URI. You do this with the Match property, which by default is set to NavLinkMatch.

Prefix. If you want to match the whole URI, use NavLinkMatch.All as in Listing 7-11.

�Setting the Route Template
The Routing component from Blazor examines the browser’s URI and searches for

a component’s route template to match. But how do you set a component’s route

template? Open the counter component shown in Listing 7-4. At the top of this file is the

@page "/counter" directive. It defines the route template. A route template is a string

that can contain parameters, which you can then use in your component.

Chapter 7 Single Page Applications and Routing

198

�Using Route Parameters
You can also specify parameters in the route template. By passing parameters in the

route you can change what gets displayed in the component. You could pass the id of

a product, look up the product’s details with the id, and use it the display the product’s

details. Let’s look at an example. Change the counter component to look like Listing 7-12.

Listing 7-12.  Defining a Route Template with a Parameter

@page "/counter"

@page "/counter/{CurrentCount:int}"

@layout NestedLayout

<h1>Counter</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary"

 onclick="@IncrementCount">Click me</button>

@functions {

 [Parameter]

 protected int CurrentCount { get; set; }

 void IncrementCount()

 {

 CurrentCount++;

 }

}

Listing 7-12 adds route template @page "/counter/{CurrentCount:int}". This tells

the router component to match a URI like /counter/55 and to put the number in the

CurrentCount parameter of your Counter component. You encase parameters in curly

brackets. The Router component will put the value from the route in the property with the

same name. You can also specify multiple parameters. Blazor does not allow you to specify

default parameters, and this is why you need to specify two route templates. The first route

template will pick the Counter component, with the CurrentCount set to its default value of

0. The second route template will pick the Counter component and set the CurrentCount

parameter to an int value. It must be an int because of the int route constraint.

Chapter 7 Single Page Applications and Routing

199

�Filter URIs with Route Constraints
Just like routes in ASP.NET MVC Core you can use route constrains to limit the type of

parameter to match. For example, if you were to use the /counter/Blazor URI, the route

template would not match because the parameter does not hold an integer value and the

router would not find any component to match.

Constraints are even mandatory if you’re not using string parameters; otherwise

the router does not cast the parameter to the proper type. You specify the constraint by

appending it using a colon, for example "/counter/CurrentCount:int".

A list of other constraints can be found in Table 7-1.

Table 7-1.  Routing Constraints

Route Constraints

Bool

Datetime

Decimal

Double

Float

Guid

Int

Long

If you are building your components as pure C# components, apply the
RouteAttribute to your class with the route template as an argument. This is
what the @page directive get compiled into.

Chapter 7 Single Page Applications and Routing

200

�Adding a Catchall Route Template
Most frameworks allow you to set a route template that catches all URIs that don’t match

any of the other route templates. For the moment Blazor does not support this, but the

Blazor team is intent on adding this feature. Just be patient.

�Redirecting to Other Pages
How do you navigate to another component using routing? You have three choices: use a

standard anchor element, use the NavLink component, and use code. Let’s start with the

normal anchor tag.

�Navigating Using an Anchor
Using an anchor (the <a/> element) is effortless if you use a relative href. For example,

add Listing 7-13 below the button of Listing 7-12.

Listing 7-13.  Navigation Using an Anchor Tag

Home

This link has been styled as a button using Bootstrap 4. Run your application and

navigate to the Counter component. Click the Home button to navigate to the Index

component whose route template matches "/".

�Navigating Using the NavLink Component
The NavLink component uses an underlying anchor, so its usage is similar. The only

difference is that a NavLink component applies the active class when it matches the

route. Generally, you only use a NavLink in the NavMenu component, but you are free to

use it instead of anchors.

�Navigating with Code
Navigating in code is also possible, but you will need an instance of the IUriHelper class

through dependency injection. This instance allows you to examine the page’s URI and

has the helpful NavigateTo method. This method takes a string that will become the

browser’s new URI.

Chapter 7 Single Page Applications and Routing

201

Let’s try an example. Modify the counter component to look like Listing 7-14.

Listing 7-14.  Using the IUriHelper

@using Microsoft.AspNetCore.Blazor.Services

@page "/counter"

@page "/counter/{CurrentCount:int}"

@layout NestedLayout

@inject IUriHelper uriHelper

<h1>Counter</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary" onclick="@IncrementCount">Click me</button>

Home

<button class="btn btn-primary"

 onclick="@StartFrom50">Start from 50</button>

@functions {

[Parameter]

protected int CurrentCount { get; set; }

void IncrementCount()

{

 CurrentCount++;

}

void StartFrom50()

{

 uriHelper.NavigateTo("/counter/50");

}

}

To use the IUriHelper you need to add a @using directive for the Microsoft.

AspNetCore.Blazor.Services namespace. Then you tell dependency injection with the

@inject directive to give you an instance of the IUriHelper and put it in the uriHelper

field. Then you add a button that calls the StartFrom50 method when clicked. This method

uses the uriHelper to navigate to another URI by calling the NavigateTo method. Run your

application and click the “Start from 50” button. You should navigate to /counter/50.

Chapter 7 Single Page Applications and Routing

202

�Understanding the Base Tag
Please don’t use absolute URIs when navigating. Why? Because when you deploy your

application on the Internet the base URI will change. Instead Blazor uses the <base/>

element and all relative URIs will be combined with this <base/> tag. Where is the

<base/> tag? Open the wwwroot folder of your Blazor project and open index.html,

shown in Listing 7-15.

Listing 7-15.  Index.html

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width">

 <title>MyFirstBlazor</title>

 <base href="/" />

 <link href="css/bootstrap/bootstrap.min.css"

 rel="stylesheet" />

 <link href="css/site.css" rel="stylesheet" />

</head>

<body>

 <app>Loading...</app>

 <script src="_framework/blazor.webassembly.js"></script>

</body>

</html>

When you deploy in production, all you need to do is to update the base tag.

For example, you might deploy your application to https://online.u2u.be/

selfassessment. In this case, you would update the base element to <base href="/

selfassessment" />. So why do you need to do this? If you deploy to https://

online.u2u.be/selfassement, the counter component’s URI becomes https://

online.u2u.be/selfassessment/counter. Routing will ignore the base URI so it will

match the counter as expected. You only need to specify the base URI once, as shown

in Listing 7-15.

Chapter 7 Single Page Applications and Routing

https://online.u2u.be/selfassessment
https://online.u2u.be/selfassessment
https://online.u2u.be/selfassement
https://online.u2u.be/selfassement
https://online.u2u.be/selfassessment/counter
https://online.u2u.be/selfassessment/counter

203

�Sharing State Between Components
When you navigate between different Blazor components with routing you will probably

encounter the need to send information from one component to another. One way to

accomplish this is by setting a parameter in the destination component by passing it

in the URI. For example, you could navigate to /pizzadetail/5 to tell the destination

component to display information about the pizza with id 5. The destination component

can then use a service to load the information about pizza #5 and then display this

information. But in Blazor there is another way. You can build a State class (most

developers call this State, but this is just a convention and you can call it anything

you want; State just makes sense) and then use dependency injection to give every

component the same instance of this class. This is also known as the Singleton Pattern.

Your Pizza Place application is already using a State class, so it should not be too much

work to use this pattern.

Start by opening the Pizza Place solution from previous chapters. Open the Index

component from the Pages folder (in the PizzaPlace.Client project) and look for the

private State field. Remove this field (I’ve made it a comment) and replace it with an

@inject directive as in Listing 7-16.

Listing 7-16.  Using Dependency Injection to Get the State Singleton Instance

@page "/"

@inject IMenuService menuService

@inject IOrderService orderService

@inject State State

<!-- Menu -->

<PizzaList Title="Our selected list of pizzas"

 Menu="@State.Menu"

 Selected="@((pizza) => AddToBasket(pizza))" />

<!-- End menu -->

<!-- Shopping Basket -->

<ShoppingBasket Title="Your current order"

 Basket="@State.Basket"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@(pos => RemoveFromBasket(pos))" />

<!-- End shopping basket -->

Chapter 7 Single Page Applications and Routing

204

<!-- Customer entry -->

<CustomerEntry Title="Please enter your details below"

 bind-Customer="@State.Basket.Customer"

 Submit="@((_) => PlaceOrder())" />

<!-- End customer entry -->

<p>@State.ToJson()</p>

@functions {

//private State State { get; } = new State();

protected override async Task OnInitAsync()

{

 State.Menu = await menuService.GetMenu();

}

private void AddToBasket(Pizza pizza)

{

 Console.WriteLine($"Added pizza {pizza.Name}");

 State.Basket.Add(pizza.Id);

 StateHasChanged();

}

private void RemoveFromBasket(int pos)

{

 Console.WriteLine($"Removing pizza at pos {pos}");

 State.Basket.RemoveAt(pos);

 StateHasChanged();

}

private async Task PlaceOrder()

{

 await orderService.PlaceOrder(State.Basket);

}

}

Now configure dependency injection in Startup.cs to inject the State instance as a

singleton, as in Listing 7-17.

Chapter 7 Single Page Applications and Routing

205

Listing 7-17.  Configuring Dependency Injection for the State Singleton

using Microsoft.AspNetCore.Blazor.Builder;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Client.Services;

using PizzaPlace.Shared;

namespace PizzaPlace.Client

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddTransient<IMenuService, MenuService>();

 services.AddTransient<IOrderService, OrderService>();

 services.AddSingleton<State>();

 }

 public void Configure(IBlazorApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

Run the application. Everything should still work! What you’ve done is to use the

Singleton Pattern to inject the State singleton into the Index component. Let’s add

another component that will use the same State instance.

You want to display more information about a pizza using a new component,

but before you do this you need to update the State class. Add a new property called

CurrentPizza to the State class, as shown in Listing 7-18.

Listing 7-18.  Adding a CurrentPizza Property to the State Class

using System;

using System.Collections.Generic;

using System.Text;

using System.Linq;

Chapter 7 Single Page Applications and Routing

206

namespace PizzaPlace.Shared

{

 public class State

 {

 public Menu Menu { get; set; } = new Menu();

 public Basket Basket { get; set; } = new Basket();

 public UI UI { get; set; } = new UI();

 public decimal TotalPrice

 => Basket.Orders.Sum(id => Menu.GetPizza(id).Price);

 public Pizza CurrentPizza { get; set; }

 }

}

Now when someone clicks on a pizza in the menu, it will display the pizza’s

information. Update the PizzaItem component by wrapping the pizza name in an

anchor, like in Listing 7-19.

Listing 7-19.  Adding an Anchor to Display the Pizza’s Information

@using Microsoft.AspNetCore.Blazor.Services

@using PizzaPlace.Shared

<div class="row">

 <div class="col">

 <a href=""

 onclick="@(() => ShowPizzaInformation(Pizza))">

 @Pizza.Name

 </div>

 <div class="col">

 @Pizza.Price

 </div>

 <div class="col">

 <img src="@SpicinessImage(Pizza.Spiciness)"

 alt="@Pizza.Spiciness" />

 </div>

Chapter 7 Single Page Applications and Routing

207

 <div class="col">

 <button class="@ButtonClass"

 onclick="@(() => Selected(Pizza))">

 @ButtonTitle</button>

 </div>

</div>

@functions {

 [Parameter]

 protected Pizza Pizza { get; set; }

 [Parameter]

 protected string ButtonTitle { get; set; }

 [Parameter]

 protected string ButtonClass { get; set; }

 [Parameter]

 protected Action<Pizza> Selected { get; set; }

 [Parameter]

 protected Action<Pizza> ShowPizzaInformation { get; set; }

 private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

}

When someone clicks this link, it will set the State instance’s CurrentPizza

property. But you don’t have access to the State object. One way to solve this would

be by injecting the State instance in the PizzaItem component. But you don’t want to

overburden this component, so you add a ShowPizzaInformation callback delegate to

tell the containing PizzaList component that you want to display more information

about the pizza. Clicking the pizza name link simply invokes this callback without

knowing what should happen.

Chapter 7 Single Page Applications and Routing

208

You are applying a pattern here known as “Dumb and Smart Components.” A dumb
component is a component that knows nothing about the global picture of the
application. Because it doesn’t know anything about the rest of the application a
dumb component is easier to reuse. A smart component knows about the other
parts of the application and will use dumb components to display its information.
In your example the PizzaList and PizzaItem are dumb components, while the
Index component is a smart component.

Update the PizzaList component to set the PizzaItem component’s

ShowPizzaInformation parameter as in Listing 7-20.

Listing 7-20.  Adding a PizzaInformation Callback to the PizzaList Component

@using PizzaPlace.Shared

<h1>@Title</h1>

@if (Menu == null || Menu.Pizzas == null

 || Menu.Pizzas.Count == 0)

{

 <div style="height:20vh;" class="pt-3">

 <div class="mx-left pt-3" style="width:200px">

 <div class="progress">

 �<div class="progress-bar bg-danger progress-bar-striped

progress-bar-animated w-100" role="progressbar" aria-valuenow="100"

aria-valuemin="0" aria-valuemax="100"></div>

 </div>

 </div>

 </div>

}

else

{

 @foreach (var pizza in Menu.Pizzas)

 {

 <PizzaItem Pizza="@pizza" ButtonTitle="Order"

Chapter 7 Single Page Applications and Routing

209

 ButtonClass="btn btn-success"

 Selected="@((p) => Selected(p))"

 ShowPizzaInformation="@ShowPizzaInformation"/>

 }

}

@functions {

[Parameter]

protected string Title { get; set; }

[Parameter]

protected Menu Menu { get; set; }

[Parameter]

protected Action<Pizza> Selected { get; set; }

[Parameter]

protected Action<Pizza> ShowPizzaInformation { get; set; }

}

You added a ShowPizzaInformation callback to the PizzaList component and you

simply pass it to the PizzaItem component. The Index component will set this callback

and the PizzaList will pass it to the PizzaItem component.

Update the Index component to set the State instance’s CurrentPizza and navigate

to the PizzaInfo component, as shown in Listing 7-21.

Listing 7-21.  The Index Component Navigates to the PizzaInfo Component

@page "/"

@using Microsoft.AspNetCore.Blazor.Services

@inject IMenuService menuService

@inject IOrderService orderService

@inject State State

@inject IUriHelper UriHelper

<!-- Menu -->

<PizzaList Title="Our selected list of pizzas"

 Menu="@State.Menu"

Chapter 7 Single Page Applications and Routing

210

 Selected="@((pizza) => AddToBasket(pizza))"

 ShowPizzaInformation="@((pizza) => ShowPizzaInformation(pizza))"/>

<!-- End menu -->

<!-- Shopping Basket -->

<ShoppingBasket Title="Your current order"

 Basket="@State.Basket"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@(pos => RemoveFromBasket(pos))" />

<!-- End shopping basket -->

<!-- Customer entry -->

<CustomerEntry Title="Please enter your details below"

 bind-Customer="@State.Basket.Customer"

 Submit="@(async (_) => await PlaceOrder())" />

<!-- End customer entry -->

<p>@State.ToJson()</p>

@functions {

//private State State { get; } = new State();

protected override async Task OnInitAsync()

{

 State.Menu = await menuService.GetMenu();

}

private void AddToBasket(Pizza pizza)

{

 Console.WriteLine($"Added pizza {pizza.Name}");

 State.Basket.Add(pizza.Id);

 StateHasChanged();

}

private void RemoveFromBasket(int pos)

{

 Console.WriteLine($"Removing pizza at pos {pos}");

 State.Basket.RemoveAt(pos);

 StateHasChanged();

}

Chapter 7 Single Page Applications and Routing

211

private async Task PlaceOrder()

{

 await orderService.PlaceOrder(State.Basket);

}

private void ShowPizzaInformation(Pizza pizza)

{

 State.CurrentPizza = pizza;

 UriHelper.NavigateTo("/PizzaInfo");

}

}

The Index component tells the PizzaList component to call the ShowPizzaInformation

method when someone clicks the information link from the PizzaItem component.

The ShowPizzaInformation method then sets the State’s CurrentPizza property and

navigates using the UriHelper.NavigateTo method to the /PizzaInfo route.

Right-click the Pages folder and add a new Razor View called PizzaInfo, as shown

in Listing 7-22 (to save you some time and to keep things simple, you can copy most of

the PizzaItem component). The PizzaInfo component shows information about the

State’s CurrentPizza. This works because you share the same State instance between

these components.

Listing 7-22.  Adding a PizzaInfo Component

@using PizzaPlace.Shared

@page "/PizzaInfo"

@inject State State

<h2>Pizza Details</h2>

<div class="row">

 <div class="col">

 @State.CurrentPizza.Name

 </div>

</div>

<div class="row">

 <div class="col">

 @State.CurrentPizza.Price

Chapter 7 Single Page Applications and Routing

212

 </div>

</div>

<div class="row">

 <div class="col">

 <img src="@SpicinessImage(State.CurrentPizza.Spiciness)"

 alt="@State.CurrentPizza.Spiciness" />

 </div>

</div>

<div class="row">

 <div class="col">

 Menu

 </div>

</div>

@functions {

private string SpicinessImage(Spiciness spiciness)

=> $"images/{spiciness.ToString().ToLower()}.png";

}

At the bottom of the markup you add an anchor (and made it look like a button

using Bootstrap styling) to return to the menu. It’s an example of changing the route with

anchors. Of course, in a real-life application you would show the ingredients of the pizza,

a nice picture, and other information. I leave this as an exercise for you.

�Summary
In this chapter, you looked at two things, layouts and routing.

Layouts allow you to avoid replicating markup in your application and help keep

your application’s look consistent. You also saw that layouts can be nested.

Routing is an important part of building single page applications and takes care of

picking the component to show based on the browser’s URI. You define route templates

using the @page syntax where you use route parameters and constraints. Navigation in

your single page application can be done using anchor tags and from code using the

IUriHelper class. Then you modified the Pizza Place application to show how to share

information between different routes in a Blazor application.

Chapter 7 Single Page Applications and Routing

213
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5_8

CHAPTER 8

JavaScript Interoperability
Sometimes there is just no escape from using JavaScript ☺. For example, Blazor itself

uses JavaScript to update the browser’s DOM from your Blazor components. You can,

too. In this chapter, you will look at interoperability with JavaScript and, as an example,

you will build a Blazor component library to display a line chart using a popular

open-source JavaScript library for charts. This chapter does require you to have some

basic JavaScript knowledge.

�Calling JavaScript from C#
Browsers have a lot of capabilities you might want to use in your Blazor web site. For

example, you might want to use the Browser’s local storage to keep track of some data.

Thanks to Blazor’s JavaScript interoperability, this is easy.

�Providing a Glue Function
To call JavaScript functionality you start by building a glue function in JavaScript. I like to

call these functions glue functions (my own naming convention) because they become

the glue between .NET and JavaScript.

Glue functions are regular JavaScript functions. A JavaScript glue function can take

any number of arguments, on the condition that they are JSON serializable (meaning

that you can only use types that are convertible to JSON, including classes whose

properties are JSON serializable). This is required because the arguments and return

type are sent as JSON between .NET and JavaScript runtimes.

You then add this function to the global scope object, which in the browser is the

window object. You will look at an example a little later, so keep reading. You can then

call this JavaScript glue function from your Blazor component, as you will see in the

next section.

214

�Using JSRuntime to Call the Glue Function
Back to .NET land. To invoke your JavaScript glue function from C#, you use the .NET

IJSRuntime instance provided through the JSRuntime.Current static property. This

instance has the InvokeAsync<T> generic method, which takes the name of the glue

function and its arguments and returns a value of type T, which is the .NET return type of

the glue function. If this sounds confusing, you will look at an example right away...

The InvokeAsync method is asynchronous to support all asynchronous scenarios,

and this is the recommended way of calling JavaScript. If you need to call the

glue function synchronously, you can downcast the IJSRuntime instance to

IJSInProcessRuntime and call its synchronous Invoke<T> method. This method takes

the same arguments as InvokeAsync<T> with the same constraints.

�Storing Data in the Browser with Interop
It’s time to look at an example and you will start with the JavaScript glue function. Open

the MyFirstBlazor solution you used in previous chapters. Open the wwwroot folder

from the MyFirstBlazor.Client project and add a new subfolder called scripts. Add

a new JavaScript file to the scripts folder called interop.js and add the glue functions

from Listing 8-1. These glue functions allow you to access the localStorage object from

the browser, which allows you to store data on the client’s computer so you can access it

later, even after the user has restarted the browser.

Listing 8-1.  The getProperty and setProperty Glue Functions

window.interop = {

 setProperty: function (name, value) {

 window.localStorage[name] = value;

 return value;

 },

 getProperty: function (name) {

 return window.localStorage[name];

 }

};

Chapter 8 JavaScript Interoperability

215

Your Blazor web site needs to include this script, so open the index.html file from the

wwwroot folder and add a script reference after the Blazor script, as shown in Listing 8-2.

Listing 8-2.  Including the Script Reference in Your HTML Page

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width">

 <title>MyFirstBlazor5</title>

 <base href="/" />

 <link href="css/bootstrap/bootstrap.min.css"

 rel="stylesheet" />

 <link href="css/site.css" rel="stylesheet" />

</head>

<body>

 <app>Loading...</app>

 <script src="_framework/blazor.webassembly.js"></script>

 <script src="scripts/interop.js"></script>

</body>

</html>

When you use a Blazor component library you don’t need to include the script in
the index.html page. You will see an example of this later in this chapter.

Now let’s look at how to call these setProperty/getProperty glue functions.

Open the Index.cshtml Blazor component and modify it to look like Listing 8-3. To

keep things simple, you will call the glue functions synchronously, which requires the

IJSInProcessRuntime instance, which you will store in the IPR (in-process-runtime)

variable.

Chapter 8 JavaScript Interoperability

216

Listing 8-3.  Invoking the Glue Functions from a Blazor Component

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<input type="number" bind="@Counter" />

<SurveyPrompt Title="How is Blazor working for you?" />

@functions {

 private IJSInProcessRuntime IPR

 => (IJSInProcessRuntime)JSRuntime.Current;

 public int Counter

 {

 get

 {

 string value =

 IPR.Invoke<string>("interop.getProperty",

 nameof(Counter));

 if(value != null && int.TryParse(value, out var v))

 {

 return v;

 }

 return 0;

 }

 set

 {

 IPR.Invoke<string>("interop.setProperty",

 nameof(Counter), $"{value}");

 }

 }

}

Chapter 8 JavaScript Interoperability

217

This looks a bit like the Counter component, but now the Counter stores its value

in the browser’s window.localstorage. To do this you use a Counter property, which

invokes your glue functions in the property setter and getter. These glue functions are

synchronous, so you first create a private IPR property to store the IJSInProcessRuntime

instance (because you don’t want to repeat yourself, and copy-paste has been the cause

of so many subtle bugs). Then in the Counter property’s getter you invoke the window.

interop.getProperty glue function. But because localstorage uses strings you need to

convert between the Counter of type int and string. There’s one more caveat: initially

localstorage will not have a value yet, so if this returns a null reference you simply

return 0. Similar in the Counter property’s setter, you invoke the window.interop.

setProperty glue function, making sure you convert the int to a string. This last

conversion is quite essential; otherwise you will see errors in the browser’s console.

Run the solution and modify the Counter’s value. Now when you refresh your

browser you will see the last value of Counter. The Counter is now persisted between

sessions! You can exit your browser, open it again, and you will see the Counter again

with the last value.

�Passing a Reference to JavaScript
Sometimes your JavaScript needs to access one of your HTML elements. You can do

this by storing the element in an ElementRef and then passing this ElementRef to the

glue function.

Never use JavaScript interop to modify the DOM because this will interfere with the
Blazor rendering process! If you need to modify the browser’s DOM, use a Blazor
component.

You should use this ElementRef as an opaque handle, meaning you can only pass

it to a JavaScript glue function, which will receive it as a JavaScript reference to the

element.

Let’s look at an example by setting the focus on the Counter input element using

interop. Start by adding a property of type ElementRef to the @functions area in Index.

html as in Listing 8-4.

Chapter 8 JavaScript Interoperability

218

Listing 8-4.  Adding an ElementRef Property

private ElementRef inputElement { get; set; }

Then modify the input element to set the inputElement property as in Listing 8-5.

Listing 8-5.  Setting the inputElement

<input ref="@inputElement" type="number" bind="@Counter" />

Now add another glue function to interop.js as in Listing 8-6.

Listing 8-6.  Adding the setFocus glue function

window.interop = {

 setProperty: function (name, value) {

 window.localStorage[name] = value;

 return value;

 },

 getProperty: function (name) {

 return window.localStorage[name];

 },

 setFocus: function (element) {

 element.focus();

 }

};

Now comes the “tricky” part. Blazor will create your component and then call the

lifecycle methods such as OnInit. If you invoke the setFocus glue function in OnInit

the DOM has not been updated with the input element so this will result in a runtime

error because the glue function will receive a null reference. You need to wait for the

DOM to be updated, which means that you should only pass the ElementRef to your glue

function in the OnAfterRender/OnAfterRenderAsync method!

Add the OnAfterRender method to the @functions section as in Listing 8-7.

Listing 8-7.  Passing the ElementRef in OnAfterRender

protected override void OnAfterRender()

{

 IPR.Invoke<string>("interop.setFocus", inputElement);

}

Chapter 8 JavaScript Interoperability

219

Run your solution and you should see that the input element receives focus

automatically, as in Figure 8-1.

Figure 8-1.  The Counter receives focus automatically

�Calling .NET Methods from JavaScript
You can also call .NET methods from JavaScript. For example, your JavaScript might

want to tell your component that something interesting has happened, like the user

clicking something in the browser. Or your JavaScript might want to ask the Blazor

component about some data it needs. You can call a .NET method, but with a couple

of conditions. First, your .NET method’s arguments and return value need to be JSON

serializable, the method must be public, and you need to add the JSInvokable attribute

to the method. The method can be a static or an instance method.

To invoke a static method, you use the JavaScript DotNet.invokeMethodAsync

or DotNet.invokeMethod function, passing the name of the assembly, the name of

the method, and its arguments. To call an instance method, you pass the instance

wrapped as a DotNetObjectRef to a JavaScript glue function, which can then invoke

the .NET method using the DotNetObjectRef’s invokeMethodAsync or invokeMethod

function, passing the name of the .NET method and its arguments. Let’s continue with

the previous example. When you make a change to local storage, the storage triggers a

JavaScript storage event, passing the old and new value (and more). This allows you to

register for changes in other browser tabs or windows and use it to update the page.

Chapter 8 JavaScript Interoperability

220

�Adding a Glue Function Taking a .NET Instance
Open interop.js from the previous example and add a watch function, as in Listing 8-8.

Listing 8-8.  The watch Function Allows You to Register for Local Storage Changes

window.interop = {

 setProperty: function (name, value) {

 window.localStorage[name] = value;

 return value;

 },

 getProperty: function (name) {

 return window.localStorage[name];

 },

 setFocus: function (element) {

 element.focus();

 },

 watch: function (instance) {

 window.addEventListener('storage', function (e) {

 console.log('storage event');

 instance.invokeMethodAsync('UpdateCounter');

 });

 }

};

The watch function takes a reference to a DotNetObjectRef instance and invokes the

UpdateCounter method when storage changes.

�Adding a JSInvokable Method to Invoke
Open Index.cshtml and add the UpdateCounter method to the @functions area, as

shown in Listing 8-9.

Chapter 8 JavaScript Interoperability

221

Listing 8-9.  The UpdateCounter Method

[JSInvokable]

public Task UpdateCounter()

{

 this.StateHasChanged();

 return Task.CompletedTask;

}

This method triggers the UI to update with the latest value of Counter. Please note

that this method follows the .NET async pattern returning a Task instance. Because you

are not actually calling any async API, you return the Task.CompetedTask. To complete

the example, add the OnInit lifecycle method shown in Listing 8-10.

Listing 8-10.  The OnInit Method

protected override void OnInit()

{

 IPR.Invoke<string>("interop.watch",

 new DotNetObjectRef(this));

}

The OnInit method wraps the Index component’s this reference in a

DotNetObjectRef and passes it to the interop.watch function.

To see this in action, open two browser tabs on your web site. When you change

the value in one tab you should see the other tab update to the same value, as shown in

Figure 8-2.

Chapter 8 JavaScript Interoperability

222

�Building a Blazor Chart Component Library
In this section, you will build a Blazor component library to display charts by using a

popular open source JavaScript library called Chart.js (www.chartjs.org). However,

wrapping the whole library would make this chapter way too long, so you’ll just use a

simple line-chart component.

Figure 8-2.  Updating the Counter in one tab updates the other tab

Chapter 8 JavaScript Interoperability

http://www.chartjs.org

223

�Creating the Blazor Component Library
Open Visual Studio and start by creating a new Blazor project called ChartTestProject,

as shown in Figure 8-3. This project will only be used for testing the chart component.

Figure 8-3.  Creating a new Blazor project

If you are using Code, open a command prompt and type

dotnet new blazorhosted -o ChartTestProject

With both Visual Studio and Code, open a command prompt on the directory

containing the ChartTestProject solution (the folder where the .sln file is) and type

dotnet new blazorlib -o U2U.Components.Chart

This will create a new Blazor component library. Unfortunately, you cannot create

this kind of project with Visual Studio (yet). Go back to Visual Studio, right-click the

solution, and select Add ➤ Existing Project. Select the U2U.Components.Chart project.

Your solution should look like Figure 8-4.

Chapter 8 JavaScript Interoperability

224

If you’re using Code, simply type this command to add the component library to the

solution:

dotnet sln add U2U.Components.Chart/U2U.Components.Chart.csproj

�Adding the Component Library to Your Project
Now you have the Blazor component library project. Let’s use it in the test project.

Look for Component1.cshtml in the U2U.Components.Chart project and rename it to

LineChart.cshtml. Add a reference to the component library in the client project. In

Visual Studio, right-click the ChartTestProject and select Add ➤ Reference. Check the

U2U.Components.Chart project, shown in Figure 8-5, and click OK.

Figure 8-4.  The solution containing the component library

Chapter 8 JavaScript Interoperability

225

With Code, use the integrated terminal, change the current directory to

ChartTestProject.Client, and type this command:

dotnet add reference ../U2U.Components.Chart/U2U.Components.Chart.csproj

This will add a reference to the U2U.Components.Chart component library.

Look for the _ViewImports.cshtml file (the one next to App.cshtml) in the

ChartTestProject and open it in the editor. Remember from Chapter 3 that to use

a component from a library you need to add it as an MVC tag helper. Insert the

@addTagHelper directive shown in Listing 8-11.

Listing 8-11.  Adding the LineChart tagHelper to the Blazor Project

@using System.Net.Http

@using Microsoft.AspNetCore.Blazor.Layouts

@using Microsoft.AspNetCore.Blazor.Routing

@using Microsoft.JSInterop

@using ChartTestProject

@using ChartTestProject.Shared

@addTagHelper *, U2U.Components.Chart

Figure 8-5.  Adding a reference to the component library

Chapter 8 JavaScript Interoperability

226

Open the Index.cshtml file from the Pages folder and add the LineChart

component shown in Listing 8-12.

Listing 8-12.  Adding the LineChart Component

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<LineChart/>

<SurveyPrompt Title="How is Blazor working for you?" />

Build and run your application. It should look like Figure 8-6.

Figure 8-6.  Testing if the component library has been added correctly

�Adding Chart.js to the Component Library
The LineChart component doesn’t look like a chart, so it’s time to fix this! First, you

need to add the Chart.js JavaScript library to the component library project. Go to

www.chartjs.org/. This is the main page for Chart.js. Now click the GitHub button,

shown in Figure 8-7, to open the project’s GitHub page.

Chapter 8 JavaScript Interoperability

http://www.chartjs.org/

227

Scroll down this page looking for the GitHub releases link. Press this link with your

mouse and the release page will open, as shown in Figure 8-8.

Since it takes some time between writing a book and you reading it there is a big
chance that the version will have incremented. Make sure you select a version
starting with 2, since version 3 will contain breaking changes.

Click Chart.bundle.min.js to download it, as shown in Figure 8-8.

Figure 8-7.  The Chart.js main page

Chapter 8 JavaScript Interoperability

228

After it has been downloaded, copy this file to the content folder of the

U2U.Components.Chart project, as shown in Figure 8-9. All files in this folder are

automatically downloaded into the browser by Blazor so you don’t need to add them to

index.html.

Figure 8-8.  GitHub releases page for Chart.js

Figure 8-9.  Copying Chart.bundle.min.js into the contents folder

Chapter 8 JavaScript Interoperability

229

�Verifying If the JavaScript Library Loaded Correctly

You know about Murphy’s Law? It states, “Anything that can possibly go wrong, does.”

Let’s make sure that the Chart.js library gets loaded by the browser. Run your Blazor

project and open the browser’s debugger. Check if Chart.bundle.min.js has been loaded

correctly. The easiest way to do this is to see if window.Chart has been set (Chart.js adds

one constructor function called Chart to the window global object). You can do this from

the Console tab of the debugger by typing window.Chart, as shown in Figure 8-10.

Figure 8-10.  Using the browser’s console to check the value of window.Chart

If this returns undefined, rebuild the U2U.Components.Chart project. Then you

can try refreshing the browser after emptying the browser’s cache. When the browser’s

debugger is shown, right-click the refresh button and you’ll get a drop-down menu, as

shown in Figure 8-11. Select the Empty Cache and Hard Reload menu item.

Figure 8-11.  Reloading the page after clearing the cache

Chapter 8 JavaScript Interoperability

230

�Adding Chart.js Data and Options Classes
Open your browser and type in www.chartjs.org/docs/latest/. Here you can see a

sample of using Chart.js in JavaScript. This library requires two data structures to be

passed to it: one containing the chart data and one containing the options. This section

will add these classes to the Blazor component library, but now using C#. Again, I am not

going for full coverage of all the features of Chart.js to keep things crisp.

�The ChartOptions Class

Let’s start with the options class. Right-click the U2U.Components.Chart library and add

a new class called ChartOptions as in Listing 8-13.

This is a fair amount of code. You might consider copying it from the sources
provided with this book. I’ve also left out comments describing each property for
conciseness.

Listing 8-13.  The ChartOptions Class

public class ChartOptions

{

 public class TitleOptions

 {

 public static readonly TitleOptions Default

 = new TitleOptions();

 public bool Display { get; set; } = false;

 }

 public class ScalesOptions

 {

 public static readonly ScalesOptions Default

 = new ScalesOptions();

 public class ScaleOptions

 {

Chapter 8 JavaScript Interoperability

http://www.chartjs.org/docs/latest/

231

 public static readonly ScaleOptions Default

 = new ScaleOptions();

 public class TickOptions

 {

 public static readonly TickOptions Default

 = new TickOptions();

 public bool BeginAtZero { get; set; } = true;

 public int Max { get; set; } = 100;

 }

 public bool Display { get; set; } = true;

 public TickOptions Ticks { get; set; }

 = TickOptions.Default;

 }

 public ScaleOptions[] YAxes { get; set; }

 = new ScaleOptions[] { ScaleOptions.Default };

 }

 public static readonly ChartOptions Default

 = new ChartOptions { };

 public TitleOptions Title { get; set; }

 = TitleOptions.Default;

 public bool Responsive { get; set; } = true;

 public bool MaintainAspectRatio { get; set; } = true;

 public ScalesOptions Scales { get; set; }

 = ScalesOptions.Default;

}

This C# class, with nested classes, reflects the JavaScript options object (partially)
from Chart.js. Note that I’ve added Default static properties to each class to
make it easier for developers to construct the options hierarchy.

Chapter 8 JavaScript Interoperability

232

�The LineChartData Class

Chart.js expects you to give it the data it will render. For this, it needs to know a couple

of things, like the color of the line, the color of the fill beneath the line, and, of course, the

numbers to plot the graph. So how will you represent colors and points in your Blazor

component? As it turns out, there are classes in .NET to represent colors and points:

System.Drawing.Color and System.Drawing.Point. Unfortunately, you cannot use

Color because it doesn’t convert into a JavaScript color, but you can allow users to use

it in their code. I’ll discuss how to do this a little later. Add a new class LineChartData to

the component library called LineChartData, as shown in Listing 8-14.

Listing 8-14.  The LineChartData Class

using System;

using System.Collections.Generic;

using System.Drawing;

namespace U2U.Components.Chart

{

 public class LineChartData

 {

 public class DataSet

 {

 public string Label { get; set; }

 public List<Point> Data { get; set; } = null;

 public string BackgroundColor { get; set; }

 public string BorderColor { get; set; }

 public int BorderWidth { get; set; } = 2;

 }

 public string[] Labels { get; set; }

 = Array.Empty<string>();

 public DataSet[] Datasets { get; set; }

 }

}

Chapter 8 JavaScript Interoperability

233

Most of this class should be clear, except maybe for Array.Empty<string>(). This

method returns an empty array of the generic argument. But why is this better? You

cannot modify an empty array, so you can use the same instance everywhere (this is also

known as the Flyweight Pattern). This is like string.Empty and using it puts less strain

on the garbage collector.

�Registering the JavaScript Glue Function
To invoke the Chart.js library you need to add a little JavaScript of your own. Open

the content folder of the component library project and start by renaming the

exampleJsInterop.js file to JsInterop.js and replacing the code with Listing 8-15.

Listing 8-15.  Registering the JavaScript Glue Class

window.components = (function () {

 return {

 chart: function (id, data, options) {

 var context = document.getElementById(id)

 .getContext('2d');

 var chart = new Chart(context, {

 type: 'line',

 data: data,

 options: options

 });

 }

 };

})();

This adds a window.components.chart glue function that when invoked calls the

Chart function (from Chart.js), passing in the graphics context for the canvas, data,

and options. It is very important that you pass the id of the canvas because someone

might want to use the LineChart component several times in the same page. By using a

unique id for each LineChart component you end up with canvasses with unique ids.

Chapter 8 JavaScript Interoperability

234

�Providing the JavaScript Interoperability Service
Your LineChart component will need to call the Chart.js library using your window.

components.chart glue function. But putting all this logic in the LineChart component

directly is something you want to avoid. Instead, you will build a service encapsulating

this logic and inject the service into the LineChart component. Should the Blazor team

at Microsoft decide to change the way JavaScript interoperability works (they have done

that before) then you will only need to change one class (again, the Single Responsibility

Principle). Start by adding a new interface to the U2U.Component.Chart library project

called IChartInterop with the code from Listing 8-16.

Listing 8-16.  The IChartInterop Interface

namespace U2U.Components.Chart

{

 public interface IChartInterop

 {

 void CreateLineChart(string id, LineChartData data,

 ChartOptions options);

 }

}

As you can see, this interface’s CreateLineChart method closely matches the

window.components.chart glue function. Let’s implement this service. Add a new

class called ChartInterop to the component library project and implement is as in

Listing 8-17.

Listing 8-17.  Implementing the ChartInterop Class

using Microsoft.JSInterop;

namespace U2U.Components.Chart

{

 /// <summary>

 /// It is always a good idea to hide specific implementation

 /// details behind a service class

 /// </summary>

 public class ChartInterop : IChartInterop

Chapter 8 JavaScript Interoperability

235

 {

 public void CreateLineChart(string id, LineChartData data,

 ChartOptions options)

 {

 JSRuntime.Current

 .InvokeAsync<string>("components.chart",

 id, data, options);

 }

 }

}

This CreateLineChart method invokes the JavaScript components.chart function

you added in Listing 8-15.

Time to configure dependency injection. You could ask the user of the library to

add the IChartInterop dependency directly, but you don’t want to put too much

responsibility in the user’s hands. Instead you will provide the user with a handy C#

extension method that hides all the gory details from the user. Add the new class called

DependencyInjection to the component library project with the code from Listing 8-18.

Listing 8-18.  The AddCharts Extension Method

using Microsoft.Extensions.DependencyInjection;

namespace U2U.Components.Chart

{

 public static class DependencyInjection

 {

 public static IServiceCollection AddCharts(

 this IServiceCollection services)

 => services.AddSingleton<IChartInterop, ChartInterop>();

 }

}

This class provides you with the AddCharts extension method that the user of

the LineChart component can now add to the client project. Let’s do this. Make sure

everything builds first, and then open Startup.cs in the ChartTestProject and add a

call to AddCharts as in Listing 8-19.

Chapter 8 JavaScript Interoperability

236

Listing 8-19.  Convenient Dependency Injection with AddCharts

using Microsoft.AspNetCore.Blazor.Builder;

using Microsoft.Extensions.DependencyInjection;

using U2U.Components.Chart;

namespace ChartTestProject

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddCharts();

 }

 public void Configure(IBlazorApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

The user of the component does not need to know any implementation details to use

the LineChart component. Mission accomplished!

�Implementing the LineChart Component
Now you are ready to implement the LineChart component. Chart.js does all its

drawing using an HTML5 canvas element, and this will be the markup of the LineChart

component. Update LineChart.cshtml to match Listing 8-20.

Listing 8-20.  The LineChart Component

@inject IChartInterop JsInterop

<canvas id="@Id" class="@Class">

</canvas>

Chapter 8 JavaScript Interoperability

237

@functions {

 [Parameter]

 protected string Id { get; set; }

 [Parameter]

 protected string Class { get; set; }

 [Parameter]

 LineChartData Data { get; set; }

 [Parameter]

 ChartOptions Options { get; set; } = ChartOptions.Default;

 protected override void OnAfterRender()

 {

 string id = Id;

 JsInterop.CreateLineChart(Id, Data, Options);

 }

}

The LineChart component has a couple of parameters. The Id parameter is used to

give each LineChart’s canvas a unique identifier; this way you can use LineChart several

times in the same page. The Class parameter can be used to give the canvas one or more

CSS classes to add some style (and you can never have enough style). Finally, the Data

and Options parameters get passed to JavaScript to configure the chart.

Now comes the tricky part (this is like the earlier section where you wanted to set the

focus on the input). To call the JavaScript chart function, the canvas needs to be in the

browser’s DOM. When does that happen? Blazor creates the component hierarchy, calls

each component’s OnInit, OnInitAsync, OnParameterSet, and OnParameterSetAsync

methods, and then uses the component hierarchy to build its internal tree, which then is

used to update the browser’s DOM. Then Blazor calls each component’s OnAfterRender

and OnAfterRenderAsync methods. Because the canvas element should already be part

of the DOM you need to wait for the OnAfterRender method before calling JsInterop.

CreateLineChart.

Chapter 8 JavaScript Interoperability

238

�Using the LineChart Component
With everything in place, you can now complete the LineChart component from the

Index page in your ChartTestProject. Update the Index.cshtml file to match Listing 8-21.

You will add the toJS() extension method later, so ignore any errors till then.

Listing 8-21.  Completing the Index Component

@page "/"

@using U2U.Components.Chart

@using System.Drawing

<h1>Hello, world!</h1>

Welcome to your new app.

<LineChart Id="test" Class="linechart"

 Data="@Data" Options="@Options" />

<SurveyPrompt Title="How is Blazor working for you?" />

@functions {

private LineChartData Data { get; set; }

private ChartOptions Options { get; set; }

protected override void OnInit()

{

 this.Options = ChartOptions.Default;

 this.Data = new LineChartData

 {

 Labels = new string[] { "", "A", "B", "C" },

 Datasets = new LineChartData.DataSet[]

 {

 new LineChartData.DataSet

 {

 Label = "Test",

 BackgroundColor = Color.Transparent.ToJs(),

 BorderColor = Color.FromArgb(10, 96, 157, 219)

 .ToJs(),

Chapter 8 JavaScript Interoperability

239

 BorderWidth = 5,

 Data = new List<Point>

 {

 new Point(0,0),

 new Point(1, 11),

 new Point(2, 76),

 new Point(3,13)

 }

 }

 }

 };

}

}

You start by adding two @using directives for the U2U.Components.Chart and System.

Drawing namespaces. Then you add the Id, Class, Data, and Options parameters. You give

these parameters values in the OnInit method (should you get this data from the server

you would use the OnInitAsync method). One more thing before you can build and run

the project and admire your work: add a new class called ColorExtensions to the U2U.

Component.Chart project. Implement it as shown in Listing 8-22.

Listing 8-22.  The ColorExtensions Class with the toJS Extension Method

using System.Drawing;

namespace U2U.Components.Chart

{

 public static class ColorExtensions

 {

 public static string ToJs(this Color c)

 => $"rgba({c.R}, {c.G}, {c.B}, {c.A})";

 }

}

Build and run your project. If all is well, you should see Figure 8-12.

Chapter 8 JavaScript Interoperability

240

�Summary
In this chapter, you saw how you can call JavaScript from your Blazor components

using the JSRuntime.Current.InvokeAsync<T> method. This requires you to register a

JavaScript glue function by adding this function to the browser’s window global object.

You can also call your .NET static or instance method from JavaScript. Start by

adding the JSInvokable attribute to the .NET method. If the method is static, you use

the JavaScript DotNet.invokeMethodAsync function (or DotNet.invokeMethod if the call

is synchronous), passing the name of the assembly, the name of the method, and its

arguments. If the method is an instance method, you pass the .NET instance wrapped

in a DotNetObjectRef to the glue function, which can then use the invokeMethodAsync

function to call the method, passing the name of the method and its arguments.

Finally, you applied this knowledge by wrapping the Chart.js open source library to

draw a nice line chart. You built a Blazor component library, added some classes to pass

the data to the Chart function, and then used a glue function to draw the chart.

Figure 8-12.  The finished chart example

Chapter 8 JavaScript Interoperability

241
© Peter Himschoot 2019
P. Himschoot, Blazor Revealed, https://doi.org/10.1007/978-1-4842-4343-5

Index

A
AddCharts extension method, 235–236
AddToBasket method, 37
ASP.NET Core

pizza service
add, new controller, 132
API Controller, 132
empty PizzasController, 133
GetPizzas method, 134
JSON-encoded list, 135
modifications,

PizzasController, 133–134
naming, controller, 133
PizzaPlace.Server project, 130, 135
results, 135
Startup Class’ Configure

method, 131–132
UseBlazor method, 132

services and single
responsibility, 130

AutoIncrement method, 27, 28

B
BankRepository, 112, 113
Blazor component

Alert component, 55–58
component library project

creation, 67
CSHTML files, 71
deletion, project, 69

DismissableAlert.cshtml, 69, 70
MyFirstBlazor.Client.csproj file, 71
tag helpers, 72
Timer.cs file, 68
Visual Studio, 70

CSHTML file, 53
lifecycle

IDisposable, 88–89
OnInit and OnInitAsync

methods, 86–87
OnParametersSet and

OnParametersSetAsync
methods, 87

MyFirstBlazor project, 53
PizzaItem.g.cs Generated File, 97–98
pizzas

creation, 73–75
CustomerEntry component, 81–86
ShoppingBasket component, 76–78
updation, state object, 75–76
ValidationError component, 78–80

Razor, 99
SurveyPrompt component, 54–55
templated components

context argument, 93
Context parameters, 93
Fetch data link, 93
FetchData component, 91–93
grid, 89–91
Razor templates, 94–96
type parameter, 94

242

view and view-model
child component, 61
component-to-component data

binding, 64–66
DismissableAlert

component, 59–61
timer component, 62–64

Visual Studio, 55–56
Blazor component library

Chart.js, 226–229
ChartOptions class, 230–231
creation, 223–224
LineChartData class, 232–233
project, addition, 224–226

Blazor Language Services, 3
Blazor layout components, 188–190
Blazor project’s Startup

class, 109, 173
Blazor services

configuring dependency
injection, 118, 119

GetMenu method returns, 116, 117
HardCodedMenuService class, 117
IMenuService interface, 116
Index Component, 115, 116
Index Component’s Menu, 118
OnInitAsync method, 117
ordering pizzas

asynchronous PlaceOrder
Method, 121

asynchronous lambda
function, 122

ConsoleOrderService, 120
dependency injection,

configuration, 121, 122
IOrderService, 119–120
Order button, 122

PlaceOrder method, 120
Task.CompletedTask, 120

State.Menu property, 116, 118
Bootstrap process, 16–17

C
C#

ElementRef Property, 218–219
Glue function, 213

Interop, 214–217
JSRuntime, 214

Catchall route template, 200
Chrome browser

array, WeatherForecast
instances, 167, 168

debugger, 166
feedback with a slow network, 167
OnInitAsync method, 167

Client Blazor Project
App component, 14
Configure method, 14
Index component, 14
index.html, 13
layout components, 15–16

Communication, microservices
HttpClient Class (see HttpClient Class)
retrieving data

Blazor Project’s Startup
Class, 173

ConfigureServices method, 174
loading UI, PizzaList

Component, 176, 177
MenuService class, 174
PizzaPlace app, 176
progress bar, 177
replace HardCodedMenuService,

MenuService, 175

Blazor component (cont.)

Index

243

storing changes
database update,

orders, 178–183
Counter page, 22

D
Data binding

Counter.cshtml, 27, 28
definition, 19
SurveyPrompt.cshtml, 19, 20

Data storage and microservices
Entity Framework Core (see Entity

Framework Core)
code first migrations, 141–142
database server’s connection

string, 143, 144
functionality, Pizza microservice

(see Pizza microservice)
Postman, 151–159
REST (see Representational State

Transfer (REST))
Dependency injection, configuration

disposing, 114
IoCC, 109
options, 109, 110
scoped, 111–114
serviceProvider, 109
Singleton, 110
Startup Class, 109

Dependency inversion
Blazor PizzaPlace app, 101
component, ProductsService, 102
dependency injection, 105, 106
IoCC (see Inversion-of-Control

Container (IoCC))
Principle, 103–105
ProductList component, 102

service object, 101
traditional layered approach, 102

Disposing dependencies, 114
Document Object Model (DOM), 19
Dynamic pages, 187

E
Entity Framework Core

code first approach
add, NuGet packages, 137
modelBuilder, 139
modification, Pizza Class, 138–139
NuGet, 137
OnModelCreating method, 139
Pizza class, 136
PizzaPlaceDbContext

Class, 138–139
code first migrations

application configuration file, 141
appsettings.json, 142
ASP.NET Core, 141
database server’s connection

string, 142–144
dependencies, 141
IServiceCollection, 140
Startup Class’ Constructor, 140–141
Startup.ConfigureServices

Method, 140
create migration
CreatingPizzaDb.cs File, 145–146
dotnet command, 145
generate database

connection, SQL Operations
Studio, 149

SQL Server Object Explorer,
PizzaDb Database, 148

Tool’s Output, 147

Index

244

Package Manager Console, 144
result, adding first migration, 145
tool, 147

Event arguments, 23
Event binding syntax, 23

F
FetchData Component, 164, 165
FetchData Razor file, 167

G
GetJsonAsync extension method, 169–171
GetPizza Method, 41, 134
Grid templated component, 91

H
Hamburger button, 196
Hard-Coded ProductsService, 104
HasErrors property, 46
HttpClient Class

browser, invoking service, 163
Client Project, 164–166, 168
HttpClientJsonExtensions class

(see HttpClientJsonExtensions
methods)

MyFirstBlazor.Server project, 161
MyFirstBlazor.Shared project, 163, 164
SampleDataController class, 161, 162
WeatherForecasts method, 163

HttpClientJsonExtensions methods
GetJsonAsync, 169–171
PostJsonAsync, 171
SendJsonAsync, 172, 173

HTTP Status Codes, 127

Hypertext Transfer Protocol (HTTP)
CERN, 125
electronic document format, 126
HTTP headers, 127
status code, 127
URI and verbs, 126

I
IChartInterop interface, 234–235
IDisposable, 114
IMenuService, 117
IncrementCount() method, 23
Inject Attribute, property injection, 108
Installation, Blazor

ASP.NET Core, 3
.NET Core, 1
Visual Studio 2017, 2, 3
Visual Studio Code Extensions tab, 3, 4
VS/Code templates, 4, 5

Integrated development
environments (IDEs), 2

Inversion-of-Control
Container (IoCC), 106

properties, 107, 108
ProductsService’s Contructor, 107

IProductsService interface, 103, 104

J, K
JavaScript Glue Class, 233

L
Lambda function, 24
Layout components, SPA

@layout directive, 190–192
simple nested layout, 192–194

Entity Framework Core (cont.)

Index

245

LineChart component, 236–237
index, 238–239
JS Extension method, 239–240

LINQ Select method, 41

M
MyFirstBlazor.Client project, 165, 166

N
.NET methods

OnInit method, 221–222
UpdateCounter method, 220–221
watch Function, 220

NuGet window, 137

O
OnAfterRender and OnAfterRenderAsync

methods, 87–88
One-Way Data Binding

conditional attributes, 22, 23
syntax, 21, 22

OnInit method, 85

P, Q
Pizza microservice

GetPizza method, 150
InsertPizza method, 150, 151
PizzaPlaceDbContext, 150
Pizzas property, 150
PizzasController class, 149, 150
retrieve, 150

PizzaPlace.Client project, 174
PizzaPlaceDbContext

Class, 138–139

PizzaPlace project
OnInitAsync method, 117
PlaceOrder method, 120

PizzaPlace.Server project, 135
PizzaPlace.Shared project, 116
Pizza Place Single Page application

Basket class, 33
creation, 29, 30
Customer class, 32
customer details, 42–44
customer information, validating

Any Extension Method, 46
disable checkout button, 51, 52
GetErrors method, 46
INotifyDataErrorInfo, 46–48
validation error, 48–51

DebuggingExtensions class, 44, 45
displaying menu, 34, 36
Menu class, 31
Pizza class, 31
shopping basket

Basket class, 41
displaying, 39, 40
image folder conversion, 39
package installation, 39
pizza ordering, 37
Pizza Place menu, 38
state class, 38
tuples, 41

Spiciness class, 31
State class, 33, 34
UI class, 33

Pizzas and orders
compiler error(s), 182
Customer class, 179, 180
HasForeighKey<Order> method, 182
mapping, PizzaOrder class, 178
migration, database, 183

Index

246

Order Class, 178
OrdersController Class, 183, 184
OrderService Class, 185, 186
PizzaOrder Class, 178
PizzaOrders property, 180, 181
PizzaPlaceDbContext class, 181, 182
primary key Id, 182

PizzasController, 133
PlaceOrder method, 43
PostJsonAsync Method’s Signature, 171
Postman

installation, 151
REST Calls

add Content-Type header, 157
adding headers, 155
empty list of pizzas, 156
GET request, 155
get started, 153
pizza object, JSON, 157
POST response, 158
POST request, 156
Saving, 154
storage, list of pizzas, 159

web page, 152
Principle, Dependency Inversion, 103–105
ProductList component, 104, 105
ProductsService, 102, 105, 108
Property dependency injection, 107, 108
PutJsonAsync Method’s Signature, 172

R
RemoveAt method, 41
Representational State Transfer (REST)

building simple microservice
(see ASP.NET Core)

HTTP (see Hypertext Transfer
Protocol (HTTP))

server functionality
CRUD operations, 127
HTTP headers, 127
JSON, 128
POSTing, 129
retrieve, list of pizzas, 128
unique id, 129

Routing, SPA
constrains, 199
installation, 194
NavLink component, 197
NavMenu component, 195–196
parameters, 198

S
Scoped dependencies, 111–114
SendJsonAsync Method, 172, 173
Server Project’s Configure Method, 11
Shared WeatherForecast Class, 12–13
Single page application (SPA)

base tag, 202
description, 187, 188
navigating, anchor, 200
navigating, code, 200–201
NavLink component, 200
routing (see Routing, SPA)

Singleton dependencies, 110
Singleton pattern, 203

adding, PizzaInfo component, 211–212
callback, PizzaList component, 208–209
CurrentPizza property, 205–206
dependency injection, 203–204
display, pizza’s information, 206–207
navigation, PizzaList

component, 209–211
SpicinessImage method, 36
SQL Server Object Explorer, 142
StateHasChanged method, 28

Pizzas and orders (cont.)

Index

247

Static page, 187
System.ValueTuple NuGet package, 39

T
ToggleAlert method, 58
TransferService, 112
Transient dependencies, 111
Two-Way Data Binding

date format, 26
syntax, 24–26

U
Universal Resource Identifiers (URI)

and verbs, 126
UseBlazor method, 132

UseResponseCompression
Middleware, 12

U2U.Components.Chart project, 229

V
Visual Studio generation

dotnet cli generation, 7, 8
project creation, 6, 7
running

counter page, 9
Fetch data tab, 9, 10
home page, 8

W, X, Y, Z
WeatherForecast class, 163

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction to WebAssembly and Blazor
	Chapter 1: Your First Blazor Project
	Installing Blazor Prerequisites
	.NET Core
	Visual Studio 2017
	ASP.NET Core Blazor Language Services
	Visual Studio Code
	Installing the Blazor Templates for VS/Code

	Generating Your Project with Visual Studio
	Creating a Project with Visual Studio
	Generating the Project with dotnet cli
	Running the Project
	The Home Page
	The Counter Page
	The Fetch Data Page

	Examining the Project’s Parts
	The Solution
	The Server
	The Shared Project
	The Client Blazor Project
	Routing
	Layout Components
	The Blazor Bootstrap Process

	Summary

	Chapter 2: Data Binding
	A Quick Look at Razor
	One-Way Data Binding
	One-Way Data Binding Syntax
	Conditional Attributes

	Event Handling and Data Binding
	Event Binding Syntax
	Event Arguments
	Using C# Lambda Functions

	Two-Way Data Binding
	Two-Way Data Binding Syntax
	Formatting Dates

	Reporting Changes
	The Pizza Place Single Page Application
	Creating the PizzaPlace Project
	Adding Shared Classes to Represent the Data
	Building the UI to Show the Menu
	Displaying the Menu
	Displaying a List of Data
	Converting Values

	Adding Pizzas to the Shopping Basket
	Showing the Shopping Basket
	Adding a Package with Visual Studio
	Adding a Package with Visual Studio Code
	Displaying the Shopping Basket

	Enter the Customer
	Debugging Tip

	Validating the Customer Information
	Letting Entities Validate Themselves
	Showing Validation Errors
	Disabling the Checkout Button

	Summary

	Chapter 3: Components and Structure for Blazor Applications
	What Is a Blazor Component?
	Examining the SurveyPrompt Component
	Building a Simple Alert Component with Razor
	Creating a New Component with Visual Studio
	Creating a New Component with Code
	Implement the Alert Component

	Separating View and View-Model
	Creating a DismissableAlert Component
	Referring to a Child Component
	Adding a Timer Component
	Using Component-to-Component Data Binding

	Building a Component Library
	Creating the Component Library Project
	Adding Components to the Library
	Refering to the Library from Your Project
	Referring to Another Project with Visual Studio
	Referring to Another Project with Code
	Understanding Tag Helpers

	Refactoring PizzaPlace into Components
	Creating a Component to Display a List of Pizzas
	Updating the UI after Changing the State Object
	Showing the ShoppingBasket Component
	Creating a Validation Component Library
	Adding the CustomerEntry Component

	Component Lifecycle Hooks
	OnInit and OnInitAsync
	OnParametersSet and OnParametersSetAsync
	OnAfterRender and OnAfterRenderAsync
	IDisposable

	Using Templated Components
	Creating the Grid Templated Component
	Using the Grid Templated Component
	Specifying the Type Parameter’s Type Explicitly
	Razor Templates

	The Blazor Compilation Model
	Summary

	Chapter 4: Services and Dependency Injection
	What Is Dependency Inversion?
	Understanding Dependency Inversion
	Using the Dependency Inversion Principle
	Adding Dependency Injection
	Applying an Inversion-of-Control Container
	Constructor Dependency Injection
	Property Dependency Injection

	Configuring Dependency Injection
	Singleton Dependencies
	Transient Dependencies
	Scoped Dependencies
	Disposing Dependencies

	Building Blazor Services
	Adding the MenuService and IMenuService abstraction
	Ordering Pizzas with a Service

	Summary

	Chapter 5: Data Storage and Microservices
	What Is REST?
	Understanding HTTP
	Universal Resource Identifiers and Verbs
	HTTP Status Codes

	Invoking Server Functionality Using REST
	HTTP Headers
	JavaScript Object Notation
	Some Examples of REST Calls

	Building a Simple Microservice Using ASP.NET Core
	Services and Single Responsibility
	The Pizza Service

	What Is Entity Framework Core?
	Using the Code First Approach
	Preparing Your Project for Code First Migrations
	Finding Your Database Server’s Connection String

	Creating Your First Code First Migration
	Generating the Database

	Enhancing the Pizza Microservice
	Testing Your Microservice Using Postman
	Installing Postman
	Making REST Calls with Postman
	Making a GET Request
	Inserting Pizzas with POST

	Summary

	Chapter 6: Communication with Microservices
	Using the HttpClient Class
	Examining the Server Project
	Why Use a Shared Project?
	Looking at the Client Project
	How to Emulate a Slow Network in Chrome

	Understanding the HttpClient Class
	The HttpClientJsonExtensions Methods
	GetJsonAsync
	PostJsonAsync
	PutJsonAsync
	SendJsonAsync

	Retrieving Data from the Server
	Storing Changes
	Updating the Database with Orders
	Building the Order Microservice
	Talking to the Order Microservice

	Summary

	Chapter 7: Single Page Applications and Routing
	What Is a Single Page Application?
	Using Layout Components
	Blazor Layout Components
	Selecting a @layout Component
	_ViewImports.cshtml
	Nested Layouts

	Understanding Routing
	Installing the Router
	The NavMenu Component
	The NavLink Component

	Setting the Route Template
	Using Route Parameters
	Filter URIs with Route Constraints
	Adding a Catchall Route Template

	Redirecting to Other Pages
	Navigating Using an Anchor
	Navigating Using the NavLink Component
	Navigating with Code
	Understanding the Base Tag

	Sharing State Between Components
	Summary

	Chapter 8: JavaScript Interoperability
	Calling JavaScript from C#
	Providing a Glue Function
	Using JSRuntime to Call the Glue Function
	Storing Data in the Browser with Interop
	Passing a Reference to JavaScript

	Calling .NET Methods from JavaScript
	Adding a Glue Function Taking a .NET Instance
	Adding a JSInvokable Method to Invoke

	Building a Blazor Chart Component Library
	Creating the Blazor Component Library
	Adding the Component Library to Your Project
	Adding Chart.js to the Component Library
	Verifying If the JavaScript Library Loaded Correctly

	Adding Chart.js Data and Options Classes
	The ChartOptions Class
	The LineChartData Class

	Registering the JavaScript Glue Function
	Providing the JavaScript Interoperability Service
	Implementing the LineChart Component
	Using the LineChart Component

	Summary

	Index

